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ABSTRACT 
 

PERINATAL NICOTINE WITH OR WITHOUT EARLY LIFE INFLUENZA 
INFECTION LEADS TO LUNG DYSFUNCTION WITH AGE 

 
Ryan C. McAllister 

 
June 29th, 2018 

Obstructive Airway Diseases (OADs) affect millions of people worldwide, and are 

characterized by chronic inflammation and tissue remodeling in the lung.  It has been 

proposed that the development of OAD is greatly influenced (and perhaps pre-determined) 

by early life events, such as maternal smoking or a viral infection.  However, direct 

evidence of this is limited and the mechanisms involved remain unclear.  Our laboratory 

previously developed a murine model of perinatal nicotine exposure, and reported that 

nicotine leads to airway remodeling and decreased pulmonary function in the offspring.  

We discovered these effects were mediated through the α7 nicotinic acetylcholine receptor 

(nAChR).  Similarly, respiratory viral infections during childhood, such as Influenza A 

Virus (IAV), have been implicated in the development of OADs in epidemiological and 

murine studies.  We set out to investigate if perinatal nicotine and/or early life IAV 

infection could promote lung remodeling and long-term pulmonary dysfunction.  We 

employed a previously established murine model for nicotine exposure and a newly 

developed model for early life IAV infection.  Importantly, lung dysfunction was tested at 

7-months of age, in which all other studies look at lung dysfunction at earlier times.   
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 We show that both chronic nicotine exposure starting during embryogenesis and 

continuing until adulthood (but not transient exposure limited to the perinatal period) and 

early life IAV infection separately are capable of driving lung dysfunction with age.  

Interestingly, limited differences in lung dysfunction were discovered with chronic 

exposure and early life IAV infection alone, whereas major lung dysfunctional differences 

were discovered for transient perinatal nicotine exposure followed by early life IAV 

infection suggesting a potentiation effect.  Abnormalities in lung function were accredited 

to increased peri-airway collagen deposition and enlarged alveolar structures; the latter 

appeared due to alveolar simplification during development but also perhaps destruction 

during aging.  We discovered that α7 nAChRs partially mediated these changes.  All 

together, we found that indeed these early life exposures resulted in abnormalities in lung 

structure and function that persisted into adulthood.  This model of nicotine exposure and 

early life IAV infection in young mice provides a novel tool for studying the impact of 

these exposures in lung.   
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Background 

Chronic Obstructive Airway Diseases (OADs) are respiratory diseases that affect 

millions of people worldwide, and are characterized by chronic inflammation and tissue 

remodeling in the lung (1-3).  Asthma and Chronic Obstructive Pulmonary Disease 

(COPD) are two highly visible examples of OADs (1, 3, 4).  The onset of asthma occurs 

typically in adolescence years, whereas COPD onsets around 40 years of age (2-4).  While 

asthma can improve or progress after childhood, bronchospasms can be ameliorated with 

medication  (5).  Asthma is characterized by airway inflammation, airflow obstruction (via 

airway wall inflammation and remodeling), and airway hyperreactivity (AHR), which is 

when certain factors (allergens, cold air, etc.) cause exaggerated narrowing of the airways 

(2-4).  In 2015, asthma was found to be the most prevalent chronic respiratory disease, 

affecting approximately 358 million individuals globally, and with the prevalence expected 

to increase (6).  COPD is an irreversible, progressive disease, which is diagnosed in people 

with chronic bronchitis, emphysema, or a combination of the two (2-4).  In 2015, COPD 

was diagnosed in 174 million people globally, with prevalence and mortality increasing 

greatly with aging (7). 

Worldwide, chronic respiratory diseases represent a leading cause of mortality and 

morbidity, with asthma and COPD being the most common (7).  Annually, asthma and 

COPD result in over $100 billion in direct and indirect costs in the U.S., and over $80 

billion in the European Union (8-10).  Importantly, the majority of cost associated with 

these diseases is due to indirect costs related to loss of workplace productivity (7, 8).  It is 

estimated that 40% of the annual healthcare cost could be avoided by preventing 
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complications and hospitalizations related to these conditions through the development of 

effective treatments (7, 8). 

An emerging concept relates how early life exposures may promote the 

development of OADs later in life.  We hypothesize that perinatal events lead to 

adaptations (or maladaptations) that promote alterations in lung structure and function that 

are long-lasting and promote lung disease in the adult.  In Chapter II, we report findings 

regarding the impact of perinatal nicotine exposure on lung structure and function. In 

Chapter III, we investigate a new murine model for early life influenza infection which 

triggers lung tissue remodeling.  In Chapter IV, we combine the two exposures to determine 

if they potentiate each other.  In Chapter V, we assess the role of cholinergic signaling in 

mediating some of these effects by testing genetically modified animals lacking a specific 

nicotinic acetylcholine receptor (nAChR).  Before this, we present an overview of OADs 

and their development and how early life events may promote the development of OADS.  

We explain how OADs are diagnosed and managed, and we describe how animal models 

are capable of providing insight about their pathophysiology.   

 

OADs – An Overview 

Asthma  

Asthma is a condition characterized by airway inflammation and airflow limitation 

due to bronchoconstriction (resulting in wheezing) after a stimulus (6).  The risk factors 

for the development of asthma are, but not limited to, both environmental exposures and 

genetics (11-13).  Asthma is known to be influenced by geographical location (developing 

countries having higher prevalence) where environmental factors play a main role in the 
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development of the disease (12, 14, 15).  There are a number of correlations between 

exposure to environmental factors, asthma development, and exacerbations, with poor air 

quality (gaseous pollutants sulfur dioxide and nitrogen dioxide), diesel exhaust (polycyclic 

aromatic hydrocarbons, carbon monoxide, and nitric oxide), animal dander and excreta, 

dust, dust mites, genetically modified food, fungus, mold, and most importantly, 

environmental tobacco smoke (ETS) (16).  

Genetics are also involved and although the inheritance of asthma does not follow 

classical Mendelian patterns, there is clear evidence linking asthma development to 

genetics (12, 13).  The first studies involving asthma and genetic factors were published in 

the early 1900’s; they suggested that inheritance of the disease was predicted to be 

autosomal dominant (12).  A twin study conducted in the 1970’s as well as an Australian 

study in the 1990’s showed that the monozygotic (MZ) concordance rate was larger than 

the dizygotic (DZ) concordance rate (~4-fold and ~3-fold), where heritability for the latter 

was higher for males than females (12, 13, 17).  A higher concordance rate  in MZ  twins 

than in (DZ) twins is known to be evidence for a genetic component being a contributing 

factor (18).  Many other studies looking at heritability of asthma found similar findings 

(19-23). 

Airway remodeling is a key aspect of asthma that results in loss of lung function 

(24).  Airway remodeling includes epithelial cell hypoplasia or denudation with goblet cell 

metaplasia, airway smooth muscle hypertrophy, angiogenesis, and most importantly, 

increased deposition of extracellular matrix (ECM) components such as collagen I and III 

(24-26).  In this and other chronic lung conditions, ECM components are found to be 

increased in all lung compartments (central airways, airway smooth muscle, parenchyma, 
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and vessels) (27).  Thickening of the airway was the first structural alteration described in 

asthma (25, 26).  Although thickening of the airway may have a negligible effect on 

baseline airway resistance (defined below), it has a profound effect on narrowing of 

airways after a stimulus (26).   

The lung ECM controls resistance or elasticity of the lung structure, which 

ultimately effects lung volume (24).  The cells that play a predominant role in deposition 

of ECM components are primarily fibroblasts, via SMAD signaling pathways triggered 

from epithelial cell TGFβ production, among other pathways (24).  Increased TGFβ 

production arises in response to damage that occurs from T helper 2 (TH2) cell driven 

eosinophilic inflammation (24).  Inflammatory cells (which reside in close proximity to 

fibroblasts) are recruited to the airway in response to inhaled allergens causing epithelial 

destruction and desquamation (24, 26).  Furthermore, airway inflammation and resulting 

remodeling processes may be exacerbated through respiratory viral infections such as 

influenza (26).  Lastly, in utero fetal programming through maternal smoking may create 

a gestational environment that drives TH2 differentiation and thus, lead to early life asthma 

in the offspring (26).  

 

COPD 

COPD is an umbrella term that includes chronic bronchitis, emphysema and 

chronic bronchiolitis.  Risk factors for the development of COPD are from both 

environmental exposures and genetic factors.  Smoking is the leading cause of COPD 

globally (causing 85-90% of cases) in developed countries, and smokers are 13 times more 

likely to develop and die from COPD compared to non-smokers (28-30).  Another factor 
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influencing the development of COPD, especially emphysema, is deficiency of α-1 

antitrypsin, an inherited autosomal codominant genetic disorder characterized by low 

levels of this protease (31, 32).  Deficiency of α-1 antitrypsin is found in less than 1% of 

COPD patients, although 5% of individuals diagnosed with COPD are thought to have this 

deficiency (33).  Another factor for the development of COPD is aging (34).  

Chronic bronchitis/bronchiolitis is characterized by narrowing of the airways by 

inflammation, epithelial cell hypoplasia, excessive mucus production, and excess ECM 

protein synthesis (mainly collagens and fibronectin).  This leads the airways to becoming 

narrower, with decreased airflow.  Chronic inflammation of the peripheral small airways 

(bronchioles) is a key characteristic of chronic bronchiolitis which may arise through 

extrinsic factors binding Toll-like receptors (TLR) and thus induction of the innate immune 

response (35).  Most importantly, the upregulation of transcription factor NFκB also occurs 

due to this TLR signaling (35).  These events cause excessive immune cell (macrophages 

and neutrophils) infiltration, resulting in inflammation of the airways and mucus 

hypersecretion, which causes narrowing of the airways thereby limiting airflow (35). 

On the other hand, emphysema results from parenchymal destruction, 

predominantly in areas distal to the bronchi and bronchiole where alveoli reside.  This 

destruction causes decreased elastic recoil that impacts exhalation.  Lack of α-1 antitrypsin 

causes decreased protection against neutrophil elastase, resulting in destruction of alveolar 

walls and resulting in increased alveolar volume (32).  Additionally, TLR induced 

neutrophil infiltration increases matrix metalloproteinase (MMP) production as well as 

decreases tissue inhibitors of MMP (TIMPs) further enhancing proteolytic activity (35).  

Increased neutrophil infiltration results in increased neutrophil elastase secretion (36).  
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MMPs are also responsible for the destruction of the lung ECM, activation of TGFβ, and 

increased cytokine signaling (37).  ECM destruction, especially elastin, causes decreased 

elastic recoil, which will greatly effect lung volumes and hyperinflation (38).  Increased 

TGFβ causes increased ECM deposition through SMAD signaling pathways ultimately 

causing increased collagen and fibronectin production (39, 40).  Lastly, it is well 

established that in the lungs of humans with COPD or asthma (and in murine models), IL-

1β is upregulated, promoting inflammation ultimately resulting in distal airway 

enlargement and production of MMP 9/12 (41). 

 

Early Life Events and Their Impact on OAD Development 

In general, OADs are believed to result from environmental exposures in a 

susceptible genetic background.  More recently, evidence has emerged suggesting that the 

development of OADs in adulthood or adolescence is greatly influenced and perhaps 

predetermined by events during embryogenesis or early life (42).  In other words, lung 

structural and functional changes in the young mammals represent a major susceptibility 

factor for development of OAD later in life.  Stern and colleagues published in 2007 that 

lung function decreases with age (43).  This suggests that it is not a question of “if” a 

person’s lung function will deteriorate, but at what speed will it deteriorate.  In some cases, 

this deterioration is accelerated to the point of developing OADs (43, 44).  Therefore, if a 

person has low lung function early in life, they will have an increased likelihood for 

reaching lower lung function to the point of developing OADs later in life unless 

therapeutic management, environmental changes, and/or lifestyle interventions takes place.  

Of the entire population diagnosed with asthma, 9.3% are children and 8% are adults, 
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proving that asthma is not only a childhood disorder but also affects individuals throughout 

adulthood (45).  However, children who suffer from severe persistent asthma are 32 times 

more likely to develop COPD as adults compared to non-asthmatic children (45).  This 

suggests a correlation between the development of lower lung function in childhood (e.g. 

asthma) and pulmonary abnormalities persisting into adulthood and promoting the 

development of more serious respiratory defects in adulthood.  

 

Tobacco/Nicotine and OADs 

There is an abundant amount of epidemiological data linking ETS to OADs and the 

development of asthma in children (4, 46, 47).  Smoking during pregnancy or more 

specifically fetal nicotine exposure, has been shown to result in the offspring to have 

decreased lung function in childhood, which subsequently causes lifelong lung functional 

abnormalities (43, 48-52).  In the United states,  it is estimated that approximately 10% of 

pregnant mothers smoke cigarettes at some point during their pregnancy, and 50% of 

mothers who are smokers continue to use cigarettes throughout pregnancy (48, 53).  In 

2016, Kentucky and West Virginia were determined to have the highest prevalence of 

maternal smoking (at approximately 18 and 25%) (53).  In addition, postnatal exposure to 

ETS remains widespread (54).  A cross sectional study of data sets generated worldwide 

found that children exposed to ETS show decreased lung function (55).  Despite this, it is 

estimated that 40% of children worldwide are still exposed to ETS (54). 

ETS contains over 7,000 components, one of which is nicotine, which is responsible 

for the addictive behavior of smoking (56, 57).  We are interested in the effects of nicotine, 

which acts via specific cell surface receptors capable of intracellular signaling.  There are 
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two types of acetylcholine receptors (AChR), nicotinic (ion gated) and muscarinic (g-

coupled) (58-60).  The primary agonist for muscarinic AChR is muscarine, and 

acetylcholine or nicotine are the primary agonists that bind to nicotinic AChR (nAChR) 

(58-60).  Nicotine, as well as its metabolite, cotinine, pass freely through the placenta 

achieving concentrations in the fetus greater than that of the mother (61).  Our laboratory, 

in collaboration with Elliot Spindel, has previously reported that perinatal nicotine (acting 

through the α7 nAChR) induced increased lung branching morphogenesis, increased 

collagen deposition in the lung, and increased responsiveness to methacholine (an M3 

muscarinic receptor agonist) (42).  Similar findings to ours have been published in non-

human primate models that showed that perinatal nicotine not only decreased lung function 

and caused alveolar hypoplasia, but also increased the expression of α7 nAChRs and 

collagen deposition around large airways and vessels (42, 62-64).  These studies suggest 

that animal models can mimic the effects of smoking (nicotine) in humans and could be 

used to further our limited understanding of the mechanisms driving the development of 

OADs.  We believe nicotine is the constituent of ETS that is driving changes in human 

offspring lung function due to its ability to reach the fetus during gestation.  

 

Respiratory Tract Infections Impact on OADs 

In addition to the offspring of smokers (perinatal nicotine exposure) and current 

tobacco smoke users being more susceptible to OADs, there is also evidence for lower 

respiratory infections, such as but not limited to influenza H1N1, to lead to the 

development of OADs and causing an exacerbated disease state (65, 66).  Viral lower 

respiratory infections during childhood induce airway inflammation, which may explain 
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the association with OADs (46, 67-70).  Children younger than two years old (when the 

lung is still in development) are more prone to serious influenza complications than any 

other age group in the United States, and the risk is heightened when asthma is present 

(71).  Furthermore, influenza alone has been shown to increase AHR in response to 

methacholine, a bronchoconstrictor used by investigators to unveil AHR and other lung 

functional abnormalities (72, 73). 

Influenza infections have been extensively demonstrated to induce a robust, 

diverse, complicated innate and adaptive immune response to clear the infection (74-76).  

Briefly,  the primary target of influenza are epithelial cells (77).  Infection of the epithelium 

causes the release of proinflammatory cytokines and chemokines, most notably IL-1β and 

CCL2 (74).  These signaling events cause fibroblast and Treg production of TGFβ, which 

is activated through influenza neuraminidase (74, 78).  Furthermore, IL-1β is also known 

to cause macrophages to increase MMP production (37).  These events could potentiate the 

develop of OADs as discussed above. 

When infection begins in the epithelium, influenza is recognized by pattern 

recognition receptors (TLR, RIG-I, and NLRP3), which leads to activation and secretion 

of type I interferons (IFNα from macrophages, pneumocytes, and dendric cells), inducing 

an antiviral state (most notably the NFκB pathway), leading to production of pro- and anti-

inflammatory cytokines and chemokines (76).  Alveolar macrophages are the first cells that 

encounter the virus and produce chemokines to recruit neutrophils, monocytes, and natural 

killer T (NKT) cells to the infected airway regions, in which NKT cells target infected 

epithelial cells for viral clearance (76, 79).  Monocytes and neutrophils clear the respiratory 

system of infected dead cells (76).  The influx of neutrophils could potentially increase 
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neutrophil elastase secretion and, therefore, promote emphysema.  If this initial innate 

response does not successfully clear the infection, released cytokines instruct the response 

of the adaptive immune system for a continued battle to rid the body of infection (76).  The 

bridge between the innate and adaptive immune responses are the antigen presenting 

dendritic cells (MHCII) for naïve CD4+ generation and NKT or dendritic cells for CD8+ T 

cell (MHCI) generation (74, 75). Differentiation into T cells occurs through the type of 

cytokine secretion occurring by antigen presenting cells (80).  Briefly, CD8+ T cells 

recognize and eliminate influenza infected cells through release of perforin and granzymes 

(75), whereas, CD4+
 T cells promote B cell responses (TH2 and regulatory T cells (Treg)), 

promote proinflammatory (IFNγ and IL-2) immune responses (TH1), and regulate 

proinflammatory immune response (TH17 and Treg) (75).   

Lastly, TGFβ has been published to be produced from murine epithelial cells and 

Treg cells after influenza infection (74, 81).  The production of epithelial TGFβ in mice 

has been demonstrated to increase viral burden and pathology via suppressing IFN and 

consequently TH1/2 cells production (81, 82).  Furthermore, the production of TGFβ 

promotes differentiation of Treg cells, which causes Treg cells to produce additional TGFβ 

(83).  This synergized TGFβ production may also cause increased tissue remodeling as 

mentioned before. 

 

Diagnosis and Management of OADs 

Diagnosis 

For physicians, the diagnosis of OAD begins with a question and observation-based 

assessment.  This assessment addresses the patients history of respiratory symptoms such 
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as chest pain, cough, orthopnea, wheezing, cyanosis, abnormal blood gases, shortness of 

breath or dyspnea, increased sputum production, etc. (84).  After consulting and examining 

the patient, the physician may then have the patient undergo imaging tests such as a 

radiograph or computerized tomography (CT) scan followed by a physical quantitative 

assessment of lung function via spirometry.  Using imaging tests for the diagnosis of OADs 

is limited, although they are useful for a physician to infer what type of disease is occurring 

in order to begin treatment, while the patient waits for spirometry testing (85, 86).  For 

COPD, the physician would be looking to find multiple lucencies indicating air trapping, 

bronchial thickening (chronic bronchiolitis), hyperinflation, and gross lung destruction 

(emphysema) (85, 86).  Whereas, in asthmatics there may not be tissue destruction or 

lucencies, but hyperinflation is often evident (87). 

Pulmonary function tests (PFT), using spirometry, is the key diagnostic tool used 

by clinicians to diagnose OADs in humans (88).  Spirometry can be conducted using a 

spirometer in which a person breathes in and out of a tube (to determine airflow).  A 

plethysmograph, in which the person breathes inside a sealed chamber, is used to determine 

lung volume.  Spirometry allows quantification of key pulmonary functional 

characteristics, which depict volume of the lung as well as airflow to and from the lung 

(Table 1).  From pulmonary function tests result a volume versus time (spirogram) (Fig. 

1A), a flow (volume over time) versus volume curve (Fig. 1B), and a lung capacity/volume 

graph (Fig. 2), for physicians to diagnose a disease state.  When determining an 

abnormality, a bronchodilator challenge test could then implemented to dissect whether the 

patient has reversible airflow limitation; the bronchodilator will alleviate abnormalities 

seen for asthma, but typically not for COPD (6, 89).  When diagnosing a OAD, the first 
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parameter used to determine a diseased state is the ratio of FEV1 and FVC (Table 1) (89, 

90). A FEV1/FVC ratio less than 0.7, with an normal or decreased FEV1 indicates an OAD 

(89, 90).  Other key changes in functional parameters observed for OADs, compared to 

normal subjects, are decreased peak expiratory flow rates (Fig. 3). 
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Table 1. Pulmonary Function Test Terms (Lung Capacities, Volumes, and 

Spirometry Values) 

Term Abbreviation Definition 

Forced Vital Capacity FVC 
The total volume of air expired after maximally forcing 
expiration of air after maximum inhalation (89, 90) 

Forced Expiratory 
Volume at 1 second 

FEV1 
The FVC at one second after starting expiration after 
maximum inhalation (89, 90) 

Peak Expiratory Flow 
Rate 

PEFR 
The maximum flow of air achieved when subject is 
exerting maximum exhalation after maximum inhalation 
(89, 90) 

Peak Inspiratory Flow 
Rate 

PIFR 
The maximum flow of air achieved when subject is 
exerting maximum inhalation after maximum inhalation 
(89, 90) 

Total Lung Capacity TLC 
The volume of air in lung at maximum inflation after 
maximum inhalation (89, 90) 

Inspiratory Capacity IC 
The maximum volume of air that can be inhaled from 
the resting expiratory level (89, 90) 

Functional Residual 
Capacity 

FRC 
The volume of air in the lungs at resting end expiration 
(89, 90) 

Inspiratory Reserve 
Volume 

IRV 
The maximum volume of air inhaled after the normal 
inhalation level (89, 90) 

Tidal Volume TV 
The volume of air between the normal inhalation and 
exhalation levels, or the volume of air inhaled or exhaled 
at resting state (89, 90) 

Expiratory Reserve 
Volume 

ERV 
The maximum volume of air exhaled after the normal 
exhalation volume (89, 90) 

Residual Volume RV 
The volume of air remaining in the lung after the 
maximum exhalation volume (89, 90) 
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Figure 1. Spirogram and Flow-Volume Curve from Pulmonary Function Tests 

Representative Graphs from PFT in humans.  Spirogram with volume of air represented on x-axis and time 

after exhalation or inhalation on the y-axis (A).  Flow-Volume Curve with volume represented on x-axis and 

flow represented on y-axis (B).  Adapted from Miller et al. and Quanjer et al. (91, 92). 
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Figure 2. Lung Capacities and Volume 

Curve represent the normal breathing pattern exhibited in human subjects when having pulmonary function 

tests conducted.  Adapted from Wanger et al. and Miller et al. (91, 93). 
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Figure 3. Obstructive Airway Disease Spirogram and Flow-Volume Curves 

Representative spirogram (A) and flow-volume curve (B) of normal subjects compared to asthmatics and 

COPD patients compared to healthy people.  Adapted from Miller et al. and Quanjer et al. (91, 92). 
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Management 

Decreased lung function due to COPD is permanent, irreversible and progressive 

whereas with asthmatics bronchoconstriction is known to be reversible through the 

administration of corticosteroids and/or long-acting beta agonists.  For asthma, focus is on 

management of the disease to prevent exacerbations as opposed to resolving the condition 

(6).  There are three forms of treatment for asthma, which are quick relief, long term 

control, and non-pharmacological treatments (94, 95). 

 Therapeutics commonly used for quick relief include short acting beta 2 agonists 

(SABAs), systemic corticosteroids (SCSs), and short acting muscarinic antagonists 

(SAMA) (94).  SABAs are delivered through aerosol and are the fastest therapy for 

alleviating bronchoconstriction, via cAMP production leading to airway smooth muscle 

relaxation (Table 2) (94).  SABAs and SCSs are the first suggested treatment for asthma. 

SCSs can be delivered intravenously or orally with similar efficacy (Table 2) (96, 97).  

Corticosteroids act in many ways to relieve asthma including enhancing the beta-

adrenergic responses (to relieve muscle spasm), reversing mucosal edema, decreasing 

vascular permeability (by vasoconstriction), and inhibiting the release of leukotriene C4 

and D4 (98).  Lastly, SAMAs are another form of quick relief therapy for asthma, although 

SAMAs are not as quick as SABAs, taking 20-30 minutes for their effects to take place 

(Table 2)  (94).  SAMAs work as bronchodilators by blocking acetylcholine leading to 

bronchial smooth muscle relaxation (94). 
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Table 2. Medications for Asthma and COPD 

Disease Therapeutic Class  Generic Pharmacological Name 

Asthma    
 Quick Relief  
 

 
Short Acting Beta 2 
Agonists 

Albuterol and Terbutaline 

 
 

Systemic 
Corticosteroids 

Orally: Methylprednisolone, Prednisolone, and Prednisone 
Intravenously: Methylprednisolone and Triamcinolone 

  SAMAs Ipratropium 
 Long Term Control  
 

 
Inhaled 
Corticosteroids 

Budesonide, Fluticasone, Mometasone, Beclomethasone, 
Ciclesonide, and Triamcinolone 

 
 

Long Acting Beta 2 
Agonists 

Salmeterol, Formoterol, Arformoterol, and Vilanterol 

 

 

Inhaled 
Corticosteroids + 
Long Acting Beta 2 
Agonists 

Budesonide + Formoterol 
Fluticasone + Salmeterol 
Fluticasone + Vilanterol 
Mometasone + Formoterol  

 
 

Leukotriene 
Modifiers 

5-lipoxygenase Inhibitors: zileuton 
Cysteinyl Leukotreine-1 Receptor Antagonists: 
Montelukast, Zafirlukast, and Pranlukast 

  Anti-IgE Therapy Omalizumab 
 

 
Systemic 
Corticosteroids 

Methylprednisolone, Prednisolone, and Prednisone 

COPD    
 Mild: FEV1/FVC < 70% and FEV1 ≥ 80% 
  Short Acting 

Bronchodilators 
Albuterol, Levalbuterol, Ipatropium, and  
Albuterol + Ipatropium 

 Moderate: FEV1/FVC < 70% and 50% ≤ FEV1 < 80% 
  Short Acting 

Bronchodilators 
As Above 

  
Long Acting 
Bronchodilators 

Aclidinium, Arformoterol, Formoterol, Glycopyrrolate, 
Idacaterol, Olodaterol, Salmeterol, Tiotropium, and 
Umeclidinium 

 Severe: FEV1/FVC < 70% and 30% ≤ FEV1 < 50% 
  Short Acting 

Bronchodilators 
As Above 

  Long Acting 
Bronchodilators 

As Above 

  Inhaled 
Corticosteroids 

As Above 
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The most common medications used for long term control of asthma are inhaled 

corticosteroids (ICS), long acting beta 2 agonists (LABA) in combination with ICS, 

leukotriene modifiers (LTMs), anti-IgE therapy, and oral corticosteroids (discussed above).  

ICS are usually the first drug prescribed in addressing long-term control of asthma (Table 

2) (99).   ICS have been published to improve pulmonary function, decrease exacerbations 

and hospitalizations by 50% (compared to placebo or SABAs alone), and decrease asthma 

related deaths (when taking low doses regularly) (94, 100-103).  ICS act by inhibiting 

airway inflammation through reduction of inflammatory gene transcription via reversing 

histone acetylation and recruiting histone deacetylase (94, 104).  In addition, ICS also 

reduce the number of inflammatory cells (eosinophils, T cells, and dendritic cells) in the 

airways through down regulation of epithelial cell signaling (104).  LTMs are less effective 

than the above treatments, due to their weak bronchodilator effect and thus are seldom used 

alone (94, 105).  There are two types of LTMs, 5-lipoxygenase inhibitors which impair 

leukotriene synthesis and cysteinyl leukotreine-1 receptor antagonists which block the final 

destination of leukotriene (Table 2) (106).  Anti-IgE therapy prevents the effect of IgE on 

immune cells by using an anti-IgE monoclonal antibody and subsequently reduces asthma 

exacerbations (Table 2) (107). 

 The non-pharmacological treatments for asthma are geared toward removing the 

person from the proximity of the extrinsic factors that trigger AHR (95).  If segregation 

from the trigger is not possible, due to not knowing the trigger or inability to do so 

(economically, geographically, etc.), temperature sensitive laminar airflow devices can be 

administered to remove cold air from around the subject during sleeping (95).  Lastly, 
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psychologists may be of help to the patient in treating anxiety or depression to alleviate the 

effect of stress on asthma symptoms (95). 

Bronchodilators and corticosteroids are also used in the management of COPD.  

However, it is important to again reiterate that COPD is an irreversible disease, so 

treatments are not geared for curing the disease but instead to help managing symptoms, 

slowing the loss of lung function, and reducing breathing difficulties (108).  Smoking 

cessation is the most effective means for reducing disease progression, although, many 

smokers with COPD are undiagnosed and thus unaware that their habit is harming them 

drastically (28).  Once a patient is diagnosed with COPD, treatment is based on the 

progression of the disease state as determined by spirometry and whether the symptoms 

are intermittent or persistent (Table 2) (108).  Nonpharmacological treatments also aid in 

managing COPD, with smoking cessation being the most influential (108).  Furthermore, 

oxygen therapy (if a patient is hypoxic) has been proven to increase survival of the patient 

and pulmonary rehabilitation (exercise training, educational, nutritional intervention, 

psychosocial support, and education) although underutilized, has been published to reduce 

hospitalizations and emergency room visits (108, 109). 

It is important to emphasize that no treatment available today can cure asthma or 

COPD.  This is likely due to the development of irreversible structural changes that 

perpetuate lung dysfunction.  This project evaluates how perinatal exposures (nicotine and 

viral infection) may result in irreversible structural defects that persist into adulthood and 

enhance susceptibility to OADs depending on persistent exposures and genetic 

background.  Addressing these perinatal effects will require further investigation with new 
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models of research.  Importantly, this concept suggests that the management of OADs is 

best delivered through prevention prior to disease development.   

 

Animal Models and Methods to Study OADs 

Clinical OAD cases are helpful to provide insight into the diseases and their 

treatment, but do not allow for full unravelling of the mechanisms behind the disease 

pathophysiology.  Animal models have begun to bridge this gap in knowledge and are 

crucial to the development of therapeutic interventions including but not limited to OADs.  

Several animal models have been developed for the study of OADs.  For asthma research, 

a variety of species have been implemented including fruit flies, rats, guinea pigs, cats, 

dogs, swine, cows, sheep, horses, and non-human primates, although the most widely used 

are mice (110).  Asthma is not a murine disease and thus mice must become sensitized to 

increase allergen immunogenicity, which is followed by an allergen challenge (110).  

Murine models, after allergen challenge, mimic what is seen in humans showing increased 

IgE, epithelial hypertrophy, airway remodeling, TH2 immune response upregulation, and 

most importantly, ARH (110). 

Animals models pertaining to COPD in the past have included hamsters, rats, 

guinea pigs, sheep, non-human primates and mice (111).  Mice are the most commonly 

implemented animal model for emphysema (112).  This model is achieved through 

intratracheal or aerosol inhalation of elastolytic enzymes such as porcine pancreatic 

elastase, human neutrophilic elastase, and papain.  This model leads to alveolar septa 

destruction and results in lung functional abnormalities (increased airway resistance, 

decreased tissue elastance, decreased tissue damping, increased IC, increased FVC, and 
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decreased PEF) as seen in humans (113, 114).  Inducing chronic bronchiolitis in animals 

is most commonly conducted through intranasal or aerosolized inhalation of 

lipopolysaccharide (LPS) (111, 113, 114).  LPS leads to TLR signaling in the lungs, which 

leads to inflammation, immune cell infiltration (neutrophils, macrophages, and CD4+ T 

cells), and increases MMP-9/12 (113).  In these models, LPS causes enlarged air spaces, 

thickening of alveolar walls, and lung functional abnormalities (increased airway 

resistance and decreased PEF)  consistent to what is seen in humans (113, 114). 

In addition to the above animal models, cigarette smoke exposure models are 

another option for researchers to use to investigate the pathophysiology of COPD.  For this, 

rats, guinea pigs, and mice have been used although mice are the most extensively used 

animals (111, 113).  Although this model would appear to be the model that correlates best 

to humans, there are several caveats such as standardized methods or protocols for 

exposure that have yet to be established (111).  In addition, these models require a lot of 

investigator attention due to having to deliver smoke 5-7 days a week for a 6 month period 

(115).  Furthermore, there is a plethora of variables between studies for this approach which 

include the type of cigarettes being used (research grade versus commercial or with versus 

without a filter), the delivery systems used (whole body versus nose-only), and the dose of 

smoke delivered (111, 113).  Importantly, cigarette smoke inhalation models do not allow 

for a detailed examination of effects of individual tobacco components (e.g., nicotine).  

Despite all of this, cigarette smoke exposure models are correlative to humans cases of 

COPD, in regard to pulmonary infiltration of macrophages and neutrophils, fibrosis, and 

emphysema (111). 
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The above models allow for evaluation of lung structure, while evaluating lung 

function is more difficult.  Unlike most human subjects, an animal cannot be given 

directions to follow for PFT.  Despite this, there have been methods/machines developed 

to assess pulmonary function such as with the SCIREQ flexiVent system, which is regarded 

as the gold standard for assessing lung functional measurements.  Parameter outcomes in 

animals are acquired during tidal breathing or forced oscillation.  The flexiVent system 

records measurements both at baseline and allows for administration of a drug or 

bronchoconstrictor such as methacholine.  Typically, there are 6 parameters obtained, from 

two different forced oscillation techniques in the standard flexiVent equipment (Table 3).  

If desired a plethysmograph can be purchased to upgrade the flexiVent system in which 

the investigator can generate the FEV1, Forced Expiratory Flow (FEF), FVC, and the 

PEFR (of which are not identical to when they are recorded in humans) (116).  

Furthermore, software upgrades may also be purchased to obtain lung volumes such as the 

TLC, IC, and the RV.  If an investigator wishes to measure the same animal’s lung function 

more than one time in the subject’s life the plethysmograph upgrade must be used.  The 

reasoning for this is that the standard flexiVent equipment procedure requires euthanasia 

after testing, due to cutting the trachea for insertion of a blunt needle, to conduct the two 

forced oscillation techniques. 

 It is important to note that spirograms and flow-time graphs cannot be generated, 

although insights can be gained from the parameters obtained (Table 3).  This is due to not 

being able to have maximum exhalation and inhalation being performed.  Most frequently 

reported in the literature is increasing methacholine concentration.  These figures are used 

to compare a treatment group to a control group, since a plethora of factors can influence 
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lung function (genetic background, vendor source, and housing material), historical 

controls are not readily available in accessible databases (117, 118).  Of most importance, 

is that the forced oscillation technique (single frequency versus broadband) allows 

investigators to determine the regions of the respiratory system being affected (large vs 

small airways and airways vs parenchyma) (Table 3). 
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Table 3. SCIREQ flexiVent Parameters 

Parameter Abbreviation Definition 

Single Frequency Forced 
Oscillation Technique 

Applies a sinusoidal waveform to the subject’s airway opening 
and resulting pressure, flow, and volume are fit to a single 
compartment model using linear regression (116) 

 
Resistance R 

Assess level of constriction in the respiratory system (114, 116, 
119) 

 
Compliance C 

Ease with which the respiratory system can be expanded (114, 
116) 

 
Elastance E 

The inverse of compliance, captures the elastic stiffness of the 
respiratory system (116) 

Broadband Forced Oscillation 
Technique 

Applies a broadband oscillation maneuver, in a stepwise 
manner, to the subject’s airway opening both above and below 
the subjects breathing frequency. The resulting input 
impedance is fit to a constant phase model to obtain differences 
between airway and tissue mechanics (116) 

 Newtonian 
Resistance 

Rn Resistance of the central or conducting airways (114, 116, 120) 

 Tissue 
Damping 

G Resistance of the parenchymal airways (114, 116, 119-121) 

 Tissue 
Elastance 

H Elastance of the parenchymal airways (116, 119, 120) 
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Once abnormal lung function is observed in an animal, several other methods may 

be employed to determine what is driving these changes.  Raw histology of lungs can be 

used to obtain gross observation to determine how differences in spirometry are occurring.  

To elaborate, Masson’s Trichrome staining can be used to assess the amount of collagen, 

while Hematoxylin and Eosin (H&E) staining can be used to determine the architecture of 

the airways and to determine the alveolar volume.  Immunohistochemistry (IHC) can be 

used to examine for the presence of an antigen of interest or produced molecules.  The 

caveat of using histology is that it is subject to biases of the researcher, for which attention 

should be given to paraffin embedding orientation of tissues, cutting tissue sections, and 

determining what sections to stain.  To alleviate biases, morphometric analysis may be 

employed to ensure an overall representation of the lung architecture is being assessed 

through randomized selection of lung regions.  Using histology, one may use Masson’s 

Trichrome, H&E, and/or IHC staining and quantitate either manually or with computer 

generated software programs (such as Image J).  Transcripts profiles are also of importance, 

which are achieved through using RT-PCR or microarray analysis, although the latter is 

more thorough and expensive.  In addition, western blotting can also be implemented to 

determine differences in protein concentration although this method is not as sensitive as 

the above.  Taken together these methods can allow one to begin to unravel the forces 

driving disease states in animal models to further societies understanding of OADs. 

 

Project Goals and Hypothesis 

 The above evidence generated from animal models, human studies, and 

epidemiological data led us to address the question whether perinatal nicotine exposure 
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and/or early life influenza infection promote chronic lung disease in the adult reminiscent 

of OADs (Fig. 4).  We hypothesized that perinatal nicotine and early life influenza 

infection alone would lead to lung structural and functional abnormalities reminiscent to a 

disease state present in humans, and that combinations of nicotine and influenza would 

potentiate the effects seen with either factor alone.  To test our hypothesis, we built upon 

our previous published murine model for perinatal nicotine exposure and developed a new 

murine model for early life influenza infection in mice whose lung developmental state 

resemble individuals who had the highest prevalence for the 2009 pandemic influenza 

infection.  This work showed lung functional abnormalities driven by phenotypic 

alterations, established and characterized a new early life model for infection with 

pandemic influenza infection which results in abnormal lung function, and used both 

exposures together to test our hypothesis.   
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Figure 4. Potential Effects of Early Life Exposures on Lung Development 

After the lung bud is formed from the foregut, the primordial lung growths and branches during the process 

of lung branching morphogenesis, which is responsible for the formation of the large airways during the 

pseudoglandular stage of lung development.  Cells within these airways engage in vasculogenesis, while 

endothelial cells invade the lung through angiogenesis resulting in the development of the early circulatory 

system during the canalicular stage of lung development.  Afterwards, the distal lung branches develop 

alveolar sacs which ultimately transform into fully functional gas exchanging units during the alveolar stage; 

the latter spans before and after birth.  Each of these overlapping processes are dependent on the orchestrated 

and fine-tuned expression and repression of extracellular matrices and growth factors and morphogens, 

among other molecules.  Exposures during distinct stages might impact distinct biological pathways, thereby 

impacting the development of specific pulmonary structures, which if not corrected, persists until adulthood. 

For example, exposure during the pseudoglandular stage (e.g., nicotine) may impact lung branching 

morphogenesis, while exposures early during the alveolar stage (e.g., viral infection) may impact alveolar 

formation 
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CHAPTER II: EARLY LIFE NICOTINE EXPOSURE LEADS TO STRUCTURAL 

AND FUNCTIONAL ABNORMALITIES IN THE ADULT MURINE LUNG 
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Background 

COPD affects millions worldwide resulting in over $50 billion dollars in healthcare 

costs in the U.S. alone in 2010, which is predicted to increase (10, 122).  In the same period, 

COPD caused more days of lost productivity than any other chronic condition, costing 

more than $4 billion (122).  It is estimated that 40% of the annual cost due to COPD could 

be avoided by preventing complications and hospitalizations through the development of 

effective treatments (123).  The development and/or exacerbation of COPD and other 

obstructive airway diseases is mostly attributed to tobacco smoke exposure (124, 125). 

The United States Surgeon General (USG) report in 1986 (C. Everett Coop) focused 

on “The Health Consequences of Involuntary Smoking” and concluded that there was 

sufficient evidence that tobacco smoke exposure was associated with adverse health effects 

in children and adults, increased the frequency of hospitalizations due to respiratory tract 

infections as well as bronchitis and pneumonia in children, and decreased lung function 

measurements in children compared to those whose mothers did not smoke tobacco (124).  

Epidemiological data generated since then have strongly supported the USG reports 

notions, showing that maternal smoking leads to an increased risk for asthma and viral 

respiratory tract infections, decreased lung function, and wheezing in infants (42, 47, 64, 

124, 126).  Despite the above, the Centers for Disease Control and Prevention and others 

estimate that 12-25% of women continue to smoke during pregnancy (57, 125, 127-129). 

It has been proposed that the development of chronic obstructive lung disorders is 

greatly influenced (and perhaps pre-determined) by adverse exposures/events in early life 

(3, 4, 46, 47, 130-132).  Stern and colleagues, for example, evaluated individuals during 

their first three decades of life and grouped individuals into quartiles based on their lung 
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function.  They found that individuals who were included in the group with the lowest lung 

function as children were also found in the group with the lowest lung function as adults 

(43).  Furthermore, children that suffer from severe, persistent asthma are thirty-two times 

more likely to develop COPD as adults (4, 133).  Cohen et al. suggested that in utero 

tobacco smoke exposure reduces age-related improvements in lung function among 

children with asthma, thus predisposing them to COPD as adults (130).  These and other 

observations strongly suggest early life adverse events, such as tobacco smoke exposure, 

promote adaptations that lead to abnormal lung function later in life.  However, despite the 

perceived importance in the development of pulmonary disease, the exact mechanisms 

responsible for the effects of tobacco smoke and the components of tobacco responsible 

for these effects remain incompletely elucidated. 

Nicotine is a constituent of tobacco that is responsible for its addictive qualities (42, 

57, 64).  This plant alkaloid readily transverses the placenta, and fetal levels of nicotine or 

its metabolite cotinine are significantly greater than in the mother (57, 61).  Our laboratory 

has been interested in studying how gestational, perinatal, or postnatal nicotine exposures 

impact the lung, and previously reported that murine maternal perinatal nicotine exposure 

affects lung branching morphogenesis, which led to airway dysfunction in the young 

animal (8 weeks of age) (42, 64).  This loss of lung function was postulated to be driven 

by alterations in extracellular matrix expression and deposition, among other changes, 

resulting in dysynaptic lung growth (42).  Our findings were consistent with studies 

conducted in non-human primates and in rats where nicotine exposure led to increased 

collagen deposition and lung functional abnormalities in the young offspring (63, 134, 

135).  However, the question remained whether these early changes caused by nicotine 
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persist to promote structural and functional abnormalities in the adult lung.  Thus, we set 

out to determine if early life nicotine exposure would promote structural and functional 

abnormalities in the adult lung.  We discovered that chronic nicotine exposure starting 

during the perinatal period caused significant changes in lung function and structure. 

 

Materials and Methods 

Murine Housing and Breeding 

Mice were housed in a specific pathogen-free barrier facility accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care, and procedures 

were approved by the University of Louisville's Institutional Animal Care and Use 

Committee.  Timed breeding was implemented by pairing C57BL/6 (Jackson Laboratories 

Bar Harbor, ME) mice and un-pairing within 48 hours.  Mice were examined for pregnancy 

at 14-days post pairing, at which time nicotine was administered.  Mice were housed with 

their mother until 28-days of age on 5021 chow.  Upon weaning mice at 28-days of age, 

the food was changed to 5010 formulation.  Mice were weighed daily within a two-hour 

time frame until 51 days of age, at which time blood was drawn and mice were given an 

intraperitoneal injection of sterile saline at 0.5 mL (GrowCells #MSDW-2000 Irvine, CA).  

Serum was used to test for seroconversion against H1N1 (My BioSource #MBS9350017 

San Diego, CA), since mice infected with influenza were housed in the same facility.  

 

Nicotine Exposure 

Female breeders were administered nicotine (Millipore Sigma #N3876 St. Louis, 

MO) via the drinking water at 100 µg/mL (protected from light) before timed mating.  
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Upon breeding, no nicotine was added to the water until gestational day 14, when females 

were checked for pregnancies and water was again supplemented with nicotine as before.  

Nicotine remained in the water until the offspring reached 7-days of age or 210-days of age 

(42, 136).  Previously, we showed that exposure to nicotine during the pseudoglandular 

stage of lung development and up to 7-days post birth was sufficient to promote structural 

and airway functional changes in this experimental model, which explains the timing used 

for the first group (transient nicotine exposure).  This was then compared to prolonged 

nicotine exposure group that started during gestation at the same time, but continued until 

7 months of age (chronic nicotine exposure) (42).  

 

Murine Lung Function Testing 

Untreated mice (n = 19; male = 10, female = 9), mice in the transient nicotine 

exposure group (n =18; male = 10, female 8), and mice in the chronic nicotine exposure 

group (n = 20; male = 10, female = 10) were subjected to pulmonary function testing.  

Nicotine water was removed approximately 2-8 hours before testing.  Pulmonary function 

at baseline and after aerosolized methacholine challenge (0-50 mg/mL, inhaled) was 

measured by forced oscillation using the flexiVent system (SCIREQ Montreal, Quebec, 

Canada) as previously described (137, 138).  

 

Tissue Processing and Analysis 

The chest cavity was then opened and the inferior vena cava was cut.  The lung 

vasculature was flushed by puncturing the right ventricle with a 0.26 G needle and injecting 

10 mL sterile saline solution. Lungs were inflated via the trachea with 10% neutral buffered 

formalin (VWR #16004-128 Randor, PA) at a constant pressure of 25 cm H2O.  Inflated 
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lungs were removed and placed in 10% neutral buffered formalin for storage until 

separation of individual lobes then processed using a spin tissue processor 120 (Thermo 

Fisher #813150 Waltham, MA) according to the manufacturer’s instructions (42, 64). 

Lobes were then paraffin embedded and were then cut at a thickness of 6 µm (Leica 

Jung #RM2055 Wetzlar, Germany) taking horizontal sections of all lobes. Slides were then 

stained using standard procedures for H&E (Thermo Fisher #6765007 Waltham, 

Massachusetts) (Thermo Fisher #6766007) and Masson’s trichrome (MTC) (American 

MasterTech #KTMTR2PT Lodi, CA).  After staining tissue sections were dehydrated using 

standard procedures and then mounted with Vectamount mounting medium (Vector 

Laboratories #H5000 Burlingame, California).  Quantification of collagen was conducted 

using ImageJ (Version 1.51k) software as previously described (139, 140).  For our 

analysis, we applied a minimum threshold level of 37 and a maximum threshold level of 

190 for our Masson’s trichrome stained slides (collagen).  To evaluate alveolar structure, 

three images (20x) were taken of the left lung parenchyma from each mouse.  Images were 

obtained using a fixed frame for all images to ensure the areas being quantitated were of 

exact, equal size among all specimens.  Alveolar septa were quantitated by manually 

counting the number of times the alveolar septa intersected with the lines on a uniform 

coherent 25 x 25 grid (both vertically and horizontally) in Inkscape as previously described 

(141, 142).  Data from three images were used to calculate a single mean linear intercept 

value for each mouse as previously described (141, 142); these values were then used to 

determine averages and standard deviations for treatment groups for statistical analysis.   
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Statistics 

SAS statistical software was used to analyze lung function data. A correlation chart 

for pairwise comparison between all six outcome parameters (resistance, compliance, 

elastance, Newtonian resistance, tissue damping, and tissue elastance) was generated and 

showed strong correlation for all parameters to resistance except for Newtonian resistance 

(Fig. 5).  A 3-factor ANOVA was then implemented with the factors representing 

experimental group, sex type, and dose of methacholine used.  Descriptive statistics were 

calculated for the entire study population as well as within each factor.  Rigorous analysis 

involved the main effects for 3-factor ANOVA along with 2-way interactions (group*sex, 

group*dose, sex*dose).  Since interaction effects were not significant in most of the 

outcome measures, we considered only 3-factor ANOVA without interaction terms.  Rather 

than subset analysis, we have used contrast to test the main effects (such as untreated versus 

acute nicotine; untreated vs chronic nicotine, and acute versus chronic nicotine), which 

increases power to detect significant effects (143, 144).  

Using GraphPad Prism 7.03 the following statistical test were implemented.  The 

average daily weights were calculated along with standard deviation then compared using 

two-tailed unpaired T-tests along with a Holm-Sidak test to correct for multiple 

comparisons.  In addition, a linear regression analysis was also implemented testing 

whether slopes and intercepts were different between weights at 34 and 210-days of age 

(data not shown).  Raw data from mean linear intercept quantification were analyzed using 

one-way ANOVA analysis with a Bonferroni post-test to correct for multiple comparisons 

or two-tailed unpaired t-tests compared to untreated controls.  The percent of total lung 

area stained (entire lung) for each group was averaged along with standard deviations from 
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Image J analysis, and a one-way ANOVA using a Bonferroni test to correct for multiple 

comparisons (compared to untreated mice) or unpaired two-tailed t-tests analysis 

(compared to untreated) was performed.  
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Figure 5. Correlation of Pulmonary Function Test Outcome Parameters for 

Perinatal Nicotine Statistical Analysis (All Groups) 

All data used for analysis in SAS 3 Factor ANOVA. Graphical representation of correlation represented in 

bottom left of figure.  Fit of data to linear line of regression represented in top right of figure. 
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Results 

Nicotine exposure alters lung function  

PFTs were conducted at 210-days of age in mice exposed to nicotine transiently 

(pre-birth to 7-days of age) or chronically (pre-birth to adulthood) along with untreated 

animals (Fig. 6).  Resistance, compliance, elastance, Newtonian resistance, tissue damping, 

and tissue elastance were examined at baseline and after stimulation with increasing 

concentrations of aerosolized methacholine from 0-50 mg/mL.  For statistical analysis, we 

only evaluated responses at baseline and after 25 and 50 mg/mL of methacholine.  First, 

we determined that a strong correlation was occurring between the outcome parameters 

tested with exception of Newtonian resistance (Fig. 5).  Further evaluation revealed that 

chronic nicotine exposure compared to untreated animals, caused a statistically significant 

increase in compliance (p < 0.001), a decrease in Newtonian resistance (p = 0.003), and a 

decrease in tissue elastance (p = 0.041) (Fig. 7) (summarized in Table 4).  Furthermore, 

differences were found between all methacholine exposures.  Of the differences discovered 

between the untreated and chronic nicotine exposure groups, increased compliance and 

decreased tissue elastance were dependent on sex with changes in males accounting for 

much of the differences found (p < 0.001) (Fig. 7) (Table 4).  In contrast to chronic nicotine 

exposure, transient nicotine exposed mice group showed no differences compared to the 

untreated (Table 4).  However, one male mouse in the transient nicotine exposed group 

showed extremely abnormal lung function at 50 mg/mL methacholine dose with 

compliance and elastance measurement being, 0.006 and 174.2, tissue elastance being 

68.11, while Newtonian resistance remained relatively normal (1.031). 
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Figure 6. Perinatal Nicotine Exposure Experimental Design 
Timed pregnancies were produced by pairing mice for 48 hours and then assessing for conception after 14 

days, at which point nicotine was administered via the drinking water at (100 µg/mL) for pregnant mothers.  

Nicotine exposure lasted until postnatal day 7 or until the completion of the experiment (postnatal day 210), 

when pulmonary function tests were conducted. Endpoints were implemented at 34 and 210-days of age. 
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Figure 7. Pulmonary Function Test Results for Nicotine Exposure at 210-Days of Age 

Lung function was assessed C57BL/6 at 210-days of age by forced oscillation technique using a SCIREQ 

flexiVent system.  Lung function was measured at baseline and after challenge with increasing concentrations 

of aerosolized methacholine.  Averages of results (only including values where the COD was ≥95%) were 

taken for each individual mouse.  SAS statistical software was used to conduct 3-factor ANOVA without 

interaction terms.  Results were declared significant at 5% significance level (p < 0.05).  Error bars represent 

standard deviation from the mean. P-values are represented in the table with significant results having an 

arrow dictating the direction of the second group in each row compared to the first group. 
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Table 4. Summary of Nicotine Pulmonary Function Testing 

 

Resistance Compliance Elastance 
Newtonian 
Resistance 

Tissue 
Damping 

Tissue 
Elastance 

Nicotine 
Transient 

No 
Change 

No Change 
No 

Change 
No Change 

No 
Change 

No 
Change 

Nicotine 
Chronic 

No 
Change ↑ 

No 
Change ↓ 

No 
Change ↓ 

Arrows indicate direction of parameter compared to untreated-mock infected control 
Blue indicates alteration in function driven by males 
Black indicates alteration in function not driven by either sex 
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Nicotine exposure alters lung structure  

The lungs of mice assessed for lung function were examined by H&E and Masson’s 

Trichrome staining.  As depicted in Figure 8A, both transient and chronic nicotine 

exposure resulted in larger airspaces when compared to untreated animals.  However, 

quantification of alveolar mean intercept revealed that only chronic nicotine exposure 

resulted in a significantly decreased number of intersections consistent with decreased 

alveolar surface area and increased alveolar size when compared to untreated controls (Fig. 

8C).  Interestingly, when examining groups by sex, we discovered that the observed effects 

of both transient and chronic nicotine exposure predominantly occurred in males, while 

females manifested changes only in the chronic nicotine exposure groups (Fig. 8C).  

Altogether, increases in alveolar volume occurred in a uniform manner throughout the lung 

in each group at 210-days of age. Length between the alveolar septum was approximately 

50% greater for chronic nicotine versus untreated controls.  

Masson’s Trichrome staining showed increased collagen staining mostly located 

around large airway structures.  As presented in Figure 8B, chronic nicotine exposure 

resulted in increased collagen deposition (blue color) when compared to untreated and 

transient nicotine treatment groups.  Collagen deposition occurred primarily around large 

central conducting airways, with approximately of 30-50% of airways affected.  

Quantification of collagen staining revealed more collagen deposition in the chronic 

nicotine treatment group when compared to untreated controls, with both females and 

males experiencing the effect (Fig. 8D).  In contrast, no differences were detected in the 

transient nicotine treatment group when compared to untreated controls. 
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Figure 8. Lung Histology of Nicotine Exposed Mice at 210-Days of Age 

Lung histology in C57BL/6 mice, including H&E staining at 20x magnification (A) and Mason’s Trichrome 

staining at 10x magnification (B).  Alveolar septum mean linear intercept quantification and the percent of 

total lung area stained for collagen (C&D).  In GraphPad Prism 7.03 two-tailed t-tests and one-way ANOVA 

analyses were conducted with all groups using a Bonferroni test to correct for multiple comparisons.  

Multiplicity adjusted p-values were reported for each comparison.  Error bars correspond the standard 
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deviation (C) or error (D) the mean.  Differences are represented vs. mock infected controls, p < 0.05: *, p < 

0.01: **, p < 0.001: ***.  
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Nicotine exposure affects lung structure in the young lung 

Because major functional and structural pulmonary changes were not observed in 

the transient nicotine exposure group, we focused our attention on the chronic nicotine 

exposure group.  Specifically, we set out to investigate if nicotine led to pulmonary changes 

early in life that persisted into adulthood.  For this, we examined the histology of untreated 

and nicotine-treated lungs (chronic) at 34-days of age (Fig. 6, endpoint #1).  As presented 

in Figure 9A, the lungs of nicotine-treated animals showed enlarged airspaces at 34-days 

of age, which was confirmed by evaluating the alveolar mean linear intercept (Fig. 9C).  

Notably, this effect was again mainly driven by changes in males rather than females (Fig. 

9C).  Interestingly, the alveolar mean linear intercept measured at 34-days of age was 

greater for animals with chronic nicotine exposure when compared to the findings detected 

at 210-days of age suggesting continuing alterations in lung structure until adulthood (Fig. 

10).  At 34-days of age the increase in alveolar volume occurred in a uniform manner within 

groups.  Although for chronic nicotine, the alterations were less uniform for a limited 

number of mice.  Altogether, there was an approximate 10-20% increase in length between 

the alveolar septum of chronic nicotine versus untreated groups.  However, when collagen 

was evaluated, no differences were detected when comparing untreated mice and mice 

chronically exposed to nicotine at 34-days of age (Fig. 9D).    
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e  

Figure 9. Lung Histology of Chronic Nicotine Exposed Mice at 34-Days of Age 

Lung histology in C57BL/6 mice, at 34-days of age, including H&E staining at 20x magnification (A) and 

Masson’s Trichrome staining at 10x magnification (B).  Alveolar septum mean linear intercept quantification 

(C) and the percent of total lung area stained for collagen (D).  In GraphPad Prism 7.03 two-tailed t-tests 

were conducted.  Multiplicity adjusted p-values were reported for each comparison.  Error bars correspond 

the standard deviation (C) or error (D) of the mean.  Differences are represented vs. mock infected controls, 

p < 0.05: *, p < 0.01: **, p < 0.001: ***. 
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Figure 10. Alveolar Septum Quantification Over Time in Chronic Nicotine Exposed 

Mice 

Alveolar septum mean linear intercept quantification within groups over time for untreated (A) and chronic 

nicotine (B) exposed groups.  Two-tailed T-tests analyses were conducted with all groups compared to 

untreated controls.  Multiplicity adjusted p-values were reported for each comparison.  Error bars correspond 

the standard deviation of the mean.  Differences are represented at 34 vs 210 days of age, p < 0.001: ***. 
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Effects of nicotine on mouse weight 

We were concerned that mice exposed to nicotine might show decreased food 

intake and, ultimately, lower weight.  Since this could impact lung growth and maturation, 

we followed body weights in untreated and nicotine-treated mice later tested for lung 

function (145, 146).  As shown in Figure 11, mice gained weight independent of their 

treatment group and increases in weight did not appear affected by transient or chronic 

nicotine exposure.  When evaluating treatment effects on different sexes, weights in male 

mice showed no differences among treatment groups, whereas female mice exposed to 

nicotine had a slightly larger mean body weight, which was statistically higher than 

controls at 34 and at 210-days of age (chronic only) (Fig. 11B&C).  However, although 

differences were discovered in female mice weights, there was no difference in weight gain 

between controls and nicotine-exposed groups when or when not taking sex into 

consideration (data not shown) (Fig. 11). 
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Figure 11. Weights of Nicotine Exposed Mice Assessed for Lung Functional 

Abnormalities 

Average weights of mice groups for the indicated exposures: untreated is shown in black, transient nicotine 

is shown in grey, and chronic nicotine is shown as unfilled or white.  Individual weights were imported into 

GraphPad Prism 7.03, in which the groups were compared using unpaired t-test analysis with a Holm-Sidak 

multiple comparison test.  A Linear Regression analysis was also conducted between groups in GraphPad, 

with no differences found.  Multiplicity adjusted p-values were reported for each comparison.  Differences 

are represented vs. mock infected controls, p < 0.05: *, p < 0.01: **, p < 0.001: ***.  
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Discussion 

 Since the first report by Dr. Luther L. Terry in 1964, USG reports have played a 

vital role in pivoting the public view on smoking tobacco.  In 1972, the USG began 

dissecting the health consequences due to both voluntary and involuntary tobacco smoke 

exposure on both respiratory and cardiac diseases.  Shortly after in 1975, nicotine became 

implicated as a contributing factor for diseases in non-smokers exposed to second-hand 

tobacco smoke.  However, it was not until the USG report of 1986 that the adverse effects 

of parental smoking on their children’s respiratory health (most notably, increased 

frequency of bronchitis and pneumonia and subtle differences in lung function, all found 

early in life) were explained.  Despite its perceived significance, and although it has been 

over 30 years since the USG 1986 report, the mechanisms driving the long-term 

consequences of tobacco smoke on lung function and structure remain unelucidated. 

 Several human epidemiological studies have looked at the effect and impact of 

environmental tobacco smoke and nicotine on lung development and the progression of 

OADs.  In the United States, it has been estimated over a decade (2000-2010) that 400,000 

children are born to mothers who have smoked during pregnancy (125).  Smoking during 

pregnancy or more specifically fetal nicotine exposure (in animal models) has been shown 

to result in the offspring to have decreased lung function in childhood, which subsequently 

causes lifelong lung functional abnormalities (42, 43, 48-52, 62, 63, 134, 135, 147).  A 

study of a European birth cohort found that maternal smoking during the first trimester 

alone caused a 2-fold increase in childhood asthma, and the risk for asthma development 

remained elevated into adulthood (148, 149).  Furthermore, children whose mothers 

smoked during pregnancy were published to have decreased respiratory flows, decreased 
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lung compliance, and altered tidal breathing (50, 150, 151).  Despite this knowledge in is 

estimated that 50% of smokers who become pregnant continue to smoke during pregnancy, 

in which in the United States the highest prevalence, from 2000-2010, was found to be in 

20-24 year old mothers (48, 125).  Furthermore, postnatal exposures to tobacco smoke also 

continues to be widespread with an estimated 40% of children worldwide being exposed 

(54).  A study conducted in China in 2012 found that exposure of children to second hand 

smoke was associated with decreased lung function, with males being more affected than 

females (152).  Lastly, a cross sectional study of data sets generated worldwide found that 

children exposed to second hand smoke exhibited decreased lung function (55). 

 Animal models have been used extensively to extend results of epidemiological 

studies in humans and allow investigation of disease mechanism.  The oral model for 

murine nicotine exposure (as conducted) has been developed and widely used since 1983 

(136).  Using this model, investigators have not found decreased body weight or fluid 

intake due to nicotine supplementation in the drinking water (136).  Most importantly, the 

amount of nicotine administered and absorbed into the blood stream in mice correlates to 

the amount of nicotine absorbed in moderate to severe human cigarette smokers (2-3 packs 

per day) (136).  Our laboratory has previously published that using oral, transient, perinatal 

nicotine in mice (100 µg/mL) resulted in AHR through increased extracellular matrix 

production and altered lung branching morphogenesis (42, 64).  The data presented within 

this chapter suggest that AHR is not sustained with aging for murine, transient nicotine 

(Figure 7) (reviewed in Table 4).  In contrast, chronic nicotine exposure was found to 

cause long-standing lung functional abnormalities, which coincided with structural defects 

(Figure 7) (reviewed in Table 4).  Rats showed similar finding to mice with perinatal 
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nicotine causing enhanced methacholine-induced bronchoconstriction in which the disease 

state was inheritable through subsequent generations (147, 153).  This transgenerational 

inheritance of asthma has also been shown positively associated in humans in a Norwegian 

cohort (154).  In rhesus macaques perinatal nicotine exposure was determined to not only 

decrease lung function and cause alveolar hypoplasia, but also increased the expression of 

the α 7 nicotine acetylcholine receptor (airway cartilage and vessels) and collagen 

deposition (large airways and vessels), which was in line with our previous findings in 

mice (42, 62-64).  These publications are evidence that animal models are in line with 

human findings and may be used to further the understanding of OADs and their 

development. 

Our studies show that nicotine exposure by itself, starting during embryogenesis 

and extending into adulthood, results in structural changes (characterized by enlarged 

alveolar spaces and increased collagen deposition) and abnormalities in lung function 

(increased compliance, decreased Newtonian resistance, and tissue elastance) in the adult 

lung.  These changes were preceded by early alterations in alveolar size at 34-days after 

birth.  Altogether, these observations may help explain the extensive body of 

epidemiological data linking tobacco smoke to the development of OAD in children, the 

mechanisms of which has continued to elude clinicians and researchers (4, 46, 47, 131).  

Furthermore, the observations presented add support to the notion that perinatal events 

followed by extended noxious exposures render the host susceptible to decreased lung 

function later in life.  Although much work will be required to determine the mechanisms 

responsible for our observations, the following concepts should be considered. 
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By focusing on nicotine, this and our prior reports point towards this agent (one of 

over 7000 components in tobacco smoke), as a major contributor to the long-standing 

effects of chronic tobacco smoke exposure on the mammalian lung (42, 64, 155).  They 

also provide further insight into the processes potentially disrupted by nicotine.  For 

example, prior studies suggest that nicotine increases lung branching morphogenesis by 

increasing cleft formation and airway bifurcation.  This, without comparable changes in 

lung growth, was suggested to promote dysanaptic lung growth, a term that describes 

independent alterations in branching and growth in developing lungs, but about which there 

is little mechanistic understanding.  The current study also points to alveolarization as 

another potential developmental process targeted by nicotine in the mammalian lung.  This 

is evident from our results generated at 34-days of age (which is at or close to the end of 

the alveolarization stage for mice), that shows chronic nicotine exposed mice have 

increased alveolar volume compared to untreated controls (Fig. 9).  Previously, we showed 

that susceptibility to the effects of nicotine in the embryonic lung occurs during a tight 

temporal window, mainly between gestation day 14 and postnatal day 7 (42).  This period 

overlaps with the latter half of the pseudoglandular stage of lung development largely 

characterized by branching morphogenesis (between 12 and 16.5 days of gestation in the 

mouse), the canalicular stage, during which vascularization occurs (between 16.5 and 17.5 

days of gestation), the terminal sac stage (from 17.5 days of gestation to 4 days post birth), 

and the alveolar stage characterized by formation of secondary septa (septation) and 

formation of alveoli (from postnatal day 4 until day 36) (156, 157).  Thus, any of the 

mechanisms involved in the processes responsible for these stages could be affected.  

However, the early detection of enlarged airspaces points to disruption of alveolarization 
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leading to what is termed ‘alveolar simplification’.  These findings are consistent with 

those reported by others in non-human primates, sheep, and rats (62, 63, 135, 147, 153, 

158, 159). 

The identification of alveolarization as a key process disrupted by nicotine points 

to potential genes or groups of genes being targeted.  In rats, for example, nicotine 

decreases elastin production, a matrix molecule important for alveolarization (160).  Other 

genes also involved in alveolarization and potentially affected by nicotine are vascular 

epithelial growth factor or VEGF and IGF1 (161, 162).  The described changes in gene 

expression could be dependent on epigenetic modifications as previously demonstrated 

with perinatal nicotine exposure resulting in silencing of PPAR (163).  Some of these 

genetic and demonstrated phenotypic changes in lung can be observed in the setting of 

intrauterine growth retardation (164).  Considering the latter, we examined mouse weights 

(as a surrogate for lung size) at 34 and 210-days of age, but found no major differences.  

Unfortunately, we were unable to address lung growth or maturation at earlier time points. 

We previously suggested that nicotine promotes alterations in lung branching by 

affecting the expression of fibronectin, a matrix glycoprotein implicated in branching 

morphogenesis (64).  Above, we mentioned the role of elastin in alveolarization.  Here, we 

show increased collagen deposition in the lungs of animals chronically exposed to nicotine, 

thereby further implicating aberrant extracellular matrix expression and turnover in control 

of lung development (165, 166).  The detection of collagen mainly around airway structures 

points to effects on airway development, but further studies will be required to analyze this 

in more detail. 
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It should be emphasized that the histological changes described above were 

associated with significant alterations in lung function later in life.  Of these, the observed 

increase in compliance (suggesting decreased elastic recoil) is most intriguing as increased 

compliance is associated with tobacco smoke-related emphysema, a disease characterized 

by enlarged airspaces due to destruction of alveolar septa (167).  In our model, the changes 

observed in the adult lung were apparent at 34-days of age suggesting abnormalities in 

alveolar simplification.  This is more akin to “congenital lobar emphysema’ although more 

widespread.  However, the further increase in alveolar size in adult lungs (when compared 

to 34-day old lungs) suggests continuing alterations in lung structure; perhaps due to 

destruction of alveolar septa, but this requires further investigation.   

Interestingly, animals exposed chronically to nicotine also showed decreased 

Newtonian resistance, a parameter considered to represent resistance of the large airways 

(114).  The latter is not common in patients with tobacco smoke-related COPD or in animal 

models of emphysema, which typically show increased airway resistance (114).  It is 

conceivable that this is related to the observed increase in collagen around the airways, 

which could theoretically make the airways rigid, thereby ‘stenting’ the airways open.  

However, this is pure speculation and further studies will be needed to investigate the 

implications of these observations. 

As no major changes were detected in animals exposed to nicotine until day 7 after 

birth, additional exposure beyond this time is apparently required to produce the 

detrimental effects of nicotine exposure on lung histology and function that we observed 

following chronic treatment.  Although the pre- and postnatal exposures tested here were 

limited to nicotine, one can consider the possibility that other developmental (e.g. 
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prematurity and/or intrauterine growth retardation) and postnatal exposures (e.g. second-

hand smoke, viral infections, and/or bacterial pneumonias) could have similar detrimental 

effects leading to COPD in the adult lung. 

Our studies also suggest a differential effect of nicotine depending on sex.  

Nicotine-induced alterations in alveolar size and abnormal lung function were most 

prominent in males.  This is intriguing considering previous evidence of greater deleterious 

effects of nicotine or second-hand smoke on lung function in males (135, 168).  Other 

studies have shown similar differences in lung function, but did not examine the role of sex 

within their groups (114).  

Finally, it is attractive to consider how our data may point to potential targets for 

intervention that might reduce the detrimental effects of nicotine in lung development and 

possibly decrease its impact on the development of COPD in the adult.  In addition to genes 

involved in extracellular matrix generation and lung growth and maturation, among other 

processes, it is well known that nicotine acts by directly binding to cell surface nAChRs.  

In previous work, we showed that the effects of nicotine on lung branching morphogenesis 

ex vivo and on airway structure and function in vivo were mediated by  nAChRs since 

they were inhibited by antagonists to this receptor ex vivo, and were prevented in  

nAChR knockout animals (42, 64).  Since inhibitors of nAChRs are currently available 

commercially, it is tantalizing to think that safe and effective interventions against the 

detrimental effects of nicotine are within our reach.   

In summary, we show that in contrast to transient nicotine exposure, chronic 

nicotine exposure starting during embryogenesis is detrimental to murine lung structure 

and function later in life, thereby rendering further support to the concept that perinatal and 
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persistent exposures may impact the development of chronic lung disease in the adult.  

Although others have identified related abnormalities, to our knowledge this is the first 

data generated to confirm the detrimental effects of perinatal nicotine on lung structure and 

function long-term. 
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CHAPTER III: A MURINE MODEL FOR EARLY LIFE INFLUENZA A H1N1  

PANDEMIC 2009 INFECTION 
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Introduction 

In vivo animal model systems for the study of respiratory tract viral infections have 

become essential for furthering our understanding of how viruses behave in humans, and 

for gaining insights into the host response to such infections.  Unfortunately, in vivo models 

for the study of early life respiratory tract viral infections are limited or are rarely designed 

for the survival of the animal (72, 169-173).  Consequently, there is scarcity of data 

regarding viral infections in young mammals, how the host responds acutely, and the 

implications of such events later in life (46, 67-70, 174). 

Common respiratory tract viral infections include, but are not limited to, influenza 

A virus (IAV), respiratory syncytial virus (RSV), rhinoviruses, coronaviruses, and 

adenoviruses.  Of these viruses, rhinoviruses, RSV, and IAV are the most prominent viral 

respiratory pathogens affecting infants and young children throughout the globe, often 

causing severe lower respiratory tract infections; the latter not often seen in rhinoviruses 

(68, 169, 175).  Both RSV and IAV are similar in that they are enveloped negative-sense 

RNA viruses, elicit similar clinical symptoms, and may promote long-term abnormalities 

in lung physiology following infection during infancy (68, 174).  Both viral entities 

represent a large proportion of cases for hospitalization worldwide, although in the U.S. 

RSV has 16 times higher incidence of hospitalization (compared to influenza) of children 

younger than one year of age, and influenza has 8 times more incidence for hospitalization 

for children older than five years of age (176, 177).  Unlike RSV and IAV, rhinoviruses 

are positive-sense RNA viruses that typically do not replicate in the lower respiratory tract 

(70, 71).  RSV, IAV, and rhinoviruses are all known to cause exacerbations in persons with 

chronic OADs and all are associated with asthma later in life, when infection occurs during 
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infancy (72, 174, 175, 178).  Bisgard and colleagues analyzed epidemiological data and 

found that the risk factors associated with the development of OADs later in life due to a 

respiratory tract infection are susceptibility to infection (e.g. age and/or 

immunocompromised state) and the intensity of the response of the host to the infectious 

agent (bacteria or viral), rather than the agent itself (174). 

Unfortunately, there is no effective vaccine against RSV or rhinoviruses, and 

influenza vaccination cannot occur until 6 months of age.  This leaves a window where 

infants have no protection against influenza.  Furthermore, vaccinated persons are still 

susceptible to new strains that arise through antigenic shift or drift as seen with the 2009 

pandemic swine flu or the Spanish flu in 1918 (179).  Together, these observations point 

to the importance of early life respiratory tract viral infections, not only because of their 

acute impact during critical stages of development, but also because of their potential 

implications later in life.  However, the association between early life viral infection with 

chronic lung dysfunction in the adult has not yet been studied extensively.  

The 2009 influenza pandemic was caused by a variant H1N1 human virus that arose 

due to a reassortment in swine and led to a variant termed pandemic H1N1 (pH1N1) (180).  

Early on, investigators observed increased pH1N1 infection in individuals between 10-19 

years of age when compared to seasonal influenza (25.1% versus 15.6% of cases).  A 

decreased incidence of pH1N1 infection was noted in very young individuals up to 4 years 

of age (8.9% versus 14.6%) and in those over 65 years of age (3.1% versus 12.1%) (181).  

Older individuals were determined to have protective immunity against pH1N1 due to 

immunologic encounters with viruses similar to pH1N1 earlier in life (181, 182).  

Therefore, the majority of cases infected with pH1N1 in 2009 occurred in adolescent 



62 
 

individuals in whom a comparative murine model has yet to be developed and/or 

characterized.  In this chapter, we measure respiratory function in mice at a developmental 

stage similar to that of humans around high school age, which represents the population 

with highest prevalence of pH1N1 infection in 2009.  IAV was used due to it being a 

common infection that takes place in both upper and lower respiratory, throughout 

development into adulthood. 

Typically, 8-12 week old mice are used for influenza infection and infection of 

younger mice is not as common (79, 183-188).  Eight to twelve week old mice are known 

to be immune competent, whereas 14- and 30-day old mice may or may not have fully 

developed immune systems  (75, 76, 189-191).  Data presented in this chapter provide 

evidence that mice at 14- and 30-days of age are at least partially immune competent.  

There are differences in the immune response (adaptive, innate, cellular, and humoral) 

between humans and mice (192).  Although, the immune system is complex, 8-12 week 

old mice are generally immunocompetent, while in humans the development of the immune 

system is complete around or after twenty years of age (191).  These ages of mice were 

chosen due to their lungs still being in a developmental stage (alveolarization) and due to 

their immature immune system (156, 157). 

Here, we describe the development and characterization of a murine model of early 

life infection using a mouse adapted IAV pH1N1 strain.  The age of the mice chosen for 

the model corresponded to the developmental stage (alveolarization) of the lung for 

individuals belonging to the most susceptible age group during the 2009 H1N1 pandemic 

(14 and 30 days of age).  The model will serve as a tool to study early life infection of IAV 
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pH1N1 which will be valuable for examining the pathogenesis and treatment of this 

condition. 

 

Materials and Methods 

Cell Culture 

Madin-Darby canine kidney (MDCK) cells (ATCC #CCL-34 Manassas, Virginia) 

were used for virus propagation and titer determination assays.  MDCK cells were cultured 

with “Complete Dulbecco’s Modified Eagle Medium” (CDMEM) (Table 4).  MDCK cells 

were washed twice with Dulbecco’s Phosphate Buffered Saline (DPBS) (Invitrogen 

#14190-250 Carlsbad, California) and passaged using 0.25% Trypsin EDTA (Invitrogen 

#25200056).  Trypsin EDTA was neutralized with CDMEM (formulation above) at a ratio 

of 1:5. MDCK and used until passage 30. 

 

Virus Propagation 

A mouse adapted IAV California/07/2009 (ma-CA/07/09) was obtained from the 

University of Louisville Center for Predictive Medicine (Louisville, KY).  Adaptation to 

the C57Bl/6 murine line occurred through a series of 10 intranasal passages from the 

previous murine lung homogenate at 10% W/V with DPBS.  At the 10th passage, the lung 

was homogenized and was then diluted 1:10 in Viral Growth Media (VGM) (Table 4) for 

passage over confluent MDCK cells.  Viral supernatant was harvested upon the appearance 

of cytopathic effect and subsequently diluted 1:10 and passaged twice more over MDCK 

cells.  Lastly, as a positive control for the in vitro assays, we obtained and propagated (as 

described above) IAV pH1N1, strain New York/18/2010 that was initially propagated in 
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an embryonic hen egg from The University of Louisville Center for Predictive Medicine 

(Louisville, KY).  Viral supernatants were aliquoted and then stored at -80°C for short term 

use and -120°C for long term storage.  All stocks for experimental use were determined to 

be free of mycoplasma using a LookOut Mycoplasma PCR Detection Kit (Sigma 

#MP0035).  

 

Viral Titer Determination 

TCID50/mL assays were performed on unaltered whole lung homogenate with 

MDCK cells seeded and infected as previously described (193, 194).  Spot 

hemagglutination and plaque assays confirmed TCID50/mL assay results.  Briefly, 

confluent MDCK cells were seeded into 6-well plates (Coring #3506 Corning, New York) 

and incubated for 24 hours at 37°C, 5% CO2.  MDCK cells were infected as previously 

described and plates were incubated at 37°C, 5% CO2 for 1 hour (193).  After incubation, 

virus was removed from the plates, cells were washed twice, and a 2 mL volume of 

Complete Overlay Agar (Table 4). 

After 96 hours of incubation (37°C, 5% CO2 in a humidity chamber), 4% 

paraformaldehyde (Sigma #158127) was added directly onto the agar at a volume of 2 mL 

for 20 minutes.  Agar was then removed from the wells and 2 mL crystal violet staining 

solution was added for 20 minutes.  Wells were washed twice with DPBS and plaques were 

subsequently counted for viral titer determination. 
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Table 5. Media formulations 

Formulation 
Name 

Reagent 
Vender Catalog 

Number 
Concentration 

Complete Dulbecco’s Modified Eagle Medium  

  
Dulbecco’s Modified 
Eagle Medium 

Invitrogen #11965 86.50% 

  Fetal Bovine Serum Invitrogen #16000044 10% 

  L-Glutamine Invitrogen #25030 5 mM / 2.5% 

  Penicillin/Streptomycin Invitrogen #15140122 100 µg/mL / 1% 

Viral Growth Media 

  
Dulbecco’s Modified 
Eagle Medium 

Invitrogen #11965 91.24% 

  BSA Fraction V Invitrogen #15260-037 0.2% / 2.66% 

  L-Glutamine Invitrogen #25030 5 mM / 2.5% 

  Penicillin/Streptomycin Invitrogen #15140122 100 µg/mL / 1% 

  HEPES Buffer Invitrogen #15630-080 25 mM / 2.5% 

  TPCK Trypsin Sigma #T8642 2 µg/mL / 0.1% 

Complete Overlay Agar 

  Agar Oxoid #LP0011 0.80% / 38.7% 

  
Dulbecco’s Modified 
Eagle Medium 

Invitrogen #12100-061 1x / 50% 

  BSA Fraction V Invitrogen #15260-037 0.20% /2.7% 

  L-Glutamine Invitrogen #25030 5 mM / 4% 

  Penicillin/Streptomycin Invitrogen #15140122 100 µg/mL / 1% 

  HEPES Buffer Invitrogen #15630-080 25 mM / 2.5% 

  
Non-Essential Amino 
Acids 

Invitrogen #11140-050 1x / 1% 

  TPCK Trypsin Sigma #T8642 2 µg/mL / 0.1% 
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vRNA Isolation, cDNA Synthesis, and Hemagglutinin Sanger Sequencing 

 The ma-CA/07/09 MDCK passage 3 stock supernatant was used for 

characterization of the HA gene.  Briefly, 0.75 mL of Trizol LS (Invitrogen #10296010) 

was added separately to eight 0.25 mL volumes of the ma-CA/07/09 stock and processed 

according to the manufacturer’s instructions.  After the chloroform separation step, all 

upper phases from each individual tube were pooled.  RNA was resuspended in 20 µL 

RNase-Free water and stored at -80°C.  One µg of RNA was used for cDNA synthesis 

using the iScript cDNA Synthesis Kit (Bio-Rad #1708891 Hercules, California) according 

to the manufacturer’s instructions. cDNA was aliquoted and stored undiluted at -80°C or 

at 33 ng/µL at -20°C for immediate use. 

 PfuUltra II Fusion Hot Start DNA Polymerase (Agilent #600670 Santa Clara, 

California) was used for all sequencing PCR reactions.  Briefly, a PCR master mix was 

created according to the manufacturer’s instructions and added to 100 ng of RNA.  One-

thousand nucleotide length overlapping PCR fragments were amplified, spanning the entire 

HA gene, using the following primer sets: Forward#1 ATGAAGGCAATACTAGTAGTT 

CTG, Reverse#1 CTAGATTGAATAGACGGGATATTCC; Forward#2 CCAAAGCTCA 

GCAAATCCTAC, Reverse#2 GTCCCATTTTTGACACTTTCCATG; Forward#3 GAA 

ATAGCAATAAGACCCAAAGTG, Reverse#3 TTAAATACATATTCTACACTGTAG 

AGACC. PCR conditions followed the manufacturer’s specifications.  Gel electrophoresis 

was conducted on PCR reactions and bands of the expected length were excised then 

processed using the wizard SV Gel and PCR Clean-up System (Promega #A9281 

Fitchburg, Wisconsin) according to the manufacturer’s directions.  Purified PCR products 

were submitted for Sanger sequencing analysis at University of Louisville’s Center for 
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Genetics and Molecular Medicine DNA Facility Core.  Two Sanger sequencing samples 

were submitted with each PCR amplicon using both the forward and reverse primers from 

each primer set. Sanger sequencing results were cataloged and assembled in CLC 

workbench.  

  

In Vivo Infections 

 Mice were housed in a pathogen-free barrier facility accredited by the Association 

for Assessment and Accreditation of Laboratory Animal Care, and procedures were 

approved by the University of Louisville's Institutional Animal Care and Use Committee.  

Timed breeding was implemented by pairing C57BL/6 mice and un-pairing within 48 

hours. At 14- or 30-days of age, mice were anesthetized and then they were subject to two 

intranasal inoculations of our in vivo propagated ma-CA/07/09 viral stock at 15 µL (30-

day old mice) or 10 µL (14-day old mice) volumes.  Mice were weighed daily until 21 days 

post infection (DPI) at which time mouse blood was collected for serum using BD SST 

Microtainer Tubes (BD #365967 Franklin Lakes, New Jersey), and the animals were given 

an intraperitoneal injection of sterile saline at 0.5 mL (GrowCells #MSDW-2000).  

 

Euthanasia Criteria for Murine Infection 

Weight loss was the first criterion scored for all mice in the study (i.e. no mice 

showed any other sign of infection before weight loss).  Due to our mice still maturing to 

adulthood (i.e. gaining weight due to growth), a typical 20-25% weight loss from time of 

infection for euthanasia criteria was not acceptable.  Therefore, mock infected mice were 

weighed and determined the percent of weight gained from the previous 3 days.  When an 
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animal met weight loss criteria and scored 3 or greater in any of the categories listed, this 

dictated humane euthanasia (Table 5).  For humane euthanasia, mice were anesthetized 

then cleaned with 70% ethanol and blood was collected via cardiac puncture.  Cervical 

dislocation was then implemented to ensure humane euthanasia before dissection.  
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Table 6. In vivo Infections Humane Endpoint Criteria 

Criterion  
Weight Loss Mouse is 75% body weight or less of expected weight gain 

 
When weight loss criterion above was reached a combined score of 3 or more 

across all categories (below) dictated humane endpoint criteria 
 Score 
 0 1 2 3 

Lethargy Normal 
Mice are bunched 

together with normal 
movement 

Mice are bunched 
together with slower 

movement 

Mouse is alone and 
shivering 

Respiratory 
Distress 

Normal 
Up to 25% difference is 
respiration compared to 

uninfected mice 

Between 25-50% 
difference is reparation 
compared to uninfected 

mice 

Above 50% 
difference is 

reparation compared 
to uninfected mice 

Physical 
Signs of 
Distress 

Normal 
Slightly hunched 

and/or 0-1 MGS score 
Pronounced hunching 
and/or 1-2 MGS score 

Severe hunching 
and/or 2 MGS score 

Response to 
Stimuli 

Normal 
Slow response to 

stimuli and normal 
righting reflex 

Delayed response to 
contact and normal 

righting reflex 

Unresponsive to 
contact and has no 

righting reflex. 
MGS: Mouse Grimace Scale (195); Stimuli: Tapping on cage. 
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IAV ELISA for Seroconversion 

Blood was processed for serum per the manufacturer’s specifications, then 

aliquoted and stored at -80°C.  Aliquoted serum was used for a qualitative mouse H1N1 

Antibody IgG ELISA Kit (My BioSource #MBS9350017) following the manufacturer’s 

instructions.  

 

Tissue Processing 

Histology:  The chest cavity was then opened and the inferior vena cava was cut.  The lung 

vasculature was flushed by puncturing the right ventricle with a 0.26 G needle and injecting 

10 mL sterile saline solution.  Lungs were inflated via the trachea with 10% neutral 

buffered formalin (VWR #16004-128) at a constant pressure of 25 cm H2O.  Inflated lungs 

were removed and placed in 10% neutral buffered formalin for storage until separation of 

individual lobes then processed using a Spin Tissue Processor 120 (Thermo Fisher 

#813150) according to the manufacturer’s instructions (42, 64). 

Lobes were then paraffin embedded and were then cut at a thickness of 6 µm (Leica 

Jung #RM2055) taking horizontal sections of all lobes.  Slides were then stained using 

standard procedures for H&E (Thermo Fisher #6765007) (Thermo Fisher #6766007) and 

Masson’s trichrome (MTC) (American MasterTech #KTMTR2PT).  After staining tissue 

sections were dehydrated using standard procedures and then mounted with Vectamount 

mounting medium (Vector Laboratories #H5000).  Quantification of collagen was 

conducted using ImageJ (Version 1.51k) software as previously described (139, 140).   
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Immunohistochemistry:  Lung sections were cut and processed as above.  Trilogy reagent 

(Cell Marque #920P-10 Darmstadt, Germany) was used according to the instructions 

(Steps 1-12) for deparaffinization and rehydration.  Slides were washed with Tris-buffered 

saline-Tween20 (0.05%) for 1 minute, 4 times. Slides were blocked with 10% normal goat 

serum in wash buffer, for 1 hour at room temperature.  Blocking reagent was removed and 

fibronectin primary antibody (Sigma #F3648) was subsequently added, at 1:250 (2µg/mL) 

for 1 hour at 37°C with appropriate IgG control (Sigma).  Slides were washed and then 

incubated with 3% H2O2 for 15 minutes at room temperature.  Slides were washed and then 

incubated with a goat anti-rabbit horseradish peroxidase conjugated secondary antibody 

(Sigma #9169) at 1:500 dilution for 30 minutes at room temperature.  Slides were 

developed using the ImmPACT DAB Peroxidase Substrate Kit (Vector Laboratories #SK-

4105) according to the manufacturer’s instructions.  As soon as slides developed they were 

immediately immersed in dH2O for 3 minutes.  Tissue sections were dehydrated and 

coverslips were mounted as before. 

 

ImageJ Pixel Quantification 

Quantification of collagen and fibronectin was conducted using ImageJ (Version 

1.51k) software.  Individual lung images were imported into ImageJ software in .tiff format 

and analyzed as previously described (139, 140).  For our analysis, we applied a minimum 

threshold level of 37 and a maximum threshold level of 150 or 190 (14- or 30-day old mice) 

for our Masson’s trichrome stained slides (collagen) and a minimum threshold level of 150 

and a maximum threshold level of 220 was applied for our fibronectin stained slides.  
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Lung Viral Load Quantitation 

The chest cavity was opened and lungs were removed and placed into 2 mL 

microtubes containing 1.4 mm ceramic beads (Omni International #19-627 Kennesaw, 

Georgia).  Upon their removal, the lungs were immediately placed on ice and then 

homogenized with ice cold DPBS (10%) W/V using a Fisher Bead Mill 4.  Lung 

homogenate was centrifuged at 500 x g for 5 minutes and supernatant was then aliquoted 

and stored at -80°C for viral load determination via TCID50/mL and hemagglutination 

assays as described above.  

 

Lung RNA Isolation 

Lungs were removed and placed into 2 mL microtubes containing 1.4 mm ceramic 

beads containing 1 mL of Trizol reagent (Invitrogen #15596026).  Lungs were 

homogenized as before and RNA was isolated following the Trizol reagent protocol until 

completion of “Phase Separation” portion.  The upper phase was then processed using the 

Directzole RNA Miniprep Plus Kit (Zymo Research #R2072 Irvine, California) according 

to the manufacturer’s instructions.  RNA quantification was conducted as before and RNA 

was stored at -80°C until use for cDNA synthesis/RT-PCR or a murine Affymetrix Clariom 

D microarray according to the manufacturer’s instructions.  

 

Primary Lung Fibroblast Isolation, Infection, and RNA Isolation 

Primary lung fibroblasts from C57BL/6 mice were isolated as previously described 

(196, 197).  Fibroblasts (passage 9) were seeded onto 6-well plates at 500,000 cells/well in 

CDMEM for 24 hours.  Cells were washed twice and then infected with our in vitro 
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propagated ma-CA/07/09 viral stock in duplicate.  Cells were infected at a multiplicity of 

infection (MOI) of 1.0 at a volume of 100 µL (VGM) for 1 hour at 37ºC, 5% CO2.  After 

viral incubation virus was removed and cell monolayers were washed as before then 

supplemented with 2 mL of VGM per well.  At 48 hours post infection (HPI) supernatant 

was removed and cell monolayers RNA was collected using Trizol reagent.  RNA was 

isolated as described above. One µg of RNA was used for cDNA synthesis using the iScript 

cDNA Synthesis Kit according to the manufacturer’s instructions.  

 

Transcriptome Assay (Clariom D Microarray) 

Briefly, biotinylated cRNA was prepared from total RNA using Affymetrix 

GeneChip Whole Transcript Plus Reagent kit.  Fragmented cRNA was hybridized to 

Affymetrix mouse Clariom D arrays and processed on an Affymetrix FS-450 fluidics 

station and scanned on an Affymetrix GeneChip scanner.  The resulting .cel files were 

imported into Partek Genomics Suite 6.6 (6.15.0327) and transcripts were normalized and 

summarized using RMA default settings.  Partek was used for generation of the Principal 

Component Analysis (PCA) and heat map.  Our generated microarray data was uploaded 

into Clarivate Analytics (formerly Thomson Reuters) Metacore analysis program found 

online.  A +/-2- fold and 0.1≥q-value (step-up p-value) cut-off was applied to our data set 

(as before) and our 81 differentially expressed genes were categorized into the most 

implicated pathway maps, and process networks as well as gene ontology (GO) groups 

(with the most significant results listed).  
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RT-PCR 

100 ng of cDNA per well was loaded into 96-well PCR plate (Thermo Fisher 

#4366932) in triplicate for each primer/probe set being tested.  For each treatment, we had 

duplicate samples for primer/probe sets: IL-1β (mm00434228_m1), TGFβ 

(mm01178820_m1), MMP9 (mm00442991), Collagen 1a1 (mm00801666_g1), 

fibronectin (mm01256744_m1), and β-actin (mm04394036_g1) for our housekeeping 

control gene.  Furthermore, non-template controls or 1 µL of RNA from each sample as 

well as water was tested in duplicated for each gene.  TaqMan fast advanced master mix 

(Thermo Fisher #4444557) was used and the reactions were conducted in a StepOne Plus 

machine (Applied Biosystems #4376600 Foster City, California) following the 

manufacturer’s conditions.  

 

Murine Lung Function Testing 

Untreated mice (n = 19; male = 10, female = 9), H1N1 ELISA positive mice (101 

TCID50/mL per mouse: N = 13, 6 males, 7 females; 101.7 TCID50/mL per mouse: N = 19, 

9 males, 10 females) at 7 months of age were subject to functional lung testing.  Pulmonary 

function and response to increasing concentrations of methacholine (0-50 mg/mL, inhaled) 

were measured by forced oscillation using the flexiVent system (SCIREQ, Montreal, 

Quebec, Canada) as previously described (137, 138).  

 

Statistics 

Using GraphPad Prism 7.03 the following statistical test were implemented.  For 

lung viral load determination all challenges were compared independently using a Logrank 



75 
 

(Mantel-Cox test) as well as a Gehan-Breslow-Wilcoxon test separately.  The average daily 

weights were calculated and a percent weight gain along with standard deviations from 

time of infection and were compared using a two-way ANOVA analysis along with a 

Turkey multiple comparison test.  The percent of total lung area stained (normalized to IgG 

controls for immunohistochemistry, entire lung) for each group were averaged and a one-

way ANOVA analysis was conducted with all groups using a Bonferroni test to correct for 

multiple comparisons.  RT-PCR data for each individual samples ΔΔCt value was used in 

the formula, 2-ΔΔCt and differences between groups were determined using unpaired T-tests 

with a Holm-Sidak test to correct for multiple comparisons. 

Using SAS statistical software, a correlation chart between all six outcome 

parameters (resistance, compliance, elastance, Newtonian resistance, tissue damping, and 

tissue elastance) was generated and showed strong correlation for all parameters to 

resistance (Supplemental Fig. 1).  A 3-factor ANOVA was then implemented with the 

factors representing experimental group, sex type, and dose of methacholine elicited.  

Descriptive statistics were calculated for the entire study population as well as within each 

factor.  Rigorous analysis involved the main effects for 3-factor ANOVA along with 2-way 

interactions (group*sex, group*dose, sex*dose).  Since interaction effects were not 

significant in most of the outcome measures (only exception was for compliance in the 

sex*dose interaction), we considered only 3-factor ANOVA without interaction terms.  

Rather than subset analysis, we have used contrast to test the main effects (such as mock 

versus 101 pH1N1; mock versus 101.7 pH1N1, and 101 pH1N1 versus 101.7 pH1N1), which 

increases power to detect significant effects (143, 144).  
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Results 

Propagation and Characterization of Viral Stock 

We propagated IAV pH1N1 isolates using MDCK cells over three passages 

collecting at 3 DPI for all ma-CA/07/09 stocks and at 7 DPI for our in vitro positive control 

stock, New York/18/2009.  The concentration of our ma-CA/07/09 viral stocks for both in 

vivo and in vitro studies was determined to be above 1x108 via TCID50/mL and plaque 

assays with standard deviations at or below 10+/-0.22 (Table 6).  
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Table 7. Viral Stock Titers 

Virus Stock 
TCID50/mL 

Log10 
SD 

PFU/mL 
Log10 

SD 

Mouse Adapted CA/07/2009 
MDCK P2 

7.28 
0.21 
N=3 

N.A. 
N.A. 
N=0 

Mouse Adapted CA/07/2009 
MDCK P3, In Vivo 

8.25 
0.17 
N=4 

8.34 
0.20 
N=5 

Mouse Adapted CA/07/2009 
MDCK P3, In Vitro 

8.04 
0.22 
N=3 

8.03 
N.A. 
N=1 

New York/18/2009 
MDCK P1 

4.80 
0.21 
N=6 

4.87 
0.10 
N=3 
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Once the propagation of ma-CA/07/09 was deemed successful, hemagglutinin 

(HA) gene PCR products derived from our viral stock were sequenced to determine host 

receptor binding preference.  When comparing our viral stock (GenBank #MF988319) to 

the original human isolate (GenBank #KU933485.1), we found two nucleotide (AG) 

mutations at positions 460 and 665 in the HA gene (data not shown).  These two nucleotide 

changes resulted in two amino acid mutations at sites 154 (KE) and 222 (DG) (data 

not shown).  The glycine substitution at position 222 confirmed that the murine adaptation 

of our virus was successful and the propagation over 3 MDCK cell passages did not affect 

the binding phenotype of our stock (185). 

 

In vivo Replication Kinetics of Mice Infected at 14-Days of Age 

 Fourteen-day old mice were infected intranasally with the propagated ma-

CA/07/09 in vivo stock for lung viral load quantification with challenges ranging from 101-

101.7 ma-CA/07/09 viruses as determined from TCID50/mL titer (in two 10 µL volumes).  

We found that the peak viral load was challenge-dependent and the time when the lung 

viral load peaked in challenges occurred at 3-4 days post infection (DPI) (Fig. 12A).  The 

challenges delivered to mice corresponded to different peak viral loads in the lung with 

101.7 viruses of ma-CA/07/09 per mouse reaching a peak lung viral load of 1x107.310 +/- 0.352 

TCID50/mL, whereas the lower challenges reached peak viral loads of 105.980 +/- 0.607 and 

105.800 +/- 0.816 TCID50/mL.  At our lowest challenge (101 ma-CA/07/09 viruses per mouse), 

one mouse had undetectable viral loads in the lung at both 3, 4 and 9 DPI (80% detectable 

virus); these mice were not included in Figure 12A and B.  No virus was detected in the 

lungs of mice for any challenge at 21 DPI.  Furthermore, one mouse had undetectable viral 
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load loads (as determined by the TCID50/mL assay) at 9 DPI for our middle challenge of 

101.3 ma-CA/07/09 viruses per mouse (93.3% detectable virus as determined by the 

TCID50/mL assay).  All mice infected with 101.7 ma-CA/07/09 viruses per mouse were 

found to have virus as determined by the TCID50/mL (100% detectable virus).  Mice 

infected with 101 ma-CA/07/09 viruses per mouse showed statistically different lung viral 

load titers at 3 DPI compared to 101.3 (p < 0.05) and 101.7 ma-CA/07/09 viruses per mouse 

(p < 0.01).  Lastly, 101.7 ma-CA/07/09 viruses per mouse challenges had statistically 

different lung viral load titers at 4 DPI compared to 101 (p < 0.05) and 101.3 ma-CA/07/09 

viruses per mouse (p < 0.05) (Fig. 12A). 

A survival graph was generated based on when mice reached humane endpoint 

criteria due to ma-CA/07/09 infection (Table 5).  For all challenges, only mice in the 101.3 

(N=1) and 101.7 (N=7) ma-CA/07/09 viruses per mouse reached humane endpoint criteria 

(Fig. 12B).  It was determined that there were statistically significant differences in survival 

(p < 0.05) between 101.7 ma-CA/07/09 viruses per mouse groups and both other challenges. 

Mice infected with ma-CA/07/09 showed statistical significant differences 

(compared to mock N=17) in percent change in body weight starting at 5 DPI for 101.7 ma-

CA/07/09 viruses per mouse (p < 0.01), and at 6 DPI for 101 and 101.3 TCID50/mL per 

mouse (p < 0.05) (Fig. 12C).  As mentioned earlier, the mock infected group showed 

weight gain over time, which was found to be statistically different from 101, 101.3, and 

101.7 ma-CA/07/09 viruses per mouse at 7, 8, and 9 DPI (p < 0.001) (Fig. 12C). 
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Figure 12. Lung Viral Load, Survival, and Weight Change in 14 and 30-Day Old 

C57Bl/6 Infection with ma-CA/07/09 

14 and 30-day old C57Bl/6 mice intranasal infection with ma-CA/07/09 at the indicated challenges.  Each 

individual mouse lung homogenate was independently titered three times via TCID50/mL assay with a 

minimum of 3 mice at each time point.  Data represents the mean of all independent viral titers and their 

corresponding standard deviations. 14-day old mice lung viral load determination (A) a: 101 vs. 101.3, b: 101 

vs. 101.7, c: 101.3 vs. 101.7; and 30-day old mice (D) a: 101 vs. 101.7, b: 101 vs. 102, c: 101.7 vs. 102; p < 0.05: *, 

p < 0.01: **, p < 0.001: ***.  Error bars correspond to standard deviation.  The average viral load in the lung 

was determined by averaging each individual animal’s log lung viral load (minimum 3 replicates) and then 

determining the mean log lung viral load at each day among individual mice (minimum 3 mice per day).  The 

resulting data was imported into GraphPad Prism 7.03 and groups were compared using multiple unpaired, 
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t-tests with p-values reported for each comparison.  Corresponding survival curve of lung viral load 

determination for 14-day old mice (B) and 30-day old mice (E) p < 0.05: *, p < 0.01: **.  All challenges were 

compared independently using a Logrank (Mantel-Cox test) as well as a Gehan-Breslow-Wilcoxon test 

separately in GraphPad Prism 7.03.  Corresponding weights of mice represented in A and D as the percent 

weight from the initial time of infection at the indicated challenges for 14-day old mice (C) and 30-day old 

mice (F).  The average daily weights were calculated and a percent weight gain along with standard deviations 

from time of infection was calculated and imported into GraphPad Prism 7.03.  Groups percent weight gained 

were compared using a two-way ANOVA analysis along with a Turkey multiple comparison test. Multiplicity 

adjusted p-values were reported for each comparison. 
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In vivo Replication Kinetics of Mice Infected at 30-Days of Age 

Thirty-day old mice were infected intranasally with the propagated ma-CA/07/09 

in vivo stock for lung viral load quantification.  Three challenges were chosen ranging from 

101-2 ma-CA/07/09 viruses as determined by the TCID50/mL titration (in two 15 µL 

volumes).  We found the peak viral load to be quite consistent across challenges, whereas 

time of peak viral load varied (Fig. 12D).  As expected, the infections were challenge-

dependent as the highest challenge (101.7 and 102 ma-CA/07/09 viruses per mouse) had 

their highest viral load at 4 DPI (106.480 +/- 0.136 and 107.148+/- 0.778 TCID50/mL), whereas the 

lowest challenge (101 ma-CA/07/09 viruses per mouse) peaked at 9 DPI (106.818 +/- 0.936 

TCID50/mL) (Fig. 12D).  No virus was detected in the lungs of mice for any challenge at 

21 DPI.  At our lowest challenge (101 ma-CA/07/09 viruses per mouse), one mouse had 

undetectable viral loads in the lung at both 3 and 6 DPI, and two mice had undetectable 

viral loads at 7 DPI (80% detectable virus); these mice were not included in Figure 12D 

and E.  All mice infected with 101.7 and 102 ma-CA/07/09 viruses per mouse were found 

to have virus (100% detectable virus). 101 and 101.7 TCID50/mL per mouse challenges 

resulted in statistically different lung viral load titers at 3 (p < 0.01) and 4 DPI (p < 0.05).  

Challenges of 101.7 and 102 ma-CA/07/09 viruses per mouse resulted in statistically 

different lung viral load titers at 3 and 7 DPI (p < 0.05) (Fig. 12D).  For all challenges, only 

mice in the 102 (N=6) and 101.7 (N=1) ma-CA/07/09 viruses per mouse reached humane 

endpoint criteria (Fig. 12E).  It was determined that there were statistically significant 

differences in survival (p < 0.01) between 102 ma-CA/07/09 viruses per mouse challenge 

versus the other two challenges (Fig. 12E). 
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Mice infected with ma-CA/07/09 showed a challenge-dependent decrease in 

percent change in body weight from time of infection starting at 5 DPI for 102 TCID50/mL 

per mouse, at 6 DPI for 101.7 TCID50/mL per mouse, and at 7 DPI for 101 TCID50/mL per 

mouse (Fig. 12F).  As mentioned earlier, the mock infected group showed weight gain over 

time, which was found to be statistically different from 101 TCID50/mL per mouse at 7 and 

9 DPI (p < 0.001).  Furthermore, mock mice were found to be statistically different from 

101.7 TCID50/mL per mouse at 6, 7, 8, and 9 DPI (p < 0.001).  Lastly, mock infected mice 

were found to be statistically different from mice infected with 102 TCID50/mL per mouse 

at 2 (p < 0.05), 3 (p < 0.01), 4, 5, 6, and 7 DPI (p < 0.001) (Fig. 12F). 

 

Lung Histological Changes in Infected Mice 

Fourteen-day and 30-day old mice were infected intranasally with our propagated 

ma-CA/07/09 in vivo stock for 4 days, euthanized, and then lung tissue harvested for 

staining (H&E, Masson’s trichrome, and IHC for fibronectin).  These studies revealed 

challenge-dependent increases in collagen deposition, inflammation, and cell infiltration to 

areas around the large proximal airways. 

H&E staining of 14-day old mice, at 4 DPI, showed minimal differences between 

mock and 101 TCID50/mL per mouse groups.  Comparing mice infected with 101.3 ma-

CA/07/09 viruses (as determined by the TCID50/mL assay) per mouse to mock infected 

animals, we discovered mild inflammation in proximity to ~15% of the large airways), 

mild cell infiltration (macrophages and lymphocytes) to areas only around the large 

proximal airways, and slight epithelial desquamation with necrotic epithelium in the lumen 

(where viral replication was taking place).  Likewise, 101.7 ma-CA/07/09 viruses per mouse 
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challenge showed the same findings except all findings were moderate to severe 

inflammation (in proximity to ~30% of the large airways) (Fig. 13Ai-iv).  ImageJ analysis 

of slides stained with Masson’s trichrome revealed a significant increase in collagen 

deposition around the large proximal airways in the most lethal challenge, 101.7 ma-

CA/07/09 viruses per mouse (p < 0.05), but not in the two lower sub-lethal challenges (Fig. 

13Bi-iv and G).  Evaluation for fibronectin resulted in no differences between mock 

infected and pH1N1 infected animals (Fig. 13Ci-iv and I). 

For 30-day old mice, at 4 DPI H&E staining revealed little to no differences 

between mock and 101 ma-CA/07/09 viruses per mouse groups.  When comparing 101.7 

TCID50/mL per mouse to mock infected, there was slight epithelial desquamation with 

necrotic epithelium in the lumen, and mild inflammation in areas around the large proximal 

airways (in proximity to ~20% of the large airways).  Likewise, when comparing 102 ma-

CA/07/09 viruses per mouse, there was more pronounced (compared to 101.7 ma-CA/07/09 

viruses per mouse) epithelial desquamation with more necrotic epithelium in the lumen, 

inflammation (in proximity to ~30-40% of the large airways), but not as evident in the 

parenchyma as seen in 14-day old mice) and cell infiltration (macrophages and 

lymphocytes) to areas around the large proximal airways and blood vessels (Fig. 13Di-iv).  

Similar to the above, increasing challenges of ma-CA/07/09 resulted in increased staining 

for collagen, around the large proximal airways close to the hilum (Fig. 13Ei-iv).  Masson’s 

trichrome stained slides showed a significant increase in collagen deposition between mock 

versus 101.7 (p < 0.05) and 102 (p < 0.01) ma-CA/07/09 viruses per mouse groups (in 

proximity to ~30% of the large airways for both challenges) while no difference was found 

for stained collagen between mock versus 101 TCID50/mL per mouse groups (Fig. 13H).  
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As in 14-day old mice, fibronectin IHC staining in 30-day old mice at 4 DPI showed no 

differences between mock infected vs 101 or 101.7 ma-CA/07/09 viruses per mouse groups 

although, versus 102 ma-CA/07/09 viruses per mouse group there was significant increased 

staining (p < 0.05) (Fig. 13Fi-iv and J).  
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Figure 13. Lung Histology of ma-CA/07/09 Infected Mice at 34-Days of Age 

14 and 30-day C57Bl/6 mice intranasal infection with ma-CA/07/09 at the indicated challenges.  Fourteen-

day old mice H&E staining at 10x (Ai-iv), Mason’s Trichrome staining at 10x (Bi-iv), and Fibronectin 

immunohistochemistry at 10x (Ci-iv).  Thirty-day old mice H&E staining (Di-iv), Mason’s trichrome 

staining (Ei-iv), and fibronectin immunohistochemistry (F-iv).  Quantification for collagen represented as 

fold-change compared to mock infected controls, using Mason’s Trichrome staining for 14-day old mice (G) 

and 30-day old mice (H).  Quantification for fibronectin represented as fold-change compared to mock 

infected controls, for 14-day old mice (I) and 30-day old mice (J).  Differences are represented vs. mock 

infected controls, p < 0.05: *, p < 0.01: **.  The percent of total lung area stained (normalized to IgG controls 

for immunohistochemistry, entire lung) for each group were averaged and imported into GraphPad Prism 

7.03.  One-way ANOVA analyses were conducted with all groups using a Bonferroni test to correct for 

multiple comparisons.  Multiplicity adjusted p-values were reported for each comparison.  Error bars 

correspond to standard error of the mean. 
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Whole Lung Global Transcript Profile in Infected Mice 

Considering the significant tissue remodeling observed in 30-day old mice, we 

decided to pursue further characterization of animals at this age.  Genome-wide gene 

expression patterns were analyzed using whole lung extract at 4 DPI (Fig. 14).  A PCA 

was conducted on all gene transcripts in the microarray after normalization and showed 

distinct separation between groups with tight groupings among biological replicates (Fig. 

14A).  The microarray resulted in the ma-CA/07/09-infected group having 253 genes with 

fold changes greater than 2, and 22 genes with fold changes less than -2, compared to the 

mock infected group.  Furthermore, there were 77 genes with fold changes greater than 2 

and 4 genes with fold changes less than -2, when a 0.1 or less q-value cutoff was applied, 

which can be visualized in the heat map generated (Fig. 14B).  We used MetaCore online 

software (Thomson Reuters), to unveil the most implicated GO for our restricted data set 

(Fig. 14B and C).  The most implicated GO for cellular process resulted in the following 

top three hits: “Defense Response to Virus”, “Innate Immune Response” and “Defense 

Response” (p-values≤1x10-11).  The most implicated GO pathway maps resulted in the 

following top three hits: Interferon (IFN)α/β signaling via JAK/STAT, IFNα/β signaling 

via MAPKs, and Antiviral Actions of IFNs (p-values≤1x10-14).  Lastly, the most implicated 

GO Process Networks resulted in the following top three hits: IFN signaling, Innate 

Immune Response to RNA Viral Infection, and IFNγ signaling (p-values≤1x10-11) (1x10-4 

IFNγ) (Fig. 14C). 
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Figure 14.  Infection of 30-Day Old Mice with ma-CA/07/09 Microarray at 34-Days 

of Age  

Clariom D microarray conducted with 3 mice per group (pH1N1 vs. uninfected). Samples were compared 

using a one-way ANOVA model.  A step-up false discovery rate was applied as multiple test correction for 

the resulting q-values.  Principal Component Analysis from all genes in Clariom D microarray (A).  Heat 
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Map from Clariom D microarray, with a +/- 2-fold change and q≤0.1 cutoff (B).  Percentage of up- 

downregulated genes as seen in “B” according to GO, pathway map, and process networks (C). 
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The most differentially expressed genes from our microarray (Fig. 14B) are listed 

in Table 7.  These genes are all involved in IAV recognition and immune response 

associated with IAV infection.  As can be seen, the most differentially expressed genes in 

the table are involved with IFN signaling pathways, which is known to be associated with 

influenza infections, and correlate to the most implicated GO (Fig. 14C).   

 

Virus-Induced Tissue Remodeling Gene Expression in Primary Lung Fibroblasts  

 Our laboratory has studied the mechanisms responsible for lung tissue remodeling 

occurring after an insult.  Many of our findings have been attributed to the production of 

extracellular matrix components by lung fibroblasts (198, 199).  We therefore were 

interested in determining whether lung fibroblasts could play a role in the tissue remodeling 

seen in lungs harvested from infected animals (Fig. 13).  We found at 48 HPI that primary 

lung fibroblasts (isolated from a mouse less than 3 months of age) infected in vitro with 

ma-CA/07/09 had significantly increased mRNA levels for tissue remodeling genes 

collagen 1a1, fibronectin, matrix metallopeptidase 9 (MMP9), and transforming growth 

factor beta (TGFβ) compared to mock infected cells (Fig. 15). Further, viral titers in the 

supernatant from these cells was approximately 1x102.3 as determined from the TCID50/mL 

assay (data not shown). 
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Table 8. Microarray Most Differentially Expressed Genes (pH1N1 vs. 
Uninfected) 

Gene 
Fold 

Change 
Q -

Value 
Function 

Probe Set ID 
TC(X).mm.1 

Cxcl10 16.15 0.077 

-Induced by IFNγ (200) 
-Produced by human alveolar macrophages in 
response to H1N1 (77, 201) 
-Chemotactic for  monocytes, NK & T cells (202) 

0500002756 

Slfn4 15.19 0.094 

-Induced by Type I IFN receptor activation (203) 
-Produced by murine type II airway epithelial 
cells (204) 
-Macrophage activation and myelopoiesis (205) 

1100001241 

Mx1 11.15 0.085 
-Induced by type I & III IFN (206) 
-Cellular IAV antiviral response (207) 
-Inhibits IAV protein PB2-NP interaction (206) 

1600002148 

Ifit3b 10.29 0.067 

-Induced by type I & III IFN via Jak/Stat pathway 
(208) 
-Produced by primary human macrophages (209) 
-Inhibits IAV endosome fusion (210, 211) 

1900000502 

Ifit1 10.13 0.071 

-Induced by IFN and/or viral infection (212) 
-Found to not be antiviral as previously thought, 
in KO C57Bl/6 mice or human cells (no 5’-ppp 
interaction) (212) 

1900000504 

Irf7 9.69 0.074 

-Produced by plasmacytoid dendritic cells in 
large amounts in response to virus (213) 
-Regulatory factor/activates IFNα/β and adaptive 
immune response (214) 
-Human and murine survival factor (214, 215) 

0700004530 

Usp18 8.34 0.073 

-Negative regulator of type I IFN signaling 
(ISG15) (216) 
-ISG15-specific deubiquitinating protease (217) 
-Expression levels correlated to survival in 
chickens infected with IAV (218) 

0600001369 

Ifit3 8.27 0.066 

-Induced by type I & III IFN via Jak/Stat Pathway 
(208) 
-Produced by primary human macrophages (209) 
-Inhibits IAV endosome fusion (210, 211) 

1900000501 

Zbp1 8.25 
0.084 

 

-Induced by IFN (219) 
-KO murine mortality reduced via reduced 
inflammation (NLRP3 pathway) and epithelial 
damage (219) 
-IAV Rig-I sensing leads to ZbP1 ubiquitination 
causing cell death (220) 

0200005290 

Rsad2 7.87 0.098 
-Highly inducible by type I & II IFN (221) 
-Inhibits IAV release (222) 

1200001552 

     
mt-Tk -3.50 0.03108 -No known association to IAV infection 0M00000008 
mt-Ts2 -2.76 0.02460 -No known association to IAV infection 0M00000015 
Snca -2.42 0.05225 -No known association to IAV infection 060000239 

Arntl -2.19 0.02460 

-Core gene involved in circadian rhythm (223)  
-KO mice showed increased survival, decreased 
airway resistance, and increased compliance after 
IAV infection (224) 

0700001660 
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Figure 15. ma-CA/07/09 Infected Primary Lung Fibroblast Altered RT-PCR Tissue 

Remodeling Genes 

TaqMan RT-PCR of ma-CA/07/09 infected C57Bl/6 primary lung fibroblasts at 48 HPI, represented as fold-

change compared to mock infected controls. p < 0.05: *, p < 0.01: **.  Ct values for genes of interest were 

normalized to βactin (ΔCt) and then ΔΔCt values were determined by normalizing to the average mock ΔCt 

values.  Each individual samples ΔΔCt value was used in the formula, 2-ΔΔCt and imported into GraphPad 

Prism 7.03.  Differences between groups were determined using multiple unpaired T-tests.  P-values were 

reported for each comparison with error bars represent standard deviations. 
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Pulmonary Function Testing 

Having evaluated the development of inflammation and tissue remodeling after 

infection, we wondered if these early events could lead to functional abnormalities in the 

adult lung.  For this, we examined lung function at 210-days age in mice that had been 

infected at 30-days of age with 101 and 101.7 ma-CA/07/09 viruses per mouse.  Resistance, 

compliance, elastance, Newtonian resistance, tissue damping, and tissue elastance were 

examined at baseline and after stimulation with increasing concentrations of methacholine 

from 0-50 mg/mL.  For statistical analysis we only evaluated responses at baseline, 25, and 

50 mg/mL of methacholine.  We first determined that a strong correlation existed between 

the outcome parameters tested, with exception of compliance (Fig. 16).  In Figure 17, we 

present data related to resistance, tissue damping, and tissue elastance showing significant 

differences between mock versus 101.7 ma-CA/07/09 viruses per mouse group (p = 0.041, 

p =0.024, p = 0.048) (summarized in Table 9).  In addition, we found differences when 

comparing parameters at baseline versus those generated after methacholine stimulation, 

but not between the two doses of methacholine.  Interestingly, we discovered that most 

differences identified were related to changes in males suggesting differences between 

sexes (Fig. 17).   
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Figure 16. Correlation of Pulmonary Function Test Outcome Parameters for 

pH1N1 Statistical Analysis (All Groups) 

 All data used for analysis in SAS 3 Factor ANOVA.  Graphical representation of correlation represented in 

bottom left of figure.  Fit of data to linear line of regression represented in top right of figure. 
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Figure 17. Pulmonary Function Test Results for ma-CA/07/09 Infection in 30-Day 

Old Mice at 210-Days of Age  

C57Bl/6 mice infected with ma-CA/07/09 or DPBS at 30-days of age were assessed at 210-days of age using 

a SCIREQ FlexiVent machine, at increasing concentrations of methacholine (0- 50 mg/mL).  Averages of 

results were taken for each individual mouse where the COD was greater than or equal to 95%. SAS statistical 

software was used to conduct 3-factor ANOVA without interaction terms.  Results were declared significant 

at 5% significance level (p < 0.05).  Error bars represent standard deviation from the mean.  P-values are 
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represented in the table with significant results having an arrow dictating the direction of the second group 

in each row compared to the first group.  
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Table 9. Summary of pH1N1 Pulmonary Function Testing  

 

Resistance Compliance Elastance 
Newtonian 
Resistance 

Tissue 
Damping 

Tissue 
Elastance 

pH1N1 ↑ 
No Change 

No 
Change 

No Change ↑ ↑ 

Arrows indicate direction of parameter compared to untreated-mock infected control 
Blue indicates alteration in function driven by males 
Black indicates alteration in function not driven by either sex 
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Discussion 

 To date there are a limited number of publications on early life or neonatal murine 

influenza infection aimed for the survival of the animal.  Herein, we show the lung viral 

load detected after 3 challenges of pH1N1 in two different aged C57BL/6 mice groups and 

corresponding lung histology, total mRNA microarray at the time of peak lung viral load, 

and the assessment of lung function long term.  We believe this model is highly relevant to 

individuals infected during the 2009 Swine Flu pandemic. 

 IAV was chosen due to its ability to infect humans during the alveolarization period 

of lung development.  RSV infections also occur during the alveolarization period, but 

primarily occurs soon after birth.  IAV represents a less severe infection for humans and 

thus we would predict, based on the severity and the time of infection, that these 

experiments would provide insight on how other viruses act on lung development.  On the 

other hand, rhinoviruses primarily have been proven to only infect the upper respiratory 

tract, unlike IAV and RSV, which may not cause functional alterations discovered by using 

IAV (specifically, tissue damping and tissue elastance) (67, 71, 225).   

The IAV strain used in the study was originally responsible for the 2009 influenza 

pandemic, that began in April, in the southwestern United States.  The CA/07/09 isolate 

was originally isolated on April 9th, 2009 from California and represents an ancestral strain 

from the pandemic outbreak; it was used for vaccination purposes worldwide due to the 

phenotype similarities to all other pH1N1 isolates (226, 227).  IAV, H1N1 in humans 

primarily infects the upper respiratory tract through α2-6 sialic acid receptors on 

transmembrane glycoproteins (primarily located in the upper airway) (171, 185, 228).  The 

differences in receptor binding specificity observed for the H1N1 strains are mapped to a 
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single amino acid residue (222) in the HA protein, with binding to the α2-6 sialic acid 

receptors restricted to an aspartic acid residue and α2-3 sialic acid receptor binding 

conferred by a glycine residue (185).  Thus, having a glycine at the 222 amino acid 

decreases pathogenesis of influenza in humans.  For pH1N1, inherent replication errors of 

the viral genome lead to variant viral progeny in which some possess the phenotype that 

confers α2-3 sialic acid receptor binding (quasispecies) (229).  Mice primarily express α2-

3 sialic acid receptors throughout their entire respiratory tract (171).  Therefore, to conduct 

research in murine models with IAV H1N1 isolated from humans, the virus must first be 

adapted to the murine species in order to increase the number of viral progeny containing 

the α2-3 sialic acid binding phenotype within the quasispecies population (185). 

 Our ma-CA/07/09 stock was subject to Sanger sequencing analysis of the HA gene.  

We found that our MDCK propagation of ma-CA/07/09 did not alter binding preference of 

the major population of the viral quasispecies in our stock.  Furthermore, when determining 

the ma-CA/07/09 viral titer, low standard deviations resulted in both the TCID50/mL assay 

and plaque assay, with minimal variation between methods (Table 6).  Having low 

standard deviations in our stock titers for experimental use allowed for a more accurate 

calculation of viral dilutions so dosing was consistent over the course of all infection 

experiments.  In addition, when conducting experiments with negative sense viral agents, 

such as influenza, the concern of propagation of defective interfering (DI) particles arises.  

Due to propagating our viral stocks in MDCK cells, as opposed to hen eggs, along with 

similar titers between our TCID50/mL and plaque assays, we were confident that DI 

particles were not present (or represented a miniscule amount) in our quasispecies IAV 

stocks (230, 231). 
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Previous studies with young animals involving viral infection administered a 

certain challenge corresponding to the mouse’s weight (72, 173).  We decided to deliver 

one single and consistent challenge to all animals in our infected groups.  Our reasoning 

for this was that lethality due to pH1N1 does not appear to be based on the challenge 

delivered (when there is minimal difference between challenges), but the development of 

the immune response (both innate and adaptive).  In addition, a subject’s developmental 

stage may not correspond to body weight, especially when multiple mothers are used for 

the breeding of the mice (72, 74, 76, 173, 232). 

Following influenza infection of different mouse strains, there are differences in 

lethality that correlate with the extent of inflammatory response (171, 188, 233, 234).  

Furthermore, pH1N1 infection in mice shows major differences when compared to humans 

in that mice become hypothermic and the tropism of infections are different (171, 185, 235, 

236).  Recognizing the potential differences between a mouse model for IAV infection and 

a human model for IAV infection, we chose the C57BL/6 model based on our previous 

experience and the relative resistance of this inbred mouse strain to lethal effects of IAV, 

H1N1 compared to other strains (42, 64, 183, 188, 233, 234). 

Challenges ranging from 1x101-2 ma-CA/07/09 viruses per mouse were 

administered to 14- and 30-day old mice and showed similar lung peak viral loads of 

approximately 1x107 TCID50/mL.  Pulmonary viral replication kinetics were similar 

following all ma-CA/07/09 challenges in 14-day old mice, with peak viral loads at 3-4 DPI 

(Fig. 12A).  Interestingly, viral loads following infection of 30-day old mice the lowest 

challenge (1x101 ma-CA/07/09 viruses per mouse) peaked at 9 DPI (1x107 ma-CA/07/09 

viruses per mouse).  This suggests that the virus may initially be replicating slowly in an 



102 
 

area where the innate immune response is not fully developed such as the nasopharynx 

(232).  The two higher challenges in 30-day old mice had peak replication in the lung at 4 

DPI as expected (Fig. 12D).  Survival and percent change in body weight from time of 

infection were dependent on the challenge delivered (Fig. 12).  Peak viral loads quantitated 

in the lung of these animals were similar to, if not increased, compared to standardly used 

8-12 week old mice and increased compared to 2-day old C57BL/6 mice intranasally 

infected with H1N1 (173, 183, 186, 233, 234). 

The pathology of the lung was examined at 4 DPI using H&E, Masson’s trichrome, 

and fibronectin immunohistochemistry.  Staining revealed a challenge-dependent increase 

in immune cell infiltration, tissue remodeling (collagen and fibronectin), and inflammation 

with regions around the large airways being most affected (Fig. 13).  Masson’s trichrome 

staining analysis revealed that in 14-day old mice only the highest challenge caused tissue 

remodeling during the acute phase of infection.  By contrast, in 30-day old mice, both the 

lethal challenge and the sub-lethal challenge resulted in increased collagen deposition 

compared to mock infected controls (Fig. 13 G&H).  These findings are consistent with 

what is reported in the literature, in that H1N1 promotes collagen and fibronectin 

deposition via SMAD signaling pathways that involve αVβ6 integrin-mediated TGFβ 

activation in human bronchial epithelial cells and in C57BL/6 mice (237).  

Immunohistochemistry for fibronectin revealed no differences between groups for 14-day 

old mice, whereas, in 30-day old mice at 4 DPI only the lethal challenge caused significant 

fibronectin deposition throughout the lung parenchyma and around the large airways (Fig. 

13 I&J).  The analysis was limited due to the use of an antibody against plasma fibronectin 
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rather than cellular fibronectin, the latter being capable of detecting fibronectin-producing 

cells as opposed to total fibronectin. 

Further characterization was done in the 30-day old mice model.  The murine lung 

at this age is in or near completion of the alveolar stage of development (late fetal to 17-21 

years postnatal in humans).  According to the literature, lung maturation in mice is 

complete by or soon after 36 days post-birth, which correlates to 17-21 years of age in 

humans (156, 157).  Therefore, using 30-day old mice correlates to the lung development 

stage of the group of individuals (high school aged) who had increased incidence of 2009, 

pH1N1 infection (181).  Lastly, by using a 30-day old murine model we would predict that 

alterations in both function and structure would be more severe if infection occurred earlier 

in life (i.e. earlier in the alveolarization period of development).  

PCA of gene expression data in sub-lethally infected (1x101.7 ma-CA/07/09 viruses 

per mouse) 30-day old mice versus mock infected controls showed distinct separation 

between groups and tight groupings of individual replicates (Fig. 14A).  As expected, 

differences between groups in the array were mainly attributed to IFN signaling pathways 

associated with the defense against viral infection (Fig. 14C).  What is notable is that both 

innate immune response signaling and seroconversion (serum tested via IAV ELISA 

qualitatively, data not shown) in these young animals were occurring (seroconversion also 

occurred in 14-day old mice but levels were noticeably lower).  To our knowledge, this is 

the first publication of a microarray analysis of young C57BL/6 mice infected with pH1N1. 

We then decided to further investigate the cause of tissue remodeling seen in 

infected mice.  The RNA samples for the microarray were subject to TaqMan RT-PCR for 

key tissue remodeling genes, and, similar to the microarray results, no differences were 
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seen (data not shown); this might have been attributed to dilution of transcripts from the 

isolated affected areas when using the entire lung.  As an alternative approach, we 

investigated C57BL/6 primary lung fibroblasts, cells which our lab in the past has 

associated with increased extracellular matrix synthesis in response to insult.  Using RT-

PCR, infected primary lung fibroblasts at 48 HPI were found to have increased MMP9, 

TGFβ, collagen 1a1, and fibronectin expression compared to mock infected controls (Fig. 

15).  This finding implicates the primary lung fibroblasts as one mediator between viral 

replication and/or viral innate and/or adaptive signaling, to increased collagen and 

fibronectin deposition in the lung.  It is known that MMP9 can activate TGFβ from its 

latent bound state to trigger SMAD pathway signaling resulting in the deposition of 

collagen, fibronectin, and other ECM components (198, 199, 237).  It is important to note 

that fibronectin has been published to be required for IAV H1N1, α 2- 6 sialic acid binding 

in human cell lines, but the context in the mouse is unknown (238). 

After characterizing our model of infection during the acute stage, we were 

interested in determining if early life infection could lead to lung abnormalities later in life.  

Mice at 30-days of age were infected and allowed to age until 210-days of age, at which 

time they were subjected to lung functional testing.  We found that early life pH1N1 

challenge (at a sublethal dose) was enough to alter lung function with age and most 

importantly differences among sex type, with males being more affected than females (Fig. 

17).  Although we used a pH1N1 strain of influenza, we do not believe that the functional 

and structural alterations were pH1N1-specific, as seasonal influenza and other viruses 

could result in similar findings (if they occur during the alveolarization stage of lung 

development).  Consistent with this, an epidemiological study found that the risk factors 
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associated for the development of OADs later in life due to a respiratory tract infection are 

susceptibility to infection (e.g. age and/or immunocompromised state) and the intensity of 

the response of the host to the infectious agent (bacteria or viral), rather than the agent itself 

(174).  The purpose of using pH1N1 was to provide a viral infection model relevant to 

humans after infancy. 

It has been established in humans that females infected with influenza have a 

heightened risk for morbidity and mortality compared to males (239).  In other work, mice 

have been published to have the same sex-driven differences in mortality and weight loss 

(183, 240).  For our data, male mice showed significantly less weight loss (compared to 

starting weight at time of infection) than females after pH1N1 challenge (data not shown).  

This suggests that the weight loss due to infection was not the factor driving lung functional 

abnormalities.  Lastly, publications have shown that in animal models, males have been 

highly implicated to have decreased lung function compared to females, but only when an 

extrinsic factor (such as nicotine or smoke exposure) is involved (135, 168, 241-243).  

These findings are consistent with asthma development in children, in that the male sex is 

a risk factor for the development of asthma during childhood (244).   

Exaggerated increases in respiratory system resistance in response to inhaled 

methacholine were previously observed in 7-day old infected BALB/C mice at 109-days 

of age compared to mock infected controls, consistent with our findings (Fig. 17) (175).  

One publication involving an IAV infection in 3- or 8-week old BALB/C mice showed a 

similar finding for airway resistance during acute infection but not at 21 DPI when the 

infection was cleared (245).  Increases in tissue damping, as we found in IAV-infected 

mice, typically stem from effects in the peripheral lung, such as increased resistance of the 
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lung parenchyma or small airways (114).  The observed alterations in tissue elastance 

suggests infection results in loss of the lungs elastic recoil most likely due to parenchymal 

involvement (246).  It is of importance to note that the difference in elastance and tissue 

elastance arises due to the operational techniques (single frequency and broad band 

oscillation techniques) used for measuring lung function, and dissects total lung elastance 

vs parenchymal tissue elastance.  Further, differences were greater after methacholine 

exposure suggesting AHR, which is consistent with what is seen in published literature 

(175). Lastly at 30-days of age, the end stage for lung development (in mice), 

alveolarization, is near completion or still on-going (157).  Therefore, it is possible that 

immune cell infiltration and signaling, as well as tissue remodeling due to pH1N1 in the 

developing parenchymal regions are driving changes resulting in the modest differences in 

pulmonary function later in life.  

In summary, this chapter characterizes a model of pH1N1 infection in young mice 

that provides a tool to study the influence of perinatal events on lung function and allows 

other investigators a starting point for development of neonatal pH1N1 models.  We have 

shown that this model causes lung remodeling at 4 DPI for only the lethal challenge in 14-

day old mice and for both the lethal and sub-lethal challenges for 30-day old mice.  The 

challenge of virus administered as well as the developmental stage of the lung likely play 

a role in this finding.  Further, 14-day old mice appeared to have more pronounced regional 

inflammation occurring as a result of infection compared to 30-day old mice. This may be 

in part due to incomplete development of the TH2 cell anti-inflammatory response in the 

lung although further studies would need to be conducted to confirm this.  Lung remodeling 

is postulated to be mediated, at least in part, by lung fibroblasts due to pH1N1 causing 
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increased transcripts for tissue remodeling genes early in infection.  Importantly, the acute 

differences at 4 DPI between challenges administered to 30-day old mice groups were 

reflected in lung functional abnormalities later in life revealed following inhalation of 

methacholine.  Furthermore, the stage of lung development for the 30-day old mice 

correlates to the stage of lung development for a high school aged human, which was the 

demographic with the highest incidence for pH1N1 infection in 2009.  Therefore, this data 

perhaps provides rationale for monitoring the lung function of individuals who were 

infected as adolescents with the 2009 Swine Flu.  
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CHAPTER IV: NICOTINE EXPOSURE ACCOMPANIED WITH EARLY LIFE 

PANDEMIC H1N1 INFECTION LEADS TO MURINE ADULT LUNG 

DYSFUNCTION 
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Background 

Smoking and/or exposure to ETS leads to the development of a plethora of diseases 

including but not limited to diseases in the lung such as COPD and asthma (247).  These 

pulmonary diseases affect millions of people worldwide (causing a substantial monetary 

burden), and are characterized by chronic  airways inflammation, tissue remodeling, and 

airway hyperreactivity (1, 3, 4). 

 Our laboratory and several other investigators have proposed that the development 

of OAD is greatly influenced (and perhaps pre-determined) by exposure to extrinsic factors 

(such as ETS or nicotine and respiratory tract infections) during the period of lung 

development (42, 47, 64, 68, 72, 124, 126, 130-132, 174, 175, 178).  ETS is considered a 

major risk factor for the development of OAD, and maternal smoking during pregnancy 

(fetal nicotine exposure) has been independently associated with an increased risk of 

asthma and subsequently lung function abnormalities in adulthood (42, 47, 64, 124, 126).  

Determining which components of ETS that play a role in disease development at this point 

of time is difficult, due to the vast number of components and the variation of components 

due to combustion reactions occurring during tobacco smoking.  Our previous data 

(Chapter II) address the effect of nicotine, which is capable of crossing the placenta to the 

fetus and mimics concentration levels (along with its metabolite cotinine) in the mother, 

on lung function both short (8-weeks of age) and long term (210-days of age) in mice (42, 

57, 61, 248).  We found that perinatal nicotine exposure affected lung branching 

morphogenesis and were associated with alterations in lung function; these changes 

appeared to be mediated via a7 nAChRs (42, 64, 196).  More recently, we showed that 

extension of perinatal nicotine exposure into adulthood resulted in increased peri-airway 
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collagen deposition and increased alveolar size.  These changes were associated with 

alterations in lung function, thereby supporting our hypothesis that early life exposures 

enhance susceptibility to chronic lung disease later in life. 

Similarly, lower respiratory viral infections, such as IAV, during the alveolar stage 

of lung development, have also been implicated in the development of OADs (Chapter III) 

(46, 67-70, 175).  Interestingly, nicotine has been shown to increase the viral titer for IAV, 

H1N1 in the lungs of mice (249).  Analyzed epidemiological data found that the risk factors 

associated with the development of OADs later in life due to a respiratory tract infection 

are susceptibility to infection (i.e. age and/or immunocompromised state) and the intensity 

of the response of the host to the infectious agent (bacteria or viral) rather than the agent 

itself (174).  Therefore, we would expect similar findings for other infections (such as RSV 

or possibly rhinoviruses) occurring during the alveolarization stage of lung development 

(with or without nicotine).  Furthermore, IAV is known to be associated with lung 

functional abnormalities later in life when infection happens early in life (both humans and 

mice) (Chapter III), and causes pulmonary exacerbations in persons with COPD (68, 72, 

174, 175, 178).  Lastly, correlative to epidemiological data, our previous data (Chapter III) 

along with others show that murine infections with IAV have been published to lead to 

lung functional abnormalities with age (210-days of age), increasing airway resistance, 

tissue damping, and tissue elastance (175, 224, 250). 

Together, these published and unpublished findings strongly suggest that perinatal 

nicotine exposure and early life respiratory tract infection (H1N1) affects the mammalian 

lung in ways that may potentiate the future development of OADs.  These results have lead 

us to question whether, nicotine exposure along with early postnatal IAV pH1N1 infection 
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act in concert to promote abnormalities in airway structure and function that persist through 

adulthood.  Herein, we report observations and suggest that this is indeed the case.  

 

Materials and Methods 

All materials and methods are identical to the above chapters unless noted below. 

The experimental outline followed is shown in Figure 18, and combines the designs from 

the previous chapters.  

 

Murine Lung Function Testing 

Untreated (mock infected) mice (n = 19; male = 10, female = 9), mice in the 

transient nicotine exposure group (n = 18; male = 10, female = 8), mice in the chronic 

nicotine exposure group (n = 20; male = 10, female = 10), mice in the pH1N1 infected 

(1x101.7 ma-CA/07/09 viruses) group (n = 19; male = 9, female = 10), mice in the transient 

nicotine exposed plus pH1N1 infected (1x101.7 ma-CA/07/09 viruses) group (n = 20; male 

= 10, female = 10), and mice in the chronic nicotine exposed plus pH1N1 infected (1x101.7 

ma-CA/07/09 viruses) group (n = 21; male = 10, female = 11) were subjected to PFT.  

Pulmonary function at baseline and after methacholine challenge (0-50 mg/mL, inhaled) 

was measured by forced oscillation using the flexiVent system (SCIREQ, Montreal, 

Quebec, Canada) as previously described (137, 138).  
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Figure 18. Perinatal Nicotine Exposure with pH1N1 Infection Experimental Design 

Timed pregnancies were produced by pairing mice for 48 hours and then assessing for conception after 14 

days, at which point nicotine was administered via the drinking water at (100 µg/mL) for pregnant mothers.  

Nicotine exposure lasted until postnatal day 7 or until the completion of the experiment (postnatal day 210), 

when pulmonary function tests were conducted.  Infection with pH1N1 occurred at 30-days of age and 

animals were bleed at 51-days of age (21 DPI).  Endpoints were implemented at 34 and 210-days of age. 
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Statistics 

SAS statistical software was used to analyze lung function data.  A correlation chart 

for pairwise comparison between all six outcome parameters (resistance, compliance, 

elastance, Newtonian resistance, tissue damping, and tissue elastance) was generated.  For 

both chronic nicotine with pH1N1 and transient nicotine with pH1N1 infection outcome 

parameters showed strong correlation for all parameters to each other except for Newtonian 

resistance and compliance (Fig. 19&20).  A 3-factor ANOVA was then implemented with 

the factors representing experimental group, sex type, and dose of methacholine used.  

Descriptive statistics were calculated for the entire study population as well as within each 

factor.  Rigorous analysis involved the main effects for 3-factor ANOVA along with 2-way 

interactions (group*sex, group*dose, sex*dose).  Due to the outcomes of interaction of the 

outcome parameters and the previous interaction of the exposures alone, we conducted a 

3-factor ANOVA as before.  Rather than subset analysis, we have used contrast to test the 

main effects (such as untreated-mock infected versus pH1N1; untreated-mock infected 

versus transient or chronic nicotine, and untreated-mock infected versus transient or 

chronic nicotine plus pH1N1, pH1N1 versus transient or chronic nicotine, pH1N1 versus 

transient or chronic nicotine plus pH1N1, and transient or chronic nicotine versus transient 

or chronic nicotine plus pH1N1), which increases power to detect significant effects (143, 

144).  Resistance, compliance, elastance, Newtonian resistance, tissue damping, and tissue 

elastance were examined at baseline and after stimulation with increasing concentrations 

of aerosolized methacholine from 0-50 mg/mL.  For statistical analysis, we only evaluated 

responses at baseline and after 25 and 50 mg/mL of methacholine.  Using GraphPad Prism 
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7.03 the following statistical test were implemented as previously described in previous 

chapters. 
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Figure 19. Correlation of Pulmonary Function Test Outcome Parameters for 

Transient Nicotine with pH1N1 Statistical Analysis (All Groups)  

All data used for analysis in SAS 3 Factor ANOVA. Graphical representation of correlation represented in 

bottom left of figure.  Fit of data to linear line of regression represented in top right of figure.  
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Figure 20.  Correlation of Pulmonary Function Test Outcome Parameters for 

Chronic Nicotine with pH1N1 Statistical Analysis (All Groups) 

All data used for analysis in SAS 3 Factor ANOVA.  Graphical representation of correlation represented in 

bottom left of figure.  Fit of data to linear line of regression represented in top right of figure. 
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Results 

Growth Stunting After Infection with pH1N1 

 Nicotine exposure did not affect weight gain (data not shown). However, significant 

differences in percent body weight (from time of infection) were found for all infected 

experimental groups compared to untreated mice, with statistics only being assessed versus 

mice without either factor (i.e. untreated or also referred to as mock infected).  When 

infection with pH1N1 alone occurred, significant differences in weight began at 6 days 

post infection (DPI) (compared to untreated) (Fig. 21).  Interestingly nicotine exposures 

with pH1N1 infection caused significant differences in percent weight loss from time of 

infection quicker than in mice infected with pH1N1 alone (starting at 6 DPI), with 

chronically exposed mice being different at 5 DPI and transient exposed mice being 

different at 3 DPI.  Significant differences between all groups remained until when 

weighing mice ceased (with exception of 15 DPI for pH1N1 alone versus untreated).  

Furthermore, female mice showed more pronounced differences from uninfected controls. 

Interestingly, transient nicotine with pH1N1 infection was found to elicit a more 

severe effect on percent weight loss from time of infection compared to both pH1N1 alone 

and with chronic nicotine treatment.  It was found that transient nicotine exposure with 

pH1N1 was different from the other two pH1N1-infected groups beginning at 8 DPI and 

proceeding until 16 DPI (chronic with pH1N1) and 17 DPI (pH1N1 alone, statistical 

difference was not found at 9 DPI) (Fig. 21).  No significant differences were discovered 

between pH1N1 alone chronic nicotine exposure with pH1N1 at any time.  Although, 

differences were discovered between infected groups acutely all groups were statistically 

not different at the time of infection or after 210-days of age (Fig. 21). 
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Figure 21. Weights of Perinatal Nicotine Exposed Mice with pH1N1 Infection 

Assessed for Lung Functional Abnormalities 

Average percent body weights (30 until 51-days of age) and average weights (30 and 210-days of age) of 

mice groups for the indicated exposures.  Data was imported into GraphPad Prism 7.03, the percent from 

time of infection weights were calculated along with their standard deviations then compared using two-way 

ANOVA analysis with a Turkey post-test to correct for multiple comparisons.  The weights at 30 and 210-

days of age were compared using unpaired t-test analysis with a Holm-Sidak multiple comparison test.  A 

linear regression analysis was also conducted between groups in GraphPad, with no differences reported.  
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Chronic Nicotine with or without pH1N1 Pulmonary Function Abnormalities 

 The mice represented in Figure 21 were allowed to mature until 210-days of age at 

which point their lung function was assessed.  Chronic nicotine exposure alone caused 

differences (compared to the untreated-mock infected mice group) in lung compliance (p 

< 0.001) and Newtonian resistance (p = 0.049) (Fig. 22).  Infection with pH1N1 alone, was 

found to cause drastic alterations in lung function, compared to untreated (which were 

mock infected) animals, affecting all outcome parameters with the exception of lung 

compliance (resistance p = 0.002, elastance p = 0.001, Newtonian resistance p = 0.008, 

tissue damping p = 0.002, and tissue elastance p = 0.002) (Fig. 22).  Interestingly the 

combination of chronic nicotine exposure with pH1N1 infection was found to only cause 

changes in resistance (p = 0.005) and tissue damping (p = 0.015) (summarized in Table 

10).  In addition, differences in outcome parameters were found to be statistically different 

(with males being more severely affected) for resistance (p = 0.027), Newtonian resistance 

(p = 0.035), and tissue damping (all are airway associated parameters) (p = 0.035), but not 

for compliance, elastance, and tissue elastance (tissue associated parameters) (Fig. 22).  All 

other group comparison p-values can be seen in the in Figure 22. 
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Figure 22. Pulmonary Function Test Results for Chronic Nicotine Exposure with 

pH1N1 Infection at 210-Days of Age 

Lung function was assessed C57BL/6 at 210-days of age by forced oscillation technique using a SCIREQ 

flexiVent system.  Untreated (mock infected) mice (n = 19; male = 10, female = 9), mice in the chronic 

nicotine exposure group (n = 20; male = 10, female = 10), mice in the pH1N1 exposure group (n = 19; male 

= 9, female = 10), and mice in the chronic plus pH1N1 exposure group (n = 21; male = 10, female = 11) were 

tested.  Lung function was measured at baseline and after challenge with increasing concentrations of 

aerosolized methacholine.  Averages of results (only including values where the COD was ≥95%) were taken 
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for each individual mouse.  SAS statistical software was used to conduct 3-factor ANOVA without 

interaction terms.  Results were declared significant at 5% significance level (p < 0.05).  Error bars represent 

standard deviation from the mean.  P-values are represented in the table with significant results having an 

arrow dictating the direction of the second group in each row compared to the first group. 
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Table 10. Summary of Chronic Nicotine with pH1N1 Pulmonary Function Testing 

 

Resistance Compliance Elastance 
Newtonian 
Resistance 

Tissue 
Damping 

Tissue 
Elastance 

Chronic 
+ pH1N1 ↑ 

No Change 
No 

Change 
No Change ↑ 

No 
Change 

Arrows indicate direction of parameter compared to untreated-mock infected control 
Blue indicates alteration in function driven by males 
Black indicates alteration in function not driven by either sex 
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Chronic Nicotine with pH1N1 Related Lung Structural Abnormalities 

 Lungs from mice assessed for lung function above were later examined using 

histological analysis.  Using H&E stained slides mean linear intercept quantitation found 

that only chronic nicotine alone caused an increase in alveolar volume compared to all 

other treatment groups (Fig. 23 A&C).  Differences discovered in alveolar size were found 

to be independent of sex type.  Using Masson’s Trichrome staining, collagen deposition 

was quantitated.  This revealed that both chronic nicotine exposure and pH1N1 infection, 

alone but not together, were different from untreated mice (with exception of males for 

pH1N1 alone) (Fig. 23 B&D).  For pH1N1 alone we estimated that ~30-50% of the large 

central conducting airways had collagen deposition occurring around them.  Chronic 

nicotine exposure followed by pH1N1 infection was significantly different from chronic 

nicotine alone, but comparing to untreated mice, this difference was only detected in 

females.  In addition, for female mice, all exposure groups had relatively the same collagen 

staining occurring (with exception to untreated-mock infected).  Chronic nicotine exposure 

resulted in the most collagen deposition, followed in intensity by pH1N1, followed by the 

combination in all mice and male mice.  Regarding collagen deposition, pH1N1 and 

chronic nicotine exposure (separately) affected about the same percentage of large airways 

(~30-50%), whereas the combination of chronic nicotine with pH1N1 affected collagen 

deposition slightly more than uninfected-mock controls (~20%).  Furthermore, collagen 

deposition was found to be primarily occurring around the large airways in the lung and 

not in the more peripheral parenchymal regions. 
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Figure 23. Lung Histology of Chronic Nicotine Exposure and pH1N1 Infection 

(Alone or in Combination) at 210-Days of Age 

Lung histology in C57BL/6 mice, including H&E staining at 20x magnification (A) and Mason’s Trichrome 

staining at 20x magnification (B). Alveolar mean linear intercept quantification (C) and the percent of total 

lung area stained for collagen (D).  In GraphPad Prism 7.03 one-way ANOVA analyses were conducted with 

all groups using a Bonferroni test to correct for multiple comparisons.  Multiplicity adjusted p-values were 

reported for each comparison.  Error bars correspond the standard deviation (C) or error (D) the mean.  

Differences are represented vs. mock infected controls, p < 0.05: *, p < 0.01: **, p < 0.001: ***. 
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Transient Nicotine Exposure with pH1N1 Infection-Related Pulmonary Abnormalities 

 Unlike the chronic nicotine exposed groups, transient nicotine caused no significant 

differences in pulmonary function compared to the untreated group (210-days of age) (Fig. 

24).  Similar to the above, this separate analysis resulted in identical findings for the pH1N1 

infected group compared to the untreated-mock infected group in the previous analysis 

involving chronic nicotine exposure.  Surprisingly and unlike the above, the combination 

of nicotine (transient) with pH1N1 drove drastic, significant changes in lung function 

(resistance p = 0.022, compliance p = 0.002, elastance p = 0.007, Newtonian resistance p 

= 0.014, tissue damping p = 0.006, and tissue elastance p = 0.001), compared to untreated 

controls (Fig. 24) (summarized in Table 11).  Transient nicotine exposure with pH1N1 

caused differences in lung compliance (increased at baseline), which was not found when 

either factor was acting alone (p = 0.002).  The combination also showed a trend to have a 

synergistic effect on increasing airway resistance and Newtonian resistance (data not 

shown) (Fig. 24).  Similar to the above, differences discovered for resistance, elastance 

Newtonian resistance, and tissue damping were associated to sex type (with males being 

more severely affected), but not for compliance and tissue elastance (Fig. 24).  
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Figure 24. Pulmonary Function Test Results for Transient Nicotine Exposure with 

pH1N1 Infection at 210-Days of Age 

Lung function was assessed C57BL/6 at 210-days of age by forced oscillation technique using a SCIREQ 

flexiVent system.  Untreated (mock infected) mice (n = 19; male = 10, female = 9), mice in the transient 

nicotine exposure group (n = 18; male = 10, female = 8), mice in the pH1N1 exposure group (n = 19; male = 

9, female = 10), and mice in the transient plus pH1N1 exposure group (n = 20; male = 10, female = 10) were 

tested.  Lung function was measured at baseline and after challenge with increasing concentrations of 

aerosolized methacholine.  Averages of results (only including values where the COD was ≥95%) were taken 

for each individual mouse.  SAS statistical software was used to conduct 3-factor ANOVA without 

interaction terms.  Results were declared significant at 5% significance level (p < 0.05).  Error bars represent 
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standard deviation from the mean.  P-values are represented in the table with significant results having an 

arrow dictating the direction of the second group in each row compared to the first group. 
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Table 11. Summary of Transient Nicotine with pH1N1 Pulmonary Function Testing 

 

Resistance Compliance Elastance 
Newtonian 
Resistance 

Tissue 
Damping 

Tissue 
Elastance 

Transient 
+ pH1N1 ↑ ↑B ↓B ↑ ↑ ↑ 

Arrows indicate direction of parameter compared to untreated-mock infected control 
Blue indicates alteration in function driven by males 
Black indicates alteration in function not driven by either sex 
“B” indicates baseline 
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Transient Nicotine with pH1N1 Related Lung Structural Abnormalities 

 Lungs from the mice previously assessed for pulmonary function were also 

examined using histological analysis.  The alveolar volume for transient nicotine with 

pH1N1 was found to be increased and statistically different from the untreated (mock 

infected) group (with expectation to females) as well as both factors alone (for both males 

and females) (Fig. 25 A&C).  The distance between alveolar septum increased ~50% in 

transient nicotine with pH1N1 compared to untreated-mock infected controls.  Alveolar 

septum distances were uniform in each of the groups at 210-days of age.  At 34-days of 

age, the alterations detected were less uniform, suggesting the process was ongoing. 

As described before, for collagen deposition, pH1N1 alone was statistically 

different from the untreated group and was also found to be different from the transient 

nicotine group with or without pH1N1 (all mice and females) (Fig. 23&25).  Due to only 

seeing differences between untreated mice versus transient nicotine with pH1N1 in mean 

linear intercept, we quantitated the alveolar size earlier in life (34-days of age, 4 DPI).  It 

was discovered that an increase in alveolar size was occurring at 34-days of age compared 

to untreated controls, the distance between alveolar septum was increased ~20% for 

transient nicotine with pH1N1 (Fig. 26).  In addition, pH1N1 infection following transient 

nicotine exposure resulted in less inflammation than discovered with pH1N1 alone, which 

was primarily located around large airways but also was found parenchymal regions 

although not as pronounced.   Furthermore, assessing the two-time points for alveolar size 

it was found that the mean linear intercept was greater at 210-days of age compared to 34-

days of age for transient nicotine with pH1N1, but not for untreated-mock infected mice 

(Fig. 27). 
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Figure 25. Lung Histology of Transient Nicotine Exposure and pH1N1 Infection 

(Alone or in Combination) at 210-Days of Age 

Lung histology in C57BL/6 mice, including H&E staining at 20x magnification (A) and Mason’s Trichrome 

staining at 10x magnification (B). Alveolar mean linear intercept quantification (C) and the percent of total 

lung area stained for collagen (D).  In GraphPad Prism 7.03 one-way ANOVA analyses were conducted with 

all groups using a Bonferroni test to correct for multiple comparisons.  Multiplicity adjusted p-values were 

reported for each comparison.  Error bars correspond the standard deviation (C) or error (D) the mean.  

Differences are represented vs. mock infected controls, p < 0.05: *, p < 0.01: **, p < 0.001: ***. 
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Figure 26. Lung Histology of Transient Nicotine Exposure with pH1N1 Infection at 

34-Days of Age 

Lung histology in C57BL/6 mice, including H&E staining at 20x magnification (A) and corresponding 

alveolar mean linear intercept quantification (B).  In GraphPad Prism 7.03 two-tailed t-tests compared to 

untreated controlled were implemented.  Multiplicity adjusted p-values were reported for each comparison.  

Error bars correspond the standard deviation of the mean.  Differences are represented as, p < 0.01: **, p < 

0.001: ***. 
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Figure 27. Alveolar Septum Quantification Over Time in Transient Nicotine 

Exposure with pH1N1 Infection 

Alveolar mean linear intercept quantification within groups over time.  In GraphPad Prism 7.03 two-tailed t-

tests compared to untreated controlled were implemented.  Multiplicity adjusted p-values were reported for 

each comparison. Error bars correspond the standard deviation of the mean.  Differences are represented at 

210 days of age vs.34 days of age, p < 0.001: ***. 
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Further evaluation of the entire lung revealed some changes that are more difficult 

to explain.   It was discovered that there were regions of inflammation/pneumonitis, which 

we believe are likely related to infection-induced pneumonitis (Fig. 28).   The pneumonitis 

was characterized by edema, peri-airway collagen deposition, massive inflammation and 

consolidation throughout the parenchyma, within the airways.  This phenotype was 

primarily occurring only in the transient nicotine with pH1N1 group (8 of 10 mice), 

although transient nicotine alone had one mouse and chronic nicotine with pH1N1 had two 

mice with this observed phenotype (Fig. 28).  This abnormality was detected in a single to 

3 lung lobes and primarily affected areas around large airways extending into the 

parenchyma in some instances.  We estimate that up to 5-20% of the lung lobe was affected 

when present.  Further, for transient nicotine with pH1N1 group in the mice where 

pneumonitis was not discovered, evidence of mild inflammation around central airways 

was discovered.  We suspect this mild inflammation was involved in the resolution or 

development of the observed pneumonitis.   

It is important to mention that for mean linear intercept quantification, both regions 

around the large airways as well as regions with viral pneumonia were avoided.  Analyzing 

the distance between alveolar septum would be increased if large airways were present in 

representative images, due to having less area of the parenchyma present.  Furthermore, 

viral related pneumonitis occurred in almost all instances around the large airway making 

avoidance of the abnormality easy.   
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Figure 28.  Histological Signs of Viral Related Pneumonitis in Transient Nicotine 

with pH1N1 at 210 Days of Age 

Masson’s trichrome staining representative images discovered in transient nicotine with pH1N1 infected 

group.  Corresponding pie graphs for each treatment group and the resulting quantification of mice with this 

phenotypic abnormality.  
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Discussion 

 The effects of perinatal nicotine exposure alone have been studied and published in 

regard to lung function, but the impact of these events on aged animal models (like reported 

here) are not common.  In contrast, studies regarding influenza infection resulting in lung 

function abnormalities are not common and not one has looked as far out in life as this 

study did (210-days of age).  To our knowledge, this is the first study to look at the 

combination of nicotine exposure with influenza infection at any point of life on lung 

function.  Importantly, our model used nicotine exposure (perinatal and chronic) and an 

early life infection with pH1N1.  This is important and highly relevant to humans due to 

the number of pregnant mothers who continue to expose their fetus to nicotine (through 

cigarette smoking) and the number of children who contract an influenza respiratory 

infection (discussed above).  

Although, cigarette smoking is the behavior linked to a number of consequences 

both for the fetus and the mother, nicotine is one constituent of tobacco that is responsible 

for its addictive qualities (42, 57, 64).  This plant alkaloid readily transverses the placenta, 

and fetal levels of nicotine or its metabolite cotinine are significantly greater than in the 

mother (discussed above) (57, 61).  Our laboratory has studied how gestational, perinatal, 

or postnatal nicotine exposures impact the lung, and previously reported that murine 

maternal perinatal nicotine exposure affects lung branching morphogenesis, which was 

associated with airway dysfunction in the young animal and aged animal (8 weeks or 210-

days of age) (42, 64).  This loss of lung function was postulated to be driven by alterations 

in extracellular matrix expression and deposition, among other changes, resulting in 
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dysynaptic lung growth or alveolar destruction causing increased alveolar volume/lung 

compliance (Chapter II) (42).   

Unlike typical seasonal IAV, H1N1 the 2009 pH1N1 strain led to an increased rate 

of infection for individuals between 10-19 years of age (15.6% versus 25.1% of cases) 

(156, 157, 181).  Therefore, much of the population that became infected with the 2009 

pH1N1 strain were middle to high school aged individuals, which correlates to the age of 

mice being used in our study.  As shown in Chapter III, pH1N1 infection caused alterations 

in lung function in aged mice, which was driven by collagen deposition that occurred 

shortly after infection.  However, the question remained whether early changes caused by 

nicotine followed by early life pH1N1 infection could result in worse structural and 

functional abnormalities in the adult lung. 

We first evaluated the weights of animals as it is a good surrogate for lung growth, 

and effects on lung growth can affect its maturation.  The average weights of the 

experimental groups were not different at the time of pH1N1 infection and pulmonary lung 

function testing (Fig. 21).  However, as expected, weights early after infection for the three 

groups infected with pH1N1 showed statistical differences from the untreated group (Fig. 

21). Interestingly, the weights of animals infected with pH1N1 alone or exposed to chronic 

nicotine followed by pH1N1 were not found to be different at any time post infection (up 

to 21 DPI).  In contrast, transient nicotine with pH1N1 infection caused weights to 

significantly vary from the other infection groups (Fig. 21).  Although animals with chronic 

nicotine exposure followed by pH1N1 infection experienced the same change in percent 

body weight from time of infection as pH1N1 alone, the functional pulmonary outcomes 

were not the same (Fig. 22).   
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Considering previous findings with nicotine alone (Chapter II), it was expected that 

chronic nicotine exposure followed by pH1N1 infection would further impact lung function 

in the aged animal. Interestingly, there were limited functional alterations (compared to 

untreated-mock infected).  It appeared that the changes discovered for the combination 

were driven by pH1N1 infection alone, due to these parameters (resistance and tissue 

damping) not being affected by chronic nicotine by itself (Fig. 22) (summarized in Table 

10).  This proves that the change in weight acutely due to pH1N1 is not solely responsible 

for the pulmonary functional abnormalities detected.  The alterations in lung structure 

(collagen and alveolar size) for animals with the combination of chronic nicotine exposure 

followed by pH1N1 infection were not different from the untreated group, with the 

exception of females (alveolar size) (Fig. 23).  Not seeing phenotypical alterations in mean 

linear intercept provides rationale as to why compliance, elastance, and tissue elastance 

were unchanged.  Further, no evidence of differences in collagen staining provides 

rationale for why Newtonian resistance was not abnormal (from untreated controls).  We 

expect alterations arose in resistance were attributed to parenchymal AHR as tissue 

damping was the only other functional parameter affected (Fig. 22). 

 In contrast to the above, transient nicotine exposure followed by pH1N1 infection 

resulted in significant and surprising functional and phenotypical alterations (Fig. 24&25) 

(Table 11).  Neither factor alone caused an increase in alveolar size or compliance.  

Whereas, mean linear intercept (alveolar size), but not collagen deposition, was increased 

for the combination which corroborates our functional findings for compliance, elastance, 

and tissue elastance (Fig. 25).  However, pH1N1 infection (but not transient nicotine 

exposure) was found to cause changes in elastance and tissue elastance, which suggests 
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that elastin in the parenchyma was destroyed, although more thorough analysis will need 

to be conducted to prove this.  Furthermore, pH1N1 alone significantly increased collagen 

deposition (compared to untreated) which was most notably around the large airways.  

Since we saw no evidence of increased collagen deposition in transient nicotine with 

pH1N1 infection we expect that the functional abnormalities for resistance and Newtonian 

resistance may be attributed to increased AHR.  Another explanation for increasing 

resistance and Newtonian resistance could be due to parenchymal destruction (increased 

alveolar size).  Increased alveolar size (alveolar septum destruction) would decrease the 

structural connections to the airways which could in theory cause collapse of the airway 

and thus increase Newtonian resistance, and possible tissue damping as we discovered 

(Fig. 24).   

In emphysema, it is well established that neutrophils are present in increased 

quantity and are thought to drive disease pathogenesis (36, 251).  Since the 1980’s, nicotine 

alone has been known to enhance neutrophil responsiveness to alveolar macrophage 

chemotactic factors and thus increase their quantity in the lung (252).  In addition to 

nicotine, pH1N1 is known to cause a strong neutrophil response in the lung (75, 77, 201).  

Separately, both nicotine and pH1N1 alone can increase lung neutrophil concentration and 

may together potentiate or prolong the effects.  Neutrophil infiltration could increase 

MMP9 expression (which is known to degrade collagen, among other actions) and elastase, 

which is crucial for alveolar septation (253, 254).  Further, nicotine alone has also been 

published to increase the expression of neutrophil elastase, another matrix degrading 

enzyme with elastolytic activity (255).  Together, this may explain the observed alveolar 

volume increase in the lung, although more thorough testing will need to be conducted in 
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order to prove this speculation correct.  Altogether, these data show that the lung is being 

affected in additional ways with transient nicotine with pH1N1 versus pH1N1 alone. 

Due to the findings for transient nicotine with pH1N1 but not chronic nicotine with 

pH1N1 we wanted to look at the lungs of these groups at an earlier timepoint (34-days of 

age) (Fig. 25).  We only evaluated mean linear intercept due to not seeing differences in 

collagen deposition in the long term.  Furthermore, we only evaluated the combination 

group compared to untreated group due to not seeing differences in either entity alone at 

210-days of age (Fig. 9).  Alveolar septa destruction is unrepairable and thus if it was 

present for pH1N1 or transient nicotine alone, early in life (34-days of age) it would be 

present later in life (210-days of age), which was not found (Fig. 25).  When evaluating 

transient nicotine with pH1N1 at 34-days of age (4 DPI) we found that the mean linear 

intercept or alveolar size was increased compared to untreated mice (Fig. 26).  This finding 

provides insight in that the key stage for alveolar destruction within our murine model was 

occurring between 30 and 34-days of age, which is within the timeframe in which pH1N1 

viral lung propagation is at its height (Fig. 12).  Furthermore, this destruction continues to 

occur as the animal ages to 210-days of age as we found differences in alveolar volume 

between the two timepoints (Fig. 27). 

Lastly, it is important to emphasize that the data need to be confirmed in other 

studies.  In particular, we are concerned that some of these animals suffered pneumonitis, 

perhaps infectious, at the end of the experiment, which likely impacted the pulmonary 

function tests (Fig. 28).  We were careful not to evaluate areas of the lung that contained 

these abnormalities when performing mean linear intercept analysis.  Avoiding areas of 

viral related pneumonitis was not an issue when the left lobe was not affected.   In the few 
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instances where the left lobe was affected, the areas where pneumonitis was occurring were 

around the large central airways which we avoided as before.  However, we cannot discard 

the possibility that they affected our functional results.  We believe that both the increase 

in alveolar volume as well as the viral related pneumonitis occurring were causing 

alterations in respiratory function. 

 In humans, the combination of the exposures we elicited in mice have been 

suggested through epidemiological studies involving children to be implicated in the 

development of OAD both in childhood and adulthood (131, 256-260).  Importantly, the 

evidence in humans is purely speculative because there are limited studies conducted to 

address the relationship of perinatal nicotine with early life viral infection.  Within this 

chapter, we provide information that may explain  data linking these events  (46, 47, 67-

70, 72, 124, 126, 130-132, 174, 175, 178).  Altogether, the data generated strengthen the 

argument that events early in life (transient nicotine exposure) may influence the lung in 

imperceptible ways, that prime the tissue to be further irreversibly damaged by a second 

hit (such as pH1N1).  Although future experiments will need to be conducted in order to 

further explain the findings or lack thereof (chronic nicotine with pH1N1).  This chapter 

provides the evidence that maternal nicotine exposure with an early life respiratory 

infection influence the lung to develop abnormalities which persist with age. 
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CHAPTER V: PULMONARY FUNCTIONAL ABNORMALITIES SEEN IN 

ANIMALS EXPOSED TO NICOTINE WITH PH1N1 INFECTION ARE 

ALLEVIATED IN  NACHR DEFICIENT MICE 
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Background 

The effects of early life exposure to nicotine and OAD development are likely 

mediated via one or more nicotinic acetylcholine receptors.  Since the identification of 

these receptors might unveil important targets for intervention, we set out to investigate 

their role.  There are two types of AChR, nicotinic (ion gated) and muscarinic (g-protein 

coupled) both of which are triggered by the endogenous agonist acetylcholine (58-60).  The 

primary exogenous agonist that binds muscarinic AChR is muscarine, whereas nicotine 

primarily activates the nAChR (58, 59).  nAChR are a family of multimeric acetylcholine-

triggered cation channel proteins that form the predominant excitatory neurotransmitter 

receptors in muscles and nerves in the peripheral nervous system (58-60).  The nAChR are 

coded by at least thirteen genes that express 4 β subunits and 9 α subunits, in which they 

assemble into pentamers in a homomeric or heteromeric orientation (58, 59).  The most 

abundant homomeric nAChR in the human body is (α7)5, also known as, α7 nAChR (261, 

262).  

nAChR are found in the autonomic and central nervous systems throughout the 

body (58-60).  There has also been published data showing that nAChRs are expressed in 

non-neuronal tissues including lung, immune cells, retinal cells and 3T3 fibroblasts (NIH) 

(263-266).  Zia et al. used indirect immunofluorescence to show the presence of α3, α5 and 

α7 nAChR in human and mouse bronchial epithelial cells and further detected α7 nAChR 

in submucosal glands and α4 nAChR in alveolar epithelial cells (262).  Expression of α7 

nAChR in bronchial epithelial cells was increased in a dose dependent manner to nicotine, 

whereas α3 nAChR and α5 nAChR decreased only after nicotine desensitization (262).  

Our laboratory has shown that α7 nAChR expression in the C57Bl/6 fetus’s lung begins at 
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day 11 of gestation and shows highest expression at days 12 and 15 of gestation (64).  

Expression of the α7 nAChR is decreased for the remainder of gestation (64).  Therefore, 

maximal expression of α7 nAChR occurs during the pseudoglandular stage of embryonic 

lung development in the C57Bl/6 mouse, coinciding with the period of airways formation 

(267). 

Through poorly elucidated mechanisms of action, nicotine has been demonstrated 

by our laboratory to affect lung branching morphogenesis in murine offspring exposed to 

nicotine during the perinatal period (both in vivo and ex vivo) (42, 64).  These changes were 

associated with increased extracellular matrix deposition, abnormal airway structure, and 

AHR.  Interestingly, these changes were not apparent in animals lacking the  nAChR 

indicating an important role for this receptor in mediating the effects of nicotine (42, 64). 

In addition, nicotine was shown to promote fibroblast ECM synthesis, through activation 

of TGFβ and the α7 nAChR were found to mediate the effects (196, 268).  Similar to our 

published data, Elliot Spindel’s group has published in a non-human primate prenatal 

nicotine exposure model that nicotine lowers offspring lung function through increasing 

airway resistance (63).  This work also showed increased α7 nAChR expression in the 

airways of the offspring, and increased collagen deposition around the large airways and 

vessels (62).  These models are in line to what was found in a human study assessing 

pulmonary abnormalities from cases of fetal or newborn deaths (269).  This study 

published that fetal and newborn deaths, where maternal smoking was documented, 

showed increased α7 nAChR immunostaining in the lung as well as lung hypoplasia (269). 

Overall, these data and observations presented throughout this dissertation suggest 

that early life events (such as but not limited to perinatal nicotine exposure) render the 
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offspring susceptible to the development of airway dysfunction and OADs.  Importantly, 

they point to α7 nAChR as a potential mediator of these effects.  Herein, we investigate the 

role of a7 nAChRs and report the effects of perinatal (transient) with pH1N1 infection on 

PFTs and resulting lung histology in wild type (WT) and α7 nAChR deficient mice.  We 

show that the absence of the α7 nAChR leads to alleviation of PFT abnormalities for 

perinatal nicotine exposure with pH1N1, but not for any entity alone.  This was associated 

with less alterations in alveolar structure.  All together, these studies further support a role 

for  nAChRs and suggests attention should be given to these receptors as potential 

targets for therapeutic intervention. 

 

Materials and Methods 

 Materials and methods for this section are the same as presented in the previous 

chapters, with the following sections being changed.  Statistics were conducted for PFT 

data with the baseline and 50 mg/mL methacholine exposure.  Mice deficient for the α7 

nAChR were ordered from Jackson Laboratories (#003232) and lacked 3 exons (8-10) in 

the gene spanning 7 kb (270).  Both in our study and previous studies, α7 nAChR deficient 

mice had no abnormalities compared to wild type for growth, neurological deficits, and 

overall appearance (270).  For PFT data one-way ANOVA analysis with a Bonferroni test 

to correct for multiple comparisons as well as two tailed unpaired T tests (with similar 

results) were implemented in GraphPad Prism 7.03.  All other analysis were conducted as 

before in Chapters II-IV. 
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Results 

Transient Nicotine Exposure followed by pH1N1 infection in α7 nAChR Deficient Mice 

Animal weights were examined as they represent a good surrogate for lung growth.  

Untreated WT and α7 nAChR deficient mice showed appropriate and similar weight gain 

over time and up to 21 DPI. (Fig. 29).  As expected, pH1N1 infection resulted in significant 

weight loss, which was greatly worsened in animals concomitantly exposed to nicotine (3-

21 DPI).  Whereas, significant differences (decrease in weight gain) were detected later (8-

10 DPI) in α7 nAChR deficient mice (Fig. 29).  In addition, differences occurred between 

WT and α7 nAChR deficient mice in the transient nicotine exposure with pH1N1 infection 

group from 8-11 DPI (with WT being more affected by infection).  Furthermore, no 

differences were discovered in raw weight between groups at 30-days of age (Fig. 29).  In 

contrast, at 210-days of age there was a difference between WT and α7 nAChR deficient 

mice exposed to transient nicotine with pH1N1 infection (with α7 nAChR deficient mice 

weighing more).  
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Figure 29. Weights of Transient Nicotine Exposed Mice with pH1N1 Infection (Wild 

Type and α7 nAChR Deficient) Assessed for Lung Functional Abnormalities 

Average percent body weights (30 until 51-days of age) and average weights (30 and 210-days of age) of 

mice groups for the indicated exposures.  Data was imported into GraphPad Prism 7.03, the average daily 

weights and percent from time of infection weights were calculated along with their standard deviations then 

compared using two-way ANOVA analysis with a Turkey post-test to correct for multiple comparisons (with 

no differences discovered). The weights at 30 and 210-days of age were compared using unpaired t-test 

analysis with a Holm-Sidak multiple comparison test.  A linear regression analysis was also conducted 

between groups in GraphPad, with no differences reported. 
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Lung Function in Nicotine Exposure followed by pH1N1 infection in WT and α7 nAChR 

Deficient Mice 

We performed PFT in WT mice and mice deficient for the α7 nAChR.  No 

differences were discovered (at baseline or 50 mg/mL methacholine separately) between 

WT and α7 nAChR deficient mice groups for transient nicotine, chronic nicotine exposure, 

or pH1N1 infected groups alone (data not shown).  Likewise, PFT findings in untreated α7 

nAChR deficient mice mimicked those in untreated WT mice (data not shown).  When 

assessing the PFT results at 50 mg/mL methacholine (using GraphPad), resistance, tissue 

damping, and elastance were significantly increased in WT animals with transient nicotine 

exposure followed by pH1N1 infection (compared to WT untreated-mock infected 

animals).  However, these alterations were essentially abolished in α7 nAChR knockout 

animals suggesting that α7 nAChRs mediated many of the effects observed (Fig. 30). 

 

Lung Histology in Nicotine Exposure followed by pH1N1 infection in WT and α7 nAChR 

Deficient Mice 

In WT mice, transient nicotine exposure followed by pH1N1 infection resulted in 

increased alveolar mean linear intercept (compared to WT untreated-mock infected 

animals), and this effect was significantly blunted by in α7 nAChR deficient animals (Fig. 

31 A&C).  Transient nicotine exposure followed by pH1N1 infection did not affect 

collagen deposition in either group of animals (Fig. 31 B&D).   As discussed in the 

previous chapter, some animals developed signs of pneumonitis, probably infectious.  

However, signs of viral related pneumonitis were not present in α7 nAChR deficient mice 
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exposed to transient perinatal nicotine with pH1N1 (Fig. 32).  Nevertheless, this could have 

impacted the analysis. 
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Figure 30. Pulmonary Function Test Results for Transient Nicotine with pH1N1 

Infection in α7 nAChR Deficient Mice 

Lung function was assessed at 210-days of age by forced oscillation technique using a SCIREQ flexiVent 

system. C57BL/6 Untreated (mock infected) mice (n = 19; male = 10, female = 9) and mice in the transient 

nicotine with pH1N1 infection group (n = 20; male = 10, female = 10) were tested.  α7 nAChR deficient 

(KO) untreated (mock infected) mice (n = 15; male = 7; female = 8) and mice in the transient nicotine with 

pH1N1 infection group (n = 12; male = 6; female = 6) were tested.  Lung function was measured at baseline 

and after challenge with increasing concentrations of aerosolized methacholine.  All statistics were conducted 

with the 50 mg/mL methacholine exposure data.  In GraphPad Prism 7.03 one-way ANOVA analysis with 

Bonferroni correction for multiple comparisons as well as two-tailed unpaired non-parametric t-tests 

comparing all groups were implemented.  Averages of results (only including values where the COD was 

≥95%) were taken for each individual mouse. Error bars represent standard deviation from the mean. 

Differences are represented as, p < 0.05: *, p < 0.01: **. 
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Figure 31. Lung Histology of Transient Nicotine Exposure with pH1N1 Infection at 

210-Days of Age for α7 AChR Deficient Mice 

Lung histology in C57BL/6 mice, including H&E staining at 20x magnification (A) and Mason’s Trichrome 

staining at 20x magnification (B). Alveolar mean linear intercept quantification (C) and the percent of total 

lung area stained for collagen (D).  In GraphPad Prism 7.03 one-way ANOVA analyses were conducted with 

all groups using a Bonferroni test to correct for multiple comparisons.  Multiplicity adjusted p-values were 
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reported for each comparison.  Error bars correspond the standard deviation (C) or error (D) the mean.  

Differences are represented vs. mock infected controls, p < 0.05: *, p < 0.001: ***. 
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Figure 32. Histological Signs of Viral Related Pneumonia in Transient Perinatal 

Nicotine Not Seen in α7 nAChR Deficient Mice 

Quantification of mice in each treatment group evaluated for pneumonia via Masson’s trichrome staining for 

both wildtype and α7 nAChR deficient mice. 
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Discussion 

 Our studies show transient nicotine exposure followed by pH1N1 infection is 

associated with weight loss and alterations in lung structure and function.  Interestingly, 

and consistent with our hypothesis, these changes were greatly ameliorated or abolished in 

the  nAChR knockout mice suggesting an important role for this receptor during 

perinatal transient nicotine with early life pH1N1 infection.  Interestingly, chronic nicotine 

exposure had different effects suggesting that lack of α7 nAChR worsened the impact of 

the exposures.  However, these latter experiments were greatly affected by the fact that the 

animals were found to have significant structural changes at 210-days of age, most likely 

related to the development of pneumonia.  We do not know if  nAChR deficiency leads 

to predisposition to lung infection and thus, at this time, we cannot interpret these studies.  

Thus, we will focus our discussion on the data obtained in animals with nicotine transient 

exposure with pH1N1 infection. 

Also note that when assessing mice exposed to transient perinatal nicotine with 

pH1N1 infection, α7 nAChR deficiency was determined to alleviate abnormalities in 

resistance, tissue damping, and elastance (Fig. 30).  It is important to mention that the 

analysis conducted with the α7 nAChR deficient mice was conducted only with the data 

resulting at baseline (no differences discovered) and 50 mg/mL methacholine, whereas 

before (Chapters II-IV), an analysis was conducted using baseline, 25, and 50 mg/mL 

methacholine exposures.   

 Previously, we reported alterations in collagen deposition after perinatal (transient) 

nicotine exposure (42).  However, when examining animals at 210-days of age, we found 

that these defects did not persist until adulthood.  However, transient nicotine with pH1N1 
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resulted in abnormalities in pulmonary function and alveolar structure suggesting that the 

combined exposures affected this process in ways that involve cholinergic signaling 

through  nAChRs.   

We encountered evidence of pneumonitis in some of our animals.  Although we 

were careful to avoid such areas when evaluating lung structure, we cannot discard the 

possibility that these changes affected lung function.  Again, areas of pneumonitis were not 

present throughout the lung, but primarily localized around large airways (for WT mice). 

These regions were avoided when conducting mean linear intercept quantitation.  

Interestingly, α7 nAChR deficient mice exposed to transient perinatal nicotine with pH1N1 

did not show histological signs of pneumonitis as seen in the wildtype, but we cannot 

determine if this relates to their genetic background (Fig. 34).   

 It appears from our results that the α7 nAChR interaction with nicotine from our 

transient nicotine exposure primes the lung for further damage from a viral agent such as 

pH1N1.  We would expect that other environmental or occupational exposures would result 

in similar findings but more experiments will need to be conducted as this is merely 

speculation.  These finding are vital in translating this research into treating humans during 

early/before life nicotine exposure, in order to protect one from an OAD later in life.  If 

one is subject to perinatal nicotine exposure, protection to an OAD could be achieved 

through administration of a α7 nAChR antagonist such as conotoxin or bungarotoxin to the 

mother (this is assuming one will have a viral infection in adolescence) (271).  These data 

suggest that by inhibiting α7 nAChR signaling for persons with perinatal, but not chronic 

nicotine exposure, with an early life viral infection could prevent or prolong the 

development of an OAD to occur with aging. 
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CHAPTER VI: DISCUSSION 
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The objective of this research was to determine if perinatal, and/or early life 

exposures in a murine model promote lung structural and functional alterations in the adult, 

thereby mimicking what is seen in humans with OAD.  We initially hypothesized that 

nicotine exposure and pH1N1 infections during would alone or in concert act to promote 

the development of sustained airway dysfunction in adulthood.  This is indeed what we 

observed (Chapter II and III) (Table 12).  The effects of transient perinatal nicotine resulted 

in no functional abnormalities suggesting AHR did not persist with aging (Table 12), 

whereas, chronic nicotine drove functional alterations through increasing compliance, 

decreasing Newtonian resistance, and decreasing tissue elastance (Table 12).  Nicotine 

drove these alterations by enlarging alveolar spaces and increasing peri-airway collagen 

deposition as well as alveolar simplification, and destruction with aging (Chapter II).  

Similarly, pH1N1 infection was also capable of causing lung structural (collagen 

deposition) and functional abnormalities (increased resistance, tissue damping, and tissue 

elastance) that persisted until adulthood (increased resistance, tissue damping, and tissue 

elastance) (Chapter III) (Table 12).  Interestingly, differences observed between chronic 

nicotine versus pH1N1 were apparently due to different regions of the airway being 

affected, which was most likely due to the differences in structure observed compared to 

untreated-mock infected (increased alveolar volume and collagen deposition for chronic 

nicotine alone versus increased collagen deposition for pH1N1 alone) (Table 12).  For 

chronic nicotine alone, collagen deposition around the large airways may have increased 

the rigidity of the airways and kept them from collapsing due to parenchymal destruction 

(hence the lack of increase in Newtonian resistance).   
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Together, transient perinatal nicotine exposure along with early life pH1N1 

infection potentiated the effects of either entity alone (Chapter IV) (Table 12).  In regard 

to nicotine exposure alone, alterations in lung function and structure were observed for 

chronic nicotine but not for transient nicotine treatment.  More specifically, transient 

nicotine in combination with pH1N1 was able to potentiate the outcomes for either factor 

alone (resistance, compliance, and Newtonian resistance) (Fig. 24).  Further, transient 

nicotine with pH1N1 caused alterations that were not seen in either entity alone 

(compliance, elastance, and Newtonian resistance), which we found were associated with 

increased alveolar volume (Table 12).  Interestingly, chronic nicotine in combination with 

pH1N1 was found to alleviate some of the abnormalities discovered for each exposure 

alone (compliance, elastance, Newtonian resistance, and tissue elastance) (Fig. 22) (Table 

12).  We speculate that immune response signaling due to pH1N1 was driving this, 

although additional experiments would have to be conducted to test this. 

It appears that transient nicotine exposure is priming the lung in a way for pH1N1 

infection to cause irreversible alveolar septum damage, which results in lung functional 

abnormalities, that is worse than either entity alone.  Furthermore, this provides support for 

the concept that the critical period of murine pulmonary alveolar septum destruction occurs 

on or after 30-days of age (when pH1N1 was elicited).  When assessing α7 nAChR 

deficient mice (Chapter V) exposed to transient nicotine exposure with pH1N1 infection, 

pulmonary function deficiencies were alleviated for resistance, tissue damping, and 

elastance (Fig. 30).  The data generated within this dissertation corroborate our laboratory’s 

and other published findings on lung function and OADs regarding nicotine exposure, early 

life viral infections, the combination of perinatal nicotine with pH1N1, and the α7 nAChR. 
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Table 12. Pulmontary Fucntion Testing Summary 

 

Resistance Compliance Elastance 
Newtonian 
Resistance 

Tissue 
Damping 

Tissue 
Elastance 

Nicotine 
Transient 

No 
Change 

No Change 
No 

Change 
No Change 

No 
Change 

No 
Change 

Nicotine 
Chronic 

No 
Change ↑ 

No 
Change ↓ 

No 
Change ↓ 

pH1N1 ↑ 
No Change 

No 
Change 

No Change ↑ ↑ 

Transient 
+ pH1N1 ↑ ↑B ↓B ↑ ↑ ↑ 

Chronic 
+ pH1N1 ↑ 

No Change 
No 

Change 
No Change ↑ 

No 
Change 

Arrows indicate direction of parameter compared to untreated-mock infected control 
Blue indicates alteration in function driven by males 
Black indicates alteration in function not driven by either sex 
“B” indicates baseline 
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Strengths and Limitations of Analysis 

 The data generated for all treatment groups had both strengths and caveats.  

Strengths for this project were that large numbers of mice were used within each treatment 

groups, with relatively equal numbers between sex type.  In addition, statistical expertise 

for the functional data sets was obtained through collaboration with University of 

Louisville’s biostatistician department (Dr. Shesh Rai and Jayesh Rai).  Therefore, we are 

confident that the functional analysis and resulting data accurately represent what was 

occurring between our treatment groups.  Furthermore, models for nicotine exposure and 

pH1N1 infection were well developed and characterized for their use in murine studies. 

 Limitations for the data presented within this dissertation are within determining 

where pH1N1 was replicating and histological analysis.  Regarding pH1N1, we did not 

evaluate where the viral infection was occurring in the lung.  Although we did see high 

levels of virus through conducting TCID50/mL assays on lung homogenate from infected 

animals, knowing the location would have provided more insight into the functional 

abnormalities.  In retrospect, immunohistochemistry against pH1N1 could have been 

implemented to determine viral replication within the lung.  Additionally, histological 

analysis for mean linear intercept measures airspace volume by assuming shape factor 

(141).  Distortion of airspace and alveolar ducts can invalidate the assumption in shape 

factor  (141).  Further, mean linear intercept does not take into account alveolar septum 

thickness, which could have impacted our analysis, although, we did not see prominent 

increases in alveolar septum thickness (141).   

 Finally, we identified areas of pneumonitis in some of the lung samples harvested 

during our final experiments, especially those related to transient nicotine with pH1N1 
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infection.  To our knowledge, no published study has shown this abnormality from either 

nicotine or pH1N1 alone.  The development of pneumonitis (suspected to be infectious) 

was likely involved in the functional abnormalities observed.  Interestingly, other groups 

did not show this phenotype as prominently.  Considering the potential impact of 

pneumonitis on our functional data, it is recommended that these studies be confirmed in 

future experiments.   

 

Future Directions 

Different Viral Families and Different Age of Infection 

 To our knowledge, this is the first study to our knowledge to look at the effects of 

perinatal nicotine and early life influenza infection on lung remodeling and pulmonary 

function and their effects long term.  In which, our work has raised an additional series of 

questions.  For example, we believe it is important to test whether a seasonal H1N1 strain 

or a rhinovirus would cause the same effects as influenza pH1N1.  In addition, testing 

different aged mice, both older and younger, could unveil different observations providing 

further insight into the role of aging in these processes.  For instance, newborn pups might 

react differently to the same virus or to different viruses (e.g., RSV) when compared to 

older animals (272).   

 

Role of nAChRs  

 Our data point to cholinergic signaling as mediating the effects of nicotine in our 

model.  Specifically, our data point to α7 nAChRs in the processes investigated.  Further 

investigations will be required to determined exactly how these receptors work.  Also, there 
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are many nAChRs (e.g., , ) capable of mediating the effects of nicotine in lung 

and these should be considered for further study.  Furthermore, the differences observed 

between our two different nicotine exposures with pH1N1 and between the genetic 

backgrounds, implicate specific timeframes where different nAChR may be acting. 

Implementing specific nAChR antagonists against these receptors and at different 

timepoints may begin to unravel the complexity of the processes discussed above.   

 

Immune Response Signaling and Implementing Immune Deficient Mice 

Immune signaling responses are likely involved in the functional and phenotypical 

changes described above (discussed briefly in Chapter I).  The innate arm also plays a role 

in asthma development and hyperreactivity.  Asthmatic patients are known to have 

increased production of Il-4, 5, and INFγ in the sputum, compared to healthy controls 

(273).  This cytokine response provides early support to drive the adaptive immune 

response (discussed above) (274).  Murine models lacking NKT cells have been published 

to not develop AHR, (275, 276).  Furthermore, NKT cells are increased in asthmatics 

following allergen challenge and may amplify the AHR (277-279). 

The adaptive immune response plays a vital role in the pathogenesis of asthma AHR 

from extrinsic factors (such as ETS) signaling event cascade.  TH2 and TH17 cells have 

been found to be increased in the lungs of human subjects with asthma and directly cause 

ARH (274, 280-282). TH2 cells arise from CD4+ cells stimulus mainly from innate 

lymphoid cell (ILC) and activated pulmonary epithelial cells (triggered by an external 

stimulus such as an allergen) (274, 283, 284).  This results in TH2 cell generation, 
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subsequent recruitment of mast cells and basophils, IgM to IgG1 to IgE class switching 

(pulmonary B cells), and eosinophilia, which all contribute to AHR (274). 

Whereas, Regulatory T (Treg) and γδ T cells are able to downregulate the 

inflammatory immune response in the lung and are thought to maintain immune 

homeostasis in the lung (274).  Both of these cells are increased in the bronchoalveolar 

lavage fluid of asthmatics (274).  Transfer of Treg cells has been published to inhibit the 

development of allergen-induced ARH and inflammation in the lung (285-289).  Treg cells 

produce anti-inflammatory TGFβ as one method for inhibition of asthma ARH (274, 286).  

Treg cell production of TGFβ could cause an increase in extracellular matrix production 

which would promote the progression of OADs. 

Epithelial cell immune signaling, in the setting of influenza infection, has been 

published to be able to induce AHR (through both ILC and TH2 cells) (73, 290).  

Interestingly, depletion of ILC (responsible for TH2 differentiation, discussed above) in an 

adult murine model of influenza results in loss of lung function by impairing airway 

remodeling and epithelial integrity (291).  Upon treatment of mice with amphiregulin, 

which is produced from ILC, the disease state was reversed and mimicked immune 

efficient mice (291). Amphiregulin is a member of the epidermal growth factor family and 

implicated in a variety of physiological process including but not limited to regulation of 

lung morphogenesis (292).  Lastly, in human sputum amphiregulin has been found to be 

associated with childhood asthma, which is not surprising knowing the implication of ILC 

on TH2 cell production (293). 

Due to the evidence implicating the immune response it is important that future 

studies engage in further understanding these process in regard to OAD.  Conducting 
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microarray analysis of the lungs from 30 to 34-days of age (when we were seeing initial 

remodeling) could be implemented not only to evaluate tissue remodeling genes but also 

to determine differences of immune cytokine and chemokine signaling.  Furthermore, 

quantitating innate and adaptive immune cells would also be a direction that would shed 

insight to the molecular pathogenesis driving the functional and phenotypical changes 

presented above.  If differences in the immune response are discovered, from future studies, 

there are several immune deficient (knock out) animal models (RAG, SCID, NSG) that 

could be implemented to target the cells driving changes.  In addition to this testing the 

effects of amphiregulin could also be an implemented approach as it has already been 

known to influence pulse oximetry of influenza infected animals (291).  Other knock out 

models could be used as well such as SMAD knock out mice to see if TGFβ signaling is 

influencing the functional changes and collagen deposition around the airways.  

Furthermore, depending on the differences seen using different murine genetic 

backgrounds creating a double knock out including the α7 nAChR could provide evidence 

if cholinergic signaling is working in concert with the immune response to drive pulmonary 

functional abnormalities.  
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