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ABSTRACT 

 

TRANSFER LEARNING APPROACH FOR SENTIMENT CLASSIFICATION 

Omar Abdelwahab 

November 12th, 2018  

The idea of developing machine learning systems or Artificial Intelligence agents that 

would learn from different tasks and be able to accumulate that knowledge with time so 

that it functions successfully on a new task that it has not seen before is an idea and a 

research area that is still being explored. In this work, we will lay out an algorithm that 

allows a machine learning system or an AI agent to learn from k different domains then 

uses some or no data from the new task for the system to perform strongly on that new 

task. In order to test our algorithm, we chose an AI task that falls under the Natural 

Language Processing domain and that is sentiment analysis. The idea was to combine 

sentiment classifiers trained on different source domains to test them on a new domain. 

The algorithm was tested on two benchmark datasets. The results recorded were compared 

against the results reported on these two datasets in 2017 and 2018. In order to combine 

these classifiers’ predictions, we had to assign these classifiers weights. The algorithm 

made use of the similarity between domains when inferring the weights for the classifiers 

trained on the source domains by measuring the similarity between these source domains 

and the domain of the new task concluding, that domain similarity could be used in 

computing weights for classifiers trained on previous tasks/domains.
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CHAPTER I 

INTRODUCTION 

 

Transfer learning is an active machine learning research area that involves the use of 

labeled and unlabeled data samples from S source domains and few labeled or unlabeled 

samples in the target domain to help a machine learning system to adapt in order to perform 

well on the target domain. S could range from 1 to multiple source domains. Transfer 

learning is also referred to as cross-domain adaptation. There have been various transfer 

learning methods developed over the past couple of years on many applications from image 

processing and classification to numerous text classification tasks. One of the most popular 

text classification tasks that make use of transfer learning is sentiment analysis. There are 

other text classification tasks such as part of speech tagging (POS tagging) and spam 

opinion mining that make use of transfer learning. The purpose of this work is to show that 

classifiers trained on previous tasks or previous source domains can be combined together 

in an AdaBoost inspired way by using the domains similarities between the source domains 

and the target domain to derive weights for the source domain classifiers when aggregating 

their prediction outputs on the target domain. Secondly, it is to develop an unsupervised 

transfer learning system that uses labeled and unlabeled samples from the source domains 

and only unlabeled samples from the target domain without needing any labeled samples 

from the target domain as labeling training samples is an expensive task. Finally, 
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developing a lifelong learning system that uses no data from the target domain during 

training as we will describe later in the dissertation. The lifelong learning system was 

developed by adding a tweak to our transfer learning system. We have compared our results 

against the results reported by another lifelong learning sentiment classification system 

(Chen et al. (2018)) on the benchmark dataset provided by Chen et al. (2018). Some transfer 

learning techniques have resorted to domain similarity as a way to help the transfer learning 

process between different domains. However, to the best of our knowledge, none of the 

techniques published in the past decade have used domain similarities directly when 

adapting classifiers trained on different source domains. Domain similarities have been 

used in feature selection and in identifying certain features that might have different 

sentiment polarities in different domains as in Wu et al. (2016). Instead of combining 

training samples from different domains, we have developed a transfer learning-based 

algorithm that combines classifiers trained on S source domains for applying them to a 

target domain. The idea is to use the classifiers that have been learned from X previous 

tasks. Our algorithm computes the similarities between the source and target domains to 

infer weights to be associated with the classifiers trained on the source domains. Each 

classifier was given a weight that was derived from its domain’s similarity to the target 

domain as we will show later in the methodologies chapter. The algorithm is inspired by 

the AdaBoost algorithm. Except that the weights for the source classifiers were computed 

differently from how the classifier weights were calculated in Adaboost. As in any 

unsupervised transfer learning task, we assume that we do not have labeled samples in the 

target domain. Therefore, it was not possible to use AdaBoost's method in computing the 

weights of the classifiers in the ensemble as they were computed using the classifiers’ 
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training errors on the labeled training sets as we will show later in the methodologies 

chapter. In our case, we do not have a labeled training set in the target domain. So we have 

used the domain similarities to compute the weights of our source classifiers as we will 

show later on.  We have called our method Adaboost Inspired Transfer Learning Approach 

for Sentiment Classification (ATLAS).   In the next chapters, we will cover prior work in 

the literature review, the ATLAS method and other algorithms in the Methodology chapter, 

the results that we have recorded and how they compare against the results reported in Wu 

et al. (2017) and Chen et al. (2018) in the experimental results chapter and our conclusion 

and future work in our final chapter. 
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CHAPTER II 

LITERATURE REVIEW 

 

Several transfer learning/domain adaptation approaches have been proposed recently to 

reduce the accuracy loss in cross-domain sentiment classification. Approaches like spectral 

feature alignment (SFA), Structural correspondence learning (SCL) and graph-based 

algorithms such as RANKER and OPTIM. Ponomareva et al. (2012) compared between 

graph-based algorithms and the state of the art (SCL) and (SFA) algorithms where they 

concluded that the graph-based algorithms OPTIM and RANKER gave competitive 

accuracies when compared with SCL and SFA. In Aue and Gamon (2005), the authors 

experimented with four strategies to build sentiment classifiers to new target domains in 

the absence of large data in these domains. First, they trained a model on a mixture of 

labeled data from other domains, then tested their model on the target domain. Secondly, 

they trained the second model in the same way as the first but they limited the number of 

features used in training to those found in the target domain only. Thirdly, they trained 

ensembles of classifiers on different source domains with abundant labeled training data 

and tested it on the target domain. Finally, they developed a semi-supervised approach 

which uses small amounts of labeled data with large amounts of unlabeled data in the target 

domain. SVM was used for the first 3 strategies and Expectation Maximization for the 4th. 

The 4th approach gave the best performance as it was able to make use of both the 
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labeled and unlabeled data in the target domain. In Yang et al. (2006), a strategy based on 

selecting domain independent features from both domains was proposed. The method 

utilized fully labeled training sets from two domains to select highly ranked domain 

independent features from both domains and these features were later used in training the 

final classifier for the target domain. In Tan et al. (2009), a simple strategy was proposed 

where a base classifier is trained on the labeled data of the source domain and then the 10 

classifiers are used to label some informative observations in the target domain. Using the 

selected informative observations in the target domain, a new classifier is learned which is 

then used to classify test cases from the target domain. Blitzer et al. (2007) proposed an 

approach called structural correspondence learning (SCL) developed by Blitzer et al. 

(2006) for transfer learning. Given labeled reviews from the source domain, unlabeled 

reviews from the source and target domains, SCL first selects J features that occur 

frequently in the source and target domains and that have large mutual information gain 

with the source labels in the source domain. These features are called pivot features. A 

correlation matrix W is then formed to measure the correlation between the pivot and non-

pivot features in both domains where each row i represents the correlation between pivot 

feature i and all the other non-pivot features. Consequently, singular value decomposition 

(SVD) is applied to compute the left singular vectors transposed of W. The final features 

used for training and testing were a combination of the pivot features and the top k-x non-

pivot features that have the highest correlation with the pivot features. So the final set will 

contain k features. Daume et al. (2007) proposed a frustratingly easy domain adaptation 

that some people refer to it as Easy Adapt. The approach is appropriate in the case of having 

labeled source and target domain data. The approach is so simple, it could be implemented 
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as a preprocessing step and it performs better than the PRIOR baseline f 11 Daume et al. 

(2010) that utilized labeled and unlabeled data in the target domain. Tan et al. (2009) added 

an improvement to the SCL algorithm by proposing a feature weighted and instance 

weighted SCL model, which weighs the features as well as the instances’ polarity. The 

authors addressed the issue of having high-frequency domain-specific (HFDS) features that 

correspond with the pivot features when using SCL and how these features would decrease 

the influence of the original pivot features. Thus they have proposed a feature-weighted 

SCL to adjust the influence of HFDS features in building correspondence by assigning a 

larger weight for observations with the same sentiment polarity as the corresponding pivot 

features. Pan et al. (2010) proposed a method that works in the setting where there are only 

labeled examples in the source domain and unlabeled examples in the target domain. The 

algorithm uses a spectral feature alignment (SFA) algorithm to align domain-specific 

words from different domains into unified clusters. Domain-Independent words are like 

pivot words in SCL. SFA works by first constructing a bipartite graph with the domain-

independent words as one set of nodes and the domain-specific words as the other set of 

nodes. A domain-specific word is connected to a domain-independent word if they both 

co-occur together in the same document or within the same window where the weights on 

these links are the frequency of co-occurrence of these words together. Then domain-

specific words that have more connections with domain-independent words are clustered 

together to form a feature set, and the domain-independent words that have more 

connections with domain-specific words are clustered together in another feature set. Then 

the training and testing sets are represented in a combination of these feature set clusters 

created during the cross-domain adaptation process. He et al. (2011) extracted opinion 
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topics from both domains to link them. The resulting topics that cover both domains are 

then used as additional features to the original features created for classification. Glorot et 

al. (2011) proposed a deep 12 learning approach for domain adaptation which consisted of 

two steps. The first step involved using a system based on stacked De-Noising Auto-

Encoders with sparse rectifier units for unsupervised feature extraction from 22 different 

domains which provided high-level features for the linear classifier trained in the second 

step for the target domain. Their approach outperformed two of the state of the art 

approaches SCL and SFA which will be discussed later in the methodologies chapter. 

Guerra et al. (2011) proposed a transfer learning approach for real-time Twitter sentiment 

analysis by predicting opinion holder bias towards a topic by analyzing users’ retweets and 

endorsements and used this feature in combination with textual features to improve the 

overall accuracy of real-time Twitter sentiment analysis where a sufficiently labeled 

training data is not available. By integrating the bias learned from only 10% of users who 

commented about a specific topic, the authors were able to correctly classify the polarity 

of 80% to 90% of the tweets. Gong et al. (2013) proposed a new domain adaptation 

algorithm for sentiment classification and image classification. Their approach consists of 

three stages. The first stage is in extracting what they describe as “Landmark” features 

from the source domain that is somehow similar to the target domain. Afterward, these 

landmark features are added to the source and target domains to create new auxiliary 

domains from which the features for the original adaptation problem is extracted from. 

Afterward, the landmark feature labels (Landmark feature x: Sentiment Polarity) with the 

auxiliary domains’ features are combined to extract discriminative domain invariant 

features that are later fed into the sentiment classifier. Andreevskaia and Bergler et al. 
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(2008) wanted to integrate the domain independent knowledge of a lexicon based classifier 

(LBC) and the domain dependent knowledge of a corpus-based classifier (CBC) to 

overcome domain independence by training two systems, a lexicon based classifier that 

uses lexicons such as WordNet (Fellbaum et al. (1998)) and fuzzy logic for sentiment 

classification and another corpus-based classifier that is 13 trained on a small sample of in-

domain labeled data. The results show that combining a CBC and an LBC in an ensemble 

gives way better classification accuracies on various data sets from different domains than 

when only using an LBC or a CBC model. Zhou et al. (2010) tackled the problem of having 

a small amount of labeled training data while having abundant unlabeled data by 

developing a semi-supervised approach to sentiment classification called active deep nets 

(ADN). They first started with training the active deep net layers with greedy layer-wise 

restricted Boltzmann machines (RBM). They looped over the training set samples to 

calculate the weights of each layer in an ADN using two sigmoid functions. Then, the ADN 

was trained using the small labeled samples through gradient descent to minimize its loss 

function. Afterward, samples that had the smallest distances to the decision boundaries 

were selected for manual sentiment annotation and added to the labeled sample after which 

the whole process is repeated again for a specific number of iterations. The results show 

that their approach ADN outperformed or gave similar accuracies to other semi-supervised 

techniques such as TSVM, Active learning, DBN, MECH, and semi-supervised spectral 

learning. Kang Li and Zhao et al. (2009) proposed a domain adaptation method for 

sentiment analysis that consisted of two stages. The first stage is for feature translation by 

determining the common topics between the source and target domain as a bridge for the 

classifier to recognize the polarity distribution of the different domain-specific features that 
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describe these common domain independent topics. Then the second stage is for training a 

classifier on the source domain to classify unlabeled samples in the target domain to select 

some informative target samples to use for retraining the original classifier thus updating 

the original decision hyperplane till reaching a specific convergence threshold. Xia and 

Zong et al. (2011) proposed a POS-based ensemble approach for cross-domain sentiment 

classification. Since the authors tried to make use of their observation that some POS tags 

are domain dependent and some 14 are not. For instance, by efficiently utilizing the 

domain-independent POS-tagged features for words like ‘love’ and ‘great’ with ensemble 

classification, it would result in better performing cross-domain approaches when 

compared with using single classifiers that do not adapt on the target domain as shown in 

their study. Ponomareva and Thelwall et al. (2012) proposed an algorithm for automatic 

estimation of performance loss in the context of cross-domain sentiment classification. 

Factors like domain complexity are added for approximating performance loss when 

training a classifier on a source domain then testing it on data from a different target 

domain. Such algorithms help in deciding the size of the labeled target domain samples 

needed during the adaptation process as the amount of labeled target domain data is 

dependent on the similarity between the source and target domains as stated in Blitzer et 

al. (2006) and Blitzer et al. (2007). A comparative study between the graph based cross 

domain approaches and non-graph based approaches such as SCL and SFA were conducted 

by Ponomareva and Thelwall et al. (2012) and they have concluded that graph-based 

algorithms OPTIM and RANK consistently outperformed SCL and SFA for half of the 

cases. However, since the authors consider only the best accuracies obtained with RANK, 

such comparisons are not completely fair but it shows the potential of the RANK algorithm. 
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Wei and Pal et al. (2010) on the other hand use annotated English corpus for training a 

sentiment classifier to be tested on a corpus of another language which makes the 

adaptation problem in this case way harder. As the authors translate the target domain data 

then they resort to using reliable sections of the translations in addition to structural 

correspondence learning (SCL) for the adaptation problem. Bollegala et al. (2011) used 

multiple sources to construct a Sentiment Sensitive Thesaurus for cross-domain sentiment 

classification. The authors combined multiple source domains for training and they 

compared their results to other domain adaptation techniques such as SCL, SFA and LSA 

(which is based on latent semantic analysis). 15 The proposed solution beat all other 

previous approaches in three out of the four target domains tested. Scheible and Schutze et 

al. (2013) applied transfer learning (cross-domain adaptation) for the task of classifying 

sentences in a document as sentiment relevant text that affects the overall sentiment of a 

document or sentiment non-relevant text that has no impact on the overall document 

sentiment. The authors argued that transfer learning improves sentiment relevance 

classifications by 12 %. Li et al. (2013) proposed an active learning approach to cross-

domain sentiment analysis where two classifiers were trained. One trained on labeled data 

from the source domain and the other on labeled data from the target domain. Then both 

classifiers were combined to select informative unlabeled samples from the target domain 

called uncertain samples for manual labeling by a strategy called Query by Committee 

(QBC). After updating the training data with the newly labeled samples a label propagation 

based graph algorithm was deployed to propagate the class labels from the labeled data to 

the unlabeled data. The results show that the proposed system outperformed SCL in seven 

out of the twelve adaptation tasks on the Blitzer et al. (2007) benchmark data set. In 2015, 
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Chen et al. (2015) have proposed a Lifelong learning algorithm for sentiment analysis. 

Where given k domains, you train a system using k-1 domains then applying the system 

on the kth domain without using any data from the kth domain during training as we will 

discuss later on. An updated version of Chen et al. (2015) paper published in ACL 2015 

was published recently in January 2018 in Arxiv and we will be comparing our results 

against the updated version published in Chen et al. (2018). The authors have developed a 

system called LSC composed of four parts. The first part, was referred to as past 

information store (PIS) where they stored the results of previous tasks where for every 

word they would store the probabilities of each word given a positive or a negative label at 

task t Pt(w|+) and Pt(w|-) then the number of times each word w appeared in positive 

document and negative documents. The second part contained two types of information, 

document level knowledge (number of occurrences of word w in positive and negative 

documents) and number of past tasks where P(w|+) > P(w|-) and P(w|-) > P(w|+). The third 

component was a knowledge miner that performs counting and aggregation of the 

information collected in the PIS. Finally, the fourth component called knowledge-based 

learner that incorporates the knowledge collected using regularization techniques to 

optimize their algorithm’s learning. The advantages of the LSC algorithm in Chen et al. 

(2018) is that it uses no labeled or unlabeled samples from the target domain. However, we 

were able to tweak our approach (ATLAS) to function as a lifelong learning system without 

the need of any samples from the target domain as we will show in the results chapter when 

comparing between our approach (ATLAS) and the algorithm proposed by Chen et al. 

(2018). Wu et al. (2016) proposed a Multiple domain sentiment classification system that 

was based on first measuring the similarities between different domains by extracting the 
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term distributions between domains then inferring the sentiment relationships between 

these words across different domains. As a positive word could have a negative leaning 

polarity when used in another domain which is referred to as the feature mismatch problem. 

After that step, their system trains their global model on the information extracted from the 

initial training phase. Wu et al. (2017) came up with another technique called ASDA which 

we will compare our model against. Where the authors have trained their model using 

multiple source domains and an additional global lexicon that contained general sentiment 

polarity data. We will be comparing our system ATLAS against ASDA as it is the latest 

multiple source domain adaptation for sentiment classification system published. We will 

also compare our results on a second benchmark dataset Chen et al. (2018) and compare 

our results to the results published in Chen et al. (2018).
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CHAPTER III 

METHODOLOGIES 

 

In this chapter, we will go in-depth with explaining the methods that we have used in 

improving the cross-domain adaptation process for sentiment analysis when tested on four 

target domains of the Blitzer et al. (2007) benchmark dataset and 20 domains of the Chen 

et al. (2018) data set. Both data sets are publicly available.  

We have developed the ATLAS algorithm to be an unsupervised transfer learning 

algorithm. Where if given K domains. The algorithm utilizes the labeled and unlabeled 

reviews of the K-1 source domains plus the unlabeled samples of the target domain. 

However, we have managed to add a tweak to our algorithm that enables it to be a lifelong 

learning algorithm. Where it gets to use the labeled and unlabeled reviews from k-1 source 

domains without using any data from the target domain as we will explain later in the 

chapter. We will cover the transfer learning ATLAS then, we will showcase the lifelong 

learning ATLAS, how the reviews were represented and the distance similarity techniques 

used.
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TRANSFER LEARNING ATLAS OVERVIEW 

 

The algorithm that we have developed is called the ATLAS algorithm which stands for 

Adaboost Inspired Transfer Learning Approach for Sentiment Classification. The idea is 

inspired by the Adaboost algorithm where you have classifiers that have better than random 

guessing performance combined together to boost the overall classification performance 

when tested on a test set. Each classifier in the ensemble is given a weight that is learned 

from its training error. Then a weighted sum of the classifiers’ output is computed. If the 

weighted sum is above a certain threshold, a positive label is given to the test sample/input 

and a neg label is given otherwise. The weights are calculated based on the following 

equations: 

𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐷𝑤𝑖
𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
𝑖=0  (1) 

 

Figure 3-a: Overview of the Transfer Learning ATLAS System 
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Equation 1 represents how the total weights of all reviews in a single dataset is calculated. 

Each review/data point in a dataset has a weight that is equal to Dwi where i is the index 

of the review in the dataset. At the beginning of training, Dw is set randomly for all 

reviews and updated based on how many times a classifier classifies each review 

correctly. Therefore, reviews that get misclassified frequently get higher weight which 

will reflect on the weighted error of the classifier. 

𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 = ∑ 𝐷𝑤𝑖 ∗ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(�̂� == 𝑃)
𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
𝑖=0  (2) 

Equation 2 represents how the total weight of mistakes is calculated. The 

correct_prediction function returns 1 if the predicted output is different from the gold 

standard while 0 otherwise. The return of this function is multiplied by the data point’s 

weight and the computation is repeated across all points then all values are summed up 

to get the total weight of the mistakes which will be used in calculating the weighted 

error. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠

𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡
  (3) 

Equation 3 shows how the weighted error for each classifier is calculated by dividing the 

total weight of the data points/reviews that were incorrectly classified by the total weight 

of all the data points/reviews in the data set. 

𝑊𝑐 = 1 2⁄ ∗ 𝑙𝑛(
1−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑒𝑟𝑟𝑜𝑟(𝑐)

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑒𝑟𝑟𝑜𝑟(𝑐)
)  (4) 

Equation 4 shows how the final weights assigned to each classifier c in the ensemble is 

computed. The weighted error(c) represents the weighted error of classifier c. 

Adaboost proved to be a powerful machine learning algorithm that has been widely applied 

to different problems. We have wanted to develop an Adaboost inspired transfer learning 
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algorithm for sentiment classification. As a result, we have chosen the 4 main domains that 

were used in Bollegala et al. (2015) and various other ACL papers of the Blitzer et al. 

(2007) dataset. Then we randomly picked 10 additional domains included in the Blitzer et 

al. (2007) dataset to implement and test our ATLAS algorithm on. The total number of 

domains included were 14. We have tested our algorithm on the four main domains 

mentioned in Bollegala et al. (2015) paper and in the Wu et al. (2017) paper. The ATLAS 

idea is based on given labeled and unlabeled samples of k-1 domains and unlabeled 

samples of the kth target domain, k-1 classifiers are trained on their respective k-1 domains. 

Then the domain similarity of each of the k-1 source domains to the kth target domain is 

computed. The domain similarity distances recorded for the k-1 source domains are then 

normalized and used as weights to the k-1 classifiers that were trained on the k-1 domains. 

For example, if domain 1 has a distance x to the target domain, then the classifier trained 

on domain 1 will have a weight that is equal to the normalized value of x. All k-1 weights 

are calculated by computing the Euclidean norm of all the k-1 distances. Since Adaboost 

calculates the weights associated with each classifier in the ensemble by computing its 

training error, The ATLAS algorithm calculates the weights associated with the k-1 

classifiers by computing the similarities between the k-1 domains to their target domain as 

there are no labeled training samples in the target domain. Assuming that classifiers trained 

on similar domains to the target domain will perform better on the target domain as opposed 

to classifiers trained on domains that are far away from the target domain. We will start 

with covering our data representation methods, then the distance similarity metrics and the 

in-depth details of the ATLAS algorithm where we will show how we aggregate the outputs 

from the k-1 source classifiers when applying them on the target domain.  
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DOCUMENT REPRESENTATION METHODS 

 

We have represented each domain with three different representation methods. Term 

distribution, Average doc2vec vectors, the mean of the average word2vec vectors in all 

reviews in a specific domain. We will first cover the term distribution representation first 

then will cover the word2vec and doc2vec representations. The term distribution 

representation was straightforward and simple. The terms that had the Verb, Adverb, 

Adjective and Noun part of speech tags and a WordNet (Fellbaum et al. (1998)) positive 

or negative sentiment score of greater than 0.8 were counted. A dictionary of term counts 

was recorded for each domain. We have tweaked this representation by counting the 

frequencies of all Verbs, Adverbs, Adjectives, and Nouns in each domain without using a 

prior sentiment score knowledge as we will show in our second set of experiments on the 

Chen et al. (2018) benchmark dataset. The Word2Vec representation was introduced by 

Mikolov et al. (2013) and the doc2vec representation was introduced by Mikolov et al. 

(2014). The idea behind word2vec centers around learning numerical vectors of all words 

in a vocabulary that occur in a specific text corpus where words that co-occur together 

often are represented by vectors that are closer to each other in a vector space. The ideal 

word2vec model would assign word vectors to words such that when subtracting the word 

vector of the word “man” from the word vector of the word “King” then add the word 

vector of the word “Woman” get the word “queen”. We have trained our word2vec and 

doc2vec models on the reviews from all 14 domains mentioned in Table 3-a. However, 

since the book reviews domain has a large dataset size compared to other domains. We 

have decided to cap the maximum number of samples for us to use from each domain when 

training our word2vec and doc2vec models to 25000 reviews. Therefore, limiting the 
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influence of one domain on the doc2vec model. Table 3-a shows the number of positive, 

negative and unlabeled samples in each of our 14 domains. Word2Vec models are trained 

such that given the word vectors (which were randomly initialized at the start of training 

the word2vec model) of the 2k word window (t-k and t+k) around a target word t in a 

corpus that the word vectors of these words gets updated so that they get to predict the 

word vector of the target word by maximizing the average log probability in equation 5.   

The following equations are from Mikolov et al. (2014). 

1

𝑇
∑ log𝑃(𝑤𝑡|𝑤𝑡−𝑘 , …… ,𝑤𝑡+𝑘)
𝑇−𝑘
𝑡=𝑘   (5) 

 

𝑃(𝑤𝑡|𝑤𝑡−𝑘, …… ,𝑤𝑡+𝑘) = 
𝑒
𝑦𝑤𝑡

∑ 𝑒𝑦𝑖𝑖
  (6) 

The denominator of equation 6 represents the summation of the exponential of the un-

normalized log probabilities of all output words. While the numerator represents the 

exponential of the un-normalized log probability of word t. The value of y is calculated 

according to the following multi-class classifier like softmax which is represented by the 

following equation from Mikolov et al. (2014): 

Table 3-a: The number of positive, negative and unlabeled samples of the Blitzer et al. 

(2007) dataset 

 

 

 

 

 

Domain Positive Samples Negative Samples Unlabeled Samples Total Samples

DVD 1000 1000 122438 124438

Books 1000 1000 973194 975194

Kitchen 1000 1000 17856 19856

Electronics 1000 1000 21009 23009

Apparel 1000 1000 7252 9252

Automotive 584 152 0 736

Baby 1000 900 2356 4256

Beauty 1000 493 1391 2884

CameraPhoto 1000 999 5409 7408

ComputerVideo 1000 458 1313 2771

Gourmet 1000 208 367 1575

Grocery 1000 352 1280 2632

Healthpersonal 1000 1000 5225 7225

JewelryWatches 1000 292 689 1981
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𝑦 = 𝑏 + 𝑈ℎ(𝑤𝑡−𝑘 , … . . , 𝑤𝑡+𝑘;𝑊)  (7) 

Where the U and b are softmax parameters and h is the average of the word vectors of the 

words surrounding the target word 𝑤𝑡 from a set of all the weight vectors of all the words 

in the vocabulary W. The Doc2Vec vectors which are referred to as paragraph vectors were 

inspired from the word vectors mentioned earlier according to Mikolov et al. (2014). The 

idea behind word vectors is given k number of words in a specific context to predict the 

next word given the word vectors of the previous k words in the context. 

Paragraph/doc2vec vectors are tasked with predicting the next word given many sequences 

sampled from the paragraph. A paragraph could be a product review or an article or a tweet. 

Similar to word vectors, Doc2vec Models are trained such that each paragraph gets a 

unique vector, then the word vectors of all the words in a paragraph/review are averaged 

with the paragraph vector to predict the next word in a context. The resulting vector is then 

used as a unique vector for representing the paragraph/review. Training the paragraph 

vectors is similar to word vectors except that in equation 7, instead of averaging the word 

vectors only, the paragraph vector is also averaged with the word vectors. This model is 

called the distributed memory model of paragraph vectors. As the paragraph vector that is 

averaged with the word vectors acts as memory in capturing the context of the 

review/paragraph. The paragraph vector is shared across various contexts/sequences 

sampled from the same paragraph but not across paragraphs. Therefore, the paragraph 

vector gets updated as more contexts get samples from the paragraph and not just for one 

sequence in the paragraph thus capturing the context of the paragraph/review. Equation 5 

represents the multiclass classifier/probability function that needs to be maximized for the 

word embedding to be learned. We have trained a 200 dimensional and 400 dimensional 

word2vec models in addition to a 200 dimensional and a 400 dimensional doc2vec models. 
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These 4 models were used in developing four ways for representing the 14 different 

domains. The result of these representations will be discussed in more detail in the results 

chapter. Here, we will show how these models were used in representing our domains. We 

have experimented with representing our domains using 200 dimensional word2vec 

vectors, 400 dimensional word2vec vectors, 200 dimensional doc2vec vectors, and a 400 

dimensional doc2vec vectors. When representing a specific domain using the 200 

dimensional word2vec model, we had to iterate over each review in the domain then we 

have calculated the 200 dimensional word vector of each word in the review then we have 

averaged all the word vectors in the review to get an average word2vec vector for each 

review. After calculating the average word2vec vector of each review in a domain. The 

average of all the average word2vec vectors in the domain is computed to get the mean 

average word2vec 200 dimensional vector that represents the domain. The same process is 

repeated when using the 400 dimensional word2vec model which lead to a 400 dimensional 

mean average word2vec vector. On the other hand, when using the doc2vec model. The 

doc2vec vector of each review in a domain is calculated using a doc2vec model. The trained 

doc2vec model takes a complete review as input and outputs one 200 dimensional vector 

in case of using the 200 dimensional doc2vec model and 400 dimensional vector in case of 

using the 400 dimensional doc2vec model. Then, all the doc2vec vectors of all reviews in 

a domain are averaged to get the average doc2vec vector that represents that domain. 
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DISTANCE METRICS 

 

After representing our domains using the term distribution, Word2vec and Doc2vec 

representation methods. The second task was to measure how far these domains were from 

each other. Before aggregating or applying the ATLAS algorithm on the target test set, we 

measured the distances from the source domains to the target domain. These distances were 

then normalized using the Euclidean norm function to get the weights associated with the 

source classifiers. A classifier trained on a domain with a distance d and a normalized 

distance w to the target domain will have a weight equal to w associated with it when 

performing the ATLAS algorithm. We have used two distance measures in our ATLAS 

implementation, the cosine distance and the Euclidean Distance. We have used Low et al. 

(2012) for computing the cosine and Euclidean distances in addition to using their graphlab 

library in training our models. It is important to note that when measuring the distance 

between any source and target domains that were represented by the term frequency 

dictionary representation, the keys that were not found in one of the two dictionaries were 

considered to have a value of zero. For example, if a word such as “great” is in the source 

dictionary and not in the target dictionary then it is considered to be present in the target 

domain’s dictionary with a value of zero. Which implies that there are zero occurrences of 

that word in the target domain. In case of using the average doc2vec or mean average 

word2vec representations, the vectors in the source and target domains were treated as 

numerical lists of equal size so we did not have the same missing key issue as in the term 

frequency representation. Given two dictionaries or lists of equal lengths, the following 

equation shows how the cosine distance was calculated not the cosine similarity. Assuming 
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that the inputs x and y have d distinct variables. The output is a float number that represents 

the distance between the two input vectors. 

𝐶𝑜𝑠𝑖𝑛𝑒_𝐷(𝑥, 𝑦) = 1 −
∑ 𝑥𝑖𝑦𝑖
𝑑
𝑖

√∑ 𝑥𝑖
2𝑑

𝑖 +√∑ 𝑦𝑖
2𝑑

𝑖

  (8) 

The following equation shows the Euclidean distance equation for calculating distances 

between dictionaries and lists of equal lengths. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑑

𝑖   (9) 

d is the number of variables in each of the input vectors x and y. 

After calculating the Euclidean and Cosine distances from each source domain to the target, 

we normalized them using the Euclidean Norm function below then used the normalized 

distances from this function as weights for our source domains’ classifiers. The Euclidean 

norm is also referred to as the Frobenius norm. It is equal to the square root of the 

summation of the squares of its elements. The distances were normalized by dividing them 

by the Euclidean Norm which is calculated according to equation 11. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑁𝑜𝑟𝑚(𝑥) = √∑ (𝑥𝑖)
2𝑑

𝑖   (10) 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑁𝑜𝑟𝑚(𝑥)
  (11) 

𝐶𝑊 = 1 −𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   (12) 

 

After normalizing the Euclidean and Cosine distances using equations 10 and 11, they were 

then substituted within Equation 12 to compute the weight vector. Each normalized 

distance in the 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 vector was subtracted from 1 such that classifiers that were trained 

on domains that were closer to the target domain (smaller normalized distance to target) 

will have a larger weight when compared to other classifiers that were trained on domains 
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that were further away from target. The next step was to aggregate the outputs of the source 

classifiers using the weights calculated in equation 12. The following equations show how 

the output of these classifiers were aggregated. Given n source classifiers numbered from 

1 to n. The following equation shows how the weights calculated in equations 8 through 

12 were utilized.  

When training each logistic regression classifier on its corresponding source domain, the 

feature columns that are used in training the classifier are the unigrams, bigrams, trigrams, 

and tfidf. The unigrams are the counts of the single words in a sentence. While the bigrams 

are the counts of all the 2 word phrased that occur in the sentence and trigrams are the 

counts of all the 3-word phrases that occur in a sentence. The tfidf which stands for term 

Frequency-Inverse document frequency is a measure of a word w’s local frequency vs w’s 

global rarity in a sentence. Which is equal to the term frequency in a document/review D 

multiplied by the log of the total number of reviews/documents in a domain divided by the 

number of documents that word w appeared in. Equation 13 shows the tfidf calculation 

given word w and review d. 

𝑡𝑓𝑖𝑑𝑓(𝑤𝑜𝑟𝑑, 𝑑) = 𝑡𝑓(𝑤𝑜𝑟𝑑, 𝑑) ∗ log(
𝑁

𝑓(𝑤𝑜𝑟𝑑)
)  (13) 

The tf(word,d) term represents the frequency of word w in document/review d. While N 

represents the total number of documents/reviews in a domain. The f(word) term in 

equation 13, represents the number of documents in the domain that contain the word w 

while N is the total number of documents/reviews in the domain. After the tfidf is computed 

for each labeled training set in each domain along with the other features mentioned earlier 

(1-grams, 2-grams, 3-grams), we have trained a binary logistic regression classifier for 

each domain using the following equations. These four feature columns were translated to 
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thousands of unpacked features. These features were used in calculating the score in 

equation 14 that was substituted within equation 15 for calculating the probability 

P(Y=1|F1, F2,…Fn)  of a positive label given all the unpacked features taken from the four 

feature columns (1-grams, 2-grams, 3-grams, tfidf). 

𝑆𝑐𝑜𝑟𝑒 =  (𝑤𝑒𝑖𝑔ℎ𝑡1 ∗ 𝑓1) + (𝑤𝑒𝑖𝑔ℎ𝑡2 ∗ 𝑓2) + ⋯+ (𝑤𝑒𝑖𝑔ℎ𝑡𝑛 ∗ 𝑓𝑛)  (14) 

𝑓𝑖(𝑊𝑒𝑖𝑔ℎ𝑡𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = 𝑃(𝑌 = 1|𝑓1, 𝑓2, … , 𝑓𝑛, 𝑤𝑒𝑖𝑔ℎ𝑡1, 𝑤𝑒𝑖𝑔ℎ𝑡2, … . 𝑤𝑒𝑖𝑔ℎ𝑡2𝑛) = 
1

1+𝑒−𝑆𝑐𝑜𝑟𝑒
  (15) 

Where W stands for all the weights associated with all the features used in training the 

logistic regression classifiers. The training process is performed using the following loss 

function where n is the number of samples iterated on per single iteration over the training 

set. The algorithm used for optimization was stochastic gradient descent. The first term in 

equation 16 (𝑦𝑖 − 𝑓𝑖(𝑊𝑒𝑖𝑔ℎ𝑡𝑠))2 represents the difference between the true label and the 

classification probability of the logistic regression model which stands for the residual sum 

of squares error (RSS). While 𝜆1 and 𝜆2 are regularization parameters that represent the L1 

and L2 penalties that are used in decreasing/penalizing the values of our feature weights to 

avoid overfitting. 

min∑ (𝑦𝑖 − 𝑓𝑖(𝑊𝑒𝑖𝑔ℎ𝑡𝑠))2 +𝜆1||𝑊𝑒𝑖𝑔ℎ𝑡𝑠||
1
+𝜆2||𝑊𝑒𝑖𝑔ℎ𝑡𝑠||

2

2𝑛
𝑖=1   (16) 

After training the logistic regression classifiers using equations 14 through 16, we have 

used the class weights (CW) calculated earlier in equation 12 in aggregating the outputs of 

the 13 source domain classifiers on the target domain’s test set. Equation 17 shows the 

feature columns of the test set that were used at test time. 

𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑣𝑖𝑒𝑤𝑖 = 𝑡𝑒𝑠𝑡_𝑟𝑒𝑣𝑖𝑒𝑤𝑖[𝑡𝑓𝑖𝑑𝑓, 1 − 𝑔𝑟𝑎𝑚, 2 − 𝑔𝑟𝑎𝑚, 3 − 𝑔𝑟𝑎𝑚]  (17) 

For each review in the test set, the final weights of each classifier in the ensemble were 

used in predicting the label of the review given the features of the input review. Afterward, 
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the output of the classifier was multiplied by its classifier weight calculated earlier in 

equation 12. The classifier only outputs 1 for a positive label and 0 for a negative label. 

𝐴𝑇𝐿𝐴𝑆𝑂𝑢𝑡𝑝𝑢𝑡(𝐹, 𝐶𝑊, 𝑖𝑛𝑝𝑢𝑡𝑟𝑒𝑣𝑖𝑒𝑤𝑖
) = ∑ 𝑐𝑤𝑖 ∗ 𝐹𝑖(𝑊𝑒𝑖𝑔ℎ𝑡𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑣𝑖𝑒𝑤)𝑖=𝑁−1

𝑖=0   (18) 

If  𝐴𝑇𝐿𝐴𝑆𝑂𝑢𝑡𝑝𝑢𝑡(𝐹, 𝐶𝑊, 𝑖𝑛𝑝𝑢𝑡𝑟𝑒𝑣𝑖𝑒𝑤𝑖
) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ ∑ 𝑐𝑤𝑗

𝑗=𝑛−1
𝑗=0   then the review will be classified 

as positive otherwise the review will be classified as negative. The threshold value could 

be tuned during training by varying its value between 0.5 and 0.9 and recording the 

threshold value that resulted in the best performance on the validation set (not the test set). 

We will show in the results section that a threshold value between 0.6 and 0.7 resulted in 

the best accuracies and f1-scores recorded. After applying equation 18 on all test reviews, 

the ATLAS output was recorded and the accuracies and F1_Scores are shown in the results 

section. 
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LIFELONG LEARNING

 

ATLAS

 

 

We have added a slight tweak to our ATLAS algorithm to function as a lifelong learning 

machine learning system instead of a transfer learning machine learning system. A transfer 

learning system learns from k-1 source domains and makes use of some unlabeled samples 

from the target domain. While a lifelong learning system learns from k-1 domains without 

using any labeled or unlabeled samples from the target domain during training. So instead 

of using the target domain’s test set in addition to some unlabeled samples from the target 

domain when measuring the distances from all source domains to the target domain in 

equations 8 and 9, we have only measured the distance at test time between each test review 

to all labeled and unlabeled samples of the 13 source domains. The downside of this 

approach was the considerable increase in the time taken by the ATLAS system in 

classifying all test reviews as the distances (and therefore the classifier weights CWs) were

 

re-computed with every test review. We have tested this tweak on the Chen et al. (2018

) 

benchmark dataset and the accuracies in addition to the F1scores are shown in the 

experimental results chapter. The equation we used in calculating the F1Score is shown 

below:

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 

(19)

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

 

(20)

 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

 

(21)

 

 



 

27 
 

The precision is equal to the sum of the true positives divided by the sum of the true 

positives and the false positives. While the recall is computed by dividing the sum of 

the true positives by the sum of the true positives and the false negatives. The F1Score 

is a function of the precision and recall as shown in equation 21. 

 

 

 

 

 

 

 

 

Figure 3-b: Overview of the Lifelong Learning ATLAS System 
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 DEEP TEXT GENERATION

 

 

In this section, we will discuss a small experiment that is not related to our proposed 

ATLAS approach that we have come up with to test the effectiveness of deep learning 

based text generation for our transfer learning problem. The results we recorded did not 

encourage us to move along that route which led us to develop the ATLAS method. Here 

we wanted to show some of the text generation methods we have experimented with to 

generate labeled samples in the target domain for learning a target domain classifier. We 

have tested the text generation approaches on the kitchen domain of the Blitzer et al. (2007) 

and we have included the results in the experimental results section. The system consisted 

of three parts as shown in Figure 1. The first part focused on the rule-based sentiment 

labeling of the unlabeled kitchen product reviews of the Blitzer et al. (2007) data set. The 

high confidence positive and high confidence negative labeled samples were chosen and 

named seed samples. The second part involved training deep learning based recursive 

 

Figure 3-c: Deep text generation - System Overview 
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neural networks (LSTM and GRU), and Markov chain based text generators on the seed 

samples for generating positive and negative kitchen reviews. Finally, the third component 

focused on training a logistic regression model on the generated positive samples, negative 

samples and seed samples combined. The unlabeled kitchen product reviews were 

preprocessed according to Abdelwahab et al. (2015). In addition to removing stop words 

and replacing positive bearing ngrams with a “positive” symbol and similarly replacing 

negative bearing ngrams with a “negative” symbol. We have then used a simple rule-based 

technique in labeling the target domain samples then selected the high confidence samples 

from these labeled samples to be used for training the language models/text generators. 

The purpose of using a simple rule-based labeling technique for labeling a small sample of 

the target domain reviews was to compare the tolerance of the deep learning based text 

generation techniques against that of the Markov chain based techniques when being 

trained on a data set that is not 100% accurate. We will evaluate the performance of each 

text generation technique based on the F1Scores and accuracies achieved by the end 

classifier when tested on the benchmark kitchen test set (Blitzer et al. 2007) after being 

trained on the data generated from each text generation technique separately. The rule-

based labeling algorithm is formed of the following steps.  For each word in a review, a 

positive polarity score was calculated using the WordNet electronic Library’s (Fellbaum 

et al. (1998)) pos_score function. Unigrams that had no pos_score or neg_score were 

assigned 0. The positive polarity scores were summed up then divided by the number of 

unigrams that had pos_score to get the average positive polarity score for the whole review, 

which was then stored. For each word in a review, a negative polarity score was calculated 

using the WordNet (Fellbaum et al. (1998)) Library’s neg_score function. Unigrams that 
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had no neg_score were assigned 0. The negative polarity scores were summed up then 

divided by the number of unigrams that had neg_score to get the average negative polarity 

score for the whole review which was then stored. If there were no negative polarity ngrams 

in the review, the average negative polarity score was set to zero. Likewise, if there was no 

positive polarity bearing ngrams in the review, the average positive polarity score was set 

to zero. The average negative polarity score was subtracted from the average positive 

polarity score to get the polarity score difference between the average positive and average 

negative scores. If the difference was greater than +0.1, the review was labeled positive 

and if the difference was less than -0.1, the review was labeled negative. Reviews that had 

a polarity score difference in between -0.1 and 0.1 were labeled as unknown and were not 

used in training the language models. The reviews that were given a positive or a negative 

label after the rule-based labeling will be referred to as the “seed reviews” throughout the 

paper. The seed reviews were used in training the LSTM and GRU RNN models for text 

generation as will be shown in the next section. The following equations illustrate how the 

polarity score was calculated for each review. The term rev[i] in equations 1 and 2 stands 

for ith review in the data set. 

𝐴𝑣𝑔𝑃 =
1

𝑝
∑ 𝑝𝑜𝑠_𝑠𝑐𝑜𝑟𝑒(𝑟𝑒𝑣[𝑖])
𝑙𝑒𝑛(𝑟𝑒𝑣𝑖𝑒𝑤)
𝑖=0   (22) 

 

𝐴𝑣𝑔𝑁 =
1

𝑛
∑ 𝑛𝑒𝑔_𝑠𝑐𝑜𝑟𝑒(𝑟𝑒𝑣[𝑖])
𝑙𝑒𝑛(𝑟𝑒𝑣𝑖𝑒𝑤)
𝑖=0  (23) 

 

𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 𝐴𝑣𝑔𝑃 − 𝐴𝑣𝑔𝑁                  (24) 
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TRAINING GRU, LSTM AND MARKOV CHAIN MODELS 

 

We have experimented with varying the hidden state vector size and the number of layers 

of a GRU RNN and LSTM RNN networks. We have experimented with hidden state vector 

sizes of 64, 128, 256 and 512. Afterward, we kept the hidden state vector size at 50 then 

varied the number of layers from 2 to 5 then 10. Which lead us to train one GRU RNN 

model and one LSTM RNN model per hidden state vector size per polarity (positive text 

or negative text). Then one GRU RNN model and one LSTM RNN model per number of 

layers per polarity. While we varied the number of layers and the hidden size, we have set 

the number of epochs to 2000, learning rate to 0.01, chunk length to 200 and batch size to 

100. The GRU and LSTM implementation were based on Robertson et al. (2017) 

implementation of the Character level text generation using GRU and LSTM. We have 

trained four Markov chain text generators. One Markov chain positive text generator of 

order 1, Markov chain negative text generator of order 1, Markov positive text generator 

of order 10 and Markov chain negative text generator of order 10. Each model was used in 

generating a balanced dataset of 100,000 positive and negative reviews for training the end 

classifier. The purpose is to compare using text generated by Markov chain generators that 

were trained on poorly unsupervised labeled seed samples against deep learning based text 

generators by supplying the data generated by each technique to the same end classifier 

and comparing the accuracies and F1Scores achieved when using the Markov chain based 

generated text vs the deep learning based generated text. The following equation represents 

the Markov chain model with order m. Where n>m and m was set to 1 then to 10. 

𝑃𝑟(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1, 𝑋𝑛−2 = 𝑥𝑛−2, . . , 𝑋1 = 𝑥1) =
𝑃𝑟(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1, 𝑋𝑛−2 = 𝑥𝑛−2, . . , 𝑋𝑛−𝑚 = 𝑥𝑛−𝑚)  (25) 
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GENERATING TEXT AND TRAINING THE END CLASSIFIER 

 

After varying the number of RNN layers and feature vector size we have ended up with 14 

GRU models and 14 LSTM models. Each model generated 25,000 product reviews which 

made the total number of GRU generated reviews and LSTM generated reviews to 350,000 

each. The 350,000 reviews consisted of 175,000 positive reviews and 175,000 negative 

reviews. After generating the positive and negative reviews, a logistic regression classifier 

was trained on the generated text combined with the seed samples and tested. Each 

generated training set used in training the model was parsed into a graphlab SFrame. 

Afterward, each review was pre-processed as in Abdelwahab et al. (2016) then a TFIDF 

calculation is made for each review in the SFrame. The logistic regression model was 

trained on the TFIDF column which resulted in hundreds of thousands of unpacked features 

where we had to use L1 and L2 regularization to do dimensionality reduction and to avoid 

overfitting. We have performed a grid search to find the near optimal L1 and L2 penalty 

values for the logistic regression model. The values taken by the L1 or L2 penalty variables 

during grid search were exponentially distributed. The graphlab library was used for 

training the logistic regression model. The following equations represent how the model 

was learned. Given a set of features xi, and a label yi∈{0,1}, logistic regression interprets 

the probability that the label is in one class as a logistic function of a linear combination of 

the features. 

𝑓𝑖(𝜃) = 𝑃(𝑦𝑖 = 1|𝑥) =
1

1+𝑒−𝜃
𝑇𝑥

                  (26) 
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The objective function tries to minimizes the output of the sigmoid function in equation 4 

while adding the two regularization terms l1 and l2 adding the two regularization terms l1 

and l2 penalties using mini batch gradient descent. Where 𝜃 is the weight matrix. 

𝑚𝑖𝑛𝜃 ∑ 𝑓𝑖(𝜃) + 𝜆1||𝜃||1 + 𝜆2||𝜃||2
𝑛
𝑖=1        (27) 
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MARKOV CHAIN TRAINING ON SMALL SAMPLE OF LABELED TARGET 

DOMAIN DATA 

 

We have trained additional Markov Chain text generators on 10% (160 positive reviews 

and 160 negative reviews) of the target domain labeled kitchen dataset in Blitzer et al. 

(2007) for the purpose of highlighting the major improvement in the performance of the 

Markov Chain text generators when training it on a small sample of 100% correctly labeled 

data samples. We have trained two Markov chain (one model with order 1 and the other 

with order 10) positive text generators and similarly two Markov chain based negative text 

generators. Each generator produced 50000 reviews. We have combined the positive and 

negative reviews generated by the order 1 generators into one data set and named it 

Markov_Labeled_1 and likewise, we have combined the positive and negative reviews 

generated by the order 10 models into one dataset called Markov_Labeled_10. We have 

added the 10% labeled reviews to each of these two data sets and supplied the end data sets 

to the end classifier. The results that we got show clearly that there was a double-digit 

improvement in accuracy and F1Score when using text generated from Markov chain text 

generators trained on 100% correctly labeled samples than using text generated from 

Markov chain text generators that were trained on a larger data set that was labeled by a 

simple unsupervised rule-based labelling technique that has an accuracy of 71% on the 

Blitzer Kitchen test set. The size of the weakly labeled (rule-based labeled) seed samples 

that were used in training the Markov Chain text generators was 33567, which consisted 

of 8093 negative labeled reviews and 25474 positive labeled reviews.
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CHAPTER IV 

EXPERIMENTAL RESULTS 

 

In this chapter, we will showcase our results for our Adaboost Inspired transfer learning 

approach for sentiment analysis ATLAS.  We have used two benchmark datasets. The 

Blitzer et al. (2007) and Chen et al. (2018). We will start first with explaining our results 

on the Blitzer et al. (2007) dataset then will discuss our results on the Chen et al. (2018) 

dataset. There are 24 different domains in the Blitzer et al. (2007) dataset. Most papers use 

only four domains to test their algorithm on. These domains are the DVD, Electronics, 

Kitchen, and Book product reviews. We have used these domains and we have randomly 

selected 10 additional domains from the Blitzer et al. (2007) to be included in our 

experiments. Table 3-a shown earlier outlines the domains included in our experiments 

with the number of their positive, negative and neutral reviews. Our algorithm as explained 

in the Methodologies section uses labeled and unlabeled data from the k-1 source domains 

and only unlabeled data from the kth target domain. The unlabeled reviews were mainly 

used in measuring domain similarities between different domains. 
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RESULTS OVERVIEW 

 

We have started with the term frequency representation to represent each domain with its 

most occurring unigrams then we have alternated between the following domains Kitchen, 

DVD, Books, and Electronics by setting each one of them as the target domain and the rest 

of the remaining 13 domains were used as the source domains for training. We have started 

with training each classifier on its own domain first then recorded its test accuracy on the 

target domain’s test set to show how each of these classifiers would perform if applied on 

the target test set directly. Each classifier’s test accuracy on the test set was never used in 

training our system or in even ranking our classifiers in any way. For each domain, we 

have tabulated all of our results on the test set provided by Bollegala (2015) that was 

sampled from the Blitzer et al. (2007). Moreover, we have generated five random balanced 

test sets generated in the same manner as in Wu et al. (2017) from the Blitzer et al. (2007) 

then applied each of the source domain classifiers on the five randomly generated test sets 

in the target domain. Afterward, we have averaged the accuracies on the five test sets for 

each of the four target domains and we have shown the results in the in-depth analysis 

section.  We will start with our algorithm’s performance on the Bollegala et al. (2015) test 

sets that were sampled from the Blitzer et al. (2007). The following tables show the best 

results achieved on the Bollegala et al. (2015) exact test sets that consisted of 200 positive 

samples and 200 negative samples for each target domain. Tables 4-a and 4-b show the 

best accuracies achieved by the ATLAS algorithm when varying the classification 

threshold from 0.5 to 0.9. Table 4-c shows the best accuracies when using the Euclidean 

distance while Table 4-d shows the best accuracies recorded when using the Cosine 

distance. The Threshold row shows the classification threshold that contributed to 
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achieving the best accuracy. As for the classifiers row, we will show in the in-depth 

analysis that the source classifiers trained on the top n/2 closest domains to the target 

domain are called top performing classifiers while the classifiers trained on the top n/2 

furthest domains to the target domain are called least performing classifiers. These titles 

are not based on the performance of the individual source classifiers on the target domain’s 

test set in anyway. After identifying the top performing and least performing classifiers. 

We have formed three groups of ensembles to experiment with. The first ensemble contains 

the top performing classifiers only and called top performing. The second is called least 

performing group which contains the least performing classifiers only and the third is called 

the top_least performing group that contains both, the top performing and least performing 

classifiers.  Therefore, the classifiers row shows which group of classifiers resulted in the 

best accuracy achieved on the target test set. The best accuracy results in tables 4-a and 4-

b are better than the results presented in Bollegala et al. (2015) which is understandable. 

As Bollegala et al. (2015) performed transfer learning from one source domain to the target. 

However, our approach is a multi-source domain to target. As a result, we wanted to 

compare our results with another multi-source domain transfer learning system like the one 

presented in Wu et al. (2017). Tables 4-c and 4-d show the best average accuracies recorded 

when testing the ATLAS system on the five randomly generated test sets and comparing 

our results to a similar multi-domain transfer learning technique, the ASDA outlined in Wu 

et al. (2017). 
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Table 4-a: The best accuracies recorded when using the ATLAS algorithm on the exact Bollegala test sets 

that were sampled from the Blitzer et al. (2007) dataset. 

 

 

The results achieved beat the results reported by Bollegala et al. (2015). However, we are 

not comparing our algorithm against Bollegala et al. (2015). As their algorithm was not a 

multi-source cross domain adaptation algorithm. It was adapting a sentiment analyzer from 

one source domain to one target domain. We will compare our algorithm (ATLAS) against 

Wu et al. (2017) ASDA algorithm when using the same benchmark dataset, they have 

experimented with (Blitzer et al. (2007)) and we will compare our algorithm against the 

Lifelong learning approach of Chen et al. (2018) on a different benchmark dataset that they 

have introduced and provided publicly for researchers to experiment with. 

Domain Kitchen Books Electronics DVD

Best Accuracy 0.874 0.73 0.8275 0.7775

Distance Metric Cosine Cosine Cosine Cosine

Threshold 0.6 0.6 0.6 0.6

Classifiers Top Top Top_Least Top_Least

Blitzer et al. (2007) Dataset

Highest Cosine Accuarcy on Bollegala's Blitzer test set

Table 4-b Best Accuracies when using the Euclidean distance on the Bollegala test 

sets (sampled from Blitzer et al. (2007)) 

 

 

 

 

 

 

Table 2 

 

 

 

 

 

Domain Kitchen Books Electronics DVD

Best Accuracy 0.875 0.745 0.83 0.7825

Distance Metric Euc Euc Euc Euc

Threshold 0.6 0.6 0.6 0.6

Classifiers Top Top_Least Top_Least Top_Least

Blitzer et al. (2007) Dataset

Highest Accuracies on the Bollegala's Blizter test set in general
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In Wu et al. (2017), they have developed a multi-domain cross domain adaptation 

algorithm. However, they did not provide their exact test sets but they provided how they 

sampled their test reviews from the same benchmark Blitzer et al. (2007) dataset that we 

have used. Each of the four mentioned domains (Books, Kitchen, Electronics, DVD) 

contained 1000 positive and 1000 negative reviews. They have randomly sampled 500 

positives and 500 negative reviews from each domain to form a 1000 sample test set for 

each domain. We have randomly sampled 500 positives and 500 negative samples in the 

same fashion then repeated this process 4 times until we had 5 randomly sampled test sets 

for each of these 4 domains. The accuracies and f1scores we have recorded for each domain 

on these 5 test sets were averaged to have a fairer comparison with Wu et al.  (2017).  Table 

4-c shows the best average accuracy across the five test sets for each domain recorded. 

Table 4-d shows the best average accuracies recorded on the random test sets sampled for 

each of the four target domains when applying ATLAS using the Cosine distance similarity 

measure. Which is not significantly different from the results we recorded in Table 4-c.  

Table 4-d: Best average accuracies recorded for ATLAS when using Cosine distance 

 

For each of these 5 test sets, we have varied the classification threshold from 0.5 to 0.9 to 

record the effect of increasing precision on the overall performance. The best accuracy and 

Domain Books Kitchen Electronics DVD

Average Best Accuracy 0.7918 0.8762 0.8626 0.8082

Distance Measure Cosine Cosine Cosine Cosine

Average best accuracies on the randomly generated test sets

Table 4-c Best average accuracies on the randomly generated test sets by 

ATLAS when using Euclidean distance 

 

 

 

 

Domain Books Kitchen Electronics DVD

Average Best Accuracy 0.7918 0.8762 0.8618 0.8082

Distance Measure Euclidean Euclidean Euclidean Euclidean

Average best accuracies on the randomly generated test sets
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its corresponding threshold were recorded. The best accuracies achieved on the 5 datasets 

were averaged and recorded in the tables above. The best accuracies achieved across the 4 

same domains in Wu et al. (2017) (ASDA) are shown in table 4-e. The authors of Wu et 

al. (2017) have compared their ASDA algorithm against approaches like SFA, SCL and 

others techniques mentioned in their paper.  The best accuracy achieved by the ATLAS 

algorithm outperformed the accuracies reported in Wu et al. (2017) of the ASDA algorithm 

in each of the four target domains as shown in tables 4-c, 4-d, and 4-e. 

Table 4-e: The best accuracies reported by Wu et al. (2017) (ASDA) 

 

The complexity of our approach could be analyzed by breaking down our ATLAS 

algorithm into five different parts that could be executed in series. N in the following steps 

represents the number of reviews per training set. Nf represents the number of unpacked 

features (N-gram counts, TFIDF values of ngrams). Number_Iterations represents the max 

number of iterations set for the classifier to converge. Batch_size represents the number of 

samples used for updating a single weight during training using stochastic gradient descent. 

The Batch_size could be set between 2 and the size of the training set. If we have k 

domains, the k-1 represents the number of source domains. Number_keys represent the 

number of words covered in the term frequency representation in the source and target 

dictionary/hash table. Finally, N_testsamples represents the number of test samples in the 

target domain at test time. 

1. Training a single source classifier: 

o Time: O(Number_Iterations * (N * Nf + N + 1000*NF))  

Domain Kitchen Books Electronics DVD

 Accuracy 0.8329 0.7508 0.8014 0.7764

Best Accuracies ASDA algorithm
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o Space: O(Number_Iterations * (N * Nf + N + batch_size*NF)) or 

O(Number_Iterations * (1 * Nf + 1 + batch_size *NF)) in case of loading 

the reviews one by one to memory.  

2. Measuring distances from source to target domains.  

o Time: O(Number_keys) * (k-1)  

o Space: O(2*Number_keys) * k-1 

3. Normalizing the distances.  

o Time: O(k-1)  

o Space: O(k-1) 

4. Using the k-1 classifiers for predictions.  

o Time: O(k-1*N_testsamples)  

o Space: O(N_testsamples) 

5. Aggregating the predictions in step 4  

o Time: (k-1)  

o Space: O(k-1) 

We will dive into the performance of each of the three ensemble groups that we have 

mentioned earlier and highlight how each ensemble performed when compared against 

each ensemble’s individual classifiers on the 5 randomly generated test sets in the 

following in-depth analysis section. We will compare our best result for each domain with 

the results published in Wu et al. (2017) in the in-depth analysis section and with the Liu 

et al. (2015) in the Bing Liu dataset section. 
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IN-DEPTH ANALYSIS ON THE BLITZER DATA SET 

 

We will begin our analysis by showcasing the individual accuracies of the least performing 

and top performing classifier groups. As we have mentioned earlier, the top performing 

and least performing classifiers were identified by their domains’ distances to the target 

domain. The top-performing classifiers are those classifiers trained on the closest n/2 

domains to the target domain. While the least performing classifiers are those classifiers 

trained on the furthest n/2 domains to the target domain. We have mainly experimented 

with the Cosine and Euclidean distances with the term frequency representation where each 

domain was represented by a vector of adverb, verb, adjective and noun word counts that 

had a WordNet (Fellbaum et al. (1998)) sentiment score greater than 0.8. We have repeated 

our experiments twice on the Chen et al. (2018) dataset using the same representation for 

one set of experiments then using the same representation for the second set of experiments 

without using the WordNet sentiment scorer. For each domain, we will be showing an 

analysis of the average accuracies achieved by each individual classifier of the least 

performing and top performing classifiers groups when tested on the five randomly 

generated target domain test sets that were generated according to Wu et al. (2017). Each 

classifier is named after the domain that it was trained on. The Target Acc. field represents 

the accuracy of each of these classifiers on the target domain. The Cosine_distance and 

Euclidean_distance fields represent the un-normalized cosine and Euclidean distances. The 

similarity_rank field is the ascending order of the classifiers in terms of their domains’ 

distances from the target domain. As we assume that as the distance between a source 

domain to a target domain decreases, the better should the average accuracy of the classifier 

be when tested on the five randomly generated test sets. The acc_rank is the actual order 
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of the classifiers’ average accuracy on the target test sets from the best average accuracy 

to the worst such that a classifier that has an acc_rank equal to one is a classifier that has 

the best accuracy. While a classifier that has an acc_rank equal to 6, is a classifier that has 

the worst average accuracy on the generated test sets. The rank_diff field represents the 

unsigned difference between the acc_rank and the similarity_rank of each classifier. The 

lower this value for each classifier, the better the distance metric is in capturing a 

classifier’s performance on the test set given its training domain’s similarity to the target 

domain. As the similarity rank gets closer to the acc_rank for all classifiers, the summation 

of all the rank_diff values for all classifiers should be close to or equal to zero. As the 

summation of the rank_diff field values gets close to zero, the more the similarity measure 

is successful in capturing how these classifiers will perform on the target domain. We will 

start analyzing the results for each of the four target domains (The Book reviews, Kitchen 

reviews, Electronics reviews, and DVD reviews). We will start with the book reviews. 

Table 4-f shows the accuracies on the book product reviews for each of the classifiers in 

the least performing group when using the Cosine distance as a way to rank them and 

separate them from the top performing classifiers and Table 4-g shows the individual 

accuracies of the least performing classifiers when using the Euclidean distance as the 

distance metric to separate them. We can see that the similarity_rank in table 4-f is identical 

to the rank of these classifiers by their average accuracy on the five randomly generated 

test sets (acc_rank). The size of the unlabeled book reviews used was 900,000+ according 

to table 3-a. 
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Table 4-f: Accuracies of the least performing classifiers (ranked by their cosine distance to the target) on 

the target domain 

 

Similar to table 4-f above, the similarity_rank in table 4-g is identical to the average 

accuracy order of these classifiers on the target domain (Books reviews). Therefore, the 

rank difference is zero across all classifiers. 

Table 4-g: Accuracies of the least performing classifiers (ranked by their Euclidean distance to the target) 

on the target domain 

 

Table 4-h shows the similarity_rank of the top performing classifiers when using the cosine 

distance as the similarity measure. Here, the similarity_rank is not identical to the acc_rank. 

The rank_diff for the electronics classifier is 4. Which means that its order in terms of its 

closeness to the target domain is 4 levels far from its order in terms of its actual average 

accuracy on the target test sets. The sum of the rank_diff across all the classifiers is equal 

to 7.  

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

baby 0.5856 0.677 1 1 0

beauty 0.5012 0.69 2 2 0

grocery 0.5008 0.719 3 3 0

gourmet 0.5 0.723 4 4 0

jewelrywatches 0.5 0.749 5 5 0

automotive 0.5 0.774 6 6 0

Books (least performing accs)

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

baby 0.5856 228.1 1 1 0

beauty 0.5012 229.13 2 2 0

grocery 0.5008 231.27 3 3 0

gourmet 0.5 231.57 4 4 0

jewelrywatches 0.5 233.25 5 5 0

automotive 0.5 234.77 6 6 0

Books (least performing accs)
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Table 4-h: Accuracies of the top performing classifiers (ranked by their cosine distance to the target) on the 

target domain 

 

Similarly, table 4-i shows that the similarity_rank of the top performing classifiers is not 

the same as the acc_rank. The total rank difference is equal to 10. As the total rank 

difference moves away from zero, the less information is captured by the Euclidean 

Distances from the source to the target domains about the performance of the classifiers on 

the target domain. However, it is important to note that the maximum average accuracy 

recorded in the least performing classifiers in tables 4-f and 4-g is less than the minimum 

average accuracy recorded for one of the top performing classifiers. Which shows that the 

Euclidean and Cosine distances were successful in separating the n/2 classifiers that had 

high average accuracies on the test set from the n/2 classifiers that had the worst average 

accuracies on the average test sets without having any knowledge of their actual average 

test accuracies. Where n is the number of the source domain classifiers. If a classifier in 

the least performing group has a better accuracy than a classifier in the top performing 

group, we call that a “miss”. We will show later the number of misses when separating the 

top performing from the least performing classifiers.  

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

dvd 0.7928 0.239 1 1 0

electronics 0.6832 0.547 6 2 4

kitchen 0.7032 0.554 4 3 1

healthpersonal 0.7208 0.624 2 4 2

cameraphoto 0.688 0.642 5 5 0

apparel 0.7172 0.627 3 6 3

Books (top performing accs)
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Table 4-i: Accuracies of the top performing classifiers (ranked by their Euclidean distance to the target) on 

the target domain 

 

Table 4-j sums up the sum of the rank_diff field for the least and top performing groups 

across the cosine and Euclidean distance formed groups. It is clear that for the top 

performing group, the rank_diff total was far from zero when using either distance 

measure. Which shows that the cosine distance metric when utilized on the Blitzer et al. 

(2007) dataset where domains have different training set sizes, leads to a better similarity 

measure in terms of predicting how the source classifiers would perform on the target 

domain than the Euclidean distance. With that being said, both distance metrics were 

successful in grouping the least performing together and the top performing classifiers 

together as in Table 4-k, we see zero “misses”. “misses” are the number of classifiers in 

the top performing group that have a lower average accuracy on the target domain than the 

top average accuracy recorded for the lowest performing group. 

Table 4-j: The sum of the rank_diff for each of the four groups 

 

 

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

dvd 0.7928 156.7 1 1 0

electronics 0.6832 214.91 6 2 4

kitchen 0.7032 215.76 4 3 1

healthpersonal 0.7208 223.29 2 4 2

cameraphoto 0.688 225.03 5 5 0

apparel 0.7172 225.27 3 6 3

Books (top performing accs)

Distance Metric Classifiers group Target domain Sum_rank_diff

Cosine Least Performing Books 0

Cosine Top Performing Books 10

Euclidean Least Performing Books 0

Euclidean Top Performing Books 10
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Table 4-k: Number of misses when using each distance measure in the ATLAS algorithm 

 

After varying the threshold values from 0.5 to 0.9. We have noticed that the best average 

accuracies and average F1_Scores were achieved when setting the threshold values 

between 0.5 and 0.7. Table 4-l shows the average accuracy and average f1_scores recorded 

for the three ensemble groups when having threshold values between 0.5 and 0.7. The best 

average accuracy and average f1score recorded were 0.7918 and 0.7994 respectively when 

combining the top performing classifiers at a threshold of 0.5. These values were better 

than the accuracy and f1scores reported by Wu et al. (2017) algorithm (ASDA) which were 

0.7508 and 0.7501 respectively. 

Table 4-l: Average accuracy, and average F1Score recorded while varying the ensemble group and the 

classification threshold 

 

We will move to the Kitchen product reviews domain to check on how ATLAS performs. 

Similar to the books product reviews, we have tested the least performing classifiers and 

the top performing individual classifiers on the five randomly generated test sets then 

averaged their accuracies and recorded them in the following four tables. Table 4-m shows 

that the acc_rank is not similar to the similarity_rank which is okay as the similarity_rank 

should not coincide with the acc_rank. However, we have noticed that the summation of 

Distance Metric Domain Misses

Cosine Books 0

Euclidean Books 0

Group Threshold Average Accuracy (Euclidean) Average Fscore (Euclidean) Average Accuracy (Cosine) Average Fscore (Cosine)

Least Performing 0.5 0.5012 0.6672 0.5012 0.6672

Top Performing 0.5 0.7918 0.7994 0.7918 0.7994

Top and Least 0.5 0.7276 0.7797 0.7276 0.7797

Least Performing 0.6 0.502 0.6675 0.502 0.6675

Top Performing 0.6 0.7724 0.7623 0.7724 0.7623

Top and Least 0.6 0.7764 0.796 0.7854 0.8117

Least Performing 0.7 0.5856 0.6978 0.5856 0.6978

Top Performing 0.7 0.7458 0.6892 0.7494 0.7016

Top and Least 0.7 0.7758 0.7638 0.7758 0.7638

Books
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the rank_diff when using the cosine distance metric is equal to 10. While the summation 

of the rank_diff when using the Euclidean distance of the least performing classifiers is 

equal to 16 which means that the cosine distance metric captured more information about 

the classifiers’ performance on the test set when compared against the Euclidean distance 

metric. As we have mentioned earlier, as the summation of the rank_diff becomes close to 

zero, the better is the distance metric in being able to capture how will the classifiers will 

function on the test sets as it means that the similarity rank is closer to the acc_rank of the 

classifiers. However, both distance measures led the ATLAS to attain similar average 

accuracies and F1Scores when combining the source classifiers as shown in table 4-s.  

Table 4-m: Accuracies of the least performing classifiers (ranked by their cosine distance to the target) on 

the target domain (Kitchen) 

 

Table 4-n: Accuracies of the least performing classifiers (ranked by their Euclidean distance to the target) 

on the target domain (Kitchen) 

 

Similar to tables 4-m and 4-n, Tables 4-o and 4-p show the average accuracies of the top 

performing classifiers on the kitchen test sets. The sum of the rank_diff field is equal to 6 

as summarized in Table 4-q. While it is equal to 12 when using the Euclidean distance as 

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

grocery 0.5018 0.487 3 1 2

dvd 0.742 0.492 1 2 1

gourmet 0.5 0.503 6 3 3

jewelrywatches 0.501 0.524 4 4 0

book 0.6604 0.554 2 5 3

automotive 0.5006 0.563 5 6 1

Kitchen (least performing accs)

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

gourmet 0.5 96.97 6 1 5

computervideo 0.5028 97.01 3 2 1

jewelrywatches 0.501 97.77 4 3 1

automotive 0.5006 99.84 5 4 1

dvd 0.742 167.77 1 5 4

book 0.6604 215.76 2 6 4

Kitchen (least performing accs)
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shown in table 4-p and 4-q. We could see in table 4-r that we have one miss. Which means 

that the classifier that has the maximum average accuracy in the least performing group 

has a greater average accuracy than one classifier in the top performing group. In that case, 

it’s the beauty domain classifier. That miss applies for the groups separated by the 

Euclidean and Cosine distances. 

Table 4-o: Accuracies of the top performing classifiers (ranked by their cosine distance to the target) on the 

target domain(kitchen) 

 

Table 4-p: Accuracies of the top performing classifiers (ranked by their Euclidean distance to the target) on 

the target domain (Kitchen) 

 

According to table 4-q, it is clear from our observations that the cosine distance proved to 

be a better ranker of the least performing and top performing classifiers than the Euclidean 

distance. As the sum_rank_diff for the least performing and top performing classifiers that 

were ranked by their cosine distance to the target domain was smaller than the 

sum_rank_diff of the least and top classifiers ranked by their Euclidean distances to the 

target domain.  

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

electronics 0.8244 0.36 2 1 1

healthpersonal 0.8216 0.368 3 2 1

cameraphoto 0.812 0.407 4 3 1

apparel 0.8326 0.408 1 4 3

baby 0.805 0.411 5 5 0

beauty 0.5004 0.461 6 6 0

Kitchen (top performing accs)

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

healthpersonal 0.8216 88.91 3 1 2

baby 0.805 90.62 5 2 3

cameraphoto 0.812 91.81 4 3 1

apparel 0.8326 91.98 1 4 3

electronics 0.8244 94.66 2 5 3

beauty 0.5004 94.75 6 6 0

Kitchen (top performing accs)
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Table 4-q: The sum of the rank_diff for each of the four groups (tested on Kitchen reviews) 

 

We will explain later in the chapter why the cosine distance metric was better at ranking 

the least performing and top performing classifiers such that they are ranked closer to the 

acc_rank than the Euclidean distance. It is important to note, that the purpose of measuring 

the distances from the source to target domains was to calculate classifier weights that 

would then be used in boosting the three ensembles that we have grouped and not to 

necessarily rank the least and top performing classifiers. The rank_diff and sum_rank_diff 

fields are used to get a sense of which distance measure when used on top of the term 

frequency representation mentioned earlier, leads to a classifier ranking that captures their 

average accuracy on the test set order. The number of “misses” is for identifying the 

number of top performing classifiers that have an average accuracy that is lower than the 

max average accuracy recorded in the least performing classifiers group and by that we 

would know if the n/2 least performing classifiers were adequately separated from the n/2 

top performing classifiers given that we have n source classifiers. In our case n is equal to 

13.  As we have mentioned earlier, table 4-r shows the number of classifiers in the top 

performing group that had an average accuracy that is smaller than the maximum average 

accuracy recorded in the least performing group when using the cosine and Euclidean 

distances. 

Distance Metric Classifiers group Target domain Sum_rank_diff

Cosine Least Performing Kitchen 10

Cosine Top Performing Kitchen 6

Euclidean Least Performing Kitchen 16

Euclidean Top Performing Kitchen 12



 

51 
 

Table 4-r: Number of misses when using each distance measure in the ATLAS algorithm 

 

Table 4-s shows the average accuracy and Average F1_scores of the ATLAS algorithm 

when used in aggregating the outputs of three different groups of classifiers (Least 

performing, top performing, and the top and least performing) while varying the 

classification thresholds from 0.5 to 0.7. The maximum average accuracy recorded was 

0.8762 when using ATLAS on top of the top performing classifiers with a threshold of 0.6. 

While the max F1_score was achieved at a threshold of 0.6 when using the top and least 

performing classifiers with the ATLAS (0.8788). The max-average accuracy and max 

average F1_Scores were greater than the accuracy and f1score achieved by Wu et al. (2017) 

(ASDA algorithm) which were 0.8329 and 0.8328 respectively. 

Table 4-s: Average accuracy, and average F1Score recorded while varying the ensemble group and the 

classification threshold on the kitchen domain 

 

Moving on to the Electronics product reviews domain. Similar to the Kitchen and book 

product reviews, the following tables show the accuracies on the five randomly generated 

target domain (electronics) test sets. As mentioned earlier, these test sets were sampled in 

a similar fashion as in Wu et al. (2017). Tables 4-t and 4-u show the individual average 

accuracies of the least performing classifiers when using the Cosine and Euclidean 

Distance Metric Domain Misses

Cosine Kitchen 1

Euclidean Kitchen 1

Group Threshold Average Accuracy (Euclidean) Average Fscore (Euclidean) Average Accuracy (Cosine) Average Fscore (Cosine)

Least Performing 0.5 0.5038 0.6683 0.502 0.6675

Top Performing 0.5 0.8678 0.8719 0.8748 0.8767

Top and Least 0.5 0.8204 0.8423 0.8386 0.8537

Least Performing 0.6 0.751 0.7541 0.7514 0.7544

Top Performing 0.6 0.8762 0.8775 0.8762 0.8775

Top and Least 0.6 0.8734 0.8788 0.8698 0.8657

Least Performing 0.7 0.7426 0.7259 0.6524 0.5041

Top Performing 0.7 0.8554 0.8406 0.8554 0.8406

Top and Least 0.7 0.8596 0.8474 0.8396 0.8186

Kitchen
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distances. We can see that we have one miss here. Where the book classifier that is part of 

the least performing classifier groups had a better average accuracy than the computer 

video classifier in the top performing groups when using either the Euclidean or Cosine 

distances for separating the classifiers. 

Table 4-t: Accuracies of the least performing classifiers (ranked by their cosine distance to the target) on 

the target domain (Electronics) 

 

Table 4-u: Accuracies of the least performing classifiers (ranked by their Euclidean distance to the target) 

on the target domain (Electronics) 

 

The similarity_rank is not identical to the acc_rank of the least performing classifiers 

which is okay. The sum of the rank_diff in table 4-t is smaller than the sum of the 

rank_diff of the least performing classifiers ranked by the Euclidean distances as shown 

in table 4-u. On the other hand, tables 4-v and 4-w show the individual average 

accuracies of these classifiers on the target test sets (Electronics test sets). Also, when 

using the cosine distance in ranking these top-performing classifiers, the similarity rank is 

identical to the acc_rank as shown in table 4-v. Which again, brings up the observation 

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

beauty 0.5036 0.5 2 1 1

jewelrywatches 0.502 0.51 4 2 2

grocery 0.5036 0.54 3 3 0

book 0.6466 0.54 1 4 3

automotive 0.5004 0.55 5 5 0

gourmet 0.5 0.56 6 6 0

Electronics (least performing accs)

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

beauty 0.5036 99.4 4 1 3

automotive 0.5004 100.4 5 2 3

grocery 0.5036 101.4 3 3 0

gourmet 0.5 102.3 6 4 2

dvd 0.7218 165.7 1 5 4

book 0.6466 214.9 2 6 4

Electronics (least performing accs)
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that the cosine distance measure shows to be better at ranking the least performing and 

top performing classifiers in a way that makes their similarity_rank closer to their actual 

acc_rank on the target domain’s test sets.   

Table 4-v: Accuracies of the top performing classifiers (ranked by their cosine distance to the target) on the 

target domain(Electronics) 

 

Table 4-w shows the top performing classifiers ranked by their domains’ similarity to the 

target domain’s reviews using the Euclidean distance as the similarity measure. We could 

see that unlike in Table 4-v, the similarity_rank is not identical to the acc_rank. 

Table 4-w: Accuracies of the top performing classifiers (ranked by their Euclidean distance to the target) on 

the target domain(Electronics) 

 

Table 4-x, shows again that the cosine distance similarity metric is better at ranking the 

top and least performing classifiers in a way such that their similarity_rank is closer to 

their acc_rank on the target test set compared with the Euclidean distance measure. We 

will discuss why that observation is recurring at the end of our Blitzer results.  

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

cameraphoto 0.8154 0.35 1 1 0

kitchen 0.8012 0.36 2 2 0

healthpersonal 0.794 0.4 3 3 0

apparel 0.788 0.41 4 4 0

baby 0.764 0.42 5 5 0

computervideo 0.5052 0.43 6 6 0

Electronics (top performing accs)

Classifier Target Acc. Euclidean_distance acc_rank optimal_rank rank_diff

cameraphoto 0.8154 87.4 1 1 0

baby 0.764 93.3 5 2 3

healthpersonal 0.794 93.7 3 3 0

apparel 0.788 93.79 4 4 0

computervideo 0.5052 94.55 6 5 1

kitchen 0.8012 94.66 2 6 4

Electronics (top performing accs)
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Table 4-x: The sum of the rank_diff for each of the four groups (tested on Electronics reviews) 

 

Table 4-y shows the number of “misses” that we have alluded to earlier that represents the 

number of top performing classifiers that had an average accuracy smaller than the 

maximum accuracy recorded for the least performing classifiers when using either distance 

metric. 

Table 4-y: Number of misses when using each of the following distance measures in the ATLAS algorithm 

 

Table 4-z shows the average accuracies and average f1scores achieved when varying the 

threshold from 0.5 to 0.7. The best average accuracy recorded was 0.8626 when applying 

the ATLAS algorithm using the top performing classifiers and a threshold of 0.6 which is 

better than any of the individual accuracies recorded for the top performing and least 

performing classifiers in addition to the best accuracy recorded in Wu et al. (2017) that was 

equal to 0.8014. Which indicates that the ATLAS algorithm was able to boost the 

performance of these individual classifiers. The best average F1-Score recorded was 

0.8587 which is higher than the best F1Score reported in Wu et al. (2018) which was 

0.8011. 

 

Distance Metric Classifiers group Target domain Sum_rank_diff

Cosine Least Performing Electronics 6

Cosine Top Performing Electronics 0

Euclidean Least Performing Electronics 16

Euclidean Top Performing Electronics 8

Distance Metric Domain Misses

Cosine Electronics 1

Euclidean Electronics 1
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Table 4-z: Average accuracy, and average F1Score recorded while varying the ensemble group and the 

classification threshold on the Electronics domain 

 

Finally, switching to the DVD domain. Similar to the previous target domains. The least 

performing source domain classifiers were ranked based on their domains’ similarity to the 

DVD domain in tables 4-aa and 4-bb using the Cosine and Euclidean distances. Here, both 

distances had the same sum of rank_diff while having zero misses. 

Table 4-aa: Accuracies of the least performing classifiers (ranked by their cosine distance to the target) on 

the target domain(DVD) 

 

 

Table 4-bb: Accuracies of the least performing classifiers (ranked by their Euclidean distance to the target) 

on the target domain(DVD) 

 

 

Group Threshold Average Accuracy (Euclidean) Average Fscore (Euclidean) Average Accuracy (Cosine) Average Fscore (Cosine)

Least Performing 0.5 0.5058 0.6692 0.5032 0.668

Top Performing 0.5 0.8618 0.8633 0.8612 0.8564

Top and Least 0.5 0.8282 0.8474 0.822 0.8404

Least Performing 0.6 0.7382 0.7317 0.5044 0.6686

Top Performing 0.6 0.8598 0.8538 0.8598 0.8538

Top and Least 0.6 0.859 0.8587 0.8626 0.8584

Least Performing 0.7 0.7222 0.6935 0.6492 0.5167

Top Performing 0.7 0.8122 0.777 0.8122 0.777

Top and Least 0.7 0.8182 0.7864 0.8306 0.805

Electronics

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

baby 0.651 0.614 1 1 0

beauty 0.502 0.634 2 2 0

grocery 0.501 0.668 3 3 0

gourmet 0.5 0.673 5 4 1

jewelrywatches 0.5002 0.697 4 5 1

automotive 0.5 0.728 6 6 0

DVD (least performing accs)

Classifier Target Acc. euclidean_distance acc_rank optimal_rank rank_diff

baby 0.651 179.25 1 1 0

beauty 0.502 180.8 2 2 0

grocery 0.501 183.26 3 3 0

gourmet 0.5 183.56 5 4 1

jewelrywatches 0.5002 185.06 4 5 1

automotive 0.5 186.8 6 6 0

DVD (least performing accs)
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Table 4-cc: Accuracies of the top performing classifiers (ranked by their cosine distance to the target) on 

the target domain(DVD) 

 

Table 4-dd: Accuracies of the top performing classifiers (ranked by their Euclidean distance to the target) 

on the target domain(DVD) 

 

Table 4-ee shows the summation of the rank_diff field when using the cosine and Euclidean 

distances in ranking the least and top performing classifiers. 

Table 4-ee: The sum of the rank_diff for each of the four groups (tested on DVD reviews) 

 

Again, the cosine distance based ATLAS resulted in having a smaller difference between 

the similarity_rank and the acc_rank of the least and top performing classifiers when 

compared against the sum_rank_diff of the least and top performing groups ranked by 

Euclidean distance to the target. 

According to Table 4-ff, the best average accuracy achieved by the ATLAS algorithm was 

0.8082 when using the top performing classifier group at a threshold of 0.5. While the best 

Classifier Target Acc. Cosine_distance acc_rank optimal_rank rank_diff

book 0.7268 0.239 3 1 2

electronics 0.7186 0.476 4 2 2

kitchen 0.7002 0.492 6 3 3

healthpersonal 0.738 0.562 1 4 3

cameraphoto 0.7082 0.574 5 5 0

apparel 0.7374 0.577 2 6 4

DVD (top performing accs)

Classifier Target Acc. euclidean_distance acc_rank optimal_rank rank_diff

book 0.7268 156.7 3 1 2

electronics 0.7186 165.71 4 2 2

kitchen 0.7002 167.77 6 3 3

healthpersonal 0.738 174.79 1 4 3

cameraphoto 0.7082 175.77 5 5 0

apparel 0.7374 176.07 2 6 4

DVD (top performing accs)

Distance Metric Classifiers group Target domain Sum_rank_diff

Cosine Least Performing DVD 2

Cosine Top Performing DVD 14

Euclidean Least Performing DVD 2

Euclidean Top Performing DVD 14
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average F1score recorded was 0.8034 when the top and least performing classifiers were 

combined using the ATLAS algorithm. The average accuracy achieved by the ATLAS 

algorithm was better than the best accuracy achieved by the ASDA algorithm (Wu. et al. 

(2017)) which was 0.7764. Also, the best accuracy recorded was better than the individual 

average accuracies recorded for the least and top performing classifiers. Which indicates 

that the ATLAS boosted the classifiers’ individual average accuracies on the target 

domain’s test sets. The best average F1Score on the target domain recorded was 0.8034 

which is higher than the F1Score recorded for ASDA which was 0.7759. 

Table 4-ff: Average accuracy, and average F1Score recorded while varying the ensemble group and the 

classification threshold on the DVD domain 

 

 

 

 

 

 

 

 

 

 

 

 

Group Threshold Average Accuracy (Euclidean) Average Fscore (Euclidean) Average Accuracy (Cosine) Average Fscore (Cosine)

Least Performing 0.5 0.5028 0.6679 0.5028 0.6679

Top Performing 0.5 0.8082 0.7947 0.8082 0.7947

Top and Least 0.5 0.7332 0.7764 0.7332 0.7764

Least Performing 0.6 0.5028 0.6679 0.5028 0.6679

Top Performing 0.6 0.8022 0.7833 0.8022 0.7833

Top and Least 0.6 0.7982 0.8034 0.7982 0.8034

Least Performing 0.7 0.651 0.7302 0.651 0.7302

Top Performing 0.7 0.7418 0.6673 0.7418 0.6673

Top and Least 0.7 0.8002 0.7778 0.8002 0.7778

DVD



 

58 
 

COSINE VS EUCLIDEAN DISTANCES 

 

When experimenting with the cosine and Euclidean distances, both resulted in weights that 

helped the ATLAS algorithm in achieving high average accuracies on the target domains’ 

test sets. The difference between the best average accuracy and the best average F1Scores 

when using either the Euclidean or Cosine distances were insignificant. However, when it 

came to ranking the classifiers by their domains’ similarity to the target domain in an order 

that is similar to their average accuracy ranking on the target domain’s test sets then the 

cosine distance measure had an edge over the Euclidean distance measure as we have 

shown in our results on the four target domains earlier. We believe the reason behind that 

is that the cosine distance measure normalizes the term frequency values in a way such that 

it converts the term frequency representation to a representation that is similar to the term 

frequency-inverse document frequency representation mentioned in the previous chapter. 

Therefore, making the cosine distance metric invariant of the lengths of the two dictionaries 

being compared at any point in time. On the other hand, the Euclidean distance metric does 

not normalize the term frequencies stored in the source and target domain dictionaries, 

therefore it is not invariant of the lengths of the two input dictionaries and features/terms 

that have high frequencies and occur throughout both dictionaries (source and target 

dictionaries) do not get penalized by normalization. Nonetheless, the Euclidean distance 

measure had the same number of “misses” as the cosine distance metric. Which indicates 

that it can effectively separate the least performing from the top performing classifiers in 

the ensembles similar to the cosine distance metric. 
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OTHER REPRESENTATION TECHNIQUES 

 

Before we conclude with our results on the Blitzer et al. (2007), we would like to mention 

that we have tried two different representation techniques for the source and target 

domains. We have tried representing the source and target domains by training 2 word2vec 

and 2 doc2vec models on all of the reviews included in all of the 14 domains. Since the 

book, product reviews domain has over 900,000 reviews and the second largest domain is 

the DVD domain that has 145,000 reviews and all the other domains have to review sizes 

in the 10s of thousands. So we have capped the number of reviews per domain to a max of 

25,000 reviews for our embedding models do not get skewed by a large number of reviews 

in the books domain. The two word2vec models were trained to produce word2vec vectors 

of sizes 200 and 400 respectively. Similarly, the doc2vec models were trained to produce 

vectors of sizes of 200 and 400. These models were then used in representing each domain. 

Consequently, when using the word2vec_200 dimensional model, the word2vec vector of 

each word in each review of a domain is calculated then the average of the word2vec 

vectors of all the words in the review is calculated and stored. Afterward, the mean of all 

the average word2vec vectors of all reviews is calculated and that is the vector that is used 

in representing the domain. We refer to it as the mean average word2vec vector of the 

domain. The same process is repeated with the word2vec_400 dimensional model to get 

the mean average 400-dimensional word2vec vectors of each domain. As for doc2vec, we 

have utilized the doc2vec_200 dimensional model for calculating the 200-dimensional 

doc2vec vector of each review in each domain. Later on, the average of all the 200-

dimensional doc2vec vectors in each domain was calculated. The process is repeated with 
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the 400-dimensional doc2vec model and we ended up with four representations for each of 

the 14 domains that we have experimented with so far.  

DVD 

Table 4-gg: Max accuracy-200 d2v vector rep.                Table 4-hh: Max accuracy-400 d2v vector rep. 

                                                                                              

Table 4-ii: Max accuracy-200 w2v vector rep.                 Table 4-jj: Max accuracy-400 w2v vector rep.           

                

Kitchen 

Table 4-kk: Max accuracy-200 d2v vector rep.                  Table 4-ll: Max accuracy-400 d2v vector rep. 

                

Table 4-mm: Max accuracy-200 w2v vector rep.               Table 4-nn: Max accuracy-400 w2v vector rep. 

                 

 

 

 

 

 

 

 

Threshold Group distance Max Acc

0.7 Top_Least Euc 0.812

0.7 Top_Least Cosine 0.813

Doc2Vec200 - DVD

Threshold Group distance Max Acc

0.7 Top_Least Euc 0.75

0.7 Top_Least Cosine 0.755

Doc2Vec400 - DVD

Threshold Group distance Max Acc

0.7 Top_Least Euc 0.7675

0.7 Top_Least Cosine 0.755

Word2Vec200 - DVD

Threshold Group distance Max Acc

0.8 Top_Least Euc 0.765

0.8 Top_Least Cosine 0.755

Word2Vec400 - DVD

Threshold Group distance Max Acc

0.6 Top_Least Euc 0.845

0.7 Top_Least Cosine 0.8475

Doc2Vec200 - Kitchen

Threshold Group distance Max Acc

0.6 Top_Least Euc 0.845

0.7 Top_Least Cosine 0.8475

Doc2Vec400 - Kitchen

Threshold Group distance Max Acc

0.6 Top Euc 0.858

0.6 Top_Least Cosine 0.846

Word2Vec200 - Kitchen

Threshold Group distance Max Acc

0.6 Top Euc 0.835

0.5 Top_Least Cosine 0.8625

Word2Vec400 - Kitchen
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Books 

Table 4-oo: Max accuracy-200 d2v vector rep.                Table 4-pp: Max accuracy-400 d2v vector rep. 

         

Table 4-qq: Max accuracy-200 w2v vector rep.                Table 4-rr: Max accuracy-400 w2v vector rep. 

          

 

Electronics 

Table 4-ss: : Max accuracy-200 d2v vector rep.             Table 4-tt: Max accuracy-400 d2v vector rep. 

           

Table 4-uu: Max accuracy-200 w2v vector rep.           Table 4-vv: Max accuracy-400 w2v vector rep. 

           

As shown in tables 4-gg to 4-xx, the ATLAS results collected with these representations 

were not as good as the ATLAS results recorded when representing the domains as a 

dictionary of the frequency of their verbs, adverbs, adjectives, and nouns as we have shown 

in previous sections when testing on the four main target domains. 

 

 

 

 

 

 

Threshold Group distance Max Acc

0.7 Top_Least Euc 0.745

0.7 Least Cosine 0.74

Doc2Vec200 - Books

Threshold Group distance Max Acc

0.7 Least Euc 0.74

0.8 Least Cosine 0.74

Doc2Vec400 - Books

Threshold Group distance Max Acc

0.7 Top_Least Euc 0.7325

0.7 Least Cosine 0.7025

Word2Vec200 - Books

Threshold Group distance Max Acc

0.6 Top_Least Euc 0.7325

0.7 Top_Least Cosine 0.735

Word2Vec400 - Books

Threshold Group distance Max Acc

0.6 Top_Least Euc 0.82

0.6 Top_Least Cosine 0.8275

Doc2Vec200 - Electronics

Threshold Group distance Max Acc

0.6 Top_Least Euc 0.82

0.6 Top_Least Cosine 0.8275

Doc2Vec400 - Electronics

Threshold Group distance Max Acc

0.5 Top Euc 0.83

0.7 Top Cosine 0.82

Word2Vec200 - Electronics

Threshold Group distance Max Acc

0.5 Top Euc 0.83

0.6 Top_Least Cosine 0.7925

Word2Vec400 - Electronics
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CONCLUDING BLITZER RESULTS 

 

The results achieved so far using the ATLAS algorithm on the Blitzer et al. (2007) have 

proved to be better than the results achieved by the ASDA algorithm which were published 

back in Wu et al. (2017) paper published in the ACL 2017 conference. These results stress 

on the value added by our algorithm when compared against the latest multi-source domain 

transfer learning system published in ACL. In the following section, we will show our 

results on the Chen et al. (2018) benchmark dataset and compare our results with the results 

published in the same paper. In our previous experiments on the Blitzer et al. (2007) 

dataset, we have used the WordNet sentiment scorer to pick the verb, adverbs, adjective 

and noun terms that had a WordNet positive or negative sentiment score greater than 0.8. 

When testing our ATLAS algorithm on the Bing Liu benchmark dataset (Chen et al. (2018), 

we wanted to test our algorithm when using the WordNet sentiment scorer and when not 

using it. In both cases, the ATLAS proved to deliver better results than the results published 

in Chen et al. (2018). The following figures show the average accuracy and average 

F1Score of the Wu et al. (2017) ASDA algorithm on the four test domains we covered 

versus the average accuracy and average F1Score of our approach (ATLAS) across the 

four test domains. 
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Figure 4-b: Best F1Scores recorded when using ATLAS vs ASDA (Wu et al. (2017)) 
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Figure 4-a: Best accuracies recorded when using ATLAS vs ASDA (Wu et al. (2017)) 
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Figure 4-c: Average accuracy across the four target domains when using ATLAS vs 

ASDA (Wu et al. (2017)) 
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Figure 4-d: Average F1Score across the four target domains when using ATLAS vs 

ASDA (Wu et al. (2017)) 
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Figures 4 through 7 highlights the improvement in accuracy and F1Score added by our 

ATLAS algorithm. Figure 4 shows when applying the transfer learning module of ATLAS 

on the four target domains in Wu et al. (2017), ATLAS proved to give a better accuracy 

and F1Score on all of these four domains. The accuracy shown in figure 4 for the ASDA 

algorithm was reported in Wu et al. (2017). These were the best accuracy recorded for the 

ASDA algorithm when applying it on a randomly sampled balanced test set comprised of 

500 positive samples and 500 negative samples. We have sampled the balanced test set for 

each domain in the same way as in Wu et al. (2017) five times creating five 1000 review 

test sets for each of the four target domains. We have applied our ATLAS algorithm on the 

five test sets in each domain, then averaged the five accuracies for each domain to get an 

average accuracy on each domain. We have repeated the same process when calculating 

the average F1Score for each domain. Figures 4 and 5 compare the average accuracies and 

F1scores of the ATLAS algorithm against the best accuracy reported in Wu et al. (2017) 

for their ASDA approach. We wanted to sample five test sets and average the accuracies 

to better evaluate our model against the ASDA algorithm. Figures 6 shows the average of 

the four accuracies shown in Figure 4 for the ASDA and ATLAS while Figure 7 shows the 

average of the four F1Scores in Figure 5 for the ASDA and ATLAS which shows that on 

average, there is a 4-point improvement in accuracy and a 4-point improvement in F1score 

across the four domains. 
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APPLYING ATLAS ON THE BING LIU DATA SET 

 

We have tested our ATLAS algorithm on a different benchmark dataset offered by 

Professor Bing Liu of the University of Illinois, Chicago that was used in Chen et al. (2018) 

paper published in ACL 2015 and an updated version of the paper published in Arxiv 2018. 

We will compare our results to the version published in January of 2018 to Arxiv. The 

dataset consists of twenty different domains. Each domain contains 1000 labeled reviews 

that were given either positive, negative or neutral labels. Chen et al. (2018) trained a Life 

Long learning system on the positive and negative labeled reviews of 19 domains and left 

one domain out for testing. They have repeated this process twenty times keeping one of 

the 20 domains as a target test set then, they have averaged their system’s accuracies and 

f1scores across the twenty target test domains which we will compare against. Life Long 

learning is similar to Transfer Learning except that according to Chen et al. (2018), Life 

Long learning is a process that utilizes knowledge from k-1 domains then applies this 

knowledge on the kth domain without using any labeled or unlabeled data from the kth 

target domain during training. On the other hand, Transfer Learning system learns from k-

1 domains in addition to learning from the unlabeled or labeled samples from the target 

domain. A transfer learning method that uses labeled and unlabeled samples from the k-1 

source domains in addition to unlabeled samples only from the target domain is called an 

unsupervised transfer learning method. While a transfer learning method that uses labeled 

and unlabeled data from the k-1 source domains in addition to labeled and unlabeled 

samples from the target domain is called a semi-supervised transfer learning method or a 

semi-supervised cross domain adaptation method. Finally, a transfer learning approach that 

uses labeled and unlabeled data from the k-1 source domains and labeled samples only 
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from the target domain is called a supervised transfer learning approach or a supervised 

cross domain adaptation method. The ATLAS algorithm is an unsupervised transfer 

learning method that uses labeled and unlabeled reviews from the k-1 source domains in 

addition to unlabeled data from the target domain in measuring the distances from each 

source domain to the target domain. However, with the Chen et al. (2018) data set, we have 

added a slight transformation step that transforms our algorithm from a transfer learning 

approach to a lifelong learning approach as we will show shortly. First, we will mention 

how we measured the distances from the source domains to the target domains then will 

cover how the test sets were generated to match the same class distribution mentioned in 

Chen et al. (2018). Afterward, we will show how the ATLAS algorithm is transformed into 

a lifelong learning algorithm. The distance metrics we have used in measuring the distances 

from multiple source domains to the target domain. Since we only have 1000 reviews per 

domain in this dataset. We have tried measuring the distances by measuring the distance 

from the source domain’s 1000 review datasets to the unlabeled test samples of the target 

domain. Since the target test set is sampled from the target domain’s 1000 labeled samples, 

the unlabeled target domain training samples are not enough for calculating the distance 

from each source to target for calculating the classifier weights prior to test time. As a 

result, at test time, we have measured the distance of the full unlabeled test set in addition 

to some remaining unlabeled training samples to every source domain’s training set 

without the use of any labels in the source or target domains. When transforming our 

ATLAS method from the transfer learning mode to the lifelong learning mode, we have 

measured the distance of each test review in the target domain’s test set from the unlabeled 

19 source samples at test time. So the weights of the source domain classifiers were 
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modified when applying ATLAS on each test sample. It is a complex operation but it did 

not require having an unbalanced training sample before testing the system on the test set. 

It did not require also having the full test set before applying the ATLAS system. As the 

distance was calculated from each source to the target one test sample at a time without 

requiring to have the full test set stored in advance. The domains were represented using 

the term frequency representation mentioned earlier, where the verbs, adverbs, adjectives, 

and nouns that had a sentiment score greater than 0.8 were saved in a dictionary with their 

counts. We have also repeated this representation without using the WordNet sentiment 

scorer at all and we will show the results delivered when using the WordNet sentiment 

scorer for filtering verbs, adverbs, adjectives, and nouns having a positive or negative 

sentiment score greater than 0.7 or not shortly. We noticed that there was no noticeable 

difference in the results achieved when using the WordNet sentiment scorer or not. The 

distance from each source to target domains was measured by the cosine and Euclidean 

distances between their corresponding dictionaries. In the transfer learning and lifelong 

learning sections of our results, all source domains were represented by their term 

frequency dictionaries. However, the target domain was represented as a term frequency 

dictionary of the verbs, adverbs, adjectives, and nouns that occurred in the target domain’s 

test set in addition to some unlabeled target domain samples that were not included in the 

test set. On the other hand, for the lifelong learning section of our results the target 

domain’s dictionary changes with every review in the test set, as the dictionary consists of 

the term frequencies of the verbs, adverbs, adjectives, and nouns that occurred in the target 

domain’s individual test review that was being tested at test time. As the target domain’s 

term frequency dictionary is created at test time for each test review at a time. The distance 
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between a source domain’s dictionary and a target domain’s dictionary was measured using 

the Euclidean and cosine distance functions mentioned earlier. We first calculated the 

distances using the WordNet sentiment scorer in order to include only Verbs, Adverbs, 

Adjectives and Nouns that had a sentiment score greater than 0.7. Then, repeated the same 

representation without using the WordNet sentiment scorer to filter out the verbs, adverbs, 

adjectives, and nouns that had a positive or negative score that is greater than 0.7. The next 

step was to sample the test sets for each target domain in a similar way to that of the test 

sets sampled in Chen et al. (2018) in order to provide the basis for a fair comparison against 

our ATLAS approach. There were two types of test sets sampled for each target domain. 

There were a total of 20 domains in the Chen et al. (2018) dataset and each of the 20 

domains was considered a target domain when experimenting with Chen et al. (2018) 

approach and our ATLAS approach. The two types of test sets sampled for each domain 

were a 200 review balanced test set that consists of 100 positives and 100 negative reviews. 

While the other type is an unbalanced test set where the distribution of negative to positive 

samples is equal to the distributions laid out in the following figure provided by Chen et 

al. (2018) for each domain. We have sampled the unbalanced test sets in each domain such 

that the negative to positive samples distribution is equal to the distributions shown in the 

following figure. In the next section, we will cover our transfer learning ATLAS 

algorithm’s results averaged across the 20 domains with and without using the WordNet 

sentiment scorer. Subsequently, we will show our results when we convert our ATLAS 

algorithm from a transfer learning approach to a Lifelong learning approach. 

 

Figure 4-e: Fraction of negative reviews in each of the 20 domains. A figure appeared in Chen et al. (2018) 
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TRANSFER LEARNING ATLAS 

 

We have created a dictionary of term counts for each domain. The terms included in the 

dictionary had the Verb, Adverb, Adjective and Noun Part of Speech tags (POS tags). After 

the word count dictionary was created for each domain. The distance from the source to 

the target was calculated by calculating the distance from a source domain dictionary to 

the dictionary of the target domain’s test set (sampled from the 1000 samples) in addition 

to the remaining target domain samples that were not included in the test set which means 

that the full 1000 review target data set was used in the distance calculation. At test time, 

the full test set is combined with the remaining samples that were not included in the test 

set to create the term count dictionary then the distance from each of the 19 source domains 

to the target domain is computed. These distances are then normalized using the Euclidean 

Norm function mentioned covered earlier in the methodologies chapter and each of these 

19 normalized distances was assigned as weights to the 19 source domain classifiers where 

they were combined using the ATLAS algorithm. We will showcase the results with the 

balanced test set then with the unbalanced test set. 

Chen et al. (2018) used the accuracy as an evaluation metric on the balanced test set and 

the F1score as the evaluation metric on the unbalanced test set. Therefore, we will show 

the average accuracy of our system on the balanced test sets across the 20 target domains.  

In addition to the average F1Score of our system on the unbalanced test, sets averaged 

across all 20 domains. The average accuracy for each target domain is calculated by 

randomly generating five balanced and five unbalanced test sets for that particular domain. 

Afterward, the ATLAS system was applied on the five balanced test sets, the accuracy on 
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each of these five test sets is recorded then averaged to get the average accuracy on that 

target domain, the same process is repeated on the remaining 19 domains to store a total of 

20 average accuracies. The mean of these 20 average accuracies is computed to get the 

mean average-accuracy across all domains when testing on the balanced test sets. 

Similarly, the unbalanced test sets were generated with the exact negative to positive class 

distribution as in Chen et al. (2018). For each domain five unbalanced test sets were 

sampled according to Chen et al. (2018) then the ATLAS is applied and the F1score on 

each of the five test sets were recorded. Afterward, the average of the 5 F1_Scores was 

calculated and recorded for each domain. The process is repeated on the remaining 19 

domains to get 20 average F1_Scores. The mean of these 20 average F1_Scores was 

computed and that is the mean average-F1_Score of the ATLAS system on the 20 different 

domains included in Chen et al. (2018). The F1_Scores were calculated in the same way 

as in Chen et al. (2018) by considering the negative label as the positive class because the 

negative label is the minority class in the unbalanced test sets. We have experimented with 

using a term frequency representation that counted the frequency of terms that had Verb, 

Adverb, Adjective, and Noun POS tags in addition to a second representation that 

computed the frequency of Verb, Adverb, Adjective and Noun terms that had a WordNet 

positive or negative sentiment score of greater than 0.8. We have experimented with both 

representations and the results are shown below. 

The following four tables show the best mean of the average-accuracies recorded across 

the 20 domains in the Chen et al. (2018) datasets. Tables 4-yy and 4-zz show the mean of 

the average-accuracies and the mean of the average-f1scores recorded across the 20 

domains when using the Euclidean distance based ATLAS on the unbalanced test sets. 
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Table 4-yy shows the results when using the WordNet sentiment scorer, and Table 4-zz 

shows the results when not using the WordNet sentiment scorer. We observed that the best 

mean of the Average-F1Scores recorded in both tables was equal to 0.7203 at a threshold 

of 0.6. The best average F1Score recorded in the Chen et al. (2018) paper when considering 

the negative label as the positive label was 0.67. Tables 4-aaa and 4-bbb show the best 

mean of the average-accuracies and the best mean of the average-F1scores recorded when 

using the Cosine distance metric. The results were identical to the results presented in tables 

4-yy and 4-zz. The reason for that is in order to maintain the negative to positive samples 

distribution, due to the limited number of positive and negative samples, we had to use all 

the positive samples in each domain and randomly under sample the negative labeled 

samples in each domain. Since the number of negative samples in the 20 target domains 

were in the range of 100 to 300, the under-sampling resulted in creating five unbalanced 

test sets that were not so different from each other. Another way of generating random test 

sets was to randomly under sample the positive labeled samples but that meant that we had 

to undersample the negative samples even more which would have resulted in having test 

sets with the same negative to positive distribution but with a smaller number of samples. 

We wanted to sample the test sets in a way such that the negative to positive label 

distributions is the same as in Chen et al. (2018) with keeping the test sample as large as 

possible. Therefore, the only way for us to randomly sample more test sets while keeping 

the same negative to positive label distributions and keeping the test sets as large as 

possible was to keep the positive samples in each domain and undersample the negative 

labeled samples. Furthermore, the Euclidean and Cosine distance helped in producing the 

same mean average f1-score of 0.7203 across the 20 different domains as the length of the 
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source and target domains were equal. Therefore, the Euclidean distance metric did not get 

affected by the different source and target domain sizes which could have affected the final 

weights assigned to the source classifiers. In contrast, the results on the balanced datasets 

in tables 4-ccc to 4-fff had small variations in the mean average-accuracies and in the mean 

average-f1scores computed across the domains when comparing the results recorded when 

using the cosine distance vs, the results achieved when using the Euclidean distance. Tables 

4-yy to 4-bbb show that the maximum mean-average f1score recorded on the unbalanced 

test sets was 0.7203 while treating the negative label as the positive class. The mean-

average f1score was computed by applying the ATLAS algorithm on each of the 20 

domains in the Chen et al. (2018) dataset by considering each of these 20 domains as the 

target domain. For each target domain, the ATLAS algorithm combines the 19 classifiers 

trained on their respective domains by calculating their weights to the target domain’s 

unlabeled test set in addition to the target domain’s remaining unlabeled samples as we 

have mentioned in detail earlier. The mean average-f1score is calculated by computing the 

average f1score achieved by the ATLAS algorithm on the five randomly generated test sets 

of each domain. Then recording the average f1score for each domain to end up storing 20 

average f1scores. Later on, the average of all 20 average f1scores was computed to get the 

mean-average f1score. Chen et al. (2018) computed the average f1score across all domains 

by calculating the f1score for one test set per domain instead of the average f1score of five 

test sets for each domain. The use of the WordNet sentiment scorer in filtering some terms 

did not cause a boost in the mean-average f1score recorded across the 20 domains. 
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Table 4-ww: F1Score with WordNet (Euclidean)        Table 4-xx: F1Score without WordNet (Euclidean) 

 

Table 4-yy: F1Score with WordNet (cosine)                 Table 4-zz: F1Score without WordNet (Cosine) 

  

The following tables show the ATLAS results on the balanced test sets. The mean-average 

accuracy and the mean-average f1score were recorded in a similar manner to the results 

recorded for the unbalanced test sets. The ATLAS was tested on 20 different target 

domains. For each target domain, the ATLAS was tested on five randomly sampled test 

sets. The average accuracy and the average f1score were computed on these five randomly 

generated test sets. The process was repeated on the remaining 19 domains until we ended 

up with 20 average accuracies and 20 average f1scores across the 20 domains. The simple 

mean of the average f1scores was computed to get the mean-average f1score. Likewise, 

the simple mean of the 20 average accuracies across the 20 domains was computed to get 

the mean-average accuracy across the 20 domains of the Chen et al. (2018). The results are 

shown in tables 4-ccc through 4-fff below. The best mean-average accuracy recorded when 

using the WordNet sentiment scorer was 0.8641 when setting the threshold to 0.7 and using 

the cosine distance/similarity. The best mean-average accuracy recorded when using the 

WordNet sentiment scorer was 0.8635 when using the WordNet sentiment scorer and 

setting the threshold to 0.7. The WordNet sentiment scorer did not provide a significant 

boost in performance. In the following section, we will discuss the tweak that could 

transform our transfer learning algorithm into a lifelong learning algorithm. 

Threshold Mean-average accuracy Mean-average f1score 

0.6 0.9011 0.7203

Unbalanced Euclidean TL - ATLAS - with Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.6 0.9011 0.7203

Unbalanced Euclidean TL-ATLAS without Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.6 0.9011 0.7203

Unbalanced Cosine TL - ATLAS with Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.6 0.9011 0.7203

Unbalanced Cosine TL - ATLAS without Wordnet
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Table 4-aaa: Mean average accuracies and F1Scores across the 20 domains (Euclidean distance) - With 

WordNet 

 

   

Table 4-bbb: Mean average accuracies and F1Scores across the 20 domains (Euclidean distance) - Without 

WordNet 

 

Table 4-ccc: Mean average accuracies and F1Scores across the 20 domains (cosine distance) - With 

WordNet 

 

        

Table 4-ddd: Mean average accuracies and F1Scores across the 20 domains (cosine distance) - Without 

WordNet 

 

 

 

Threshold Mean-average accuracy Mean-average f1score 

0.5 0.7882 0.8224

0.6 0.8383 0.8527

0.7 0.8615 0.859

0.8 0.8164 0.7817

0.9 0.6707 0.508

Balanced Euclidean TL - ATLAS with Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.5 0.7866 0.8209

0.6 0.8377 0.852

0.7 0.8584 0.8553

0.8 0.815 0.7794

0.9 0.6726 0.5105

Balanced Euclidean TL - ATLAS without Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.5 0.7899 0.8232

0.6 0.8404 0.8544

0.7 0.8641 0.8619

0.8 0.817 0.7822

0.9 0.6696 0.5053

 Balanced Cosine TL - ATLAS with Wordnet

Threshold Mean-average accuracy Mean-average f1score 

0.5 0.7902 0.8236

0.6 0.8424 0.8562

0.7 0.8635 0.86047

0.8 0.8183 0.7839

0.9 0.6721 0.5108

 Balanced Cosine TL - ATLAS without Wordnet
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LIFELONG LEARNING ATLAS 

 

The ATLAS algorithm could be tweaked to become a lifelong learning sentiment 

classification method. Instead of measuring the distance from each source domain’s 

samples to the target domain’s combined full test set and the remaining unlabeled samples 

of the target domain, the distance measurement is performed at test time, one test review 

at a time instead. Before calculating the weights associated with each classifier, before 

testing. The weights are calculated when receiving the test review as input to the system. 

The distance from that target test review to all 19 source domains’ samples is measured in 

the manner described earlier in the methodologies and results chapter. Then the 19 

distances are normalized and these normalized distances act as the weights to the classifiers 

trained on their corresponding source domains. The ATLAS algorithm is then applied using 

these calculated weights when classifying the input test review. Afterward, the process is 

repeated for each test review in the test set. The time complexity added by this tweak is 

huge. Therefore, we have experimented with the classification threshold that resulted in 

the best F1Score and Accuracy across all domains which is equal to 0.6. Tables 4-ggg and 

4-hhh show the average F1scores recorded for the unbalanced test sets when using the 

WordNet and when not using the WordNet sentiment scorer. The results that were recorded 

showed that using the WordNet sentiment scorer when filtering the Verbs, Adverbs, 

Adjectives, and Nouns that had a positive or negative sentiment score of less than 0.7 did 

not boost performance. As it did not help in boosting the overall average F1score or average 

accuracy across the target domains in the Transfer Learning or in the Lifelong learning 

modes. The best F1-Score while considering the negative label as the positive class 

recorded in Chen et al. (2018) was 67%. In our results, the best average F1-Score for the 
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negative label as the positive class recorded across all domains when using a threshold of 

0.6 was 72.56% when using the Euclidean distance measure and 72.07% when using the 

Cosine distance measure at the Lifelong learning mode of the ATLAS. As for the balanced 

datasets, tables 4-iii and 4-jjj show the average test set accuracy on the balanced test set 

which is still in the range of the average balanced accuracy recorded for the transfer 

learning version of the ATLAS algorithm shown earlier.  Even though WordNet did not 

help with boosting the overall average f1score or average accuracy, they helped in 

decreasing the processing time of our algorithm without hurting the average F1score or 

average accuracy achieved. 

Table 4-eee: Best average F1Score (Euclidean LL)      Table 4-fff: Best average F1Score (Cosine LL)      

 

 

Table 4-ggg: Best average Accuracies (Euclidean LL)  Table 4-hhh: Best average Accuracies (Cosine LL) 

 

Figures 12 shows the average accuracy reported in Chen et al. (2018) on the balanced test 

sets across the 20 domains that was equal to 0.8334 (83.34%) and the mean of all the 

average accuracies recorded by the lifelong learning mode of the ATLAS algorithm across 

the 20 domains at a threshold of 0.7 which was equal to 0.8665 (86.65%) as shown in Table 

4-iii. Figure 11 shows the average F1Score recorded for the Chen et al. (2018) lifelong 

learning algorithm across the unbalanced test sets of the 20 domains versus the mean of 

the average F1Score recorded for the ATLAS algorithm while on the lifelong learning 

mode.  Figures 9 and 10 show the average accuracies across the 20 domains on the balanced 

Threhold average accuracy average f1score 

0.6 0.902 0.7255

Unbalanced Euclidean LL - ATLAS - with Wordnet

Threhold average accuracy average f1score 

0.6 0.9 0.7207

Unbalanced Cosine LL - ATLAS with Wordnet

Threhold average accuracy average f1score 

0.6 0.8455 0.8606

0.7 0.8665 0.8666

Balanced Euclidean LL - ATLAS - with Wordnet

Threhold average accuracy average f1score 

0.6 0.8425 0.858

0.7 0.8645 0.8648

Balanced Cosine LL - ATLAS with Wordnet
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test sets in addition to the average F1Scores across the 20 domains on the unbalanced test 

sets when applying the ATLAS algorithm in a Transfer learning mode. We have showcased 

our results against the results reported in Chen et al. (2018). The average F1Score across 

the 20 domains reported by Chen et al. (2018) was 0.6700 (67.00%) while the average of 

all the average F1Scores recorded for the 20 target domains using the lifelong learning 

mode of the ATLAS algorithm at a threshold of 0.6 was 0.7255 (72.55%) which is a 

significant improvement on what has been reported in Chen et al. (2018). Figure 9 shows 

the average F1Score reported when using the transfer learning mode of the ATLAS 

algorithm when using WordNet and when not using the WordNet sentiment scorer. These 

results show that WordNet could be helpful but not significantly helpful. 
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Figure 4-g: Average accuracies across the 20 domains of Chen et al. (2018) Transfer 

Learning-ATLAS vs Chen et al. (2018) 
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Figure 4-f: Average F1Scores across the 20 domains of Chen et al. (2018) Transfer 

Learning-ATLAS vs Chen et al. (2018) 
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Figure 4-i: Average accuracies across the 20 domains of Chen et al. (2018) Lifelong 

Learning-ATLAS vs Chen et al. (2018) 
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Figure 4-h: Average F1Scores across the 20 domains of Chen et al. (2018) Lifelong 

Learning-ATLAS vs Chen et al. (2018) 
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DEEP TEXT GENERATION RESULTS 

 

In this section, we will showcase the results when using deep learning text generators to 

generate our training sets for four of our test domains of the Blitzer et al. (2007) datasets 

Books, Kitchen, DVD, and Electronics. These results reflect how creating training sets 

could enhance the training process. We have started comparing between deep learning 

techniques vs Markov chain text generation techniques when generating training samples 

in the target domain and we have published our results in Abdelwahab et al. (2018) paper 

titled “deep learning based vs Markov chain based text generation for sentiment 

classification”. In this paper, we observed that deep learning text generators generated 

samples that boosted our end classifier’s accuracy and F1Score on the target test sets when 

compared against Markov chain text generators. The deep learning text generation 

techniques even proved to be better at generating useful samples when even trained on 

noisy/weakly labeled samples when compared against Markov Chain text generators. 

Weakly labeled samples which were labeled using a rule-based sentiment classifier that 

had an accuracy of 71% on a balanced test set. In the case where no labeled samples are 

provided, and the rule-based classifier is used in labeling the seed samples (initial samples 

that were used in training the deep learning text generators and the Markov chain text 

generators), the deep learning text generators proved to be better at producing samples from 

these weakly labeled seed samples when compared against the Markov chain text 

generators.  

The evaluation criteria for the text generation methods will be task oriented. Which means 

that the quality of the generated text will be evaluated based on the best accuracy achieved 
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by the end classifier after grid search on the balanced kitchen test set. We will show the 

best accuracy achieved with each generated training set, L1 and L2 penalty combinations 

on the balanced Kitchen test set of the Blitzer et al. (2007). All F1Scores and accuracy 

values were averaged over 10 trials. 

Table 4-iiiml: Accuracy and F1Score on the Kitchen test set provided by Bollegala et al. (2015) 

Training Data L1 L2 Acc F-

Score 

GRU_Full 10 100000 0.74 0.75 

LSTM_Full 100 100000 0.77 0.74 

 

Table 4-jjj: Accuracy and F1Score on the Kitchen test set provided by Bollegala et al. (2015) when using 

Markov Chain generators 

Training Data L1 L2 Accuracy 

Markov_order1 100 100 0.54 

Markov_order10 10 1000 0.502 

 

Table 4-kkk: Accuracy and F1Score on the Kitchen test set provided by Bollegala et al. (2015)when using 

Markov Chain text generators trained on 100% correctly labeled seed reviews 

 Training Data  L1 L2 Accuracy 

Markov_order1  1000 100000 0.71 

Markov_order10  10 10 0.72 

Tables 4-kkkml and 4-lll show that the deep learning based text generators resulted in better 

performance when trained on the noisy/unsupervised labeled seed samples when compared 

against the Markov chain text generators. However, Table 4-mmm shows that when 

training the Markov chain text generators on 100% correctly labeled samples, it performs 

way better than when it is trained on weakly labeled samples which means that deep 

learning based text generators proved to be more resilient to poorly labeled training 

samples. After observing these results, we have concluded to try different techniques which 

lead us to develop our algorithm, the Adaboost Inspired Transfer Learning Approach for 

Sentiment Classification (ATLAS). 
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CONCLUDING THE DEEP TEXT GENERATION RESULTS 

 

The results that we have obtained suggest that Markov Chain based text generators have 

little tolerance to incorrectly labeled reviews in the training set. As the accuracy of our 

unsupervised rule-based classifier is around 71% on a balanced test set. Therefore, a 

percentage of the labeled seed reviews contain false positives or false negatives which lead 

to damping the performance of the Markov chain text generators as we have shown in the 

results section. On the other hand, deep learning based models have higher resilience 

towards the presence of false positives or false negatives in the training set which showed 

that the accuracies and F1Scores achieved by the end classifier did not dip to the fifties as 

in the case of using the Markov chain text generators. We will explore using text generation 

on a larger training set in the future while exploring other Neural networks architectures 

like the GAN networks. We will explore using text generators that make use of word level 

and character level features as Xie et al. (2017) have discovered that language models that 

make use of character level features and word level features perform better than models 

that depend on character level feature only or word level features only.  
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CHAPTER V  

CONCLUSION 

 

A classifier trained on a source domain will perform poorly when applied on a totally 

different domain. On the other hand, a classifier trained on a source domain will perform 

acceptably on a target domain that is slightly different from it. Which led us to think that 

if we have classifiers trained on k different domains then there should be a way to aggregate 

their predictions on the target domain in a way to achieve a high accuracy and F1Score 

when compared against other transfer learning or lifelong learning algorithms. We faced a 

hurdle when inferring the weights to these classifiers as in Adaboost, the weights were 

computed from the classifiers’ training error while training. Since we do not use any 

labeled samples in the target domain, we had to figure out a way to assign weights to the 

source classifiers where we get to aggregate their predictions on the target domain’s test 

sets efficiently. So, we have decided to observe whether domain similarities could be used 

in computing weights for the source domain classifiers and we could say after the 

observations recorded above that using the domain similarities between the source domains 

to the target domains as weights to the source domain classifiers has boosted the accuracies 

and F1Scores of our system on two benchmark datasets when compared to other techniques 

published in 2017 and 2018. The results show that domain similarity is helpful can be used 

in computing weights for the source domain classifiers. The domain similarity metrics we 

have used in ATLAS were not sophisticated and there are other sophisticated techniques 
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in computing domain similarities as in Wu et al. (2016) but we wanted to test with simple 

techniques to show the potential of using more advanced techniques in our future work. 

The major limitation of the ATLAS algorithm is when having classifiers trained on 

domains that are away from the target domain. An example of this case was shown earlier 

when we recorded the accuracies and F1Scores of the least performing classifier groups. 

These classifiers’ accuracies and F1Scores were not boosted to the point that makes 

ATLAS feasible. Thus, ATLAS makes use of classifiers that are trained on domains that 

are not far away from the target domain. As for text generation, we will experiment with 

pre-trained text generators instead of text generators trained on a small sample of in-domain 

reviews. 
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