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ABSTRACT

DEVELOPMENTS IN MULTIVARIATE POST QUANTUM CRYPTOGRAPHY

Jeremy Robert Vates

April 23, 2018

Ever since Shor’s algorithm was introduced in 1994, cryptographers have

been working to develop cryptosystems that can resist known quantum computer

attacks. This push for quantum attack resistant schemes is known as post quantum

cryptography. Specifically, my contributions to post quantum cryptography has

been to the family of schemes known as Multivariate Public Key Cryptography

(MPKC), which is a very attractive candidate for digital signature standardization

in the post quantum collective for a wide variety of applications. In this document

I will be providing all necessary background to fully understand MPKC and post

quantum cryptography as a whole. Then, I will walk through the contributions I

provided in my publications relating to differential security proofs for HFEv and

HFEv−, key recovery attack for all parameters of HFEm, and my newly proposed

multivariate encryption scheme, HFERP.
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CHAPTER 1

INTRODUCTION

Since humans discovered the ability to write, there has been a need for pro-

tecting information from unwanted eyes. For centuries, methods have been devised

to secure written information. These methods could manipulate the characters the

information was written in, like a simple substitution cypher, or they could manipu-

late the materials the information was written on, like the scytale cypher. However,

as technology advanced, so did the complexity of feasible cryptosystems.

Most of history’s use of cryptography has depended on the use of a shared

secret. In order for two parties to communicate securely, they would need to have

a predetermined meeting in which to exchange a shared secret that would be the

basis for their secure communication. There are multiple cryptosystems developed

based upon this topic like the Hill Cipher, see [29], and the infamous Enigma, see

[43].

As the need to communicate securely over vast distances became a real-

ity, key distribution became an issue. This was addressed in the 1970’s by the

Diffie-Hellman key exchange, see [15]. They were able to introduce a technique that

depended on exponentiation that allowed the generation of a shared secret remotely

in a secure manner. This technique was one of the first indications that it was possi-

ble to secure information without the need of a shared secret. Most notably, James

Ellis was the pioneer of this field of study in 1975, which became known as public

key cryptography, see [60].

Public key cryptography quickly drew the attention of cryptography re-
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searchers. New schemes were developed to take advantage of the ideas introduced

by Diffie, Hellman, and Ellis, most notably RSA created by Rivest, Shamir, and

Adleman, see [58]. This system was one of the first schemes to fully utilize the

concept of public key cryptography and is still one of the most relied upon in mod-

ern technology. One can see the inspiration of RSA from the Diffie-Hellman Key

Exchange as both utilize the one way function of exponentiation. However, the

security of RSA is based on the difficulty of factoring large numbers rather than

the discrete log problem which is the basis of security of the Diffie-Hellman Key

Exchange.

Recently, the focus has shifted among many to another new area of cryptog-

raphy. To understand this shift, one must understand the importance of quantum

computing and Peter Shor. Advancements in quantum computing have shown that

quantum computing devices are no longer the pyrite of the sci-fi genre. It is not

known when such devices will be a realistic threat to cryptography, but many com-

panies, organizations, and governments are currently in a rush to develop such

technology, see [31] and [65] . Regardless of when, the inevitability is sufficient

motivation for post-quantum security standards as seen by NIST’s call for stan-

dardization, see [44].

A common question is posed by those new to the field: If one does not have

a quantum computer to work with, how does one develop quantum resistant cryp-

tography? The answer begins with Peter Shor. In the 1990’s, Shor created an

algorithm to factor and compute discrete logarithms in polynomial time on quan-

tum computing device [62]. This is a problem for widely used schemes like R.S.A.,

whose security depends on the difficulty of factoring very large numbers. With the

introduction of Shor’s algorithms and the use of a quantum computing device, an

individual can break RSA in polynomial time. An example of such a development

is the most recent record of factorization using a quantum computer of 56153, see

2



[14]. Even though the scenario where quantum computers break through modern

implementations of RSA is years away, the possibility of this occurring is unaccept-

able. Thus, post-quantum cryptography focuses on developing schemes where their

security does not depend on problems that we know quantum computing devices

can solve quickly.

One example of a family of such problems is based on solving systems of mul-

tivariate equations which forms the basis of Multivariate Public Key Cryptography

(MPKC). This collection of schemes generate a system of quadratic equations to be

used as the public key. Within this collection of schemes lives a subset of systems

called “Big Field Schemes”. Here, equations are generated by constructing a finite

extension of a finite field and using a core map that lives in said extension. Then,

by using Frobenius automorphisms and natural vector space isomorphisms, one can

easily generate a system of quadratic equations in a method that allows efficient

inversion. An outside observer would have to be able to solve a system of quadratic

equations over a finite field, which is known to be NP-complete, see [27].

In this dissertation, I walk through all preliminary mathematics necessary

to understand the construction and cryptanalysis of Multivariate Public Key Cryp-

tography along with a basic introduction to public key cryptography as a whole.

Then, I go into detail on three cryptosystems and their modifiers within MPKC:

HFE, HFEv, and HFERP. I go into detail on the construction of each as well as a

detailed walk through my contributions to the Post-Quantum Cryptography Com-

munity from my following publications:

� Key Recovery Attack for All Parameters of HFEm, see [66]

� On the Differential Security of the HFEv- Signature Primitive, see [11]

� HFERP - A New Multivarite Encryption Scheme, see [30]

3



CHAPTER 2

PRELIMINARIES

Within Multivariate Public Key Cryptography, my work has focused on a

family of schemes called big field schemes. These schemes have a structure based

within concepts taught in an Abstract Algebra course. For reference, I am including

basic definitions, proofs, and toy examples of these structures.

2.1 Algebraic Preliminaries

To begin, we start with the definition of a ring and build up to a field.

DEFINITION 2.1 (see [21]). A ring R is a set together with two binary operators

+ and × (called addition and multiplication) satisfying the following axioms (Note:

we write a × b as ab for any a, b ∈ R for convenience)

1. (R,+) is an abelian group (group is commutative under the specified opera-

tion),

2. × is associative: (a × b) × c = a × (b × c) ∀ a, b, c ∈ R,

3. the distributive law holds in R: a(b + c) = ab + ac ∀ a, b, c ∈ R.

It is worth noting that, throughout this text, we will be dealing with rings

that have a multiplicative identity, a.k.a. ∃ a ∈ R such that a×b = b×a = b ∀ b ∈ R.

Normally, we denote the multiplicative identity as 1R or 1 if the ring context is clear.

Before we move onto fields, it is worth defining the basics of homomorphisms

and some ring theory.

4



DEFINITION 2.2 (see [21]). Let R and S be rings.

� A ring homomorphism is a map ϕ ∶ R → S satisfying

ϕ(a + b) = ϕ(a) + ϕ(b) for all a, b ∈ R.

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R

� The kernel of a ring homomorphism ϕ, denoted ker(ϕ) is the set of elements

of R that map to 0 in S.

� A bijective ring homomorphism is called an isomorphism. If there exists an

isomorphism between rings R and S, we say they are isomorphic and this

is denoted as R ≅ S.

After considering the construction of ring homomorphisms, the structure of

its kernel is a logical leap on inquiry. These objects play a large role in ring theory,

thus deserve their own name: Ideals.

DEFINITION 2.3 (see [21]). Let R be a ring, let I be a subset of R and let r ∈ R.

1. rI = {ra ∣ a ∈ I} and Ir = {ar ∣ a ∈ I}

2. A subset I of R is a left ideal of R if

I is a subring of R, and

I is closed under left multiplication by elements in R, i.e., rI ⊆ I for all

r ∈ R.

3. A subset I of R is a right ideal of R if

I is a subring of R, and

I is closed under right multiplication by elements in R, i.e., Ir ⊆ I for all

r ∈ R.
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4. A subset I that is both a left and right ideal is called an ideal, or a two-sided

ideal for emphasis.

THEOREM 2.1 (see [21]). (The First Isomorphism Theorem) If ϕ ∶ R → S

is a homomorphism of rings, then the following are true:

� ker(ϕ) is an ideal of R,

� the image of ϕ, ϕ(R), is a subring of S, and

� R/ker(ϕ) ≅ ϕ(R)

Proof. Let ϕ ∶ R → S be a homomorphism of rings R and S.

� To prove that ker(ϕ) is an ideal of R, I will begin by showing it is non-empty

then showing that the properties of an ideal, closed under addition and left and

right multiplication, are held true in ker(ϕ). Since ϕ is a ring homomorphism,

we know that ϕ(0R) = 0S, thus showing that ker(ϕ) is nonempty. Finally, let

k1, k2 ∈ ker(ϕ) and r ∈ R and observe

ϕ(k1 + k2) = ϕ(k1) = ϕ(k2) = 0S + 0S = 0S

ϕ(rk1) = ϕ(r)ϕ(k1) = ϕ(r) ⋅ 0S = 0S

ϕ(k1r) = ϕ(k1)ϕ(r) = 0S ⋅ ϕ(r) = 0S

Thus, ker(ϕ) is an ideal of R.

� To show that ϕ(R) is a subring of S, I will show that 1S, the identity of

S, is in ϕ(R), and that ϕ(R) is closed under subtraction and multiplication

with respect to S. Let s1, s2 ∈ ϕ(R). Thus, there exists r1, r2 ∈ R such that

ϕ(r1) = s1 and ϕ(r2) = s2. Observe

s1 − s2 = ϕ(r1) − ϕ(r2) = ϕ(r1) + ϕ(−r2) = ϕ(r1 − r2).

6



This shows that s1 − s2 ∈ ϕ(R). Next, observe

s1s2 = ϕ(r1)ϕ(r2) = ϕ(r1r2),

showing that s1s2 ∈ ϕ(R).Finally, since 1R ∈ R, that tells us that ϕ(1R) = 1S

since ϕ is a ring homomorphism. Thus, ϕ(R) is a subring of S.

� To prove R/ker(ϕ) ≅ ϕ(R), I will construct the following map: φ ∶ R/ker(ϕ) →

ϕ(R) where φ(r + ker(ϕ)) = ϕ(r) and prove that φ is an isomorphism. First,

to see the φ is well defined, let r1, r2 ∈ R such that r1−r2 ∈ ker(ϕ) and observe

φ(r1) = φ(r2 + (r1 − r2)) = φ(r2) + φ(r1 − r2) = φ(r2) + 0 = φ(r2).

Next, let r1 + I, r2 + I ∈ R/I. Due to the fact that ϕ is a homomorphism, we

have the following:

φ(r1 + I + r2 + I) = φ(r1 + r2 + I) = ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)

= φ(r1 + I) + φ(r2 + I)

φ((r1 + I)(r2 + I)) = φ(r1r2 + r1I + r2I + I) = φ(r1r2 + I + I + I)

= φ(r1r2 + I) = ϕ(r1r2) = ϕ(r1)ϕ(r2)

= φ(r1 + I)φ(r2 + I)

φ(1 + I) = ϕ(1) = 1

The above calculations shows that φ is a homomorphism. Lastly, I must

show that φ is a bijections. For injectivity, I will equivalently prove that

ker(φ) = {0}: Assume that r + ker(ϕ) ∈ ker(φ). This implies that φ(r + I) =

ϕ(r) = 0 which implies that r ∈ ker(ϕ), stating that the ker(φ) = {0}. For

subjectivity, let s ∈ ϕ(R). This allows us to say there exists an r ∈ R such

that ϕ(r) = s⇒ φ(r + ker(ϕ)) = s which tells us that s ∈ φ(R), implying that

φ is surjective. Therefore, we have that φ is an isomorphism.
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With the the above ring theory in mind, we can then define what it means

to be a field.

DEFINITION 2.4 (see [21]). A field is a ring, F , with the following conditions

satisfied:

1. 0F ≠ 1F ,

2. Every non-zero element has a multiplicative inverse, aka ∀a ≠ 0 ∈ F,∃b ∈ F

such that ab = ba = 1. We usually denote a’s multiplicative inverse as a−1 for

convenience.

3. (F,×) is abelian.

DEFINITION 2.5 (see [21]). The characteristic of a field F, denoted ch(F), is

defined to be the smallest possible integer p such that p × 1F = 0, if such a p exists.

If no such p exists, then it is defined to be zero.

For MPKC, we usually work with finite fields. A finite field is a field whose

elements are finite. For clarity on the definition of a field as well as the structure

of finite fields, see the example below.

EXAMPLE 2.1. We define Fq as follows for prime q:

� Fq = {0,1,2, . . . , q − 1},

� a + b = a + b (mod q) for all a, b ∈ Fq,

� ab = ab (mod q) for all a, b ∈ Fq,

Now to show Fq is a field. Also show that Fq has characteristic q.

Now that we have a space to work in, let’s discuss what we work with in

multivariate cryptography. We need a structure to be able to use polynomials

within these fields. These polynomials that live in finite fields are crucial as they

are the public key of many multivariate crypto schemes.
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DEFINITION 2.6 (see [2]). Let F be a field. If an, an−1, . . . , a1, a0 ∈ F where n is a

non-negative integer, then any expression of the form

anx
n + an−1x

n−1 +⋯ + a1x + a0

is called a polynomial over F, with indeterminate x and coefficients {ai}.

If p(x) = ∑
n
i=0 anx

n, we say p(x) has degree n, written as deg(p(x)) = n. If the

leading coefficient of p(x) is 1, then we say p(x) is a monic polynomial. The set

of all polynomials with coefficients in F is denoted by F[x].

We call F[x] a univariate polynomial ring due to it having a single inde-

terminate. However, this structure is very limited in its application to cryptography

as we usually use a single indeterminate for a single “part” or “section” of the in-

tended message to be encrypted. This is explained further in 2.3. Thus, we need

rings that have many indeterminates. The definition for such a structure is as

follows:

DEFINITION 2.7 (see [35]). If R is a ring, then the multivariate polynomial

ring in n variables X = {X1, . . . ,Xn} over R is the set of all finite expressions of

the forms of p(X) = ∑ai1...inX
i1
1 ⋯X

in
n , where ai1...in ∈ R and the ij are nonnegative

integers. Such polynomials are added and multiplied in the usual way. The multi-

variate polynomial ring is denoted R[X] or R[X1, . . . ,Xn]. The total degree of

a monomial term, ai1...inX
i1
1 ⋯X

in
n , is defined to be ∑

n
k=1 ik. The total degree of a

polynomial, p(X), is defined to be the maximum of the total degrees of p′s nonzero

monomials.

DEFINITION 2.8 (see [2]). Let F be a field, and let f(x) be a fixed polynomial over

F. If a(x), b(x) ∈ F[x], then we say that a(x) and b(x) are congruent modulo

f(x), written as a(x) ≡ b(x) (mod f(x)) if and only if f(x) ∣ (a(x) − b(x)).

The set {b(x) ∈ F[x] ∣ a(x) ≡ b(x) (mod f(x))} is called a congruence class of
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a(x), and is denoted as [a(x)].

The set of all congruence classes modulo f(x) will be denoted F[x]/⟨f(x)⟩.

Being able to reduce a function to its congruence class representative is im-

perative in MPKC. The following theorem is a great tool for this process.

THEOREM 2.2 (see [2]). Fermat: If p is a prime number, then for any integer a

we have

ap ≡ a (mod p)

Proof. If p ∣ a, then it is trivial that ap ≡ a ≡ 0 (mod p). Otherwise gcd(a, p) = 1 and

Euler’s theorem states that aφ(p) ≡ 1 (mod p) ⇒ ap ≡ a (mod p) since φ(p) = p−1.

An example of when you have two different polynomials representing the

same function defined over F[x] is provided below.

EXAMPLE 2.2. Let f(x) = x and g(x) = x5 where f, g ∈ F5[x]. Observe that,

for all c ∈ Fq, we have g(c) = c5 ≡ c (mod 5) by Fermat’s Theorem. Thus, both

function are members of the same equivalence class over F5. It is common to use the

representative of the residual class when working with them. In this case, f(x) = x

would be the representative as it is the “simplest” version of all members.

Another, less intuitive, example is as follows:

EXAMPLE 2.3. Let f(x) = x5 − 2x + 1 and g(x) = 4x + 1 where f, g ∈ F5. Let’s

follow a similar line of logic as example 2.2. Let c ∈ F5. Observe

f(c) = c5 − 2c + 1 ≡ c − 2c + 1 ≡ −c + 1 ≡ 4c + 1 (mod 5).

With the ability to discuss polynomials over finite fields, there is still an issue

that needs to be addressed. It is often necessary to be able to factor a polynomial

completely over our field. However, it is not always the case that it is possible to

do so. The polynomial may be irreducible over F.
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DEFINITION 2.9 (see [2]). A non-constant polynomial over F is considered irre-

ducible over F if it cannot be factored into a polynomial of lower degree. It is

considered reducible if such a factorization exists.

Thus, we often need to construct fields that contain all roots of our polyno-

mials. The first step in this process involves the extension of fields:

DEFINITION 2.10 (see [2]). Let K and F be fields. If F is a subset of K and has the

operations induced by K, then F is a subfield of K, and K is called an extension

field of F.

Now that we know we can have larger fields containing what we started with

along with the same operations, let’s discuss a way to create them. Assume we

start with a field F. Now, say we have a polynomial f(x) ∈ F[x] that had degree

greater than or equal to 2 and there exists a root of f(x) that is not in F, lets call

it u. So, for clarity, f(u) = 0 but u ∉ F. So, we want to generate the smallest field

that includes all of F and the root, u. We define such a set as F(u). Now, is F(u)

an extension field over F? Of course. Below is an example of such a construction.

EXAMPLE 2.4. Let Q be the field of rational numbers. Let f(x) = x2 + 1. Observe

that this polynomial has two roots, but neither of them are in Q. Let i =
√
−1. The

field Q(i) = {a + bi} is the smallest field containing Q as a subfield as well as all

roots to f(x). Note that the second root, −i, is in Q(i) with a = 0 and b = −1.

Within big field schemes, we like to build up a construction that relates

constructing extension fields as well as working with polynomial fields. This is can

be accomplished with the following terminology and lemma.

DEFINITION 2.11 (see [2]). Let K be an extension of F and let u ∈ K. u is said

to be algebraic over F if there exists a nonzero polynomial f(x) ∈ F[x] such that

f(u) = 0. If u does not satisfy any nonzero polynomial in F[x], aka f(u) ≠ 0 for

any f(x) ∈ F[x], then u is said to be transcendental over F.
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DEFINITION 2.12 (see [2]). Let K be an extension field of F, and let u be an

algebraic element of K. The monic polynomial p(x) of minimal degree in F[x] such

that p(u) = 0 is called the minimal polynomial of u over F. The degree of the

minimal polynomial of u over F is called the degree of u over F.

Now we have all the necessary terminology. What follows is how we can

construct an extension field that contains polynomials.

LEMMA 2.1 (see [2]). Let K be an extension of F, and let u ∈ K. If u is algebraic

over F, then F(u) ≅ F[x]/⟨p(x)⟩, where p(x) is the minimal polynomial of u over

F.

Let K = F[x]/⟨p(x)⟩ where degree(p(x)) = n. We say that K is a degree

n extension of F. While working within these structures in MPKC, it is often

beneficial to view them through their vector space representations. What follows is

the terminology and theorems necessary to justify this viewpoint.

PROPOSITION 2.1 (see [2]). If K is an extension field of F, then K is a vector

space over F.

This structure allows us to use the degree of the minimal polynomial to work

with a defined degree vector space. This is proven in the following proposition.

PROPOSITION 2.2 (see [2]). Let K be an extension field of F, and let u ∈ K be an

element algebraic over F. If the minimal polynomial of u over F, p(x), has degree

n, then F(u) ≅ F[x]/⟨p(x)⟩ is an n-dimensional vector space over F.

Proof. Let p(x) = ∑
n
i=0 aix

i be the minimal polynomial of u over F. Let B =

{1, u, u2, . . . , un−1}. Note that, in this context, each element of B is an n-dimensional

vector. Observe that F(u) ≅ F[x]/⟨p(x)⟩, and that each coset of F[x]/⟨p(x)⟩ con-

tains a unique representative of degree less than n. Thus, this isomorphism tells us

that each element of F(u) can be represented uniquely as ∑
n
i=0 aiu

i. This tells us
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that B spans F(u), and the uniqueness of each representation gives us that B is a

linearly independent set of vectors.

Here is a chance to look at the benefits of this kind of structure. Let K be an

n-dimensional extension of Fq via Fq/⟨p(x)⟩, where p(x) is a minimal polynomial

for u ∈ K of degree n. Let a(x), b(x) ∈ K. We can define addition of such elements

by simple polynomial addition. However, multiplication of such elements is where

the beauty of such a structure shines. The multiplication of a(x) and b(x) is defined

by computing a(x)b(x), then finding the representative of degree less than n. This

process is demonstrated in the following example.

EXAMPLE 2.5. Let K be a degree 3 extension of F3 = GF (3) = {0,1,2}, via F3/⟨x3+

2x + 1⟩. Let a(x) = x2 + x + 1 and b(x) = 2x2 + x + 2. Observe that x3 + 2x + 1 = 0⇒

x3 = −2x − 1 = x + 2. Thus, we have the following computations:

a(x) + b(x) = x2 + x + 1 + 2x2 + x + 2 = 3x2 + 2x + 3 = 2x

and

a(x)b(x) = (x2 + x + 1)(2x2 + x + 2) = 2x4 + x3 + 2x2 + 2x3 + x2 + 2x + 2x2 + x + 2

= 2x4 + 3x3 + 5x2 + 3x + 2 = 2x4 + 2x2 + 2 = 2x(x3) + 2x2 + 2

= 2x(x + 2) + 2x2 + 2 = 2x2 + 4x + 2x2 + 2 = 4x2 + 4x + 2

= x2 + x + 2

Along with this, we have another very powerful tool that allows us to quickly

compute very large degrees of polynomials.

PROPOSITION 2.3 (see [21]). Let F be a field of characteristic p. Then, for any

a, b ∈ F,

(a + b)p = ap + bp and (ab)p = apbp.

Put another way, the pth power map defined by ϕ(a) = ap is an injective field

homomorphism from F to F. This map is called the Frobenius Endomorhpism.

13



Proof. Note that we can apply the binomial theorem to any commutative ring, thus

a finite field is valid. Observe, by applying the binomial theorem, we have

(a + b)p = ap + (
p

1
)ap−1b +⋯ + (

p

i
)an−ibi +⋯ + bp.

Let’s take a closer look at (p
i
) for prime p and integer 1 ≤ i ≤ p − 1. Observe

(
p

i
) =

p!

i!(p − i)!
.

Notice that the factor of p does not cancel out, since gcd(p,α) = 1∀1 ≤ α ≤ p − 1

since p is prime. Thus, (p
i
) ≅ 0 (mod p). This gives us (a + b)p = ap + bp. Note that

the result can be extended to powers of p, giving us

(a + b)p
i

= ap
i

+ bp
i

for any i ∈ Z

2.2 Gröbner Basis

A good understanding of Gröbner bases is necessary when approaching the

topic of MPKC. They are the basis for a standard method of attacking such schemes

and knowledge of these objects helps one understand how to construct schemes

that do not possess such a vulnerability and these algorithms are an active field

of research today. While these algorithms continue to evolve and improve, cryp-

tographers and cryptanalysts need to be aware of these developments and respond

accordingly.

2.2.1 Gröbner Basis Basics

Before we dive into known algorithms for computing Gröbner bases, let’s

begin with understanding the fundamentals necessary to find them. First, note
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that we work in multivariate polynomial rings in MPKC. In order to work within

this structure, it is important to understand the different options for placing an

ordering on elements within F[X1, . . . ,Xn].

DEFINITION 2.13 (see [35]). Let F[X1, . . . ,Xn] be a multivariate polynomial ring.

� In the lexicographical ordering, the terms are listed in the same order in

which the monomials (ignoring constants) would occur in a dictionary if they

were words in an alphabet consisting of X1, . . . ,Xn letters.

EXAMPLE 2.6. Let f(x1, x2, x3, x4, x5) = 3x4x3
2x

2
1+x1x2

3x2+x5x2x1+x2+x5x2.

The polynomial is rewritten as

f(x1, . . . , x5) = x1x2x
2
3 + 3x2

1x
3
2x4 + x1x2x5 + x2 + x2x5

under the lexicographical ordering.

� In the degree-lexicographical ordering the monomials are listed from high-

est to lowest total degree, and the terms with a fixed total degree are listed in

lexicographical ordering.

EXAMPLE 2.7. The polynomial described in example 2.6 is rewritten as

f(x1, . . . , x5) = 3x2
1x

3
2x4 + x1x2x

2
3 + x1x2x5 + x2x5 + x2

under the degree-lexicographical ordering.

For our purposes, we will be using degree-lexicographical ordering. It is im-

perative that an ordering is chosen and used consistently throughout the process

of Gröbner Basis algorithms. Failure to hold true to an ordering will cause such

algorithms to produce inaccurate results and possibly never terminate.

There are many terms associated with polynomials within multivariate poly-

nomial rings for these algorithms. All such terminology is defined here for refer-

ence. For these definitions, F[X1, . . . ,Xn] is a multivariate polynomial ring and

f(X) = ∑ai1...inX
i1
1 . . .X in

n is an element of it.
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DEFINITION 2.14 (see [22]). For F[X1, . . . ,Xn], the set T [X1, . . . ,Xn] is the set

of all terms in these variables.

EXAMPLE 2.8. Let F2[x1, x2, x3] be a multivariate polynomial ring over GF (2).

Then,

T [x1, x2, x3] = {x1x2x3, x1x2, x1x3, x2x3, x1, x2, x3}.

Note that xji = xi ∀j ∈ Z since xi ∈ GF (2).

DEFINITION 2.15 (see [22]). The set M(f) = {ai1...inX
i1
1 ⋯X

in
n ∣ ai1...in ≠ 0} is the

set of monomials of a given polynomial within F[X].

EXAMPLE 2.9. Let f ∈ F3[x1, x2, x3] such that f(X) = 2x1x2x3+x1x2+2x2x3+2x3.

Then, M(f) = {2x1x2x3, x1x2,2x2x3,2x3}.

DEFINITION 2.16 (see [22]). The set T (f) is the set of terms of f , T (f) =

{X i1
1 . . .X in

n ∣ ai1...in ≠ 0}. Note that T (f) ⊆ T [X1, . . . ,Xn], where f ∈ F[X1, . . . ,Xn].

EXAMPLE 2.10. For the polynomial, f , defined in example 2.9:

T (f) = {x1x2x3, x1x2, x2, x3}.

DEFINITION 2.17 (see [22]). For f ∈ F[X1, . . . ,Xn], we define the following

� The head term of f , denoted as HT (f), is HT (f) =max(T (f)).

� The head monomial of f , denoted as HM(f), is HM(f) =max(M(f)).

� The head coefficient of f , denoted as HC(f), is HC(f) = HM(f)
HT (f) .

EXAMPLE 2.11. For the polynomial, f , defined in example 2.9:

� HT (f) = x1x2x3

� HM(f) = 2x1x2x3
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� HC(f) = HM(f)
HT (f) = 2x1x2x3

x1x2x3
= 2

DEFINITION 2.18 (see [22]). Let F ⊆ F[X1, . . . ,Xn]. We can easily extend the

definitions of 2.17 in the following manner:

� HT (F ) = {HT (f) ∣ f ∈ F}

� HM(F ) = {HM(f) ∣ f ∈ F}

� T (F ) = ⋃T (f) such that f ∈ F . The definition of T (F ) given here differs

from the definition given by Faugére in [22]. However, this is a more accurate

representation of what is intended.

With all the terminology under our belt, we can continue to move towards

understanding what Gröbner Bases are and how to find them. Before we can un-

derstand what a Gröbner Basis is, we need to understand an essential process,

polynomial modulation.

DEFINITION 2.19 (see [35]). We say that f reduces to h modulo g in one

step if aiX i ∈M(f) is divisible by HM(g) and

h = f −
aiX i

HM(g)
g,

we denote this as f
g
Ð→ h. In the important case that HM(g) ∣HM(f), we have

h = f −
HM(f)

HM(g)
g.

EXAMPLE 2.12. Let f, g ∈ F3[x1, x2, x3] where f(x1, x2, x3) = x2
1x2x3 + 2x2x3 + x3

and g(x1, x2, x3) = x2x3 + x1. Note we can say the following:

h1 = f −
x2

1x2x3

HM(g)
g = (x2

1x2x3 + 2x2x3 + x3) −
x2

1x2x3

x2x3

(x2x3 + x1) = 2x2x3 + 2x1 + x3

h2 = f −
2x2x3

HM(g)
g = (x2

1x2x3 + 2x2x3 + x3) −
2x2x3

x2x3

(x2x3 + x1) = x
2
1x2x3 + x1 + x3
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From example 2.12, we can see that f
g
Ð→ h1 and f

g
Ð→ h2 where h1 ≠ h2.

However, if you continue the modulation, you can see that f
g
Ð→ h1

g
Ð→ x3 and

f
g
Ð→ h2

g
Ð→ x3. This is concerning. The choice of which monomial within f you

modulate has an effect on the result. However, example 2.12 seems to indicate that

you will always get the same result if you continue the modulation as far as possible.

Unfortunately, this is simply untrue.

We just finished exploring the concept of modulating a single polynomial by

another multiple times in a chain. However, there is no restriction preventing us

from doing this with more than one polynomial. Observe:

EXAMPLE 2.13. Let f, g1, g2, g3 ∈ F3[x1, x2, x3] where

g1(x1, x2, x3) = x1x2 + x3 g2(x1, x2, x3) = x2x3 + x1 g3(x1, x2, x3) = x2

f(x1, x2, x3) = x
2
1x2 + x2x

2
3 + 2x1x3 + x

2
2 + x2

Observe that

f
g3
Ð→ h1 = f −

x2
1x2

x2

(x2) = x2x
2
3 + 2x1x3 + x

2
2 + x2

h1
g3
Ð→ h2 = h1 −

x2x2
3

x2

(x2) = 2x1x3 + x
2
2 + x2

h2
g3
Ð→ h3 = h2 −

x2
2

x2

(x2) = 2x1x3 + x2

h3
g3
Ð→ h4 = h3 −

x2

x2

(x2) = 2x1x3

Thus, f
g3
Ð→ h1

g3
Ð→ h2

g3
Ð→ h3

g3
Ð→ h4 = 2x1x3. We cannot modulate anymore since

neither HM(g1), HM(g2), or HM(g3) divide into any monomial of h4. However,

let us try a different ordering on the modulation:

f
g1
Ð→ h′1 = f −

x2
1x2

x1x2

(x1x2 + x3) = x2x
2
3 + x1x3 + x

2
2 + x2

h′1
g2
Ð→ h′2 = h

′
1 −

x2x2
3

x2x3

(x2x3 + x1) = x
2
2 + x2

h′2
g3
Ð→ h′3 = h

′
2 −

x2
2

x2

(x2) = x2

h′3
g3
Ð→ h′4 = h

′
3 −

x2

x2

(x2) = 0
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Thus, f
g1
Ð→ h′1

g2
Ð→ h′2

g3
Ð→ h′3

g3
Ð→ h′4 = 0.

Note that the order in which we chose polynomials to perform the modulation

had a drastic impact on the result. Of course, we would always like to be able to

choose an ordering in such a way to modulate to 0, if possible. Since we were able to

modulate to 0, it shows that a combination of the polynomials used in modulation

exists to form f , specifically f = x1(g1)+x3(g2)+(x2+1)(g3). Due to this possibility

of confusion, F = {g1, g2, g3} is not a good basis for the ideal generated by g1, g2,

and g3. We define the process of modulating a polynomial by a set of polynomials

as

DEFINITION 2.20 (see [35]). Let F = {g1, . . . , gl} ⊂ F[X1, . . . ,Xn] and let f ∈

F[X1, . . . ,Xn]. We say that f reduces to h modulo the set of polynomials F

if we have a sequence of polynomials beginning with h0 = f and ending with hk = h

such that hj reduces to hj+1 modulo some g ∈ F in one step, j = 0,1, . . . , k − 1.

This issue of different results from modulating a polynomial by a set of

polynomials leads us into one of the foundational concepts in computational algebra,

finding a good choice of basis polynomials for an ideal.

DEFINITION 2.21 (see [35]). Let G = {g1, . . . , gl} ⊂ F[X] = F[X1, . . . ,Xn] be a

finite set of polynomials in n variables over a field F. Let I be the ideal of F[X]

that they generate, I = ⟨g1, . . . , gl⟩. We say that G is a Gröbner Basis for the

ideal I if every nonzero f ∈ I has a leading term that is divisible by the leading term

of at least one of the generators, gi ∈ {g1, . . . , gl}.

It is worth pointing out the the term Gröbner Basis can be misleading.

Indeed, a Gröbner Basis is a collection of functions that generate an ideal, in the

sense that every element of the ideal can be represented as a linear combination of

Gröbner Basis elements. However, it is not a Basis in the sense of vector spaces,
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i.e. where such a linear combination would be unique. Before we try and use these

objects, it would be nice to know if there exists a Gröbner Basis for every ideal, I.

To do so, we need to introduce the concept of general polynomial division.

DEFINITION 2.22 (see [21]). General Polynomial Division: Fix a monomial

ordering on F[X] = F[X1, . . . ,Xn] and suppose g1, . . . , gl is a collection of nonzero

polynomials in F[X]. If f ∈ F[X], start with a set of quotients q1, . . . , ql and a

remainder r initially equal to 0 and successively test if the leading term of the

dividend, f , is divisible by the leading terms of the divisors, g1, . . . , gl, in that order.

Then,

1. If HT (gi) ∣ HM(f) ⇒ HM(f) = aiHM(gi), set qi+ = ai and replace f ∶=

f − aigi, and reiterate the entire process.

2. If the leading term of f is not divisible by any of the leading terms of g1, . . . , gl,

set r+ =HM(f), replace f ∶= f −HM(f), and reiterate the entire process.

This process terminates when the dividend is 0 and results in a set of quotients,

q1, . . . , ql, and a remainder, r, with

f = (
l

∑
i=1

qigi) + r.

Each qigi has degree less than or equal to the degree of f and the remainder r has

the property that no nonzero term in r is divisible by any of the leading terms of

g1, . . . , gl. This is by construction, since only monomials with this property are added

to r.

THEOREM 2.3 (see [21]). Fix a monomial ordering on F[X] and suppose G =

{g1, . . . , gl} is a Gröbner Basis for a non-zero ideal, I in F[X]. Then,

1. Every polynomial f ∈ F[X] can be written uniquely in the form of

f = f1 + r
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where f1 ∈ I and no nonzero monomial term of the ”remainder“ r is divis-

ible by any of the leading terms of the polynomials within G, i.e. ∀ gi ∈

G, HM(gi) ∤ rj, ∀ rj ∈M(r).

2. Both f1 and r can be computed by general polynomial division by g1, . . . , gl

and are independent of the order in which these polynomials are used in the

division.

3. The remainder r provides a unique representative for the coset of f in the

quotient ring F[X]/I. In particular, f ∈ I if and only if r = 0.

PROPOSITION 2.4 (see [21]). Fix a monomial ordering on F[X] and let I be

a nonzero ideal in F[X]. Define ILT (I) = ⟨HM(f) ∣ f ∈ I⟩ to be the ideal of

leading terms, i.e. the ideal generated by the leading terms of all elements in the

ideal.

1. If g1, . . . , gl are any elements of I such that ILT (I) = ⟨HM(g1), . . . ,HM(gl)⟩,

then {g1, . . . , gl} is a Gröbner basis for I.

2. The ideal, I, has a Gröbner basis.

The definition of a Gröbner Basis is lacking in its ability to instruct how

to find one. Once found, they have many applications, including breaking MPKC

schemes. So, how does one find/compute, given a collection of functions, a Gröbner

Basis of the ideal generated by those functions? That question was first answered

by Dr. Buchberger in his Ph.D. thesis, [9]. The first theorem presented is used in

the proof of Buchberger’s Theorem.

THEOREM 2.4 (see [35]). F ⊂ F[X] is a Gröbner Basis for an ideal, I, if and only

if every f ∈ I reduces to 0 modulo F .

Proof. (⇒) Assume that F is a Gröbner basis for an ideal, I. Let f ∈ I be nonzero.

(If it were 0, then it is trivial that it reduces to 0 modulo F .) Note that there
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exists a gi ∈ F such that HM(g) ∣ HM(f), thus we can modulate f , f
gi
Ð→ h1.

Observe that f > h1 according the ordering placed on F[X1, . . . ,Xn]. It is easy to

see that h1 ∈ I. Thus, we can repeat the process to look at h1
gk
Ð→ h2 where gk ∈ F

and f > h1 > h2. Since the result of each modulation stays in I and continues to

decrease down the imposed ordering, we will end with 0.

(⇐) Assume every f ∈ I reduces to 0 modulo F . Let f ∈ I be nonzero. Since f re-

duces to 0 modulo F , there exists a finite sequence of polynomials in F , {g1, . . . , gk},

such that f
g1
Ð→ h1

g2
Ð→ h2

g3
Ð→ ⋯

gk−1
ÐÐ→ hk−1

gk
Ð→ hk = 0. Thus, for some gi ∈ g1, . . . , gk ⊂ F ,

HM(gi) ∣HM(f). Therefore, F is a Gröbner Basis for I.

DEFINITION 2.23 (see [35]). The S-Polynomial of two polynomials f, g ∈ F[X]

is

S(f, g) =
L

HM(f)
f −

L

HM(g)
g

where L is the least common multiple of the leading terms of f and g. This can be

computed (for algorithmic purposes) as

L = lcm(α,β)
n

∏
i=1

X
max(αi,βi)
i

where HM(f) = α∏
n
i=1X

αi
i and HM(f) = β∏

n
i=1X

βi
i .

THEOREM 2.5 (see [35]). Buchberger: F ⊂ F[X] is a Gröbner Basis for I if and

only if S(gi, gj) reduces to 0 modulo F for every gi, gj ∈ F .

This theorem allows us to develop an algorithm in which to construct Gröbner

bases, see Appendix C. However, the Buchberger algorithm is not efficient. Thus,

Faugére improved upon this concept in creating the F4 algorithm, [22]. For ref-

erence, I also include his pseudo code in Appendix C. There are a few definitions

necessary to understand his algorithm.

DEFINITION 2.24 (see [22]). A critical pair of two polynomials (fi, fj) is an ele-
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ment of T 2 ×R[X] × T ×R[X], Pair(fi, fj) ∶= (lcmi,j, ti, fi, tj, fj) such that

lcm(Pair(fi, fj)) = lcmi,j =HT (tifi) =HT (tjfj) = lcm(HT (fi),HT (fj))

DEFINITION 2.25 (see [22]). We say that the degree of the critical pair pi,j =

Pair(fi, fj), denoted deg(pi,j), is deg(lcmi,j). We define two projections

Left(pi,j) ∶= (ti, fi) and Right(pi,j) ∶= (tj, fj). If (t, p) ∈ T × R[X], then we note

mult((t, p)) the evaluated product t ∗ p.

2.2.2 Gröbner Basis Attacks

Now, we have the terminology necessary to look at Faugére’s F4 algorithm.

I have constructed the F4 algorithm as well as Buchberger’s algorithm in Magma,

see [7]. This code is provided in Appendix D for reference. Now that the algorithms

for computing Gröbner basis are understood, one can see how they can be used in

an attack on MPKC systems.

One of the main attacks that MPKC systems are susceptible to is a Gröbner

basis attack through using the F4 and F5 algorithms developed by Faugére. This

attack uses a GB algorithm to solve the following system:

p1 = y1, . . . , pn = yn

where pi are the public key polynomials and yi is the cipher text that was inter-

cepted. A main process within these algorithms is the search for combinations of

public polynomials, ∑ gipi where gi ∈ F[x1, . . . , xn], where the degree of the sum-

mands, gipi, are equal and the resulting degree, ∑ gipi, is less than expected. This

occurs when there is cancellation of highest degree terms. This can occur trivially,

but the key to this calculation is when this reduction is non-trivial. Examples of

trivial cancellations are as follows:

phi p
h
j − p

h
j p

h
i and ((phi )

q−1 − 1)phi = 0.
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Non-trivial reductions are ones do not occur from the equations above. An interest-

ing phenomenon is that once the first non-trivial cancellation occurs, the algorithm

will terminate shortly after. This phenomenon has been supported by extensive

experimentation and the algorithm will always encounter this cancellation before

terminating. Thus, an understanding of when this “degree fall” is crucial in under-

standing the complexity of the Gröbner Basis attacks. A formal definition is given

below.

DEFINITION 2.26 (see [18]). Let K = F[x1, . . . , xn]/⟨x
q
1 − x1, . . . , x

q
n − xn⟩ be the

algebra of functions over Fnq . Let p1, . . . , pn be a set of quadratic polynomials in

K. Denote K≤k to be the subspace of K consisting of functions representable by a

polynomial of degree less than or equal to k.

For all j we have a natural map ψj ∶ Kn
≤j → K≤j+2 given by

ψj(a1, . . . , an) = ∑
i

aipi,

where

Kn
≤j = K≤j ×⋯ ×K≤j.

If at least one of the ai has a degree j but ∑i aipi has degree less than j + 2, we say

that a “degree fall” occurs. Obviously we can have trivial degree falls of the form

pjpi + (−pi)pj = 0 or (pq−1
i − 1)pi = 0.

The degree of regularity of the set {p1, . . . , pn} is the smallest degree at which a

non-trivial degree fall occurs.

2.3 Introduction to Cryptography

It is very common to humanize the definition of a cryptosystem with names

such as Alice, Bob, and Cathy. For, in the field of cryptography, every situation
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we study involves the transfer of information between Alice and Bob while Cathy

attempts to undermine the security of their transmissions.

The field of cryptography can be split into two main fields of study, symmet-

rical and asymmetrical cryptography. The difference between these structures lie

in their construction. A symmetrical cryptosystem uses the same private informa-

tion to perform encryption and decryption. Thus, for two individuals like Alice and

Bob to communicate they would need to have a private key agreed upon. This can

be done by meeting before communication occurs or performing the Diffie-Hellman

key exchange, see [15]. An example of the latter will be walked through later in

this section. However, for modern implementations, it is very difficult to set up a

predetermined meeting before secure communication can occur. Also, the ability

to verify the identity of a user of a scheme is becoming more necessary, and the

Diffie-Hellman key exchange does not provide the ability to do so.

Thus, another class of cryptosystems were introduced in the late 1970’s,

asymmetrical cryptosystems. Simply, these are cryptosystems that do not de-

pend on both parties having access to the private key information used to construct

the scheme. Say Alice would like others to be able to communicate with her se-

curely. She can then construct an asymmetrical cryptosystem. She never discloses

her private key, and publishes a public key. This public key allows anyone to

communicate with her by passing their message through it and sending her the

encrypted message. This construction has more applications than just encryption

and decryption, which I will explain in more detail later in this section. One of the

first cryptosystems of this type is the well known RSA, [58].

In this section, I will go through a basic construction of both a symmetri-

cal and asymmetrical cryptosystem. I will then walk through their strengths and

weaknesses. Afterwards, I will discuss why the movement away from current im-

plementations of RSA is necessary because of the development of polynomial time
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algorithms for quantum computers for factoring and solving the discrete log prob-

lem by Shor, [62]. Further, I will walk through one of the first constructions built

that is considered post-quantum since the “hard” problem it is based on cannot be

broken by known quantum algorithms. This scheme, C∗, by Tsutomu Matsumoto

and Hideki Imai, see [37], is considered to be one of the first within Multivariate

Public Key Cryptography (MPKC).

2.3.1 Symmetrical Cryptography

To begin, lets define common terminology that is used widely throughout

the crypo community.

DEFINITION 2.27. The plain text is a “message” in its original form before

it is run through a cryptosystem. This may be a message like “attack” or “re-

treat”, but it may also be a random string, which can be used as a key for another

cryptosystem. The cipher text is the result of running the plain text through a

cryptosystem. Hopefully, the meaning is obfuscated and prevents interception of the

message bearing fruit.

DEFINITION 2.28. Encryption is the process of taking a plain text and producing

a cipher text. Decryption is the process of taking a cipher text and computing its

corresponding plaintext.

DEFINITION 2.29. The secret key is the information necessary to compute

f(P) = C and f−1(C) = P. When discussing security, one assumes that an out-

sider, Cathy, does not have access to the secret key.

The following is an toy example of a symmetrical encryption system, the Hill

Cipher: Let each letter in the alphabet be represented by its numerical equivalent

modulo 26:

A ∶ 0 (mod 26),B ∶ 1 (mod 26), . . . , Z ∶ 25 (mod 26)
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Let the secret key be a randomly chosen, invertible 2 × 2 matrix modulo 26:

A =

⎛
⎜
⎜
⎝

1 2

3 5

⎞
⎟
⎟
⎠

A−1 =

⎛
⎜
⎜
⎝

21 2

3 25

⎞
⎟
⎟
⎠

Encryption: Let the intended message be: HELP. This correlates to the plain text

of 7,4,11,15. Construct the plain text into two 2 × 1 vectors:

⎛
⎜
⎜
⎝

7

4

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

11

15

⎞
⎟
⎟
⎠

.

Then, apply the key matrix, A to each vector, while working modulo 26:

⎛
⎜
⎜
⎝

1 2

3 5

⎞
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎝

7

4

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

15

15

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 2

3 5

⎞
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎝

11

15

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

15

4

⎞
⎟
⎟
⎠

Finally, rearrange the resulting vectors to get the cipher text: 15,15,15,4.

Decryption: To decrypt the cipher text, simply apply the inverse key, A−1, to the

cipher text after breaking it up to two 2 × 1 vectors. Observe:

⎛
⎜
⎜
⎝

21 2

3 25

⎞
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎝

15

15

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

7

4

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

21 2

3 25

⎞
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎝

15

4

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

11

15

⎞
⎟
⎟
⎠

This gives us a plain text of 7,4,11,15 or HELP, the intended message. This is

an example of symmetric cryptography since the secret key {A,A−1} was used for

encryption and decryption.

2.3.2 Diffie-Hellman Key Exchange

As discussed earlier, there is a need for keys to be exchanged before secure

communication to take place in symmetric cryptography. Thus, a method for secure

27



key transfer was constructed by Whitfield Diffie and Martin E. Hellman in 1976,

coined the “Diffie-Hellman Key Exchange”, see [15]. A key point to understand

is that encryption and decryption are not processes associated with this process.

The Diffie-Hellman key exchange is a method which allows two users to generate a

shared key securly. This process is described below, followed by a toy example for

clarification.

Alice and Bob wish to generate a shared secret. Cathy is attempting to

undermine their future communications, thus wishes to be able to determine this

shared secret, if possible, and is monitoring their communication. Unless specified

otherwise, all data transmitted between Alice and Bob is able to be seen by Cathy.

This allows a good framework for discussing the security of the scheme by allowing

Cathy to know everything possible, except “secret keys”, as is the norm for judging

security of schemes in cryptography.

Alice and Bob agree to work in the world of modulo p, where p is prime, and

use an agreed upon primitive root (an element which generates the multiplicative

group of the integers modulo p), g of modulo p. To generate a shared secret, both

Alice and Bob choose values a and b respectively, where 1 < a, b < p. Alice sends

ga (mod p) to Bob while Bob sends gb (mod p) to Alice. Alice is able to com-

pute gab (mod p) since she has her secret key, a, and knows gb (mod p) from Bob.

bob is also able to compute gab (mod p) since he has his secret key, b, and knows

ga (mod p) from Alice. Thus, they have generated a shared secret, gab (mod p),

which can then be used as a key for future encryption/decryption using symmetrical

cryptography.

Is this shared secret secure? Cathy knows the following: g, p, ga (mod p),

and gb (mod p). Can she determine gab (mod p) from that information? No! This

problem is also known as the discrete log problem and there is no current algorithm

to solve this problem in general.
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Toy Example:

Let p = 23 and g = 5. Let Alice’s and Bob’s secrets be a = 6 and b = 15

respectively. Alice sends Bob 56 (mod 23) = 8 and Bob sends Alice 515 (mod 23) =

19. Then, Alice computes 196 (mod 23) = 2 and Bob computes 815 (mod 23) = 2.

Thus, both Alice and Bob have generated the shared secret of 2 (mod 23).

2.3.3 Asymmetrical Cryptography

Here, we will discuss the basics of an asymmetrical cryptosystem, commonly

referred to as a public key cryptosystem. As mentioned in section 2.3.1, it is nec-

essary for both parties to have access to a secret key in order to use a symmetrical

cryptosystem. Also, there is the vulnerability of the ”man-in-the-middle” attack on

the Diffie-Hellman key exchange.To have a system that did not depend on a shared

secret key while avoiding the vulnerability of the Diffie-Hellan key exchange, public

key cryptography was created.

A general description of how a public key cryptosystem is easy to under-

stand. Say Alice wishes to allow anyone to securely communicate with her. Thus,

she published a public key. This provides Bob, or anyone else, a system to feed

their plain text through to generate a corresponding cipher text. Then, Bob can

send this cipher text back to Alice. She uses her private key, information used to

generate the public key but kept secret, to decrypt Bob’s message.

This structure is easy to understand and see it’s applications, but very diffi-

cult to construct. The difficulty lies in the structure’s security. Notice that Cathy,

someone wishing to be able to undermine the scheme and be able to understand

Bob’s messages, is able to see the public key. This may not be true, but in deter-

mining public key security, we assume an attacker has all structural information
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about the scheme, except the private key. This provides Cathy many different ways

to break the scheme. One possible way is for Cathy to generate all possible plain

text and cipher text pairs. Thus, if she were to intercept a cipher text sent from

Bob to Alice, she would be able to identify its corresponding plain text. There are

other ways to break public key cryptosystems, which will be addressed later.

The structural cornerstone of a public key cryptosystem is its trap-door func-

tion. The difficulty in creating public key cryptosystems is identifying these useful

trap-door functions.

DEFINITION 2.30. Let f ∶ P → C be a function from the plain text space, P, to

the cipher text space, C. Such a function is considered to be a trap-door function

if f(p) for any p ∈ P is “easy” to compute and f−1(c) is “hard”. In other words,

by knowing f , it is easy for anyone to compute a plain text’s corresponding cipher

text. However, being able to find the inverse of f , is “hard” without knowing the

private key. Thus, the individual with the private key can easily decrypt a cipher

text, since the private key allows them to quickly find f−1, but anyone without the

private key is unable to find f−1(c) in a reasonable amount of time.

The best way to understand a public key cryptosystem is to work with one.

The example we will be using is one of the most well known schemes, RSA [58].

The description given is not the standardized structure used today. However, this

will allow you to understand the basics of a public key cryptosystem, the underlying

structure of RSA, and why RSA is secure. First, I define Euler’s phi-function since

it is necessary for the construction, then I give a detailed description of RSA.

DEFINITION 2.31 (see [35]). Let n be a positive integer. The Euler phi-function,

ϕ(n), is defined to be the number of nonnegative integers b less than n which are
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relatively prime to n.

ϕ(n) = ∣{0 ≤ b < n ∣ gcd(b, n) = 1}∣

PROPOSITION 2.5 (see [36]). If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

CRYPTOSYSTEM 2.1 (RSA). Two large distinct primes, on the magnitude of

100-decimal digits, p and q are chosen and kept secret. Then, one computes n = pq

and randomly chooses e, where 1 < e < ϕ(n) and gcd(ϕ(n), e) = 1. (Note: ϕ(n)

is Euler’s phi-function) Next, the user computes the the multiplicative inverse of

e (mod ϕ(n)), which we will call d.

� Private Key: (p,q,d)

� Public Key: (n,e)

� Enciphering Function: f ∶ Zn → Zn where f(P) = P e (mod n)

� Deciphering Function: f−1(C) = Cd (mod n)

Lets discuss some specific details of this system. First of all, it should be

noted that the plain text space, P, should only contains elements that are relatively

prime to n, but that is not the case. It is very unlikely that plain text elements

would fail this condition since n is the product of 2 very large primes, thus the

probability for decryption failure is very low. Next,it should be clear that f−1 does

indeed give you a cipher text’s corresponding plain text:

Proof. Let n = pq where p and q are distinct primes. ϕ(n) is Euler’s phi function

of n. Let e be chosen between 1 and ϕ(n) such that it is relatively prime to ϕ(n).

Let d be the multiplicative inverse of e (mod ϕ(n)), i.e. de ≡ ed ≡ 1 (mod ϕ(n)).

Let c = pe mod n be a cipher text that corresponds to the plain text p. Observe:

cd = (pe)d = ped = paϕ(n)+1 = paϕ(n)p ≡ 1 ∗ p (mod n) ≡ p (mod n)
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The security of this scheme is based on the difficulty of factoring n. Note,

that the main element that allows quick decryption is d, the multiplicative inverse

of e (mod ϕ(n)). If an attacker were able to compute this quantity, they would

be able to decrypt as quickly as our user. So, why does knowing d depend upon

knowing the factorization of n? Note that we are looking for a multiplicative in-

verse (mod ϕ(n)). Thus, one needs to be able to compute ϕ(n). Computing this

quantity quickly requires you to know the factorization of n = pq. If you know this,

then ϕ(n) = (p− 1)(q − 1). It is noted in [58] that factoring such large numbers (for

example, n being 200 digits) can take 3.8 × 109 years. For clarity, a toy example of

a basic RSA implementation is provided below.

Toy Example: Bob wishes to generate a public key so that Alice can communicate

with him in a secure manner. Thus, Bob chooses to use an RSA implementation

with the following secret parameters: p = 3, q = 11, ϕ(n) = 20, and d = 3. With

this, he generates the following public key: PA = {n = 33, e = 7}. Note that the

exponent is chosen such that gcd(e,ϕ(n)) = 1. Alice chooses to send the message

M = 14 to Bob, after feeding it through the RSA encryption of C = M e (mod n),

resulting in C = 20 (mod 33). Bob receives the cipher text, computes 203 (mod 33)

in order to decrypt the cipher text to receive the message M = 14.

Encryption and decryption are not the only concepts that are relevant to

asymmetrical cryptography. Digital signatures is another necessity of modern tech-

nology that utilizes public key cryptosystems. This can be viewed as an electronic

extension of one’s physical signature, as on a check or lease. These signatures are

intended to be unique to the individual and prove that it was you who authorized

said transaction. How can this be done electronically? Public key cryptosystems

allow for this to be done with a small change to the standard encryption protocol.

For our description, assume that Alice and Bob are both using an RSA pub-

lic key system. Thus, they each have published an encryption key, (nA, eA) and
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(nB, eB), for Alice and Bob respectively. These keys describe the following encryp-

tion functions: fA(P) = PeA (mod nA) and fB(P) = PeB (mod nB). For example,

say Bob wishes to send a message, c, to Alice and prove to Alice it was him who

sent the message. It would not suffice for him to just encrypt the message using

Alice’s public key, as anyone who can see her public key could do that. So, Bob does

not just send his message, he sends his message concatenated with his signature: a

hash of the original message. For details on hash functions, see Appendix B.

For our example, lets say he wishes to send a message m and sign it with

h(m), where h(x) is a shared hash function between Alice and Bob (it is not nec-

essary that it is kept secret from Cathy). So, Bob is going to send {m,h(x)}.

Again, he cannot just feed both of these through fA as many people could know

the hash function and could do the same, pretending to be Bob. Thus, Bob is going

to send the following: {fA(m), fA(f−1
B (h(m)))}. So, when Alice receives this mes-

sage, claiming to be from Bob, she feeds the encrypted message through her inverse

function and sees the following: f−1
A ({fA(m), fA(f−1

B (h(x)))}) = {m,f−1
B (h(m))}.

The end (or beginning, doesn’t matter) of the message is unintelligible to Alice.

Since Bob claimed to send this message, Bob would be the only one to truly know

f−1
B . Knowing this, Alice feeds the unreadable ending of the message through Bob’s

published fB. Remember, she can do this as everyone has access to fB. She can

then see the following: fB(f−1
B (h(m))) = h(m), the hash of the intended message.

Alice can then feed her intended decrypted message, m, through the shared

hash function, h(x), and confirm in fact that they are the same. This provides Alice

with a few reassurances. First, it is clear that Bob sent the message since he is the

only one aware of f−1
B . Second, it is clear that m was the intended message and not

tampered with. This is due to the fact that h(m) in the signature is equal to the

hash applied to the decrypted message sent.

RSA was an amazing development in cryptography. However, the difficult
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problem it is based has been broken through Shor’s algorithm, [62], using quantum

computers. Thus, once usable quantum computers become a reality, all data and

communications secured using RSA will become vulnerable. Thus, a movement

for Post-Quantum Cryptography, PQC, began a few decades ago. This movement

is focusing on developing cryptography that is not based upon problems that we

know quantum computers have an advantage on, including factorization as well as

the discrete log problem. There are a few main fields of PQC: multivariate, lattice,

and code-based. In this document, we will be exploring recent developments within

multivariate post quantum cryptography that I have published. Before we dive into

those, one should be exposed to the first multivariate scheme, C∗. By understand-

ing C∗’s structure, it will be mush easier to understand the more complex schemes

discussed in later chapters.

2.3.4 Multivariate Post Quantum Cryptography

In [37], Matsumoto and Imai developed one of the first multivariate post

quantum encryption scheme. This scheme is considered to be post quantum since

the difficult problem its security is based on is solving a system of quadratic equa-

tions over a finite field, which is considered to be an NP-Hard problem in the general

case CITE. One of the most interesting aspects of this scheme is the use of Frobe-

nius automorphisms in order to achieve high power computations with ease when

generating the public key. Let’s look at the construction:

Let Fq be a finite field with characteristic 2. Let p(x) be an irreducible

polynomial of degree n over Fq. Let K be the n degree field extension described

as Fq[x]/⟨p(x)⟩ ≅ K. Let φ ∶ K → Fnq be the standard vector space isomorphism

defined as φ(a0 + a1x + ⋅ ⋅ ⋅ + an−1xn−1) = (a0, a1, . . . , an−1). Let T,U ∶ Fnq → Fnq be two

affine transformations. Choose θ such that 0 < θ < n and gcd(qθ + 1, qθ − 1) = 1. Let
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the core map f ∈ K be defined as f(X) = Xqθ+1. This construction generates f

in such a way that it is a bijection and it has an inverse, f−1(X) = Xα where α is

an integer such that α(1 + qθ) ≡ 1 (mod qn − 1). The public key is generated by

P = T ○ φ−1 ○ f ○ φ ○U = T ○ F ○U where F = φ−1 ○ f ○ φ. This can be viewed in the

following diagram:

K f // K
φ−1

��
Fnq

U // Fnq
F //

φ

OO

Fnq
T // Fnq

Private Key: The private key is the two affine transformations, T and U .

Public Key: The functions (P1, P2, . . . , Pn) = T ○φ−1 ○ f ○φ ○U where Pi ∈ Fq[X] =

Fq[x1, x2, . . . , xn]

Encryption: Let the plain text be (x1, . . . , xn) where xi ∈ Fq. The cipher text

(y1, . . . , yn) is computed by plugging in the plain text into the public key equations,

i.e. yi = Pi(x1, . . . , xn).

Decryption: Given (y1, . . . , yn), the holder of the private key can recover the plain

text by the following computations:

� Compute (u1, . . . , un) = U−1(y1, . . . , yn)

� Compute (u′1, . . . , u
′
n) = φ

−1 ○ f−1 ○ φ (u1, . . . , un)

� Compute (x1, . . . , xn) = T −1(u′1, . . . , u
′
n)

Let’s take a look at a simple toy example. Such parameters do not provide security

for a scheme, but will allow the reader to understand the method of constructing

the public key as well as the encryption and decryption process.

EXAMPLE 2.14. Let F2 be a finite field of 2 elements and let K be a degree 3 exten-

sion so that F2[X]/⟨x3 + x + 1⟩ ≅ K. Let φ ∶ K → F3
2 be a vector space isomorphism.

Let T , U , and their corresponding inverses be the following affine transformations
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over F3
2:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

1 0 0

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, T −1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

1 0 1

1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1

1 0 0

1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

0 1 1

1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let f(X) = X22+1 = X5. Thus, we know that f−1(X) = X3 since 3(1 + 22) ≡

1 (mod 23 − 1). Let’s begin constructing the public key. Let β be the root to the

irreducable polynomial p(x) = x3 + x + 1. Note that we are looking to construct an

element of F3
2 while looking at φ ○ f ○ φ−1. We can let B = {1, β, β2} be the basis

for vector space representation of K. Note that we will be using the following basis

element representations:

1↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, β ↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, β2 ↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

First, we compute U ⋅ (x1, x2, x3)⊺, which we will call ū, for a general plain text

(x1, x2, x3):

U ⋅ (x1, x2, x3)
⊺ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1

1 0 0

1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 + x2 + x3

x1

x1 + x2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

u3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ū

Next, we need to compute φ ○ f ○ φ−1(ū). The first step is to see that φ−1(ū) =

u1 + u2β + u3β2. We then feed this into f :

f(u1 + u2β + u3β
2) = (u1 + u2β + u3β

2)5 = (u1 + u2β + u3β
2)4(u1 + u2β + u3β

2)1

We split the exponentiation into powers of q = 2 in order to take advantage of

the frobenius automorphisms mentioned in section 2.1. Thus, we get the following,

36



remembering that ui = u for all positive i since we are in GF (2):

(u1 + u2β + u3β
2)4(u1 + u2β + u3β

2)1 = (u4
1 + u

4
2β

4 + u4
3β

8)(u1 + u2β + u3β
2)

= (u1 + u2β
4 + u3β

8)(u1 + u2β + u3β
2)

= u2
1 + u1u2β + u1u3β

2 + u1u2β
4 + u2

2β
5 + u2u3β

6 + u1u3β
8 + u2u3β

9 + u2
3β

10

= u1 + u1u2β + u1u3β
2 + u1u2β

4 + u2β
5 + u2u3β

6 + u1u3β
8 + u2u3β

9 + u3β
10

(2.1)

Remember that β is the root to the irreducible polynomial p(x) = x3 + x + 1. Thus,

we can get representations for higher degrees of β in terms of {1, β, β2}. This can

be done in a few different ways. I am going to highlight the method of finding a

squaring matrix to reduce the number of calculations. Due to the structure of the

vectors that are mapped from the basis elements, you can generate the squaring

matrix from left to right by placing the vector that corresponds to the first, second,

and third basis element squared respectively. So,

12 = 1↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (β)2 = β2 ↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (β2)2 = β4 = β2 + β ↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We know that β4 = β2 + β by multiplying both sides of β3 = β + 1, which we know

because p(β) = β3 + β + 1 = 0, by β. The technique of multiplying both sides of

these equations by β until you reach the desired power of β can be continued until

all desired powers are found. However, we will need to do this 10 times until we

reach β10, the highest power we need. This process can be shortened by finding the

squaring matrix, which will allow us to find β8 = (β4)2 in a single computation. This

may not seem to save work in this toy example, but when powers of β get very large,

this technique is very efficient in saving computation time. Since we now know β4,
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we can finish constructing the squaring matrix:

SqM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 0 1

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, since β2 + β =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now that we know the squaring matrix, we will use it to get the vector representa-

tions of β8 and then use the technique of multiplying both sides by β to get β9 and

β10 from β8.

β4 = β + β2

β5 = β2 + β3 = β2 + β + 1

β6 = (β3)2 = SqM ⋅ β3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 0 1

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1 + β2

β8 = (β4)2 = SqM ⋅ β4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 0 1

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= β

β9 = β2

β10 = β3 = β + 1

Now that we have all necessary powers of β in terms of our basis elements, we can

38



then return to equation 2.1:

u1 + u1u2β + u1u3β
2 + u1u2β

4 + u2β
5 + u2u3β

6 + u1u3β
8 + u2u3β

9 + u3β
10

= u1 + u1u2β + u1u3β
2 + u1u2(β + β

2) + u2(β
2 + β + 1) + u2u3(1 + β

2)

+ u1u3(β) + u2u3(β
2) + u3(β + 1)

= (u1 + u2 + u2u3 + u3)(1) + (u1u2 + u1u2 + u2 + u1u3 + u3)(β)

+ (u1u3 + u1u2 + u2 + u2u3 + u2u3)(β
2)

= (u2u3 + u1 + u2 + u3)(1) + (u2 + u1u3 + u3)(β) + (u1u2 + u1u3 + u2)(β
2)

Then we send the result through φ:

φ((u2u3 + u1 + u2 + u3)(1) + (u2 + u1u3 + u3)(β) + (u1u2 + u1u3 + u2)(β
2))

= (u2u3 + u1 + u2 + u3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ (u2 + u1u3 + u3)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ (u1u2 + u1u3 + u2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u2u3 + u1 + u2 + u3

u2 + u1u3 + u3

u1u2 + u1u3 + u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ū′

Finally, we apply T :

T ū′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

1 0 0

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u2u3 + u1 + u2 + u3

u2 + u1u3 + u3

u1u2 + u1u3 + u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1u2 + u1u3 + u2

u2u3 + u1 + u2 + u3

u2 + u1u3 + u3 + u1u2 + u1u3 + u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1u2 + u1u3 + u2

u2u3 + u1 + u2 + u3

u3 + u1u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Next, substitute the values of x that each ui represent:

T ū′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1u2 + u1u3 + u2

u2u3 + u1 + u2 + u3

u3 + u1u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(x1 + x2 + x3)(x1) + (x1 + x2 + x3)(x1 + x2) + (x1)

(x1)(x1 + x2) + (x1 + x2 + x3) + (x1) + (x1 + x2)

(x1 + x2) + (x1 + x2 + x3)(x1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(x1 + x1x2 + x1x3) + (x1 + x1x2 + x1x3) + (x1x2 + x2 + x2x3) + (x1)

(x1 + x1x2) + (x1 + x2 + x3) + (x1) + (x1 + x2)

(x1 + x2) + (x1 + x1x2 + x1x3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1x2 + x2 + x2x3 + x1

x1x2 + x3

x2 + x1x2 + x1x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, the public key is P (X) = (P1(X), P2(X), P3(X)) where P1(X) = P1(x1, x2, x3) =

x1x2+x2+x2x3+x1, P2(X) = P2(x1, x2, x3) = x1x2+x3, and P3(X) = P1(x1, x2, x3) =

x2 + x1x2 + x1x3.

Encryption: Say Alice published the public key, P (X). Bob wishes to send the

plain text (1,0,1), so (x1, x2, x3) = (1,0,1). Bob recalls the public key, P (X) and

begins to feed his plain text into the system of equations:

P (1,1,0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1x2 + x2 + x2x3 + x1

x1x2 + x3

x2 + x1x2 + x1x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bob then sends the cipher text (1,1,1) to Alice.

Decryption: Alice is able to decrypt any message received by using her private

key information. Let’s construct the general decryption algorithm, then use that to

decrypt Bob’s message. Say Alice receives a cipher text (y1, y2, y3) = ȳ. First, she
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will apply T −1 to ȳ:

T −1ȳ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

1 0 1

1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1

y2

y3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2

y1 + y3

y1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= t̄ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1

t2

t3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Next, Alice feeds this result through φ ○ f−1 ○ φ−1, recalling that f−1 =X3:

φ ○ f−1 ○ φ−1(t̄) = φ ○ f−1(t1 + t2β + t3β
2)

We will need to repeat a similar process that was used during the public key gener-

ation to compute f−1(t1 + t2β + t3β2):

f−1(t1 + t2β + t3β
2) = (t1 + t2β + t3β

2)3

= (t1 + t2β + t3β
2)2(t1 + t2β + t3β

2)1

= (t1 + t2β
2 + t3β

4)(t1 + t2β + t3β
2)

= t1 + t1t2β + t1t3β
2 + t1t2β

2 + t2β
3 + t2t3β

4 + t1t3β
4 + t2t3β

5 + t3β
6

= t1 + t1t2β + t1t3β
2 + t1t2β

2 + t2(β + 1) + t2t3(β
2 + β)

+ t1t3(β
2 + β) + t2t3(β

2 + β + 1) + t3(β
2 + 1)

= (t1 + t2 + t2t3 + t3)(1) + (t1t2 + t2 + t2t3 + t1t3 + t2t3)(β)

+ (t1t3 + t1t2 + t2t3 + t1t3 + t2t3 + t3)(β
2)

= (t1 + t2 + t2t3 + t3)(1) + (t1t2 + t2 + t1t3)(β) + (t1t2 + t3)(β
2)

Then, we feed the result through φ:

φ((t1+ t2+ t2t3+ t3)(1)+(t1t2+ t2+ t1t3)(β)+(t1t2+ t3)(β
2)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1 + t2 + t2t3 + t3

t1t2 + t2 + t1t3

t1t2 + t3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= t̄′
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Finally, Alice then computes U−1 ⋅ t̄′ =:

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

0 1 1

1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1 + t2 + t2t3 + t3

t1t2 + t2 + t1t3

t1t2 + t3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1t2 + t2 + t1t3

t2 + t1t3 + t3

t1 + t2 + t2t3 + t1t2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(y2)(y1 + y3) + (y1 + y3) + (y2)(y1)

(y1 + y3) + (y2)(y1) + (y1)

(y2) + (y1 + y3) + (y1 + y3)(y1) + (y2)(y1 + y3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2y3 + y1 + y3

y1y2 + y3

y1y2 + y1y3 + y2y3 + y2 + y3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now Alice has a decrypting system. She can proceed to find the corresponding plain

text for the received cipher text by plugging in (y1, y2, y3) = (1,1,1) into her decrypt-

ing system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2y3 + y1 + y3

y1y2 + y3

y1y2 + y1y3 + y2y3 + y2 + y3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 1 + 1

1 + 1

1 + 1 + 1 + 1 + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, Alice was able to successfully recover the intended plain text message, (1,0,1)

sent by Bob.
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CHAPTER 3

HFE

Shortly after Patarin broke C∗, [47], he constructed a new multivariate

scheme called Hidden Field Equations, often referred to as HFE [48]. This new con-

struction was designed to resist the method Patarin used in breaking Matsumoto

and Imai’s scheme. In this chapter, I will give a detailed description of HFE and

HFEm with a toy example and current parameter suggestions indicated by the lit-

erature, walk through a detailed look at the security of HFE and HFEm through

the lens of differential security, and end on the breakthrough by Dr. Smith-Tone

and myself in breaking HFEm in [66].

3.1 HFE and HFEm

3.1.1 Scheme Description

Let Fq be a finite field of size q. Let K be an n degree extension of Fq, i.e.

K = Fq/⟨p(x)⟩ where p(x) is an irreducible polynomial of degree n over Fq. Note

that we can view K as a n degree vector space over Fq by letting φ ∶ Fnq → K be the

natural Fq vector space isomorphism. Since a generator of GalFq(K) is the Frobenius

automorphism, x ↦ xq, every monomial map of the form f(x) = xq
i+qj in K can be

viewed as a vector valued function over Fq through the following representation:

φ−1 ○ f ○ φ. One can then apply this concept repeatedly to see that any vector

valued quadratic map on Fnq is isomorphic to a sum of such monomials. This
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structure motivates the following core map, f ∈ K, for HFE:

f(x) = ∑
i≤j

qi+qj≤D

αi,jx
qi+qj + ∑

i
qi≤D

βix
qi + γ, (3.1)

where the coefficients αi,j, βi, γ ∈ K and the degree bound D is sufficiently low for

efficient inversion, [38]. Let B be a chosen basis for K, then one can express f in

the basis B as n polynomials of degree 2 with n variables:

f(x1, . . . , xn) = {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)} (3.2)

where fi(X) ∈ Fq[X ]. Similar to C∗, we will apply two affine transformations, T

and U , to hide the choice of basis for K. The public key is generated by P = T ○φ−1○

f ○ φ ○ U . This technique is used throughout MPKC that it is conveniently named

the butterfly construction and can be easily viewed in the following diagram:

K f // K
φ−1

��
Fnq

U // Fnq
F //

φ

OO

Fnq
T // Fnq

Private Key: f , T , U , and structure of K

Public Key: P = T ○ φ−1 ○ f ○ φ ○U = (P1, . . . , Pn), redundancy technique, and Fnq

Encryption: Feed the plain text through a chosen redundancy technique to get

(x1, . . . , xn) as a result where xi ∈ Fq. The cipher text (y1, . . . , yn) is computed by

plugging in the plain text into the public key equations, i.e. yi = Pi(x1, . . . , xn).

Decryption: Given (y1, . . . , yn), the holder of the private key can recover the plain

text by the following computations:

� Compute (u1, . . . , un) = U−1(y1, . . . , yn)

� Compute (u′1, . . . , u
′
n) = φ

−1 ○ f−1 ○ φ (u1, . . . , un)

� Compute (x1, . . . , xn) = T −1(u′1, . . . , u
′
n)
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� Undo the chosen redundancy technique.

Two methods of redundancy are described in [48], redundancy in or outside the plain

text. Redundancy in the plain text requires your chosen message to be of length

less than n since there will be redundancy added to obtain length n. For example,

say your message is M = (x1, . . . , xn−l). Then, you would feed x̄ =M∥h(M) where

∥ represents concatenation and h(M) is the first l digits of a hash function applied

to M . Hash functions like MD5 or SHS would suffice. For details on these hash

functions, see Appendix B.

For redundancy outside the plain text, you apply the hash to the output of

the scheme, y = (y1, . . . , yn). Thus, the final cipher text would be Y = y∥h(x) where

x is the plain text. If h is a one way collision free hash function, then you are

guaranteed to find one solution.

Patarin also notes that a randomly generated f may not be a permutation

of K, [48]. He then proceeds to introduce the following theorem, which he coins as

the “heart” of this new scheme.

THEOREM 3.1 (see [48]). Let K be a finite field with ∣K∣ = qn with q and n “not too

large” (for example q ≤ 64 and n ≤ 1024). Let f(x) be a given polynomial in x in a

field K, with a degree D “not too large” (for example, D ≤ 1024). Let a ∈ K. Then

it is always possible (on a computer) to find all the roots of an equation f(x) = a.

Proof. This is a well known result and a proof can be seen in [38] on pg. 17-26.

Theroem 3.1 is necessary to show that it is possible for the inversion of f ,

which is necessary in the decryption process. However, a method in which to find

such roots is not described in the theorem. There are a few techniques one can em-

ploy to find roots of polynomials over finite fields. Such methods are the Berlekamp

algorithm [3], as well as techniques described in [45] and [68]. The main technique

used today is the Berlekamp algorithm and thus its limitations are placed on the
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core maps of our schemes. The main limiting factor is the limit placed on the degree

on our core map. If D in equation 3.1 is too large, the computation will be too

complex for efficient inversion. A detailed description of the algorithm is given in

Appendix A.

Recall that we discussed how public key cryptosystems can be used for sig-

natures. This concept easily applies to HFE. The following adaptations are used

when HFE is being used for digital signatures as outlined by Patarin in [48]:

For sake of discussion, let us work within GF (2). Let M be the intended

message. Let x and P (x) be the plain text and cipher text, respectfully, of an

associated HFE instance, P , where x and P (x) have length n = 128. Let h be a col-

lision free hash function with output of n = 128, MD5 for example, and ∥ represent

concatenation.

Computing the Signature:

1. Generate a small integer R with no block of numbers with 100002 in its ex-

pression in base 2.

2. Compute h(R∥10000∥M).

3. Let y = h(R∥10000∥M). Then, with the private key of the HFE instance, we

can try to find a plain text x such that P (x) = y. If successful, then R∥x will

be the signature of M . It is possible that you cannot find such a cipher text

x. If so, repeat the loop at step 1 with a new R.

Signature Verification Given M and signature R∥x.

1. Separate R and x. This can easily be done since the length of x is fixed to be

n.

2. Compute h(R∥10000∥M) and P (x).

3. The signature is valid if h(R∥10000∥M) = P (x).
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3.1.2 Scheme Adaptations

While HFE is interesting within its own right, there are some suggested vari-

ations of HFE given by Patarin in [48]. In this section, HFEm and HFEp will be

introduced. There is the other famous adaptation, HFEv, also known as the “vine-

gar” adaptation. This variation has gained much attention in the PQC community,

thus is deserving of its own chapter.

The first adaptation is HFEm, which stands for “HFE minus”, also denoted

HFE−. This adaptation uses less public polynomials than is generated when cre-

ating the public key. For instance, say (P1, . . . , Pm) is a public key generated from

an instance of an HFE algorithm. It is possible to not publish all of these polyno-

mials. Let a represent the number of polynomials kept secret. Thus, (P1, . . . , Pm−a)

is published.

For an encryption scheme, a must be kept very small in order to be able to

recover the intended plain text from a cipher text. Patarin suggests that it is clearly

possible if a is either 1 or 2 in [48]. However, further developments have indicated

that a must be larger than 1, since that hidden public equation can be recovered

via [5].

For a signature scheme, the number of equations removed is allowed to be

much larger. Values such as a = 1,2, or m
2 should be both practical and efficient

according to Patarin, [48].

The other well known adaptation is HFEp. Read as HFE “plus”, this adapta-

tion requires you to, as you may have guessed, add more equations to the public key

than those generated. Let (P1, . . . , Pm) be the public polynomials of {x1, . . . , xn}

indeterminants. You can then generate random quadratic polynomials over said n

indeterminants to form {Q1, . . . ,Qk}. Then, use a secret affine transformation to

mix them up.
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For an encryption scheme, k is allowed to be very large. There is a restriction

where

k + n <
n(n + 1)

2

where k is the number of random polynomials and n is the number of indetermi-

nants. Suggested values given by Patarin in [48] are k = 1,2, or n
2 .

For a signature scheme, k must be very small. This is due to the fact that,

given x, the probability of satisfying the extra k equations is 1
2km

. With both m

and k small, the scheme is still efficient as it will take approximately 2km tries to

obtain a signature, as mentioned by Patarin in [48].

3.2 Proveable Security

After seeing the construction of HFE, an individual new to the crypto world

might think that Patarin discovered a perfect signature and encryption scheme for

multivariate public key cryptography and that no further development is needed.

This is not the case for HFE or any other scheme. In years past, a scheme’s secu-

rity has been determined by trying to attack it with known attacks. However, this

technique leaves much to be desired as it in no way provides guarantees for attacks

not yet known or even old attacks with slight adaptations. Also, when a scheme is

considered “secure” against an attack, it does not necessarily mean that the attack

does not break a scheme. Most of the time, the attack is too computationally com-

plex. This would look like the following: RSA is secure against Schroeppel’s Method

of factoring due to the fact that, if n is 200 digits long, it would take a classical

computer 1.2 × 1023 operations or 3.8 × 109 years to factor n using said method.

Notice that RSA can be broken using Schroeppel’s Method, it would just

take an unrealistic amount of time. This does not take into consideration advances

in factoring algorithms or technological advances which could speed up the com-
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putation time. Thus, there has been a push for “provable” security where one can

demonstrate that a scheme resists an attack by proving that such an attack cannot

break the scheme, regardless of time. HFE was analyzed in this method to show

that it is secure against differential adversaries, given a parameter restriction.

3.2.1 Algebraic Background

There are a few algebraic results that Dr. Smith-Tone and Mr. Daniels use

to analyze the differential security of HFE and HFEm, see [13]. These are provided

here for reference.

PROPOSITION 3.1 (see [13]). If A and B are two m×n matrices, then rank(A) =

rank(B) if and only if there exists nonsingular matrices C and D such that A =

CBD.

Proof. Let A be an m × n matrix with rank r. Create a m × m row operations

matrix, P , such that PA is in row echelon form. Then, generate the n × n column

operation matrix, Q, to gather all leading 1’s to the first r columns. This gives us

PAQ, which is a m×n matrix with an r × r identity block in the upper left region.

Let I ′ = PAQ. Do a similar process with matrix B, giving us I ′ = P ′BQ′. Thus:

I ′ = PAQ = P ′BQ′⇒ A = (P −1P ′)B(Q′Q−1)

where P −1P ′ and Q′Q−1 are non-singular.

DEFINITION 3.1 (see [13]). The minimal polynomial of a subspace V ⊆ K as

MV (x) = ∏
v∈V

(x − v).

This is the polynomial of minimal degree of which every element of V is a root.

Note that MV (x) = 0 is an Fq-linear equation and, where V has Fq dimension d

(∣V ∣ = qd), then MV (x) has degree qd and has the following form:

xq
d

+ bd−1x
qd−1 +⋯ + b1x

q + b0x where bi ∈ K
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To clarify the statement thatMV is an Fq linear map, a proof is given below:

Proof. To be considered an Fq-linear map, the map must be homogeneous and

preserve addition. For homogeneity, where x ∈ K and c ∈ Fq:

MV (cx) = (cx)q
d

+ bd−1(cx)
qd−1 +⋯ + b1(cx)

q + b0(cx)

= cq
d

xq
d

+ bd−1c
qd−1xq

d−1

+⋯ + b1c
qxq + b0(cx)

= cxq
d

+ bd−1cx
qd−1 +⋯ + b1cx

q + b0cx

= c(xq
d

+ bd−1x
qd−1 +⋯ + b1x

q + b0x)

= cMV (x).

For preservation of addition, for x, y ∈ K:

MV (x + y) = (x + y)q
d

+ bd−1(x + y)
qd−1 +⋯ + b1(x + y)

q + b0(x + y)

= (xq
d

+ yq
d

) + bd−1(x
qd−1 + yq

d−1

) +⋯ + b1(x
q + yq) + b0(x + y)

= [xq
d

+ bd−1x
qd−1 +⋯ + b1x

q + b0x] + [yq
d

+ bd−1y
qd−1 +⋯ + b1y

q + b0y]

=MV (x) +MV (y)

PROPOSITION 3.2 (see [13]). Let T ∶ K → K be an Fq-linear map. Let π ∶ K → K

be defined by πx =Mker(T )(x). There exists a non-singular Fq-linear map T̃ ∶ K→ K

such that Tx = T̃ πx.

Proof. As shown above, π is an Fq-linear map. Also, note that ker(π) = ker(T )

is trivial. Note that π and T are additive homomorphisms, implying both are

constant on cosets of the kernel. This allows us to construct the following well-

defined function: T̃ x = Tπ−1(x). Observe:

T̃ π(x) = Tπ−1(πx) = T (x + ker(T )) = Tx.
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Finally, Dr. Smith-Tone and Daniels characterized all functions from V to

K (analogous to the coordinate ring K̄[x]/⟨MV (x)⟩):

PROPOSITION 3.3 (see [13]). Let FV be the ring of all functions from the Fq-

subspace V of K to K. Then, FV is isomorphic to K[x]/⟨MV (x)⟩.

Proof. Note that the ring of all functions from K onto itself is K[x]/⟨xq
n
− x⟩. Let

f, g ∈ K[x]/⟨xq
n
− x⟩ such that f(v) = g(v) for all v ∈ V . Thus, for all v ∈ V , v is a

root of (f −g)(x) indicating that (x−v) is a linear factor of (f −g)(x) for all v ∈ V .

Therefor,MV (x) ∣ (f −g)(x). Hence, ⟨MV (x)⟩ is the ideal of functions which send

V to zero. This tells us that K[x]/⟨xq
n
−x,MV (x)⟩ is the ring of non-trivial functions

from V to K. Since MV (x) splits in K, MV (x) ∣ xq
n
− x. Finally, since there are

(qn)q
d

functions from V , of Fq dimension d, to K, and ∣K[x]/⟨MV (x)⟩∣ = (qn)q
d
, one

can see that all functions from V to K are polynomials.

3.2.2 Differential Adversary

In [13], Dr. Smith-Tone and Mr. Daniels analyzed the differential security of

HFE. To fully appreciate this advancement, it is necessary to understand what a dif-

ferential is, how an attacker can utilize properties of this computation to undermine

the scheme, and where this technique has been a successful attack.

DEFINITION 3.2 (see [13]). The discrete differential of a field map f ∶ Fqn → Fnq is

given by:

Df(y, x) = f(x + y) − f(x) − f(y) + f(0).

This can be viewed as a normalized difference equation with variable interval.

EXAMPLE 3.1. Here we shall see a simple computation of the discrete differential

given a field map. Let f ∶ F3
2 → F3

2 be a field map defined as f(x) = x23+1 = x9, the

C∗ core map from example 2.14. Computing the discrete differential of this map,
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we have:

Df(y, x) = f(x + y) − f(x) − f(y) + f(0)

= (x + y)9 − x9 − y9 + 0

= (x + y)8(x + y) − x9 − y9

= (x8 + y8)(x + y) − x9 − y9

= (x9 + xy8 + yx8 + y9) − x9 − y9

= xy8 + yx8

This calculation seems insignificant, however by looking at specific differen-

tial relations, one can exploit them to find structural information of the public key

that can be used to undermine the security of the scheme. Specifically, one can look

at two different properties related to the differential described in [11]:

DEFINITION 3.3 (see [11]). A general linear differential symmetry is a relation

of the form of

Df(Mx,a) +Df(x,Ma) = ΛMDf(a, x),

where M,ΛM ∶ K→ K are Fq-linear maps.

DEFINITION 3.4 (see [11]). Let f ∶ Fnq → Fmq be a function. A differential

invariant of f is a subspace V ⊆ K with the property that there is a subspace

W ⊆ K such that

dim(W ) ≤ dim(V ) and ∀ A ∈ SpanFq(Dfi), AV ⊆W.

These are the major properties of the discrete differential that an attacker

can utilize to undermine the scheme. As mentioned in [13], attacks such as the

linearization equations attack of [48] can be viewed through the lens of a discrete

differential as an exploitation of the relation Df(f(x), f(x)) = 0. Also, the attacks

on balanced Oil-Vinegar, seen in [49] and [33], and the attack on SFLASH in [20]

can be seen through the lens of a differential.
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3.2.3 Symmetric Security

To protect a scheme against a differential adversary looking to take advan-

tage of a differential symmetry property of the public key, one must guarantee that

maps M,ΛM do not exist such that Df(Mx,a) +Df(x,Ma) = ΛMDf(a, x). This

was done in [13] by looking at the structure that M and ΛM have to take and using

a unique graphical approach in analizing a generated system of equations. This

technique is used again, with some adaptations, when proving security of HFEv, so

a detailed description is provided for future reference.

To determine the possibility of a differential symmetry vulnerability, Mr.

Daniels and Dr. Smith-Tone found the conditions necessary for a differential sym-

metry on an HFE core map

f(x) = ∑
i≤j

qi+qj≤D

αi,jx
qi+qj . (3.3)

First, they applied the differential to the HFE core map, 3.3: (The first deduction

is for a single quadratic term in the sum. Then, since the sum is finite, we can

extrapolate the result to the sum’s entirety.)

Df(y, x) = f(x + y) − f(x) − f(y) + f(0)

= αi,j(x + y)
qi+qj − αi,jx

qi+qj − αi,jy
qi+qj − 0

= αi,j(x + y)
qi(x + y)q

j

− αi,jx
qi+qj − αi,jy

qi+qj

= αi,j(x
qi + yq

i

)(xq
j

+ yq
j

) − αi,jx
qi+qj − αi,jy

qi+qj

= αi,j(x
qi+qj + yq

j

xq
i

+ yq
i

xq
j

+ yq
i+qj) − αi,jx

qi+qj − αi,jy
qi+qj

= αi,j(y
qixq

j

+ yq
j

xq
i

)

(3.4)

Thus,

Df(y, x) = ∑
i≤j

qi+qj≤D

αi,j(y
qixq

j

+ yq
j

xq
i

).
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Since Df is a K-bilinear form, there is a convenient representation for K:

x↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

xq

⋮

xq
n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With this representation, one can view Df as an n × n symmetric matrix where

the (i, j)th and (j, i)th entries for i ≠ j are αi,j and the (i, i)th entries are 2αi,j.

You can see that we are beginning to construct a matrix representation for this

differential symmetry property. In order to have this representation, we need a

matrix representation for M . Since M ∶ K → K is a Fq linear map, we can always

view Mx = ∑
n−1
i=0 mixq

i
as the following matrix representation:

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0 m1 . . . mn−1

mq
n−1 mq

0 . . . mq
n−2

⋮ ⋮ ⋱ ⋮

mqn−1

1 mqn−1

2 . . . mqn−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With this representation for M , we can now view the differential applied to f in

the following matrix representation:

Df(My,x) +Df(y,Mx) = y(M⊺Df +DfM)x. (3.5)

To simplify it a bit, one can consider applying ΛM to Df :

ΛMDf(y, x) =
n−1

∑
k=0

λkDf(y, x)
qk .
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To understand how raising Df to the qk power affects our representation, observe

that for a single quadratic term map f and the result from 3.4:

Df(y, x)q
k

= [αi,j(y
qixq

j

+ yq
j

xq
i

)]q
k

= αq
k

i,j(y
qixq

j

+ yq
j

xq
i

)q
k

= αq
k

i,j([y
qixq

j

]q
k

+ [yq
j

xq
i

]q
k

)

= αq
k

i,j(y
qiqkxq

jqk + yq
jqkxq

iqk])

= αq
k

i,j(y
qi+kxq

j+k

+ yq
j+k

xq
i+k

)

Thus, in general, we can see that

Df(y, x)q
k

= ∑
i≤j

qi+qj≤D

αq
k

i,j(y
qi+kxq

j+k

+ yq
j+k

xq
i+k

).

This allows use to see that the new (i, j)th and (j, i)th entries of Df q
k

are

αq
k

i−k,j−k if i ≠ j and the new (i, i)th entries are (2αi−k,j−k)q
k
. One can interpret these

results as a shifting the entries of the original Df to the right and down k units

and raising all entries to the qkth power.

With the extra step of applying ΛM , one can view the differential equation

through the following simplified matrix equation, often referred to as the differen-

tial symmetric equation:

M⊺Df +DfM = ΛMDf (3.6)

Now that we have a matrix representation of the differential symmetric equa-

tion, one can analyze this system to determine if a solution M and ΛM exist.

Initially, this may seem like a daunting task. However, Mr. Daniels and Dr. Smith-

Tone employed a graphical approach that simplifies this process and proved the

following theorem:

THEOREM 3.2 (see [13]). Let f(x) be an HFE polynomial (in particular, f is not

a monomial function). Suppose that f has the following properties:
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1. No power of q is repeated among the exponents of f , and

2. the difference of the powers of q in each exponent is unique.

Then, f has no nontrivial differential symmetry.

Proof. The proof of the theorem above is dependent on understanding the following

figure:

s

i

i

j

j

r

r

s

Depicted above is a graphical representation ofM⊺Df+DfM = ΛMDf where f(x) =

αi,jxq
i+qj +αr,sxq

r+qs . Here, horizontal lines represent possible non-zero information

from MDf , vertical lines represent possible non-zero information from M⊺Df , and

diagonal lines represent possible non-zero information from ΛMDf . Imagine the
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computation of DfM :

DfM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . αi,j . . . 0 . . . 0 . . . 0

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

αi,j . . . 0 . . . 0 . . . 0 . . . 0

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

0 . . . 0 . . . 0 . . . αr,s . . . 0

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

0 . . . 0 . . . αr,s . . . 0 . . . 0

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

0 . . . 0 . . . 0 . . . 0 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0 m1 . . . mn−1

mq
n−1 mq

0 . . . mq
n−2

⋮ ⋮ ⋱ ⋮

mqn−1

1 mqn−1

2 . . . mqn−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

You can see that the ith row of such a calculation would look like:

[αi,jm
qj

−j , αi,jm
qj

1−j , . . . , αi,jm
qj

−1−j] (3.7)

and the jth row would be:

[αi,jm
qi

−i , αi,jm
qi

1−i , . . . , αi,jm
qi

−1−i].

Now that one can visualize what the left side (LHS) of 3.6 is, imagine what the

right hand side (RHS) is. By looking at the provided figure, take the i-th row as

an example. It’s algebraic representation is given in 3.7. Observe that information

for the RHS of 3.6 is represented by diagonal lines. Thus, areas where there is no

intersection with our horizontal ith line tell us that αi,jm
qj

k = 0 ⇒ mk = 0. This is

the breakthrough that allows us to analyze such a large system of equations very

quickly. This gives us a massive amount of information about the structure of M ,

which only has n unknowns. In the analysis, we ignore where intersections of lines

occur. This information is too complex to derive any helpful information.

Before moving on, allow me to clarify the restrictions of the theorem. The

first, restricting no power of q to be repeated, is in place to prevent the analysis
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from being too complicated. if a power of q were to be repeated, this would force

there to be overlap of rows and columns in our diagram. This would complicate our

analysis in the following way: Instead of having the simple equation of αi,jm
qj

k = 0

where a horizontal line has no intersection, it would instead be ∑l αlm
qj

kl
= 0 where l

is the number of times a power of q is repeated. We would no longer have the simple

deduction that mk = 0. This is not to say that by having repetitions of powers of

q would make you vulnerable to a differential adversary, it just doesn’t fit in our

analysis to prove security against such an adversary. The second restriction, the

uniqueness of differences of powers of q, is for a similar reason. This would cause

overlap on the diagonals, further complicating the analysis.

To formalize our analysis, consider the ith row as indicated in 3.7. For every

monomial αr,sxq
r+qs in f , the s − r + ith and r − s + ith elements of row i in ΛMDf

are the only possible non-zero entries. Thus, for all k not occurring as a power of q

or as a difference of powers of q in f plus i, mk−j = 0. Due to the restriction that the

differences of powers of q are unique in f , along with the fact that mk−t = 0 for all t

occurring as a power of q, we are able to deduce that mi = 0 for all i ≠ 0. This makes

M a diagonal matrix with coefficients from the base field, thus being a multiplication

map. We know that the coefficients come from the base field, Fq, due to Theorem

2 in [63]. This is a trivial differential symmetry since a multiplication map by a

scalar from the base field generates a symmetry for every map g ∶ K→ K..

The analysis changes for an HFE− polynomial. Due to the fact that the

analysis for Theorem 3.2 is built from a graphical representation for a system of

equations, it would be wise to see the changes in the graphical representation for

the differential symmetric equation for an HFE− polynomial. Due to the nature of

the minus modifier being a projection of an HFE polynomial, we can view equation

3.6 as

π[M⊺Df +DfM] = ΛM[Df] (3.8)
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where π is a projection onto a subspace. In [13], they handled the general case

of a co-dimension r projection explicitly. This results in the following graphical

representation of 3.8:

s

i

i

r

r

j

j s

with the HFE polynomial f(x) = αi,jxq
i+qj + αr,sxq

r+qs and πx = ax + bxq + xq
2
.

Again, horizontal and vertical lines represent possible non-zero entries from the

LHS of 3.8 and diagonal lines represent possible non-zero entries in the RHS of 3.8.

The analysis of this image lead Dr. Daniel Smith-Tone and Taylor Daniels to prove

the following theorem:

THEOREM 3.3 (see [13]). Let K be a prime extension of Fq and let π ∶ K → K be

a co-dimensional r projection. Let f ∶ K→ K be a non-trivial HFE polynomial with

degree bound D < qn/2, let Pf be the multiset of powers of q occuring as exponents

of f , and let Sf be the multiset of differences of powers of q in the exponent of each

monomial summand of f . Suppose that f has the following properties:

1. Pf is a set,

2. Sf is a set,

3. for all i ∈ Pf the Lee distance between (i + Sf) / Pf and Pf is at least r + 1.

Then, if D(π ○ f)(My,x) +D(π ○ f)(y,Mx) = ΛMDf(y, x), then Mx = m0x for

some mo ∈ Fq. Thus, π ○ f has no non-trivial differential symmetry.
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Proof. Due to the effect of T and Proposition 3.2, we can, without loss of generality,

assume that πx = ∑
r
b=0 abx

qb with ar = 1. This gives us the ability to construct the

matrix form for π[MTDf +DfM] from the matrix form of MTDf +DfM . When

being raised to the power of q, this results in each element of the matrix raised to

the power of q and shifted one row down and one column to the right.

Let αi,jxq
i+qj be a monomial summand of f . Observe that the (i, k)th entry

of π[MTDf +DfM] for k ∉ Pf ∪ (1 + Pf) ∪ ⋯ ∪ (r + Pf) ∪ (i + Sf) is mqj

k−j, while

the corresponding entry of ΛMDf is zero. Thus, mk = 0 for all k ∈ (−j + Pf) ∪ (1 −

j +Pf) ∪⋯∪ (r − j +Pf) ∪ (i − j + Sf). The remaining entries of π[MTDf +DfM]

produce the relations 2mi−j = 0, mqj

i−j+1 +m
qj+1

i−j−1 = 0, and so on the corresponding to

the (i, k)th entry for k ∈ Pf ∪ (1 +Pf) ∪⋯ ∪ (r +Pf) ∪ (i + Sf) is mqj

k−j. From these,

one can derive that mk = 0 for all k ∉ (i − j + [Sf ∪ {0}]).

By symmetry, you have that mk = 0 for all k ∉ (r − s + [Sf ∪ {0}]) for all

monomial summands αr,sxq
r+qs . Search for an element g ∈ Zn, where n is prime

by assumption, such that g is in every such set. Since, for every a ∈ Sf we have

that −a ∈ Sf , a necessary condition is that Sf is closed under addition by g. Since

every nonzero g is a generator of Zn, we must have that g = 0, otherwise it would

contradict the fact that D < qn/2. Thus, Mx = m0x, and after applying Theorem 2

from [63] in the case m0 ∉ Fq to conclude that π ○ f is a quadratic monomial map.

Since f is a nontrivial HFE polynomial, you have that m0 ∈ Fq.

Dr. Smith-Tone and Mr. Daniels noted in [13], after they presented the

above proof, that the conditions for the theorem are easily checked in a key gener-

ation algorithm. However, for smaller D, there may be difficulty in satisfying the

conditions as well as a lack of entropy in the key space.

3.3 Cryptanalysis of HFEm
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In [66], myself and Dr. Smith-Tone introduced a key recovery attack on

HFEm. The basis for the attack is the Q-rank of the public key. This is in contrast

to previous attacks on the scheme. One such attack in [4] focused on the Q-rank of

the central map, which is part of the private key.

This attack depends on a key discovery, the ability to find an equivalent

HFE instance of any given HFEm scheme. This technique was discovered by myself

and Dr. Smith-Tone in [66]. This section walks the reader through our attack as

well as providing a toy example for clarity. Unless specified otherwise, all theo-

rems,definitions, and propositions were originally presented in [66].

3.3.1 Q-Rank

It is important to define a key quantity that is directly related to the security

of “big field” schemes, the Q-rank. This quantity, when referring to the public key

of a multivariate scheme, is defined as

DEFINITION 3.5 (see [66]). The Q-rank of any quadratic map f(x) on Fnq is

the rank of the quadratic form φ−1 ○ f ○ φ in K[X0, . . . ,Xn−1] via the identification

Xi = φ(x)q
i
.

Quadratic form equivalence corresponds to matrix congruence, and thus the

definition of the rank of a quadratic form is typically given as the minimum num-

ber of variables required to express an equivalent quadratic form. Since congruent

matrices have the same rank, this quantity is equal to the rank of the matrix repre-

sentation of this quadratic form, even in characteristic 2, where the quadratics x2qi

are additive, but not linear for q > 2.

Q-rank is invariant under one-sided isomorphisms f ↦ f ○ U , but is not

invariant under isomorphisms of polynomials in general. The quantity that is often

meant by the term Q-rank, but more properly called min-Q-rank, is the minimum
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Q-rank among all nonzero linear images of f . This min-Q-rank is invariant under

isomorphisms of polynomials and is the quantity relevant for cryptanalysis.

3.3.2 Previous Cryptanalysis of HFE

Since HFE was introduced in 1996, there have been three major techniques

that have been developed that question its security. These techniques are as fol-

lows: the Kipnis-Shamir (KS) attack of [34], Faugére’s direct algebraic attack using

Gröbner bases in [25], and the minors modeling approach of the KS-attack of [4]. I

will provide a short description of each attack for reference.

The attack created by Kipnis and Shamir in [34] is a key recovery attack.

This method focuses on taking advantage of the fact that the central map f of an

instance of HFE has a quadratic form, F over K as previously mentioned in section

3.3.1, that has low rank. While considering an odd characteristic case, you can view

the homogeneous quadratic component of F in the following form:

[x xq ⋯ xq
n−1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0,0 α′0,1 ⋯ α′0,d−1 0 ⋯ 0

α′0,1 α1,1 ⋯ α′1,d−1 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

α′0,d−1 α′1,d−1 ⋯ αd−1,d−1 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

xq

⋮

xq
n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where α′i,j =
1
2αi,j and d = ⌈logq(D)⌉. Next, the public key can be expressed as a

quadratic polynomial G over a degree n extension using polynomial interpolation

while keeping in mind that there is a linear map T −1 such that T −1 ○G has rank

d, indicating that there exists a rank d matrix that is a K-linear combination of

the Frobenius powers of G. Hence, the question of recovering such a map T is an
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example of the MinRank problem over K.

Note that the KS-attack was attempting to gain structural information to

undermine the scheme. The attack proposed by Faugére in [25] does not follow this

model. Instead of attempting to acquire structural information, Faugére’s method

attacks head on by using his F4 Gröbner basis algorithm. This attack was successful

in breaking the HFE Challenge 1 proposed by Patarin in [48]. It is worth noting

that F4 broke the challenge so easily due to the fact of the chosen parameters of

HFE Challenge 1. Due to the scheme being defined over GF (2) and using a degree

80 extension, HFE Challenge 1 was vulnerable. This is because the small base field

greatly reduced the number of monomials of degree d, thus making a Gröbner basis

attack very effective.

The previous two attacks were combined in the final cryptanalysis of HFE

proposed in [4] which resulted in significant improvements. The technique demon-

strated that a K-linear combination of the public polynomials has low rank as a

quadratic form over K due to a clever construction. Next, they set the unknown

coefficients in K as variables, the polynomials representing (d + 1) × (d + 1) minors

of such a linear combination, which must be zero due to the rank property, reside

in Fq[t]. This requires a Gröbner basis computation over Fq as well as the vari-

ety computed over K. This technique is called minors modeling and dramatically

improves the efficiency of the KS-attack. The complexity of the KS-attack with

minors modeling is asymptotically O(n(⌈logq(D)⌉+1)ω), where 2 ≤ ω ≤ 3 is the linear

algebra constant.

3.3.3 Key Recovery for HFEm

In this section I explain our key recovery attack on HFEm. The process is

broken down into two main steps. The first is finding a related HFE instance of the
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HFEm public key. This related instance will then be the focus. Then we discuss

how to systematically solve for an equivalent private key for the orignal HFEm

scheme.

Reduction of HFEm to HFE: Recall that by imposing the field equations

we may always assume that any affine variety associated with HFE is contained in

the finite field K. Then we may use definition 3.1.

Recall that the public key of an HFEm scheme is constructed by truncating a

full rank linear combination of the central polynomials. That is, with parenthetical

emphasis, P = Π(T ○F ○U). We now show that this singular linear transformation

can be transported “past” the invertible transformation T and “absorbed” by the

central map.

LEMMA 3.1 (see [66]). Let Π○T be a corank a linear transformation on Fnq . There

exist both a nonsingular linear transformation S and a degree qa linear polynomial

π such that Π ○ T = S ○ φ−1 ○ π ○ φ.

Proof. Let V be the kernel of Π○T and let π =MV . Note that ∣V ∣ = qa, thusMV (x)

has degree qa and is of the form

xq
a

+ ca−1x
qa−1 + ⋅ ⋅ ⋅ + c1x

q + c0x where ci ∈ K (3.9)

Now let BV = {bn−a, bn−a+1, . . . , bn−1} be a basis for V and extend this to a basis B =

{b0, . . . , bn−1} of Fnq . Let M be the matrix transporting from the standard basis to

B. Clearly the matrix representations of both M−1(Π○T )M and M−1(φ−1 ○π○φ)M

have the last a columns of 0.

Observe that there exist invertible matrices A and A′, corresponding to row

operations, such that both AM−1(Π○T )M and A′M−1(φ−1 ○π ○φ)M are in reduced

echelon form; that is:

AM−1(Π ○ T )M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= A′M−1(φ−1 ○ π ○ φ)M (3.10)
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Solving for Π ○ T , we obtain

MA−1A′M−1(φ−1 ○ π ○ φ) = Π ○ T. (3.11)

Let S =MA−1A′M−1 and the lemma is proven.

Lemma 3.1 suggests the possibility of considering an HFEm public key as a

full rank basis for the low rank image of a quadratic map. In fact, Lemma 3.1 is

powerful enough to maintain a low degree bound for this map.

THEOREM 3.4 (see [66]). Let P be the public key of an HFE−(q, n,D, a) scheme.

Then

P ′ ∶= P ∥{pn−a, pn−a+1 . . . , pn−1}

is a public key of an HFE(q, n, qaD) scheme for any choice of pi ∈ Span(P ) where

i ∈ {n − a,n − a + 1, . . . , n − 1}.

Proof. Let P be a public key for HFE−(q, n,D, a). Observe that P has the following

form, P = Π ○ T ○ F ○ U where T,U ∶ Fnq → Fnq are affine transformations applied to

an HFE(q, n,D) central map F . Let Π′ be the natural embedding of Π as a linear

map Fnq → Fnq obtained by composing the inclusion mapping Fn−aq → Fnq . By Lemma

3.1, we can rewrite P ∣∣{0,0, . . .0} in the following way:

P ∣∣{0,0, . . .0} = Π′ ○ T ○ φ−1 ○ f ○ φ ○U = S ○ φ−1 ○ (π ○ f) ○ φ ○U, (3.12)

where S is nonsingular and π is a linear polynomial of degree qa.

Observe that P ∣∣{0,0, . . .0} now has the structure of an HFE(q, n − a, qaD),

since the degree bound is increased by a factor of qa; that is, deg(π(f)) = deg(π)deg(f).

Finally, construct P ′ = P ∣∣{pn−a, pn−a+1, . . . , pn−1} where pi ∈ Span(P ), possibly 0.

Since the compositionA of elementary row operations produces P ′ from P ∣∣{0,0 . . . ,0},

we obtain an HFE(q, n, qaD) key, (AS,π ○ f,U).
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Theorem 3.4 indicates that HFEm, in some sense, is HFE with merely a

slightly higher degree bound. Thus it is sensible to discuss recovering an equivalent

key for an instance of HFEm as an HFE scheme. We can, in fact, do more and

recover an equivalent HFEm key.

Key Recovery: Any HFE key recovery oracle O, when given a public key

P of an HFE instance recovers a private key of HFE “shape.” By Theorem 3.4,

such an oracle can recover a private key for the augmented public key P ′ which is

also of HFE shape. We now show, however, that in this case, the key derived from

O must preserve more structure.

THEOREM 3.5 (see [66]). Let P be a public key for an instance of HFE−(q, n,D, a)

and let P ′ = P ∥{pn−a, pn−a+1 . . . , pn−1} be a corresponding HFE(q, n, qaD) public key.

Further, let (T ′, f ′, U ′) be any private key of P ′. Then the representation of f ′ as

a quadratic form over K is block diagonal of the form:

F′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F ′
1 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.13)

where F ′
1 = [fi,j]i,j is (⌈logq(D)⌉ + a) × (⌈logq(D)⌉ + a) and has the property that

fi,j = 0 if ∣i − j∣ ≥ ⌈logq(D)⌉. That is, F ′
1 has only a diagonal “band” of nonzero

values of width 2⌈logq(D)⌉ − 1.

Proof. Let (T, f,U) be a private key for P as an instance of HFE−(q, n,D, a). By

Theorem 3.4, one private key of P ′ has the form (T ′, f ′, U ′) where f ′ = π ○ f and

π(x) =
a

∑
i=0

bix
qi .

Therefore,

f ′(x) = π ○ f(x) = ∑
i≤j

qi+qj≤D

a

∑
`=0

b`α
q`

i,jx
qi+`+qj+`

= ∑
i,j≤⌈logq(D)+a⌉
∣i−j∣<⌈logq(D)⌉

fi,jx
qi+qj
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Thus there exists one private key of the required form.

Denote by Frobi the map raising all entries of a vector to the power qi and

let Mb be the linear map x↦ bx for b ∈ K. By the homogeneous case of [6, Theorem

4], for any second private key (T ′′, f ′′, U ′′) of P ′, we have for some integer 0 ≤ k < n

and for some a, b ∈ K that

F ′′ = Frobk ○Mb ○ F
′ ○Ma ○ Frobn−k.

It is straightforward to check that the representation of F ′′ as a quadratic form has

the shape of (3.13) with nonzero entries restricted to ∣i − j∣ < ⌈logq(D)⌉.

Armed with Theorem 3.5, we are prepared to perform a full key recovery for

an instance P = Π ○ T ○ φ−1 ○ f ○ φ ○U of HFEm. The strategy is simple. By way of

Theorem 3.4, there exists an HFE instance with an equivalent public key. That is,

there exists a P ′ = T ′ ○ φ−1 ○ f ′ ○ φ ○U ′ with T ′, U ′ invertible, f ′ of degree bounded

by qaD, and where the first n−a public equations in P ′ form P while the remaining

a equations are in the Fq-linear span of P . We perform a key recovery on this

instance of HFE via the best known attack, the KS-attack with minors modeling of

[6]. Finally, we can recover a central map of degree bound D by way of the following

theorem.

THEOREM 3.6 (see [66]). Let (T, f,U) be an HFE−(q, n,D, a) private key and

let (T ′, f ′, U ′) be an equivalent HFE(q, n, qaD) key. Then a linear map T ′′ and a

quadratic map f ′′ of degree bound D such that Π ○ T ′′ ○ φ−1 ○ f ′′ ○ φ ○ U ′ = Π ○ T ○

φ−1 ○ f ○ φ ○U can be recovered by solving two linear systems, the first of dimension

a and the second of dimension (⌈logq(D)⌉
2

).

Proof. Let (T, f,U) be an HFE−(q, n,D, a) private key and let (T ′, f ′, U ′) be an

equivalent HFE(q, n, qaD) key. Let F′ denote the matrix representation of f ′ as

a quadratic form over K. Finally, let d = ⌈logq(D)⌉. By Theorem 3.5, F′ has the
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diagonal band shape of width 2d− 1. From the proof of Theorem 3.4, there exists a

linear map π(x) = ∑
a
i=0 pix

qi , where we may sacrifice monicity and insist p0 = 1 for

convenience, and a degree bound D quadratic function f ′′ such that the composition

π(f ′′) = f ′. Let F′′ = (f ′′i,j)i,j and π̂F′′ denote the matrix representations of f ′′ and

π○f ′′, respectively, as quadratic forms over K. Then we have F′ = π̂F′′. The (i, j)th

entry of π̂F′′ is of the form
a

∑
`=0

p`(f
′′
i−`,j−`)

q` ,

thus, since F′ is known, we obtain a bilinear system of equations in the unknowns

pi and f ′′i,j.

The insistence that p0 = 1 allows us to recover the values of f ′′0,j without

cost. We then note that due to the fact that f ′′i,j = 0 when max{i, j} ≥ d, the

(i, i + d − 1)th coefficients of π̂F′′ are pi(f ′′0,d−1)
qi for 0 ≤ i ≤ a. Thus, since f ′′0,d−1 is

known, we obtain a linear system of equations f ′i,i+d−1 = pi(f
′′
0,d−1)

qi for 1 ≤ i ≤ a in

the unknowns pi, and can therefore solve for π. Once the values of pi are known,

the system of equations becomes linear in f ′′i,j for i > 0. Solving for the remaining

unknown values can be done simply with the upper triangular segment from (1,1)

to (d − 1, d − 1), of size (d
2
).

To illustrate the attack in all of its steps, we have prepared a toy example

provided in section 3.3.6.

3.3.4 Complexity of Attack

In this section we derive a tight complexity estimate of the key recovery

attack for HFEm of Section 3.3.3. First, we expound upon the relationship be-

tween the computational complexity of of HFEm key recovery and that of HFE key

recovery.
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THEOREM 3.7 (see [66]). Let O be an HFE key recovery oracle that can recover a

private key for any instance of HFE(q, n,D) in time t(q, n,D). Then an equivalent

HFE key for HFE−(q, n,D, a) can be recovered by O in time t(q, n, qaD).

Proof. Let P be the public key for an instance of HFE−(q, n,D, a). Then make

the following construction: P ′ = P ∥{pn−a, pn−a+1 . . . , pn−1} where pi ∈ Span(P ). By

Theorem 3.4, P ′ is an instance of HFE(q, n, qaD). Thus O recovers an equivalent

HFE key in time t(q, n, qaD).

Thus, the complexity of deriving a key for the associated HFE scheme is

bounded by the complexity of the best key recovery algorithm for HFE with a

degree bound a factor of qa larger. By Theorem 3.6, converting the recovered

specially structured HFE(q, n, qaD) key into an equivalent HFE−(q, n,D, a) scheme

is of complexity on the order of ⌈logq(D)⌉2ω. Since this quantity is very small, the

key conversion is instantaneous for all practical parameters. Hence the complexity

of the entire attack is bounded by t(q, n, qaD) from Theorem 3.7.

We can achieve a tight practical bound when specifying the oracle. Using the

minors modeling approach to the KS-attack, which is the currently most successful

algebraic attack on HFE, we can accurately determine the complexity of HFEm

key recovery. Just as in HFE, the complexity of the attack is dominated by the

MinRank calculation.

PROPOSITION 3.4 (see [66]). Let d = ⌈logq(D)⌉. The degree of regularity of the

MinRank instance with parameters (n, a + d,n − a) arising from minors modeling

on the public key of HFE−(q, n,D, a) is the degree of the first negative term in the

series

Hr(t) = (1 − t)(n−a−d)
2−n+adet(Aa+d)

t(
a+d
2

)
,

where Aa+d is the (a + d) × (a + d) matrix whose (i, j)-th entry is

ai,j =
n−max{i,j}

∑
`=0

(
n − i

`
)(
n − j

`
)t`.
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⌈logq(D)⌉ 2 3 4 5 6

dreg 5 6 7 8 9

Table 3.1: The degree of regularity of the system arising from minors modeling on

HFE−(q, n,D, a) with a = 2, ⌈logq(D)⌉ as indicated, and n sufficiently large.

Proposition 3.4 follows immediately from [24, Conjecture 3], which relies on

the genericity conjecture [24, Conjecture 1] which is related to Fröberg’s Conjec-

ture, see [26]. With this proposition we can derive the degree of regularity for the

MinRank instances for larger systems as well. Focusing on the case in which a = 2

we summarize the data in Table 3.1.

From these data we are prepared to make the following conjecture:

Conjecture 3.1 (see [66]). The degree of regularity of the MinRank instance with

parameters (n, a + d,n − a) arising from minors modeling on the public key of

HFE−(q, n,D, a) is

dreg = a + d + 1,

for all sufficiently large n.

Finally, under the above conjecture, we derive the complexity of our key

recovery technique for HFEm.

THEOREM 3.8 (see [66]). The complexity of key recovery for HFE−(q, n,D, a)

using the minors modeling variant of the KS-attack is

O((
n − a + dreg

dreg
)
ω

) ∼ O((
n + ⌈logq(D)⌉ + 1

⌈logq(D)⌉ + a + 1
)
ω

) .

3.3.5 Experiemental Results

We ran a series of experiments with Magma, see [7], on a 3.2 GHz Intel®

Xeon� CPU, testing the attack for a variety of values of q, n and D. In all cases,
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a valid private key was recovered. Table 3.2 summarizes some of our results for

the asymptotically most costly step, the MinRank attack. The data support our

complexity estimate of O((n+⌈logq(D)⌉+1
⌈logq(D)⌉+a+1

)
ω
).

a n = 8 n = 9 n = 10 n = 11 n = 12

0 37 94 235 575 1269

1 166 535 1572 3653 3374

2 764 1254 6148 26260 97838

Table 3.2: Average time (in ms) for 100 instances of the MinRank attack on

HFE−(3, n,32 + 32 = 18, a) for various values of n and a.

3.3.6 Toy Example

To illustrate the attack, we present a complete key recovery for a small

odd prime field instance of HFEm. We simplify the exposition by considering a

homogeneous key.

Let q = 7, n = 8, D = 14 and a = 2. We construct the degree n extension

K = F7[x]/ ⟨x8 + 4x3 + 6x2 + 2x + 3⟩ and let b ∈ K be a fixed root of this irreducible

polynomial.

We randomly select f ∶ K→ K of degree D,

f(x) = b4100689x14 + b1093971x8 + b5273323x2,
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and two invertible linear transformations T and U :

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 1 0 3 5 0 3 2

6 2 1 3 4 2 5 1

0 2 5 1 3 1 4 3

3 2 6 4 5 3 4 4

6 4 2 1 0 5 0 0

0 3 3 6 5 1 1 3

0 3 0 4 3 6 1 5

4 3 2 6 1 1 6 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 1 4 1 4 2 5 3

0 6 1 5 3 5 3 2

3 3 5 0 3 4 2 2

4 0 5 4 0 6 4 1

2 6 4 0 0 5 3 5

0 2 4 0 2 0 6 5

4 3 0 3 3 2 2 6

6 2 5 3 5 4 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since b1093971/2 = b4937171, we have

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b5273323 b4937171 0 0 0 0 0 0

b4937171 b4100689 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We fix Π ∶ F8
q → F6

q, the projection onto the first 6 coordinates. Then the
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public key P = Π ○ T ○ F ○U in matrix form over Fq is given by:

P0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 6 3 6 6 0 4 2

6 0 1 3 3 5 2 1

3 1 4 0 6 0 4 4

6 3 0 3 0 2 3 1

6 3 6 0 4 2 2 4

0 5 0 2 2 2 5 1

4 2 4 3 2 5 1 5

2 1 4 1 4 1 5 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,P1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 6 1 5 4 2 2 2

6 5 4 4 0 1 6 2

1 4 3 5 6 2 1 1

5 4 5 2 2 3 1 5

4 0 6 2 2 1 2 4

2 1 2 3 1 6 2 6

2 6 1 1 2 2 5 6

2 2 1 5 4 6 6 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 5 2 2 2 3 3 2

5 1 2 1 3 2 5 4

2 2 2 1 6 2 1 0

2 1 1 4 4 5 2 3

2 3 6 4 4 5 2 2

3 2 2 5 5 3 4 6

3 5 1 2 2 4 5 5

2 4 0 3 2 6 5 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,P3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 6 6 4 0 0 3 4

6 2 5 5 4 5 5 6

6 5 4 6 3 6 4 2

4 5 6 4 5 2 4 5

0 4 3 5 6 3 6 0

0 5 6 2 3 2 4 1

3 5 4 4 6 4 4 4

4 6 2 5 0 1 4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 4 5 2 6 6 5 2

4 4 0 0 3 4 1 6

5 0 5 3 3 0 1 0

2 0 3 4 1 3 3 2

6 3 3 1 6 5 0 1

6 4 0 3 5 4 6 0

5 1 1 3 0 6 2 6

2 6 0 2 1 0 6 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,P5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 6 1 6 2 3 4

2 4 2 0 3 1 5 0

6 2 5 1 4 3 1 1

1 0 1 5 0 0 3 0

6 3 4 0 1 4 1 4

2 1 3 0 4 5 5 5

3 5 1 3 1 5 1 2

4 0 1 0 4 5 2 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Recovering a Related HFE Key: This step in key recovery is a slight
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adaptation of the program of [6]. First, we recover the related private key of The-

orem 3.5. To do this, we solve the MinRank instance on the above 6 = n − 2 n × n

matrices with target rank ⌈logq(D)⌉+a = 2+2 = 4. We may fix one variable to make

the ideal generated by the 5×5 minors zero-dimensional. There are n = 8 solutions,

each of which consists of the Frobenius powers of the coordinates of

v = (1, b5656746, b3011516, b3024303, b1178564, b1443785).

The combination L = ∑
5
i=0 viPi is now a rank 4 matrix with entries in K.

We next form v̂ from v by appending a = 2 random nonzero values from K

to v. Now we compute

φ−1T ′−1 ○ φ =
8

∑
i=0

v̂ix
qi .

Next we let Ki be the left kernel matrix of the n − ith Frobenius power of L

for i = 0,1, . . . , a + 1. We then recover a vector w simultaneously in the right kernel

of Ki for all i. For this example, each such element is a multiple in K of

w = (b4849804, b3264357, b4466027, b638698, b2449742, b4337472, b2752502, b1186132).

Then we may compute

φ−1 ○U ○ φ =
8

∑
i=0

wix
qi .

At this point we can recover φ−1 ○ f ′ ○ φ = T ′−1 ○ P ○ U ′−1, and have a full

private key for the related instance HFE(7,8,686). The transformations T ′ and U ′
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and the matrix representation of f ′ as a quadratic form over K are given by

T ′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 4 4 5 4 5 5 2

0 6 6 0 4 4 5 5

0 5 0 4 2 0 0 3

0 4 4 2 5 6 6 6

0 3 6 2 5 6 0 0

0 2 0 4 4 6 2 2

0 1 5 5 0 5 2 6

0 3 3 3 6 5 2 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U ′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 2 1 4 4 4 1 6

1 6 0 2 3 0 4 2

2 5 3 6 3 3 0 4

0 5 6 5 4 1 4 2

6 5 3 5 4 6 3 2

0 4 6 1 4 0 1 5

6 0 2 3 6 5 6 3

5 2 0 4 1 2 4 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

F′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b416522 b5402526 0 0 0 0 0 0

b5402426 b3093518 b5177024 0 0 0 0 0

0 b5177024 b5689467 b5706144 0 0 0 0

0 0 b5706144 b3464750 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Recovery of Equivalent HFEm Key: Now we describe the full key re-

covery given the related HFE key. We know that there exists a degree D = 14 map
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f ′′(x) = f ′′0,0x
2 + 2f ′′0,1x

8 + f ′′1,1x
14 with associated quadratic form

F′′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f ′′0,0 f ′′0,1 0 0 0 0 0 0

f ′′0,1 f ′′1,1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and a polynomial π(x) = x + p1x7 + p2x49 such that f ′ = π ○ f ′′. Thus we obtain the

bilinear system of equations by equating F′ to:

π̂F′′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f ′′0,0 f ′′0,1 0 0 0 0 0 0

f ′′0,1 f ′′1,1 + p1(f ′′0,0)
7 p1(f ′′0,1)

7 0 0 0 0 0

0 p1(f ′′0,1)
7 p1(f ′′1,1)

7 + p2(f ′′0,0)
49 p2(f ′′0,1)

49 0 0 0 0

0 0 p2(f ′′0,1)
49 p2(f ′′1,1)

49 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We clearly have the values of f ′′0,0 and f ′′0,1. Then the equations on the highest

diagonal are linear in pi. We obtain π = x + b1948142x7 + b398370x49 and continue to

solve the now linear system to recover f ′′(x) = b416522x2 + b1559326x8 + b1121420x14.
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We then obtain the matrix form of π over Fq and compose with T ′:

π̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 6 6 0 2 2 5 5

6 3 5 3 1 4 5 0

5 2 6 0 6 6 6 1

1 1 3 6 4 1 1 6

5 6 2 4 6 6 1 6

5 3 1 5 0 1 0 4

3 2 1 3 3 1 3 5

4 2 1 1 1 4 4 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, T ′ ○ π̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 2 0 5 4 0

1 2 4 4 2 1 0 4

0 2 2 1 1 6 1 0

3 3 1 0 6 3 2 0

0 1 3 1 0 2 2 2

3 4 5 0 1 3 4 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Replacing the last two rows of T ′ ○ π̂ to make a full rank matrix produces

T ′′. Then the original public key P is equal to Π ○ T ′′ ○ φ−1 ○ f ′′ ○ φ ○U ′.
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CHAPTER 4

HFEV

In the previous chapter, the multivariate scheme of HFE and HFEm was

discussed in detail. It was mentioned in section 3.1.2 that HFEv, the “vinegar”

adaptation of HFE has received a great deal of attention. In this chapter, I go into

detail on an analysis of the differential security of HFEv and HFEv−. This analysis

is a natural extension of the differential analysis of HFE and HFE− published in

[13]. However, the situation is much more complex due to the nature of the vinegar

adaptation. Expanding on those methods, I prove the following.

THEOREM 4.1 (see [11]). Let K be a degree n extension of the finite field Fq. Let

f be an HFEv central map. With high probability, f has no nontrivial differential

invariant structure.

With a minimal augmentation of this method we extend this result to the

case of HFEv−.

THEOREM 4.2 (see [11]). Let f be an HFEv central map and let π be a lin-

ear projection. With high probability, π ○ f has no nontrivial differential invariant

structure.

Thus, with proper parameter selection, HFEv− is provably secure against

differential adversaries. Together with the existant literature on resistance to al-

gebraic and rank attacks, this security argument provides significant theoretical

support for the security of aggressive HFEv− parameters, such as those presented
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in [53]. This chapter is organized by begining with details on the vinegar adapta-

tion of HFE, then details on the symmetrical analysis, and ending with the invariant

analysis.

4.1 HFEv and HFEv− Scheme Description

For the vinegar modification, the construction follows the standard HFE pro-

cess while going one step further: the addition of extra variables, x̃1, . . . x̃v, which

are to be assigned random values upon inversion. The effect of adding vinegar vari-

ables is that new quadratic terms, formed from both products of vinegar variables

and HFE variables and products among vinegar variables, increase the rank of the

public key. The central map of the HFEv scheme has the form:

f(x) = ∑
i≤j

qi+qj≤D

αi,jx
qi+qj + ∑

i
qi≤D

βi(x̃1, . . . , x̃v)x
qi + γ(x̃1, . . . , x̃v),

where αi,j ∈ K, βi ∶ Fvq → K is linear, and γ ∶ Fvq → K is quadratic.

In contrast to HFE, f is a vector-valued function mapping Fn+vq to Fnq .

The work of [34, 4, 13] show that representations of such functions over K are

quite valuable. Thus it is beneficial to employ an augmentation of f , adding n − v

additional vinegar variables, and say ŷ = {x̃1, . . . , x̃v, . . . , x̃n}, where x̃v+1 = x̃v+2 =

. . . = x̃n = 0. Thus, our core map becomes

f(x) = f̂

⎛
⎜
⎜
⎝

x̂

ŷ

⎞
⎟
⎟
⎠

.

which algebraically identifies f as a bivariate function over K. We may now write

f in the following form:

f(x, y) = ∑
0≤i≤j<n
qi+qj≤D

αijx
qi+qj + ∑

0≤i,j<n
qi≤D

βijx
qiyq

j

+ ∑
0≤i≤j<n

γijy
qi+qj . (4.1)

Here we see an obvious distinction among the types of monomials. We will

label the monomials with α coefficients the “HFE monomials,” those with β coeffi-
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cients the “mixing monomials” and the monomials with γ coefficients the “vinegar

monomials.”

The HFEv− scheme uses the HFEv primitive f above and augments the

public key with the minus modifier. The minus modifier removes r of the public

equations. This alteration is designed to destroy some of the information of the big

field operations latent in the public key.

4.2 Linear Symmetry Analysis

4.2.1 HFEv

In our analysis, we will begin by considering the differential of our core map.

From the perspective of our adversary, the discrete differential would be

Df̂

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

â

b̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂

ŷ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

=Df(a, b, x, y).

By the bilinearity of Df̂ we see that Df is multi-affine; Df is affine in each of its

inputs when the remaining inputs are fixed. Evaluating this differential we obtain

Df(a, b, x, y) = ∑
0≤i≤j<n
qi+qj≤D

αi,j(x
qiaq

j

+ xq
j

aq
i

) (4.2)

+ ∑
0≤i,j<n
qi≤D

βi,j(x
qibq

j

+ aq
i

yq
j

) (4.3)

+ ∑
0≤i≤j<n

γi,j(y
qibq

j

+ yq
j

bq
i

), (4.4)

noting that Df is a K-bilinear form in [a b]T and [x y]T . For ease of computation,

we will choose the following representation for K:

x↦ [x xq xq
2

... xq
n−1

]T .
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Similarly, we may map our oil-vinegar vector as

[x y] ↦ [x xq xq
2

... xq
n−1

y yq yq
2

... yq
n−1

]T ,

and Df is thus represented by the 2n × 2n matrix where the (i, j)th and (j, i)th

entries in the upper left n×n block are the coefficients αi,j, and the (i, j)th entries

in the upper right block and the (j, i)th entries in the lower left block are the

coefficients βi,j, while the (i, j)th and the (j, i)th entries in the lower right block

are the coefficients γi,j.

Note, that any Fq-linear map M ∶ K → K can be represented by Mx = ∑
n−1
i=0 mixq

i
.

Thus, as demonstrated in [13], under our representation,

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m0 m1 ⋯ mn−1

mq
n−1 mq

0 ⋯ mq
n−2

⋮ ⋮ ⋱ ⋮

mqn−1

1 mqn−1

2 ⋯ mqn−1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

However, when viewing an Fq-linear map over our vector

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂

ŷ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, we may consider

the 2n × 2n matrix

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m00,0 m00,1 ⋯ m00,n−1 m01,0 m01,1 ⋯ m01,n−1

mq
00,n−1 mq

00,0 ⋯ mq
00,n−2 mq

01,n−1 mq
01,0 ⋯ mq

01,n−2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

mqn−1

00,1 mqn−1

00,2 ⋯ mqn−1

00,0 mqn−1

01,1 mqn−1

01,2 ⋯ mqn−1

01,0

m10,0 m10,1 ⋯ m10,n−1 m11,0 m11,1 ⋯ m11,n−1

mq
10,n−1 mq

10,0 ⋯ mq
10,n−2 mq

11,n−1 mq
11,0 ⋯ mq

11,n−2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

mqn−1

10,1 mqn−1

10,2 ⋯ mqn−1

10,0 mqn−1

11,1 mqn−1

11,2 ⋯ mqn−1

11,0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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For computational reference, we will label each row and column modulo(n), i.e.,

each coordinate of the entry (i, j), will be represented by a residue class modulo n.

If we assume that f is vulnerable to a differential attack, then there exists a

non-trivial linear mapping M such that the differential symmetry in (1) is satisfied.

To compute such a symmetry inducing map requires the solution of 4n2 highly

dependent but random equations in the 8n unknown coefficients of M and ΛM over

K. Since trivial symmetries (such as multiplication by scalars) are exhibited by

every map, we know that there exist nontrivial solutions. Even assuming unit time

for K-arithmetic operations, for realistic parameters this process is very inefficient;

with the more realistic assumption of costly K-arithmetic operations, this task is

unsatisfactory in key generation.

To make the solution of such systems of equations more efficient, we derive

the structure of the equations and develop a two step process for verifying trivial

differential symmetric structure. The first step involves finding equations which only

involve a subset of the variables. The existence of such equations is guaranteed by

the degree bound of the HFE monomials. This information is then bootstrapped

to eliminate many unknown coefficients of M resulting in a very small system of

equations which can be solved explicitly.

We remark here that this methodology also suggests a method for estimating

the probability of the existence of a differential symmetry for the HFEv primitive.

The existence of a nontrivial symmetry corresponds to systems for which the rank

of the system of equations is less than 8n. Under the heuristic that under row re-

duction these systems of equations behave like random 8n× 8n matrices, we obtain

a probability of roughly 1 − q−1 that the scheme has no nontrivial differential sym-

metry. We note that this heuristic is almost certainly false since trivial symmetries

do exist. This quantity does represent a lower bound, however, and thus may offer
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support for larger base fields.

We begin by considering the entries of the matrix M
T
Df + DfM . The

contribution of any monomial αi,jxq
i+qj to the ith row of DfM is given by

(αi,jm
j
00,−j αi,jm

j
00,1−j ⋯ αi,jm

j
00,−1−j αi,jm

j
01,−j αi,jm

j
01,1−j ⋯ αi,jm

j
01,−1−j)

while the contribution to the jth row is

(αi,jmi
00,−i αi,jmi

00,1−i ⋯ αi,jmi
00,−1−i αi,jmi

01,−i αi,jmi
01,1−i ⋯ αi,jmi

01,−1−i) .

By symmetry, the ith and and jth columns ofM
T
Df are the same as their respective

rows.

It is clear that the rows and columns associated with coefficients of vinegar

monomials as well as terms associated with mixing monomials may be represented

similarly. However, it should be noted that those terms associated with mixing

monomials will be multiplied by linear coefficients m00,⋅, m01,⋅, m10,⋅, and m11,⋅,

while coefficients associated with vinegar variables are multiplied only by linear

coefficients m10,⋅ and m11,⋅.

The above patterns can be extended to characterize the contribution to the

ith row and jth row of monomials of the form βi,jxq
i
yq

j
and γi,jyq

i+qj , as well. We

note, however, that γ coefficients interact with entries from the lower block matrices

while β coefficients interact with coefficients from all block matrices.

Now that we have characterized the left side of (1), we will consider the

entries of ΛMDf . For every monomial of f , say αi′,j′xq
i+qj , βr,sxq

r
yq

s
, or γu,vyq

s+qv ,

we have under the mapping of ΛM terms of the form: l`α
q`

i,jx
qi+`+qj+` , l`β

qr+`

r,s xq
s+`
yq

j
,

and l`γ
q`

u,vyq
u+`+qv+` . Clearly, this results in every nonzero entry, say (r, s), of our Df

matrix being raised to the power of q` and shifted along a forty-five degree angle

to entry (r + `, s + `). Thus, for each monomial in f there are two possible nonzero

entries in the ith row, with possible overlap.
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This discrete geometrical interpretation of the action of M and D on the

coefficients of f is central to this analysis. A graphical representation of these

relations is provided in Figure 4.1.

Figure 4.1: Graphical representation of the equation MTDf +DfM = ΛMDf for

the HFEv (actually, vC∗) polynomial f(x) = αi,jxq
i+qj +βr,sxq

r
yq

s
+γu,vyq

u+qv . Hor-

izontal and vertical lines represent nonzero entries in MTDf +DfM while diagonal

lines represent nonzero entries in ΛMDf . We may consider this diagram as a genus

4 surface containing straight lines.

As in [13], the possibility of a differential symmetry can be determined by

setting the matrix representation of MTDf + DfM equal to the matrix ΛMDf .

We will demonstrate an algorithm, given some specific constraints, that will help

provide secure keys to be generated automatically.

Due to the structure of our M matrix, we need to work within each mi,j

matrix independently. The following algorithm for m0,0 extends very naturally to

the other 3 matrices. For clarity, all m terms in description below are m0,0 terms.

Let αi,j, βr,s, γu,v represent the coefficients of our monomials in our core map.

Consider the ith row of MTDf +DfM . For all w not occurring as a power of q of

our HFE or mixing monomials in f , or difference of powers of q in an exponent of

a monomial in f plus i, the (i,w) entry is αi,jm
qj

w−j = 0 (resp. βi,jm
qj

w−j). Consider

the rth row. For all w not occuring as an exponent of q in a vinegar monomial or
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as a difference of powers of q in an exponent of a monomial in f plus s, the (r,w)th

entry is βr,sm
qs

k−s = 0. Hence, we can use those relations to look for non-zero entries

of m0,0.

After putting those relations into HFEvKeyCheck Algorithm, see Appendix

C, you can generate a set for every i and r, exponents that occur in your core map.

Each set provides a list of indices of all possible non-zero m’s. For each index not

occuring in any such set, the corresponding coefficient m must equal zero due to

the fact that there must be a coordinate in the equation MTDf +DfM = ΛMDf

setting a constant multiple of m to zero. Thus, the intersection off all sets generated

produces a list of all possible non-zero entries for the sub-matrix m0,0.

Once this list is obtained, the variables shown to have value zero are elim-

inated from the system of equations. After repeating a similar algorithm for each

of the remaining three submatrices a significantly diminished system of equations

is produced which is then solved explicitly.

After running this algorithm with realistic values satisfying the above con-

straints and matching the parameter sizes of [53] along with using mild restrictions

on the powers of the mixing and vinegar monomials, the only non-zero value ob-

tained is m0.

We note that it is possible that these restrictions, especially the restriction

for these experiments on the number of monomials, place a lower bound on the

number of vinegar variables required to achieve such a structure. On the other

hand, with numerous small-scale experiments without parameter restrictions and

using the full number of monomials we found that structurally the only nonzero

value for the matrix m0,0 is the m0 term.

Since we have only a single non-zero term, our m0,0 matrix is a diagonal

matrix. A similar analysis for each of the remaining submatrices reveals the same

structure. Thus we find that the only possible structure for M under these con-

85



straints satisfying a differential symmetry for HFEv is

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cI dI

dI cI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Furthermore, we can prove by way of Theorem 2 from [63], that the coefficients

c, d ∈ Fq.

We note that this map induces a trivial differential symmetry. To see this,

note that the (nonpartial) differential of any bivariate function is bilinear in its

vector inputs. Thus

Dg(M[a b]T , [x y]T ) =Dg([ca + db da + cb]T , [x y]T ) (4.5)

=Dg([ca + db cb + da]T , [x y]T ) (4.6)

=Dg(c[a b]T , [x y]T ) +Dg(d[b a]T , [x y]T ) (4.7)

= cDg(a, b, x, y) + dDg(b, a, x, y) (4.8)

= (c + d)Dg(a, b, x, y). (4.9)

Consequently, for the parameters provided by HFEvKeyCheck, HFEv provably has

no nontrivial differential symmetric structure.

It should be noted that the restrictions provided on the powers of q of the

monomials of our f does lower the entropy of our key space and likely raise the num-

ber of required vinegar variables to a level which is either unsafe or undesirable.

However, there is still plenty of entropy with these restrictions and we obtain prov-

able security against the differential symmetric attack. The restrictions provided

are just a base line for this technique and our experiments with small scale examples

indicate that even when we insist that every possible monomial satisfying the HFE

degree bound is required to have a nonzero coefficient, the generalized algorithm

still outputs only the trivial solution. Thus we can achieve provable security with

minimal loss of entropy.
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4.2.2 HFEv−

Now, the algorithm extends naturally to HFEv−. Every non-zero entry from

the system generated by HFEv is also in that generated by HFEv−, but with a

few more, see Figure 4.2. We choose a basis in which an example minus projection

is a polynomial of degree q2. For every ith row, we also have for any w not a power

of α + n or β + n where n < 2, the (i,w)th entry is αi,jm
qj

w−j = 0. For the sth row,

for all w not being a power of β + n or r + n where n < 2, the (s,w)th entry is

βr,sm
qr

w−r = 0. A visualization is provided in Figure 4.2.

Again, we can use these relations, along with the relations described in the

HFEv system, to create a list of sets of all non-zero areas on m0,0 using the algo-

rithm HFEv-KeyCheck, see Appendix C. Each of these sets contains indices which

are possibly non-zero, thus entries not in that set are definitively equal to zero.

By taking the intersection of all the sets, you can find the final locations of

non-zero entries for our sub matrix m0,0. In doing so, with realistic values from [53],

the only non-zero value obtained is m0. This again gives us security against sym-

metrical attacks by having M being a block matrix consisting of diagonal matrices

with an argument similar to [13].

4.3 Invariant Analysis

4.3.1 Differential Invariants

DEFINITION 4.1 (see [11]). Let f ∶ Fnq → Fmq be a function. A differential invariant

of f is a subspace V ⊆ K with the property that there is a subspace W ⊆ K such that

dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq(Dfi), AV ⊆W .

Informally speaking, a function has a differential invariant if the image of a
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Figure 4.2: Graphical representation of the equation MTDf +DfM = ΛMDf for

the HFEv− with the minus modifier given by the projection π(x) = xq
2
+ ρxq +

τx. Horizontal and vertical lines represent nonzero entries in MTDf +DfM while

diagonal lines represent nonzero entries in ΛMDf . We note that each triple of lines

corresponds to a single monomial in the central map.

subspace under all differential coordinate forms lies in a fixed subspace of dimension

no larger. This definition captures the notion of simultaneous invariants, subspaces

which are simultaneously invariant subspaces of Dfi for all i, and detects when large

subspaces are acted upon linearly.

If we assume the existence of a differential invariant V , we can define a

corresponding subspace V ⊥ as the set of all elements x ∈ K such that the dot

product ⟨x,Av⟩ = 0 ∀v ∈ V,∀A ∈ Span(Dfi). We note that this is not the standard

definition of an orthogonal complement. V ⊥ is not the set of everything orthogonal

to V , but rather everything orthogonal to AV , which may or may not be in V . By

definition, it is clear that V and V ⊥ satisfy the relation

dim(V ) + dim(V ⊥) ≥ n.

Assume there is a differential invariant V ⊆ Fnq , and choose linear maps

M ∶ Fnq → V and M⊥ ∶ Fnq → V ⊥. For any differential-coordinate-form, we have

[Df(M⊥y,Mx)]i = (M⊥y)T (Dfi(Mx)) (4.10)
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Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that

[Df(M⊥y,Mx)]i = (M⊥a)T (Dfi(Mx)) = 0 (4.11)

Thus, as derived in [51],

∀y, x ∈ Fnq ,Df(M⊥y,Mx) = 0 or equivalently, Df(M⊥Fnq ,MFnq ) = 0 (4.12)

This relation restricts the structure of M and M⊥, and provides a direct means of

classifying the differential invariant structure of f .

We follow an analogous strategy to that of [13], adapted to the structure

of the central HFEv− map f . First, we recall proposition 3.1. Without loss of

generality we assume that rank(M⊥) ≤ rank(M). If the ranks are equal, then we

may apply the proposition and write M⊥ = SMT , with S and T nonsingular. If

rank(M⊥) < rank(M), compose M with a singular matrix X so that rank(XM) =

rank(M⊥), and then apply the above result so that M⊥ = S(XM)T . Then we can

express M⊥ = S′MT , where S′ is singular. Restating our differential result (4.12)

in this manner, we have that if M⊥ = SMT , and M ∶ Fn+vq → V , then

∀x, y ∈ Fnq ,Df(SMTy,MTx) = 0. (4.13)

4.3.2 Minimal Generators over Intermediate Subfield

For lack of a good reference, we prove the following statement about the

structure of the coordinate ring of a subspace of an extension field over an interme-

diate extension.

LEMMA 4.1 (see [11]). Let L/K/Fq be a tower of finite extensions with ∣L ∶ K∣ =m

and ∣K ∶ Fq ∣ = n. Let V be an Fq-subspace of L. Then I(V ) has m multivariate

generators over K of the form

M
(k)
V (x0, . . . , xm−1) = ∑

0≤i<n
0≤j<m

aijkx
qi

j .
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Proof. Choose a basis {e0 = 1, e1, . . . , em−1} for L over K. Since V is an Fq-subspace

of L, the minimal polynomial of V over L, MV (X) = ∑
mn−1
i=0 αiX

qi

, is Fq-linear.

Note that the operations of addition and left multiplication by elements in L are

K-linear, whereas the Frobenius maps are merely F-linear.

Now, since MV (X) is linear it is additive, hence

MV (X) =MV

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

⋮

xm−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
m−1

∑
i=0

MV (xiei).

In each summand of MV (xjej), we have

(xjej)
qi = xq

i

j ej
qi = xq

i

j

m−1

∑
i=0

riei

for some r0, . . . , rm−1 ∈ K. As a vector over K this quantity is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0x
qi

j

⋮

rm−1x
qi

j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

ThusMV (xjej) is anm-dimensional vector of K-linear combinations of xj, x
q
j , . . . , x

qn−1

j .

Thus MV (X) is of the form

MV (X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
(0)
V (x0, . . . , xm−1)

⋮

M
(m−1)
V (0, . . . , xm−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑ 0≤i<n
0≤j<m

aij0x
qi

j

⋮

∑ 0≤i<n
0≤j<m

aij(m−1)x
qi

j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

as required.

We note that the minimal polynomials studied in [13] correspond to the

special case of the above lemma in which m = 1. Given our characterization from

Section 4.1 of the central map of HFEv− as a bivariate polynomial over K, we are

primarily interested in the m = 2 case of Lemma 4.1.
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4.3.3 HFEv

As in [13], we consider Df(SMTa,MTx), where T is nonsingular, S is a

possibly singular map which sends V into V ⊥ and M ∶ k → k is a projection onto

V . Without loss of generality we’ll assume that M projects onto V . Then MT is

another projection onto V . SMT is a projection onto V ⊥. An important distinction

is that for this case, the a and x above are actually two dimensional vectors over k.

Thus dim(V ) + dim(V ⊥) ≥ n.

of Theorem 4.1. Let us denote by [x̂ ŷ]T the quantity MT [x y]T .

Suppose we have

f(x, y) = ∑
0≤i≤j<n
qi+qj≤D

αijx
qi+qj + ∑

0≤i,j<n
qi≤D

βijx
qiyq

j

+ ∑
0≤i≤j<n

γijy
qi+qj .

Applying the differential (w.r.t. the vector [x y]
T

) as described in Section

4.2, we obtain:

Df(a, b, x, y) = ∑
0≤i≤j<n
qi+qj≤D

αij (a
qixq

j

+ aq
j

xq
i

) (4.14)

+ ∑
0≤i,j<n
qi≤D

βij (a
qiyq

j

+ xq
i

bq
j

) (4.15)

+ ∑
0≤i≤j<n

γij (b
qiyq

j

+ bq
j

yq
i

) . (4.16)

Substituting SMT [a b]T and MT [x y]T , we derive

Df(S[â b̂]T , x̂, ŷ) =Df(S11â + S12b̂, S21â + S22b̂, x̂, ŷ).

For notational convenience let ˆ̂a= S11â + S12b̂ and ˆ̂b= S21â + S22b̂. Plugging in these
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values in the previous equation we get

Df(ˆ̂a, ˆ̂b, x̂, ŷ) = ∑
0≤i≤j<n
qi+qj≤D

αij ((ˆ̂a)q
i

x̂q
j

+ (ˆ̂a)q
j

x̂q
i

) (4.17)

+ ∑
0≤i,j<n
qi≤D

βij ((ˆ̂a)q
i

ŷq
j

+ x̂q
i

(ˆ̂b)q
j

) (4.18)

+ ∑
0≤i≤j<n

γij ((
ˆ̂b)q

i

ŷq
j

+ (ˆ̂b)q
j

ŷq
i

) . (4.19)

In contrast to the situation with HFE, these monomials are not necessarily

independent. By Lemma 4.1, the generators of I(V ) have the form

∑
0≤i<n

rijx
qi + ∑

0≤i<n
sijy

qi for j ∈ {1,2},

where rij, sij ∈ K. Clearly, these expressions evaluate to zero on (x̂, ŷ). Evaluating

(4.17) modulo I(V ) (only on the variables x̂ and ŷ), we obtain:

Df(ˆ̂a, ˆ̂b, x̂, ŷ) = ∑
0≤i<n

0≤j<dx

[α′ij(ˆ̂a)q
i

+ β′ij(
ˆ̂b)q

i

] x̂q
j

(4.20)

+ ∑
0≤i<n

0≤j<dy

[γ′ij(ˆ̂a)q
i

+ δ′ij(
ˆ̂b)q

i

] ŷq
j

, (4.21)

where dx and dy are the largest powers of x̂ (resp. ŷ) occuring. After the reduction

modulo I(V ), the remaining monomials x̂, . . . , x̂q
dx and ŷ, . . . , ŷq

dy are independent.

Thus, for Df(ˆ̂a, ˆ̂b, x̂, ŷ) = 0, each polynomial expression multiplied by a single x̂q
j

or ŷq
j

must be identically zero, that is to say that for all 0 ≤ j ≤ dx

∑
0≤i<n

[α′ij(ˆ̂a)q
i

+ β′ij(
ˆ̂b)q

i

] = 0 (4.22)

and for all 0 ≤ j ≤ dy

∑
0≤i<n

[γ′ij(ˆ̂a)q
i

+ δ′ij(
ˆ̂b)q

i

] = 0. (4.23)

The left hand sides of (4.22) and (4.23) are F-linear functions in S[â b̂]T .

Thus we can express each such equality over F as

LS [â0 ⋯ ân−1 b̂0 ⋯ b̂n−1]
T
= 0,

92



where L is an n × 2n matrix with entries in F. We note specifically that the co-

efficients of L depend on V and the choices of coefficients in the central map f .

For randomly chosen coefficients retaining the HFEv structure, we expect an L

derived from an equation of the form (4.22) or (4.23) to have high rank with very

high probability, more than 1 − q−n. Thus the dimension of the intersections of the

nullspaces of each L is zero with probability at least 1 − 2q−n.

Clearly, the condition for these equations to be satisfied is that S sends V to

the intersection of the nullspaces of each such L. Thus S is with high probability

the zero map on V and so V ⊥ = {0}. This generates a contradiction, however, since

2n ≤ dim(V ) + dim(V ⊥) < 2n. Thus, with probability greater than 1 − 2q−n, f has

no nontrivial differential invariant structure.

4.3.4 HFEv−

The situation for HFEv− is quite similar, but the probabilities are slightly

different. Specifically one must note that since the condition of being a differential

invariant is a condition on the span of the public differential forms, under projection

this condition is weaker and easier to satisfy. For specificity, we consider the removal

of a single public equation, though, critically, a very similar though notationally

messy analysis is easy to derive in the general case.

We may model the removal of a single equation as a projection of the form

π(x) = xq + x applied after the central map.

Proof of Theorem 4.2. Consider

π(f(x, y)) = ∑
0≤i≤j<n
qi+qj≤D

αijx
qi+qj + ∑

0≤i,j<n
qi≤D

βijx
qiyq

j

+ ∑
0≤i≤j<n

γijy
qi+qj (4.24)

+ ∑
0≤i≤j<n
qi+qj≤D

αqijx
qi+1+qj+1 + ∑

0≤i,j<n
qi≤D

βqijx
qi+1yq

j+1

+ ∑
0≤i≤j<n

γqijy
qi+1+qj+1 . (4.25)
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Taking the differential, we obtain

D(π ○ f)(ˆ̂a, ˆ̂b, x̂, ŷ) = ∑
0≤i≤j<n
qi+qj≤D

αij ((ˆ̂a)q
i

x̂q
j

+ (ˆ̂a)q
j

x̂q
i

) (4.26)

+ ∑
0≤i,j<n
qi≤D

βij ((ˆ̂a)q
i

ŷq
j

+ x̂q
i

(ˆ̂b)q
j

) (4.27)

+ ∑
0≤i≤j<n

γij ((
ˆ̂b)q

i

ŷq
j

+ (ˆ̂b)q
j

ŷq
i

) (4.28)

+ ∑
0≤i≤j<n
qi+qj≤D

αqij ((ˆ̂a)q
i+1

x̂q
j+1

+ (ˆ̂a)q
j+1

x̂q
i+1

) (4.29)

+ ∑
0≤i,j<n
qi≤D

βqij ((ˆ̂a)q
i+1

ŷq
j+1

+ x̂q
i+1

(ˆ̂b)q
j+1

) (4.30)

+ ∑
0≤i≤j<n

γqij ((
ˆ̂b)q

i+1

ŷq
j+1

+ (ˆ̂b)q
j+1

ŷq
i+1

) . (4.31)

Again, we may evaluate modulo I(V ) and collect the terms for the distinct

powers of x̂ and ŷ. By the independence of these monomials we obtain the relations

∑
0≤i<n

[α′′ij(ˆ̂a)q
i

+ β′ij(
ˆ̂b)q

i

] = 0 (4.32)

∑
0≤i<n

[γ′′ij(ˆ̂a)q
i

+ δ′ij(
ˆ̂b)q

i

] = 0. (4.33)

At this point, the analysis proceeds exactly as in the case of HFEv. We

once again arrive at the conclusion that with high probability S is the zero map

on V , contradicting the existence of a differential invariant. We note here that this

analysis works for any projection, though the exact values of the α′′ij and γ′′ij depend

on the specific projection and the structure of f .

4.4 Closing Remarks for HFEv and HFEv−

HFEv− is rapidly approaching twenty years of age and stands as one of the

oldest post-quantum signature schemes remaining secure. With the new parameters

suggested in [53], HFEv− has metamorphosed from the very slow form of QUARTZ
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into a perfectly reasonable option for practical and secure quantum-resistant signa-

tures.

Our analysis contributes to the confidence and optimism which HFEv− in-

spires. By elucidating the differential structure of the central map of HFEv−, we

have verified that a class of attacks which has proven very powerful against mul-

tivariate schemes in the past cannot be employed against HFEv−. In conjunction

with the careful analysis of the degree of regularity and Q-rank of the scheme al-

ready present in the literature, we have succeeded in showing that HFEv− is secure

against every type of attack known. If the future holds a successful attack against

HFEv− it must be by way of a fundamentally new advance.
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CHAPTER 5

HFERP

5.1 Introduction

5.1.1 Recent History

While there may be many trustworthy candidates for multivariate signatures,

such as UOV [32], Rainbow [16], and Gui [54], developing multivariate schemes for

encryption has been a bit of a struggle. While some older ideas have have been

reborn with better parameter sets due to the advancement of the science, such as

applying HFE-, see [48], to encryption, most of the surviving multivariate encryption

schemes are relatively young.

In the last few years, there have been a few new proposals for multivariate

encryption, mostly following the idea that it is easier to hide the structure of an

injective mapping into a large codomain than to hide the structure of a bijection,

as is needed for any encryption mapping into a codomain of the same size as the

domain. The ABC Simple Matrix encryption scheme of [64, 19] and ZHFE, see [55]

are examples of this idea. Most of these encryption ideas, both new and old, have

inspired recent surprising cryptanalyses that affect parameter selection or outright

break the scheme, see [39, 42, 41, 10, 67], for example.

Such a tale describes the life of SRP, see [70], the design of which aimed to be

very efficient and holds a comparably small blow up factor between the plaintext and
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ciphertext sizes. The scheme also claimed security against attacks efficient against

the Square and Rainbow schemes by combining them into one. Unfortunately, SRP

is also the victim of a new cryptanalysis, see [52]. The attack exploits the low

Q-rank of the Square map, a vulnerability inherited by the public key. A modified

MinRank attack was able to pull apart the Square polynomials from the Rainbow

and Plus polynomials in the public key.

5.1.2 Our Contribution

We present a new composite scheme in the manner of SRP by replacing the

weaker Square layer with an HFE polynomial of higher Q-rank and finding the

correct balance in the sizes of the HFE, Rainbow and Plus layers for efficiency and

security. We call our scheme HFERP. We further establish the complexity of the

relevant attack models: the algebraic attack, the MinRank attack, and the invariant

attack.

5.1.3 Organization

The remainder of this chapter is organized as follows. In the next section,

we present isomorphisms of polynomials and describe the structure of HFE and

SRP. The subsequent section reviews the Q-rank of ideals in polynomial rings and

discusses invariant properties of Q-rank and min-Q-rank. In section 5.3, we review

more carefully the previous cryptanalyses of HFE and SRP. We then present HFERP

in the next section. Section 5.5 discusses the complexity of all known relevant

attacks on HFERP. Our choice of parameters to optimize security and performance

along with experimental results are then presented in the following section. Finally,

we conclude discussing why a similar approach to SRP seems to produce such a

different technology in HFERP.
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5.2 Component Descriptions

5.2.1 Rainbow

The Rainbow scheme is a generalization of Patarin’s UOV, see [32]. The key

idea, introduced by Ding, see [16], was constructing multiple layers of UOV.

Let F be a finite field with a degree n extension Fn. Let V = {1,2, . . . , n}.

For a chosen u, let v1, . . . , vu be integers such that 0 < v1 < ⋅ ⋅ ⋅ < vu = n and let

Vl = {1, . . . , vl} for each l ∈ {1, . . . , u}. Note that ∣Vi∣ = vi.

Let oi = vi+1 − vi for each i ∈ {1, . . . , u − 1} and Oi = Si+1 − Si for each

i ∈ {1, . . . , u− 1}. Define Pl to be the space generated by the span of polynomials of

the following form:

f(x1, . . . , xn) = ∑
i∈Ol,j∈Vl

αi,jxixj + ∑
i,j∈Vl

βi,jxixj + ∑
i∈Vl

γixi + η

One can refer to the previous constructions using the following terminology: O is the

collection of oil variables, V is the collection of vinegar variables, and a polynomial

f ∈ Pl is an l-th layer Oil and Vinegar polynomial.

The Rainbow map F ∶ Fn → Fn−v1 is defined as (with x1, . . . , xn being referred

to as x̄ for convenience)

F (x̄) = (F̃1(x̄), . . . , F̃u−1(x̄)) = (F1((̄x), . . . , Fn−v1(x̄)

where each F̃i consists of oi randomly chosen quadratic polynomials from Pi. F is a

Rainbow polynomial map with u−1 layers. The public key is generated in the usual

fashion by applying two affine transformations, T and U , where T ∶ Fn−v1 → Fn−v1

and U ∶ Fn → Fn: T ○ F ○U
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5.2.2 SRP

In Section 5.4, we present in detail the construction of our proposed scheme,

HFERP. For reference, we will include the Square Map definition as well as method

of inversion presented in the original SRP paper, see [70].

Instead of using the HFE core map described in section 5.4, SRP uses the

Squaring map where the Square component is defined as FS ∶ Fn
′

q → Fdq (where qd+1

is divisible by 4) and it is the result of the following composition:

Fn′q
πd
Ð→ Fdq

φ
Ð→ K X↦X2

ÐÐÐ→ K φ−1

ÐÐ→ Fdq

Upon inversion step 3, the user would compute

R1,2 = ±X
(qd+1)/4

and use it to find y = (y
(i)
1 , . . . , y

(i)
d ) = φ−1(Ri) ∈ Fdq . The choice of the Square map

was made because of the speed of inversion it provided when compared to any other

quadratic maps. Unfortunately, due to this choice, SRP was quickly broken in [52]

by isolating the squaring public polynomials and exploiting its low Q-rank.

5.3 Previous Cryptanalysis of Relevant Schemes

SRP was a designed as a concatenation of two known multivariate schemes

and a scheme modifier. The first component was Square, see [12], which can be seen

as a degenerate version of HFE. The second component was oil-and-vinegar (OV) or,

more generally, Rainbow, see [46, 16]. The final component was the plus modifier,

first proposed in [50]. The algebraic properties of these schemes were intended to

complement their weaknesses when used in conjunction. This patchwork design

requires, however, a careful consideration of the relevant cryptanalyses within all of

these families.
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The original oil-and-vinegar (OV) scheme, proposed in [46], was completely

broken in [61] by what we call the invariant method. Specifically, the balanced

OV scheme contains an equal number of oil variables, variables which only occur

linearly in the central map, and vinegar variables, which occur quadratically. Thus,

the differential of any central polynomial has the shape

Dfi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 ⋯ a1,v a1,v+1 ⋯ a1,2v

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

a1,v ⋯ av,v av,v+1 ⋯ av,2v

a1,v+1 ⋯ av,v+1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

a1,2v ⋯ av,2v 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

under an appropriate basis of F2v = V ⊕O, where V is the subspace spanned by the

vinegar variables and O is the subspace spanned by the oil variables.

The invariant attack proceeds by computing the differential of random linear

combinations of the public polynomials until two full rank differentials, Df1 and

Df2, are produced. ThenO is left invariant byDf−1
1 Df2 and is thus easily recovered.

A similar technique has been used in conjunction with rank attacks to assault

schemes with a similar structure whenever dim(V ) ≤ dim(O), see, in particular,

[39, 40, 41].

HFE and some of its modifications have been the target of effective crypt-

analyses utilizing the low Q-rank property of the central map. Each of these crypt-

analyses can be described as a big field MinRank attack, recovering a low rank

quadratic form over the extension E from which an isomorphism relating the public

key to an equivalent private key can be derived.

The earliest iteration of this technique is the well-known Kipnis-Shamir (KS)

attack of [34], also known by the name MinRank, due to the close relationship

between the attack and the MinRank problem in algebraic complexity theory, see
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[23]. The KS-attack recovers a private key for HFE by exploiting the fact that the

low Q-rank of the central map is a property preserved by isomorphisms. Considering

an odd characteristic instance of HFE. We may write the homogeneous quadratic

part of the central map as

[x xq ⋯ xq
n−1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0,0 α′0,1 ⋯ α′0,d−1 0 ⋯ 0

α′0,1 α1,1 ⋯ α′1,d−1 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

α′0,d−1 α′1,d−1 ⋯ αd−1,d−1 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

xq

⋮

xq
n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where α′i,j =
1
2αi,j and d = ⌈logq(D)⌉. The KS-attack first interpolates an univariate

representation of the public key over E. This representation of the public key is

isomorphic to the central map of Q-rank bounded by the ceiling of the logarithm

of the degree bound. Thus, there is a linear map T −1 which when composed with

the public key has Q-rank d, and so there is a low rank matrix that is an E-linear

combination of the Frobenius powers ofG. This turns recovery of the transformation

T into the solution of a MinRank problem over E.

Another version of this attack, utilizing the same property, is the key recovery

attack of [6]. The authors prove the existence of an E-linear combination of the

public key with low rank over E. Setting the unknown coefficients of this linear

combination as variables, they construct the ideal I ⊆ R = F[T ] of minors of this

sum of the appropriate dimension such that V (I) ∩Edim(R) consists of exactly such

linear coefficients. Thus a Gröbner basis needs to be computed over F and the

variety computed over E. This modeling of the KS-attack is called minors modeling

and dramatically improves the efficiency of the KS-attack in many circumstances.

The KS-attack with either KS modeling or with minors modeling has also
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been used to break other HFE descendants. In [6], the minors modeling approach is

used to break multi-HFE. In [67], the KS-attack is extended to provide key recovery

for HFE-. In [10], both the KS modeling and minors modeling versions of the KS-

attack are used to undermine the security of ZHFE.

The MinRank methodology is also employed in [52], where an effective key

recovery attack on SRP is presented. It was shown that the low Q-rank of Square

is exposed by the SRP construction. Specifically, the Q-rank of the square map

f(x) = x2 is one over an odd characteristic field. Since this low Q-rank map is in

the span of the public polynomials, there is an E-linear combination of the public

polynomials of rank one! Thus the ideal generated by the two-by-two minors is

resolved at degree two and the complexity of the attack isO((m+1
2

)
ω
), where 2 ≤ ω ≤ 3

is the linear algebra constant. The attack is applied practically, breaking the 80-bit

parameters in about 8 minutes.

5.4 New Scheme - HFERP

In this section, we present a significant modification of SRP that we call

HFERP. The key observation is that by replacing the Square map with a higher

Q-rank instance of HFE, one can make the MinRank attack inefficient while main-

taining efficient inversion. For simplicity of the exposition, we present the scheme

with a single layer UOV component, noting that it is trivial to replace UOV with a

multi-layer Rainbow via the same construction.

Choose a finite field Fq and let E be a degree d extension field over Fq. Let

φ ∶ Fdq → E be an Fq-vector space isomorphism. Also, let o, r, s, and l be non-

negative integers.

Key Generation Let n = d + o − l, n′ = d + o and m = d + o + r + s. The cen-

102



tral map of HFERP is the concatenation of an HFE core map, FHFE, an UOV (or

alternatively, Rainbow) section, FR, and the plus modifier, FP . Formal definitions

of the maps are provided below:

� The HFE component is defined as FHFE ∶ Fn′q → Fdq and is the result of the

following composition:

Fn′q
πd
Ð→ Fdq

φ
Ð→ E f

Ð→ E φ−1

ÐÐ→ Fdq

where f is the HFE core map described in (3.1) and πd ∶ Fd+oq → Fdq is the

projection onto the first d coordinates.

� The UOV (or alternatively, Rainbow) component is defined as

FR = (g(1), . . . , g(o+r)) ∶ Fn′q → Fo+rq

following the normal construction of the UOV signature scheme where V =

{1, . . . , d} and O = {d+1, . . . , d+ o}. For every k ∈ {1, . . . , o+ r}, the quadratic

polynomial g(k) is of the following form:

g(k)(x1, . . . , xn′) = ∑
i∈O,j∈V

α(k)xixj + ∑
i,j∈V,i≤j

β
(k)
i,j xixj + ∑

i∈V∪O
γ
(k)
i xi + η

(k)

where α(k), β
(k)
i,j , γ

(k)
i , and η(k) are chosen at random from Fq.

� The Plus modification is defined as FP = (h(1), . . . , h(s)) ∶ Fn′q → Fsq which

consists of s randomly generated quadratic polynomials.

An affine embedding U ∶ Fnq → Fn′q of full rank and an affine isomorphism

T ∶ Fmq → Fmq are chosen for the butterfly construction as is common in big field

schemes. The public key is given by P = T ○F○U ∶ Fnq → Fmq , where F = FHFE∥FR∥FP

( ∥ being the concatination function), and the private key is represented by the
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following figure:

Fdq

!!
Fnq

P

??
U // Fn+lq

FHFE
==

FP !!

FR // Fo+rq
// Fmq

T // Fmq

Fsq

==

Encryption Given a message M ∈ Fnq , the ciphertext is computed as C = P(M) ∈

Fmq .

Decryption Given a ciphertext C = (c1, . . . , cm) ∈ Fmq , the decryption process is the

following:

1. Compute x = (x1, . . . , xm) = T −1(C).

2. Compute X = φ(x1, . . . , xd) ∈ E.

3. Use the Berlekamp algorithm to compute the inverse of the HFE polynomials

to recover y = (y1, . . . , yd).

4. Given the vinegar values y1, . . . , yd, solve the system of o + r linear equations

in the n′ − d = o variables ud+1, . . . , un′ given by

g(k)(y1, . . . , yd, ud+1, . . . , un′) = xd+k

for k = 1, . . . , o + r. The solution is denoted (yd+1, . . . , yn′).

5. Compute the plaintext M ∈ Fnq by finding the preimage of (y1, . . . , yn′) under

the affine embedding U .

5.5 Complexity of Known Attacks

In this section we derive tight complexity estimates or proofs of resistance for

the principal relevant attacks on HFERP. These attacks include the direct algebraic
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attack, the MinRank attack, the small field MinRank and dual rank attacks, and

the invariant attack.

5.5.1 Algebraic Attack

The algebraic attack attempts to invert the public key at a ciphertext directly

via the calculation of a Gröbner basis. It is commonly believed that the closeness

of the solving degree of a polynomial system, the degree at which the Gröbner basis

is resolved, and the degree of regularity, the degree at which a non-trivial syzygy

producing a degree fall first occurs, is a generic property. Thus the lower bound on

the complexity of the algebraic attack that the degree of regularity provides is likely

a tight bound, and is consequently a critical quantity for analyzing the security of

the scheme.

THEOREM 5.1 (see [30]). The degree of regularity of the public key of HFERP is

bounded by

dreg ≤

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(q−1)⌈logq(D)⌉
2 + 2 if q is odd or ⌈logq(D)⌉ is even,

(q−1)(⌈logq(D)⌉+1)
2 + 1 otherwise.

Proof. There is a linear function of the public key separating the HFE polynomials

H from the non-HFE polynomials N . Trivially, the dreg is bounded by the degree

of regularity of the system H, which, via Theorem 4.2 in [17], produces the above

bound.

One must note that the above bound is not what is needed to ensure security.

Instead we require a lower bound. Extensive experimentation shows that for very

small q, the above estimate is tight. We have, however, a further complication. In

general, adding more polynomials to an ideal may decrease its degree of regularity.

To address this issue we have conducted small scale experiments showing that the
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degree of regularity and solving degree behave similarly to those of random systems,

see Section 5.6.

Conjecture 5.1 (see [30]). Under the assumption that the degree of regularity is at

least ⌈logq(D)⌉ + 2 for small odd q and sufficiently large n, the complexity of the

algebraic attack is given by

Comp.alg = O
⎛

⎝
(
n + dreg
dreg

)
2

(
n

2
)
⎞

⎠
= O (n2⌈logq(D)⌉+6) .

5.5.2 MinRank Attack

The min-rank attack proposed in [52] is so successful due to the Q-rank of

the squaring map within SRP being equal to one. By changing the square map

component to an HFE core map, we are able to thwart such an attack on HFERP.

This subsection walks through the attack proposed in [52] , with HFERP in mind,

and proves that the min-Q-rank of HFERP differs from SRP.

Note that, similar to SRP, the public key of HFERP has an analogous scheme

without embedding as long as πd ○ U is of full rank, which it is defined to be in

this scheme. Let π′d ∶ Fnq → Fdq be the projection onto the first d coordinates and

find a projection ρ ∶ Fn+lq → Fnq such that U ′ = ρ ○ U has full rank and π′d ○ U
′ =

πd ○ U . Let F∗ ∶ E → E represent the chosen high Q-rank HFE core map so that

FHFE = φ−1 ○ F∗ ○ φ ○ πd. Then identify the Rainbow and random components as

F ′
R ∶ FR ○ U ○ U

′−1 and F ′
P ∶ FP ○ U ○ U

′−1 respectively. Thus, one can see that

T ○

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ ○ F∗ ○ φ−1 ○ πd

FR

FP

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

○ U = T ○

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ ○ F∗ ○ φ−1 ○ π′d

F ′
R

F ′
P

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

○ U ′.

Notice that the attack on SRP was not just a min-rank attack on the public

key of SRP, but on a linear combination of public forms of SRP that had low Q-rank
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over the degree d extension used by the squaring component. This method allowed

the attack to ignore the fact that the public key of an instance of SRP was expected

to be of high rank. Thus, to demonstrate that HFERP resists such an attack, we

briefly outline the method of deriving the linear combination of public forms from

[52] for HFERP and prove that the min-Q-Rank of the result is sufficiently high to

resist such an attack.

Let α be a primitive element of the degree d extension E of Fq. Fix a

vector space isomorphism φ ∶ Fdq → E defined by φ(x̄) = ∑
d−1
i=0 xiα

i. Then, fix a one

dimensional representation Φ ∶ E→ A defined by a
Φ
Ð→ (a, aq, . . . , aq

d−1
). Next, define

Md ∶ Fdq → A byMd = Φ○φ. It was demonstrated you can look at this map through

the following matrix representation

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1

α αq . . . αq
d−1

α2 α2q . . . α2qd−1

⋮ ⋮ ⋱ ⋮

αd−1 α(d−1)q . . . α(d−1)qd−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈Md×d(E)

This matrix allows the passage from Fdq and A easily by right multiplication

with Md or M−1
d . Next are a few more definitions necessary to be able to look at a

matrix representation of the public key:

M̃d =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Md 0

0 Io+r+s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈Mm×m(E)

M̂d =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Md

0o×d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈M(d+o)×d(E)

Finally, define F∗i be the matrix representation of the quadratic form over

A of the ith Frobenius power of the chosen HFE core map. Now we have all the
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necessary notation to view the public key as a matrix equation.

Denote the m-dimensional vector of (d + o) × (d + o) symmetric matrices

associated by the private key as follows:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(R,o+r−1)F(P,0), . . . ,F(P,s−1)). (5.1)

Note that the function corresponding to the application of each coordinate of a

vector of the quadratic forms followed by the application of a linear map represented

by a matrix is denoted as a right product of the vector and a matrix representation

of the linear map.

Next, observe

(F(HFE,0), . . . ,F(HFE,d−1))Md = (M̂dF
∗0M̂⊺

d, . . . ,M̂dF
∗(d−1)M̂⊺

d),

which yields

(x̄F(HFE,0)x̄
⊺, . . . , x̄F(HFE,d−1)x̄

⊺)Md =

(x̄M̂dF
∗0M̂⊺

dx̄
⊺, . . . , x̄M̂dF

∗(d−1)M̂⊺
dx̄

⊺),

as a function of x̄. This gives the following equation:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(P,s−1))M̃d =

(M̂dF
∗0M̂⊺

d, . . . ,M̂dF
∗(d−1)M̂⊺

d,F(R,0), . . . ,F(P,s−1))

(5.2)

Now, look to the relation between the public key and its corresponding pri-

vate key central maps:

(P0, . . . ,Pm−1)T
−1 = (UF(HFE,0)U

⊺, . . . ,UF(P,s−1)U
⊺). (5.3)

By combining equations 5.2 and 5.3, we have the following:

(P0, . . . ,Pm−1)T
−1M̃d =

(UM̂dF
∗0M̂⊺

dU
⊺, . . . ,UM̂dF

∗(d−1)M̂⊺
dU

⊺,UF(R,0)U
⊺, . . . ,UF(P,s−1)U

⊺)
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As in [52], let T̂ = T−1M̃d = [ti,j] ∈ Mm×m(E) and W = UM̂d. This identifi-

cation produces
m−1

∑
i=0

ti,0Pi = WF∗0W⊺. (5.4)

Since the rank of F∗i is equal to the Q-rank of the quadratic form of the

HFE core map for all i, the rank of this E-linear combination of the public matrices

is bounded by the minimum of the rank of UM̂d and the rank of F∗0, id est the

Q-rank of our HFE core map. This statement forms the following theorem:

THEOREM 5.2 (see [30]). The min-Q-rank of the public key P of HFERP(q,d,o,r,s,l)

is given by:

min-Q-rank(P) ≤ min{Rank(UM̂d),Rank(F
∗0)}

Proof. The proof in [52] describes the parameters in which the min-Q-rank(P) can

be equal to zero. So, we move forward with the assumption that UM̂d ≠ 0, which

occurs with high probability when d > l. In (5.4) we have a linear combination of

the public key equations equal to the following:

WF∗0W⊺ = UM̂dF
∗0M̂⊺

dU
⊺. (5.5)

This proves our result.

It should be noted that U, M̂d, and F∗0 are chosen by the user. They can

easily be chosen in such a way such that

min-Q-rank(P) = min{Rank(UM̂d),Rank(F
∗0)}.

This would also occur with high probability if U, M̂d, and F∗0 were ran-

domly generated. Directly from [67], we also have the following complexity for the

MinRank attack on HFERP:
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COROLLARY 5.1 (see [30]). The complexity of the MinRank attack with minors

modeling on HFERP is given by

Comp.Minors = O
⎛

⎝
(
m + ⌊logq(D)⌋

⌈logq(D)⌉
)

2

(
m

2
)
⎞

⎠
= O (m2⌈logq(D)⌉+2) .

5.5.3 Base-Field Rank and Invariant Attacks

Variants of several attacks applicable to other versions of the Rainbow cryp-

tosystem are applicable to HFERP. These include the linear-algebra-search version

of MinRank [28], the HighRank attack [28] and the UOV invariant attack [32].

The MinRank attack works by randomly choosing one or more vectors wj

in the plaintext space and solving for a linear combination ti ∈ F of the plaintext

equations satisfying:

m

∑
i=1

tiDfi(wj) = 0

The attack succeeds when wj is in the kernel of a low rank linear combi-

nation of differentials of the public polynomials. In the case of HFERP, the HFE

component equations form a d-dimensional subspace of the public equations having

rank d over F. Note that the attacker can remove up to d − 1 equations while pre-

serving at least a one dimensional subspace of low rank maps. Thus, the attack can

succeed with a one dimensional solution space for ti and only a single wj as long as

m ≤ n + d.

If m > n + d, the adversary may still use a single vector wj to constrain the

ti’s rather than attempting to find two vectors in the kernel of the HFE equations.

In this case, the attacker must search through an m−n− d+ 1 dimensional space of

spurious solutions to find the useful 1 dimensional space of tis. This method is still

less expensive than searching for two vectors in the kernel of the HFE equations

when m < n + 2d.
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It should be further noted that, since the differentials of the oil maps will

map any vector in the kernel of the HFE equations to the d-dimensional HFE input

space, we expect an o1 + r1 − d dimensional subspace of the oil equations to also

have such a vector in the kernel of their differentials, see Figure 5.1. Thus, when

m < n +max(d, o1 + r1), vectors in the HFE kernel can be recognized, because they

are in the kernel of an unusually large subspace of the public equations, and when

2d < n the linear combinations of the public equations from the HFE and oil spaces

can be recognized due to their low rank.

HFE Rainbow-1 Rainbow-2 Random

Figure 5.1: The shape of the matrix representations of the central maps of HFERP.

The shaded regions represent possibly nonzero values while unshaded areas have

coefficients of zero.
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Thus the complexity of MinRank (for plausible choices of m) is

Comp.MinRank =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O (qdmω) m < n +max(d, o1 + r1)

O (qd+m−n−max(d,o1+r1)nω) m ≥ n +max(d, o1 + r1)

m < n + d +max(d, o1 + r1)

n > 2d

O(qm−nnω) m ≥ n +max(d, o1 + r1)

m < n + 2d

n ≤ 2d

O(q2dmω) m < 2n +max(d, o1 + r1 − d)

No better attack.

In the HighRank attack, the attacker randomly selects linear combinations of

the public polynomials with the hope of selecting a polynomial with significantly less

than full rank. This attack takes advantage of the d + o1 + r1-dimensional subspace

of the public polynomials generated by the HFE maps and either the Rainbow-1

maps of Figure 5.1 or for UOV of the d-dimensional HFE subspace. The complexity

of the attack is then:

Comp.HighRank = O (qm−d−o1−r1nω) .

It should also be noted that linear combinations of HFE and Rainbow-1

polynomials form an m − s dimensional subspace of the public polynomials, that

act linearly on the o2 − l dimensional preimage under U of the oil subspace. This

bounds their rank to be at most 2d. Noting that the probability that a random
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square matrix has corank a is approximately q−a
2
, we see that, the high rank attack

can be straightforwardly applied if 2d < n −
√
m − d − o1 − r1.

Additionally, the HighRank attack can be combined with the oil and vinegar

invariant attack to distinguish linear combinations of the HFE and Rainbow maps

from other linear combinations of the public maps. Here, a pair of maps from the

HFE and Rainbow subspace can be identified by restricting their differentials to

a subspace of the plaintext space in which both maps are full rank, and checking

to see if (Dp1)−1Dp2 has a large invariant subspace (which will be the intersection

of the preimage of the oil subspace under U and the subspace used to restrict the

differentials). This allows the high rank attack to be applied with similar complexity

as long as 2d < n −
√

m−d−o1−r1
2 ∶ Applying the attack will involve testing no more

than (q
m−d−o1−r1

2 )
2

= qm−d−o1−r1 pairs of rank n−2d maps, and therefore this step will

not dominate the complexity of the approximately qm−d−o1−r1 rank computations

involved in the HighRank step.

If 2d ≥ ζ, where ζ1 = n−
√

m−d−o1−r1
2 , the complexity of HighRank is given by:

Comp.HighRank =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Comp.HighRank = O (qm−dnω) 2d ≥ ζ1

Comp.HighRank = O (qm−d−o1−r1nω) 2d < ζ1.

Finally, when 2d ≥ n−
√

m−d−o1−r1
2 , as in the UOV attack, the previous steps

must be combined with a projection, aimed at removing enough vinegar variables

that the restriction of the differentials of linear combinations of HFE and Rainbow

maps to the projected plaintext space is less than full rank. This yields a complexity

for hybrid HighRank/UOV invariant type attacks of:

Comp.UOV =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

O (qm−d−o1−r1nω) n > ζ2

O(qm−d−o1−r1+
√
m−d−o1−r1

2
+2d−n(o1 + o2 − l)4) n ≤ ζ2.
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where ζ2 = 2d+
√

m−d−o1−r1
2 . This attack may also be applied to the Rainbow-2 maps

of Figure 5.1 in which case the complexity is:

Comp.UOV 2 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

O (qsnω) n > 2d + 2o1 +
√

s
2

O(q
s+

√
s
2
+2d+2o1−n(o2 − l)4) n ≤ 2d + 2o1 +

√
s
2 .

5.6 Parameter Selection and Experimental Results

We propose single-layer parameters (A) and (B) for 80-bit security and multi-

layer parameters (C) and (D) for 128-bit security :

(A) (q = 3, d = 42, o = 21, r = 15, s = 17, l = 0,D = 37 + 1)

(B) (q = 3, d = 63, o = 21, r = 11, s = 10, l = 0,D = 37 + 1)

(C) (q = 3, d = 85, o1 = o2 = 70, r1 = r2 = 89, s = 61, l = 0,D = 37 + 1)

(D) (q = 3, d = 60, o1 = o2 = 40, r1 = r2 = 23, s = 40, l = 0,D = 39 + 1)

Then we have the following values for (n,m): (63,95) for (A), (84,105) for (B),

(225,464) for (C), and (140,226) for (D). The security level for suggested param-

eters is estimated by all the attack in §6. Here, we assume that the degree of

regularity for direct attack is 10 by Conjecture 1 for (A),(B), and (C) while it is 12

for (D).

To draw a direct comparison with HFE, note that to achieve the same security

level as HFERP, an HFE scheme requires m equations, and hence n =m variables.

Therefore secure HFE public keys are far larger while offering slower decryption due

to the use of the Berlekamp algorithm in a far larger field.

We ran a series of experiments with Magma, see [8], on a 2.6 GHz Intel®

XeonR CPU. These are not optimized implementations.
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(A) (B) (C) (D)

Key Generation 0.299 s 0.572 s 20.498 s 3.43 s

Encryption 0.001 s 0.001 s 0.006 s 0.001 s

Decryption 3.977 s 8.671 s 49.182 s 124.27 s

Secret Key Size 19.8KB 31.7KB 1344.0KB 226.0KB

Public Key Size 48.2KB 93.6KB 2905.7KB 552.3KB

Table 5.1: Experimental results for HFERP.

We also investigated the growth of the first fall degree (dreg) as well as the

solving degree with five experiments performed at each of eight different parame-

ters sets. We directly compared these data with randomly generated systems, see

Table 5.2.

For comparison, we include the semi-regular degree for systems of m equa-

tions in n variables. This quantity was calculated by computing the first non-

positive coefficient in the series

Sn,m(t) =
(1 − tq)n(1 − t2)m

(1 − t)n(1 − t2q)m
.

Noting that the degree of regularity of the zero-dimensional ideal is the same as

the first fall degree of the ideal generated by the homogeneous components of the

generators of highest degree. We derive the above formula as the fusion of the

techniques in [69] and [1].

It is clear that the degree of regularity of the small scale instances of HFERP

grows in relation to that of random schemes. By the data in the tables, we can

estimate that the degree of regularity for direct attack on (A) and (B) is greater

than 9 at least.
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Table 5.2: Direct attack experiment data for various values of d, o, r, s. (s.r.d. stands

for semi- regular degree)

HFERP Random

(q, d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3,8,4,3,3,0,2188) 12 18 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4

(3,10,5,4,3,0,2188) 15 22 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5

(3,12,6,5,4,0,2188) 18 27 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5

(3,14,7,5,5,0,2188) 21 31 6,5,5,5,5 6,6,6,6,6 5,5,5,5,5 6,6,6,6,6 6

Table 2.A. Direct Attack, d = 2o, d + o ≒ 2(r + s), o = 4,5,6,7

HFERP Random

(q, d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3,9,3,2,2,0,2188) 12 16 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5

(3,12,4,2,2,0,2188) 16 20 5,6,6,5,5, 5,6,6,6,5 6,5,6,6,5 6,6,6,6,6 6

(3,15,5,3,3,0,2188) 20 26 6,5,5,5,5 6,6,6,6,6 5,5,5,6,5 6,6,6,6,6 6

(3,18,6,3,3,0,2188) 24 30 5,5,5,5,5 7,7,7,7,7 5,5,5,5,7 7,7,7,7,7 7

Table 2.B. Direct Attack, d = 3o, r + s ≒ o, o = 3,4,5,6

HFERP Random

(d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3, (3,3), (4,4),2,0,2188) 9 19 3,3,3,3,3 3,3,2,3,2 3,3,3,3,3 2,3,3,2,2 3

(7, (6,6), (7,7),5,0,2188) 19 38 4,4,4,4,4 4,4,4,4,4 5,5,5,5,5 5,5,5,5,5 5

(10, (8,8), (11,11),7,0,2188) 26 55 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 5

(14, (11,11), (14,14),10,0,2188) 36 74 5 5 6

Table 2.C. Direct Attack, d ≒ 3.4a, o ≒ (2.8a,2.8a), r ≒ (3.56a,3.56a), s ≒ 2.44a, a = 1,2,3,4

HFERP Random

(d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(5, (3,3), (2,2),3,0,39 + 1) 11 18 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4,4,4,3,4 4

(7, (5,5), (3,3),5,0,39 + 1) 17 28 4,4,4,4,4 4,4,4,4,4 5,5,5,5,5 5,5,5,5,5 5

(10, (6,6), (4,4),6,0,39 + 1) 22 36 5,5,5,5,5 5,5,5,5,5 5,5,5,5,5 6,6,6,6,6 6

(12, (8,8), (5,5),8,0,39 + 1) 28 46 5,5 6,6 5,5 6 6

Table 2.D. Direct Attack, d ≒ 2.4a, o ≒ (1.6a,1.6a), r ≒ (0.92a,0.92a), s ≒ 1.6a, a = 2,3,4,5
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5.7 Toy Example

The purpose of the following toy example is to help the reader understand the

process of generating a public key for an instance of HFERP as well as an example

of encryption and decryption. The parameters used are by no means secure and are

soley for instructional purposes.

Parameters of this toy example are as follows: q = 7, d = o = r = 2, s =

1, and l = 0. Then, construct E a degree 2 extension field over F7. The chosen HFE

core map is f = ξ12X14 + ξ6X8 + ξ29X2 where ξ ∈ E. Let T and U be the following

affine maps:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 1 2 4 5 0 3

1 1 3 3 4 4 4

4 2 1 3 1 0 6

0 1 0 1 5 5 5

5 5 3 6 4 2 4

2 5 1 6 5 6 0

1 1 2 2 6 4 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 6 6 4

3 2 0 2

1 1 6 5

3 6 6 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With the parameters described above, F can be represented as the follwing matrices

over F7

F1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

4 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 3 0 0

1 6 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 1 6 1

3 1 4 5

3 4 0 0

3 2 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

F4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 1 0 3

0 5 0 3

0 4 0 0

6 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 0 3 4

6 2 4 2

6 3 0 0

0 3 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 4 1 1

3 0 0 3

3 6 0 0

1 2 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F7 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 3 2 3

4 4 0 6

2 3 1 3

6 4 0 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

117



P1 and P2 represent the HFE component, P3 → P6 represent the rainbow component,

and P7 represents the plus component. With the public key generated by P =

T ○ F ○ U , its matrix form over F7 is:

P1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 2 5

1 2 3 2

3 2 4 4

3 3 0 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 0 6

4 5 2 0

6 3 3 4

3 1 2 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 3 1 4

4 5 4 5

3 5 5 1

5 1 0 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 6 0 2

1 3 0 2

5 1 5 1

5 3 0 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 3 2 3

6 5 2 4

4 3 1 5

5 2 4 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P6 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 4 2 2

3 3 6 2

5 4 0 0

3 5 5 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P7 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 6 0

0 3 4 0

1 2 4 2

2 1 6 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Given the following plaintext, (2,6,1,5), the resulting ciphertext is (0,0,1,3,0,4,0).

Decryption: Given a ciphertext (0,0,1,3,0,4,0), the following process is how

you would obtain its corresponding plaintext.

Part of the secrect key:

T −1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 6 4 2 2 2 5

5 4 4 6 0 5 2

5 3 5 2 3 2 4

5 6 5 5 2 1 1

2 5 4 2 1 5 2

2 5 6 6 3 5 5

1 2 5 4 4 0 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,U−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 5 2 1

3 1 3 1

4 1 2 0

5 6 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Feed the ciphertext through T −1 to get

(0,6,2,6,0,4,6) (5.6)

The first d = 2 elements are the corresponsing HFE outputs. Take these elements
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and adjust the HFE core map as follows:

f ∶= f − 0ξ1−1 − 6ξ2−1 = ξ12X14 + ξ6X8 + ξ29X2 + ξ

Perform the Berlekamp algorithm to find the preimage of f . In doing so in this toy

example, you get (0,6). Next, construct the vector:

u = [0,6, u1, u2] .

Construct equations of the form uF1u
⊺ = xi where xi refers to the ith element of (5.6),

for i ∈ {3,4,5,6}. This will result with the following equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6u1 + 1

3u1 + 3u2 + 5

2u2 + 2

u1 + 2u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

6

0

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Solving this system of equations gives us u1 = 6 and u2 = 6. Thus,

u = [0,6,6,6] .

Finally, feed this through U−1 to get the plaintext, [2,6,1,5].
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APPENDIX A - BERLEKAMP ALGORITHM

In 1967, Elwyn Berlekamp developed an efficient algorithm for factoring poly-

nomials which ocur over finite fields, see [3]. For reference, a description of the

algorithm is provided below.

The algorithm takes a square-free polynomial (a polynomial with no repeated

factors), f(x), as an input. This polynomial is of degree n with coefficients in Fq.

The output of the algorithm is a polynomial, g(x), such that g(x) ∣ f(x). This

process is then repeated until f(x) is factored into irreducible polynomials.

Note that all factors of f(x) that the algorithm searches for live within

R = Fq[x]/⟨f(x)⟩.

Specifically, the algorithm spends its time working with polynomials, g(x), of the

form

g(x)q ≡ g(x) (mod f(x))

which form a subalgebra of R, titled the Berlekamp subalgebra. The reason this

algebra is of interest is due to the fact that the polynomials it contains satisfy the

following property related to f(x):

f(x) = ∏
s∈Fq

gcd(f(x), g(x) − s) (5.7)

It is worth noting that every factor in the above product will not necessarily be a

non-trivial of f(x). Yet, there will be some, thus generating a factor of f(x).

This algorithm starts by computing a basis for the Berlekamp subalgebra.

This process is able to be done since it is known that the Berlekamp subalgebra
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is the kernel of a specific n × n matrix over Fq. This matrix is derived from the

“Berlekamp matrix” of the polynomial, represented as Q = [qi,j], where qi,j is the

coefficient of the jth power term in the reduction of xiq modulo f(x):

xiq = qi,n−1x
n−1 + qi,n−2x

n−2 +⋯ + qi,0

Given a special polynomial g(x) ∈ R, we can say

g(x) = gn−1x
n−1 + gn−2x

n−2 +⋯ + g0,

which gives us the following row-vector representation of g:

g = {g0, g1, . . . , gn − 1}.

With the above notations, it is known that a polynomial g(x) ∈ R is in the Berlekamp

subalgebra if and only if g(Q − I) = 0. This is equivalent to stating that a polyno-

mial g(x) ∈ R is in the Berlekamp subalgebra if and only if it is in the null space of

Q− I.

The algorithm spends its time computing the matrix Q − I, reducing it to

reduced row echelon form, then finding the basis for the null space. This gives us a

basis for the Berlekamp subalgebra and the ability to construct polynomials within

it. Then, it computes the gcd’s of the form 5.7 until a non-trivial factor is found.

This computation of gcd’s can be done using the Euclidean Algorithm since we are

working in a Euclidean domain.
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APPENDIX B - HASH FUNCTIONS

Within the world of cryptography, it is often necessary for a computer to

quickly be able to compress data to a fixed size. This is able to be done through

hash functions:

DEFINITION 5.1. A hash function, h(x) ∶ A → B where ∣B∣ ≤ ∣A∣, which ideally

has the following properties:

� If x = y then h(x) = h(y) for all x, y ∈ A.

� h(x) is quick to compute for all x.

� Solving h(x) = y with knowing y is very difficult (preferably infeasible).

� h(x) and h(x + ε) cannot be correlated with one another for any value ε.

� If x ≠ y, then h(x) ≠ h(y) for all x, y ∈ A.

There are many different types of hash functions within cryptography that

serve different purposes with different security advantages/disadvantages. I am

providing details one such hash function that have been used in recent years. For

recent standardizations of hash functions, see [56].

MD5

MD5 was proposed by R. Rivest in April of 1992, see [57]. This was a

continuation of his work on the MD4 algorithm in [59]. This algorithm is designed
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very efficiently on 32-bit machines and does not require large substitution tables. It

is worth noting that this hash function has been broken. However, it is a worthwhile

example of hash functions. In this proposal, Rivest used the following terminology:

DEFINITION 5.2 (see [57]). Let X and Y represent words as defined below.

� A word is a 32-bit quantity and a byte is an 8-bit quantity.

� Let “+” denote the additions of words, modulo-232.

� Let X <<< s denote the 32-bit value by rotating X left by s-bit positions.

� Let Snot(X) denote the bit-wise complement of X.

� Let X ∨ Y represent the bit-wise OR of X and Y .

� Let X xor Y denote the bit-wise XOR of X and Y .

� Let XY denote the bit-wise AND of X and Y .

The algorithm assumes that a b-bit message is the input, and the goal is

to compute its hash function value, a 128-bit “fingerprint”. Here, the algorithm

allows b to be any nonnegative integer and the input of the b-bit message in the

following form: m0m1 . . .mb−1. What follows is the step by step process in which

the algorithm processes the input and produces the desired 128-bit output.

Step 1: Append Padding Bits

The input is padded in such a way that the result is congruent to 448 modulo

512. This results in the padded message being 64-bits less than being a multiple

of 512. This padding is esential, reguardless of initial length of message (including

if the message is originally congruent to 448 modulo 512).The padded message is

done to result in the following:

m0m1 . . .mb−110 . . .0
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where the number of 0’s are added so that the padded message is the desired 448

modulo 512. This can require from a 1-bit addition to, at most, 512-bits being

appended.

Step 2: Append Length

Next, a 64-bit string is appended to the padded result where said string is a

64-bit representation of b. If b > 264, then only use the lower 64-bits of the base 2

representation of b are used. This results in our current value being a multiple of

512, which also implies it has a length that is a multiple of 16 (32-bit) words. Let

N represent said multiple of 16 and M[0 . . .N −1] represent the collection of 32-bit

words.

Step 3: Initialize MD Buffer

Next, a 4-word buffer is used to compute the message digest. These are

initialized in the following hexadecimal, low-order bytes:

A ∶ 01 23 45 67

B ∶ 89 ab cd ef

C ∶ fe dc ba 98

D ∶ 76 54 32 10

Step 4: Process Message in 16-Word Blocks]

Next, define the following functions:

F (X,Y,Z) =XY ∨ not(X)Z

G(X,Y,Z) =XZ ∨ Y not(Z)

H(X,Y,Z) =X xor Y xor Z

I(X,Y,Z) = Y xor (X ∨ not(Z))

Then, the algorithm is performed as follows. This is the exact same code as provided

in [57] and it uses a 64-element table constructed from the sine function. If one

wishes to practice using this hash function, refer to [57] for those values.

133



/* Process each 16-word block. */

For i = 0 to N/16-1 do

/* Copy block i into X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD. */

AA = A

BB = B

Rivest [Page 4]

RFC 1321 MD5 Message-Digest Algorithm April 1992

CC = C

DD = D

/* Round 1. */

/* Let [abcd k s i] denote the operation

a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

/* Round 2. */

/* Let [abcd k s i] denote the operation

a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
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[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

/* Round 3. */

/* Let [abcd k s t] denote the operation

a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

/* Round 4. */

/* Let [abcd k s t] denote the operation

a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

/* Then perform the following additions. (That is increment each

of the four registers by the value it had before this block

was started.) */

A = A + AA

B = B + BB

C = C + CC

D = D + DD

end /* of loop on i */
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APPENDIX C - PSEUDOCODE

Buchberger Algorithm

Input: G ⊂ F[X] = F[X1, . . . ,Xn]

Output: GB, a Gröbner Basis for the ideal I = ⟨G⟩ in F[X]

00. GB:={};

01. while GB ≠ G

02. GB ∶= G.

03. for every gi, gj ∈ G where i ≠ j

04. Compute Si,j = S(gi, gj).

05. Compute Si,j
G
Ð→ S′i,j.

06. if S′i,j ≠ 0, then Append S′i,j to G.

07. end for
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F4: Symbolic Preprocessing

Input: L ⊂ T ×R[X] and G ⊂ R[X]

Output: a finite subset of R[X].

00. F:={t ∗ f ∣ (t, f) ∈ L}

01. Done:=HT(F)

02: while T (F ) ≠Done do

03: m an element of T (F ) ∖Done

04: Done ∶=Done ∪ {m}

05: if m top reducible module G then

06: m =m′ ∗HT (f) for some f ∈ G and some m′ ∈ T

07: F ∶= F ∪ {m′ ∗ f}

08: return F

F4: Reduction

Input:L ⊂ T ×R[X] and G ⊂ R[X]

Output: a finite subset of R[X], possibly empty

00. F ∶= SymbolicPreprocessing(L,G)

01. F̃ ∶= Reduction to Row Echelon Form of F w.r.t. <

02. F̃ + ∶= {f ∈ F̃ ∣HT (f) ∉HT (F )}
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F4: Algorithm

Input: F ⊂ R[X] and Sel, a chosen selection function from [22]

Output: a finite subset of R[X]

00. G ∶= F , F̃ +
0 ∶= F , d ∶= 0

01. P ∶= {Pair(f, g) ∣ f, g ∈ G with f ≠ g}

02. while P ≠ ∅ do

03. d ∶= d + 1

04. Pd ∶= Sel(P )

05. P ∶= P ∖ Pd

06. L − d ∶= Left(Pd) ∪Right(Pd)

07. F̃ +
d ∶= Reduction(Ld,G)

08. for h ∈ F̃ +
d do

09. P ∶= P ∪ {Pair(h, g) ∣ g ∈ G}

10. G ∶= G ∪ {h}

11. return G
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HFEvKeyCheck

Input: An HFEv central map f , a flag flg

Output: Set of indices of coefficients mi of submatrix m00 which are

possibly nonzero in a linear map inducing differential symmetry for f .

01. for monomial αi,jxq
i+qj in f

02. Si = {};

03 Sj = {};

04. for monomial with powers r and s in f

05. Si = Si ∪ {r − j, s − j, i − j + r − s, i − j + s − r};

06. Sj = Sj ∪ {r − i, s − i, j − i + r − s, j − i + s − r};

07. end for;

08. end for;

09. if flg

10. then

11. return all Si;

12. else

13. return ⋂Si;

14. end if;
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HFEv-KeyCheck

Input: An HFEv− central map π(f), the corank of π, r

Output: Set of indices of coefficients mi of submatrix m00 which are

possibly nonzero in a linear map inducing differential symmetry for

π(f).

01. Call: HFEvKeyCheck(f,1);

02. for all Si

03 Ti = {};

04. for j from 0 to r − 1

05. Ti = Ti ∪ (j + Si);

06. end for;

07. end for;

08. return ⋂Ti;
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