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ABSTRACT 

CANONICAL NUCLEAR FACTOR-KAPPA B SIGNALING IN SATELLITE STEM 

CELL HOMEOSTASIS AND FUNCTION 

Alex R. Straughn 

July 16, 2018 

 Satellite cells are adult stem cells that are required for the regeneration of skeletal 

muscle following injury. However, the signaling mechanisms that regulate satellite stem 

cell homeostasis and function in adult animals remain less understood. Nuclear factor-

kappa B (NF-κB) is a major nuclear transcription factor that regulates the gene 

expression of a plethora of molecules involved in cellular proliferation, differentiation, 

survival, and the inflammatory immune response. NF-κB can be activated through a 

canonical or non-canonical pathway. However, the role of canonical NF-κB signaling in 

the regulation of satellite stem cell function during skeletal muscle regeneration has not 

been yet investigated using genetic mouse models. In the present work, we demonstrate 

that physiological levels of activation of the canonical NF-κB pathway promotes satellite 

cell proliferation, survival, and differentiation. Satellite cell-specific inducible deletion of 

Inhibitor of Kappa B Kinase β (IKKβ), a critical kinase of the canonical NF-κB pathway, 

attenuates muscle regeneration in adult mice. Targeted ablation of IKKβ also reduces the 

number of satellite cells and their fusion to injured skeletal muscle of adult mice. 

Inhibition of canonical NF-κB pathway causes precocious differentiation of satellite cells 

both ex vivo and in vitro. We also found that siRNA-mediated knockdown of components 
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of the canonical NF-κB pathway reduces the survival of cultured satellite cells. 

Intriguingly, our results also demonstrate that supra-physiological activation of canonical 

NF-κB inhibits satellite stem cell function during skeletal muscle regeneration. 

Overexpression of a constitutively active mutant of IKKβ (IKKβca) in satellite cells 

attenuates initial stages of myofiber regeneration following injury. While not affecting 

their self-renewal, overexpression of IKKβ causes precocious differentiation of satellite 

cells. Furthermore, our results suggest that constitutive activation of canonical NF-κB 

pathway inhibits proliferation and reduces survival of satellite cells. Lastly, we found that 

inducible expression of IKKβca in satellite cells was insufficient to rescue the 

regenerative deficits observed in satellite cell-specific TAK1-knockout mice. Altogether, 

our study suggests that a tight regulation of canonical NF-κB pathway is important for 

maintaining satellite cell pool and skeletal muscle regeneration.
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1 Embryological Development of Skeletal Muscle. Skeletal muscle is the most 

abundant tissue type in the human body that consists of multinucleated myofibers. 

Formation of skeletal muscle is a multistage process involving the hierarchical expression 

of various transcription factors and regulatory proteins. During the embryological 

development of skeletal muscle, mesodermal cells exit the primitive streak and proceed 

to migrate antero-laterally [1]. As the cells migrate out of the primitive streak, they 

spatially segregate to form both the axial and the paraxial mesodermal structures [1]. 

Various signaling molecules, such as: bone morphogenetic proteins (BMPs), the 

Wingless-related integration site (Wnt) pathway, and Noggin, a downstream target of 

Wnt signaling, are responsible for the organization and expansion of the paraxial 

mesoderm following the cellular migration from the primitive streak [2]. The paraxial 

mesodermal cells are responsible for the generation of somites, which are blocks of tissue 

that flank the neural tube [3]. The somites subsequently differentiate and give rise to the 

dermomyotome, and other embryologically-derived cell types. After the cells in the 

dermomyotome proliferate, they differentiate and give rise to the dermatome, which is 

the embryological tissue responsible for the generation of the dermis, and the myotome,
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which subsequently leads to the generation of muscle [2-4]. The myotome divides 

spatially into a hypaxial portion and an epaxial portion [4, 5]. The hypaxial portion of the 

myotome gives rise to muscles of the anterior abdominal wall, as well as the skeletal 

musculature of the thoracic wall [4, 6]. Proliferation and subsequent migration of cells in 

the epaxial portion of the myotome leads to the formation of the musculature of the trunk, 

as well as the extensor muscles of the neck [4, 6].  

During and following the embryological orchestration of skeletal muscle 

patterning, the embryologically-derived skeletal muscle tissue signals for the production 

of more skeletal muscle, such that the musculoskeletal system can be fully developed. 

Myogenesis (the process of skeletal muscle formation) is required not only for 

development of skeletal muscle during embryogenesis, but it is also essential for the 

maintenance, growth, and repair of myofibers following injury [7]. The process of 

myogenesis can be divided into several stages to aide in understanding the molecular 

mechanisms orchestrating the formation of skeletal muscle. Myogenesis starts with the 

process of delamination and ends with the formation of specific skeletal muscles. 

Delamination is initiated by the genetic factor Paired-box 3 (Pax3), which mediates the 

transcription of protein tyrosine kinase Met (c-Met) [8]. Pax3 is expressed in hypaxial 

cells that are migrating, but is not expressed in cells that lead to development of the facial 

muscles [9]. c-Met-mediated signaling initiates the generation of lamellipodia in the 

nascent myoblasts, thereby conferring them the capability to migrate to its future resident 

area [10].  

The next component of myogenesis is migration, which orchestrates the 

organization of the developing dorsal forelimb [11]. Ladybird Homeobox 1 (LBX1) is 
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critical for the development of the dorsal forelimb post-delamination, as signaling 

through LBX1 stimulates the proliferation of myoblasts [4, 8, 12]. The proliferation of 

myoblasts in the developing dorsal forelimb in turn populates this region with skeletal 

muscle progenitors, such that further limb development can occur [12]. The signaling 

molecule c-Met continues to be upregulated during this stage of myogenesis and 

continues to orchestrate the migration of the newly generated myoblasts [4, 8, 10]. 

 After the newly derived myoblasts have migrated to their target region, the 

embryologically derived myoblasts will rapidly undergo proliferation and eventually will 

be signaled to differentiate, thereby completing the next two components of myogenic 

signaling. The myoblasts are signaled to induce gene expression of various myogenic 

regulatory factors (MRFs) [13]. The first MRF to be expressed is Myogenic factor 5 

(Myf-5) on embryological development day 8 to facilitate the proliferation of myoblasts 

[13]. Myogenin and Myoblast determination protein 1 (MyoD/MyoD1) are the next 

MRFs to be expressed to initiate the differentiation of the expanded population of 

myoblasts [14, 15]. MyoD also inhibits self-renewal of myogenic cells [16].  

With the expression of MyoD, the myoblasts have entered the myogenic stage of 

determination. In this facet of myogenesis, Pax7 is down-regulated and MyoD is 

concurrently up-regulated [17]. The myoblasts subsequently differentiate into myocytes 

as a result of the expression of MyoD and other signaling molecules [13, 18-20]. 

Following this differential signaling paradigm, the myocytes are signaled to fuse with 

each other to form primary myotubes, which will subsequently fuse with more myocytes 

in a process termed secondary fusion that ultimately culminates in the generation of 

mature myofibers (Figure 1.1) [13, 18-20].  
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The expression pattern of Myf-5 is only transient, whereas MRF4, Myogenin, and 

MyoD are expressed in perpetuity [15]. As the developing embryo gestates and 

undergoes the myogenic process, the signaling molecules LBX1 and Mesenchyme 

Homeobox 2 (Mox2) facilitate specific muscle formation in conjunction with numerous 

other proteins, thereby finalizing the process of myogenesis [4, 8, 21]. To allow mature 

development of the musculoskeletal system, LBX1 continues to stimulate the 

proliferation of myoblasts [12] and Mox2 signaling is regulated in a spatiotemporal 

fashion to allow specific appendicular muscle formation [22]. 

 

1.2 Skeletal Muscle Injury and Regeneration Pattern. Despite skeletal muscle being a 

terminally differentiated cell type, it has the amazing capability to repair itself following 

injury due to a self-sustaining population of undifferentiated precursor cells, termed 

satellite cells [23]. After an acute injury to skeletal muscle, a multitude of signaling 

cascades are activated from the damaged muscle and surrounding cells to assist in the 

recovery/regeneration of the injured skeletal muscle [23]. The injury and subsequent 

regeneration process, termed regenerative myogenesis, follows a stereotypical pattern 

that is mediated primarily by satellite cells [24]. By day one post-injury, a necrotic 

muscle environment is generated and there is a robust invasion of the injured tissue by 

numerous inflammatory cells [24]. By day three post-injury, an abundance of 

mononuclear cells are recruited to the injured skeletal muscle [24]. Following this, the 

production of myoblasts is signaled to facilitate a repair of the damaged 

microenvironment [24]. In tandem, the myoblasts will proliferate, differentiate, and 

subsequently fuse with each other and pre-existing myofibers while the infiltrating 
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immunocytes are cleared [24]. Three weeks post-injury, the invading inflammatory cells 

have been mostly cleared due to phagocytic macrophage activity to the point that the 

injured skeletal muscle tissue has returned to a normal physiological appearance, with the 

exception of the injured myofibers being centrally multinucleated as a byproduct of 

myoblast fusion [24]. 

 As briefly alluded to, several immunocytes play a role in the regenerative process 

post-injury [25]. Following an acute skeletal muscle injury, the sarcolemma of skeletal 

muscle is disrupted, which leads to an extravasation of various myokines (chemokines 

released from skeletal muscle) that aide in the recruitment of immune cells to the injured 

microenvironment [26-28]. Several adaptor signaling proteins, such as Myeloid 

Differentiation Primary Response 88 (MyD88), TIR-domain-containing Adaptor-

inducing Interferon-β (TRIF), Translocation Associated Membrane Protein (TRAM), and 

TIR-domain-containing Adaptor Protein (TIRAP), mediate Toll-like Receptor (TLR) 

signaling cascades that result in the activation of NF-κB, Interferon Regulatory Factors, 

and other signaling pathways [26, 29]. TLRs allow for the recognition of Damage-

Associated Molecular Patterns (DAMPs) and Pathogen-Associated Molecular Patterns 

(PAMPs), making them ideally suited for signaling during regenerative myogenesis [26]. 

TLR-mediated signaling pathways also allow for the production of various myokines and 

induce the generation of pro-inflammatory cytokines [26-29].   

Post-injury, various immunocytes are recruited from peripheral tissues to the 

damaged skeletal muscle microenvironment. Neutrophils are the first cell type to be 

recruited and typically infiltrate the skeletal muscle within an hour following injury and 

increase in number peaking around 24-hours post-injury [27]. After the skeletal muscle is 
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infiltrated by neutrophils, phagocytic macrophages, initially responsible for phagocytosis 

of cellular debris, invade the injured skeletal muscle and peak in number 48-hours post-

injury [27]. The macrophages are signaled to express various monocyte chemoattractant 

proteins [30]. Peripherally, monocytes are being generated in the bone marrow due to 

signaling from the damaged skeletal muscle [27]. These monocytes are recruited to the 

site of injury due to the macrophage-mediated expression of monocyte chemoattractant 

proteins, where they will subsequently differentiate into phagocytic M1 macrophages or 

into non-phagocytic M2 macrophages [27, 30]. The M1 macrophages have a pro-

inflammatory role and are responsible for mediating the subsequent recruitment of more 

M1 macrophages, as well as M2 macrophages [31]. The M1 macrophages provide an 

initial cellular benefit from the recruitment of non-resident immunocytes, but prolonged 

expression and activity of the phagocytic macrophages can worsen the degree of 

inflammation and injury in the damaged skeletal muscle microenvironment [31, 32]. The 

M2 macrophages arise during a relatively later stage during the process of regeneration 

and mediate a transition from a protectant pro-inflammatory phase into an anti-

inflammatory phase that allows for the facilitation of repair [32].  

 

1.3 Satellite Cells. Skeletal muscle contains a group of undifferentiated precursors that 

are maintained in a quiescent state, termed satellite cells. Under uninjured conditions, the 

satellite cells reside between the basal lamina and the sarcolemma [23]. Quiescent, or 

inactive, satellite cells can easily be identified by their expression pattern of certain 

myogenic markers, such as: Pax7, CD34, and M-Cadherin [33]. After sustaining an 

injury, the previously inactive satellite cells are rapidly activated to facilitate repair of 
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damaged skeletal muscle (Figure 1.2) [34]. A population of these satellite cells 

tentatively commits to the myoblast lineage and expresses various myogenic markers, 

such as: α7-integrin, Myf-5, MyoD, and Pax7 [33]. Pax7, in conjunction with other 

signaling molecules, such as MyoD, determine the fate of the satellite cells [17, 35]. 

Activated satellite cells destined to facilitate with the repair process will usually undergo 

an up-regulation of MyoD [17]. These satellite cells will simultaneously up-regulate 

MyoD and down-regulate Pax7 to the point that they become Pax7-/MyoD+ and have 

committed to the myogenic lineage to facilitate repair of injured myofibers [17]. 

Alternatively, satellite cells can self-renew their population through a down-regulation of 

MyoD and undergo asymmetric cell division [17]. This replenishment of the satellite cell 

pool through asymmetric division, common in numerous stem cell types, provides a 

means for skeletal muscle to repair future injuries by maintaining a resident population of 

the undifferentiated precursor cell type [33]. 

 

1.4 Signaling Mechanisms in Regeneration. It is now evidenced that a number of 

signaling pathways are activated in skeletal muscle of adults following injury. The 

majority of the signaling mechanisms are activated in injured myofibers and satellite stem 

cells [23]. However, several other cell types do play a role in the repair of skeletal 

muscle. For example, immunocytes that infiltrate the muscle following necrotic injury 

initiate signaling pathways that orchestrating changes in the cellular immune response 

[23]. There is also evidence for non-muscle adult stem cells, such as certain 

hematopoietic stem cells, being recruited to assist in skeletal muscle regeneration [36]. 
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Below, I discuss a group of signaling mechanisms that mediate various facets of skeletal 

muscle regeneration [23]. 

 Several fibroblast growth factors (FGFs) have been implicated in regenerative 

myogenesis, although some with seemingly contradictory results [23, 37-40]. FGF-6 has 

a muscle specific expression pattern and signaling increases post-injury [37]. Prior 

reports indicate that the skeletal muscle of mice lacking FGF-6 is still capable of 

undergoing regeneration despite its reported role in cellular signaling following an acute 

muscle injury [38]. FGF-2 is a stimulus for myoblast activation [39] and has also been 

shown to increase the proliferation of satellite cells, thereby improving muscle 

regeneration [40].  

On similar lines, Insulin-like Growth Factors (IGFs) also play important role in 

the regulation of myogenesis [41-43]. IGF-I and IGF-II lead to changes in the gene 

expression patterns of various MRFs that regulate numerous facets of the myogenic 

process [43]. IGF-I results in skeletal muscle hypertrophy through the activation of 

satellite cells and their subsequent proliferation, as well as through stimulating an 

increase in the rate of protein synthesis in pre-existing skeletal muscle [44-47]. IGF-II 

activity, mediated by mechanistic target of Rapamycin (mTOR) signaling, results in 

changes to IGF-II promoter 3 transcriptional activity, conferring an enhanced 

differentiation of the previously generated myoblasts signaled through IGF-I [48]. 

Conversely, the Transforming Growth Factor-β (TGF-β) family of cytokines 

inhibits regenerative myogenesis [49]. Members of the TGF-β family have been shown to 

inhibit proliferation and differentiation of myoblasts within the context of regenerative 

myogenesis [50, 51]. The impairment to skeletal muscle regeneration mediated by TGF-
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β1 occurs through down-regulation of basic fibroblast growth factor (bFGF) and IGF1 

signaling, which causes a decrease in myoblast proliferation [50]. Another member of the 

TGF-β family, Myostatin (also known as Growth and Differentiation Factor-8), has been 

implicated in the inhibition of regenerative myogenesis [52]. Prior reports have shown 

that the skeletal muscle of Myostatin-deficient mice displays both hyperplasia and 

hypertrophic growth of myofibers within skeletal muscle [52]. Further, the levels of 

Myostatin have been found to be up-regulated following necrotic muscle injury [53]. It 

has been suggested that Myostatin acts as a chemoattractant thereby mediating TGF-β 

signaling and the recruitment of macrophages in the injured muscle environment [53]. 

 Hepatocyte Growth Factor (HGF), also known as Scatter Factor, is a critical 

growth factor with respect to tissue regeneration [54]. HGF transcript levels are increased 

during the early stages of injury in a manner proportional to the severity of skeletal 

muscle injury [55-57]. Other studies have shown that HGF activates quiescent satellite 

cells and increases their proliferation, while simultaneously inhibiting their 

differentiation, thereby facilitating the early stages of regenerative myogenesis [56]. 

Downstream signaling through HGF and the canonical NF-κB pathway act 

antagonistically upon each other to either facilitate the differentiation or the proliferation 

of myoblasts, respectively [58]. Later stages of regenerative myogenesis show a 

decreased expression of HGF, possibly to allow the proliferating satellite cells to 

differentiate and fuse with injured myofibers [56].  

 Leukemia Inhibitory Factor (LIF) is a member of the Interleukin-6 cytokine 

family and has been shown to play a very specific role in regenerative myogenesis [59]. 

LIF appears to augment myoblast proliferation via the activation of Janus Kinase 2 
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(JAK2)-Signal Transducer and Activators of Transcription Protein 3 (STAT3) signaling, 

but does not affect the differentiation or subsequent fusion of myoblasts [60, 61]. Despite 

its structural homology to LIF, IL-6 does not appear to affect regenerative myogenesis 

[62, 63]. Despite no definitive role in regenerative myogenesis, IL-6 regulates protein 

synthesis, skeletal muscle adaptation to contraction, and cancer-induced muscle atrophy 

[64].  

 

1.5 Satellite Cell Signaling. Satellite cells are inextricably linked to regenerative 

myogenesis. Indeed, satellite cells are connected to a multitude of different signaling 

pathways that exhibit crosstalk between each other, thereby resulting in a complex 

signaling network within the satellite cells [65]. Some of these pathways signal for the 

self-renewal of satellite cells [33, 35, 66, 67], whereas others promote escape from 

quiescence and progression into myogenic lineage [68-71]. Asymmetric division of the 

satellite cells is a hallmark of self-renewal [33], whereas the symmetric expansion of 

satellite cells is indicative of a commitment to the myogenic lineage [17, 35]. Discussed 

below are various signaling pathways that modulate whether the satellite cells will 

undergo self-renewal or whether they will activate and subsequently differentiate to 

facilitate the repair of injured skeletal muscle. 

 One of the pathways involved with the self-renewal of satellite cells is the Notch 

signaling cascade. This pathway is initiated when a Notch ligand, such as Delta-like 

(DLL) 1 or 4 or Jagged 1 or 2, binds to an adjacent cell that has a Notch Receptor, Notch 

1-4 [66]. The Notch receptor undergoes proteolytic cleavage, thereby freeing the Notch 

Intracellular Domain (NICD) to translocate to the nucleus [72]. NICD binds to 
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Recombining Signal Binding Protein for Immunoglobulin Jκ (RBP-Jκ), a transcriptional 

repressor. Binding of NICD results in a conformational change in RBP-Jκ, resulting in 

the formation of a transcriptional activator [72]. Basal levels of Notch activity have been 

shown to be critical in the maintenance of quiescent satellite cells [73]. Published reports 

demonstrate that a subset of quiescent satellite cells express a high level of Notch activity 

[35]. Other studies showed that the forced expression of Notch signaling was sufficient to 

restore the regenerative capability of aged myofibers, lending further support to its 

critical role in the maintenance of pool of satellite cells [74]. 

 The signaling pathways of four mitogen-activated protein kinases (MAPKs)—

extracellular signal–regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, 

and ERK5 are among the most well-characterized cell-signaling pathways that are 

activated in response to various extracellular stimuli and regulate pluripotent cellular 

function in almost all cell types. Signaling through Angiopoietin 1, and its receptor Tie-2, 

is mediated through the ERK1/2 pathway and has been shown to play an anti-myogenic 

role that results in the quiescence of satellite cells [67]. The ERK1/2 signaling pathway is 

activated by various cytokines that act to orchestrate proliferation by regulating 

progression through the cell cycle and apoptosis [75-79]. Tie-2 was shown to be 

expressed in quiescent satellite cells and the expression decreased with the activation and 

subsequent differentiation of satellite cells [67]. When the ERK1/2 pathway is silenced in 

satellite cells, they begin to up-regulate numerous pro-myogenic markers that cause the 

satellite cells to undergo proliferative expansion, followed thereafter by their 

differentiation [67]. 
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 The JNK signaling pathway is inextricably linked to satellite cells and the process 

of myogenesis [80]. JNK is activated by various growth factors, pro-inflammatory 

cytokines, as well as environmental stress signals, and is notable for its role in cellular 

death [81-83]. However, aside from its role in the initiation of apoptosis, JNK has been 

shown to regulate cellular proliferation and differentiation [80-83]. Published reports 

suggest that during the later stages of myogenesis, the JNK pathway is severely down-

regulated [80]. When this pathway is active in satellite cells, differentiation is inhibited 

and the satellite cells are able to self-renew or remain in a quiescent state depending on 

the context of cellular signaling [80].  

Conversely, activation of the p38 MAPK signaling pathway results in a loss of 

satellite cell self-renewal [69]. The p38 MAPK signaling pathway is activated in response 

to various cytokines and environmental stress signaling and results in a differentiation of 

cells or in their apoptotic and autophagic cell death [84-87]. Throughout myogenesis, p38 

MAPK signaling is activated and results in cellular differentiation by inducing cells to 

withdraw from the cell cycle [88-91]. Previous studies have found that when the JNK 

pathway is inhibited, the p38 MAPK pathway is up-regulated [80]. Satellite cells from 

aged mice show an up-regulation of the p38 MAPK pathway which may be a reason for 

the inhibition of asymmetric division of satellite cells [69]. 

 Recently, the Wnt7a/Fzd7 planar cell polarity pathway (non-canonical Wnt 

signaling) has been found to drive the symmetric division of satellite cells to facilitate 

regenerative myogenesis [68]. A portion of the satellite cells (i.e. Pax7+/MyoD+) express 

the alternative Wnt signaling receptor Frizzled 2 (Fzd7) [68]. In non-canonical Wnt 

signaling, Wnt activates the small GTPases Rho and Rac after receptor activation [68]. 



	

	 	13	 	

Rho and Rac cause a rearrangement of the cytoskeleton that results in a symmetric 

division of the satellite cells [92]. Skeletal muscle containing Fzd7-deficient satellite cells 

show a marked decrease in regenerative capacity, whereas Fzd7+ satellite cells 

demonstrate a robust ability to facilitate regenerative myogenesis [92].  

 The JAK-STAT signaling pathway causes activation of satellite cells and inhibits 

quiescence [71]. In various cell types, JAK/STAT signaling pathway has been shown to 

induce proliferation, migration, and differentiation. Prolonged activation of this pathway 

also causes cell death through apoptosis [93-97]. When receptors that are associated with 

JAK tyrosine kinases are activated, they multimerize as hetero- and homodimers and 

activate JAK signaling due to the multimerization bringing JAK proteins into close 

proximity [94]. Activation of the JAK proteins causes a phosphorylation of, amongst 

other things, the STAT transcription factors [94, 96]. Activated STATs translocate to the 

nucleus, dimerize, and then bind to various regulatory sequences to alter transcription of 

target genes [97]. Reports have shown that knockdown of Jak2 or Stat3 result in an 

increase in the symmetric division of satellite cells and an increase in satellite cell ability 

to differentiate and contribute to regenerative myogenesis [71]. Upon activation, Stat3 

promotes the differentiation of myoblasts through an up-regulation of MyoD [98]. It has 

been previously reported that the satellite cells in skeletal muscle of aged humans’ exhibit 

increased expression of various components of JAK-STAT pathway and a concomitant 

impediment of satellite cell quiescence [99]. 

 

1.6 NF-κB Signaling. NF-κB is a family of proteins consisting of: RelA (p65), RelB, c-

Rel, the canonical NF-κB precursor p105 and spliced form p50, and the non-canonical 
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NF-κB precursor p100 and spliced form p52, which form hetero- and homodimers [100]. 

NF-κB resides in its inactive state in the cytoplasm as a heterotrimer consisting of p50, 

p65, and IκBα subunits. On activation of the complex, IκBα sequentially undergoes 

phosphorylation, ubiquitination, and degradation, thus releasing the p50-p65 heterodimer 

for translocation to the nucleus. NF-κB can be activated by pro-inflammatory signals, 

such as TNF-α, leading to the activation of the canonical NF-κB pathway (Figure 1.3) 

[100]. In the canonical pathway, inhibitor of κB (IκB) is phosphorylated and degraded by 

IκB Kinase subunit-β (IKKβ/IKK2) [101]. Free from IκB, canonical NF-κB p105/p50 

translocates to the nucleus where it stimulates gene expression of a wide variety of 

molecules [101]. Conversely, NF-κB can be activated in an IKKβ-independent fashion, 

termed the alternative or non-canonical NF-κB pathway (Figure 1.3) [100]. In contrast, 

activation of the non-canonical NF-κB pathway requires the activation of NF-κB-

inducing kinase (NIK) and IKKα, leading to the phosphorylation and proteolytic 

processing of the p100 subunit to generate p52 [102]. The canonical pathway primarily 

utilizes a heterodimer of RelA and p105/p50 [101], whereas the non-canonical pathway 

involves the translocation of p52/RelB dimers to the nucleus [102]. 

TGFβ-activated kinase 1 (TAK1/MAP3K7) is a member of the Mitogen-

Activated Protein Kinase Extracellular Signal-Regulated Kinase (MEK) Kinase family 

that activates numerous downstream signaling pathways [103]. TAK1 is normally bound 

to accessory protein TAK1-binding protein 1 (TAB1), but upon stimulation, it also 

interacts with TAB2 and TAB3 [104]. Pro-inflammatory stimuli activate TAK1 through 

activation of several upstream molecules, a process that also involves K63-linked 

polyubiquitination [105]. This polyubiquitination is driven by the E2 ligase, Ubc13, or by 
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one of the E3 ligases, such as Tumor Necrosis Factor (TNF) Receptor (TNFR) 

Associated Factor 6 (TRAF6) [106]. TAB2 and TAB3 have a preferential binding affinity 

to K63-linked polyubiquitin chains [106]. Thus, once TAK1 is polyubiquitinated, TAB2 

and TAB3 bind leading to the enzymatic activation of TAK1 [106, 107]. Activated TAK1 

causes the phosphorylation of several downstream signaling proteins, including IKKβ 

that leads to the activation of canonical NF-κB pathway [107]. 

 Activation of TAK1 in response to cellular stress can lead to the initiation of 

either anti- or pro-apoptotic signaling cascades [107]. TAK1 activates anti-apoptotic 

pathways by signaling to NF-κB and JNK, whereas it will utilize the activation of 

caspases to induce pro-apoptotic pathways [107]. Although TAK1 facilitates both a pro-

apoptotic and an anti-apoptotic state, my lab has shown that inactivation of TAK1 leads 

to increased oxidative stress and satellite cell death primarily through necroptosis [65]. 

 

1.7 NF-κB Signaling in Myogenesis and Skeletal Muscle Pathology. Within the 

context of skeletal muscle myogenesis, there is a bit of a dichotomy between the role of 

canonical [108] and non-canonical NF-κB signaling [109]. The canonical pathway is 

activated in proliferating myoblasts [108]. Indeed, activation of canonical pathways 

inhibits differentiation of myoblasts into myotubes [108]. Canonical NF-κB signaling 

causes down-regulation of MyoD, which is required to escape proliferation and progress 

further into myogenesis [110]. Conversely, the non-canonical NF-κB pathway is active 

when myoblasts are starting to undergo fusion to form myotubes [109]. It is also involved 

in mitochondrial biogenesis, which allows the growing myotubes to meet their ATP 

needs [109]. Forced expression of the canonical NF-κB pathway has been shown to cause 
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progressive muscle atrophy [111], whereas an inhibition can lead to a reduction of 

inflammatory and fibrotic changes that facilitate muscle repair [112]. 

The canonical NF-κB pathway has been studied extensively in myoblasts and 

myofibers [108, 109, 111, 113-116]. However, the role of canonical NF-κB signaling in 

the regulation of satellite cell function during regenerative myogenesis has not been yet 

investigated. Recently, the role of a few upstream molecules of the canonical NF-κB 

signaling pathway has been investigated in satellite cells [65, 117]. Work from my lab 

has shown that TRAF6 plays a critical role during regenerative myogenesis and for the 

homeostasis of satellite cells [117]. It was demonstrated that the deletion of TRAF6 in 

satellite cells led to a dramatic deficit in skeletal muscle regeneration [117]. TRAF6 is 

required for the activation of the JNK1/2 and ERK1/2, which subsequently activate c-Jun 

transcription factor [117]. Activated c-Jun binds to the promoter region and induces gene 

expression of Pax7. The TRAF6/c-Jun signaling axis also lead to down-regulation of 

miR-1 and miR-206, which normally promote the differentiation of myoblasts [117]. My 

lab has also shown that TAK1 is critical for satellite cell functionality and maintenance 

[65]. Prior work from my lab showed that when TAK1-deficient satellite cells  

precociously differentiate and rapidly deplete the satellite cell pool [65]. Further, it was 

shown that TAK1 mediates the activation of JNK signaling, which is necessary to prevent 

precocious differentiation of the satellite cell pool and to prevent oxidative stress [65]. 

 Although not specifically the focus of my thesis, the canonical NF-κB signaling 

pathway is involved in a multitude of muscle pathologies and age-related changes 

associated with skeletal muscle [118]. It has been shown that NF-κB signaling is 

activated in various inflammatory myopathies, such as Duchenne muscular dystrophy, 
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polymyositis, and dermatomyositis [119]. The general trend in these myopathies is that 

the canonical NF-κB signaling pathway is over-activated, which exacerbates the 

inflammation associated with these conditions and increases cellular oxidative stress 

[119, 120]. In certain alveolar rhabdomyosarcoma substrains, the canonical NF-κB-YY1-

miR-29 signaling axis is disturbed [121]. Along similar lines, the age associated muscle 

wasting, or sarcopenia, has been shown to be partially mediated by increased activation 

of the canonical NF-κB signaling pathway [111]. 

Ultimately, the specific role of canonical NF-κB signaling in satellite cells 

remains poorly studied. Within the context of regenerative myogenesis, the role of 

canonical NF-κB signaling in satellite cells is completely unknown. Thusly, we sought to 

investigate the role of canonical NF-κB signaling in satellite cells. The experiments 

detailed in this thesis work to further our understating of: NF-κB signaling, satellite cell 

homeostasis, and the process of muscle regeneration. Through the generation of: an 

inducible satellite cell-specific IKKβ knockout mouse, an inducible satellite cell-specific 

IKKβ overexpression mouse, and a concurrent inducible satellite cell-specific TAK1 

knockout-IKKβ overexpression mouse, here we investigate the role of canonical NF-κB 

signaling in satellite cell proliferation, differentiation, and survival during regenerative 

myogenesis. Our results demonstrate that tight regulation of IKKβ is essential for the 

proliferative and regenerative capabilities of satellite cells, both in vivo and in vitro.  
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FIGURE 1.1 
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Figure 1.1 Myogenesis. Schematic representation of the process of myogenesis. 

Myogenic regulatory factors orchestrate the progression from the pluripotent stem cell 

state to the adult myofiber. Pax7 is a marker for the early myogenic stem cells and 

progenitors. Myf-5 is the first MRF to be activated, and is followed sequentially by 

MyoD, Myogenin, and MRF4. Eventually, myosin heavy chain, a marker of mature 

skeletal muscle, begins to be expressed. 
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FIGURE 1.2 
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Figure 1.2 Satellite cell activation post-injury. Schematic representation of satellite cell 

activation following skeletal muscle injury. Satellite cells get activated and begin to 

express MyoD, leading to their proliferation through symmetric cell division. Eventually, 

through hierarchical MRF signaling, the satellite cells differentiate and then fuse with the 

regenerating myofibers. Alternatively, the satellite cells down-regulate MyoD and 

undergo asymmetric cell division to self-renew their stem cell population and then return 

to quiescence. 
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FIGURE 1.3 
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Figure 1.3 Canonical and non-canonical NF-κB signaling. Schematic representation of 

the two NF-κB signaling pathways. Activation can occur through the canonical or non-

canonical pathways. Pro-inflammatory signaling leads to the activation of the TAK1 

signalosome. TAK1 in turn activates IKKβ, leading to the phosphorylation and 

degradation of IκBs. This leads to the nuclear translocation of p50/65 dimer.  The non-

canonical pathway involves the activation of NIK which causes the phosphorylation of 

IKKα. Subsequently, IKKα causes the phosphorylation and proteolytic processing of 

p100, generating p52 protein which then make a complex with RelB and translocate to 

the nucleus to induce gene expression of specific molecules. . 
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CHAPTER 2 

 

SATELLITE CELL-SPECIFIC ABLATION OF IKKβ RESULTS IN AN IMPAIRED 

REGENERATIVE PROCESS 

 

2.1 Introduction. Skeletal muscle is composed of multinucleated myofibers, which 

themselves arise from the fusion of myoblasts during embryonic development [122]. 

Although adult skeletal muscle is a post-mitotic tissue, it has a remarkable ability to 

regenerate in response to traumatic injury or strenuous exercise. Skeletal muscle 

regeneration is mediated by a subset of adult stem cells, termed satellite cells, which are 

located between the basal lamina and the sarcolemma in a relatively dormant state [122, 

123]. Upon muscle injury, satellite cells enter the cell cycle, undergo several rounds of 

cell division, and then differentiate into myoblasts, which ultimately fuse with each other 

or with injured myofibers to complete the repair process. While a vast majority of 

satellite cells commit to the myogenic lineage, a fraction of them self-renews and returns 

to quiescence to replenish the satellite cell pool [124]. Satellite cells express the 

transcription factor paired box 7 (Pax7), which is essential for their self-renewal, 

proliferation, and maintenance of myogenic potential in adult skeletal muscle. The role of 

Pax7 in satellite cell homeostasis is evidenced by the findings that the targeted ablation of 

Pax7 results in the depletion of the satellite cell pool and impairment of skeletal muscle 

regeneration after traumatic injury [125, 126].
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Nuclear factor-κB (NF-κB) is a family of transcription factors, which regulate a 

large number of genes involved in survival, proliferation, and differentiation of both 

immune and non-immune cell types [127]. The NF-κB family contains five members: 

RelA (also known as p65), RelB, c-Rel, p105/p50, and p100/p52, which make homo- and 

heterodimers. In unstimulated cells, NF-κB proteins are normally sequestered in the 

cytoplasm by the related family member Inhibitor of κB (IκB) and the IκB Kinase (IKK) 

complex [128]. NF-κB can be activated through either the canonical or non-canonical 

pathway [127]. The canonical NF-κB signaling pathway involves the upstream activation 

of IKKβ and subsequent phosphorylation and degradation of IκB proteins, resulting in 

rapid and transient nuclear translocation of canonical NF-κB members, predominantly the 

p50/RelA and p50/c-Rel dimers. In the non-canonical pathway, a central signaling 

molecule is NF-κB-inducing kinase (NIK), which activates and cooperates with IKKα to 

mediate p100 phosphorylation, which in turn leads to p100 ubiquitination and 

degradation of its C-terminal IκB-like structure, resulting in the generation of mature NF-

κB2 (i.e. p52) and nuclear translocation of the non-canonical NF-κB complex p52/RelB 

[128]. Published reports suggest that the activation of NF-κB reduces skeletal muscle 

mass, metabolic function, and regeneration especially in disuse conditions and chronic 

disease states [129-131]. Intriguingly, a recent study has demonstrated that sustained 

inhibition of NF-κB in myofibers increases the age-associated loss of skeletal muscle 

mass suggesting that physiological levels of NF-κB are essential to maintaining skeletal 

muscle health [132].      

Studies using cultured myoblasts have suggested that the canonical and non-

canonical NF-κB pathways play distinct roles in the regulation of myogenesis [133]. The 
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canonical NF-κB pathway is activated in proliferating myoblasts, but is inhibited during 

the differentiation of myoblasts into multinucleated myotubes [133]. Indeed, several 

proinflammatory cytokines inhibit myogenic differentiation through the activation of 

canonical NF-κB signaling [134, 135]. In contrast, the non-canonical NF-κB pathway 

becomes activated during myogenic differentiation and promotes mitochondrial 

biogenesis [136, 137]. Moreover, activation of the non-canonical NF-κB signaling 

pathway promotes myoblast fusion during myogenesis [138, 139].   

While the role of IKKβ-mediated canonical NF-κB signaling in the regulation of 

myogenesis is evidenced, it remains enigmatic whether this pathway has any role in the 

regulation of satellite stem cell function. It has been reported that the activation of IKKβ 

in satellite cells is a reason for their reduced differentiation into the myogenic lineage in 

mouse models of cancer cachexia [116]. In contrast, we found that the proinflammatory 

cytokine, TWEAK, activates NF-κB in satellite cells. Interestingly, inhibition of 

canonical NF-κB signaling improves the number of Pax7+ cells in TWEAK-treated 

cultures suggesting that depending on the stimuli, the activation of NF-κB can 

differentially regulate the fate of satellite cells [140]. Recent studies from our group have 

shown that TAK1 and TRAF6, the upstream regulators of the canonical NF-κB signaling 

pathway, are essential for the survival, self-renewal, and proliferation of satellite cells in 

skeletal muscle of adult mice. Targeted ablation of either TAK1 or TRAF6 in satellite 

cells severely impairs skeletal muscle regeneration in adult mice [65, 117]. However, the 

role of canonical NF-κB signaling in the regulation of satellite cell function during 

regenerative myogenesis has not yet been investigated.  
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In this study, through the generation of an inducible satellite cell-specific IKKβ 

knockout (KO) mouse, we demonstrate that the canonical NF-κB signaling pathway in 

satellite cells is essential for the proper regeneration of skeletal muscle after injury. Our 

results also suggest that the canonical NF-κB pathway promotes survival and 

proliferation of satellite cells. In addition, we demonstrate that canonical NF-κB 

signaling is essential to prevent precocious differentiation of activated satellite cells.  

 

2.2 Materials and methods.  

Animals. Satellite cell-specific inducible IKKβ-knockout mice (i.e. P7:IKKβ-KO) were 

generating by crossing Pax7-CreER (Jax Strain: B6.Cg-Pax7tm1(cre/ERT2)Gaka/J) with floxed 

IKKβ (i.e. IKKβf/f) mice. All mice were in the C57BL/6J background and their genotype 

was determined by PCR from tail DNA. For Cre-mediated inducible deletion of IKKβ, 6-

week and 12-week old mice were injected intraperitoneally (i.p.) with Tamoxifen (10 mg 

per Kg body weight) for five consecutive days. Control mice were injected with corn oil 

only. The Institutional Animal Care and Use Committee (IACUC) and Institutional 

Biosafety Committee (IBC) of the University of Louisville approved all experimental 

protocols with mice in advance. 

 

Skeletal muscle injury. One week after the first injection of tamoxifen, 100µL of 1.2% 

Barium Chloride (BaCl2, Sigma Chemical Co.) in saline was injected into the tibialis 

anterior (TA) muscle of mice to induce necrotic muscle injury. At various time points, 

TA muscle was collected from euthanized mice for biochemical and histological studies. 
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Myoblast fusion. To study myoblast fusion, two days following BaCl2-mediated necrotic 

muscle injury in the TA, mice were given an i.p. injection of 5-ethnyl-2’-deoxyuridine 

(EdU; 4 µg per gm body weight). Twelve days post-EdU injection, the TA was isolated 

and transverse muscle sections made. The sections were subsequently immunostained 

with anti-Laminin, DAPI for the detection of nuclei, and processed for the detection of 

EdU. The number of interstitial and intramyofibrillar EdU+ myonuclei per myofiber was 

quantified using NIH ImageJ software. 

 

Histology and morphometric analysis. For skeletal muscle morphology and 

regeneration assessment, 10 µm-thick transverse sections of the TA were stained with 

Hematoxylin and Eosin. For quantitative analysis, CSA, minimum Feret’s diameter, and 

multinucleation were analyzed in H&E stained TA muscle sections. H&E slides were 

mounted using DPX Mountant For Histology Slide mounting medium (Sigma Chemical 

Co.) and visualized at room temperature on a Nikon Eclipse TE 2000-U Microscope 

(Nikon), a digital camera (Nikon Digital Sight DS-Fi1), and Nikon NIS Elements BR 

3.00 software (Nikon). Exposure time was kept at 80ms and contrast levels were not 

altered. 

 

Satellite cell cultures. Satellite cells were isolated from the hind limbs of 6- to 8-week-

old C57BL/6J mice as described [117]. For siRNA experiments, cells were transfected 

using the RNAiMAX Lipofectamine system using a protocol from the manufacturer. 

Control siRNA-A (cat# sc-37007), mouse NF-κB p65 siRNA (cat# sc-29411), and mouse 

IKK beta siRNA (cat# sc-35645) were obtained from Santa Cruz Biotechnology. For 
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overexpression plasmid studies, cells were transfected using the Neon Electroporation 

transfection system using a protocol from the manufacturer with settings of: 1500V, 

10ms pulse width, for three pulses. pCMV4 p65 was a gift from Warner Greene 

(Addgene plasmid # 21966) [141]. pcDNA-Ikkb-FLAG WT was a gift from Warner 

Greene (Addgene plasmid # 23298) [142]. pcDNA3.1 (Invitrogen) was used as a control 

for the pCMV4 p65 and pcDNA-Ikkb-FLAG WT plasmids. 

 

Isolation and culturing of myofibers. Single myofiber cultures were established from 

extensor digitorum longus (EDL) muscle after digestion with collagenase II (Worthington 

Biochemical Corporation, Lakewood, NJ) and trituration as previously described [117]. 

Suspended myofibers were collected immediately or cultured in 60 mm horse serum-

coated plates in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with: 10% 

fetal bovine serum (FBS; Invitrogen), 2% chicken embryo extract (Accurate Chemical, 

Westbury, NY), 10 ng/mL basic fibroblast growth factor (Peprotech, Rocky Hill, NJ), 

and 1% penicillin-streptomycin for three days. 

 

Immunofluorescence. For IHC and ICC studies, frozen TA muscle sections (9 or 10 µm-

thick sections) or myoblast/myofiber cultures, respectively, were fixed in 4% 

paraformaldehyde (PFA) in phosphate buffered saline (PBS), blocked in 2% bovine 

serum albumin (BSA) in PBS for one hour, and subsequently incubated with anti-Pax7 

(1:5-1:10, DSHB Cat# pax7, RRID:AB_528428), anti-eMyHC (1:200, DSHB Cat# 

F1.652, RRID:AB_447163), anti-MyoD (1:200, Santa Cruz Biotechnology Cat# sc-304, 

RRID:AB_631992), anti-Laminin (1:150, Cell Signaling Technology Cat# L9393, 
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RRID:AB_477163), or anti-p-p65 (1:100, Cell Signaling Technology Cat# 3033, 

RRID:AB_331284) in blocking solution at 4°C overnight under humidified conditions. 

The sections were washed briefly with PBS before incubation with its respective 

secondary antibody for one hour at room temperature and then washed three times for 

five minutes with PBS. Nuclei were visualized by counterstaining with DAPI for five 

minutes. Refer to Appendix-3 for complete antibody listing. 

 

EdU and TUNEL Staining. To determine the proliferation status of satellite cells, EdU 

staining was performed using a commercially available kit and following the protocol 

from the manufacturer (Click-iT EdU Cell Proliferation Assay kit, Invitrogen). Briefly, 

during the last 90 minutes of incubation, 10 µM EdU (Invitrogen) was added in culture 

medium. The cells were fixed in 4% PFA. EdU visualization occurs through a click 

reaction, whereby the EdU is covalently bonded to a fluorescent label (Alexa Fluor® 488 

Azide). Nuclei were visualized by counterstaining with DAPI for 5 minutes. TUNEL 

staining was performed following a protocol from the manufacturer (in situ Cell Death 

Detection Kit, Sigma Aldrich). Briefly, the sections or myofiber cultures were fixed in 

4% PFA and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate, and then 

incubated in TUNEL reaction mixture for 60 minutes at 37°C.  

 

Fluorescent Imaging. ICC/IHC slides were mounted using Aqua-Poly/Mount 

fluorescence medium (Polysciences, Inc) and visualized at -0.4°C on a Nikon TiE 3000 

Inverted Microscope (Nikon), a digital camera (DXM-1200C Coded Digital Camera), 

and Nikon NIS Elements AR software (Nikon). Image levels were equally adjusted using 
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Adobe Photoshop CS6 software (Adobe). Detailed specifications, exposure times, and 

contrast levels provided in Appendix-4. 

 

Western blot. Relative levels of various proteins were quantified by performing Western 

blot as described [65]. Briefly, skeletal muscle of mice or cultured myoblasts was washed 

with PBS, homogenized in lysis buffer (50 mM Tris-Cl (pH 8.0), 200 mM NaCl, 50 mM 

NaF, 1 mM dithiothreitol, 1 mM sodium orthovanadate, 0.3% IGEPAL, and Protease 

Inhibitor Cocktail). Approximately, 100 µg of protein was resolved on each lane on a 

10% SDS-PAGE, electro-transferred onto a nitrocellulose membrane and probed using 

various primary antibodies. Detection of proteins was enhanced by chemiluminescence; 

refer to Appendix-3 for list of proteins. As a loading control, membranes were stripped 

and re-probed with anti-GAPDH (1:2000, Cell Signaling Technology Cat# 2218, 

RRID:AB_561053). 

 

RNA isolation and quantitative Real-time PCR (qRT-PCR) Assay. RNA isolation 

and qRT-PCR were performed as previously described [117]. Total RNA was extracted 

from skeletal muscle tissue of mice or cultured myogenic cells using the TRIzol reagent 

(Thermo Fisher Scientific Life Sciences) and an RNeasy Mini Kit (Qiagen, Valencia, 

CA, USA) according to the manufacturers’ protocols. First-strand cDNA for PCR 

analyses were generated with a commercially available kit (Thermo Fisher Scientific Life 

Sciences). Quantification of mRNA expression was performed using the SYBR Green 

dye (Thermo Fisher Scientific Life Sciences) method on a sequence-detection system 

(model 7300; Thermo Fisher Scientific Life Sciences). Approximately 25 µl of reaction 
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volume was used for the real-time PCR assays which consisted of 2× (12.5 µl) Brilliant 

SYBR Green QPCR Master Mix (Stratagene), 400 nm of primers (0.5 µl each from the 

stock), 11 µl of water, and 0.5 µl of template. The thermal conditions consisted of an 

initial denaturation at 95 °C for 10 min followed by 40 cycles of denaturation at 95 °C for 

15 s, annealing and extension at 60 °C for 1 min, and, for a final step, a melting curve of 

95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s. All reactions were carried out in 

triplicate to reduce variation. Primers were designed using Vector NTI software (Thermo 

Fisher Scientific Life Sciences). The sequences of the primers used are as follows: β-

actin, 5’-CAG GCA TTG CTG ACA GGA TG-3’ (forward) and 5’-TGC TGA TCC 

ACA TCT GCT GG-3’ (reverse); IFN-γ, 5’-GAC AAT CAG GCC ATC AGC AAC-3’ 

(Forward), 5’-CGG ATG AGC TCA TTG AAT GCT T-3’; IL-1β, 5’-CTC CAT GAG 

CTT TGT ACA AGG-3’ (Forward), 5’-TGC TGA TGT ACC AGT TGG GG-3’ 

(Reverse); IL-6, 5’-ATG GCA ATT CTG ATT GTA TG -3’ (Forward), 5’-TGG CTT 

TGT CTT TCT TGT TA-3’ (Reverse); Pax7, 5’-CAG TGT GCC ATC TAC CCA TGC 

TTA-3’ (Forward), 5’-GGT GCT TGG TTC AAA TTG AGC C-3’ (Reverse); Myf5, 5’-

TGA AGG ATG GAC ATG ACG GAC G-3’ (Forward), 5’-TTG TGT GCT CCG AAG 

GCT GCT A-3’ (Reverse); Myh3, 5’-ACA TCT CTA TGC CAC CTT CGC TAC-3’ 

(Forward), 5’-GGG TCT TGG TTT CGT TGG GTA T-3’ (Reverse); Myh4, 5’-CGG 

CAA TGA GTA CGT CAC CAA A-3’ (Forward), 5’-TCA AAG CCA GCG ATG TCC 

AA-3’ (Reverse); MyoD, 5’-TGG GAT ATG GAG CTT CTA TCG C-3’ (Forward), 5’-

GGT GAG TCG AAA CAC GGA TCA T-3’ (Reverse); Myogenin, 5’-CAT CCA GTA 

CAT TGA GCG CCT A-3’ (Forward), 5’-GAG CAA ATG ATC TCC TGG GTT G-3’ 

(Reverse); and TNF-α, 5’-AGC ACA GAA AGC ATG ATC CG-3’ (Forward), 5’-GCC 
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ACA AGC AGG AAT GAG AA-3’ (Reverse). The data were analyzed using SDS 

software version 2.0, and the results were exported to Microsoft Excel for further 

analysis. Data normalization was accomplished using two endogenous control (β-actin) 

and the normalized values were subjected to a 2-ΔΔCt formula to calculate the fold change 

between the control and experimental groups. The formula and its derivations were 

obtained from the ABI Prism 7900 Sequence Detection System user guide. 

 

Lactate dehydrogenase (LDH) assay. The amount of LDH in culture supernatants was 

measured using a commercially available LDH Cytotoxicity Assay kit following the 

protocol suggested by the manufacturer (Thermo Scientific Life Sciences). 

 

Statistical analyses. For the sake of transparency, results were expressed as box-and-

whisker plots with the box comprised of the 1st, 2nd, and 3rd quartiles, and the lower and 

upper whiskers corresponding to the minimum and maximum values, respectively, to 

display the entire range of data. Statistical analyses between two groups used unpaired 

two-tailed Student’s t-test to compare quantitative data populations with normal 

distribution and equal variance. A value of p<0.05 was considered statistically significant 

unless specified otherwise for comparisons made between two groups. 

 

2.3 Results 

2.3.1 Canonical NF-κB signaling is activated in satellite cells after skeletal muscle 

injury. We first investigated how the levels of different components of canonical NF-κB 

pathway are regulated in skeletal muscle upon injury. Tibialis anterior (TA) muscle of 
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12-week old wild-type (WT) mice was injured by intramuscular injection of 1.2% BaCl2 

solution, whereas the contralateral muscle was injected with saline alone and served as an 

uninjured control. At day 5 after injury, the muscle was collected and analyzed by 

performing immunoblotting or immunohistochemical analysis. There was a noticeable 

increase in the levels of IKKβ in 5d-injured TA muscle compared to contralateral 

uninjured muscle. Moreover, the levels of phosphorylated, as well as total, IκBα and p65 

proteins were considerably increased in injured muscle compared to uninjured controls 

(Figure 2.1A). To understand whether muscle injury leads to the activation of canonical 

NF-κB signaling in satellite cells, we performed double immunostaining for phospho-p65 

(p-p65) and Pax7 (a marker for satellite cells) proteins. Consistent with a published report 

[143], p-p65 protein was undetectable in satellite cells of uninjured muscle, however, the 

expression of p-p65 protein was clearly visible in Pax7+ cells in injured muscle (Figure 

2.1B).  

A suspension culture of myofiber explants represents an ex vivo model that 

mimics muscle injury in vivo, with respect to satellite cell survival, activation, 

proliferation, and differentiation [117, 144, 145]. To further understand whether 

canonical NF-κB signaling is activated in satellite cells upon injury, we established single 

myofiber cultures from extensor digitorum longus (EDL) muscle of WT mice and 

myofiber-associated satellite cells were examined for the expression of p-p65 protein at 

different time points. We could not detect p-p65 protein in satellite cells (i.e. Pax7+) just 

after isolation of myofibers (Figure 2.1C). Interestingly, a gradual increase in p-p65 

levels in Pax7+ cells was evidenced at 24h and 72h after establishing the cultures (Figure 
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2.1C). These results suggest that muscle injury leads to the activation of canonical NF-

κB signaling in satellite cells of adult mice. 

 

2.3.2 Satellite cell-specific deletion of IKKβ delays myofiber regeneration in adult 

mice. In response to various cytokines, growth factors, and microbial products, the 

activation of the canonical NF-κB pathway involves the stimulation of IKKβ [127]. To 

understand the role of canonical NF-κB signaling in the regulation of satellite cell 

homeostasis and function, we crossed floxed IKKβ (IKKβf/f) mice that are homozygous 

for loxP sites flanking Exon 3 with Pax7-CreER mice (a tamoxifen-inducible satellite 

cell-specific Cre line) [146] to generate satellite cell-specific inducible IKKβ-knockout 

(IKKβf/f; Pax7-CreER) mice (Figure 2.2A). Since Pax7-CreER mice are knock-in mice 

in which the expression of Pax7 is regulated by the endogenous Pax7 promoter, we used 

adult IKKβf/f;Pax7-CreER mice and treated them with tamoxifen or vehicle (corn oil) 

alone to generate satellite cell-specific IKKβ knockout (henceforth P7:IKKβ-KO) or 

control (Ctrl) mice, respectively. The mice were subjected to five intraperitoneal 

injections of tamoxifen or vehicle (Figure 2.2B). One week after the first injection of 

tamoxifen, TA muscle of Ctrl and P7:IKKβ-KO mice was injected with 100 µl of 1.2% 

BaCl2 solution unilaterally to induce necrotic muscle injury, whereas the contralateral 

muscle was injected with saline and served as an uninjured control. The uninjured and 

injured TA muscles were isolated at 5d and 14d post-injury and analyzed by performing 

Hematoxylin and Eosin (H&E) staining (Figure 2.2C). Under naïve conditions, we found 

no statistically significant difference in the average cross-sectional area (CSA) or 

minimal Feret’s diameter between P7:IKKβ-KO and littermate Ctrl mice (data not 
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shown). Interestingly, we found that the regeneration of TA muscle was considerably 

diminished in P7:IKKβ-KO mice compared to littermate Ctrl mice at 5d post BaCl2-

mediated injury. Morphometric analysis of 5d-injured TA muscle sections showed an 

approximate 40% reduction in average myofiber CSA in P7:IKKβ-KO mice compared to 

littermate Ctrl mice (Figure 2.2D). Additionally, a significant reduction in the average 

minimal Feret’s diameter of myofibers was noticeable in 5d-indured TA muscle of 

P7:IKKβ-KO mice compared to littermate Ctrl mice (Figure 2.2E). Newly formed, 

centrally multinucleated myofibers populated the regenerating TA muscle of Ctrl mice. 

However, the P7:IKKβ-KO mice showed a marked decrease in centrally multinucleated 

myofibers compared to littermate Ctrl mice, indicating further signs of an impaired 

regeneration (Figure 2.2F). Although muscle structure appeared comparable, a 

significant reduction in average myofiber CSA and a trend towards reduction in minimal 

Feret’s diameter (p=0.08) was noticeable in TA muscle of P7:IKKβ-KO mice compared 

to littermate Ctrl mice even after 14d of injury (Figure 2.2G, 2.2H). For some of our 

initial experiments, 12-week old littermate IKKβf/f and IKKβf/f; Pax7-CreER mice were 

treated by i.p. injections of tamoxifen similar to as described above (Figure 2.2B). TA 

muscle of these mice was injured and muscle regeneration was studied at day 5 post-

injury by performing H&E staining (data not shown). Similar to the above results, we 

found that the muscle regeneration was reduced in IKKβf/f; Pax7-CreER mice compared 

to IKKβf/f mice suggesting that the deletion of IKKβ in satellite cells reduces the 

regeneration of skeletal muscle, whereas the treatment of tamoxifen itself does not (data 

not shown). 
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2.3.3 Targeted inactivation of IKKβ diminishes the number of nascent myofibers 

and satellite cells in regenerating muscle of adult mice. To further confirm that the 

deletion of IKKβ in satellite cells reduces myofiber regeneration, we also examined the 

number of myofibers expressing the embryonic isoform of myosin heavy chain 

(eMyHC). Consistent with the notion that eMyHC is expressed in newly found 

myofibers, we did not find any eMyHC+ myofibers in uninjured TA muscle of Ctrl or 

P7:IKKβ-KO mice. By contrast, the number of eMyHC+ myofibers was dramatically 

increased in 5d-injured TA muscle. However, the frequency of eMyHC+ myofibers 

within laminin staining (Figure 2.3B) and the size of eMyHC+ myofibers (Figure 2.3C, 

2.3D) were significantly reduced in TA muscle of P7:IKKβ-KO mice compared with 

corresponding Ctrl mice.  

We next investigated the effect of deletion of IKKβ on satellite cell number. TA 

muscle of Ctrl and P7:IKKβ-KO mice were immunostained for Pax7 and Laminin 

proteins. Nuclei were labeled by staining with DAPI (Figure 2.3E). There was no 

significant difference in the number of Pax7+ positive cells in uninjured TA muscle of 

Ctrl and P7:IKKβ-KO mice (data not shown). Interestingly, we found that the number of 

Pax7+ cells was significantly reduced in 5d-injured TA muscle of P7:IKKβ-KO mice 

compared to littermate Ctrl mice (Figure 2.3E, 2.3F). Furthermore, mRNA levels of 

Pax7 were found to be significantly reduced in 5d-injured TA muscle of P7:IKKβ-KO 

mice compared to littermate Ctrl mice (Figure 2.3G). These results suggest that the 

deletion of IKKβ reduces satellite cell number following injury, which may be 

responsible for the delayed myofiber regeneration.  
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Activation of canonical NF-κB signaling leads to the expression of a number of 

inflammatory cytokines [127, 128]. However, it remains unknown whether satellite cells 

are also the source of inflammatory molecules in injured skeletal muscle. Nevertheless, 

by performing qRT-PCR, we measured relative mRNA levels of proinflammatory 

cytokines: interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). There was no 

significant difference in the mRNA levels of these cytokines in 5d-injured TA muscle of 

Ctrl and P7:IKKβ-KO mice (Figure 2.3H), suggesting that the deletion of IKKβ in 

satellite cells does not affect the expression of inflammatory cytokines.  

 

2.3.4 Inhibition of canonical NF-κB signaling reduces the proliferation of satellite 

cells. To understand cellular mechanisms for the reduced number of satellite cells in 

regenerating skeletal muscle of P7:IKKβ-KO mice, we investigated the role of canonical 

NF-κB signaling in the proliferation of satellite cells in vivo, ex vivo, and in vitro. TA 

muscle of 12-week old Ctrl and P7:IKKβ-KO mice was injured by intramuscular 

injection of 1.2% BaCl2 solution. After 48h, the mice were given an intraperitoneal 

injection of EdU and the number of EdU+ nuclei in the TA muscle was determined 12 

days later. Interestingly, a significant reduction in both intramyofibrillar and interstitial 

EdU+ nuclei was observed in TA muscle of P7:IKKβ-KO mice compared with 

corresponding Ctrl mice (Figure 2.4A, 2.4B). To further understand whether IKKβ 

regulates the proliferation of satellite cells, we established myofiber explant cultures and 

the proliferation of myofiber-associated cells were studied by measuring EdU 

incorporation after 72h of culturing. Consistent with our in vivo results, we found that the 
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proportion of EdU+ nuclei was significantly reduced in myofiber explants prepared from 

P7:IKKβ-KO mice compared to Ctrl mice (Figure 2.4C, 2.4D).  

We also investigated the role of canonical NF-κB signaling in the proliferation of 

satellite cell-derived myogenic cultures in a myofiber-free system. For this experiment, 

primary myogenic cultures established from WT mice were transfected with scrambled 

(control), IKKβ, or p65 siRNA. After 72h, cellular proliferation was studied by 

performing an EdU incorporation assay. Results showed that the knockdown of IKKβ 

and p65 significantly reduced the proportion of EdU+ nuclei in myogenic cultures 

(Figure 2.4E, 2.4F). Our Western blot analysis also showed that the levels of cyclin D1 

and cyclin A were significantly reduced in cultures transfected with IKKβ siRNA or p65 

siRNA compared to control cultures (Figure 2.4G). Western blot analysis confirmed a 

drastic reduction in IKKβ and p65 protein upon transfection with their corresponding 

siRNAs (Figure 2.4G). 

 

2.3.5 Canonical NF-κB signaling promotes the survival of satellite cells. One of the 

important functions of the canonical arm of NF-κB signaling is to promote cell survival 

[127, 128]. Our attempts to perform double immunostaining for TUNEL and Pax7 were 

futile, possibly because the levels of Pax7 are reduced in satellite cells undergoing 

apoptosis. Therefore, we employed ex vivo myofiber explants and cultured myogenic 

cells to understand the role of the canonical arm of NF-κB signaling in the survival of 

satellite cells. We first established myofiber explant cultures from EDL muscle of Ctrl 

and P7:IKKβ-KO mice. After 72h of culturing, the percentage of apoptotic cells was 

measured by performing TUNEL staining. Interestingly, the proportion of myofiber-
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associated TUNEL+ cells was significantly higher in P7:IKKβ-KO cultures compared to 

Ctrl cultures (Figure 2.5A, 2.5B).  

We next investigated the effect of siRNA-mediated knockdown of IKKβ or p65 

on survival of cultured primary myogenic cells. Lactate dehydrogenase (LDH) is a stable 

enzyme that accumulates in culture supernatants after cell death [147]. Interestingly, we 

found that the levels of LDH in culture supernatants of cells transfected with IKKβ and 

p65 siRNA were significantly higher compared to those transfected with control siRNA 

(Figure 2.5C). We also performed Annexin V/propidium iodide (PI) staining on these 

cells followed by analysis using FACS. Similar to our LDH results, we found that the 

percentages of early and late apoptotic cells were significantly increased in cultures 

transfected with IKKβ and p65 siRNA compared to those transfected with scrambled 

siRNA (Figure 2.5D-F). We also performed Western blotting to measure the levels of 

cleaved Caspase-3 and cleaved PARP, two established markers of apoptosis. As shown in 

Figure 2.5G, the levels of cleaved PARP were significantly increased in cultures 

transfected with IKKβ or p65 siRNA compared to those transfected with scrambled 

siRNA. Moreover, we found that the knockdown of IKKβ or p65 led to a reduction in 

levels of BAX and Bcl2 protein in cultured myogenic cells (Figure 2.5G). Collectively, 

these results suggest that canonical NF-κB signaling promotes the survival of myogenic 

cells.     

 

2.3.6 Canonical NF-κB signaling promotes the self-renewal and prevents the 

precocious differentiation of activated satellite cells. Pax7 determines satellite cell fate 

in cooperation with other factors, such as MyoD [117, 144, 147]. Indeed, the expression 
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pattern of Pax7 and MyoD specifies the myogenic status of satellite cells as quiescent 

(Pax7+/MyoD-), activated (Pax7+/MyoD+), or differentiated (Pax7-/MyoD+). We 

investigated whether IKKβ has any role in the regulation of satellite cell fate. To model 

the satellite cell dynamics of muscle injury, we generated ex vivo suspension cultures of 

EDL myofibers from P7:IKKβ-KO and Ctrl mice. The ex vivo suspension cultures were 

analyzed by staining with anti-Pax7 and anti-MyoD at 0h or 72h of culturing (Figure 

2.6A, 2.6B). There was no significant difference in the number of myofiber-associated 

Pax7+ cells between Ctrl and P7:IKKβ-KO cultures at 0h (Figure 2.6A, 2.6C). There 

were a negligible number of myofiber-associated MyoD+ cells and there was no 

significant difference in their number between Ctrl and P7:IKKβ-KO cultures (Figure 

2.6D). Myofiber-associated satellite cells formed clusters by 72h of culturing. Although 

there was no significant difference in the average number of clusters per myofiber, the 

average number of cells per cluster was significantly reduced in P7:IKKβ -KO cultures 

compared to Ctrl cultures (Figure 2.6E). Our analysis also showed that the proportion of 

Pax7+/MyoD-, as well as Pax7+/MyoD+, cells was significantly reduced in P7:IKKβ-KO 

cultures compared to Ctrl cultures (Figure 2.6F, 2.6G). Conversely, the percentage of 

Pax7-/MyoD+ was dramatically increased in P7:IKKβ-KO compared with Ctrl cultures 

(Figure 2.6H), suggesting that the inactivation of IKKβ causes a precocious 

differentiation of activated satellite cells. 

We also investigated the role of canonical NF-κB signaling in the regulation of 

satellite cell fate in a myofiber-free environment. We first established satellite cell-

derived primary myogenic cultures from hind limb muscles of WT mice. Early passage 

myogenic cells were transfected with scrambled (control), IKKβ, or p65 siRNA. After 
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72h, the cultures were fixed followed by staining with anti-Pax7 and anti-MyoD. Nuclei 

were labeled using DAPI (Figure 2.7A). Consistent with published reports [117, 147], 

we found that the majority of cells were Pax7+/MyoD+, whereas a small proportion were 

Pax7+/MyoD- in cultures transfected with control siRNA. Although there was a trend 

towards reduction in the percentage of Pax7+/MyoD- cells in cultures transfected with 

IKKβ or p65 siRNA, it was not significantly different from those transfected with control 

siRNA (Figure 2.7B). However, the proportion of Pax7+/MyoD+ cells was significantly 

reduced, whereas the proportion of Pax7-/MyoD+ cells was significantly increased in 

IKKβ or p65 knocked-down cultures compared to control cultures (Figure 2.7C, 2.7D). 

By performing immunostaining for myosin heavy chain (MyHC) protein, we also 

investigated whether the knockdown of IKKβ or p65 can induce the terminal 

differentiation of satellite cell-derived myoblasts under growth conditions. There was a 

negligible number of MyHC+ cells in myogenic cultures transfected with scrambled or 

IKKβ siRNA (Figure 2.7E). Intriguingly, we found that the knockdown of p65 increased 

the number of MyHC+ cells. Consistent with our immunocytochemistry results, 

immunoblotting showed that the levels of Pax7 were somewhat reduced, whereas levels 

of myogenin and MyHC were increased especially in cultures transfected with p65 

siRNA (Figure 2.7F). 

  

2.4 Discussion. Satellite cells normally exist in a quiescent state [123], but are rapidly 

activated following injury to skeletal muscle [35]. Similar to other stem cells, satellite 

cells possess the ability to self-renew and maintain a reserve pool in healthy tissue, such 

that they can facilitate several episodes of regeneration [17, 33, 35]. Diminishing the 
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satellite cell pool is associated with an impairment in regenerative myogenesis and can 

lead to muscle wasting normally observed in genetic muscle disorders and during aging 

[148-150]. NF-κB plays a critical role in the regulation of cell fate, survival, and 

differentiation in both immune and non-immune cell types [127, 151]. Activation of NF-

κB also leads to an inflammatory response, especially in chronic disease states [127, 

128]. While components of the canonical NF-κB pathway have been found to be 

activated in myofibers in various catabolic states, as well as in both myogenic and 

inflammatory immune cells in muscle degenerative disorders [113, 129, 152], the 

physiological role of NF-κB in the regulation of satellite cell function remains less 

understood. Our results in the present study demonstrate that canonical NF-κB signaling 

mediated by IKKβ and p65 promotes the survival, proliferation, and self-renewal of 

satellite cells.  

Skeletal muscle regeneration is a complex process that is regulated by signals 

released from both damaged myofibers, as well as several other cell types that are either 

resident in the muscle or recruited to assist in clearing cellular debris [122, 123]. 

Activation of satellite cells upon muscle injury requires transcriptional and translational 

reprogramming that is essential for their exit from quiescence, proliferation, and survival 

in a metabolically activate state [124, 153-155]. Our results demonstrate that the 

activation of the canonical arm of the NF-κB pathways is increased in the satellite cells 

upon skeletal muscle injury (Figure 2.1). This activation of NF-κB appears to be a 

mechanism to improve the proliferation and survival of satellite cells, evidenced by the 

finding that both the proliferation (Figure 2.4) and survival (Figure 2.5) of satellite cells 

is diminished upon genetic or siRNA-mediated knockdown of the components of the 
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canonical NF-κB pathway. NF-κB is known to induce cellular proliferation through 

augmenting the expression of a number of growth regulatory molecules and cell cycle 

regulators [127, 129]. Indeed, previous studies have shown that NF-κB promotes 

myogenic cell proliferation through increasing the expression of cyclin D1 [156]. 

Similarly, NF-κB is known to induce the expression of several anti-apoptotic molecules, 

such as Bcl2 [127, 128]. Our results demonstrate that the levels of both Cyclin D1 and 

Bcl2 were diminished upon knockdown of either IKKβ or p65 in cultured satellite cells 

(Figure 2.4G, 2.5G). Reduced proliferation and/or increased cell death through apoptosis 

appear to be important mechanisms for the reduced number of satellite cells observed in 

regenerating skeletal muscle of P7:IKKβ-KO mice.  

For efficient regeneration of skeletal muscle, satellite cells have to undergo 

extensive proliferation before their differentiation and fusion with injured myofibers. 

Premature differentiation or defects in the process of differentiation of satellite cells into 

the myogenic lineage can lead to deficits in skeletal muscle regeneration. Although the 

molecular mechanisms remain unknown, recent studies have suggested that NF-κB may 

play a role in the regulation of satellite cell self-renewal and differentiation. It has been 

reported that in the “settings” of cancer cachexia, the ability of satellite cells to 

differentiate into the myogenic lineage is lost, which may be a mechanism for cancer-

induced muscle wasting [116]. Interestingly, the activation of the canonical arm of NF-

κB signaling has been found to be one of the reasons for deregulation of Pax7 expression 

and satellite cell dysfunction in tumor-bearing mice [116]. However, the role of canonical 

NF-κB signaling in the self-renewal of satellite cell in naïve conditions or during 

regenerative myogenesis remains unknown.  
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We found no significant difference in the number of quiescent/self-renewing 

(Pax7+/MyoD-) satellite cells in skeletal muscle of Ctrl and IKKβ-KO mice in uninjured 

muscle, suggesting that the inhibition of canonical NF-κB signaling does not disrupt 

satellite cell homeostasis in naïve conditions. Interestingly, our results demonstrate that 

the inhibition of canonical NF-κB signaling reduces the proliferation of activated satellite 

cells and causes their premature differentiation (Figures 2.6 and 2.7). While previous 

studies have shown that constitutive activation of canonical NF-κB signaling inhibits 

myogenic differentiation [129, 133], the results of the present study suggest that NF-κB 

signaling is essential to support the proliferation of activated satellite cells. It is important 

to note that while knockdown of IKKβ reduced the number of proliferating 

(Pax7+/MyoD+) and increased the number of differentiating (Pax7-/MyoD+) cells, it was 

not sufficient to induce terminal differentiation of satellite cells. By contrast, knockdown 

of p65 also resulted in the expression of MyHC, a marker of terminal differentiation of 

myogenic cells. This could be attributed to the fact that in addition to IKKβ, the p65 

subunit of NF-κB can also be activated through signaling cross-talk and post-translational 

modifications [127]. Moreover, since p65 is the main subunit of the canonical NF-κB 

complex with transactivation domain, its knockdown may lead to a complete blockade of 

canonical NF-κB signaling. Indeed, our experiments demonstrate that compared to IKKβ, 

knockdown of p65 has more pronounced effects on proliferation, differentiation, and 

survival of cultured satellite cells (Figures 2.4, 2.5, and 2.7). On similar lines, a previous 

study has demonstrated that muscle-derived stem cells (MDSCs) from p65+/– mice show 

increased differentiation potential compared to those isolated from littermate WT mice 

[157].               
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The role of NF-κB in skeletal muscle regeneration has been previously 

investigated using genetic mouse models and molecular and pharmacological approaches 

[129, 158]. NF-κB is highly activated in dystrophic muscle of Mdx (a mouse model of 

DMD) mice [113, 159]. Interestingly, the genetic ablation of IKKβ in myofibers or in 

macrophages improved myopathy observed in Mdx mice [113]. Similarly, 

pharmacological inhibition of NF-κB using NEMO binding domain peptide was effective 

in improving muscle pathogenesis in Mdx mice [113, 160]. Another study showed that 

the genetic ablation of IKKβ in myofibers improves skeletal muscle strength and 

regeneration, and inhibits the accumulation of fibrosis in otherwise normal mice [131]. 

On similar lines, we have demonstrated that the inhibition of TRAF6 in myofibers 

improves skeletal muscle regeneration potentially through inhibition of NF-κB [144]. 

However, all of these studies were performed using mice in which the components of 

canonical NF-κB signaling were inhibited in myofibers and the improvement in muscle 

regeneration was attributed to a reduction in the inflammatory milieu in the injured 

muscle microenvironment. Our present study demonstrates that canonical NF-κB 

signaling is important for satellite cell homeostasis and function during skeletal muscle 

regeneration. These finding are also supported by our recently published articles 

demonstrating that the targeted ablation of TRAF6 or TAK1, the upstream activator of 

IKKβ, also inhibits satellite stem cell homeostasis and function [117, 147]. A more 

dramatic effect of satellite cell-specific ablation of TAK1 or TRAF6 compared to IKKβ 

on regenerative myogenesis could be attributed to the fact that, being upstream signaling 

modules, TAK1 and TRAF6 can regulate other pathways, including MAPKs, which are 

also implicated in the regulation of satellite cell fate and function [117, 147, 161].   
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In summary, our study provides initial evidence that canonical NF-κB signaling 

promotes the proliferation and survival of satellite cells. Furthermore, we provide 

evidence that satellite cell expression of IKKβ is important for the successful 

regeneration of adult skeletal muscle. An exhaustion of satellite cells is common in 

several muscular disorders and conditions, both in actual number, as well as functional 

satellite cells [162]. However, it remains to be elucidated whether a reduction in NF-κB is 

responsible for satellite cell dysfunction in disease conditions. It will be interesting to 

investigate whether there is differential regulation of canonical NF-κB signaling in 

satellite cells and myofibers in different physiological and pathological conditions. 

Indeed, other myogenic pathologies, such as rhabdomyosarcoma, demonstrate aberrations 

in the canonical NF-κB signaling pathway [121]. Further studies into differential 

expressions of the canonical NF-κB signaling pathway may pave the road for novel 

therapies for pathological conditions involving skeletal muscle.   
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FIGURE 2.1 
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FIGURE 2.1 Canonical NF-κB signaling is activated during regenerative 

myogenesis. TA muscle of 12-week old WT mice was injected with 100 µl of 1.2% 

BaCl2 while the other side was injected with saline to serve as the uninjured control (A) 

Representative Immunoblots demonstrating the levels of: IKKβ, phospho- and total IκBα 

and p65, and unrelated protein GAPDH in uninjured and 5-day injured TA muscle. (B) In 

a separate experiment, muscles were collected and processed for histological analysis. 

Representative photomicrographs of Pax7 and anti-phospho-p65 stained muscle sections 

from uninjured and injured TA muscle of WT mice. Nuclei were identified by staining 

with DAPI. Arrowheads point to Pax7+/phospho-p65- cells. Arrows point to 

Pax7+/phospho-p65+ cells. Scale bar, 20 µm. (D) Representative photomicrographs of 

EDL single myofiber suspension cultures at 0, 24, and 72h incubation in growth medium 

after immunostaining for Pax7 and phospho-p65. Nuclei were identified by staining with 

DAPI. Scale bar, 10 µm. 
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FIGURE 2.2 
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FIGURE 2.2 Satellite cell-specific deletion of IKKβ impairs muscle regeneration in 

adult mice. (A) Schematic representation of the breeding strategy used for the generation 

of satellite cell-specific IKKβ-knockout mice. (B) Treatment protocol for tamoxifen-

induced Cre recombination and subsequent muscle collection in P7:IKKβ-KO and Ctrl 

mice. (C) Representative photomicrographs of H&E-stained sections illustrating a 

regeneration defect in injured TA muscle of P7:IKKβ-KO compared with littermate Ctrl 

mice at indicated time points after BaCl2 injection. Scale bars: 20 µm. Quantification of 

(D) average myofiber CSA, (E) average minimal Feret’s diameter, and (F) percentage of 

myofibers containing two or more centrally located nuclei per field at day 5 post-injury. 

N=5. Quantification of (G) average CSA and (H) minimal Feret’s diameter at day 14 

post-injury. N=3 (Ctrl), 4 (P7:IKKβ-KO). *P<0.05, **P<0.01, ***P<0.001 values 

significantly different from corresponding TA muscle of Ctrl mice by unpaired two-tailed 

t-test. 
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FIGURE 2.3 
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FIGURE 2.3 Inactivation of IKKβ in satellite cells impedes the formation of new 

myofibers and diminishes the satellite cell pool. (A) Representative photomicrograph 

of five day injured transverse TA muscle section of Ctrl and P7:IKKβ-KO 12-week old 

mice after immunostaining for eMyHC and Laminin. Nuclei were identified by staining 

with DAPI. Scale bar, 20 µm. Quantification of (B) percentage of eMyHC+ myofibers per 

Laminin+ myofiber, (C) average CSA of eMyHC+ myofiber, and (D) average minimal 

Feret’s diameter of eMyHC+ myofiber in five day injured P7:IKKβ-KO and Ctrl mice. 

(E) Representative photomicrograph of five day injured transverse TA muscle section of 

Ctrl and P7:IKKβ-KO mice after immunostaining for Pax7 and Laminin. Nuclei were 

identified by staining with DAPI. Arrowhead points to Pax7+ cells. Scale bar, 20 µm. (F) 

Quantification of number of Pax7+ cells per Laminin+ myofiber. N=5. (G) Relative 

mRNA levels of Pax7 in 5 day injured TA muscle of P7:IKKβ-KO and Ctrl mice. (H) 

Relative mRNA levels of select inflammatory markers in 5 day injured TA muscle of 

P7:IKKβ-KO and Ctrl mice. N=4. *P<0.05, **P<0.01, ***P<0.001 values significantly 

different from corresponding TA muscle of Ctrl mice by unpaired two-tailed t-test.  
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FIGURE 2.4  
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FIGURE 2.4 Inactivation of IKKβ in satellite cells diminishes satellite cell 

proliferation. TA muscle of P7:IKKβ-KO and Ctrl mice was injured by intramuscular 

injection of 100 µl of 1.2% BaCl2 solution. After 2 days, the mice were given an 

intraperitoneal injection of EdU and 12 days later TA muscles were collected and muscle 

sections prepared were stained to detect EdU, laminin, and nuclei. (A) Representative 

photomicrograph of 14 day injured transverse TA muscle section of Ctrl and P7:IKKβ-

KO mice after processing for EdU and Laminin detection. Nuclei were identified by 

staining with DAPI. Arrowhead points to interstitial EdU+ nuclei. Arrow points to 

intramyofibrillar EdU+ nuclei. Scale bar, 20 µm. (B) Quantification of interstitial EdU+ 

and intramyofibrillar EdU+ nuclei per Laminin+ myofiber in TA muscle of Ctrl and 

P7:IKKβ-KO mice. N=4 (Ctrl), 3 (P7:IKKβ-KO). Single myofibers cultures were 

established from EDL muscle of Ctrl and P7:IKKβ-KO mice and cultured for 72h. For 

last 90 min, the cells were pulse labeled with EdU by addition of EdU in culture medium. 

The myofibers cultures were then fixed with paraformaldehyde and stained for EdU. 

Nuclei were labeled by incubation in DAPI. (C) Representative merged images of EdU 

and DAPI staining are presented here. Scale bar, 10 µm. (D) Quantification of percentage 

of EdU+ cells per cluster. Cluster was defined as ≥4 cells. N=3 mice, 9-11 fibers per 

group. Primary WT myoblasts were transfected with scrambled siRNA or siRNA 

targeting IKKβ or p65 for 72h. (E) Representative photomicrograph of siRNA 

transfected cells after processing for EdU detection. Nuclei were identified by staining 

with DAPI. Scale bar, 10 µm. (F) Quantification of percent EdU+ cells. N=4. (G) In a 

similar experiment, cells were collected after 48h of siRNA transfection and processed 

for biochemical analysis. Immunoblots represented here demonstrate the protein levels of 
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Cyclin D1, Cyclin A, IKKβ, p65, and unrelated protein GAPDH as a loading control. 

N=3. *P<0.05, **P<0.01, ***P<0.001 values significantly different from corresponding 

TA muscle of Control mice by unpaired two-tailed t-test. $P<0.05, values significantly 

different from scrambled siRNA control by unpaired two-tailed t-test. 
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FIGURE 2.5  
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FIGURE 2.5 Satellite cell-specific ablation of IKKβ causes an increase in apoptotic 

cell death. (A) Single myofiber suspension cultures were established from EDL muscle 

of 6-week old P7:IKKβ-KO and Ctrl mice, and cultured for 72h then processed for 

detection of TUNEL. Nuclei were identified by staining with DAPI. Scale bar, 10 µm. 

(B) Quantification of percentage of TUNEL+ cells per cluster. Cluster was defined as ≥4 

cells. N=3 mice, 9-11 fibers per group. Primary WT myoblasts were transfected with 

scrambled siRNA or siRNA targeting IKKβ or p65 for 48h (C) Quantification of relative 

LDH activity (fold change) following siRNA transfection. (D) Following siRNA 

transfection, cells were collected and stained for Annexin V and propidium iodide (PI), 

and analyzed by FACS to detect early and late apoptotic cells. Quantification of (E) early 

(lower right quadrant) apoptotic cells and (F) late (upper right quadrant) apoptotic cells 

following siRNA transfection. (G) Immunoblots demonstrating the levels of cell death –

related proteins: BAX, Bcl2, Cleaved-Caspase3, Cleaved PARP and unrelated protein 

GAPDH. N=3. *P<0.05, values significantly different from Scrambled siRNA transfected 

cells by unpaired two-tailed t-test. $P<0.05, values significantly different from scrambled 

siRNA control by unpaired two-tailed t-test. $$P<0.01, values significantly different from 

scrambled siRNA control by unpaired two-tailed t-test. $$$P<0.001, values significantly 

different from scrambled siRNA control by unpaired two-tailed t-test. 
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FIGURE 2.6 
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FIGURE 2.6 Satellite cell-specific deletion of IKKβ diminishes the self-renewal of 

satellite cells and results in their premature differentiation. Single myofiber 

suspension cultures were established from EDL muscle of 6-week old P7:IKKβ-KO and 

Ctrl mice, and cultured for 0 or 72 hours then collected and immunostained for Pax7 and 

MyoD. Representative individual and merged images of (A) freshly isolated and (B) 72h 

cultured myofibers from Ctrl and P7:IKKβ-KO mice stained with PAX7, MyoD, and 

DAPI. Quantification of (C) Pax7+ cells per myofiber and (D) MyoD+ cells per myofiber 

in Ctrl and P7:IKKβ-KO 0-hour cultures. Quantification of (E) average number of cells 

per cluster, (F) percentage of Pax7+/MyoD- cells per cluster, (G) percentage of 

Pax7+/MyoD+ cells per cluster, and (H) percentage of Pax7-/MyoD+ cells per cluster in 

Ctrl and P7:IKKβ-KO 72-hour cultures. Cluster was defined as ≥4 cells. N=3 mice, 9-11 

fibers per group. Data presented as box-and-whisker plot. *P<0.05, **P<0.01, 

***P<0.001 values significantly different from Ctrl mice by unpaired two-tailed t-test.  
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FIGURE 2.7 
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FIGURE 2.7 Inhibition of IKKβ causes a precocious differentiation and inhibition 

of p65 results in an early terminal differentiation. Primary WT myoblasts were 

transfected with scrambled siRNA or siRNA targeting IKKβ or p65 for 72h (A) 

Representative photomicrograph of siRNA transfected cells after immunostaining for 

Pax7 and MyoD. Nuclei were identified by staining with DAPI. Quantification of (B) 

percentage of Pax7+/MyoD- cells, (C) percentage of Pax7+/MyoD+ cells, and (D) 

percentage of Pax7-/MyoD+ cells post-siRNA transfection. N=3. (E) Representative 

photomicrograph of siRNA transfected cells after immunostaining for MyHC. Nuclei 

were identified by staining with DAPI. In a similar experiment, WT myoblasts were 

transfected with scrambled siRNA or siRNA targeting IKKb or p65 for 48h. (F) 

Representative Immunoblots showing protein levels of Pax7, MyoD, Myogenin, MyHC, 

and unrelated protein Tubulin as a loading control. $P<0.05, values significantly different 

from scrambled siRNA control by unpaired two-tailed t-test. @P<0.05, values 

significantly different from IKKβ siRNA transfected group by unpaired two-tailed t-test. 
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CHAPTER 3 

 

SATELLITE CELL-SPECIFIC OVEREXPRESSION OF A CONSTITUTIVELY 

ACTIVE MUTANT OF IKKβ HINDERS MUSCLE REGENERATION 

 

3.1 Introduction. Skeletal muscle is composed of myofibers which themselves arise 

from fusion of hundreds of myoblasts during embryological development [122]. Skeletal 

muscle has the ability to repair itself, which is attributed to the presence of a satellite 

stem cell population [23]. Following myofiber injury, several cell types are recruited at 

the site of injury to assist in the restoration of skeletal muscle structure [23]. While a few 

other cell types have been suggested to commit to myogenic fate, satellite cells are the 

main cell type that ensures skeletal muscle regeneration. Upon activation, these cells 

proliferate, differentiate, and eventually fuse to injured myofibers to accomplish repair 

[24]. Moreover, a small proportion of activated satellite cells return to a quiescent state 

and replenish the satellite cell pool in freshly regenerated muscle [124]. Pax7 

transcription factor is essential for maintaining the stemness of satellite cells and their 

function during regenerative myogenesis [125, 126]. 

Nuclear Factor-κB (NF-κB) family proteins are expressed in both immune and 

non-immune cell types [100]. As mentioned in previous chapters, the canonical NF-κB 

pathway involves upstream activation of IKKβ, which causes phosphorylation of IκBα 

protein. Phosphorylated IκBα protein is subsequently degraded through the proteasome 
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[100, 101]. Free from IκB, canonical NF-κB dimers (i.e. p50/p65) translocate to the 

nucleus and orchestrate gene expression of several molecules involved in cellular 

survival, proliferation, and differentiation [101]. The canonical pathway promotes 

proliferation, but inhibits their differentiation into multinucleated myotubes [108, 110]. 

By contrast, activation of the non-canonical NF-κB pathway requires upstream activation 

of NIK and IKKα [100]. IKKα facilitates the proteolytic processing of p100 into the p52 

subunit, which then forms a complex with RelB. The p52/RelB complex eventually 

translocates to the nucleus to facilitate transcription of target genes [102]. Recent studies 

have suggested that the non-canonical NF-κB pathway promotes myoblast fusion. In 

addition, this pathway promotes mitochondrial biogenesis to improve the maintenance of 

the differentiated phenotype of myotubes [109]. 

Under naïve conditions, mature skeletal muscle exhibits a relatively low activity 

of the canonical NF-κB pathway. However, various components of this pathway have 

been reported to be upregulated in diseased skeletal muscle [119]. Indeed, inflammatory 

changes and an increase in oxidative stress in various skeletal muscle myopathies have 

been directly associated with heightened activation of canonical NF-κB signaling [119, 

120].  Sarcopenia, or muscle wasting associated with age, has also been shown to be 

partially mediated by an increased activation of the canonical NF-κB signaling cascade 

[111]. Furthermore, in a multitude of rhabdomyosarcoma substrains, primarily the 

alveolar subtype, the canonical NF-κB-YY1-miR-29 signaling axis is disrupted [121]. 

The miR-29 normally acts as a tumor suppressor, but due to the over-activation of the 

canonical NF-κB signaling pathway, miR-29 signaling is silenced leading to 

uncontrollable cell growth [121].  
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As such, modulating the activity of NF-κB signaling has been an experimental 

means of combating muscle pathology. In the Mdx mouse model of Duchenne muscular 

dystrophy, single allele deletion of NF-κB subunit p65/RelA was sufficient to reduce the 

infiltration of macrophages, myofiber necrosis, and calcification and improve the 

regeneration of injured myofibers in dystrophic muscle [160]. Similar results were also 

obtained upon shRNA-mediated knockdown of RelA or through the overexpression of a 

dominant negative mutant of IKKβ using adeno-associated virus (AAV) in skeletal 

muscle of Mdx mice [112]. Furthermore, targeted depletion of IKKβ in macrophages or 

mature myofibers also considerably reduced the expression of inflammatory cytokines 

and ameliorated the dystrophic phenotype in Mdx mice [113]. Consistently, muscle 

regeneration was also improved in WT mice lacking RelA or IKKβ in skeletal muscle 

following cardiotoxin mediated injury, as evidenced by increased numbers of centrally 

located nuclei and increased diameter of regenerating myofibers [102]. 

However, most of the investigations about the role of canonical NF-κB signaling 

in myopathy or myofiber regeneration have been carried out through modulating the 

levels of components of NF-κB in mature skeletal muscle or the inflammatory immune 

cells. A recent report has also suggested that an increase in NF-κB activity in satellite 

cells is also associated with age-associated defects in muscle repair [111]. While the role 

of canonical NF-κB signaling has become increasingly evidenced in the regulation of 

myogenesis, its role in satellite stem cell function remains less understood. Previous 

reports have shown that satellite cell activation of IKKβ results in a reduced 

differentiation through the myogenic lineage in select mouse models of cancer cachexia 

[116]. Work from our lab has shown that TWEAK, a pro-inflammatory cytokine, 
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activates the canonical NF-κB pathway in satellite cells and that the inhibition of this 

pathway in TWEAK treated cultures resulted in an increase in the number of Pax7+ cells 

[140]. These studies and others indicate that depending on the cellular context or the 

stimulus, activation of the canonical NF-κB signaling pathway results in a differential 

regulation of satellite cell fate. 

Having derived from Chapter 2 that the satellite cell-specific depletion of IKKβ 

resulted in a decrease in muscle regeneration in mice, we next sought to investigate the 

effect of overexpression of IKKβ in satellite cells because of the signaling paradigm’s 

close association with various skeletal muscle pathologies. Our results demonstrate that 

overexpression of a constitutively active mutant of IKKβ in satellite cells diminishes 

skeletal muscle regeneration following injury. IKKβ overexpressing satellite cells exhibit 

a precocious differentiation phenotype, but retain an intact self-renewal potential. We 

further report that forced activation of the canonical NF-κB pathway diminishes satellite 

cell proliferation and results in increased cell death. Thus, the results from the current 

study, coupled with our findings from the previous chapter, indicate that strict levels of 

canonical NF-κB signaling are necessitated for the proper functioning of satellite cells. 

 

3.2 Materials and methods.  

Animals. Satellite cell-specific inducible constitutive active (ca) IKKβ (i.e. P7:IKKβca) 

were generating by crossing Pax7-CreER with R26-Stop floxed IKK2ca mice (Jax Strain: 

B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J). All mice were in the C57BL/6J background and 

their genotype was determined by PCR from tail DNA. For Cre-mediated inducible 

overexpression of IKKβ, 6-week and 12-week old mice were injected i.p. with 
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Tamoxifen (10 mg per Kg body weight) for five consecutive days. Control mice were 

injected with corn oil only. The IACUC and IBC of the University of Louisville approved 

all experimental protocols with mice in advance. 

 

Skeletal muscle injury. One week after the first injection of tamoxifen, 100µL of 1.2% 

BaCl2 (Sigma Chemical Co.) in saline was injected into the TA muscle of mice to induce 

necrotic muscle injury. At various time points, TA muscle was collected from euthanized 

mice for biochemical and histological studies. 

 

Myoblast fusion. To study myoblast fusion, two days following BaCl2-mediated necrotic 

muscle injury in the TA, mice were given an i.p. injection of 5-ethnyl-2’-deoxyuridine 

(EdU; 4 µg per gm body weight). Twelve days post-EdU injection, the TA was isolated 

and transverse muscle sections made. The sections were subsequently immunostained 

with anti-Laminin, DAPI for the detection of nuclei, and processed for the detection of 

EdU. The number of interstitial and intramyofibrillar EdU+ myonuclei per myofiber was 

quantified using NIH ImageJ software. 

 

Histology and morphometric analysis. For skeletal muscle morphology and 

regeneration assessment, 10 µm-thick transverse sections of the TA were stained with 

Hematoxylin and Eosin. For quantitative analysis, CSA, minimum Feret’s diameter, and 

multinucleation were analyzed in H&E stained TA muscle sections. H&E slides were 

mounted using DPX Mountant For Histology Slide mounting medium (Sigma Chemical 

Co.) and visualized at room temperature on a Nikon Eclipse TE 2000-U Microscope 
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(Nikon), a digital camera (Nikon Digital Sight DS-Fi1), and Nikon NIS Elements BR 

3.00 software (Nikon). Exposure time was kept at 80ms and contrast levels were not 

altered. 

 

Satellite cell cultures. Satellite cells were isolated from the hind limbs of 6- to 8-week-

old C57BL/6J mice as described [117]. For overexpression plasmid studies, cells were 

transfected using the Neon Electroporation transfection system using a protocol from the 

manufacturer with settings of: 1500V, 10ms pulse width, for three pulses. pCMV4 p65 

was a gift from Warner Greene (Addgene plasmid # 21966) [141]. pcDNA-IKKβ-FLAG 

WT was a gift from Warner Greene (Addgene plasmid # 23298) [142]. pcDNA3.1 

(Invitrogen) was used as a control for the pCMV4 p65 and pcDNA-IKKβ-FLAG WT 

plasmids. 

 

Isolation and culturing of myofibers. Single myofiber cultures were established from 

EDL muscle after digestion with collagenase II (Worthington Biochemical Corporation, 

Lakewood, NJ) and trituration as previously described [117]. Suspended myofibers were 

collected immediately or cultured in 60 mm horse serum-coated plates in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with: 10% fetal bovine serum (FBS; 

Invitrogen), 2% chicken embryo extract (Accurate Chemical, Westbury, NY), 10 ng/mL 

basic fibroblast growth factor (Peprotech, Rocky Hill, NJ), and 1% penicillin-

streptomycin for three days. 
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Immunofluorescence. For IHC and ICC studies, frozen TA muscle sections (9 or 10 µm-

thick sections) or myoblast cultures, respectively, were fixed in 4% paraformaldehyde 

(PFA) in phosphate buffered saline (PBS), blocked in 2% bovine serum albumin (BSA) 

in PBS for one hour, and subsequently incubated with anti-Pax7 (1:5-1:10, DSHB Cat# 

pax7, RRID:AB_528428), anti-eMyHC (1:200, DSHB Cat# F1.652, RRID:AB_447163), 

anti-MyoD (1:200, Santa Cruz Biotechnology Cat# sc-304, RRID:AB_631992), anti-

Laminin (1:150, Cell Signaling Technology Cat# L9393, RRID:AB_477163), or anti-p-

p65 (1:100, Cell Signaling Technology Cat# 3033, RRID:AB_331284) in blocking 

solution at 4°C overnight under humidified conditions. The sections were washed briefly 

with PBS before incubation with respective secondary antibody for one hour at room 

temperature and then washed three times for five minutes with PBS. Nuclei were 

visualized by counterstaining with DAPI for five minutes. Refer to Appendix-3 for 

complete antibody listing. 

 

EdU and TUNEL Staining. To determine the proliferation status of satellite cells, EdU 

staining was performed using a commercially available kit and following the protocol 

from the manufacturer (Click-iT EdU Cell Proliferation Assay kit, Invitrogen). Briefly, 

during the last 90 minutes of incubation, 10 µM EdU (Invitrogen) was added in culture 

medium. The cells were fixed in 4% PFA. EdU visualization occurs through a click 

reaction, whereby the EdU is covalently bonded to a fluorescent label (Alexa Fluor® 488 

Azide). Nuclei were visualized by counterstaining with DAPI for 5 minutes. TUNEL 

staining was performed following a protocol from the manufacturer (in situ Cell Death 

Detection Kit, Sigma Chemical Co.). Briefly, the sections or myofiber cultures were fixed 



	

	 	72	 	

in 4% PFA and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate, and then 

incubated in TUNEL reaction mixture for 60 minutes at 37°C.  

 

Fluorescent Imaging. ICC/IHC slides were mounted using Aqua-Poly/Mount 

fluorescence medium (Polysciences, Inc) and visualized at -0.4°C on a Nikon TiE 3000 

Inverted Microscope (Nikon), a digital camera (DXM-1200C Coded Digital Camera), 

and Nikon NIS Elements AR software (Nikon). Image levels were equally adjusted using 

Adobe Photoshop CS6 software (Adobe). Detailed specifications, exposure times, and 

contrast levels provided in Appendix-4. 

 

RNA isolation and quantitative Real-time PCR (qRT-PCR) Assay. RNA isolation 

and qRT-PCR were performed as previously described [117]. Total RNA was extracted 

from skeletal muscle tissue of mice or cultured myogenic cells using the TRIzol reagent 

(Thermo Fisher Scientific Life Sciences) and an RNeasy Mini Kit (Qiagen, Valencia, 

CA, USA) according to the manufacturers’ protocols. First-strand cDNA for PCR 

analyses were generated with a commercially available kit (Thermo Fisher Scientific Life 

Sciences). Quantification of mRNA expression was performed using the SYBR Green 

dye (Thermo Fisher Scientific Life Sciences) method on a sequence-detection system 

(model 7300; Thermo Fisher Scientific Life Sciences). Approximately 25 µl of reaction 

volume was used for the real-time PCR assays which consisted of 2× (12.5 µl) Brilliant 

SYBR Green QPCR Master Mix (Stratagene), 400 nm of primers (0.5 µl each from the 

stock), 11 µl of water, and 0.5 µl of template. The thermal conditions consisted of an 

initial denaturation at 95 °C for 10 min followed by 40 cycles of denaturation at 95 °C for 
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15 s, annealing and extension at 60 °C for 1 min, and, for a final step, a melting curve of 

95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s. All reactions were carried out in 

triplicate to reduce variation. Primers were designed using Vector NTI software (Thermo 

Fisher Scientific Life Sciences). The sequences of the primers used are as follows: β-

actin, 5’-CAG GCA TTG CTG ACA GGA TG-3’ (forward) and 5’-TGC TGA TCC 

ACA TCT GCT GG-3’ (reverse); IFN-γ, 5’-GAC AAT CAG GCC ATC AGC AAC-3’ 

(Forward), 5’-CGG ATG AGC TCA TTG AAT GCT T-3’; IL-1β, 5’-CTC CAT GAG 

CTT TGT ACA AGG-3’ (Forward), 5’-TGC TGA TGT ACC AGT TGG GG-3’ 

(Reverse); IL-6, 5’-ATG GCA ATT CTG ATT GTA TG -3’ (Forward), 5’-TGG CTT 

TGT CTT TCT TGT TA-3’ (Reverse); Pax7, 5’-CAG TGT GCC ATC TAC CCA TGC 

TTA-3’ (Forward), 5’-GGT GCT TGG TTC AAA TTG AGC C-3’ (Reverse); Myf5, 5’-

TGA AGG ATG GAC ATG ACG GAC G-3’ (Forward), 5’-TTG TGT GCT CCG AAG 

GCT GCT A-3’ (Reverse); Myh3, 5’-ACA TCT CTA TGC CAC CTT CGC TAC-3’ 

(Forward), 5’-GGG TCT TGG TTT CGT TGG GTA T-3’ (Reverse); Myh4, 5’-CGG 

CAA TGA GTA CGT CAC CAA A-3’ (Forward), 5’-TCA AAG CCA GCG ATG TCC 

AA-3’ (Reverse); MyoD, 5’-TGG GAT ATG GAG CTT CTA TCG C-3’ (Forward), 5’-

GGT GAG TCG AAA CAC GGA TCA T-3’ (Reverse); Myogenin, 5’-CAT CCA GTA 

CAT TGA GCG CCT A-3’ (Forward), 5’-GAG CAA ATG ATC TCC TGG GTT G-3’ 

(Reverse); and TNF-α, 5’-AGC ACA GAA AGC ATG ATC CG-3’ (Forward), 5’-GCC 

ACA AGC AGG AAT GAG AA-3’ (Reverse). The data were analyzed using SDS 

software version 2.0, and the results were exported to Microsoft Excel for further 

analysis. Data normalization was accomplished using two endogenous control (β-actin) 

and the normalized values were subjected to a 2-ΔΔCt formula to calculate the fold change 
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between the control and experimental groups. The formula and its derivations were 

obtained from the ABI Prism 7900 Sequence Detection System user guide. 

 

Statistical analyses. For the sake of transparency, results were expressed as box-and-

whisker plots with the box comprised of the 1st, 2nd, and 3rd quartiles, and the lower and 

upper whiskers corresponding to the minimum and maximum values, respectively, to 

display the entire range of data. Statistical analyses between two groups used unpaired 

two-tailed Student’s t-test to compare quantitative data populations with normal 

distribution and equal variance. A value of p<0.05 was considered statistically significant 

unless specified otherwise for comparisons made between two groups. 

 

3.3 Results 

3.3.1 Constitutive activation of canonical NF-κB signaling in satellite cells attenuates 

skeletal muscle regeneration. Our preceding results in Chapter 2 showed that the 

inhibition of canonical NF-κB signaling diminishes the regeneration of skeletal muscle in 

adult mice. However, there are also reports suggesting that the activation of the canonical 

NF-κB pathway, especially in disease conditions, reduces skeletal muscle regeneration 

[116, 129]. To specifically investigate the effect of heightened canonical NF-κB 

signaling in satellite cell function during muscle regeneration, we employed 

R26StopFLIKK2ca (henceforth Rosa26-IKKβca) mice that allow for the inducible 

expression of a constitutively active form of IKKβ (IKKβca) and subsequent activation of 

the canonical NF-κB pathway (Figure 3.1A) [163]. Rosa26-IKKβca mice were crossed 

with Pax7-CreER mice to generate Rosa26-IKKβca;Pax7-CreER mice. To induce the 
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expression of IKKβca in satellite cells, Rosa26-IKKβca;Pax7-CreER mice were treated 

with tamoxifen or vehicle (corn oil) alone to generate satellite cell-specific IKKβ 

overexpression (henceforth P7:IKKβca) or control (Ctrl) mice, respectively (Figure 3.1B 

Overexpression of IKKβ in satellite cells of P7:IKKβca mice was confirmed through 

immunohistochemical staining of IKKβ protein (Figure 3.1C). Next, TA muscle of Ctrl 

and P7:IKKβca mice was injured unilaterally by intramuscular injection of 1.2% BaCl2 

solution and muscle regeneration was evaluated at day 5 or day 14 by performing H&E 

staining (Figure 3.2A). There was no significant difference in myofiber size in uninjured 

TA muscle of Ctrl and P7:IKKβca mice (Figure 3.2B, 3.2C). Interestingly, we found that 

the average myofiber CSA, as well as minimal Feret’s diameter, were significantly 

reduced in TA muscle of P7:IKKβca mice compared with corresponding Ctrl mice 

(Figure 3.2D, 3.2E). Moreover, the proportion of myofibers containing two or more 

centrally located nuclei was also significantly reduced in 5d-injured TA muscle of 

P7:IKKβca mice compared with Ctrl mice (Figure 3.2F). However, after 14d of injury, 

muscle structure was restored in both genotypes, as the average myofiber CSA and 

minimal Feret’s diameter were comparable between Ctrl and P7:IKKβca mice (Figure 

3.2G, 3.2H). Collectively, these results suggest that constitutive activation of canonical 

NF-κB signaling in satellite cells delays muscle regeneration.  

 

3.3.2 Overexpression of IKKβ in satellite cells impedes the formation of new 

myofibers. To further examine the effect of IKKβ overexpression in satellite cell 

mediated muscle regeneration, we analyzed the proportion of myofibers expressing the 

embryonic isoform of myosin heavy chain (eMyHC). We did not find any myofibers 
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expressing eMyHC in uninjured TA muscle of Ctrl or P7:IKKβca mice; consistent with 

the aforementioned notion that eMyHC is only expressed in newly generated myofibers 

(data not shown). Regenerating TA muscle from both groups was populated with newly 

formed eMyHC+ myofibers 5 days following injury. (Figure 3.3A). However, the 

proportion of eMyHC+ myofibers within the Laminin immunostaining was significantly 

reduced in the P7:IKKβca mice compared to littermate Ctrl mice (Figure 3.3B). 

Furthermore, the size of the eMyHC+ myofibers, measured by the CSA and minimal 

Feret’s diameter, was significantly reduced in regenerating muscle of P7:IKKβca mice 

compared to Ctrl mice (Figure 3.3C, 3.3D). 

 We next investigated whether satellite cell-specific overexpression of IKKβ has 

any effect on the proportion of Pax7 expressing satellite cells. Uninjured and 5-day 

injured TA muscle of P7:IKKβca and Ctrl mice were double immunostained for Pax7 and 

Laminin. Nuclei were counterstained with DAPI (Figure 3.3E). Under naïve-uninjured 

conditions, we found no significant changes in the number of satellite cells, evidenced by 

comparable levels of Pax7 between the two groups (data not shown). Interestingly, the 

number of satellite cells was significantly reduced in the TA muscle of 5d-injured 

P7:IKKβca compared to that of Ctrl littermate mice (Figure 3.3F). Consistently, we 

found a significant reduction in the mRNA levels of Pax7 in 5d-injured TA muscle of 

P7:IKKβca compared to littermate Ctrl mice (Figure 3.3G). Altogether, these findings 

indicate that the overexpression of a constitutively active mutant of IKKβ dimnishes the 

pool of activated satellite cells following necrotic muscle injury.  

Activation of the canonical NF-κB pathway has been shown to induce the 

expression of various proinflammatory cytokines [127, 128]. However, it remains to be 



	

	 	77	 	

elucidated whether satellite cells are a source of inflammatory molecules during 

regenerative myogenesis. In an effort to investigate their possible involvement, we 

measured the transcript levels of the proinflammatory cytokines: Interleukin (IL)-1β, IL-

6, and Interferon-γ (IFN-γ) via qRT-PCR. We found a significant reduction in the relative 

mRNA levels of all three proinflammatory cytokines in the 5 day injured TA muscle of 

P7:IKKβca compared to littermate Ctrl mice (Figure 3.3H), suggesting that the 

overexpression of IKKβ in satellite cells negatively regulates the expression of certain 

inflammatory cytokines in the context of regenerative myogenesis. IL-1β is a known 

activator of canonical NF-κB signaling and IL-6 has been shown to differentially regulate 

the canonical NF-κB signaling depending on cellular context [101, 164-166]. It is within 

the realm of possibility that heightened activation of NF-κB signaling in satellite cells 

results in feedback inhibition of its potential activators/mediators (i.e. IL-1β and IL-6) in 

an attempt to blunt the hyperactivated pathway. 

 

3.3.3 Overexpression of IKKβ in satellite cells leads to a reduction in satellite cell 

proliferation. To understand the cellular mechanisms for the reduction in satellite cells 

in skeletal muscle undergoing regeneration in P7:IKKβca mice, we investigated the role 

of supra-physiological activation of canonical NF-κB signaling in the proliferation of 

satellite cells in vivo, ex vivo, and in vitro. TA muscle of 12-week old Ctrl and 

P7:IKKβca mice was injured unilaterally by intramuscular injection of 1.2% BaCl2 

solution. Forty-eight hours later, the mice were given an i.p. injection of EdU. Twelve 

days later, corresponding to 14 days post-injury, we investigated the number of EdU 

incorporating nuclei in the TA muscle (Figure 3.4A). Interestingly, we observed a 
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significant reduction in both the interstitial and intramyofibrillar EdU+ nuclei in TA 

muscle of P7:IKKβca mice compared with corresponding Ctrl mice (Figure 3.4B, 3.4C). 

To further understand whether supra-physiological IKKβ-mediated NF-κB signaling 

specifically affects the proliferation of satellite cells, we generated myofiber explant 

cultures and measured changes in the proliferation of myofiber-associated satellite cells 

via EdU incorporation following 72h of culturing (Figure 3.4D). Similar to in vivo 

results, we found a significant reduction in the proportion of EdU+ myofiber-associated 

satellite cells in explant cultures generated from P7:IKKβca mice compared to littermate 

Ctrl mice explant cultures (Figure 3.4E). 

 We further investigated the role of an overstimulation of canonical NF-κB 

signaling in satellite cell-derived myogenic cultures, where the cells are not associated 

with myofibers. Primary myogenic cultures established from WT mice were transfected 

with vector alone (pcDNA3.1) or plasmids expressing WT IKKβ or p65 cDNA [141, 

142]. After 72h, we employed an EdU incorporation assay to study cellular proliferation 

(Figure 3.4F). Overexpression of IKKβ and p65 resulted in a small, but significant 

reduction in EdU incorporation in myogenic cultures (Figure 3.4G) Collectively, these 

results suggest that the reduced number of satellite cell in regenerating muscle of 

P7:IKKβca mice is due in part to a cell-autonomous defect in proliferation. 

 

3.3.4 Satellite cell-specific overexpression of constitutively active IKKβ promotes cell 

death. One of the major roles of the canonical NF-κB signaling is to promote cell 

survival. However, sustained activation of NF-κB can also lead to cell death through 

apoptosis or necroptosis [127, 128]. Our attempts to perform double immunostaining for 
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TUNEL and Pax7 were to no avail, possibly due to the levels of Pax7 being reduced in 

satellite cells undergoing apoptosis. Therefore, we once again generated ex vivo myofiber 

explants from EDL muscle of P7:IKKβca and Ctrl mice to investigate the effect of supra-

physiological activation of the canonical arm of NF-κB signaling on the survival of 

myofiber associated satellite cells. Following 72h in culture, the proportion of apoptotic 

cells was determined by performing TUNEL labeling. (Figure 3.5A). Interestingly, we 

observed an increase in the proportion of myofiber-associated TUNEL+ cells in explant 

cultures derived from P7:IKKβca mice compared to Ctrl derived explant cultures (Figure 

3.5B). 

 We next investigated the effect of hyperactivated NF-κB signaling on the survival 

of myofiber-free myogenic cultures. WT primary myoblasts were transfected with vector 

alone or plasmids expressing WT IKKβ or p65 cDNA for 72h. LDH is a stable enzyme 

that is released upon cell death and accumulates in the culture supernatant [147]. 

Surprisingly, we found no significant changes in the relative levels of LDH in culture 

supernatants following IKKβ or p65 overexpression (Figure 3.5C).  

 

3.3.5 Overexpression of IKKβ in satellite cells causes a precocious differentiation of 

satellite cells without affecting their self-renewal. It has become increasingly clear that 

Pax7 determines the fate of satellite cells in conjunction with different factors, such as 

MyoD. Indeed, the expression patterns of Pax7 and MyoD signify the myogenic state of 

satellite cells as quiescent (Pax7+/MyoD-), activated (Pax7+/MyoD+), or differentiated 

(Pax7-/MyoD+). We next investigated whether the overexpression of IKKβ has any role 

in the regulation the myogenic status of satellite cells. To model the satellite cell 
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dynamics associated with regenerative myogenesis, we generated ex vivo suspension 

cultures of EDL myofibers from P7:IKKβca and Ctrl mice. The ex vivo suspension 

cultures were analyzed after 0h and 72h of culturing by staining with Pax7 and MyoD 

(Figure 3.6A, 3.6B). We found no significant difference in the number of myofiber-

associated satellite cells in cultures prepared from P7:IKKβca and Ctrl mice at 0h 

(Figure 3.6C). In both groups, we found a negligible number of MyoD+ expressing 

satellite cells at 0h, however, no significant differences were detected between Ctrl and 

P7:IKKβca-derived explants (Figure 3.6D).  

 Satellite cells associated with the myofiber explants formed clusters by 72h of 

culturing. There was no significant difference in the average number of clusters per 

myofiber (data not shown), nor in the average number of cells per cluster in P7:IKKβca 

cultures compared to Ctrl cultures (Figure 3.6E). Furthermore, our analysis showed that 

the proportion of self-renewing satellite cells (i.e. Pax7+/MyoD-) was also not 

significantly different between control and P7:IKKβca explant cultures (Figure 3.6F). 

Interestingly, the proportion of Pax7+/MyoD+ cells was significantly decreased, while 

cells that are Pax7-/MyoD+ were significantly increased in cultures derived from 

P7:IKKβca mice compared to those derived from Ctrl mice (Figure 3.6G, 3.6H). These 

results suggest that supra-physiological activation of IKKβ causes precocious 

differentiation of activated satellite cells  

 We further investigated the role of IKKβ-mediated canonical NF-κB signaling in 

the regulation of myogenic fate of satellite cells in a myofiber-free environment. We first 

established satellite cell-derived primary myogenic cultures from hind limb muscles of 

WT mice. Myogenic cultures taken from early passages were transfected with empty 
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vector or plasmids containing IKKβ or p65 cDNA. Following 72h under growth 

conditions, the cultures were fixed and then double immunostained for Pax7 and MyoD. 

Nuclei were counterstained with DAPI (Figure 3.7A). Consistent with published reports, 

we found that the majority of cells were Pax7+/MyoD+, whereas a small proportion was 

Pax7+/MyoD- (Figure 3.7B). There was a significant reduction in the proportion of 

proliferating cells (Pax7+/MyoD+), while a significant increase was observed in the 

proportion of differentiated (Pax7-/MyoD+) cells following the IKKβ or p65 

overexpression (Figure 3.7C, 3.7D) consistent with the notion that hyperactivation of 

canonical NF-κB signaling in satellite cells compromises their myogenic potential. 

 

3.4 Discussion. Satellite cells normally exist in a quiescent state [123], but are rapidly 

activated following injury to skeletal muscle [35]. Similar to other adult stem cells, 

satellite cells are capable of maintaining a reserve pool of undifferentiated cells through 

self-renewal [17, 33, 35]. A reduction in the satellite cell pool has been linked to an 

impairment in the regeneration of skeletal muscle, such as observed in certain genetic 

muscle disorders and age-related muscle loss [148-150]. NF-κB plays a major role in the 

regulation of cell fate, survival, and differentiation of various cell types [127, 151]. Under 

chronic disease states, activation of the canonical NF-κB in skeletal muscle has been 

associated with a prolonged inflammatory response contributing to exacerbated 

myopathy [127, 128].  

In Chapter 2, we showed that physiological levels of canonical NF-κB signaling 

in satellite cells promote skeletal muscle regeneration following injury. Here we 

demonstrate that the hyperactivation of canonical NF-κB signaling in satellite cells also 
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impairs their function during regenerative myogenesis (Figure 3.2, 3.3). These results are 

consistent with a recently published report demonstrating that the overexpression of a 

constitutively active mutant of IKKβ in satellite cells diminishes muscle repair after 

cryoinjury [132]. Indeed, we have previously reported that the overexpression of a 

constitutively active mutant of IKKβ induces oxidative stress and reduces survival of 

cultured satellite cells [147]. Moreover, sustained activation of the canonical arm of NF-

κB signaling can also reduce skeletal muscle regeneration by preventing the 

differentiation of satellite cells into the myogenic lineage, similar to that reported during 

cancer cachexia [116]. Moreover, in the settings of degenerative muscle disorders, the 

activation of the canonical arm of NF-κB signaling within satellite cells may also reduce 

their myogenic potential. Indeed, partial inhibition of NF-κB has been found to improve 

the engraftment of muscle-derived stem cells in dystrophic muscle of Mdx mice [58, 

157]. It is notable that while we observed a deficit in muscle regeneration at early time 

points (i.e. day 5), skeletal muscle of P7:IKKβca mice eventually regenerate, such that 

there is no major difference in muscle structure at day 14 post-injury, suggesting that the 

impairment in satellite cell function brought about by the hyperactivation of the canonical 

NF-κB pathway is neutralized by the modulatory activity of other factors/pathways that 

govern satellite cell function during muscle regeneration.  

Skeletal muscle regeneration is a multi-faceted process that is regulated by 

numerous signals released from both myogenic and non-myogenic cells that infiltrate the 

muscle microenvironment following injury [122, 123]. In response to stimulating cues, 

satellite cells undergo transcriptional and translational reprogramming, which in turn 

signals for their exit from quiescence into a metabolically activate state, that is conducive 
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to their survival [124, 153-155]. Canonical NF-κB signaling is known to induce 

proliferation and survival through augmenting the expression of a vast array of cell cycle 

and cell growth regulatory molecules [127, 129]. Prior reports have shown that canonical 

NF-κB signaling promotes the proliferation of myogenic cells through an up-regulation 

of cyclin D1 [156]. Surprisingly, our results demonstrate that the constitutive activation 

of IKKβ in satellite cells results in blunted proliferation (Figure 3.4) and survival 

(Figure 3.5) of myofiber associated satellite cells.  

Cellular proliferation was also reduced upon overexpression of WT IKKβ and p65 

in cultured primary myoblasts, although to a modest extent (Figure 3.5). By contrast, we 

did not observe any statistical significant differences in cellular survival under similar 

settings as evidenced by LDH activity (Figure 3.5). These results, while seemingly 

conflicting with our ex vivo experiments where we observed a significant increase in 

TUNEL labeled satellite cells of P7:IKKβca myofiber explants, may be due to the 

differences in methodology used to detect cell death. There is also the fact that in our in 

vivo model of IKKβ overexpression, a constitutively active mutant of IKKβ was 

employed, which happens to be resistant to upstream regulation and therefore guarantees 

hyperactivation of the NF-κB pathway. On the other hand, WT forms of both IKKβ and 

p65 were utilized for the in vitro experiments, where their overexpression might not yield 

a sustained activation of the pathway, as is the case in the constitutively active mutant of 

IKKβ. Indeed, we have previously reported that the overexpression of IKKβca in vitro 

resulted in increased cell death and oxidative stress in primary myogenic cultures [65]. 

Proper muscle regeneration requires the generation of a sufficient number of 

activated satellite cells prior to their fusion to facilitate muscle repair. If the pool of 
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activated satellite cells does not meet the regeneration demands due to a defect in 

survival, activation, proliferation, or due to premature differentiation, restoration of 

muscle homeostasis is compromised. Consistent with this notion, our results demonstrate 

that forced activation of canonical NF-κB signaling in satellite cells blunts muscle repair, 

in part due to defective cellular proliferation and precocious differentiation (Figure 3.6 

and 3.7). On the contrary, previous reports have demonstrated that constitutive activation 

of canonical NF-κB signaling in mature skeletal muscle results in an inhibition of 

myogenic differentiation [129, 133]. The seemingly discrepant data between these studies 

and ours indicates that aberrations in NF-κB signaling have differential roles in the stem 

cell population and mature tissue. Indeed, even within the same cell type, we have 

reported that different alterations in the canonical NF-κB signaling pathway impacts 

different facets of the myogenic process.  

 In summary, our study provides initial evidence that the conditional activation of 

the canonical NF-κB signaling compromises the pool of activated satellite cells and 

impairs muscle regeneration. In conjunction with our knockout data, we conclude that 

strict monitoring of NF-κB activity in satellite cells is important for the completion of 

regenerative myogenesis in adult skeletal muscle. Exhaustion in the satellite cell pool is 

observed in many skeletal muscle disorders and pathological conditions [162]. It remains 

to be determined whether a satellite cell autonomous defect in canonical NF-κB activity 

is associated with such myopathies. Further studies into the differential role of the 

canonical arm of NF-κB signaling may pave the road for new therapies for skeletal 

muscle pathologies.  
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FIGURE 3.1 
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FIGURE 3.1 Generation of satellite cell-specific inducible IKKβca overexpressing 

transgenic mice. (A) Schematic representation of the breeding strategy used for the 

generation of satellite cell-specific IKKβca mice (i.e. P7:IKKβca). (B) Schematic 

representation of treatment protocol for tamoxifen-induced Cre recombination and time 

points for BaCl2-mediated injury in TA muscle and subsequent muscle collection of 

P7:IKKβca and Ctrl mice. (C) Representative photomicrographs of 5d-injured transverse 

TA muscle sections of Ctrl and P7:IKKβca mice after immunostaining for Pax7 and 

IKKβ. Nuclei were identified by staining with DAPI. Arrow points to nucleus of Pax7+ 

cell. Scale bar, 10 µm. dpi, days post injury. 
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FIGURE 3.2 

  



	

	 	88	 	

FIGURE 3.2 Satellite cell-specific overexpression of IKKβca delays muscle 

regeneration in adult mice. (A) Representative photomicrographs of H&E-stained 

sections illustrating regeneration defect in injured TA muscle of P7:IKKβca compared 

with littermate Ctrl mice at indicated time points after BaCl2 injection. Scale bars: 20 µm.  

Quantification of (B) average CSA and (C) minimal Feret’s diameter under naïve 

conditions. N=6. Quantification of (D) average myofiber CSA, (E) average minimal 

Feret’s diameter, and (F) percentage of myofibers containing two or more centrally 

located nuclei per field at day 5 post-injury. N=6. Quantification of (G) average myofiber 

CSA, and (H) minimal Feret’s diameter at day 14 post-injury. N=6. #P<0.05, ##P<0.01, 

###P<0.001, values significantly different from corresponding TA muscle of Ctrl mice by 

unpaired two-tailed t-test. P7:IKKβca 5 dpi experiment was performed and data was 

collected in conjunction with P7:TAK1-KO and P7:TAK1-KO;IKKβca mice. Select data 

presented here is also shown in Figure 4.2. 
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FIGURE 3.3 
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FIGURE 3.3 Overexpression of IKKβca in satellite cells impedes the formation of 

new myofibers and reduces the number of satellite cells. (A) Representative 

photomicrographs of 5d-injured transverse TA muscle section of Ctrl and P7:IKKβca 

mice after immunostaining for eMyHC and Laminin. Nuclei were identified by staining 

with DAPI. Scale bar, 20 µm. Quantification of (B) percentage of eMyHC+ myofibers per 

Laminin+ myofiber, (C) average CSA of eMyHC+ myofiber, and (D) average minimal 

Feret’s diameter of eMyHC+ myofiber in 5d-injured TA muscle of P7:IKKβca and Ctrl 

mice. (E) Representative photomicrograph of 5d-injured transverse TA muscle section of 

Ctrl and P7:IKKβca mice after immunostaining for Pax7 and Laminin. Nuclei were 

identified by staining with DAPI. Arrowhead points to Pax7+ cells. Scale bar, 20 µm. (F) 

Quantification of number of Pax7+ cells per Laminin+ myofiber. N=6. (G) Relative 

mRNA levels of Pax7 in 5d-injured TA muscle of P7:IKKβca and Ctrl mice. (H) 

Relative mRNA levels of various proinflammatory cytokines in 5d-injured TA muscle of 

P7:IKKβca and Ctrl mice. #P<0.05, ##P<0.01, ###P<0.001 values significantly different 

from corresponding TA muscle of Ctrl mice by unpaired two-tailed t-test. 
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FIGURE 3.4 
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FIGURE 3.4 Overexpression of IKKβca in satellite cells diminishes satellite cell 

proliferation. TA muscle of P7:IKKβca and Ctrl mice was injured by intramuscular 

injection of 100 µl of 1.2% BaCl2 solution. After 2 days, the mice were given an 

intraperitoneal injection of EdU and 12 days later TA muscles were collected and muscle 

sections prepared were stained to detect EdU, Laminin, and nuclei. (A) Representative 

photomicrograph of 14d-injured TA muscle section of Ctrl and P7:IKKβca mice after 

processing for EdU deletion and anti-Laminin staining. Nuclei were identified by staining 

with DAPI. Arrowhead points to interstitial EdU+ nuclei. Arrow points to 

intramyofibrillar EdU+ nuclei. Scale bar, 20 µm. Quantification of (B) interstitial EdU+ 

and (C) intramyofibrillar EdU+ nuclei per Laminin+ myofiber in TA muscle of Ctrl and 

P7:IKKβca mice. N=4. Single myofibers cultures were established from EDL muscle of 

Ctrl and P7:IKKβca mice and cultured for 72h. The cells were pulse labeled with EdU for 

last 90 minutes. The myofiber cultures were then stained for EdU. Nuclei were labeled by 

incubation in DAPI. (D) Representative merged images of EdU and DAPI staining are 

presented here. Scale bar, 10 µm. (E) Quantification of percentage of EdU+ cells per 

cluster. Cluster was defined as ≥4 cells. N=10-11 fibers per group. (F) Cultured primary 

myogenic cultures were transfected with vector alone or plasmid vector overexpressing 

(OE) IKKβ or p65 cDNA. After 72h, the cells were pulse labelled with EdU for 90 min. 

Representative merged images of cultures after processing for EdU detection and staining 

with DAPI. Scale bar, 10 µm. (G) Quantification of percent EdU+ cells. N=4. #P<0.05, 

##P<0.01 values significantly different from TA muscle or myofiber suspension culture of 

Ctrl mice by unpaired two-tailed t-test. ^P<0.05, values significantly different from 

pcDNA3.1 control plasmid by unpaired two-tailed t-test.  
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FIGURE 3.5 
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FIGURE 3.5 Satellite cell-specific overexpression of IKKβca causes an increase in 

apoptotic cell death. (A) Single myofiber suspension cultures were established from 

EDL muscle of 6-week old P7:IKKβca and Ctrl mice, and cultured for 72h then 

processed for detection of TUNEL+ nuclei. Nuclei were identified by staining with DAPI. 

Scale bar, 10 µm. (B) Quantification of percentage of TUNEL+ cells per cluster. Cluster 

was defined as ≥4 cells. N=10-11 myofibers per group. (C) Quantification of relative 

LDH activity (fold change) following IKKβ and p65 overexpression (OE) plasmid 

transfection. #P<0.05, values significantly different from corresponding myofiber 

suspension culture of Ctrl mice by unpaired two-tailed t-test. ^P<0.05, values 

significantly different from pcDNA3.1 control plasmid by unpaired two-tailed t-test. 
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FIGURE 3.6 
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FIGURE 3.6 Satellite cell-specific overexpression of IKKβca results in the 

precocious differentiation of satellite cells without affecting their self-renewal. Single 

myofiber suspension cultures were established from EDL muscle of 6-week old 

P7:IKKβca and Ctrl mice, and cultured for 0 or 72 hours. The cultures were fixed and 

immunostained for Pax7 and MyoD. Representative individual and merged images of (A) 

freshly isolated and (B) 72h cultured myofibers from Ctrl and P7:IKKβca mice stained 

with Pax7, MyoD, and DAPI. Quantification of frequency of (C) Pax7+ cells per 

myofiber, and (D) MyoD+ cells per myofiber in Ctrl and P7:IKKβca a 0h. Quantification 

of (E) average number of cells per cluster, (F) percentage of Pax7+/MyoD- cells per 

cluster, (G) percentage of Pax7+/MyoD+ cells per cluster, and (H) percentage of Pax7-

/MyoD+ cells per cluster in Ctrl and P7:IKKβca at 72h of culturing. Cluster was defined 

as ≥4 cells. N=10-11 myofibers per group. #P<0.05, ##P<0.01 values significantly 

different from corresponding myofiber suspension culture of Ctrl mice by unpaired two-

tailed t-test. 
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FIGURE 3.7 
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FIGURE 3.7 Overexpression of IKKβ or p65 result in a precocious differentiation of 

cultured satellite cells. Primary myogenic cultures establish from hind limb muscle of 

WT mice were transfected with vector alone (i.e. pcDNA3.1) or with wild type IKKβ or 

p65 cDNA for 72h. (A) Representative photomicrographs of the cultures after 

immunostaining for Pax7 and MyoD. Nuclei were identified by staining with DAPI. 

Quantification of (B) percentage of Pax7+/MyoD- cells, (C) percentage of Pax7+/MyoD+ 

cells, and (D) percentage of Pax7-/MyoD+ cells in control, IKKβ, or p65-overexpressing 

(OE) cultures. N=3. ^P<0.05, values significantly different from pcDNA3.1 control 

plasmid by unpaired two-tailed t-test.	
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CHAPTER 4 

 

CONSTITUTIVE ACTIVATION OF IKKβ FAILS TO RESTORE THE 

REGENERATION DEFICIT CAUSED BY THE SATELLITE CELL-SPECIFIC 

ABLATION OF TAK1 

 

4.1 Introduction. A temporal activation of various signaling pathways has been shown to 

regulate distinct stages of satellite cell-mediated myogenesis. For example, while 

activation of Notch signaling promotes satellite cell self-renewal, its continued 

stimulation inhibits differentiation through repressing the expression of MyoD [35]. 

Moreover, the Wnt7a/Fzd7 planar-cell-polarity pathway drives the symmetric expansion 

of satellite stem cells during their proliferative phase [68]. On the other hand, the 

canonical Wnt3a/β-catenin pathway has been shown to be involved in regulating satellite 

cell differentiation and subsequent fusion [68]. It has also been shown that MAPK 

signaling pathways regulate myogenesis in a context dependent manner [80]. 

Angiotensin-1/Tie-2 mediated signaling increases the number of quiescent satellite cells 

through activation of the ERK1/2 signaling pathway [67]. By contrast, activation of p38 

MAPK in satellite cells inhibits self-renewal and promotes differentiation [69]. 

Consistently, work from our lab has shown that the adaptor protein TRAF6 is required 

for maintaining the quiescent state of un-stimulated satellite cells and promoting their 
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proliferation following activation through its downstream targets ERK1/2 and JNK1/2, 

and through the suppression of p38 MAPK [117]. Moreover, the canonical nuclear factor-

kappa B (NF-κB) pathway, activated through inhibitor of kappa B kinase-β (IKKβ), 

promotes the expansion of satellite cells and blocks their terminal differentiation in the 

context of cancer cachexia [108]. Work from our lab has also shown that sustained 

activation of canonical NF-κB signaling in response to TWEAK (a proinflammatory 

cytokine) treatment diminishes the number Pax7+ satellite cells in vitro and ex vivo [140]. 

The findings in Chapter 2 and 3 of this thesis demonstrate that physiological levels of 

IKKβ are important for maintaining the survival and proliferation of activated satellite 

cells in injured muscle, and preventing their precocious differentiation. While the role of 

canonical NF-κB signaling in satellite cell homeostasis and myogenesis is becoming 

increasingly evident, the upstream signaling events that dictate its activation status 

remain less understood. 

Transforming growth factor-β-activated kinase 1 (TAK1) is an important 

signaling protein of the MEK Kinase family that activates various signaling cascades in 

response to a variety of stimuli [103]. TAK1-mediated signaling is initiated through its 

interaction with accessory protein TAB1, which constitutively binds and activates TAK1 

[104]. The TAK1 complex is activated in response to proinflammatory stimuli via K63-

linked polyubiquitination driven by the E2 ligase, UBC12/UEV1A, and the RING finger 

E3 ligases TRAF2 or TRAF6 [105, 106]. K63-linked polyubiquitin chains are then bound 

by TAB2 and TAB3, which have a strong affinity to activate TAK1 through inducing 

conformational changes in TAK1, leading to its autophosphorylation at Thr187, which 

initiates the activation of downstream signaling targets, such as NF-κB [106]. Here, 
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activated TAK1 phosphorylates IKKβ on its activation loop, leading to its activation and 

a subsequent phosphorylation of IκBα [100, 101]. IκBα is then polyubiquitinated through 

Lys48-linked polyubiquitin chains and degraded by the proteasome [101]. Free from IκB, 

canonical NF-κB component RelA/p50 translocates to the nucleus to induce transcription 

of target genes [101].  

We have previously reported that the targeted deletion of TAK1 in satellite cells 

(TAK1scko) lead to severe deficits in muscle regeneration following BaCl2-mediated 

injury [65]. TAK1 was found to be essential for satellite cell proliferation and its 

inactivation resulted in their precocious differentiation into the myogenic lineage [65]. 

TAK1-deficient satellite cells exhibit an increase in oxidative stress and necroptosis-

mediated cell death resulting in the depletion of the satellite cell pool [65]. Our findings 

further revealed that TAK1 regulates satellite cell homeostasis, in part, by activating JNK 

and canonical NF-κB signaling pathways [65]. Forced expression of constitutively active 

mutants of JNK and IKKβ improved the proportion of Pax7+ satellite cells, blunted 

oxidative stress, and promoted the survival of TAK1-deficient myogenic cells [65]. 

However, it remains to be determined whether similar molecular mechanisms are 

responsible for the poor skeletal muscle regeneration phenotype observed in TAK1scko 

mice following muscle injury [65].   

Given the proximate hierarchical positioning of TAK1 and the pathway at the 

center of this thesis; i.e. the canonical NF-κB signaling pathway, we next sought to 

investigate weather forced activation of canonical NF-κB signaling in TAK1-deficient 

satellite cells would restore proper muscle regeneration in vivo. Through the generation 

of inducible satellite cell-specific TAK1 knockout, IKKβ constitutively active mice, we 
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demonstrate that constitutive activation of IKKβ in TAK1-deficient satellite cells does 

not rescue the regeneration defects observed in P7:TAK1-KO (previously TAKscko) mice 

following BaCl2 mediated injury. 

 

4.2 Materials and methods. 

Animals. Satellite cell-specific inducible TAK1-knockout/IKKβ-overexpression mice 

(i.e. TAK1flox/flox;R26-Stopflox/flox IKK2ca;Pax7Cre+/-) were generating by crossing R26-

Stop floxed IKK2ca mice with a previously generated satellite cell-specific inducible 

TAK1-knockout mouse (i.e. P7:TAK1-KO). All mice were in the C57BL/6J background 

and their genotype was determined by PCR from tail DNA. For Cre-mediated inducible 

concurrent knockout of TAK1 and overexpression of IKKβ, TAK1 knockout alone, and 

overexpression of IKKβ alone, 12-week old mice were injected i.p. with Tamoxifen (10 

mg per Kg body weight) for five consecutive days. Control mice were injected with corn 

oil only. The IACUC and IBC of the University of Louisville approved all experimental 

protocols with mice in advance. 

 

Skeletal muscle injury. One week after the first injection of tamoxifen, 100µL of 1.2% 

BaCl2 (Sigma Chemical Co.) in saline was injected into the TA muscle of mice to induce 

necrotic muscle injury. At various time points, TA muscle was collected from euthanized 

mice for biochemical and histological studies. 

 

Histology and morphometric analysis. For skeletal muscle morphology and 

regeneration assessment, 10 µm-thick transverse sections of the TA were stained with 
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Hematoxylin and Eosin. For quantitative analysis, CSA, minimum Feret’s diameter, and 

multinucleation were analyzed in H&E stained TA muscle sections. H&E slides were 

mounted using DPX Mountant For Histology Slide mounting medium (Sigma Chemical 

Co.) and visualized at room temperature on a Nikon Eclipse TE 2000-U Microscope 

(Nikon), a digital camera (Nikon Digital Sight DS-Fi1), and Nikon NIS Elements BR 

3.00 software (Nikon). Exposure time was kept at 80ms and contrast levels were not 

altered. 

 

Statistical analyses. For the sake of transparency, results were expressed as box-and-

whisker plots with the box comprised of the 1st, 2nd, and 3rd quartiles, and the lower and 

upper whiskers corresponding to the minimum and maximum values, respectively, to 

display the entire range of data. For experiments involving more than two groups, one 

way analysis of variance (ANOVA) was performed followed by Tukey’s Honest 

Significant Difference (HSD) post hoc analysis to determine significant differences 

between groups. 

 

4.3 Results 

4.3.1 Satellite cell-specific deletion of IKKβ fails to rescue the regeneration defects 

caused by the specific deletion of TAK1. Stemming from our previous findings where 

forced expression of a constitutively active mutant of IKKβ rescued myogenic function in 

TAK1-deficient primary myoblasts, we aimed to employ a similar genetic approach in 

vivo.  Accordingly, we crossed TAK1flox/flox/Pax7Cre+/-  (i.e. P7:TAK1-KO, previously 

TAKscko) with R26-Stopflox/flox IKK2ca mice utilized in our investigations in Chapter 3 to 
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generate inducible TAK1flox/flox;R26-Stopflox/flox IKK2ca;Pax7Cre+/- mice , henceforth 

referred to as P7:TAK1-KO;IKKβca mice (Figure 4.1A).  

 

4.3.2 Forced expression of IKKβ in TAK1-deficient satellite cells yields no 

improvement in regeneration in vivo. Twelve-week-old P7:TAK1-KO only, P7:TAK1-

KO;IKKβca, and P7:IKKβca only mice were injected with tamoxifen to induce Cre-

recombination, or treated with corn oil alone as a vehicle control (TAK1 control, 

TAK1;IKKβ control, and IKKβ control, respectively) (Figure 4.1B). Three days later, 

TA muscle of the aforementioned 6 groups were given intramuscular injections of 100µl 

of 1.2% BaCl2 to induce necrotic muscle injury and regeneration was analyzed at day 5 

post-injury. We analyzed the TA muscles through performing H&E staining on 

transverse sections (Figure 4.2A) and subsequent quantification of: myofiber CSA 

(Figure 4.2B), minimum Feret’s diameter (Figure 4.2C), and percentage of centrally 

multinucleated myofibers (Figure 4.2D). The regeneration phenotype observed in the 

P7:TAK1-KO;IKKβca mice resulted in a regeneration pattern that was intermediate 

between the P7:TAK1-KO mice and the P7:IKKβca, with the P7:TAK1-KO mice 

showing the largest CSA, minimum Feret’s diameter, and percentage of centrally 

multinucleated fibers. A similar trend was seen between the controls, where the TAK1 

control mice showed the largest CSA, minimum Feret’s diameter, and percentage of 

centrally multinucleated fibers, the IKKβ control showing the smallest values for the 

aforementioned parameters, and the TAK1;IKKβ control having values intermediate 

between the other two controls. Significant difference between groups was determined by 

one-way ANOVA followed by Tukey’s HSD post hoc analysis to determine which 
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groups were significantly different from each other. A summary of these findings is 

found in Figure 4.2B-D. Collectively, these findings demonstrate that constitutive 

activation of IKKβ in TAK1-deficient satellite cells does not rescue the muscle 

regeneration defect brought about by TAK1 deletion. 

 

4.4 Discussion. Satellite cells are muscle stem cells that facilitate muscle repair. Like 

other adult stem cell, satellite cells retain the capacity to self-renew, through which, a 

constant pool of healthy cells is maintained. While normally residing in a quiescent state, 

satellite cells are activated in response to injury or rigorous exercise, where they undergo 

several rounds of cell division to produce fusion competent myoblasts to support muscle 

growth and repair. A reduction in the pool of functional satellite cells compromises 

muscle regeneration and eventually leads to loss of muscle mass, similar to as observed 

in various genetic muscle disorders. 

We have previously reported that the deletion of TAK1 in satellite cells impedes 

muscle regeneration following injury due to satellite cell dysfunction. Our findings 

revealed that TAK1 is required for sustaining satellite cell myogenicity through 

maintaining the expression of Pax7 and supporting satellite cell survival. Overexpression 

of constitutively active mutant of IKKβ rescued the expression of Pax7 and abrogated 

cell death of TAK1-deficient myogenic cultures. In the current study, we aimed to 

investigate whether a similar approach would yield similar results in vivo and would 

manifest in efficient muscle regeneration of P7:TAK1-KO muscle.  However, unlike our 

in vitro results, conditional overexpression of constitutively active IKKβ (i.e. IKKβca) in 

TAK1-knockout satellite cells did not improve muscle regeneration. Defects observed in 
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muscle repair were fairly comparable following injury in skeletal muscle of P7:TAK1-

KO;IKKβca and  P7:TAK1-KO mice. While these results may indicate that TAK1 

function in satellite cells is independent of NF-κB in vivo, further investigations are 

warranted. It remains to be seen whether the lack of improvement in regenerating muscle 

of P7:TAK1-KO;IKKβca is merely a result of the supra-physiological activation of the 

canonical NF-κB pathway, and not necessarily an absence of hierarchical signaling 

transduction between TAK1 and IKKβ in satellite cells of regenerating muscle. Indeed 

our results from Chapter 3 and accordingly from the current chapter revealed that a 

heightened activation of the canonical NF-κB pathway via overexpression of IKKβca in 

satellite cells impedes muscle regeneration in vivo. Therefore, it is in the realm of 

possibility that overexpression of a WT form of IKKβ or the introduction of more 

physiologically relevant levels of IKKβ in TAK1-deficient satellite cells would indeed 

yield an improvement in muscle regeneration. While such investigations would lend 

important insight into the possible mechanisms through which TAK1 functions in 

satellite cells in vivo, it is beyond the scope of this thesis, however, will be the subject of 

future research in our lab.  

Altogether, our previous findings complimented with the results of this chapter 

indicate that the implementation of similar strategies in vitro and in vivo does not 

necessarily yield comparable outcomes. While a forcible expression of IKKβca restored 

cell function in TAK1-deficient myogenic cultures, no such improvement was observed 

in satellite cell-mediated muscle regeneration in P7:TAK1-KO muscle. Forthcoming 

investigations will elucidate the ambiguity of the aforementioned findings. 

  



	

	 109	 	

FIGURE 4.1 
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FIGURE 4.1 Generation of satellite cell-specific IKKβca overexpressing and Tak1-

knockout mice. (A) Schematic representation of the breeding strategy used for the 

generation of concurrent satellite cell-specific TAK1-knockout/IKKβ-overexpression 

mice. (B) Treatment protocol for tamoxifen-induced Cre recombination and subsequent 

muscle collection time points in P7:TAK1-KO mice, littermate TAK1 Control, 

P7:TAK1-KO;IKKβ-CA mice, littermate TAK1;IKKβ Control mice, P7:IKKβca mice, 

and IKKβ Control mice. 
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FIGURE 4.2 
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FIGURE 4.2 Overexpression of IKKβ in satellite cells fails to rescue muscle 

regeneration deficit in TAK1scko mice. (A) Representative photomicrographs of H&E-

stained sections of 5-days injured TA muscle of 12-week old: P7:TAK1-KO mice, 

littermate TAK1 Ctrl, P7:TAK1-KO;IKKβca mice, littermate TAK1;IKKβ Ctrl mice, 

P7:IKKβca mice, and IKKβ Ctrl mice following BaCl2-mediated necrotic injury. N=5, 5, 

4, 4, 6, 6, respectively. Scale bar, 20 µm. Quantification of (B) average myofiber CSA, 

(C) minimal Feret’s diameter, and (D) the percentage of myofibers containing two or 

more centrally located nuclei per field at day 5 post-injury. ^P values significantly 

different from corresponding TA muscle of TAK1 Ctrl mice by Tukey’s HSD post hoc 

analysis.  $P values significantly different from corresponding TA muscle of TAK1;IKKβ 

Ctrl mice by Tukey’s HSD post hoc analysis. #P values significantly different from 

corresponding TA muscle of IKKβ Ctrl mice by Tukey’s HSD post hoc analysis. %P 

values significantly different from corresponding TA muscle of P7:TAK1-KO mice by 

Tukey’s HSD post hoc analysis. &P values significantly different from corresponding TA 

muscle of P7:TAK1-KO;IKKβca mice by Tukey’s HSD post hoc analysis. P7:IKKβca 5 

dpi data experiment was performed and was collected in conjunction with P7:TAK1-KO 

and P7:TAK1-KO;IKKβca mice. Select data presented here is also shown in Figure 3.2.   
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

This chapter is a summary of the work presented in this dissertation. It discusses the 

implications in satellite cell homeostasis and function with respect to canonical NF-κB 

signaling. Additionally, it highlights the significance of the findings presented in this 

dissertation and acknowledges experimental limitations applicable to future research. 

 

5.1 Review of Dissertation. Skeletal muscle is a highly plastic tissue that is capable of 

repairing itself following physiological insult. The capability of skeletal muscle to 

regenerate itself following injury is primarily attributed to its satellite stem cell 

population. Signaling within (un)-injured muscle fibers, as well as in immunological cells 

that populate the injured skeletal muscle microenvironment, also contribute to various 

facets of regenerative myogenesis. Through examination of the role of IKKβ, a central 

kinase of canonical NF-κB signaling, the findings of this dissertation underscore the 

complex nature surrounding molecular events that occur during homeostasis of the 

satellite stem cell and its functional role during regenerative myogenesis. Our results 

indicate that IKKβ-mediated canonical NF-κB signaling facilitates the repair process 

post-injury and maintains the myogenic status of activated satellite cells.  
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The findings detailed in Chapter 2 revealed that the ablation of IKKβ in satellite 

cells inhibits the process of skeletal muscle regeneration following an acute injury due to 

a reduction in satellite cell proliferation and survival. Our results suggest that IKKβ and 

p65-mediated canonical NF-κB signaling promotes the survival, proliferation, and self-

renewal of activated satellite cells. Indeed, it appears that satellite cells signal the 

canonical NF-κB pathway after skeletal muscle injury to increase the satellite stem cell 

population, and thereby facilitate in the proper regeneration of skeletal muscle. While 

various inflammatory molecules are expressed following injury, our results suggest that 

satellite cells do not modulate the expression of these inflammatory cytokines. In various 

experiments, uninjured skeletal muscle and associated quiescent satellite cells displayed 

no noticeable phenotype following the satellite cell-specific ablation of IKKβ, suggesting 

that the canonical NF-κB pathway has a limited impact, if any, on the regulation of 

quiescent satellite cells. 

 As discussed in Chapter 3, we explored the effect of supra-physiological 

activation of the canonical NF-κB signaling pathway in satellite cells. Since depletion of 

IKKβ was deleterious for satellite cell function during regenerative myogenesis, we 

questioned whether over-stimulation of the canonical NF-κB pathway via IKKβca 

overexpression would yield beneficial outcomes. However, this did not turn out to be the 

case. Similar to as observed with IKKβ deletion, forced expression of IKKβ in satellite 

cells also compromised satellite cell function and impeded muscle regeneration. Indeed 

these results are consistent with published reports where various myopathic disorders 

were associated with heightened activation of canonical NF-κB pathway. Furthermore, 

our data suggest that differential aberrations in canonical NF-κB signaling alter different 
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facets of regenerative myogenesis. While both knockout and overexpression of IKKβ in 

satellite cells resulted in their precocious differentiation and a reduction in their 

proliferation and survival, only in the context of the satellite cell-specific IKKβ deletion 

did we see a reduction in satellite cell self-renewal. It remains to be determined whether 

the similar phenotypic outcomes observed from both interventions are result of common 

upstream mechanisms or occur in a distinct manner.   

 The focus of Chapter 4 was to investigate whether overexpression of the 

canonical NF-κB pathway via a constitutively active IKKβ mutant would ameliorate the 

effects of TAK1 deficiency in satellite cells in an in vivo setting. Previous work from our 

lab revealed a deleterious regeneration phenotype following the specific ablation of 

TAK1 in satellite cells. Overexpression of a constitutively active mutant form of IKKβ in 

vitro rescued myogenic function in TAK1-deficient satellite cell-derived myogenic 

cultures as evidenced by the restoration of Pax7 expression and an increase in cellular 

survival and proliferation. However, no such improvement was observed. Regeneration 

deficits were still evident following the conditional overexpression of IKKβca in TAK1 

knock out satellite cells (P7:TAK1-KO;IKKβca) in vivo, indicating lack of improvement 

in satellite cell function. 

 Collectively, the results of this dissertation indicate that canonical NF-κB 

signaling, mediated by IKKβ, is a versatile modulator of both satellite stem cells and 

mature skeletal muscle. From our data and taken in conjunction with the current 

literature, it is becoming increasingly evidenced that a single signaling module may carry 

distinct functions within various stages of the myogenic lineage. While it has been widely 

reported that activation of canonical NF-κB signaling in differentiated muscle is 
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associated with virulent outcomes, our findings are suggestive of a supportive role of NF-

κB in satellite cell function. However, such role is dictated by a precise regulation of NF-

κB activity, as both under- and over-stimulation of the pathway had an adverse effect on 

the myogenic capacity of satellite cells. 

 

5.2 Scientific contribution and future implementation. The data shown in this 

dissertation identifies a previously unrecognized role for canonical NF-κB signaling in 

satellite cell-mediated regenerative myogenesis. Aberrant activation of canonical NF-κB 

signaling has been observed in various pathological conditions such as Duchenne 

muscular dystrophy and Rhabdomyosarcoma. Accordingly, therapeutic strategies aimed 

at abolishing the activity of NF-κB have been implemented in treating such disorders in 

pre-clinical animal models, and have been reported to be advantageous. However, most 

studies were focused on evaluating specific disease parameters and were carried out for a 

short period of time. Such research approaches may result in an oversight of possible 

deleterious outcomes in various parameters or cell types that do not fall under the 

evaluation criteria. Furthermore, short-term evaluations may have failed to identify 

possible virulent outcomes, such as loss of satellite cell function, which may have 

manifested from NF-κB inhibition in the long run. The findings from this dissertation 

emphasize a formerly overlooked biological significance for the canonical NF-κB 

signaling in activated satellite cells. As such, our findings underscore the importance of 

implementing a holistic approach upon evaluating target-based therapies. Therefore, a 

global long-term evaluation is required upon targeting NF-κB signaling in a myopathic 

disease setting.  
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Our findings from Chapters 2 and 3 reveal that over- and under-stimulation of the 

canonical NF-κB pathway compromises satellite cell myogenic potential. Furthermore, 

our findings from Chapter 4 demonstrated that forced activation of canonical NF-κB 

signaling in TAK1-deficient satellite cells did not improve muscle regeneration in 

P7:TAK1-KO mice, despite a similar approach yielding beneficial results in vitro. Such 

outcomes illustrate the importance of a precise regulation of NF-κB activity within 

satellite cells to drive proper myogenic function. Exhaustion in satellite cell function and 

number has been observed in many pathological conditions as well as in age-associated 

muscle loss. However, the molecular mechanisms that elicit such manifestations remain 

unknown. It is conceivable that satellite cells cell-autonomous aberration of NF-κB 

signaling drives the loss of myogenic potential within certain disease contexts. Therefore, 

reclaiming physiological levels of NF-κB activity within satellite cells may prove to be 

beneficial in treating various muscle disorders. 

 

5.3 Limitations of future implementation. This dissertation concludes in identifying 

canonical NF-κB signaling, mediated through IKKβ, as a regulator of the myogenic 

status of activated satellite cells and a mediator of regeneration of skeletal muscle 

following injury. However, the work presented here and taken in conjunction with current 

literature suggests that a cell specific approach would preclude any therapeutic strategies. 

The ablation of canonical NF-κB signaling in mature skeletal muscle has been shown to 

be beneficial for regenerative myogenesis, but the work presented here suggests that it 

would be deleterious in the satellite stem cell population. While genetic engineering 

techniques do allow for the conditional deletion/overexpression of various molecules in 
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laboratory mouse models, such methodology is not currently available/viable within the 

realm of translational research. Thus, any pharmacological approaches to inhibiting 

canonical NF-κB signaling might have deleterious outcomes in the long term due to the 

differential effects on stem cells and mature tissues. To elevate the significance of the 

findings contained within this dissertation, a translational approach allowing for cell-

specific alterations in mature tissues types that spared the stem cell population would 

need to be generated. Lastly, the work in Chapter 4 did not yield a rescue phenotype 

following the overexpression of IKKβ in TAK1-deficient satellite cells in vivo, unlike 

was observed when a similar approach was employed in vitro. It remains to be seen 

whether this is owed to the supra-physiological activation of the canonical NF-κB 

pathway, which was shown to impede satellite cell-mediated muscle regeneration, as was 

observed in Chapter 3, or if IKKβ is acting independently of TAK1 in satellite cells in 

vivo. Along similar lines, in Chapters 3 and 4, the extent to which the canonical NF-κB 

pathway was activated was not elucidated. Future work should be performed to determine 

what levels of signaling the canonical NF-κB pathway produces a therapeutic effect with 

respect to satellite cell homeostasis and regenerative myogenesis. 

 



	

	 119	 	

REFERENCES 

 

1. Trainor PA, Tam PP: Cranial paraxial mesoderm and neural crest cells of the 
mouse embryo: co-distribution in the craniofacial mesenchyme but distinct 
segregation in branchial arches. Development (Cambridge, England) 1995, 
121(8):2569-2582. 

2. Pourquie O: Vertebrate somitogenesis. Annual review of cell and developmental 
biology 2001, 17:311-350. 

3. Maroto M, Bone RA, Dale JK: Somitogenesis. Development (Cambridge, 
England) 2012, 139(14):2453-2456. 

4. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, 
Montarras D, Rocancourt D, Relaix F: The formation of skeletal muscle: from 
somite to limb. J Anat 2003, 202(1):59-68. 

5. Hollway GE, Currie PD: Myotome meanderings. Cellular morphogenesis and 
the making of muscle. EMBO reports 2003, 4(9):855-860. 

6. Innocenzi A, Latella L, Messina G, Simonatto M, Marullo F, Berghella L, Poizat 
C, Shu CW, Wang JY, Puri PL et al: An evolutionarily acquired genotoxic 
response discriminates MyoD from Myf5, and differentially regulates 
hypaxial and epaxial myogenesis. EMBO reports 2011, 12(2):164-171. 

7. Parker MH, Seale P, Rudnicki MA: Looking back to the embryo: defining 
transcriptional networks in adult myogenesis. Nature Reviews Genetics 2003, 
4(7):497-507. 

8. Kielbowna L, Jedrzejowska I: How is myogenesis initiated in chordates? Folia 
biologica 2012, 60(3-4):107-119. 

9. Grifone R, Kelly RG: Heartening news for head muscle development. Trends 
in genetics : TIG 2007, 23(8):365-369. 

10. Webster MT, Fan CM: c-MET regulates myoblast motility and myocyte fusion 
during adult skeletal muscle regeneration. PloS one 2013, 8(11):e81757. 

11. Griffin CA, Apponi LH, Long KK, Pavlath GK: Chemokine expression and 
control of muscle cell migration during myogenesis. Journal of cell science 
2010, 123(Pt 18):3052-3060. 



	

	 120	 	

12. Mennerich D, Braun T: Activation of myogenesis by the homeobox gene Lbx1 
requires cell proliferation. The EMBO journal 2001, 20(24):7174-7183. 

13. Yee SP, Rigby PW: The regulation of myogenin gene expression during the 
embryonic development of the mouse. Genes & Development 1993, 7(7a):1277-
1289. 

14. Andres V, Walsh K: Myogenin expression, cell cycle withdrawal, and 
phenotypic differentiation are temporally separable events that precede cell 
fusion upon myogenesis. J Cell Biol 1996, 132(4):657-666. 

15. Cusella-De Angelis MG: MyoD, myogenin independent differentiation of 
primordial myoblasts in mouse somites. The Journal of Cell Biology 1992, 
116(5):1243-1255. 

16. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R: 
MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993, 
75(7):1351-1359. 

17. Halevy O, Piestun Y, Allouh MZ, Rosser BWC, Rinkevich Y, Reshef R, 
Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z: Pattern of Pax7 
expression during myogenesis in the posthatch chicken establishes a model 
for satellite cell differentiation and renewal. Developmental Dynamics 2004, 
231(3):489-502. 

18. Hughes SM: Muscle development: Reversal of the differentiated state. Current 
Biology 2001, 11(6):R237-R239. 

19. Yun K, Wold B: Skeletal muscle determination and differentiation: story of a 
core regulatory network and its context. Current Opinion in Cell Biology 1996, 
8(6):877-889. 

20. Perry RLS: Molecular mechanisms regulating myogenic determination and 
differentiation. Frontiers in Bioscience 2000, 5(3):d750-767. 

21. Kim JH, Jin P, Duan R, Chen EH: Mechanisms of myoblast fusion during 
muscle development. Curr Opin Genet Dev 2015, 32:162-170. 

22. Mankoo BS, Collins NS, Ashby P, Grigorieva E, Pevny LH, Candia A, Wright 
CV, Rigby PW, Pachnis V: Mox2 is a component of the genetic hierarchy 
controlling limb muscle development. Nature 1999, 400(6739):69-73. 

23. Charge SBP: Cellular and Molecular Regulation of Muscle Regeneration. 
Physiological Reviews 2004, 84(1):209-238. 

24. Chen Y, Melton DW, Gelfond JAL, McManus LM, Shireman PK: MiR-351 
transiently increases during muscle regeneration and promotes progenitor 



	

	 121	 	

cell proliferation and survival upon differentiation. Physiological Genomics 
2012, 44(21):1042-1051. 

25. Hindi SM, Kumar A: Toll-like receptor signalling in regenerative myogenesis: 
friend and foe. The Journal of pathology 2016, 239(2):125-128. 

26. Henriques-Pons A, Yu Q, Rayavarapu S, Cohen TV, Ampong B, Cha HJ, Jahnke 
V, Van der Meulen J, Wang D, Jiang W et al: Role of Toll-like receptors in the 
pathogenesis of dystrophin-deficient skeletal and heart muscle. Human 
molecular genetics 2014, 23(10):2604-2617. 

27. Tidball JG, Dorshkind K, Wehling-Henricks M: Shared signaling systems in 
myeloid cell-mediated muscle regeneration. Development (Cambridge, 
England) 2014, 141(6):1184-1196. 

28. Tidball JG, Villalta SA: Regulatory interactions between muscle and the 
immune system during muscle regeneration. American journal of physiology 
Regulatory, integrative and comparative physiology 2010, 298(5):R1173-1187. 

29. Giordano C, Mojumdar K, Liang F, Lemaire C, Li T, Richardson J, Divangahi M, 
Qureshi S, Petrof BJ: Toll-like receptor 4 ablation in mdx mice reveals innate 
immunity as a therapeutic target in Duchenne muscular dystrophy. Human 
molecular genetics 2015, 24(8):2147-2162. 

30. Imai T, Chantry D, Raport CJ, Wood CL, Nishimura M, Godiska R, Yoshie O, 
Gray PW: Macrophage-derived chemokine is a functional ligand for the CC 
chemokine receptor 4. The Journal of biological chemistry 1998, 273(3):1764-
1768. 

31. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell 
T, Feldmann M, Udalova IA: IRF5 promotes inflammatory macrophage 
polarization and TH1-TH17 responses. Nature immunology 2011, 12(3):231-
238. 

32. Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: 
time for reassessment. F1000prime reports 2014, 6:13. 

33. Kuang S, Kuroda K, Le Grand F, Rudnicki MA: Asymmetric Self-Renewal and 
Commitment of Satellite Stem Cells in Muscle. Cell 2007, 129(5):999-1010. 

34. Bentzinger CF, Wang YX, Rudnicki MA: Building Muscle: Molecular 
Regulation of Myogenesis. Cold Spring Harbor Perspectives in Biology 2012, 
4(2):a008342-a008342. 

35. Kuang S, Rudnicki MA: The emerging biology of satellite cells and their 
therapeutic potential. Trends in Molecular Medicine 2008, 14(2):82-91. 



	

	 122	 	

36. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel 
LM, Mulligan RC: Dystrophin expression in the mdx mouse restored by stem 
cell transplantation. Nature 1999, 401(6751):390-394. 

37. deLapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F, Birnbaum 
D: Expression of the Fgf6 gene is restricted to developing skeletal muscle in 
the mouse embryo. Development (Cambridge, England) 1993, 118(2):601-611. 

38. Floss T, Arnold HH, Braun T: A role for FGF-6 in skeletal muscle 
regeneration. Genes Dev 1997, 11(16):2040-2051. 

39. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB: Syndecan-3 
and syndecan-4 specifically mark skeletal muscle satellite cells and are 
implicated in satellite cell maintenance and muscle regeneration. 
Developmental biology 2001, 239(1):79-94. 

40. Lefaucheur JP, Sebille A: Basic fibroblast growth factor promotes in vivo 
muscle regeneration in murine muscular dystrophy. Neuroscience letters 
1995, 202(1-2):121-124. 

41. Florini JR, Ewton DZ, Roof SL: Insulin-like growth factor-I stimulates 
terminal myogenic differentiation by induction of myogenin gene expression. 
Molecular endocrinology (Baltimore, Md) 1991, 5(5):718-724. 

42. Greene EA, Allen RE: Growth factor regulation of bovine satellite cell growth 
in vitro. Journal of animal science 1991, 69(1):146-152. 

43. McFarland DC, Pesall JE, Gilkerson KK: The influence of growth factors on 
turkey embryonic myoblasts and satellite cells in vitro. General and 
comparative endocrinology 1993, 89(3):415-424. 

44. Barton-Davis ER, Shoturma DI, Sweeney HL: Contribution of satellite cells to 
IGF-I induced hypertrophy of skeletal muscle. Acta physiologica Scandinavica 
1999, 167(4):301-305. 

45. Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N: IGF-1 induces 
skeletal myocyte hypertrophy through calcineurin in association with GATA-
2 and NF-ATc1. Nature 1999, 400(6744):581-585. 

46. Semsarian C, Sutrave P, Richmond DR, Graham RM: Insulin-like growth factor 
(IGF-I) induces myotube hypertrophy associated with an increase in 
anaerobic glycolysis in a clonal skeletal-muscle cell model. The Biochemical 
journal 1999, 339 ( Pt 2):443-451. 

47. Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, 
Graham RM: Skeletal muscle hypertrophy is mediated by a Ca2+-dependent 
calcineurin signalling pathway. Nature 1999, 400(6744):576-581. 



	

	 123	 	

48. Erbay E, Park IH, Nuzzi PD, Schoenherr CJ, Chen J: IGF-II transcription in 
skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol 2003, 
163(5):931-936. 

49. Allen RE, Boxhorn LK: Inhibition of skeletal muscle satellite cell 
differentiation by transforming growth factor-beta. Journal of cellular 
physiology 1987, 133(3):567-572. 

50. Lefaucheur JP, Gjata B, Lafont H, Sebille A: Angiogenic and inflammatory 
responses following skeletal muscle injury are altered by immune 
neutralization of endogenous basic fibroblast growth factor, insulin-like 
growth factor-1 and transforming growth factor-beta 1. Journal of 
neuroimmunology 1996, 70(1):37-44. 

51. Lefaucheur JP, Sebille A: Muscle regeneration following injury can be 
modified in vivo by immune neutralization of basic fibroblast growth factor, 
transforming growth factor beta 1 or insulin-like growth factor I. Journal of 
neuroimmunology 1995, 57(1-2):85-91. 

52. McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in 
mice by a new TGF-beta superfamily member. Nature 1997, 387(6628):83-90. 

53. Kirk S, Oldham J, Kambadur R, Sharma M, Dobbie P, Bass J: Myostatin 
regulation during skeletal muscle regeneration. Journal of cellular physiology 
2000, 184(3):356-363. 

54. Zarnegar R, Michalopoulos GK: The many faces of hepatocyte growth factor: 
from hepatopoiesis to hematopoiesis. J Cell Biol 1995, 129(5):1177-1180. 

55. Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H: 
Skeletal muscle injury induces hepatocyte growth factor expression in spleen. 
Biochemical and biophysical research communications 2002, 292(3):709-714. 

56. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE: HGF/SF is present 
in normal adult skeletal muscle and is capable of activating satellite cells. 
Developmental biology 1998, 194(1):114-128. 

57. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE: Mechanical stretch 
induces activation of skeletal muscle satellite cells in vitro. Experimental cell 
research 2001, 267(1):107-114. 

58. Proto JD, Tang Y, Lu A, Chen WC, Stahl E, Poddar M, Beckman SA, Robbins 
PD, Nidernhofer LJ, Imbrogno K et al: NF-kappaB inhibition reveals a novel 
role for HGF during skeletal muscle repair. Cell death & disease 2015, 
6:e1730. 



	

	 124	 	

59. Austin L, Bower J, Kurek J, Vakakis N: Effects of leukaemia inhibitory factor 
and other cytokines on murine and human myoblast proliferation. Journal of 
the neurological sciences 1992, 112(1-2):185-191. 

60. Bower J, Vakakis N, Nicola NA, Austin L: Specific binding of leukemia 
inhibitory factor to murine myoblasts in culture. Journal of cellular 
physiology 1995, 164(1):93-98. 

61. Vakakis N, Bower J, Austin L: In vitro myoblast to myotube transformations 
in the presence of leukemia inhibitory factor. Neurochemistry international 
1995, 27(4-5):329-335. 

62. Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L: The role 
of leukemia inhibitory factor in skeletal muscle regeneration. Muscle & nerve 
1997, 20(7):815-822. 

63. Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L: Leukemia inhibitory 
factor and interleukin-6 are produced by diseased and regenerating skeletal 
muscle. Muscle & nerve 1996, 19(10):1291-1301. 

64. Hardee JP, Fix DK, Wang X, Goldsmith EC, Koh HJ, Carson JA: Systemic IL-6 
regulation of eccentric contraction-induced muscle protein synthesis. 
American journal of physiology Cell physiology 2018. 

65. Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A: TAK1 modulates 
satellite stem cell homeostasis and skeletal muscle repair. Nature 
Communications 2015, 6:10123. 

66. Hindi SM, Paul PK, Dahiya S, Mishra V, Bhatnagar S, Kuang S, Choi Y, Kumar 
A: Reciprocal Interaction between TRAF6 and Notch Signaling Regulates 
Adult Myofiber Regeneration upon Injury. Molecular and Cellular Biology 
2012, 32(23):4833-4845. 

67. Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier F-J, Rudnicki 
MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A et al: Autocrine and 
Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-
Renewal. Cell Stem Cell 2009, 5(3):298-309. 

68. Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA: Wnt7a Activates the 
Planar Cell Polarity Pathway to Drive the Symmetric Expansion of Satellite 
Stem Cells. Cell Stem Cell 2009, 4(6):535-547. 

69. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB: p38 
MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in 
skeletal muscle of aged mice. Nature Medicine 2014, 20(3):265-271. 



	

	 125	 	

70. Shi H, Verma M, Zhang L, Dong C, Flavell RA, Bennett AM: Improved 
regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. 
Journal of Clinical Investigation 2013, 123(5):2064-2077. 

71. Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, 
Wilson DH, Frenette J, Rudnicki MA: Inhibition of JAK-STAT signaling 
stimulates adult satellite cell function. Nature Medicine 2014, 20(10):1174-
1181. 

72. Ehebauer M, Hayward P, Arias AM: Notch, a Universal Arbiter of Cell Fate 
Decisions. Science 2006, 314(5804):1414-1415. 

73. Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA: Notch 
Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells. 
STEM CELLS 2012, 30(2):232-242. 

74. Conboy IM: Notch-Mediated Restoration of Regenerative Potential to Aged 
Muscle. Science 2003, 302(5650):1575-1577. 

75. Keshet Y, Seger R: The MAP kinase signaling cascades: a system of hundreds 
of components regulates a diverse array of physiological functions. Methods 
in molecular biology (Clifton, NJ) 2010, 661:3-38. 

76. Ramos JW: The regulation of extracellular signal-regulated kinase (ERK) in 
mammalian cells. The international journal of biochemistry & cell biology 2008, 
40(12):2707-2719. 

77. Shaul YD, Seger R: The MEK/ERK cascade: from signaling specificity to 
diverse functions. Biochimica et biophysica acta 2007, 1773(8):1213-1226. 

78. Wortzel I, Seger R: The ERK Cascade: Distinct Functions within Various 
Subcellular Organelles. Genes & cancer 2011, 2(3):195-209. 

79. Yao Z, Seger R: The ERK signaling cascade--views from different subcellular 
compartments. BioFactors (Oxford, England) 2009, 35(5):407-416. 

80. Xie SJ, Li JH, Chen HF, Tan YY, Liu SR, Zhang Y, Xu H, Yang JH, Liu S, 
Zheng LL et al: Inhibition of the JNK/MAPK signaling pathway by 
myogenesis-associated miRNAs is required for skeletal muscle development. 
Cell death and differentiation 2018. 

81. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC: c-Jun N-terminal 
kinase (JNK) signaling: recent advances and challenges. Biochimica et 
biophysica acta 2010, 1804(3):463-475. 

82. Chen F: JNK-induced apoptosis, compensatory growth, and cancer stem cells. 
Cancer research 2012, 72(2):379-386. 



	

	 126	 	

83. Verma G, Datta M: The critical role of JNK in the ER-mitochondrial crosstalk 
during apoptotic cell death. Journal of cellular physiology 2012, 227(5):1791-
1795. 

84. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA: p38(MAPK): 
stress responses from molecular mechanisms to therapeutics. Trends Mol Med 
2009, 15(8):369-379. 

85. Cuadrado A, Nebreda AR: Mechanisms and functions of p38 MAPK 
signalling. The Biochemical journal 2010, 429(3):403-417. 

86. del Barco Barrantes I, Nebreda AR: Roles of p38 MAPKs in invasion and 
metastasis. Biochemical Society transactions 2012, 40(1):79-84. 

87. Huang G, Shi LZ, Chi H: Regulation of JNK and p38 MAPK in the immune 
system: signal integration, propagation and termination. Cytokine 2009, 
48(3):161-169. 

88. Segales J, Perdiguero E, Munoz-Canoves P: Regulation of Muscle Stem Cell 
Functions: A Focus on the p38 MAPK Signaling Pathway. Frontiers in cell 
and developmental biology 2016, 4:91. 

89. Keren A, Tamir Y, Bengal E: The p38 MAPK signaling pathway: a major 
regulator of skeletal muscle development. Molecular and cellular 
endocrinology 2006, 252(1-2):224-230. 

90. Liu QC, Zha XH, Faralli H, Yin H, Louis-Jeune C, Perdiguero E, Pranckeviciene 
E, Munoz-Canoves P, Rudnicki MA, Brand M et al: Comparative expression 
profiling identifies differential roles for Myogenin and p38alpha MAPK 
signaling in myogenesis. Journal of molecular cell biology 2012, 4(6):386-397. 

91. Lluis F, Perdiguero E, Nebreda AR, Munoz-Canoves P: Regulation of skeletal 
muscle gene expression by p38 MAP kinases. Trends Cell Biol 2006, 16(1):36-
44. 

92. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA: Wnt signaling in 
myogenesis. Trends in Cell Biology 2012, 22(11):602-609. 

93. Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. 
Journal of cell science 2004, 117(Pt 8):1281-1283. 

94. Aaronson DS, Horvath CM: A road map for those who don't know JAK-
STAT. Science 2002, 296(5573):1653-1655. 

95. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: 
Principles of interleukin (IL)-6-type cytokine signalling and its regulation. 
The Biochemical journal 2003, 374(Pt 1):1-20. 



	

	 127	 	

96. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW: Signaling through the 
JAK/STAT pathway, recent advances and future challenges. Gene 2002, 
285(1-2):1-24. 

97. O'Shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises 
in the Jak/Stat pathway. Cell 2002, 109 Suppl:S121-131. 

98. Yang Y, Xu Y, Li W, Wang G, Song Y, Yang G, Han X, Du Z, Sun L, Ma K: 
STAT3 induces muscle stem cell differentiation by interaction with myoD. 
Cytokine 2009, 46(1):137-141. 

99. McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G: 
Elevated SOCS3 and altered IL-6 signaling is associated with age-related 
human muscle stem cell dysfunction. American journal of physiology Cell 
physiology 2013, 304(8):C717-728. 

100. Hayden MS: Signaling to NF- B. Genes & Development 2004, 18(18):2195-
2224. 

101. Shih VF-S, Tsui R, Caldwell A, Hoffmann A: A single NFκB system for both 
canonical and non-canonical signaling. Cell Research 2010, 21(1):86-102. 

102. Li H, Malhotra S, Kumar A: Nuclear factor-kappa B signaling in skeletal 
muscle atrophy. Journal of Molecular Medicine 2008, 86(10):1113-1126. 

103. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, 
Nishida E, Matsumoto K: Identification of a Member of the MAPKKK Family 
as a Potential Mediator of TGF-beta Signal Transduction. Science 1995, 
270(5244):2008-2011. 

104. Dai L, Aye Thu C, Liu X-Y, Xi J, Cheung PCF: TAK1, more than just innate 
immunity. IUBMB Life 2012, 64(10):825-834. 

105. Fan Y, Yu Y, Mao R, Zhang H, Yang J: TAK1 Lys-158 but not Lys-209 is 
required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and 
IKK/NF-κB activation. Cellular Signalling 2011, 23(4):660-665. 

106. Kanayama A, Seth RB, Sun L, Ea C-K, Hong M, Shaito A, Chiu Y-H, Deng L, 
Chen ZJ: TAB2 and TAB3 Activate the NF-κB Pathway through Binding to 
Polyubiquitin Chains. Molecular Cell 2004, 15(4):535-548. 

107. Shim JH: TAK1, but not TAB1 or TAB2, plays an essential role in multiple 
signaling pathways in vivo. Genes & Development 2005, 19(22):2668-2681. 

108. Guttridge DC: NF-kappa B-Induced Loss of MyoD Messenger RNA: Possible 
Role in Muscle Decay and Cachexia. Science 2000, 289(5488):2363-2366. 



	

	 128	 	

109. Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, 
Rudnicki MA, Hollenbach AD, Guttridge DC: IKK/NF-κB regulates skeletal 
myogenesis via a signaling switch to inhibit differentiation and promote 
mitochondrial biogenesis. The Journal of Cell Biology 2008, 180(4):787-802. 

110. Langen RCJ: Tumor necrosis factor-alpha inhibits myogenic differentiation 
through MyoD protein destabilization. The FASEB Journal 2004, 18(2):227-
237. 

111. Cai D, Frantz JD, Tawa NE, Melendez PA, Oh B-C, Lidov HGW, Hasselgren P-
O, Frontera WR, Lee J, Glass DJ et al: IKKβ/NF-κB Activation Causes Severe 
Muscle Wasting in Mice. Cell 2004, 119(2):285-298. 

112. Tang Y, Reay DP, Salay MN, Mi MY, Clemens PR, Guttridge DC, Robbins PD, 
Huard J, Wang B: Inhibition of the IKK/NF-κB pathway by AAV gene 
transfer improves muscle regeneration in older mdx mice. Gene Therapy 
2010, 17(12):1476-1483. 

113. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li 
ZW, Beg AA, Ghosh S, Sahenk Z et al: Interplay of IKK/NF-kappaB signaling 
in macrophages and myofibers promotes muscle degeneration in Duchenne 
muscular dystrophy. The Journal of clinical investigation 2007, 117(4):889-901. 

114. Dahlman JM, Guttridge DC: Detection of NF-kappaB activity in skeletal 
muscle cells by electrophoretic mobility shift analysis. Methods in molecular 
biology (Clifton, NJ) 2012, 798:505-516. 

115. Guttridge DC: Signaling pathways weigh in on decisions to make or break 
skeletal muscle. Current opinion in clinical nutrition and metabolic care 2004, 
7(4):443-450. 

116. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang 
J, Bloomston M, Muscarella P, Nau P et al: NF-kappaB-mediated Pax7 
dysregulation in the muscle microenvironment promotes cancer cachexia. 
The Journal of clinical investigation 2013, 123(11):4821-4835. 

117. Hindi SM, Kumar A: TRAF6 regulates satellite stem cell self-renewal and 
function during regenerative myogenesis. The Journal of clinical investigation 
2016, 126(1):151-168. 

118. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD: NF-κB in Aging and 
Disease. Aging and Disease 2011, 2(6):449-465. 

119. Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G: Activation of 
nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular 
dystrophy. Neurology 2003, 60(6):993-997. 



	

	 129	 	

120. Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, Vita G: 
Activation of NF-kappaB pathway in Duchenne muscular dystrophy: 
relation to age. Acta myologica : myopathies and cardiomyopathies : official 
journal of the Mediterranean Society of Myology 2011, 30(1):16-23. 

121. Cleary MM, Mansoor A, Settelmeyer T, Ijiri Y, Ladner KJ, Svalina MN, Rubin 
BP, Guttridge DC, Keller C: NFkappaB signaling in alveolar 
rhabdomyosarcoma. Disease models & mechanisms 2017, 10(9):1109-1115. 

122. Bentzinger CF, Wang YX, Rudnicki MA: Building muscle: molecular 
regulation of myogenesis. Cold Spring Harb Perspect Biol 2012, 4(2). 

123. Relaix F, Zammit PS: Satellite cells are essential for skeletal muscle 
regeneration: the cell on the edge returns centre stage. Development 
(Cambridge, England) 2012, 139(16):2845-2856. 

124. Yin H, Price F, Rudnicki MA: Satellite cells and the muscle stem cell niche. 
Physiol Rev 2013, 93(1):23-67. 

125. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA: 
Pax7 is required for the specification of myogenic satellite cells. Cell 2000, 
102(6):777-786. 

126. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA: Pax7 is critical for the 
normal function of satellite cells in adult skeletal muscle. Proceedings of the 
National Academy of Sciences of the United States of America 2013, 
110(41):16474-16479. 

127. Hayden MS, Ghosh S: NF-kappaB, the first quarter-century: remarkable 
progress and outstanding questions. Genes Dev 2012, 26(3):203-234. 

128. Kumar A, Takada Y, Boriek AM, Aggarwal BB: Nuclear factor-kappaB: its 
role in health and disease. J Mol Med (Berl) 2004, 82(7):434-448. 

129. Li H, Malhotra S, Kumar A: Nuclear factor-kappa B signaling in skeletal 
muscle atrophy. J Mol Med 2008, 86(10):1113-1126. 

130. Shintaku J, Guttridge DC: Reining in nuclear factor-kappaB in skeletal muscle 
disorders. Current opinion in clinical nutrition and metabolic care 2013, 
16(3):251-257. 

131. Mourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente 
V, Bottinelli R, Pasparakis M, Rosenthal N: Targeted ablation of IKK2 
improves skeletal muscle strength, maintains mass, and promotes 
regeneration. The Journal of clinical investigation 2006, 116(11):2945-2954. 

132. Zhang N, Valentine JM, Zhou Y, Li ME, Zhang Y, Bhattacharya A, Walsh ME, 
Fischer KE, Austad SN, Osmulski P et al: Sustained NFkappaB inhibition 



	

	 130	 	

improves insulin sensitivity but is detrimental to muscle health. Aging Cell 
2017, 16(4):847-858. 

133. Bakkar N, Guttridge DC: NF-kappaB signaling: a tale of two pathways in 
skeletal myogenesis. Physiol Rev 2010, 90(2):495-511. 

134. Dogra C, Changotra H, Mohan S, Kumar A: Tumor necrosis factor-like weak 
inducer of apoptosis inhibits skeletal myogenesis through sustained 
activation of nuclear factor-kappaB and degradation of MyoD protein. The 
Journal of biological chemistry 2006, 281(15):10327-10336. 

135. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM: 
Inflammatory cytokines inhibit myogenic differentiation through activation 
of nuclear factor-kappaB. FASEB J 2001, 15(7):1169-1180. 

136. Bakkar N, Ladner K, Canan BD, Liyanarachchi S, Bal NC, Pant M, Periasamy M, 
Li Q, Janssen PM, Guttridge DC: IKKalpha and alternative NF-kappaB 
regulate PGC-1beta to promote oxidative muscle metabolism. J Cell Biol 
2012, 196(4):497-511. 

137. Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, 
Rudnicki MA, Hollenbach AD, Guttridge DC: IKK/NF-kappaB regulates 
skeletal myogenesis via a signaling switch to inhibit differentiation and 
promote mitochondrial biogenesis. J Cell Biol 2008, 180(4):787-802. 

138. Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac 
M, Uehling D, Al-Awar R, Lacasse E et al: TWEAK and cIAP1 Regulate 
Myoblast Fusion Through the Noncanonical NF-kappaB Signaling Pathway. 
Science signaling 2012, 5(246):ra75. 

139. Hindi SM, Shin J, Gallot YS, Straughn AR, Simionescu-Bankston A, Hindi L, 
Xiong G, Friedland RP, Kumar A: MyD88 promotes myoblast fusion in a cell-
autonomous manner. Nat Commun 2017, 8(1):1624. 

140. Ogura Y, Mishra V, Hindi SM, Kuang S, Kumar A: Proinflammatory cytokine 
tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) 
suppresses satellite cell self-renewal through inversely modulating Notch and 
NF-kappaB signaling pathways. The Journal of biological chemistry 2013, 
288(49):35159-35169. 

141. Ballard DW, Dixon EP, Peffer NJ, Bogerd H, Doerre S, Stein B, Greene WC: The 
65-kDa subunit of human NF-kappa B functions as a potent transcriptional 
activator and a target for v-Rel-mediated repression. Proceedings of the 
National Academy of Sciences of the United States of America 1992, 89(5):1875-
1879. 

142. Geleziunas R, Ferrell S, Lin X, Mu Y, Cunningham ET, Jr., Grant M, Connelly 
MA, Hambor JE, Marcu KB, Greene WC: Human T-cell leukemia virus type 1 



	

	 131	 	

Tax induction of NF-kappaB involves activation of the IkappaB kinase alpha 
(IKKalpha) and IKKbeta cellular kinases. Mol Cell Biol 1998, 18(9):5157-
5165. 

143. Riuzzi F, Sorci G, Sagheddu R, Donato R: HMGB1-RAGE regulates muscle 
satellite cell homeostasis through p38-MAPK- and myogenin-dependent 
repression of Pax7 transcription. J Cell Sci 2012, 125(Pt 6):1440-1454. 

144. Hindi SM, Paul PK, Dahiya S, Mishra V, Bhatnagar S, Kuang S, Choi Y, Kumar 
A: Reciprocal interaction between TRAF6 and notch signaling regulates 
adult myofiber regeneration upon injury. Mol Cell Biol 2012, 32(23):4833-
4845. 

145. Hindi SM, Sato S, Xiong G, Bohnert KR, Gibb AA, Gallot YS, McMillan JD, 
Hill BG, Uchida S, Kumar A: TAK1 regulates skeletal muscle mass and 
mitochondrial function. JCI Insight 2018, 3(3). 

146. Lepper C, Conway SJ, Fan CM: Adult satellite cells and embryonic muscle 
progenitors have distinct genetic requirements. Nature 2009, 460(7255):627-
631. 

147. Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A: TAK1 modulates 
satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015, 
6:10123. 

148. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G: Repairing 
skeletal muscle: regenerative potential of skeletal muscle stem cells. The 
Journal of clinical investigation 2010, 120(1):11-19. 

149. Kudryashova E, Kramerova I, Spencer MJ: Satellite cell senescence underlies 
myopathy in a mouse model of limb-girdle muscular dystrophy 2H. The 
Journal of clinical investigation 2012, 122(5):1764-1776. 

150. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z: Satellite-cell 
pool size does matter: defining the myogenic potency of aging skeletal 
muscle. Developmental biology 2006, 294(1):50-66. 

151. Rinkenbaugh AL, Baldwin AS: The NF-kappaB Pathway and Cancer Stem 
Cells. Cells 2016, 5(2). 

152. Cai D, Frantz JD, Tawa NE, Jr., Melendez PA, Oh BC, Lidov HG, Hasselgren 
PO, Frontera WR, Lee J, Glass DJ et al: IKKbeta/NF-kappaB activation causes 
severe muscle wasting in mice. Cell 2004, 119(2):285-298. 

153. Dumont NA, Wang YX, Rudnicki MA: Intrinsic and extrinsic mechanisms 
regulating satellite cell function. Development 2015, 142(9):1572-1581. 



	

	 132	 	

154. Xiong G, Hindi SM, Mann AK, Gallot YS, Bohnert KR, Cavener DR, 
Whittemore SR, Kumar A: The PERK arm of the unfolded protein response 
regulates satellite cell-mediated skeletal muscle regeneration. eLife 2017, 6. 

155. Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, Koromilas 
AE, Crist C: Phosphorylation of eIF2alpha Is a Translational Control 
Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell 
Stem Cell 2016, 18(1):79-90. 

156. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS, Jr.: NF-kappaB 
controls cell growth and differentiation through transcriptional regulation of 
cyclin D1. Mol Cell Biol 1999, 19(8):5785-5799. 

157. Lu A, Proto JD, Guo L, Tang Y, Lavasani M, Tilstra JS, Niedernhofer LJ, Wang 
B, Guttridge DC, Robbins PD et al: NF-kappaB negatively impacts the 
myogenic potential of muscle-derived stem cells. Molecular therapy : the 
journal of the American Society of Gene Therapy 2012, 20(3):661-668. 

158. Tang Y, Reay DP, Salay MN, Mi MY, Clemens PR, Guttridge DC, Robbins PD, 
Huard J, Wang B: Inhibition of the IKK/NF-kappaB pathway by AAV gene 
transfer improves muscle regeneration in older mdx mice. Gene Ther 2010, 
17(12):1476-1483. 

159. Kumar A, Boriek AM: Mechanical stress activates the nuclear factor-kappaB 
pathway in skeletal muscle fibers: a possible role in Duchenne muscular 
dystrophy. FASEB J 2003, 17(3):386-396. 

160. Reay DP, Yang M, Watchko JF, Daood M, O'Day TL, Rehman KK, Guttridge 
DC, Robbins PD, Clemens PR: Systemic delivery of NEMO binding 
domain/IKKgamma inhibitory peptide to young mdx mice improves 
dystrophic skeletal muscle histopathology. Neurobiology of disease 2011, 
43(3):598-608. 

161. Shi H, Verma M, Zhang L, Dong C, Flavell RA, Bennett AM: Improved 
regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J 
Clin Invest 2013, 123(5):2064-2077. 

162. Shin J, Tajrishi MM, Ogura Y, Kumar A: Wasting mechanisms in muscular 
dystrophy. The international journal of biochemistry & cell biology 2013, 
45(10):2266-2279. 

163. Sasaki Y, Derudder E, Hobeika E, Pelanda R, Reth M, Rajewsky K, Schmidt-
Supprian M: Canonical NF-kappaB activity, dispensable for B cell 
development, replaces BAFF-receptor signals and promotes B cell 
proliferation upon activation. Immunity 2006, 24(6):729-739. 



	

	 133	 	

164. Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ: Pro-
inflammatory mediation of myoblast proliferation. PloS one 2014, 
9(3):e92363. 

165. Deyama Y, Takeyama S, Suzuki K, Yoshimura Y, Nishikata M, Matsumoto A: 
Inactivation of NF-kappaB involved in osteoblast development through 
interleukin-6. Biochemical and biophysical research communications 2001, 
282(5):1080-1084. 

166. Yarar-Fisher C, Bickel CS, Kelly NA, Stec MJ, Windham ST, McLain AB, Oster 
RA, Bamman MM: Heightened TWEAK-NF-kappaB signaling and 
inflammation-associated fibrosis in paralyzed muscles of men with chronic 
spinal cord injury. American journal of physiology Endocrinology and 
metabolism 2016, 310(9):E754-761. 



	

	 134	 	

APPENDICES 

APPENDIX-1 

Sequence of the primers used in qRT-PCR assay. 

 

Gene Name Forward Primer (5'-3') Reverse Primer (5'-3') 
β-actin CAG GCA TTG CTG ACA GGA TG TGC TGA TCC ACA TCT GCT GG 
IFN-γ GAC AAT CAG GCC ATC AGC AAC CGG ATG AGC TCA TTG AAT GCT T 
IL-1β CTC CAT GAG CTT TGT ACA AGG TGC TGA TGT ACC AGT TGG GG 

IL-6 ATG GCA ATT CTG ATT GTA TG TGG CTT TGT CTT TCT TGT TA 

Pax7 
CAG TGT GCC ATC TAC CCA TGC 

TTA GGT GCT TGG TTC AAA TTG AGC C 
Myf5 TGA AGG ATG GAC ATG ACG GAC G TTG TGT GCT CCG AAG GCT GCT A 
Myh3 ACA TCT CTA TGC CAC CTT CGC TAC GGG TCT TGG TTT CGT TGG GTA T 
Myh4 CGG CAA TGA GTA CGT CAC CAA A TCA AAG CCA GCG ATG TCC AA 

MyoD TGG GAT ATG GAG CTT CTA TCG C GGT GAG TCG AAA CAC GGA TCA T 
Myogenin CAT CCA GTA CAT TGA GCG CCT A  GAG CAA ATG ATC TCC TGG GTT G 

TNF-α AGC ACA GAA AGC ATG ATC CG GCC ACA AGC AGG AAT GAG AA 
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APPENDIX-2 

List of abbreviations. 

 

AAV – Adeno-associated Virus 

ATP – Adenosine Triphosphate 

AV – Annexin V 

BaCl2 – Barium Chloride 

bFGF – Basic Fibroblast Growth Factor 

BMP – Bone Morphogenetic Proteins 

BSA – Bovine Serum Albumin 

ca – Constitutively Active 

cDNA – Complimentary Deoxyribonucleic Acid 

c-Met – Tyrosine-Protein Kinase Met 

Cre – Cyclase Recombinase 

CSA – Cross-Sectional Area 

DAPI – 4',6-diamidino-2-phenylindole  

DAMP – Damage-associated Molecular Pattern 

DMEM – Dulbecco Modified Eagle Medium  

DMSO – Dimethyl Sulfoxide 

DNA – Deoxyribonucleic Acid 

EDL – Extensor Digitorum Longus 

EdU – 5-ethynyl-2′-deoxyuridine 

eMyHC – Embryonic Myosin Heavy Chain 
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ERK – Extracellular Signal-Regulated Kinase 

FBS – Fetal Bovine Serum 

FGF – Fibroblast Growth Factor 

Fig. – Figure 

GM – Growth Medium 

H&E – Hematoxylin and Eosin 

HGF – Hepatocyte Growth Factor 

IACUC – Institutional Animal Care and Use Committee 

IBC – Institutional Biosafety Committee 

ICC – Immunocytochemistry 

IFN – Interferon 

IGF – Insulin-like Growth Factor 

IHC – Immunohistochemistry 

IκB – Inhibitor of κB 

IKK – Inhibitor of κB Kinase 

IL – Interleukin 

i.p. – Intraperitoneal 

JAK – Janus Kinase 

JNK – c-Jun N-terminal Kinase 

KO – Knockout 

LBX – Ladybird Homeobox 1 

LIF – Leukemia Inhibitory Factor 

MAPK – Mitogen Associated Protein Kinase 
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MEK – Mitogen Associated Protein Kinase-Extracellular Signal-Regulated Kinase 

Mox2 – Mesenchyme Homeobox 2 

MRF – Myogenic Regulatory Factor 

mTOR – Mechanistic Target of Rapamycin 

mRNA – Messenger RNA 

MyD88 – Myeloid Differentiation Primary Response 88 

Myf – Myogenic Factor 

MyHC – Myosin Heavy Chain 

MyoD – Myoblast Determination Factor (1) 

NF-κB – Nuclear Factor-κB 

NICD – Notch Intracellular Domain 

PAMP – Pathogen-associated Molecular Pattern 

Pax3 – Paired Box Protein 3 

Pax7 – Paired Box Protein 7 

PBS – Phosphate Buffered Saline 

PCR – Polymerase Chain Reaction 

PFA – Paraformaldehyde 

PI – Propidium Iodide 

qRT-PCR – Quantitative Real-Time Polymerase Chain Reaction 

RBP-Jκ – Recombining Signal Binding Protein for Immunoglobulin Jκ 

RNA – Ribonucleic Acid 

STAT – Signal Transducer and Activators of Transcription Protein 

TA – Tibialis Anterior 
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TAB – TGF-β Activated Kinase (MAP3K7) Binding Protein 

TAK1 – Transforming Growth Factor β-Activated Kinase 1 

TGF-β – Transforming Growth Factor-β 

TIRAP – TIR-Domain Containing Adaptor Protein 

TLR – Toll-like Receptor 

TNF – Tumor Necrosis Factor 

TNFR – Tumor Necrosis Factor Receptor 

TRAF6 – TNF Receptor-Associated Factor 6 

TRAM – Transduction Associated Membrane Protein 

TRIF – TIR-Domain Containing Adaptor-Inducing Interferon- β 

TUNEL – Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling 

Wnt – Wingless-Related Integration Site  
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APPENDIX-3 

List of antibodies. 

 

Antibody Source and Catalog Number Dilution Analysis 

Goat Anti-Rabbit IgG, Alexa 

Fluor® 488 conjugated (H+L) 

Thermo Fischer Scientific, A-

11055 

1:2000 ICC/IHC 

F(ab’)2-Goat Anti-Mouse IgG, 

Alexa Fluor® 594 Cross-

Adsorbed (H+L)  

Thermo Fischer Scientific, A-

11018 

1:2000 ICC/IHC 

Goat Anti-Mouse IgG1, Alexa 

Fluor® 568 conjugated (H+L) 

Thermo Fischer Scientific, A-

21124 

1:2000 ICC/IHC 

Goat Anti-Mouse IgG2b, Alexa 

Fluor® 488 conjugated (H+L) 

Thermo Fischer Scientific, A-

21141 

1:2000 ICC/IHC 

Polyclonal rabbit-anti-BAX Cell Signaling Technology, 2772 1:1000 WB 

Polyclonal rabbit-anti-Bcl2 BD Biosciences, 554279 1:1000 WB 

Monoclonal rabbit-anti-Cleaved 

Caspase-3 

Cell Signaling Technology, 9664 1:1000 WB 

Polyclonal rabbit-anti-Cleaved 

PARP 

Cell Signaling Technology, 9544 1:1000 WB 

Polyclonal rabbit-anti-Cyclin A Santa Cruz Biotechnology, sc-

596 

1:1000 WB 

Polyclonal rabbit-anti-Cyclin D1 Santa Cruz Biotechnology, sc-

717 

1:1000 WB 
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Monoclonal mouse-anti-eMyHC DSHB, F1.652 1:200 IHC 

Monoclonal rabbit-anti-phospho-

IκBα 

Cell Signaling Technology, 2859 1:500 WB 

Monoclonal rabbit-anti-total IκBα Cell Signaling Technology, 4812 1:500 WB 

Polyclonal rabbit-anti-total IKKβ Cell Signaling Technology, 2684 1:500 WB 

Polyclonal rabbit-anti-Laminin Sigma, L9393 1:150 IHC 

Monoclonal mouse-anti-MyoD Santa Cruz Biotechnology, sc-

377460 

1:200, 

1:1000 

ICC, 

WB 

Monoclonal mouse-anti-Pax7 DSHB, pax7 1:100, 

1:5 

WB, 

ICC/IHC 

Monoclonal rabbit-anti-phospho 

p65 

Cell Signaling Technology, 3033 1:1000 WB 

Monoclonal rabbit-anti-total p65 Cell Signaling Technology, 8242 1:1000 WB 

Monoclonal rabbit-anti-alpha-

tubulin 

Cell Signaling Technology, 2125 1:1000 WB 

 
ICC – immunocytochemistry; IHC – immunohistochemistry; WB – western blot  
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APPENDIX-4 
 
Camera equipment and settings, exposure time, and contrast modifications 
 
 
Microscopes: 
 ICC/IHC: Nikon TiE 3000 Inverted microscope 
 H&E: Nikon Eclipse TE 2000-U microscope 
 
Cameras: 
 ICC/IHC: DXM-1200C coded digital camera 
 H&E: Nikon Digital Sight DS-Fi1 
 
Acquisition Software: NIS Elements 
 
Space Resolution: 
 ICC/IHC: 2560 x 2160; 0.33 microns per pixel @ 20x objective, 0.65 microns per 
pixel @ 10x objective 
 H&E:  2560 x 1920; 0.24 microns per pixel @ 20x objective 
 
Imaging Medium: 
 ICC/IHC: Aqua-Poly (Polysciences, Inc.) 
 H&E: DPX Mountant For Histology Slide (Sigma Chemical Co.) 
 
Exposure and Contrast: 

H&E: 80ms exposure time; no contrast editing 
 

ICC/IHC  Settings  TRITC (Red)   FITC (Green)   DAPI (Blue)   
Image Objective Exposure Low High Exposure Low High Exposure Low High 

Pax7/IKKB 
IHC 20x 2sec 7710 42405 1.5sec 3855 53970 100ms 3855 53970 

Pax7 / p-p65 
ICC 20x 300ms 3855 42405 2sec 3855 23130 80ms 3855 53970 

Pax7 / p-p65 
IHC 20x 2sec 3855 42505 300ms 3855 23130 80ms 3855 53970 

eMyHC / 
Laminin 

IHC 20x 1sec 7710 42405 200ms 3855 50115 60ms 7710 57825 
Pax7 / 

Laminin 
IHC 20x 2sec 7710 42405 400ms 3855 42405 80ms 3855 42405 

Pax7 / 
MyoD ICC 20x 2sec 7710 42405 1sec 3855 42405 60ms 3855 53970 

EdU  
ICC 20x 0sec 0 65536 400ms 7710 57825 60ms 7710 57825 

EdU / 
Laminin 

IHC 10x 2sec 3855 46260 2sec 3855 46260 200ms 3855 30840 
TUNEL 

ICC 20x 0sec 0 65536 400ms 7710 42405 60ms 7710 57825 
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Flurochromes: 
 1. Alexa Fluor 488 Goat anti-Rabbit IgG (H+L): Peak Excitation: 490; Peak 
Emission: 525 
 2. Alexa Fluor 546 F(ab’)2-Goat anti-Mouse IgG (H+L): Peak Excitation: 556; 
Peak Emission: 573 
 3. DAPI: Peak Excitation: 358; Peak Emission: 461 
 
Detailed Specifications for ICC/IHC Imaging: 
 1. Camera Name: Andor Zyla VSC-00439 
 2. Numerical Aperture: 0.75 Refractive Index: 1 
 3. Number of Picture Planes: 3 

 a. Plane #1: DAPI  
b. Plane #2: FITC  
c. Plane #3: TRITC 

 4. Modality: Widefield Fluorescence 
 5. Camera Settings:  
  a. Camera Type: Andor Zyla 
  b. Binning: 1x1 
  c. Exposure: See chart on previous page. 
  d. Readout Mode: Rolling shutter @ 16-bit 
  e. Readout Rate: 560 MHz 
   i. Conversion Gain: Dual Gain ¼ 
  f. Spurious Noise Filter: On 
   i. Sensor Mode: Overlap 
  g. Trigger Mode: Internal 
  h. Temperature: -0.4 C 
 6. Microscope Settings: 
  a. Microscope: Ti Microscope Nikon Ti  

b. Voltage: -1.0 
  c. Light Path: R100 
  d. Zoom: 1.00x 
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