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ABSTRACT 

CHARACTERIZING THE GUT MICROBIOTA DURING PLASMODIUM 

INFECTION AND ANTIMALARIAL TREATMENT 

Joshua E. Denny 

December 14, 2018 

 

Plasmodium, the parasitic cause of malaria, is a global pathogen, annually 

causing 216 million infections and 445,000 deaths. As drug resistance continues 

develop and no effective vaccine is available, it is critical to understand the 

factors underlying the severity of this disease. Plasmodium is an extra-

gastrointestinal tract infection where the parasite infects red blood cells causing 

clinical malaria. However, recent publications have pointed to interactions 

between the gut microbiota and malaria. With this in mind, the role of the gut 

microbiota in malaria infection was studied. C57BL/6 mice from different vendors 

displayed differential resistance and susceptibility to severe malaria, and cecal 

contents transplanted from these mice to germ-free mice recapitulated the 

observed phenotypes. Similarly, resistant mice possessed a much more robust 

humoral immune response than susceptible mice, which is critical for 

Plasmodium clearance. When the cecal contents from resistant and susceptible 

mice were sequenced, Lactobacillus and Bifidobacterium genera were enriched 



  vii 

in resistant mice. Moreover, treating susceptible mice with probiotics containing 

these bacterial genera after antibiotic administration led to a lower parasite 

burden. These observations point to a previously unknown role for the microbiota 

in modulating the severity of malaria. 

To further characterize the interactions between the host and gut 

microbiota in malaria, different components of gut homeostasis were investigated 

in both mild and severe disease. While intestinal permeability increased in both 

resistant and susceptible mice, there were no significant differences between the 

two groups. However, susceptible mice were shown to have greater numbers of 

lamina propria immune cells as well as greater abundances of cecal metabolites 

and bile acids during infection compared to resistant mice. Consistent with the 

decreased abundance of bile acids, histology showed much greater and 

prolonged damage and hemozoin deposition in the livers of susceptible mice 

compared to resistant mice. Despite these differences, the microbiota 

composition of resistant and susceptible mice became more similar during 

infection, although these changes were not associated with susceptibility or 

resistance when the altered cecal contents were transferred into germ-free mice. 

However, there were distinct differences in the functional capacity of the resistant 

and susceptible microbiota during infection. Susceptible mice showed significant 

increases in genes related to bacterial motility and flagellar assembly. Overall, 

there are profound differences in gut homeostasis during severe and mild Py 

infection. 
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Finally, it was investigated whether antimalarial drugs, particularly 

clinically relevant artemisinin combination therapies (ACTs), could disrupt the gut 

microbiota. As previously shown, the composition of the gut microbiota alone can 

modulate the severity of Py infection; if ACTs change the microbiota composition, 

future infections could be more severe. To test this hypothesis, two common 

ACTs, artesunate plus amodiaquine and artemether plus lumefantrine, were 

used to orally treat mice while fecal pellets were collected to characterize the gut 

microbiota before and after treatment. After either ACT treatment, the overall 

species abundance in mice was similar to baseline. While alpha diversity 

remained unchanged by any treatment, there were minor, inconsistent changes 

in beta diversity that returned to baseline. With these findings, it does not appear 

that ACTs change the gut microbiota. 

This work has greatly increased the scientific knowledge concerning the 

three-fold interaction between host, gut microbiota, and Plasmodium. While much 

work still needs to be done, these findings can provide a contextual foundation 

on which future work can be built.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Plasmodium Life Cycle 

 Malaria is a global health crisis, with approximately 2 million infections and 

400,000 deaths annually, with the majority occurring in Africa in children under 

the age of 51,2. Plasmodium, the causative agent of malaria, is a single-celled 

protozoan parasite with a multi-stage life cycle that occurs in the vertebrate host 

and the arthropod vector, generally a mosquito. In humans, the cycle begins 

when a female Anopheles mosquito takes a blood meal from a human host and 

injects Plasmodium sporozoites into the skin of the human host3. The sporozoites 

migrate to the bloodstream and are carried to the liver. At this stage, the 

infectious dose of sporozoites can be quite small; as few as 100 sporozoites can 

cause disease4. The sporozoites invade hepatocytes, where they differentiate 

into merozoites. This stage of disease is clinically silent with no symptoms of 

infection. Once the merozoites have matured, they exit the hepatocyte in 

membrane bound vesicles, called merosomes5. Upon rupture of the merosome 

membrane, merozoites enter the bloodstream where they will infect red blood 

cells (RBCs). Some Plasmodium species will infect differentially developed 
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RBCs. For example, P. falciparum will infect RBCs at any developmental stage, 

while others, like P. vivax, will only infect immature reticulocytes6. Infection of 

RBCs has several steps: attachment, apical reorientation, junction formation, and 

invasion7. Initially, the merozoite must reach and attach to the RBC; once the 

merozoite is attached, it must reorient itself as the apical end must face the cell 

membrane for junction formation. Formation of the tight junction will “seal” the 

two cells together; as the merozoite moves into the RBC, the RBC membrane will 

fold around the merozoite to form the parasitophorous vacuole, where the 

parasite will reproduce8. At this point, most parasites will continue asexual 

reproduction, proliferating until lysing the RBC and infecting new RBCs. 

However, a few parasites will differentiate into gametocytes, which can be 

ingested by a mosquito, undergo sexual reproduction, and continue the 

Plasmodium life cycle in a new host8.  

Plasmodium species can infect many different vertebrates, including 

humans, non-human primates, rodents, birds, and lizards9. The major 

Plasmodium species that cause morbidity and mortality in humans are P. 

falciparum (Pf) and P. vivax (Pv). Whereas P. ovale, P. knowlesi, and P. malariae 

also infect humans, they are of less clinical significance. Geographically, 

Plasmodium is restricted to tropical and subtropical regions due to distribution of 

mosquito vectors such as Anopheles gambiae and climate conditions with 

appropriate rainfall and temperature10. In areas with rainy seasons, malaria 

transmission is restricted seasonally as the mosquito vectors require standing 
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water for development10. Generally, most human-specific Plasmodium species 

occupy the same geographic areas, and people can be infected with more than 

one species at a time3. However, Pv is restricted from sub-Saharan Africa due to 

the lack of the Duffy antigen receptor on RBCs in people of African descent; this 

receptor is required for Pv to invade RBCs11. Due to this restriction, Pf is the 

dominant Plasmodium species in sub-Saharan Africa. One other significant 

difference between Pf and Pv is that Pv infection can relapse, which is the re-

emergence of merozoites after the primary parasite burden has been cleared12,13. 

During the Pv liver stage of infection, not all of the parasites differentiate into 

merozoites; some differentiate into hypnozoites that can remain dormant in the 

liver for months or even years after infection, the length of which can depend on 

the climate and the size of sporozoite inoculation14,15.  

There are also several rodent-specific species of Plasmodium which are 

used as models for human malaria, the most common of which are P. berghei 

ANKA, P. yoelii, and P. chabaudi. Certain aspects of malaria infection are 

associated with specific mouse models. For example, cerebral malaria, which is 

one of the most lethal complications of infection, can be modeled by infecting 

C57BL/6 mice with Plasmodium berghei ANKA; approximately one week after 

infection, mice will begin to develop symptoms such as leaning, loss of balance, 

and paralysis followed by 100% mortality within 10 days of infection16. The 

mouse model recapitulates many of the mechanisms seen in human cerebral 

malaria, such as sequestration of parasitized RBCs (pRBCs) and localized 
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inflammation17. The mechanism for these symptoms is discussed in more detail 

below. P. chabaudi infection, on the other hand, is generally non-lethal, and can 

model a more general human Plasmodium infection6. P. chabaudi, like Pf, infects 

RBCs at any stage of development and also reproduces many of the same 

pathological features as Pf or Pv, such as anemia and splenomegaly as well as a 

similar immune response6. One interesting feature of P. chabaudi that is not 

present in other rodent models is recrudescence of blood stage parasite burden, 

although it is more limited compared to Pf. Finally, P. yoelii (Py) can be used to 

model the pathology and human immune response to Pf, particularly the humoral 

response18. Py has both lethal and non-lethal strains, 17XL and 17XNL, 

respectively; the lethality of Py 17XL is multifactorial, but can include the 

induction of cerebral malaria and inflammation18,19. Mice infected with Py 17XNL 

develop sterilizing immunity to the parasite, and in this regard are considered 

good models for Pf vaccine development18. 

 

Host Response to Plasmodium Infection 

Clinically, Plasmodium infections are silent with no symptoms until the 

blood stage, where the parasite undergoes asexual replication. Once in the blood 

stage, common symptoms of uncomplicated malaria include fever and anemia; in 

complicated and severe cases, respiratory distress, coma or impaired 

consciousness, and severe anemia can be observed3. While the mortality rate for 

uncomplicated malaria is low, especially if treated with antimalarial drugs, the 
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mortality rate for complicated severe malaria is estimated to be 90% if untreated 

and 20% if hospitalized20,21. However, the underlying pathology of these 

symptoms cannot be pinned solely on Plasmodium and its lytic behavior as host 

immunopathology has also been shown to play a role. During infection, 

Plasmodium causes a general inflammatory phenotype by inducing the 

production of inflammatory cytokines22. These cytokines, particularly tumor 

necrosis factor (TNF) family members, contribute to malaria symptoms, as 

administering recombinant TNF to naïve mice produces many of the same 

symptoms as malaria22. In a parallel process called sequestration, pRBCs will 

adhere to the host endothelium, particularly in the microvasculature; this can 

obstruct flow and lead to inflammatory cytokine and cell adhesion molecule 

(CAM) expression by the endothelial cells23,24. Several downstream effects of this 

response are increasing vascular permeability, leukocyte recruitment, and local 

ischemia and tissue damage23,24. Depending on the site of sequestration, the 

pathology will take different forms: sequestration in the intestinal 

microvasculature can lead to gastrointestinal symptoms such as diarrhea, while 

sequestration in the brain can lead to cerebral malaria, which is one of the more 

severe presentations and can lead to long-term neurological sequalae even after 

resolution of disease23,25.  

While the immune system can be detrimental during malaria, it is critical 

for the resolution of infection. Both the innate and adaptive responses to 

Plasmodium play a role in resolution of blood-stage malaria. Natural killer (NK) 



  6 

cells produce interferon gamma (IFN𝛾) early in the infection, which correlates 

with resistance to malaria26,27. NK cell responses appear to be driven by IL-12 

produced by other cell populations like monocytes and dendritic cells (DCs)28. 

While NK cells may not be the first to respond, they are early responders to 

Plasmodium infection and their activation correlates with protection. 

 Gamma delta T cells (TCR𝛾𝛿) are innate-like T cell subsets that can have 

various functions depending on both differentiation and received signals, such as 

immunity to pathogens or tissue repair, and in many ways can act as a bridge 

between innate and adaptive immunity29. In some cases, TCR𝛾𝛿 cells can be the 

dominant producers of cytokines compared to CD4 or CD8 T cells30. During 

Plasmodium infection, a TCR𝛾𝛿 subset can produce IFN𝛾 early in the infection to 

enhance the immune response, particularly differentiation and proliferation of 

germinal center B cells and T follicular helper cells29,31,32. Another subset can 

produce IL-17 in a Toll-like receptor-dependent manner, which can enhance the 

pathogen clearance and the humoral immune response in multiple infections, not 

just Plasmodium30,33,34. 

 Macrophages have dual roles in malaria infection, first acting as antigen 

presenting cells (APCs) but also phagocytosing infected RBCs and clearing them 

from circulation in a typically non-inflammatory fashion28. This occurs mainly 

through interactions with Plasmodium erythrocyte membrane protein 1 (EMP1) 

which is expressed on pRBCs and is anti-inflammatory35. However, 

macrophages can detect malarial DNA bound to hemozoin during phagocytosis, 
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which will induce a strong pro-inflammatory response and can cause immune 

pathology36. Like macrophages, monocytes can also produce an anti-

inflammatory response to EMP135. However, it has also been shown that early 

after Plasmodium infection, monocytes infiltrate into the lamina propria of the 

intestine and cause inflammatory damage37,38. Plasmodium can also limit 

neutrophil populations, which can make patients susceptible to secondary 

infections39. 

 While these innate populations can in some ways bridge the innate and 

adaptive arms of the immune system during Plasmodium infection, dendritic cells 

(DCs) perform the majority of antigen presentation to T cells40. Generally, and 

unsurprisingly, dysregulation of DC antigen presentation is associated with 

morbidity and mortality during Plasmodium infection41. Studies looking at more 

particular aspects of DC function have been mixed and limited: for example, 

whether the parasite inhibits DC maturation. One study found in vitro that pRBCs 

bind to CD36 on DCs and inhibit MHCII expression and thus antigen presentation 

and T cell activation, while another study found that exposure to pRBCs did not 

affect the ability of DCs to promote a robust T cell response to malaria42,43. 

Despite conflicting data about the effect of malaria on DCs, antigen presentation 

to T cells is critical for parasite clearance. 

In particular, the humoral immune response is critical for clearance of 

blood-stage malaria44,45. To generate Plasmodium-specific antibodies, both T 

follicular helper (Tfh) cells and germinal center B (GC B) cells have to be 
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activated and form germinal centers. Interactions between the Tfh cells and GC 

B cells lead to somatic hypermutation and class switching from IgM to IgG, both 

of which enhance the antibody-mediated clearance of the parasite46. Common 

antibody targets of blood stage parasites include merozoite surface proteins 1 

and 3 (MSP1 and MSP3) as well as apical membrane antigen 1 (AMA1), all of 

which are involved in parasite invasion of RBCs47,48. Trafficking of sporozoites 

from the dermis to the liver can be inhibited by sporozoite-specific antibodies 

against antigens such as circumsporozoite protein49. Antibodies can also target 

pRBCs themselves for opsonization and destruction by phagocytes, as well as 

inhibition of sequestration48. Like other aspects of anti-Plasmodium immunity, the 

parasite can modulate the host antibody response. It has been observed in 

humans that B cell memory is impaired during malaria infection, as antibody 

responses are short-lived and immunity to malaria is acquired gradually, 

particularly in areas of seasonal malaria transmission46,50. Both T and B cells can 

display “exhausted” phenotypes, characterized by a hypo-responsiveness to 

malaria and expression of PD-L1 and LAG3 on CD4 T cells51,52. In humans, CD4 

T cell expression of PD-L1 and LAG3 inversely correlates with B cell memory 

responses; this contributes to the difficulty in acquiring clinical immunity to 

malaria in areas with chronic Plasmodium exposure51,52. Blocking PD-L1 and 

LAG3 on T cells can reverse exhaustion and promote antibody-mediated 

Plasmodium clearance51,52. Additionally, another mechanism Plasmodium can 

use to modulate humoral immunity in P. berghei ANKA infection in C57BL/6 mice 
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is induction of a large IFN𝛾 and tumor necrosis factor-dependent inflammatory 

response to disrupt GC architecture and inhibit Tfh differentiation, both of which 

lead to an impaired humoral response53. Due to the prevalence of complicated 

malaria and the difficulty in achieving clinical immunity to Plasmodium, 

antimalarial drug treatments are essential for reducing malaria-associated 

morbidity and mortality. 

   

Treatment of Plasmodium Infections 

 Frontline treatment of malaria is done with artemisinin combination 

therapies (ACTs). Artemisinin and its derivatives, artemether and artesunate, 

have a very rapid metabolism and half-life within the host; to complement this, 

longer-acting antimalarial drugs are combined to maximize the clinical efficacy 

the treatments. Two of the most common combinations are artemether paired 

with lumefantrine and artesunate paired with amodiaquine. ACTs are effective 

against the asexual stages of the Plasmodium life cycle, which translates 

clinically to the blood stage of infection. The World Health Organization 

recommends using the oral route of treatment, although ACTs can also be given 

intravenously, intramuscularly, or rectally20.  

 While ACTs have proven to be effective at treating malaria, the associated 

mechanisms of action for the drugs are unknown, to certain degrees. 

Lumefantrine and amodiaquine are thought to interfere with the ability of 

Plasmodium to metabolize heme, which is toxic to the parasite54. More is known 
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about the mechanism of artemisinin and its derivatives. These drugs have been 

shown to be multifaceted in their effects on the host, but the major role these 

drugs appear to play is causing cellular damage and inhibiting proteasome 

function in Plasmodium55. This leads to the buildup of damaged proteins, 

endoplasmic reticulum stress, and induction of apoptosis, killing the parasite56. 

While artemisinin and derivatives have been relatively well characterized in their 

interactions with Plasmodium, much less is known about how artemisinin 

interacts with bacteria, particularly since the oral route is preferred for ACT 

administration. Artemisinin has been shown to kill Helicobacter pylori, but 

otherwise is not effective at killing various bacteria and fungi in vitro, such as 

Staphylococcus aureus or Bacillus subtilis57,58. Other tested artemisinin 

derivatives were shown to have moderate antibacterial and lesser antifungal 

properties, but most have not been approved for clinical use57. 

 

The Microbiota 

 The microbiome is the collection of microbes and their genetic material 

associated with a host, and is typically delineated by occupied niche, such as 

skin and gut microbiome, while the microbiota refers to the collection of 

organisms. While bacteria have been the most widely studied, other organisms 

such as fungi and viruses are commensal as well. In the past, studying many of 

the microbiota constituents was out of reach due to their inability to be grown in 

lab conditions. However, the rise of 16S rRNA sequencing has led to culture-
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independent methods of characterizing the microbiota. Variable regions within 

the 16S rRNA gene are highly conserved between bacterial species and can be 

used to reliably identify bacterial taxa for phylogenetic analyses. Coupled with the 

low cost of DNA sequencing, the human and murine microbiomes have been well 

characterized, both in healthy conditions as well as in some disease states.  

 The gut microbiota can be influenced by many factors which can affect the 

composition or function of the microbiota, with two of the most studied being 

antibiotic treatment and diet. Given orally, antibiotics can act directly on the 

bacteria in the gut; given the right antibiotics and dosing, a majority of the 

microbiota can be depleted59. However, even subclinical doses of antibiotics can 

disrupt the microbiota and can contribute to the development of obesity or 

allergies60,61. Disruption of the microbiota can lead to disease as pathobionts in 

the gut such as Clostridium difficile or Enterococcus faecium can outgrow and 

establish niches59,62.  

 The effect of host diet on the microbiota has also been studied 

extensively. Like antibiotics, shifts in diet can significantly reshape the microbiota. 

Adopting an animal-based diet, for example, can shift the microbiota composition 

to a more bile-tolerant community in as little as 48 hours63. Diet-induced shifts in 

the microbiota can also be reversible. Different types of diet can have positive or 

negative effects, as different nutrients can be metabolized differently. For 

example, a high salt diet in mice has been shown to decrease Lactobacillus 

murinus in the gut; L. murinus can reduce Th17 cell numbers in the intestine and 
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ameliorate experimental autoimmune encephalitis and salt-induced 

hypertension64. Conversely, a diet high in dietary fiber has been shown to be 

beneficial through fermentation and production of short-chain fatty acids (SCFAs) 

like butyrate and propionate65. SCFAs, particularly butyrate, have been shown to 

have many different effects on the host. Butyrate can induce an anti-inflammatory 

response in the intestine by acting as a histone deacetylase and regulating gene 

expression, primarily in macrophages and regulatory T cells (Tregs)65. 

Modulation of the gut microbiota, through antibiotics or diet, has diverse effects 

on the host. 

  

The Gut Microbiota and Infectious Disease 

Due to the close nature of the relationship between the microbiota and the 

host, the microbiota has been investigated in infectious disease. As mentioned 

previously, C. difficile is a pathobiont in the gut microbiota and can take 

advantage of microbial and metabolic disruptions in the gut to proliferate66. Once 

C. difficile has established a niche in the host, it can cause abdominal pain and 

diarrhea67. While antibiotics can be used to treat acute C. difficile, recurrent 

infections can occur and antibiotic treatment can fail68. One overwhelmingly 

effective method of treating C. difficile infection is fecal microbiota transplantation 

(FMT)68. FMT is fairly straightforward, involving isolation of bacteria from donor 

feces and encapsulation for patient ingestion; a single treatment has been shown 

to resolve C. difficile infection in 70% of patients while that rate increases to 90% 



  13 

after a second FMT68. One reason for the success of FMT is the increase in 

overall bacterial diversity and abundance, particularly in the Bacteroides genus69. 

The increase in diversity can restore metabolic homeostasis in the gut, 

particularly secondary bile acid biosynthesis which confers resistance to C. 

difficile infection70. While C. difficile is an intestinal infection, the gut microbiota 

can also affect extra-intestinal infections as well. 

One extra-intestinal disease that has been investigated is influenza virus, 

which despite infecting the respiratory tract, can be affected by the gut 

microbiota. Influenza can occasionally cause gastrointestinal symptoms like 

diarrhea. Treating mice with antibiotics has been shown to impair the ability of 

the host to form a sufficient virus-specific immune response to clear the virus71,72. 

Compared to untreated mice, antibiotic-treated mice have an impaired 

inflammatory response as well as significantly lower innate or adaptive virus-

specific responses71,72. Conversely, influenza infection can change the 

composition of the microbiota, decreasing the abundance of Lactobacillus 

species and segmented filamentous bacteria but increasing the abundance of the 

Enterobacteriaceae family members and Sphingomonas species71,73. This 

dysbiosis was required for gastrointestinal symptoms. The dysbiosis, in turn, is 

caused by the expansion of inflammatory Th17 cells in the intestine that respond 

to the IFN𝛾 produced by lung-derived CD4+ T cells73. Overall, the gut microbiota 

is beneficial to the host, helping produce a robust anti-influenza immune 

response, but can itself be affected by influenza-induced inflammation. 
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 The microbiota has been shown to be important during Plasmodium 

infection. Members of the gut microbiota express the glycan Galα1-3Galβ1-

4GlcNAc-R (alpha-gal) on their surface, which induce anti-alpha-gal antibodies74. 

Plasmodium sporozoites, but not merozoites, also express alpha-gal on their 

surface, and the presence of anti-alpha-gal IgM antibodies correlates with 

moderate protection against malaria in humans74. Unlike humans, mice express 

alpha-gal; when alpha-gal deficient mice are orally treated with Escherichia coli 

O86:B7, which expresses alpha-gal, the mice develop anti-alpha-gal 

antibodies74. While this antibody response did not affect disease severity, it 

inhibited Plasmodium sporozoite transmission, limiting the parasite’s ability to 

reach the liver from its injection site in the skin74. Based on this data, the 

microbiota can provide protection from malaria through cross-reactivity of 

bacterial antigens. 

 Similarly, Plasmodium has been shown to cause intestinal pathology and 

affect the gut microbiota. 10 days after Py nigeriensis infection, there is 

considerable sequestration of pRBCs in the gut microvasculature, with significant 

infiltration of Ly6C+Ly6G- monocytes in the lamina propria along with an increase 

in inflammatory cytokine expression caused by the pRBCs37. During infection, a 

shift was seen in the microbiota composition at day 10 p.i., with an increase in 

Bacteroidetes and a decrease in Firmicutes; however, by day 15 p.i. the majority 

of the observed changes had returned to baseline37. When C57BL/6 mice are 

infected with P. berghei ANKA infection to model cerebral malaria, significant gut 
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pathology occurs, including shortening of the intestines and villi along with 

increased mucus thickness and intestinal permeability38. Along with this 

pathology, the gut microbiota became increasingly different from baseline, with a 

decrease in abundance of the Lactobacillaceae family but increases in 

Enterobacteraceae and Verrucomicrobiaceae38. Overall, Plasmodium infections 

can cause inflammation-related damage to the intestine and modulate the 

composition of the gut microbiota.  

 With the convergence of malaria and the gut microbiota, the goal of this 

dissertation is to characterize interactions between the gut microbiota, the host, 

and Plasmodium using the mouse model of malaria. Additionally, the effect of 

antimalarial drugs on the composition of the gut microbiota is studied.
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CHAPTER 2 

COMPOSITION OF THE GUT MICROBIOTA MODULATES THE SEVERITY OF 

MALARIA1 

 

Plasmodium infections result in clinical presentations that range from 

asymptomatic to severe malaria resulting in approximately one million deaths 

annually. In spite of this, the factors that determine disease severity remain 

poorly understood. Here we show that the gut microbiota of mice influences the 

pathogenesis of malaria. Genetically similar mice from different commercial 

vendors, which exhibited differences in their gut bacterial community, had 

significant differences in parasite burden and mortality after infection with multiple 

Plasmodium species. Germ-free mice that received cecal content transplants 

from ‘resistant’ or ‘susceptible’ mice had low and high parasite burdens, 

respectively, demonstrating the gut microbiota shaped the severity of malaria. 

Among differences in the gut flora were increased abundances of Lactobacillus 

and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics 

                                                      
1 Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proceedings of 
the National Academy of Sciences of the United States of America 113, 2235-2240, 
doi:10.1073/pnas.1504887113 (2016). 
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followed by yogurt made from these bacterial genera displayed a decreased 

parasite burden. Consistent with differences in parasite burden, resistant mice

exhibited an elevated humoral immune response compared to susceptible mice.

Collectively, these results identify the composition of the gut microbiota as a 

novel risk factor for severe malaria and modulation of the gut microbiota (e.g. 

probiotics) as a potential treatment to decrease parasite burden.
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Introduction 

Plasmodium infections are a global health burden causing over 200 million 

cases of malaria and around one million deaths annually, with the vast majority of 

fatalities being children under the age of 5 living in sub-Saharan Africa75. Many 

Plasmodium infections are either asymptomatic or cause only mild malaria. Yet, 

some infections progress to severe malaria that most often manifest as impaired 

consciousness (cerebral malaria), respiratory distress, and severe anemia3. The 

best correlate of disease severity following P. falciparum infection in humans is 

parasite density76,77. 

The gut microbiota impacts multiple facets of host physiology78 including 

shaping susceptibility to numerous diseases61,79-86. The effects of the gut 

microbiota on the host are strongly influenced by the collective composition of the 

bacterial populations87 and commensal flora are known to affect local pathogen 

burdens and host immunity88-90. In addition to influencing local gut immunity, the 

gut microbiome also affects host immunity to extra-gastrointestinal tract viral 

infections72.  

Recent studies also support that the gut microbiome modulates 

Plasmodium infections in humans. Anti-α-gal antibodies, induced by the gut 

pathobiont E. coli O86:B7, cross-react with sporozoites from human and rodent 

Plasmodium species that impair transmission of the parasite between the vector 

and vertebrate host, however this cross-reactive immunity did not affect blood 

stage parasite burden74. Additionally, the stool bacteria composition of Malian 



  19 

children correlated prospectively with risk of P. falciparum infection, but not 

progression to febrile malaria91. Importantly, it remains unclear whether the gut 

microbiome also contributes to the development of severe malaria. Using a 

murine model of malaria, we demonstrate that the gut microbiome effects blood 

stage parasite burden and the subsequent severity of malaria. 

 

Results 

Mice from Different Vendors Exhibit Differential Susceptibility to Malaria 

Genetically similar inbred strains of mice (C57BL/6) maintained by 

different vendors (Jackson Laboratories and Taconic) have differences in their 

gut bacterial communities92,93. To determine whether these differences had any 

effect on Plasmodium infections C57BL/6 mice from Jackson Laboratories (Jax), 

Taconic (Tac), National Cancer Institute/Charles River (NCI) and Harlan (Har) 

were infected with P. yoelii. Following infection, profound differences in 

parasitemia (the fraction of red blood cells infected with P. yoelii) were observed 

among the four groups of mice (Fig. 2-1A,B). Whereas resistant mice (Jax and 

Tac) exhibited a maximum of approximately 10% parasitemia, they had no signs 

of morbidity (weight loss) or mortality, which was in contrast to the substantial 

weight loss and mortality observed in susceptible mice (NCI and Har) where 

parasitemia was >60% (Fig. 2-1C,D). Moreover, NCI and Har mice exhibited 

more profound and longer lasting anemia (loss of red blood cells (RBCs) per mL) 

compared to Jax and Tac mice (Fig. 2-2A). Additionally, when total number of 
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RBCs per mL was used to derive total pathogen burden we noted similarities 

between the parasite burden as detected by parasitemia or parasitized RBCs 

(pRBCs) per mL of blood (Fig. 2-2B-E). Of note, mice infected with different 

doses of P. yoelii pRBCs showed similar parasitemia kinetics between the 

different doses and susceptibility to infection (Fig. 2-3) suggesting mice from 

different vendors are differentially susceptible to progression to severe malaria 

but not to blood stage infection. 

To determine the broader applicability of these data, another mouse strain 

and two Plasmodium species were tested. BALB/c mice from Jax, Tac, Charles 

River (CR) and Har were infected with P. yoelii. Mice were purchased from CR in 

lieu of NCI/CR. Of note, C57BL/6 mice purchased from CR exhibit similar 

parasitemia and morbidity as NCI mice following infection with P. yoelii (Fig. 2-4). 

Consistent with P. yoelii infections in C57BL/6 mice (Fig. 2-5), BALB/c mice from 

Jax and Tac exhibit reduced P. yoelii parasitemia compared to mice from CR and 

Har (Fig. 2-5A,B). Furthermore, C57BL/6 mice from Jax and Tac exhibited 

reduced parasitemia compared to CR and Har following Plasmodium chabaudi 

infection (Fig. 2-5C,D). Finally, we assessed the development of experimental 

cerebral malaria (ECM) in C57BL/6 mice infected with Plasmodium berghei 

ANKA. Jax and Tac mice trended towards reduced parasitemia compared to NCI 

and Har mice at early time points, moreover there was a significant (p=0.04) 

difference in survival between these groups of mice (Fig. 2-5E,F). Collectively, 

these data indicate the severity of malaria is dependent on the source of mice. 
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Diet is a strong modulator of organismal health as well as of the gut 

microbiome and its function63. To determine whether the diet could shape the 

severity of malaria, Jax and NCI mice were fed one of two commercially available 

rodent diets, either the in-house NIH-31 (used in Fig. 2-1A-D) or Teklad 22/5. 

Parasitemia in NCI mice was unaffected; however, Jax mice had high levels of 

parasitemia when fed Teklad 22/5 (Fig. 2-1E,F). Consistent with the parasitemia 

data, Jax mice fed Teklad 22/5 also exhibited substantial weight loss and 

elevated mortality compared to Jax mice fed NIH-31 (Fig. 2-1G,H). Since these 

diets had no effect on parasite burden in NCI mice, the changes in parasitemia in 

Jax mice were unlikely due to a direct effect of these diets on the parasite 

burden. Moreover, high parasite burdens in NCI mice fed NIH-31, suggest this 

diet supported the proliferative expansion of P. yoelii. When Jax and NCI mice 

were placed on the reciprocal vendor-specific diet and then infected with P. yoelii 

we noted a modest increase in parasite burden in Jax mice fed the NCI in-house 

diet, but no effect of the Jax in-house diet on NCI mice (Fig. 2-6). Collectively, 

these data sets led to the hypothesis that the gut microbiota influenced 

Plasmodium infections. 

 

Gut Bacterial Community Structure and Function are Different in Resistant 

and Susceptible Mice 

To directly test for differences in the gut microbiome, sections of the 

gastrointestinal tract from resistant (Jax and Tac) and susceptible (NCI and Har) 
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mice were collected and the bacterial communities were characterized using 16S 

rRNA gene analysis. There was a high degree of similarity between the microbial 

community assemblages found within the cecum and the colon of mice from the 

same vendor (Fig. 2-7A), while there were clear differences between the 

microbial communities of these regions compared to the distal half of the small 

intestine within the same vendor. Moreover, significant differences between mice 

from all vendors were apparent in the non-metric multidimensional scaling 

(NMDS) analysis of population structure within the cecum, with the susceptible 

NCI and Har libraries showing a comparative overlap with each other yet distinct 

differences when compared to the resistant Jax and Tac communities (Fig. 2-

7B). Analysis of the cecal bacterial communities at the family level revealed 

substantial differences, with Clostridiaceae, Erysipelotrichaceae, 

Lactobacillaceae, and Peptostreptococcaceae (members of the Firmicutes 

phylum) being proportionally more abundant in resistant (Jax and Tac) mice, 

whereas Bacteroidaceae and Prevotellaceae (members of Bacteroidetes 

phylum), and Sutterellaceae (member of Proteobacteria phylum) were 

proportionally more abundant in susceptible (NCI and Har) mice (Fig. 2-8A,B). 

Finally, dietary changes are capable of inducing significant changes in the gut 

microbiome94 that reach steady state within 3-4 days in mice95. Consistent with 

these reports, we observed defined changes in the gut bacterial communities in 

Jax mice fed Teklad 22/5 or NIH-31 (Fig. 2-9, 2-10), with a noted decrease in 

Peptostreptococcaceae in Jax mice fed Teklad shifting closer towards that seen 
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in susceptible NCI and Har mice (Fig. 2-9C). These changes coincide with a shift 

in the severity of malaria between these two groups of mice (Fig. 2-1E-H). 

Consistent with changes in the gut bacterial community, analysis of 

metabolites in the small intestine, cecum, and plasma of Jax and NCI mice 

revealed differential expression between each tissue (Fig. 2-11A). An F-test of 

partial least squared discriminant analysis (PLS-DA)96 used to probe variation 

between metabolite profiles in Jax and NCI mice on a per tissue basis confirmed 

that the means of the variate 1, which differentiated Jax from NCI mice in all 

tissues, were significantly different (p≤0.0003, 0.0001, 0.0001) for the small 

intestine, cecum, and plasma, respectively, (Fig. 2-11B-D, 2-12). Several 

metabolites exhibited large (≥1.5 fold) and statistically significant (p≤0.1) 

differences between Jax and NCI mice, with the top 25% of metabolites 

associated with distinct metabolic pathways (Fig. 2-11E,F). Collectively, 

differences in the gut bacterial populations and metabolites support the 

hypothesis that the severity of malaria is modulated by differences in gut 

bacterial communities. 

 

Differences in the Gut Microbiome Shape Susceptibility to Malaria 

To directly test this hypothesis, genetically identical germ-free (GF) 

C57BL/6 mice received cecal content transplants from either Jax or NCI mice. 

Sequence analyses demonstrated the bacterial communities in colonized germ-

free mice reflected that of the donor communities and were different than the 
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communities in germ-free mice exposed to only environmental microbes (Fig. 2-

13A). Furthermore, there was only a slight decrease in community diversity 

between respective donor and colonized germ-free mice (Fig. 2-14). Following P. 

yoelii infection, germ-free mice that received either Jax or NCI cecal transplants 

had parasite burdens similar to control Jax and NCI mice (Fig. 2-13B,C). Both 

NCI control mice and germ-free mice that received NCI cecal transplants also 

had decreased survival compared to the Jax control mice and germ-free mice 

that received Jax cecal transplants (Fig. 2-13D). Collectively, these data provide 

a direct demonstration that the severity of malaria was modulated by the gut 

microbiota. 

 

Decreased Parasite Burden in Mice Treated with Lactobacillus and 

Bifidobacterium 

To identify individual microbial phylotypes that may shape the severity of 

malaria, a deeper analysis was performed on the bacterial communities in the 

cecum. When pooled by resistance (Jax/Tac) or susceptibility (NCI/Har) to P. 

yoelii, several phylotypes (referred to here as Operational Taxonomic Units, 

OTUs) emerged from a linear discriminant analysis (LDA) effect size (LEfSe)-

driven analysis97 as biomarkers of the resistant or susceptible phenotype. Among 

those differences, Lactobacillus and Bifidobacterium were overly abundant in the 

resistant mice compared to susceptible mice (Fig. 2-15), with differences in 
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Lactobacillus being the greatest driver of the differential community structure 

between resistant and susceptible mice (Fig. 2-15B).  

To evaluate the linkage between Lactobacillus and Bifidobacterium towards 

resistance to severe malaria, Jax and NCI mice were treated with lab-cultured 

yogurt supplemented with probiotics that contained Lactobacillus and 

Bifidobacterium species prior to and following infection with P. yoelii. DNA 

sequencing of Lactobacillus isolated from fecal pellets from Jax and NCI mice or 

lab-cultured yogurt demonstrated phylogenetic congruence (Fig. 2-16). 

Consumption of Lactobacillus and Bifidobacterium can modulate the gut 

microbial community structure98 or function99. Following infection with P. yoelii, 

both Jax and NCI mice treated with yogurt had a modest, but significant (Jax 

p<0.0001; NCI p=0.0418), decrease in parasite burden compared to control 

untreated mice (Fig. 2-17). Jax and NCI mice treated with milk used to make the 

yogurt showed a similar parasite burden as control Jax and NCI mice (mean 

AUCDay 5-34: Jax control (n=4) 107.2±11.39 (S.D.) versus Jax milk (n=4) 

83.55±24.83 (S.D.) p = 0.13; NCI control (n=4) 447.1±85.65 (S.D.) versus NCI 

milk (n=3) 384.8±73.08 (S.D.) p = 0.36). However, when mice were treated with 

antibiotics prior to yogurt treatment we observed a profound decrease in parasite 

burden in the susceptible NCI mice (Fig. 2-18A,B), and no weight loss in those 

mice compared to the other NCI groups (Fig. 2-18C). Whereas other constituents 

of the gut microbiota may contribute to regulating the severity of malaria, these 
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data support the ability of Lactobacillus and Bifidobacterium to contribute towards 

the modulation of Plasmodium parasite burden. 

 

Severity of Malaria Tracks with the Magnitude of the Host Immune 

Response 

The gut microbiota can shape host immunity to systemic viral infections72 

and T follicular helper (Tfh) produced IL-21 is required for GC B cell help and 

clearance of murine Plasmodium infections44. Consistent with these 

observations, resistant Jax mice exhibited an elevated P. yoelii-specific CD4+ T 

cell (CD49dhiCD11ahi, Tfh cell, and GC B cell responses compared to susceptible 

NCI mice (Fig. 2-19A-C; Fig. 2-20)51. Jax and NCI mice had similar titers of IgM 

specific for the 19-kDa fragment of merozoite surface protein 1 (MSP119) from P. 

yoelii (Fig. 2-19D), suggesting similar activation of B cell in both groups. In 

contrast, Jax mice exhibited accelerated antibody class switching from MSP119-

specific IgM to IgG isotypes compared to NCI mice (Fig. 2-19D). These results 

support the possibility that the gut microbiome modulates the severity of malaria 

following P. yoelii infection through modulation of the host immune response. 

 

Discussion 

This study demonstrates that the murine gut microbiome influences the 

parasite burden of Plasmodium rodent species and modulates the severity of 

malaria in mice. Importantly, parasite burden is currently the best-known 
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correlate of disease severity following P. falciparum infection in humans76,77. An 

association between the gut microbial community and Plasmodium parasites has 

been previously recognized in the mosquito vector100-104. Interestingly, the unique 

assemblage of skin bacteria on human skin has also been shown to impact the 

attractiveness of Anopheles mosquitoes to particular individuals105,106. 

Two recent publications also support that the gut microbiota affects 

mammalian stages of the Plasmodium life cycle. The first study demonstrated 

that specific gut bacteria could impact the transmission of P. berghei sporozoites 

from mosquitos to mice74. The authors showed that the gut pathobiont, 

E. coli O86:B7, induced the production of anti-α-gal antibodies. When 

Plasmodium-infected mosquitoes injected sporozoites into the dermal tissue 

during a blood meal the anti-α-gal antibodies bound to the Plasmodium 

sporozoites, which prevented their migration to the liver74. These results also 

extended to humans where the presence of anti-α-gal IgM antibodies correlated 

with protection against P. falciparum infection. The effect of E. coli O86:B7 on 

Plasmodium infection was limited to transmission of sporozoites as there was no 

effect of the anti-α-gal antibodies on the symptomatic blood stage of the 

infection. Consistent with these findings a second report demonstrated that the 

unique composition of stool bacteria in Malian children correlated with 

prospective risk of P. falciparum infection, although not progression to febrile 

malaria91. Although the mechanism responsible for this observation is unknown, 

the similarities between these two studies (i.e., susceptibility to infection but not 
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severity of blood stage infection) suggest the prospective risk of P. falciparum 

infection differentiated by stool bacteria composition may be attributed to 

differences in anti-α-gal IgM antibodies. In contrast to these two publications, we 

show that the gut microbiota modulates the severity of P. yoelii blood stage 

infections in mice, implying a novel and independent mechanism. Moreover, our 

findings show that the influence of the gut microbiome on Plasmodium infections 

is broad and not limited to the transmission of the parasite. Taken together our 

observation and those of Yilmaz et al.74, result in the intriguing speculation that 

the human intestinal microbiota might impact different stages of the Plasmodium 

life cycle in humans. Clearly, this is an area ripe for future research.  

One potential mechanism by which the gut microbiota regulates the 

severity of malaria is a direct effect on the parasite itself where gut microbiota-

derived products either promote or inhibit its growth. Whereas this possibility has 

not been formally excluded, we observe similar parasitemia expansion kinetics, 

when plotted on a log-scale, between days 5 and 11 post-infection in both 

resistant and susceptible mice. This observation suggests that the gut microbiota 

does not have a direct effect on the parasite. Consequently, it is more likely that 

the gut microbiota impacts the severity of malaria by modulating the host immune 

response to Plasmodium. Consistent with this possibility, resistant Jax mice 

exhibited an elevated anti-Plasmodium immune response compared to 

susceptible NCI mice. While these exciting data correlate with the parasite 

burden in these mice further experiments will be necessary to demonstrate the 
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differential immune response is responsible for the difference in severity, and if 

so, how the gut microbiota modulates the host immune response to this extra-

gastrointestinal infection. It has been previously shown that the gut microbiome 

provides signals to monocytes/macrophages that primed those cells to respond 

to and help control systemic LCMV infections72. Whether the gut microbiome 

modulates host immunity to Plasmodium through similar or different effects on 

the host immune system remains to be determined. 

As mentioned above, diet has a major role in shaping the composition and 

activity of the gut microbiota94,107,108. Consequently, manipulating the structure 

and function of these complex communities through the diet provides an 

excellent opportunity to manipulate the host immune system107. In our study, we 

identified that Lactobacillus and Bifidobacterium species in cecal content could 

have a protective role by modulating the parasite burden and attenuating the 

severity of the disease. On the other hand, it is possible that these bacterial 

genera correlate with decreased parasitemia through niche competition that 

decreases the abundance of bacterial genera that cause elevated parasitemia. 

Since antibiotic treatment followed by yogurt treatment triggered a 14-fold 

reduction in parasite burden in susceptible mice, these exciting results suggest 

that through optimization (e.g., identifying and treating with the most effective 

‘protective’ bacterial species or eliminating bacteria that contribute to high 

parasitemia) modulating the gut microbiome has the potential be a novel 

prophylaxis to prevent severe malaria. Consistent with this possibility, prior work 
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has shown that children in a rural African village in Burkina Faso have an 

enrichment of the Bacteroidetes phylum and a depletion of the Firmicutes 

phylum, which contains Lactobacillus, compared to European children109. This 

resembles the community structure in susceptible mice that have increased 

Bacteroidetes and reduced Firmicutes compared to resistant mice (Fig. 2-15). 

Therefore, the commonality between the bacterial community structure in African 

children and Plasmodium susceptible mice suggests the possibility that probiotic 

modulation of the gut microbiota in mice to control severe malaria might work in 

humans.  

This report demonstrates the novel observation that the severity of malaria 

in mice is profoundly impacted by the composition of the gut microbiota. The data 

lead to the hypothesis that differences in the gut microbiota may explain why 

some humans infected with Plasmodium progress to severe disease while others 

do not. The results also support the possibility that manipulating the gut 

microbiota has the potential to control the severity of malaria in humans. 

Whereas modulating the gut microbiota may not prevent Plasmodium infections, 

altering the gut microbiome has the potential to ameliorate severe disease and 

save hundreds of thousands of lives annually. 
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Materials and Methods 

Animals and Housing 

Conventionally housed mice: Female C57BL/6J and BALB/cJ mice (6-8 weeks 

old) were purchased from The Jackson Laboratory (Bar Harbor, Maine); 

C57BL/6N and BALB/cN mice (6-8 weeks old) were purchased from the National 

Cancer Institute (Frederick, MD), Charles River Laboratories 

(Wilmington, MD), Harlan Laboratories (Indianapolis, IN) and Taconic (Hudson, 

NY). Mice were acclimatized for a minimum of 7 days prior to starting 

experiments.  

Germ–free mice: Female C57BL/6J mice (8-10 weeks old) were purchased from 

The National Gnotobiotic Rodent Resource Center at the University of North 

Carolina-Chapel Hill. Upon arrival at the University of Tennessee the mice were 

kept in the transporting box until fecal transplant was done, then mice were 

housed in conventional (specific pathogen free) conditions. Animal experiments 

were carried out at The University of Tennessee adhering to the local and 

national regulations of laboratory animal welfare. Procedures involving the care 

or use of mice were reviewed and approved by The University of Tennessee 

Institutional Animal Care and Use Committee. 

Diets: Unless noted otherwise mice were fed NIH-31 Modified Open Formula 

Mouse/Rat Irradiated Diet (Harlan 7913) (Harlan, Indianapolis, IN). In some 

experiments mice were fed Teklad 22/5 Rodent Diet (Harlan 8640; Harlan, 

Indianapolis, IN), Jackson Laboratory in-house diet (5K67; Cincinnati Lab & Pet 
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Supply, Inc.; Cincinnati, OH) or NCI/CR in-house diet (5L79 Cincinnati Lab & Pet 

Supply, Inc.; Cincinnati, OH). Mice were placed on the respective diets upon 

arrival at the facility and maintained on the different diets for at least one week 

prior to P. yoelii infection or removal of intestinal tissues for bacterial population 

analysis. 

 

Plasmodium Infection 

Mice were infected with P. yoelii 17XNL, P. chabaudi AS, or P. berghei 

ANKA. For P. yoelii or P. berghei ANKA infections mice received 1x105 

parasitized red blood cells (intravenously) prepared from frozen/thawed stabilites. 

For P. chabaudi infections, experimental mice were infected intraperitoneally with 

freshly prepared 1x105 parasitized red blood cells after one in vivo passage in 

C57BL/6 mice.  

 

Evaluation of Parasitemia 

Blood samples were taken from the tail at regular intervals from 3 to 35 

days post-infection. Parasitemia was assessed by evaluation of thin blood 

smears or flow cytometry. Thin blood smears–at least 5 high-power (1000x) 

fields were assessed for each sample. Total red blood cells and parasitized red 

blood cells were counted in each field. Flow cytometry–about 5-10 μl of blood 

was added to PBS and then fixed with 0.00625% gluteraldehyde. Cells were 

stained with CD45.2-APC (clone 104; Biolegend; San Diego, CA), Ter119-
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APC/Cy7 (clone TER-119; Biolegend; San Diego, CA), dihydroethidium (Sigma 

Aldrich; St. Louis, MO), and Hoechst 33342 (Sigma Aldrich; St. Louis, MO). Red 

blood cells (CD45.2- Ter119+) were gated on and Plasmodium infected cells 

were subsequently identified as dihydroethium+ Hoechst 33342+. Parasitemia 

represents the percentage of red blood cells infected with P. yoelii, P. chabaudi 

or P. berghei.  

  

Enumeration of Red Blood Cells and Parasitized Red Blood Cells 

Blood samples were collected and used to quantify red blood cells per mL 

using a hemocytometer, and percent parasitemia. Red blood cells per mL and 

percent parasitemia were used to calculate the number of parasitized red blood 

cells per mL of blood.  

 

Cecum Transplant 

Cecal content was squeezed from donor mice (n=3-5 mice per group) into 

a sterile petri dish. Immediately after harvesting the cecum material, it was 

diluted with sterile saline (2 mL) and mixed gently for ~30 seconds. Each germ-

free mouse received the diluted cecum material (200 μL/mouse) administered by 

oral gavage. For each mouse, a new sterile oral gavage needle was used. After 

the cecal transplant, mice were housed using conventional conditions. Mice were 

infected with P. yoelii 3 weeks after the cecal transplant.  
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Gut Microbiota Analysis  

Tissue collection: The distal half of the small intestine, cecum, and colon  

were excised from mice and flash frozen in liquid nitrogen. Samples were then 

stored at -80°C.  

DNA isolation: DNA was extracted from samples using the MoBio PowerSoil 

DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA) according to 

manufacturer’s protocols. No effort was made to separate mouse tissue from the 

bacterial component so as not to select against bacteria that were in close 

association with mouse tissue.  

Ribosomal 16S sequencing: For amplification of bacterial 16S rRNA genes, 

bacteria-specific PCR primers targeting the V4 region (bases 515-806) were 

used. Amplification, barcoding and sequencing were completed by the Genome 

Sequencing Center at the Hudson-Alpha Institute for Biotechnology (Huntsville, 

AL) using the MiSeq platform with 150 bp paired-end reads.  

Community analysis: We used the Mothur software package (version 1.33.1)110 

to process sequences of sufficient length and quality similarly to the Schloss 

MiSeq SOP (http://www.mothur.org/wiki/MiSeq_SOP). Mothur was also used to 

cluster sequences into phylotypes and for phylogenetic classification and to sort 

our sequences into groups based on the region of the digestive tract from which 

the DNA was extracted. The Primer-E software package (Version 6)111 was used 

to interrogate the relationships between phylotypes across samples and to derive 

correlations between phylotype presence/abundance and other parameters. The 
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“.shared” file (a matrix file containing phylotype abundances for each sample), 

created by Mothur, was imported directly into the Primer-E software package. All 

phylotype abundances were standardized to the total number of sequences per 

barcoded library (proportional abundances). Standardized abundances were 

square-root transformed to partially deemphasize more highly abundant 

phylotypes. A Bray-Curtis similarity matrix was constructed and used to perform 

non-metric multidimensional scaling analysis (NMDS) for visualization of 

community structure relationships between the different samples. Detection of 

“biomarker” sequences was performed using the software package LEfSe 

(http://huttenhower.sph.harvard.edu/galaxy/)97.  

 

Metabolomics Analysis 

Collection of small intestine and cecum content samples: Immediately after 

euthanasia, the abdominal cavity was exposed and the small intestine and the 

cecum were dissected from the other intestinal sections. The small intestine and 

cecum contents were collected into petri dishes by squeezing the tissues from 

the proximal to distal ends of the organs. In addition, extraction solvent (1mL) 

(40:40:20 HPLC grade methanol, acetonitrile, water with 0.1% formic acid) was 

used to flush the small intestine and the cecum using a needle and syringe. The 

intestine contents were then transferred into separate cryotubes and flash frozen 

in liquid nitrogen. The samples were kept on ice for approximately one hour until 

extraction. 
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Collection of plasma samples: Blood was collected from the peri-orbital sinus 

using heparinized capillary tubes under general anesthesia with isoflurane. 

Immediately after collection, blood samples were transferred to centrifuge tubes 

and centrifuged for 10 minutes at 2,000 x g at room temperature. Following 

centrifugation, plasma samples were transferred to cryotubes and flash frozen in 

liquid nitrogen. The samples were kept on ice for approximately one hour until 

extraction.  

Sample extraction and analysis: Extraction of samples was allowed to proceed at 

-78°C for 20 minutes. Samples were then centrifuged for 5 minutes (16.1 rcf) at 

4°C. The supernatant was transferred to new vials and the sample pellet was 

resuspended in 200 μL of chilled (4°C) extraction solvent. The extraction was 

allowed to proceed for 15 min at -20°C at which time the samples were 

centrifuged for 5 min (16.1 rcf) at 4°C. The supernatant was transferred to vials 

and another 50 μL of extraction solvent was added to the sample pellet where 

the extraction was repeated once more. Vials containing all of the collected 

supernatant were dried under a stream of N2 until the extraction solvent had 

evaporated. Solid residue was resuspended in 300 μL of sterile water and 

transferred to autosampler vials. Samples were immediately placed in 

autosampler trays for mass spectrometric analysis. 

Ultra-Performance Liquid Chromatograpy—High Resolution Mass Spectrometric 

(UPLC-MS) Analysis: Samples were placed in autosampler trays and kept at 

4°C. A 10 μL aliquot of each was injected through a Synergi 2.5 micron Hydro-
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RP 100, 100 x 2.00 mm LC column (Phenomenex) kept at 25°C. The eluent was 

introduced into the MS via an electrospray ionization source conjoined to a 

Thermo Scientific Exactive Plus Orbitrap MS through a 0.1 mm internal diameter 

fused silica capillary tube, and the MS was run in fullscan mode with negative 

mode ionization using a method adapted from Rabinowitz112. Briefly, the samples 

were run with a spray voltage was 3 kV. The nitrogen sheath gas was set to a 

flow rate of 10 psi with a capillary temperature of 320°C. AGC target was set to 

3e6. The samples were analyzed with a resolution of 140,000 and a scan window 

of 85 to 800 m/z for from 0 to 9 minutes and 110 to 1000 m/z from 9 to 25 

minutes. Solvent A consisted of 97:3 water:methanol, 10 mM tributylamine, and 

15 mM acetic acid. Solvent B was methanol. The gradient from 0 to 5 minutes 

was 0% B, from 5 to 13 minutes was 20% B, from 13 to 15.5 minutes was 55% 

B, from 15.5 to 19 minutes was 95% B, and from 19 to 25 minutes was 0% B with 

a flow rate of 200 μL/min.  

Metabolite feature extraction and data processing: The RAW files generated by 

the instrumental data collection software Xcalibur (Thermo Scientific) were 

converted to the mzML format113 using the ProteoWizard package114. The 

MAVEN software package (Princeton University) was used to automatically align 

the total ion chromatograms using the retention times of annotated metabolites 

and other dominant features from each sample115,116. Metabolites were manually 

identified and integrated using known masses (± 5 ppm mass tolerance) and 

retention times (Δ≤1.5 min). Metabolite ion counts were normalized via mass for 
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cecum and small intestine samples, and fold changes were calculated between 

samples. The resulting data were clustered using Cluster 3.0117 and heatmaps 

were then generated from clustered data using Java Treeview118 software. PCA 

analyses were performed and figures were generated using the statistical 

package R along with the ggplot2119 and ggbiplot120 packages. PLS-DA plots 

were also generated via R along with the mixOmics121 package using metabolite 

areas as the predictors and mouse type as the discrete outcomes with a 

tolerance of 1 x 10-6 and a max iteration of 500.  

 

Yogurt treatment 

Antibiotic treated mice were treated orally with an antibiotic cocktail 

consisting of ampicillin (0.5 mg/ml) (Sigma Aldrich; St. Louis, MO), vancomycin 

(0.25 mg/ml) (Amnesco; Solon, OH), metronidazole (0.5 mg/ml) (Spectrum 

Chemical Mfg. Comp.; Gardena, CA), neomycin sulfate (0.5 mg/ml) (EMD 

Millipore; Billerica, MA), and gentamycin sulfate (0.5 mg/ml) (Corning; Manassas, 

VA). Mice were treated ad libitum for 3 weeks. Water bottles containing the 

antibiotic cocktail were changed weekly. After 3 weeks antibiotic treatment 

ceased and half of the antibiotic treated mice were then treated with yogurt for 3 

weeks prior to the P. yoelii infection. Yogurt was made using a starter culture 

containing Lactobacillus bulgaricus, L. acidophilus, L. lactis, Bifidobacterium 

lactis, and Streptococcus thermophilus (Yogurt Starter Culture #2, Custom 

Probiotics, Glendale, CA). In addition, yogurt was enriched with a probiotic 8 
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powder supplement containing L. acidophilus, L. rhamnosus, L. salivarius, L. 

plantarum, L. casei, L. lactis, B. breve, B. infantis, B. longum, B. bifidum, and B. 

lactis (11 Strain Probiotic Powder, Custom Probiotics, Glendale, CA). Fresh 

yogurt was made for each treatment by adding the starter culture (1.2 grams) 

and the probiotic supplement (1.2 grams) to 15 mL of 2% reduced fat milk 

(Mayfield, Athens, TN) or organic 2% reduced fat milk–antibiotic pretreatment 

experiment (Organic Valley; La Farge, WI). The yogurt was then incubated at 

37°C for 6-8 hours before administration. Mice were treated with yogurt as 

described in figure legends with 0.2 ml administered by oral gavage.  

 

Isolation and Sequencing of Lactobacillus  

Fecal pellets from Jackson and NCI mice were processed separately. 

Pellets were homogenized in buffered saline solution and plated onto 

Lactobacillus-selective MRS agar. Plates were subsequently incubated at 37°C 

in anaerobic culture jars. Single colonies were re-streaked three times to purify 

the strains. DNA was extracted from bacterial colonies, lab-cultured yogurt, and 

probiotic powder using the MoBio Powersoil DNA extraction kit (MoBio, Carlsbad, 

CA) according to the manufacturer’s protocols. An approximately 1500 bp 

segment of the 16S rRNA gene was amplified from isolate DNA, via PCR, using 

the 9F-1522R primer set. PCR products were purified using the Qiaquick PCR 

purification kit (Qiagen, Valencia, CA) and sequenced at the University of 

Tennessee Molecular Biology Resource Facility using Sanger sequencing.  
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Cellular Immune Response 

Spleens were disrupted to generate single-cell suspensions in Hyclone 

RPMI 1640 media (Thermo Fisher Scientific Inc., Waltham, MA) supplemented 

with 10% fetal bovine serum (FBS) (Atlanta Biologicals, Inc., Lawrenceville, GA). 

RPMI 1640 was also supplemented with 1.19 mg/ml HEPES (Thermo Fisher 

Scientific Inc., Waltham, MA), 0.2 mg/ml L-glutamine (Research Products 

International Corp., Mt. Prospect, IL), (0.05 units/ml & 0.05 mg/ml) 

penicillin/streptomycin (Invitrogen, Grand Island, NY), 0.05 mg/ml gentamicin 

sulfate (Invitrogen, Grand Island, NY), and 0.05 μM 2-Mercaptoethanol (Thermo 

Fisher Scientific Inc., Waltham, MA). Single cell suspensions were treated with 

ammonium chloride potassium to lyse red blood cells. Spleens were harvested 

as indicated at the number of days post infection. Cells were stained with Fc 

block (anti-CD16/32; clone 2.4G2) and the following fluorescence-conjugated 

antibodies (CD45.2; clone 104, CD4; clone RM4-5, CD8; clone 53-6.7, CD3; 

clone 17A2, CD19; clone 6D5, Ter119; clone Ter-119, CD11a; clone M17/4, 

CD49d; clone R1-2, PD-1; clone 29F.1A12, CD95; clone Jo2, GL7; clone GL7, 

biotion-CXCR5; clone 2G8, CD44; clone IM7) purchased from Biolegend (San 

Diego, CA) and BD Biosciences (San Diego, CA). For CXCR5 staining cells were 

stained with biotinylated-CXCR5 for 30 minutes at room temperature prior to 

staining with fluorescence-conjugated streptavidin. Antibodies were resuspended 

in FACS buffer (1x PBS, 1% FBS, 0.02% sodium azide) and cells were stained 
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for 30 minutes at 4°C. Following staining cells were fixed and permeabilized with 

Fixation Buffer (Biolegend, San Diego, California). Cells were acquired through 

an LSR II (BD Biosciences). Data were analyzed by FlowJo software (Tree Star, 

Ashland, OR).  

 

Detection of P. yoelii MSP119-specific Antibodies 

Serum was collected on the indicated days post-P. yoelii infection and 

stored at -20°C. MaxiSorp Immuno plates (Thermo Scientific) were coated with 1 

μg/ml recombinant MSP119 (The following reagent was obtained through the 

MR4 as part of the BEI Resources Repository, NIAID, NIH: Plasmodium yoelii 

yP.y.MSP1-19(XL)/VQ1, MRA-48, deposited by DC Kaslow.) Dilutions of serum 

were added to wells. Total MSP119-specific IgM, IgG1, IgG2b, IgG2c, and IgG3 

antibodies were detected with horseradish peroxidase–conjugated goat anti–

mouse IgM, IgG1, IgG2b, IgG2c, and IgG3, respectively, (Jackson 

ImmunoResearch) and 3,3′,5,5′-tetramethylbenzidine substrate (Arcos 

Organics). Reactions were stopped by addition of 2M H2SO4. Results are 

presented as average endpoint titers with absorbance readings below 0.1 

(absorbance at 450 nm). 

 

Statistical Analysis 

Descriptive and comparative statistical analyses of data, except the gut 

microbiota and metabolomics data, were done using GraphPad Software version 
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6 (La Jolla, CA, USA). The area under the parasitemia curve (AUC) was 

estimated for each group following the trapezoidal rule with the following 

equation122,123: 

AUCt1-t-last =0.5 Σ (Yi + Yi+1) * (ti+1-t i) 

where “t” was sampling time and “y” the observed outcome (e.g., %parasitemia). 
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Figures and Figure Legends 

 

Figure 2-1. Plasmodium parasite burden, morbidity and mortality vary by 

mouse vendor and diet. C57BL/6 mice were infected with P. yoelii parasitized 
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red blood cells. A. Fraction of red blood cells infected with P. yoelii 

(%parasitemia). B. Area under the parasitemia curve (AUC) analysis. Data were 

analyzed by one-way ANOVA and Tukey’s multiple comparison post-test. C. 

Percent weight loss following infection. Data were analyzed by one-way ANOVA. 

D. Survival of mice following infection. Survival curves were analyzed by Log-

rank (Mantel-Cox) test. E-H. Mice were fed either NIH-31 or Teklad 22/5 diets 

before and after P. yoelii infection. E. Percent parasitemia following P. yoelii 

infection. F. AUC analysis. Data were analyzed by one-way ANOVA and Tukey’s 

multiple comparison post-test. G. Percent weight loss following infection. Data 

were analyzed by one-way ANOVA. H. Survival of mice following infection. 

Survival curves were analyzed by Log-rank (Mantel-Cox) test. A-F, H. Data 

(mean±S.E.) are cumulative results (n=8-10 mice/group) from two experiments. 

G. Data (mean±S.D.) are from 4-5 mice per group from one experiment. * p < 

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. = not significant. 
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Figure 2-2. Differential anemia and circulating parasitized red blood cells 

between mice from different vendors. C57BL/6 mice were infected with 1x105 

P. yoelii parasitized red blood cells. A. Number of red blood cells (RBCs) per mL 

of blood. B. Fraction of red blood cells infected with P. yoelii (%parasitemia). C. 

Percent parasitemia AUC analysis. D. Number of parasitized red blood cells 

(pRBCs) per mL of blood. E. pRBCs/mL of blood AUC analysis. A-E. Data 

(mean±S.E.) are from 3-4 mice/group. A, C, and E. Data were analyzed by one-

way ANOVA and Tukey’s multiple comparison post-test. * p < 0.05, ** p < 0.01, 

*** p < 0.001, **** p < 0.0001, n.s. = not significant. 
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Figure 2-3. Similar susceptibility to parasitized red blood cell infection 

between C57BL/6 mice from different vendors. C57BL/6 mice from the 

indicated vendors were infected with the indicated number of P. yoelii parasitized 

red blood cells (pRBCs). A. Fraction of RBCs infected with P. yoelii 

(%parasitemia). Each line represents parasitemia kinetics from an individual 

mouse (n=4 mice/dose/vendor). Data are representative of two experiments. B. 

Number of mice from each vendor infected with the indicated dose of pRBCs and 

the total number of mice injected. Data are cumulative results from two 

experiments. Susceptibility to infection at the different doses between vendors 

was analyzed by two-tailed Fisher’s Exact Test. 
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Figure 2-4. C57BL/6 mice from Charles River are susceptible to high P. 

yoelii parasite burden. C57BL/6 mice were infected with 1x105 P. yoelii 

parasitized red blood cells. A. Fraction of red blood cells infected with P. yoelii 

(%parasitemia). B. Area under the parasitemia curve (AUC) analysis. Data were 

analyzed by one-way ANOVA and Tukey’s multiple comparison test. C. Percent 

weight loss following infection. Data were analyzed by one-way ANOVA. A-C. 

Data (mean±S.E.) are from 3-5 mice/group and representative of two 

experiments. * p < 0.05, *** p < 0.001, n.s. = not significant. 
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Figure 2-5. Modulation of malaria pathogenesis by the gut microbiota is 

generalizable to another mouse strain and Plasmodium species. A-B. 

BALB/c mice were infected with 1x105 P. yoelii parasitized red blood cells. A. 

Fraction of red blood cells infected with P. yoelii (%parasitemia). B. Area under 

the parasitemia curve (AUC) analysis. Data were analyzed by one-way ANOVA 

and Tukey’s multiple comparison test. A-B. Data (mean±S.E.) are cumulative 

results (n=8 mice/group) from two experiments. C-D. C57BL/6 mice were 

infected with 1x105 P. chabaudi parasitized red blood cells. C. Fraction of red 

blood cells infected with P. chabaudi (%parasitemia). D. Area under the 

parasitemia curve (AUC) analysis. Data were analyzed by one-way ANOVA and 

Tukey’s multiple comparison test. C-D. Data (mean±S.E.) are from 3-4 

mice/group and representative of two experiments. E-F. C57BL/6 mice were 

infected with 1x105 P. berghei ANKA parasitized red blood cells. E. Fraction of 
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red blood cells infected with P. berghei (%parasitemia) from surviving mice. Data 

(mean±S.E.) are cumulative results (n=10 mice/group) from two experiments. F. 

Survival of mice following infection (n=10 mice/group). Survival curves were 

analyzed by Log-rank (Mantel-Cox) test. ** p < 0.01, **** p < 0.0001, n.s. = not 

significant. 

 

 

Figure 2-6. Inversion of Jax and NCI in-house diets minimally effects 

severity of P. yoelii infection. C57BL/6 mice were placed on one of three 

different rodent chows; NIH-31, Jax in-house diet, or NCI in-house diet, for one-

week prior to infection through resolution of infection. Mice were infected with 

1x105 P. yoelii parasitized red blood cells. A. Fraction of red blood cells infected 

with P. yoelii (%parasitemia). B. Area under the parasitemia curve (AUC) 

analysis. A-B. Data (mean±S.E.) are from 3-4 mice/group and representative of 

two experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. = not 

significant. C. Survival of mice following infection (n=7-8 mice/group) from two 

experiments. Survival curves were analyzed by Log-rank (Mantel-Cox) test. 
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Figure 2-7. Susceptibility to malaria correlates with differences in the gut 

microbial community structure. Bacterial population analysis was performed 

using nonmetric multidimensional scaling analysis. The closer together two 

points are the more similar the libraries are to one another. Libraries with 

similarities greater than 20%, 40%, 60% or 80% are encircled with green, blue, 

teal or red dotted lines, respectively. Triangle=distal portion of the small intestine 

(DSI); Square=cecum; Diamond=colon. A. Analysis of all three regions of the 

digestive tract. B. Analysis of only the cecum bacterial populations. C. 

Percentage of 16S rRNA gene reads of bacterial families comprising at least 

0.01% of reads from at least 1 sample. Abundances of 16S reads at the Family 

level were first normalized to proportional abundances and then the average 

proportional abundance (n=6) for each family was calculated for mice from each 

of the four vendors. 
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Figure 2-8. Susceptibility to malaria correlates with differences in cecal 

bacteria populations. A. Bacterial families that were identified as being 

significantly enriched in Jackson or Taconic mice. B. Bacterial families identified 
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as being significantly enriched in NCI or Harlan mice. A-B. Data (mean±S.E.) are 

from 6 mice per group and extracted from analysis in Fig. 2-11c. Data were 

analyzed by Kruskal-Wallis test. 

 

Figure 2-9. Jackson mice fed Teklad 22/5 diet exhibit defined changes in 

cecal bacterial populations. All mice were fed NIH-31, except one group of 

Jackson mice that received Teklad 22/5 (Jax-Tek). A. Cecal bacterial population 

analysis was performed using NMDS. The closer together two points are the 

more similar the libraries are to one another. Libraries with similarities greater 
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than 20%, 40%, 60% or 80% are encircled with green, blue, teal or red dotted 

lines, respectively. Analysis of cecal bacterial populations. Each symbol 

represents an individual mouse. B. Percentage of 16S rRNA gene reads of 

bacterial families comprising at least 0.01% of reads from at least 1 sample. 

Abundances of 16S reads at the Family level were first normalized to 

proportional abundances and then the average proportional abundance (n=6) for 

each family was calculated for mice from each of the groups. C. Bacterial families 

that were identified as being significantly enriched in Jackson or Taconic mice. D. 

Bacterial families identified as being significantly enriched in NCI or Harlan mice. 

C-D. Data (mean±S.E.) are from 6 mice per group and extracted from analysis in 

panel B. Data were analyzed by Kruskal-Wallis test. 
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Figure 2-10. Distinct bacterial community structure in Jackson mice fed 

separate diets. C57BL/6 mice from Jackson Laboratory (Jax) were fed two 

separate diets (NIH-31 (n=6) or Teklad 22/5 (n=6)) for one to three weeks prior to 

removal of gut contents and analysis of gut bacterial community. A. NMDS plot 

displaying the similarity between bacterial populations within the cecum of mice 

fed the different diets. Each symbol represents a single mouse. The closer 

together two points are in the figure, the more similar the libraries are to one 

another. Libraries with similarities greater than 40%, 60% or 80% are encircled 

with blue, teal or red dashed lines, respectively. Selected vectors (lettered A-U), 

overlaid on the figure, were taken from a PCA plot made from all phylotype 

abundances in this study after identification by LEfSe analysis as having 

statistically significant differential abundances in mice fed different diets. B. 
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LEfSe output highlighting differentially abundant phylotypes between Jax mice 

fed the two separate diets. Some of these phylotypes are included in A. as 

vectors. 
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Figure 2-11. Changes in the gut microbial community structure correlate 

with changes in the gut and plasma metabolome in resistant and 
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susceptible mice. A. Principal component analysis of metabolite profiles for all 

sample types. Ellipses size indicates 95% normal probability. Triangle=small 

intestine, square=cecum, circle=plasma. Each symbol represents an individual 

mouse. B-D. Partial least squares discriminant analysis within individual samples 

types: small intestine, cecum, and plasma, respectively. Separation between 

points indicates relative amount of variability. E. Color intensity indicates 

magnitude of the fold change with red being an increase and blue being a 

decrease in metabolite concentrations of Jax with respect to NCI mice. Asterisks 

in parentheses next to metabolite names indicate significance for the change for 

the corresponding row and column. *** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.10, (–) not 

significant. F. Metabolites grouped according to metabolic pathways that were 

major drivers in the differentiation of resistant and susceptible mice using PLS-

DA. Data are expressed as a ratio of Jax/NCI with red shades representing 

metabolites higher in Jax mice and blue shades representing metabolites higher 

in NCI mice. (*) = Metabolite that was a driving factor in differentiating resistant 

and susceptible mice, respective to column order. (–) = Metabolite that was not a 

driving factor in variation for the respective column. 
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Figure 2-12. Variability in each sample type for PLS-DA. For each sample 

type, the intra condition distance between the extreme values in each dimension 

are listed. Comparison is also shown for the distance between the average of the 

points for each condition in each dimension. Additionally, the p values are shown 

for the inter conditional comparison. Results show a high level of significance 

between the Jax and NCI samples in the variate 1 dimension. 
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Figure 2-13. Gut microbiome shapes susceptibility to severe malaria. Germ-

free mice were colonized with cecal contents from Jax or NCI mice. A. Bacterial 

population analysis was performed using NMDS, as described in Fig. 2-11. B-D. 

Colonized germ-free mice and control Jax and NCI mice were infected with P. 

yoelii. B. Percent parasitemia following P. yoelii infection. C. AUC analysis. B-C. 

Data (mean±S.E.) from 4-5 mice/group are representative of two experiments. 

Data were analyzed by one-way ANOVA and Tukey’s multiple comparison post-

test. D. Survival of mice following infection. Data are cumulative results (n=8-10 

mice/group) from two experiments. Survival curves were analyzed by Log-rank 

(Mantel-Cox) test. **** p < 0.0001, n.s. = not significant. 
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Figure 2-14. Germ-free mice colonized with cecal content have similar 

bacterial diversity as donor sample. Germ-free mice were colonized with cecal 

contents from Jax or NCI mice.The 1-λ (Simpson Index) was calculated for 5 

different mouse types (Jax-Donors (n=4), GF-Jax recipients post-cecal transplant 

(n=5), NCI Donors (n=3), GF-NCI recipients post-cecal transplant (n=5) and GF 

mice receiving no transplant (n=5)). Data are mean±SD. Communities with 

values closer to 1 are considered to be more diverse. 
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Figure 2-15. Lactobacillus and Bifidobacterium are among the bacteria that 

drive differences between the gut-associated bacterial communities of 

resistant and susceptible mice. A. LEfSe cladogram illustrating all 313 

phylotypes in this study. Red identifies phylotype biomarkers for resistance to 

malaria and green identifies phylotype biomarkers for susceptibility to malaria. 

Circle size reflects the sequence abundance within the samples. B. Top ten 

phylotypes with largest effect sizes for susceptibility and resistance to malaria. 
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Figure 2-16. Phylogenetic tree of bacteria isolated from stool samples and 

lab-cultured yogurt. A maximum likelihood tree was constructed from an 
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alignment of 16S rRNA gene sequences approximately 573 base pairs long. 

Sequences used to construct the tree were obtained from bacterial isolates 

(cultured from Jackson and NCI mouse fecal pellets) and from PCR amplicons 

retrieved from DNA extracted from lab-cultured yogurt containing probiotic 

powder. Isolate sequences = purple circles, clone sequences (yogurt or powder) 

= tan squares. Distance bar represents 0.1 substitutions per base. 

 

 

Figure 2-17. Treatment of gut microbiota intact mice with yogurt has a 

modest effect on parasite burden. Mice were treated 5-6 times/week with 

yogurt for 3 weeks prior to P. yoelii infection and 3 times per week following 

infection. A. Percent parasitemia following P. yoelii infection. B. AUC analysis. 

Data were analyzed by unpaired two-tailed t test. C. Survival of mice following 

infection. Survival curves were analyzed by Log-rank (Mantel-Cox) test. A-C. 

Data (mean±S.E.) from 7-9 mice/group are cumulative data from two 

experiments. 
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Figure 2-18. Susceptible mice treated with yogurt have decreased 

parasitemia and morbidity. Jax and NCI mice were left untreated (control), 

treated with antibiotics for three-weeks then left untreated for three additional 

weeks (Abx), left untreated for three-weeks followed by treatment with yogurt 5 

times per week for three-weeks (Yogurt), or treated with antibiotics for three-

weeks followed by treatment with yogurt 5 times per week for three-weeks 

(Abx+Yogurt). Mice were then infected with P. yoelii. Yogurt treated mice 

continued to receive yogurt 5 times per week following infection. A. Percent 

parasitemia following P. yoelii infection. B. AUC analysis. Data were analyzed by 

one-way ANOVA and Tukey’s multiple comparison post-test. C. Percent weight 

loss following infection. Data were analyzed by one-way ANOVA. A-C. Data 

(mean±S.E.) are cumulative results (n=3-10 mice/group) from two experiments. * 

p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. = not significant. 
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Figure 2-19. Resistant Jax mice have an elevated cellular and humoral 

immune response to Plasmodium. Jax and NCI mice were infected with P. 

yoelii. Total number of A. CD4+CD11ahiCD49dhi cells, B. T follicular helper 

cells, and C. germinal center (GC) B cells per spleen on the indicated day. Data 

(mean±S.E.) are cumulative results (n=5-10 mice/data point) from three 

experiments. D. Serum MSP119-specific antibody endpoint titers. Data 

(mean±S.E.) are cumulative results (n=3-7 mice/data point) from two 

experiments. Data were analyzed by unpaired two-tailed t test. * p < 0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001. 

 

 

 

 

 



  67 

 

Figure 2-20. Gating strategy for T cell and B cell populations in Jax and NCI 

mice infected with P. yoelii. Jax and NCI mice were infected with P. yoelii. 

Representative contour plots and histograms are from day 21-post infection. A. 

Representative contour plots and histograms showing gating strategy of CD45.2+ 

cells. B. Representative contour plots showing gating strategy for T cell subsets: 

CD4+ T cells, P. yoelii-specific CD4+ T cells (CD4+CD49dhiCD11ahi), and T 

follicular helper (Tfh) cells (CD4+ CD44hiCXCR5+PD-1+). C. Total number of 

CD4+ cells per spleen. D. Representative contour plots and histograms showing 
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gating strategy of B cell subsets: CD19+ B cells and GC B cells 

(CD19+GL7+CD95+). E. Total number of CD19+ cells per spleen. Data 

(mean±S.E.) are cumulative results (n=5-10 mice/data point) from three 

experiments. Data were analyzed by unpaired two-tailed t test. * p<0.05, **** 

p<0.0001. 
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CHAPTER 3 

SEVERITY OF PLASMODIUM INFECTION IN MICE DIFFERNTIALLY 

AFFECTS GUT-LIVER AXIS HOMEOSTASIS 

 

Malaria is a significant global health disease, with 216 million infections 

and 445,000 deaths occurring annually. With no effective vaccine and increasing 

anti-malarial drug resistance, it is imperative to gain a greater appreciation of the 

factors that influence the pathogenesis of this infectious disease. Recent reports 

have demonstrated dual interactions between gut microbiota and malaria. For 

example, in specific Plasmodium-mouse strain combinations, malaria has been 

shown to transiently modulate gut microbiota and cause intestinal shortening, 

indicating a disruption of gut homeostasis. However, these changes have not 

been characterized in the context of mild versus severe malaria. We show that 

severe Plasmodium infection in mice disrupts homeostasis along the gut-liver 

axis in multiple ways compared to mild infection. High parasite burden results in 

a larger influx of immune cells in the lamina propria and mice with high 

parasitemia display specific metabolomic profiles in the ceca and plasma during 

infection compared to mice with mild parasitemia. Liver damage was also more 

pronounced and longer lasting during severe infection, with concomitant changes 
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in bile acids in the gut. Finally, severe Plasmodium infection changes the 

functional capacity of the microbiota, enhancing bacterial motility and amino acid 

metabolism in mice with high parasite burden compared to a mild infection. 

Taken together, Plasmodium infections have diverse effects on host gut 

homeostasis relative to the severity of infection. 
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Introduction 

Malaria infections, caused by Plasmodium, have long been of global 

clinical importance, with 216 million infections and approximately 445,000 deaths 

in 20161. Several factors play a role in disease epidemiology, such as emerging 

resistance to frontline antimalarials124,125 and the lack of an effective vaccine. 

Further complicating efforts to eradicate this parasite is the dual life cycle 

wherein Plasmodium sexually reproduces and develops in its reservoir, the 

Anopheles mosquito, before being transmitted to the human host during a 

mosquito blood meal3,126. Within the human host the parasite undergoes 

development in the liver followed by asexual reproduction in red blood cells3,126. 

The liver stage is clinically silent, while the blood stage is associated with the 

clinical symptoms of malaria, including fever, anemia, and coma3,126. 

 The microbiota, which is the microbial consortia associated with the host, 

has been connected to host homeostasis and development. Bacteria are the 

most common inhabitants, while fungi and archaea make up smaller parts of the 

consortia. Indeed, recent calculations estimate there are approximately 3-4 x 1013 

associated bacteria, corresponding to a bacteria:human cell ratio from around 1.3 

to 2.3 depending on variables such as gender, age, and obesity127. The host 

microbiota has been examined in different sites such as skin128,129 and lung130-132, 

but the gut microbiota has by far been the most studied. Intriguingly, the gut 

microbiota has also been shown to interact with the central nervous system in the 

“gut-brain axis”, and is involved in processes like host development, circadian 
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rhythm, and disease states such as major depression81,133. The gut microbiota 

has been shown to play a role in immunity, both locally in the intestine but also 

systemically in modulating host responses to diseases such as influenza and 

Klebsiella pneumonia71,73,134,135. 

 Likewise, it has previously been shown that Plasmodium infection and the 

severity of malaria can be modulated by the composition of gut microbiota. 

Antibody cross-reactivity with the gut commensal E. coli O86:B7 and the 

expressed malaria antigen Galα1-3Galβ1-4GlcNAc-R (alpha-gal) leads to 

inhibition of sporozoite transmission through the skin74. We have previously 

observed that gut microbiota composition in mice can modulate the severity of P. 

yoelii 17XNL (Py) infection, and that susceptibility or resistance can be 

transferred to germ-free mice by transferring cecal contents from either 

susceptible or resistant mice136. Conversely, the Plasmodium infections also 

affect gut microbiota. Following Plasmodium berghei ANKA infection in C57BL/6 

mice, which causes experimental cerebral malaria in C57BL/6 mice, gut 

microbiota became dysbiotic, or disrupted, as the infection progressed38. The 

authors concluded that the change in microbiota composition was due to P. 

berghei ANKA infection and not infection-associated inflammation, as the 

microbiota changes occurred before the intestines underwent inflammation-

mediated changes such as the intestine and villi shortening38. In contrast, there 

were little to no changes in gut bacteria observed in P. berghei ANKA infected 

BALB/c mice38. Finally, C57BL/6 mice infected with Plasmodium yoelii nigeriensis 
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also exhibited changes in gut microbiota composition during peak infection, 

although these changes were transient with the composition returning to baseline 

following resolution of the infection37.  

 While it has been shown that gut microbiota affects and is affected by 

Plasmodium infection, these findings have not been explored in the context of 

mild vs. severe malaria. Using a mouse model of malaria, we show that severe 

malaria differentially disrupts gut homeostasis compared to a mild infection. 

Severe Py infection leads to more proinflammatory cell infiltration in the intestinal 

lamina propria, as well as differential metabolic changes during infection. Severe 

infection also leads to prolonged liver damage; surprisingly, mild Py infection led 

to longer-lasting changes in cecal bile acid abundances. Following infection there 

were shifts in the taxonomy of gut bacteria in both mild and severe Py infections, 

with the composition of the gut bacteria becoming more similar over the course of 

infection. Of note, these changes did not impact the severity of malaria in 

subsequent infections. Finally, severe infection drives a differential functional 

profile in the gut microbiota compared to mild infection. These results show that 

severe Py infection can differentially disrupt gut homeostasis in numerous ways. 

 

Results 

Intestinal Permeability Increases During Py Infection but is not a Function 

of Parasite Burden 
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 During Py infection, mice from Taconic Biosciences (Tac) and Charles 

River Laboratories (CR) show different parasitemia kinetics, leading to 

significantly different overall parasite burdens with CR mice exhibiting higher 

parasitemia than Tac mice (Fig. 3-1A and B). CR mice also display more weight 

loss, indicating greater morbidity during infection (Fig. 3-1C). These 

characteristics allow us to contrast a relatively mild Py infection in Tac mice to a 

severe Py infection in CR mice. We also looked at intestinal permeability during 

infection as one factor in gut homeostasis. While there were increases in 

intestinal permeability within the Tac and CR groups during infection, there were 

no differences between Tac and CR (Fig. 3-1D and E) indicating that increased 

intestinal permeability is not a function of overall parasite burden. 

 

The Lamina Propria Immune System Undergoes Differential Changes 

During Mild and Severe Py Infections 

 The lamina propria (LP) houses a very diverse immune cell population 

responsible for maintaining tolerance to gut microbiota137-139. Additionally, it has 

been shown that a systemic infection like influenza can modulate the LP immune 

system71,73. With this in mind, we followed specific immune cell populations in 

both the small intestine (SI) LP and large intestine (LI) LP during Py infection. In 

general, CR mice had significantly more immune cells in the SI LP during 

infection than Tac mice (Fig. 3-2 and Fig. 3-9), particularly as the infection 

progressed and parasitemia peaked around days 14-21 post-infection (p.i.). More 
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specifically, macrophages (CD45+SiglecF-CD11b+Ly6G-Ly6C-F4/80+) and CD8 T 

cells (CD45+CD8+) peaked at day 14 (Fig. 3-2B, I; Fig. 3-9), while monocytes 

(CD45+SiglecF-CD11b+Ly6G-Ly6C+) and neutrophils (CD45+SiglecF-

CD11b+Ly6G+) peaked at day 21 p.i. in CR mice (Fig. 3-2J, K; Fig. 3-9). The 

influx of monocytes and neutrophils indicates a more inflammatory LP 

environment for CR mice at the peak of Py infection, which could cause changes 

in gut microbiota. Tac mice similarly had an increase in CD8 T cells and 

macrophages at day 14, along with a day 14 increase in neutrophils that 

correlate with peak parasitemia in Tac mice (Fig. 3-2B and I-J). Additionally, 

after Py clearance in the Tac SI: CD8 T cells (Fig. 3-2B), macrophages (Fig. 3-

2I), and monocytes (Fig. 3-2J) all increased at day 60 p.i. In the LI LP (Fig. 3-

10), there were fewer changes than in the SI LP: macrophages increased in Tac 

and CR LI at day 14 and day 60 p.i. (Fig. 3-10I) and IL17+ Th17 T cells (Fig. 3-

10H) increased in both Tac and CR mice after Py clearance. While both Tac and 

CR had a significant increase in IL17+ gamma delta T cells (TCR𝛾𝛿; 

CD45+TCR𝛾𝛿+IL17+) at days 7 and 14 p.i., Tac mice had more than CR at day 14 

(Fig. 3-10F). Overall, distinct immune populations change during mild and severe 

malaria, with a potentially more inflammatory environment during severe malaria 

in CR mice.  

 

Gut Microbiota Undergoes Significant Post-Infection Changes but does not 

Affect Susceptibility to Future Infections 
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It has been shown previously that baseline gut microbiota composition in 

resistant and susceptible mice is sufficient to modulate the severity of 

infection136, but it has also been shown that the gut microbiota can experience 

Plasmodium-induced inflammation-related changes37,38. To initially determine 

how severity of infection impacts changes to bacterial community compositions 

over the course of infection, mice from Tac and CR were infected with Py and 

cecal contents were extracted for 16S rRNA (V6-V8) sequencing. While this was 

not a truly longitudinal analysis, it showed changes in both Tac and CR mice 

after infection, primarily after clearance of Py (Fig. 3-11). To confirm these 

results in a longitudinal analysis and increase the taxonomic assignment depth, 

Tac and CR mice were infected with Py and fecal pellets were collected at days 

0, 7, 14, 21, 28, 42, and 56 p.i. for analysis of gut bacteria (Fig. 3-3A). Extracted 

DNA from fecal pellets was subjected to bacterial community analysis using 16S 

rRNA gene sequencing based on a new technology that simultaneously utilizes 

all 9 hypervariable regions (manuscript describing this method is under peer 

review).  

During Py infection, there are changes in the relative species abundance 

in both Tac and CR mice (Fig. 3-3B). For example, the Tac microbiota becomes 

more diverse as soon as 7 days p.i., with a significant increase in species 

diversity (alpha diversity) measured by observed OTUs (Fig. 3-3C). This 

increase is based on the appearance of different bacterial species such as 

Stomatobaculum longum that are not present at day 0 p.i. (Fig. 3-3B,C). 
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Compared to the Tac microbiota, the CR microbiota is significantly more diverse 

before and during infection (Fig. 3-3C); however, the species diversity of the CR 

microbiota does not change from baseline (Fig. 3-3C). The beta diversity, or 

dissimilarity, of bacterial communities in both the Tac and CR mice increases 

significantly during infection compared to their respective baselines, with an 

earlier increase in Tac mice at day 7 (Fig. 3-3D). The increase in beta diversity 

illustrates the taxonomic changes that occur due to Py infection. Of note, Bray-

Curtis dissimilarity values range from 0 (identical similarity) to 1.0 (complete 

dissimilarity). Thus, while the increases in beta diversity are significant, they are 

relatively modest in both Tac (mean; day 0 = 0.19 to day 56 = 0.40) and CR mice 

(mean; day 0 = 0.12 to day 56 = 0.23) with both Tac and CR communities, 

respectively, remaining relatively similar amongst themselves. These data 

demonstrate that Py infection alone, in contrast to the severity of infection, 

influences the observed changes in gut bacterial communities. Interestingly, the 

dissimilarity between the Tac and CR microbiota compositions decreases during 

infection (Fig. 3-3E), demonstrating a moderate convergence in the different 

microbiota compositions. Since different gut microbiota profiles have been shown 

to modulate susceptibility to Py infection136, these changes were investigated to 

determine how they impact susceptibility to future Py infections.  

 Mice infected with Py develop sterilizing immunity to Py after one infection, 

precluding the ability to directly reinfect these mice. Therefore, cecal contents 

were taken from Py-infected Tac and CR mice on days 56, 57, 60, and 61 p.i. 
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and gavaged into germ-free (GF) mice (Fig. 3-3A). The recipient mice, along with 

non-gavaged control Tac and CR mice, were infected with Py seven days after 

the last cecal-content transplant and parasitemia was tracked. 

 To confirm the GF mice had been colonized properly, fecal samples from 

recipient mice were collected on the day of Py infection (Fig. 3-3A) for bacterial 

community analysis. The species diversity of both the GF+PyTac and GF+PyCR 

samples was similar to the input diversity, which means the GF mice were 

successfully colonized and their gut bacteria populations mirror the donor mice 

that had previously been infected with Py (Fig. 3-3F). More specifically, the Tac 

control samples had significantly lower species diversity than the input contents 

(Fig. 3-3F), confirming the observed changes during Py infection (Fig. 3-3C). 

Similarly, the Tac input and GF+PyTac samples are significantly dissimilar to the 

Tac controls but not each other (Fig. 3-3G). In the CR samples, the CR input 

samples had a slightly higher species diversity than the CR control (Fig. 3-3F), 

but this did not result in a bacteria community that was overall dissimilar (Fig. 3-

3G). Following infection, the GF+PyTac and GF+PyCR contents phenocopied 

parasitemia in the respective Tac and CR control mice with regards to the 

infection kinetics (Fig. 3-3H) and overall parasite burden (Fig. 3-3I). These data 

suggest that Py-induced changes in gut bacterial communities do not change 

resistance or susceptibility to future Py infections. 

 

Cecal and Plasma Metabolite Profiles Vary Between Tac and CR Mice 
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One mechanism by which gut microbiota can influence host homeostasis 

is through the production of metabolites. Different metabolites can have various 

effects on the host: nucleotides in the gut can reduce inflammation, while 

tryptophan metabolites can activate the aryl hydrocarbon receptor (AhR) and 

lead to an anti-inflammatory and xenobiotic clearance response140-142. To this 

end, SI and cecal contents as well as plasma were extracted from mice at days 

0, 7, 14, 21, 28, and 60 p.i. and characterized by mass spectrometry.  

 In the SI, no distinct clustering between Tac and CR samples is observed, 

with the exception of two noted outliers, one Tac sample at day 7 p.i. and one CR 

sample at day 0 p.i. (Fig. 3-4A-B). In contrast, the cecal PCA plot shows distinct 

differences between Tac mice and CR mice (Fig. 3-4C). In the CR mice, a similar 

metabolite profile is seen at days 0, 7, and 14 p.i.; however, at day 21 p.i., which 

correlates to the peak of severe infection, the metabolites in the cecum become 

much more abundant (Fig. 3-4D). This enrichment decreases by day 28 p.i. to 

below-baseline levels for metabolites in the bottom-half of the heatmap and 

remain low even one month after clearance of the infection. In contrast to CR 

mice, cecal metabolites remain largely stable in Tac mice over the course of 

infection, with only a few metabolites decreasing at days 28 and 60 p.i. (Fig. 3-

4D). Tac and CR plasma metabolite profiles follow similar kinetics during 

infection. The most pronounced changes during infection are the similar shifts in 

metabolites at the peak of infection: day 14 p.i. in Tac mice and days 14 and 21 

p.i. in CR mice (Fig. 3-4E). The clustering of these samples explains a robust 
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70% of the variation. The metabolite profiles seen in naïve mice become 

inverted, with abundant metabolites at day 0 p.i. becoming depleted, while less 

abundant metabolites becoming enriched at the peaks of infection in Tac and CR 

mice (Fig. 3-4F). In addition, after Py clearance, the metabolite profiles in both 

Tac and CR mice largely return back to pre-infection levels by day 60 p.i. (Fig. 3-

4F). 

Overall, Tac and CR mice have different metabolite profiles before and 

during infection, and the changes in cecal metabolite concentrations during 

infection correlates with the severity of infection. Meanwhile, the plasma 

metabolite dynamics appear to depend on the kinetics of infection more so than 

the severity of infection.  

 

Py Infection Causes Differential Liver Damage in Mice During Py Infection 

Differential cecal metabolites, noted gross anatomical changes in the liver 

of Py infected mice (data not shown), and the observation that Plasmodium 

infections cause fibrotic lesions in the liver143 led us to investigate a potential role 

of the liver in Py-induced changes in gut homeostasis. The gut-liver axis has 

been well-established144-147, and can influence metabolite profiles and microbial 

community structures through different mechanisms. Livers were extracted from 

mice at days 0, 7, 14, 21, and 28 days post-Py infection and stained with 

hematoxylin and eosin (H&E). Before infection, normal liver structure is observed 

in Tac and CR mice (Fig. 3-5). After Py infection, immune cells begin to infiltrate 



  81 

the liver and disruption of the liver architecture can be seen. In CR mice, the 

infiltrating cells remain in close proximity to the vasculature, while in Tac livers 

the infiltrating cells appear to invade further into the liver tissue (Fig. 3-5). At day 

14, which is around peak parasitemia for Tac mice, immune cell infiltration 

increases and modest hemozoin deposition is seen (Fig. 3-5). In CR mice at day 

14 p.i., the immune cell infiltration has progressed deeper into the tissue, and 

more extensive hemozoin deposition is seen compared to the Tac livers; the liver 

architecture also becomes further disrupted (Fig. 3-5). By day 21 p.i., Tac mice 

have cleared the infection; however, low levels of hemozoin and infiltrating 

immune cells are still present (Fig. 3-5). At day 28, the Tac liver architecture has 

returned to its pre-infection state and the infiltrating immune cells have left, but 

small amounts of hemozoin can still be seen within the tissue (Fig. 3-5). In 

comparison, day 21 p.i. is peak parasitemia for the CR mice, which display a 

more severe infection. Consistently, the liver architecture is highly disrupted, with 

infiltrating immune cells and hemozoin scattered throughout the tissue (Fig. 3-5). 

Liver architecture is partially restored by day 28 with only few infiltrating immune 

cells around the vasculature (Fig. 3-5). Compared to Tac livers at day 21 and 

day 28 p.i., there is notably more hemozoin in CR livers. Collectively, the severity 

of blood stage infection leads to much more pronounced and prolonged damage 

to the liver. 
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Tac and CR Mice Have Different Bile Acid Profiles Before and During Py 

Infection 

One mechanism by which the liver can influence gut microbial 

communities is through bile acid production. Bile acids are detergent-like 

molecules that can be metabolized by gut bacteria, disrupt bacterial cell 

membranes, and act as signaling molecules to the intestinal epithelial cells148-151. 

We hypothesized that bile acid production would be altered as a function of the 

severity of infection. To test this hypothesis, bile acids were analyzed at days 0, 

7, 14, 21, 28, and 60 p.i. in the SI, cecum, and plasma of Tac and CR mice. In 

the SI, the most notable pattern in bile acid expression is that the Tac mice have 

a significant decrease in almost half of the detected bile acids at day 14 

compared to pre-infection bile acid levels (Fig. 3-6A, Fig. 3-12). In terms of 

individual bile acids, conjugated bile acids glycochenodeoxycholic acid 

(GCDCA), taurochenodeoxycholic acid (TCDCA), and taurodeoxycholic acid 

(TDCA) in Tac and CR show significant changes at several time points (Fig. 3-

12). 

 In the cecum, CR mice tend to have higher relative bile acid concentration 

before and during infection compared to Tac mice (Fig. 3-6B, Fig. 3-13). 

However, both Tac and CR mice exhibit a significant decrease in specific bile 

acids during infection, with the largest changes occurring in the taurine-

conjugated bile acids. In particular, taurine-conjugated bile acids become 

depleted at day 14 in Tac mice with a mild recovery before a long-term depletion 
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up to day 60 p.i. (Fig. 3-6B, Fig. 3-13). CR mice have a similar depletion at day 

14 that extends to day 21 p.i., consistent with the more severe infection in CR 

mice, but these bile acid levels return to baseline levels by clearance of the 

parasite at day 28 p.i. (Fig. 3-6B, Fig. 3-13). Additionally, several bile acids are 

significantly higher in CR mice over the course of the infection compared to Tac, 

such as glycocholate (GCA) and omega-muricholate (oMCA) (Fig. 3-6B, Fig. 3-

13). 

 Plasma bile acids were low in abundance and were largely unchanged 

over the course of infection. The two noted exceptions were in Tac mice: glycine-

conjugated bile acids GCDCA and glycodeoxycholate (GDCA) decrease at days 

7 and 14 p.i. and day 7 p.i., respectively (Fig. 3-6C, Fig. 3-14); alpha-muricholate 

(aMCA) significantly decreases at days 7 and 14 p.i. while beta-muricholate 

(bMCA) is significantly more abundant at those same time points (Fig. 3-14). 

 Like the metabolomics data (Fig. 3-4), the cecal bile acid profiles in Tac 

and CR are different at baseline and change differentially due to mild or severe 

infection. In this case, however, the milder Py infection induces long-lasting 

depletion of bile acids. 

 

Predicted Functional Changes in the Microbiota Align with Combined 

Datasets 

We have observed many changes within the host and the microbiota 

during infection. To investigate how the observed taxonomic and metabolite 
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profiles interact, PICRUSt was utilized to predict the functional capacity152 of 

cecal bacteria in Tac and CR mice based on the sequencing data in Figure 3-11. 

Once in PICRUSt, KEGG ortholog (KO; a characterized gene or protein within a 

network) abundances were assigned to each sample; KOs were then categorized 

according to the KO reference hierarchy and analyzed153-155. When naïve Tac 

and CR mouse KO abundances are compared, the proportional abundances of 

each category are similar, but in spite of the lower species diversity (Fig. 3-11B) 

the naïve Tac microbiota have approximately 40% more KOs than the CR 

microbiota (Fig. 3-7A,B). “Metabolism” was the largest category, containing 

almost 47% of total KOs during infection. Tac microbiota possess significantly 

more KOs than CR mice at days 0 and 7 p.i., while from day 14 p.i. onward the 

Tac and CR microbiota possess similar KO abundances (Fig. 3-7C). The 

observed change in the functional capacity in the CR microbiota by day 14 p.i. 

precedes the large taxonomic changes and metabolomics changes observed at 

day 60 p.i. and day 21 p.i., respectively. Each level 1 KEGG category follows this 

same pattern except for one, “Cellular Processes”; Tac and CR microbiota are 

significantly different at day 7 p.i., but not at day 0, indicating that Py infection 

differentially affects the Tac and CR microbiota during early infection (Fig. 3-7D). 

Similarly, the CR microbiota undergoes significant functional changes in Cellular 

Processes at day 21 p.i. compared to the day 0 p.i. CR microbiota (Fig. 3-7D). 

The only level 2 subcategory under Cellular Processes that also changes 

significantly from day 0 to day 21 p.i. is “Cell Motility”, which includes flagellar 
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assembly and bacterial chemotaxis (Fig. 3-7E). Finally, the Cellular Processes 

KOs at day 28 and day 60 p.i. correlate with the taxonomic changes: the Tac 

microbiota changes significantly at day 28 p.i., while the CR microbiota shows a 

delayed change at day 60 p.i., effectively “catching up” to the Tac microbial 

community structure. When comparing the PICRUSt data to the taxonomic data 

in Fig. S3, the bloom in the S24-7 bacterial family (Fig. 3-11A) correlates to a 

loss in the Cellular Processes functional capacity, and more specifically a loss in 

the microbiota’s capacity for cell motility (Fig. 3-7D,E). Taken together, naïve Tac 

and CR microbiota each have distinctly different functional profiles; after Py 

infection, the functional capacity of these two bacterial communities become 

indistinguishable, even after the parasite is cleared. In the case of some KO 

categories like Cellular Processes and Cell Motility, the KO abundances correlate 

closely with the taxonomic changes seen in Tac and CR microbiota during 

convalescence.  

 The metabolomics data can be used to validate the predicted functionality 

of the cecal microbiotas. Tac mice are predicted to have a significantly higher 

functional capacity for “Amino Acid metabolism” (Fig. 3-7F) compared to CR 

mice. When compared to the observed metabolite abundances, the top enriched 

pathways at day 0 p.i. are related to metabolism of various amino acids, and this 

enrichment is associated with the Tac phenotype (Fig. 3-7G). In contrast, at day 

21 p.i., the enriched pathways have changed and the majority are now 

associated with the CR phenotype (Fig. 3-7H); this shift correlates to the large 
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increase in metabolite abundances in the CR cecum at day 21 p.i. (Fig. 3-4D). 

Overall, the functional predictions in the ceca of Tac and CR mice fit well with the 

taxonomic and metabolomic data presented. 

 

Discussion  

In this study, we have shown that gut homeostasis is differentially 

disrupted by severe malaria compared to mild malaria. We examined several 

factors of gut homeostasis, including intestinal permeability, the intestinal 

immune system, gut microbiota and metabolites, and the gut-liver axis. 

Altogether, severe malaria differentially influences gut homeostasis with distinct 

actions (Fig. 3-8). During infection, the LP in CR mice with severe malaria has a 

larger influx of CD8 T cells, monocytes, neutrophils, and TCR𝛾𝛿 cells, all of which 

can produce proinflammatory cytokines. The microbiota of both Tac and CR mice 

differentially change during infection, with larger changes occurring earlier in Tac 

mice. The taxonomic changes in Tac and CR mice lead to enrichment of different 

bacterial species, highlighting the differential modulation of microbiota by Py 

infection. Initially, CR microbiota have a sparse predicted functional profile 

compared to Tac microbiota; during infection, the CR and Tac predicted 

functional capacity becomes more similar, reflecting the taxonomic similarity at 

the family level post-Py clearance. The cecal metabolite profiles in CR mice 

reflect the parasite burden, with the peak of infection mirroring a large increase in 

metabolite abundances, while Tac mice do not show a similar increase. CR mice 
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also show major liver damage during infection with more extensive damage and 

hemozoin deposition compared to asymptomatic Tac mice. Finally, cecal bile 

acid profiles in Tac mice show a prolonged depletion during infection compared 

to CR mice, with CR bile acid abundances generally returning to baseline levels 

by days 28 and 60 p.i. Taken together, these data show patterns of gut 

homeostasis disruption during severe malaria.  

 While previous studies have shown changes to gut microbiota during 

Plasmodium infection as well, our data is unique in that it shows that there are 

long-term changes that occur during infection that persist after the infection is 

cleared. Mooney et al. showed that during Plasmodium yoelii nigeriensis 

infection, there were shifts in murine gut microbiota, but these returned to 

baseline within 30 days p.i. and were taxonomically restricted primarily to the 

phylum level with only a few noted changes at the genus level37. Taniguchi et al. 

also showed shifts in the gut microbiota of C57BL/6 mice infected with P. berghei 

ANKA, which models cerebral malaria, but not BALB/c mice, which do not model 

cerebral malaria38. Of note, all the P. berghei ANKA infected C57BL/6 mice 

succumbed to cerebral malaria, so it is unknown if these changes affect parasite 

burden, immunity to malaria, or would remain after clearance of infection. We 

have extended these analyses to show that the gut microbiota undergoes long-

term, persistent changes down to the species level due to Py infection and that 

these changes do not affect susceptibility to future Py infections. 
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 We have also looked more closely at the LP immune response during Py 

infection. Previously, it had been observed that during P. yoelii nigeriensis 

infection, mononuclear cells infiltrate the LP up to 10 days p.i., with a large 

portion of these identified as inflammatory monocytes (Ly6C+ Ly6G-)38. Using Py 

17XNL instead of P. yoelii nigeriensis, we have also found that large numbers of 

monocytes infiltrate into the LP of mice with high parasitemia 21 days p.i. before 

returning to baseline, while mice with low parasitemia show a significant increase 

60 days p.i. In addition, we have observed a significant increase in macrophage 

infiltration at 7 days p.i. and 60 days p.i. We have corroborated the previously 

observed early mononuclear cell infiltration and extended the analysis further p.i. 

and to more cell types. 

 A potential mechanism for how severe malaria differentially impacts gut 

homeostasis may be due to parasite sequestration in the gut vasculature. In 

severe malarial anemia in humans, for instance, the bulk of parasite 

sequestration occurs in the vasculature of the small and large intestines; patients 

with cerebral malaria also show a large amount of parasite sequestration in the 

gut along with the brain156. Sequestration in the vasculature could lead to 

inflammation which in turn would damage the gut tissue, disrupting tissue 

homeostasis.  

 One promising avenue for further investigation within the malaria-gut 

microbiota axis involves bile acid metabolism in the gut. In the intestine, bile 

acids aid in digestion but can also behave as signaling molecules or 
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bacteriostatic agents. As detergent-like molecules, bile acids can weaken or 

destroy bacterial cell membranes, keeping bacterial growth in check151,157. In 

both Tac and CR mice, the initial liver damage and depletion of bile acids 

correlates with the increase in gut bacterial diversity during and after infection, 

pointing to the potential role of bile acids in shaping the gut microbiota before and 

during Py infection.  

Signaling by bile acids in the intestine can occur through the G protein-

coupled receptor TGR5. CDCA and lithocholic acid (LCA)/DCA are the strongest 

ligands, with other bile acids binding with lesser affinity; conjugation with taurine 

or glycine makes binding and activation more effective148-150. TGR5 is found in 

the intestine as well as in extra-intestinal tissues such as lung, spleen, and bone 

marrow158. Since plasma levels of bile acids did not vary between Tac and CR 

mice during infection, it is unlikely that activation of TGR5 in extra-intestinal 

tissue is involved. However, TGR5 activation on intraepithelial lymphocytes leads 

to the expression of GLP-1 (glucagon-like peptide 1) which in turn inhibits 

proinflammatory cytokine production159. As Tac mice have a greater abundance 

of taurine-conjugated bile acids than CR mice initially, TGR5 signaling may be 

play a protective anti-inflammatory role early in Py infection.  

 While there is still much work to be done, these results identify the 

complex network of interactions that influence gut homeostasis during Py 

infection in mice and provide an extensive characterization of how different 

factors in gut homeostasis respond during mild versus severe Py infection. Many 
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of the perturbations in gut homeostasis were associated with a more severe 

infection. Given that many parasitized red blood cells sequester in intestinal villi 

in humans, it is paramount that future work begin assessing the effect of 

Plasmodium infections on human gut homeostasis. 

  

Materials and Methods: 

Animals and Housing: 

 Female C57BL/6 mice 6-8 weeks old were purchased from Taconic 

Biosciences (Hudson, NY) and Charles River Laboratories (Wilmington, MD). 

Germ-free (GF) mice were purchased from Taconic Biosciences. All mice were 

housed in a specific pathogen-free facility and acclimatized for a minimum of 7 

days before starting experiments. Animals were fed the NIH-31 diet (Modified 

Open Formula Mouse/Rat Irradiated Diet; Harlan 7913; Envigo, Indianapolis, IN) 

and provided autoclaved, non-acidified municipal water ad libitum. The mice 

were kept on a 12-hour light/dark cycle from 6 AM to 6PM and 6PM to 6AM, 

respectively. All animal experiments were carried out at the University of 

Louisville in compliance with local and national regulations of laboratory animal 

welfare. Additionally, all animal care and use procedures were approved by the 

University of Louisville Institutional Animal Care and Use Committee. 

 

Plasmodium Infection and Evaluation of Parasitemia: 
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 Mice were infected with Plasmodium yoelii 17XNL by intravenous injection 

of 1x105 infected red blood cells (RBCs) in 200 uL of saline prepared from frozen 

stock. Parasitemia (i.e. percentage of total infected RBCs) was evaluated by flow 

cytometry between days 5-30 post-infection (p.i.) via blood taken from the tails of 

infected mice. Approximately 5 µL of whole blood was diluted in 100 µL of PBS 

followed by fixation in 0.00625% glutaraldehyde. The samples were then stained: 

CD45.2-APC (clone 104; Biolegend, San Diego, CA), Ter119-APC/Cy7 (clone 

TER-119; Biolegend, San Diego, CA), dihydroethidium (MilliporeSigma, St. 

Louis, MO), and Hoechst 33342 (MilliporeSigma, St. Louis, MO). After staining, 

samples were resuspended in flow cytometry buffer and analyzed; RBCs were 

gated by Ter119+CD45.2- followed by gating the infected subpopulation on 

dihydroethidium+Hoechst 33342+ to find the percentage of infected RBCs. 

 

GF Cecal Content Transplant: 

Tac and CR cecal donor mice were infected with Py; at day 56 p.i., GF 

mice were received. GF mice were colonized immediately upon arrival with cecal 

contents from either the infected Tac or CR donor mice. GF mice were gavaged 

daily with cecal contents for a total of 4 treatments and then rested for 1 week 

before Py infection. Fecal pellets were collected after gavage to ensure 

colonization recapitulation of donor microbiota. 

 

Liver Histology: 
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 Liver samples were collected from mice at days 0, 7, 14, 21, and 28 p.i. 

Livers were extracted from mice, trimmed of connective tissue, and placed into 

Tissue-Tek Uni-Cassettes (Sakura Finetek, Torrance, CA) in 10% neutral 

buffered formalin (MilliporeSigma, St. Louis, MO) for fixation. Livers were then 

processed using a graded ethanol series and embedded in paraffin. The paraffin 

sections were cut into 5 μM-thick slices using a microtome and stained with 

hematoxylin and eosin (H&E). All stained sections were examined by light 

microscopy using an Olympus BX41 microscope. Representative images are 

shown (magnification - 20X). 

 

Intestinal Permeability Assay: 

 Intestinal permeability was measured using 4kD FITC-dextran 

(MilliporeSigma, St. Louis, MO). Mice were fasted for 4 hours followed by oral 

gavage of ~42mg FITC-dextran/100mg of body weight in 200 µL of PBS, or 

8.4mg/200µL/mouse. Three hours post-gavage, serum was collected, diluted 1:1 

in PBS to reach 100 µL final volume, and read on a spectrophotometric plate 

reader for fluorescence intensity (Excitation at 485 nm and emission at 528 nm).  

 

Lamina Propria Immune Cell Analysis: 

 Lamina propria (LP) immune cells were isolated at days 0, 7, 14, 21, 28, 

and 60 p.i. using the mouse Lamina Propria Dissociation Kit (Miltenyi Biotec, 

Auburn, CA) according to the manufacturer’s instructions. Briefly, small and large 
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intestines were extracted from mice and cut open longitudinally and laterally into 

approximately 0.5 cm long pieces. The samples were then incubated and 

washed to dissociate the epithelial layer. The resulting samples were then run on 

a gentleMACS dissociator (Miltenyi Biotec, Auburn, CA) and filtered to obtain a 

single-cell suspension. Samples were split and either only surface stained or 

surface stained and intracellularly stained with fluorescence-conjugated 

antibodies. Antibodies were resuspended in FACS buffer (1x PBS, 0.02% sodium 

azide, and 1% FCS) for surface staining for 15 minutes at 4°C followed by 

fixation with Fixation Buffer (Biolegend, San Diego, CA), while intracellular 

staining was carried out with the eBioscience Foxp3/Transcription Factor 

Staining Buffer Set (ThermoFisher, Waltham, MA) according to the 

manufacturer’s instructions. Samples were collected on a BD LSRFortessa (BD 

Biosciences, San Jose, CA) and analyzed using FlowJo software for Mac, 

version 10.4.2 (FlowJo, Ashland, OR).  

 

Marker-Fluorescence Clone Vendor 

CD4-APC-Cy7 RM4-5 Biolegend 

CD8-FITC 53-6.7 Biolegend 

CD45-AF700 104 Biolegend 

TCRgd-BV421 GL3 Biolegend 

CD19-PerCP-Cy5.5 6D5 Biolegend 

Foxp3-PE 150D/E4 Invitrogen 
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CD49b-APC DX5 Biolegend 

RORgt-BV650 Q31-378 BD Biosciences 

IL17A-PE-Cy7 TC11-18H10.1 Biolegend 

CD3-FITC 145-2C11 Biolegend 

CD11c-BV650 N418 Biolegend 

CD11b -PE-Cy7 M1/70 Biolegend 

Siglec F-PE E50-2440 BD Biosciences 

Ly6C-PerCP-Cy5.5 AL-21 BD Biosciences 

Ly6G-APC 1A8 Biolegend 

F4/80-BV421 BM8 Biolegend 

CD16/32 (Fc Block) 2.4G2  

 

Metabolite Screening and Bile Acid Analysis: 

 Ceca, small intestine, and plasma samples were collected from Tac and 

CR mice at days 0, 7, 14, 21, 28, and 60 p.i. The ceca and small intestines were 

flushed with extraction buffer (a mix of 40:40:20 HPLC grade methanol, 

acetonitrile, and water with 0.1% formic acid overall), flash frozen in liquid 

nitrogen, and stored at -80°C. Samples were shipped overnight on dry ice to our 

collaborators for an untargeted metabolomics screen and targeted bile acid 

analysis. Sample preparation was the same for both mass spectrometric 

analyses. Shipped samples were extracted, dried, resuspended and immediately 

placed in a 4º C mass spectrometer autosampler according to a method 
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previously described [19]. 10 μL of sample was injected into the Ultra 

Performance Liquid Chromatography-High Resolution Mass Spectrometer 

(UPLC-HRMS), a Dionex Ultimate 3000 coupled to an Exactive Plus orbitrap 

mass spectrometer (Thermo Scientific, Walham, MA, USA).  

The untargeted metabolomic screen achieved separations using a Synergy 

Hydro-RP column (100 mm x 2 mm, 2.5 μm particle size, Phenomenex, 

Torrance, CA) at a flow rate of 200 μL/min. The mobile phase consisted of 97:3 

HPLC grade water:methanol, 11 mM tributylamine, and 15 mM acetic acid 

labeled as solvent A, as well as HPLC grade methanol, labeled as solvent B. The 

mobile phase gradient was programmed accordingly: From 0 to 5 min, 0% B; 

from 5 to 13 min, 20% B; from 13 to 15.5 min, 55% B, from 15.5 to 19 min, 95% 

B; and from 19 to 25 min, 0% B, Eluent from the column was introduced into the 

mass spectrometer, an Exactive Plus orbitrap (Thermo Scientific, Waltham, MA, 

USA) via an electrospray ionization (ESI) source set to negative mode. 

Instrument settings include: spray voltage of 3 kV, nitrogen sheath gas flow rate 

of 10 units, capillary temperature set at 320º C, and an AGC target set to 3e6. 

Samples were analyzed at a resolution of 140,000 in full scan mode. The scan 

window included 85 to 800 m/z units from 0 to 9 min and 110 to 1000 m/z units 

from 9 to 25 min. Bile acids were analyzed by the same UPLC-HRMS instrument 

and column that was used as in the metabolomics analysis. The column 

compartment was kept at 40º C and the flow rate was kept at 300 μL/min. Mobile 

phase composition was 0.1% formic acid in water labeled as solvent A and 0.1% 
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formic acid in acetonitrile. The mobile phase gradient consisted of: 0% to 100% B 

from 0 to 13 min, 100% B from 13 to 14 min, 100% to 0% B from 14 to 14.5 min, 

0% B from 14.5 min to 20.5 min. Eluent from this method was introduced into the 

mass spectrometer via a heated electrospray ionization (HESI) source also set to 

negative mode. Instrument settings include: spray voltage of 4.2 kV, nitrogen 

sheath gas flow of 25 units, capillary temperature set at 300º C, and a AGC set to 

3e6. Samples were analyzed at a resolution of 140,000 in full scan mode. The 

scan window was from 150-1000 m/z units.  

 The collected data for each tissue was normalized by tissue weight (small 

intestine and ceca) or volume (plasma) followed by median normalization. Tissue 

data was then formatted for and analyzed with MetaboAnalyst v4.0 

(http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml), an online tool 

for metabolomic analysis160-163. Using the Statistical Analysis tool, PCA plots and 

heatmaps were generated for the untargeted metabolomics screen; for the 

heatmaps, time point groups were collapsed using group averages, and Ward’s 

method was used for the clustering algorithm along with a Euclidean distance 

measure; relative abundance data was autoscaled to account for metabolites 

with very low or very high abundances. For bile acid heatmaps, neither the 

samples or features were clustered. The Enrichment Analysis tool was used to 

identify enriched pathways between Tac and CR mouse cecal samples at day 0 

p.i. The library for analysis was the Pathway-associated Metabolite Sets and only 

metabolite sets containing at least 2 compounds were used. 
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Gut Microbiota Analysis: 

Mouse ceca and fecal pellets were extracted and flash frozen in liquid 

nitrogen followed by storage at -80°C. DNA was extracted using the QIAamp 

PowerFecal DNA kit (QIAGEN, Germantown, MD) according to the 

manufacturer’s instructions. DNA samples were then shipped overnight on ice 

packs to either the Integrated Microbiome Resource within the Centre for 

Comparative Genomics and Evolutionary Bioinformatics at Dalhousie University 

(IMR-CGEB, Halifax, NS, Canada) or the Genome Technology Access Center at 

Washington University (GTAC, St. Louis, MO) for sequencing. Samples 

submitted to the IMR-CGEB were amplified using primers targeting the V6-V8 

hypervariable regions. Sequencing was done on an Illumina MiSeq with 300bp 

paired-end reads. Sequence analysis was done using the Microbiome Helper 

pipeline, which provides wrapper scripts for common bioinformatics tools164. 

Briefly, sequences were inspected with FastQC v0.11.5; the paired-end reads 

were stitched together with PEAR v0.9.6 and filtered with BBMap v37.24 with a 

quality score cutoff of 30165-167. The filtered FASTQ files were converted to 

FASTA using the FASTX toolkit v0.0.13.2 and chimeras were removed with 

VSEARCH v1.11.1168,169. QIIME v1.9.1 was then run for open reference OTU 

picking using SortMeRNA v2.0 and SUMACLUST v1.0.20 for reference picking 

and de novo OTU picking; alignment was done using PyNAST v1.2.2 and 

Greengenes 13_8170-174. The resulting OTU table was cumulative sum scaled 
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(CSS). Analyses were done within QIIME to produce taxa plots as well as 

calculate alpha diversity and Bray-Curtis beta diversity. 

 Samples submitted to the GTAC were amplified using a novel approach 

that consists of 12 primer pairs that span portions of all 9 of the 16S rRNA 

hypervariable regions175. Upon receiving the OTU table from GTAC, it was CSS 

normalized and analyzed within QIIME to produce taxa plots and calculate alpha 

diversity and Bray-Curtis beta diversity. Both the map file and OTU table used for 

analyses are included as supplementary data as Additional Files 8 and 9, 

respectively. 

 PICRUSt was used to predict the functional capacity of the samples sent 

to the IMR-CGEB152. The OTU table was filtered to remove de novo OTUs to 

produce a compatible OTU table. After filtering, the OTU table was uploaded to 

the Langille Galaxy server (http://galaxy.morganlangille.com/) running PICRUSt 

v1.1.1 for normalization and analysis. All analyses used KEGG Orthologs for 

functional predictions. 

 The joint analysis of the PICRUSt data and metabolite data utilized 

MetaboAnalyst’s Network Explorer tool. The KOs and metabolites were added as 

lists without fold changes for the day 0 time points in Tac and CR mice. The 

mode of analysis used the KEGG Global Metabolic Network and the table 

containing the significantly enriched pathways was downloaded. 

 

Statistical Analysis: 
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Statistical analyses were performed using GraphPad Prism 7 software 

(GraphPad Software, La Jolla, CA, USA); the alpha value for each analysis was 

set at 0.05. Specific analyses are described in figure legends. For area under the 

curve (AUC) parasite burden analyses, the trapezoidal rule was used:  

AUC(t1-t-last) = Σ (pi + pi+1)*(ti+1-ti)/2 

where “p” is percent parasitemia at the designated time point “t”123.  
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Figures and Figure Legends 

 

Figure 3-1. Susceptibility to Plasmodium infection varies between vendors. 

C57BL/6N mice from Taconic (Tac) and Charles River (CR) were infected with P. 

yoelii (Py). A. Percent parasitemia (percentage of red blood cells (RBCs) infected 

with Py) over the course of infection. Individual time points between Tac and CR 

were analyzed by unpaired two-tailed t-test. B. Area under the curve (AUC) 

analysis of percent parasitemia. Data were analyzed by unpaired two-tailed t-

test. C. Percentage of weight lost post-infection (p.i.). Individual time points were 

analyzed by unpaired two-tailed t-test. D. FITC-dextran concentrations in serum 

over the course of infection. E. Data from panel D normalized to the Day 0 time 

point to show fold changes. All data were analyzed by unpaired two-tailed t-test. 

A-C. Data (mean±SE) are cumulative results (n=3-5 mice/group) of two 

experiments. D-E. Data (mean±SE) are cumulative results of 3 experiments 
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(n=4-5 mice/group/experiment). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 

0.0001. 

 

 

Figure 3-2. Small intestine lamina propria immune system changes during 

Py infection. Total cell numbers of A. CD45+ cells, B. CD8+ T cells, C. CD4+ T 

cells, D. Tregs, E. Gamma delta T cells (TCR𝛾𝛿), F. IL17+ TCR𝛾𝛿 G. Th17 cells, 

H. IL17+ Th17 cells, I. Macrophages, J. Monocytes, and K. Neutrophils. Each 

time point was compared by one-way ANOVA with Tukey’s post-hoc multiple 

comparison test. Data (mean±SE) are cumulative results of 2 experiments (3 

mice/group/experiment). 1 symbol, p < 0.05; 2 symbols, p < 0.01; 3 symbols, p < 

0.001; 4 symbols, p < 0.0001. * = Tac and CR SI comparisons; a = Tac SI 

comparisons to Day 0; b = CR SI comparisons to Day 0. 
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Figure 3-3. Gut bacterial community changes occurring post-Py infection 

do not change susceptibility to future Py infections. A. Experimental design 

of time course and cecal transplants along with fecal pellet collection times. B. 

Relative taxonomic abundance of bacterial species during Py infection. C. Alpha 

diversity (sample richness) between Tac and CR mice during infection using 

observed OTUs. Data were analyzed with a repeated measures two-way ANOVA 

with Dunnett’s post-hoc multiple comparison test for comparisons to Day 0 p.i. 

and Sidak’s post-hoc multiple comparison test to compare Tac and CR diversity 

at each time point. D. Beta diversity (sample dissimilarity) between Tac and CR 
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mice during Py infection using the Bray-Curtis distance metric; each time point is 

compared to the respective Day 0 time point. Data were analyzed by one-way 

ANOVA with Dunnett’s post-hoc multiple comparison test. E. Matched beta 

diversity comparisons between Tac and CR mice at each time point. Data were 

analyzed by one-way ANOVA with Dunnett’s post-hoc multiple comparison test. 

F. Bacterial community alpha diversity from fecal pellets taken from mice 

receiving cecal contents. Data were analyzed by unpaired two-tailed t test. G. 

Bacterial community beta diversity from fecal pellets taken from mice receiving 

cecal contents. The comparisons are Tac control vs Tac control, GF+PyTac vs 

Tac control, CR control vs CR control, and GF+PyCR vs CR control. Data were 

analyzed by unpaired two-tailed t test. H. Parasitemia of GF mice gavaged with 

post-Py Tac or post-Py CR cecal contents along with controls. I. AUC of the 

parasite burdens shown in panel H. Data were analyzed by unpaired two-tailed t 

test. Data (mean±SE) in panels B-G are from one experiment (4-5 mice per 

group); panels H-I are cumulative results of 2 experiments (4-5 

mice/group/experiment). 1 symbol, p < 0.05; 2 symbols, p < 0.01; 3 symbols, p < 

0.001; 4 symbols, p < 0.0001; ns = not significant. * = Tac and CR comparisons; 

a = Tac comparisons with Day 0; b = CR comparisons with Day 0. 
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Figure 3-4. Metabolite profiles in selected tissues during Py infection. 

Principal Component Analysis (PCA) plot showing similarity of metabolite profiles 

in Tac and CR samples in the small intestine A., cecum C., and plasma E. 

Ellipses contain the 90% confidence area of each group. Metabolite profile 

heatmap from the small intestine B., cecum D., and plasma F. Sample group 

averages and metabolites are clustered using Ward’s method and Euclidean 

distance measure. Data are the cumulative results of 2 experiments (3 
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mice/group/experiment). Scale bar represents scaled relative abundance of 

metabolites. 

 

 

Figure 3-5. Severity of liver damage following Py infection correlates with 

both parasitemia burden and kinetics. Histology of representative livers (3 

mice/group/time point) stained with H&E in naive and Py-infected mice. Scale bar 
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= 100 µm; magnification = 20x. Arrowheads indicate hemozoin deposition; 

arrows indicate immune cell infiltration. 

 

 

Figure 3-6. Severity of Py infection correlates with loss of specific cecal 

bile acids. A. Small intestine bile acid heatmap. B. Cecal bile acid heatmap. C. 

Plasma bile acid heatmap. Data are cumulative over 2 experiments (3 

mice/group/experiment). Scale bars indicate scaled relative abundance of bile 

acids. aMCA = alpha-muricholic acid; bMCA = beta-muricholic acid; CDCA = 

chenodeoxycholic acid; CA = cholic acid; GCDCA = glycochenodeoxycholic acid; 

GCA = glycocholic acid; GDCA = glycodeoxycholic acid; HDCA = hyodeoxycholic 
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acid; oMCA = omega-muricholic acid; TCDCA = taurochenodeoxycholic acid; 

TCA = taurocholic acid; TDCA = taurodeoxycholic acid; TMCA = tauromuricholic 

acid. 

 

 

Figure 3-7. Severe Py infection increases the predicted functional capacity 

of the gut microbiota. A. KO proportions and total abundance in the Tac cecal 

microbiota at day 0 p.i. B. KO proportions and total abundance in the CR cecal 
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microbiota at day 0 p.i. C. KO abundances during Py infection classified to the 

level 1 KEGG category “Metabolism” between Tac and CR microbiota. D. KO 

abundances during Py infection classified to the level 1 KEGG category “Cell 

Processes” between the Tac and CR microbiota. E. KO abundances during Py 

infection classified to the level 2 KEGG category “Cell Motility” between the Tac 

and CR microbiota. F. KO abundances of the “Amino Acid metabolism” category 

during Py infection. G. Cecal metabolite pathway enrichment between Tac and 

CR mice at day 0 p.i. Blue means a pathway is enriched in Tac while red is 

enriched in CR; purple indicates enrichment in both. H. Cecal metabolite pathway 

enrichment at day 21 p.i. Arrows represent pathways that were enriched in Tac at 

ay 0 p.i. but are enriched in CR at day 21 p.i. and vice versa. Data in C-F were 

analyzed by unpaired two-tailed t-test. G-H. Data were analyzed using 

Metaboanalyst’s Enrichment Analysis based on the globaltest algorithm and are 

Holm-Bonferroni adjusted. Data (mean±SE) originate from Figure S3 samples 

and are cumulative results (n=2-3 mice/group/experiment) of two experiments. 1 

symbol, p < 0.05; 2 symbols, p < 0.01; 3 symbols, p < 0.001; 4 symbols, p < 

0.0001. * = Tac and CR comparisons; a = Tac comparisons with Day 0; b = CR 

comparisons with Day 0. 
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Figure 3-8. Schematic of the different host and microbiota factors. Arrows 

represent the ability of one factor to influence another. Colors represent 

differential effects driven by low or high parasitemia. 
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Figure 3-9. Gating strategies from the LP of mouse SI and LI. A. Gating 

strategy of single cell suspension and CD45+ cells. B. Gating strategy for CD4+ 

and CD8+ T cells. C. Gating strategy for TCR𝛾𝛿 T cells and IL17+ TCR𝛾𝛿 T cells. 

D. Gating strategy for Tregs, Th17 T cells, and IL17+ Th17 T cells. E. Gating 

strategy for neutrophils, monocytes, and macrophages. 
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Figure 3-10. Large intestine lamina propria immune system changes during 

Py infection. Total cell numbers of A. CD45+ cells, B. CD8+ T cells, C. CD4+ T 

cells, D. Tregs, E. Gamma delta T cells (TCR𝛾𝛿), F. IL17+ TCR𝛾𝛿 G. Th17 cells, 

H. IL17+ Th17 cells, I. Macrophages, J. Monocytes, and K. Neutrophils. Each 

time point was compared by one-way ANOVA with Tukey’s post-hoc multiple 

comparison test. Data (mean±SE) are cumulative results of 2 experiments (3 

mice/group/experiment). 1 symbol, p < 0.05; 2 symbols, p < 0.01; 3 symbols, p < 

0.001; 4 symbols, p < 0.0001. * = Tac and CR LI comparisons; a = Tac LI 

comparisons to Day 0; b = CR LI comparisons to Day 0. 
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Figure 3-11. The composition of gut bacteria populations changes after 

clearance of Py. A. Relative taxonomic abundance of bacterial families during 

Py infection. c = class, o = order. B. Alpha diversity (sample richness) between 

Tac and CR mice during infection using the Chao1 metric. C. Beta diversity 

(sample dissimilarity) between Tac and CR mice during Py infection using the 

Bray-Curtis distance metric; each time point is compared to the respective Day 0 

time point. Data in B-C were analyzed by one-way ANOVA with Dunnett’s post-

hoc multiple comparison test. Data (mean±SE) are cumulative results of 2 

experiments (2-3 mice/group/experiment). *p < 0.05; **p < 0.01; ***p < 0.001; 

****p < 0.0001; ns= not significant. 
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Figure 3-12. Small intestine bile acid profiles over Py infection. aMCA = 

alpha-muricholic acid; bMCA = beta-muricholic acid; CDCA = chenodeoxycholic 

acid; CA = cholic acid; GCDCA = glycochenodeoxycholic acid; GCA = 

glycocholic acid; GDCA = glycodeoxycholic acid; HDCA = hyodeoxycholic acid; 

oMCA = omega-muricholic acid; TCDCA = taurochenodeoxycholic acid; TCA = 

taurocholic acid; TDCA = taurodeoxycholic acid; TMCA = tauromuricholic acid. 

Data were analyzed by unpaired t-test. Data (mean±SE) are cumulative results 
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(n=3 mice/group/experiment) of two experiments. 1 symbol, p < 0.05; 2 symbols, 

p < 0.01; 3 symbols, p < 0.001; 4 symbols, p < 0.0001. * = Tac and CR 

comparisons; a = Tac comparisons with Day 0; b = CR comparisons with Day 0. 

 

 

Figure 3-13. Cecal bile acid profiles over Py infection. aMCA = alpha-

muricholic acid; bMCA = beta-muricholic acid; CDCA = chenodeoxycholic acid; 

CA = cholic acid; GCDCA = glycochenodeoxycholic acid; GCA = glycocholic 

acid; GDCA = glycodeoxycholic acid; HDCA = hyodeoxycholic acid; oMCA = 

omega-muricholic acid; TCDCA = taurochenodeoxycholic acid; TCA = 

taurocholic acid; TDCA = taurodeoxycholic acid; TMCA = tauromuricholic acid. 

Data were analyzed by unpaired t-test. Data (mean±SE) are cumulative results 
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(n=3 mice/group/experiment) of two experiments. 1 symbol, p < 0.05; 2 symbols, 

p < 0.01; 3 symbols, p < 0.001; 4 symbols, p < 0.0001. * = Tac and CR 

comparisons; a = Tac comparisons with Day 0; b = CR comparisons with Day 0. 

 

 

Figure 3-14. Plasma bile acid profiles over Py infection. aMCA = alpha-

muricholic acid; bMCA = beta-muricholic acid; CDCA = chenodeoxycholic acid; 

CA = cholic acid; GCDCA = glycochenodeoxycholic acid; GCA = glycocholic 

acid; GDCA = glycodeoxycholic acid; HDCA = hyodeoxycholic acid; oMCA = 

omega-muricholic acid. Data were analyzed by unpaired t-test. Data (mean±SE) 

are cumulative results (n=3 mice/group/experiment) of two experiments. 1 

symbol, p < 0.05; 2 symbols, p < 0.01; 3 symbols, p < 0.001; 4 symbols, p < 

0.0001. * = Tac and CR comparisons; a = Tac comparisons with Day 0; b = CR 

comparisons with Day 0.
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CHAPTER 4 

ORAL ADMINISTRATION OF CLINICALLY RELEVANT ANTIMALARIAL 

DRUGS DOES NOT MODIFY THE MURINE GUT MICROBIOTA 

 

 Malaria is an infectious disease responsible for the death of around 

450,000 people annually. As an effective vaccine against the parasite that 

causes malaria is not available, antimalarial drug treatments are critical in fighting 

the disease. Previous data has shown that the gut microbiota is important in 

modulating the severity of malaria. Although it is well appreciated that antibiotics 

substantially alter the gut microbiota, it is unknown how antimalarial drugs impact 

the microbiota. We show here that the two commonly used artemisinin 

combination therapies of artesunate plus amodiaquine and artemether plus 

lumefantrine do not change the gut microbiota. The overall relative species 

abundance and alpha diversity remained stable after treatment, while beta 

diversity analysis showed minimal changes after cessation of drug treatment, 

which were transient and quickly returned to baseline. Taken together, 

antimalarial drug administration does not affect the gut microbiota.
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Introduction 

 Plasmodium is a significant global pathogen which infected 216 million 

people and caused 445,000 deaths in 2016; in sub-Saharan Africa, children 

under the age of 5 years old are the most vulnerable1. Currently, there is no 

effective vaccine against Plasmodium. Although there is growing resistance to 

frontline antimalarial drugs, particularly in Southeast Asia124,176, these drugs are 

still critical for treating those infected with Plasmodium. The gold standard for 

malaria treatment is artemisinin combination therapy (ACT). Artemisinin itself 

was originally isolated from the plant Artemisia annua in 1972 and has several 

semi-synthetic derivatives, including artemether, artesunate, and 

dihydroartemisinin177. Pharmacologically, these derivatives are more effective at 

clearing Plasmodium parasites than other anti-malarial drugs but tend to have 

shorter half-lives178. Consequently, artemisinin derivatives are usually combined 

with another anti-malarial drug that has a longer half-life to create an ACT to 

ensure continual parasite eradication and reduce instances of resistance to 

antimalarial drugs. Two of the most common ACTs are artemether combined with 

lumefantrine and artesunate combined with amodiaquine; these are commonly 

given orally but can also be administered intravenously, rectally, or 

intramuscularly20. 

 The mechanism of action for artemisinin and its derivatives has recently 

been shown to involve cellular damage in Plasmodium-infected red blood cells 

(iRBCs) along with inhibition of the proteasome; this leads to endoplasmic 
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reticulum stress and the buildup of damaged proteins55. In vitro experiments have 

also shown that artesunate can generate reactive oxygen species within iRBCs 

that lead to caspase activation and apoptosis56. The mechanisms for 

lumefantrine and amodiaquine are currently unknown, but it is suspected that 

both drugs interfere with Plasmodium’s ability to detoxify heme54. Both types of 

mechanisms of action synergize to give ACTs their effectiveness in treating 

malaria. 

 Previous research has shown antibacterial effects of artemisinin and its 

derivatives on specific pathogens. Derivatives of artemisinin were shown to be 

differentially effective at killing various fungi and bacteria, including methicillin-

resistant Staphylococcus aureus (MRSA)57. Additionally, encapsulation of 

artemisinin with beta-cyclodextrin enhances its antibacterial capacity when tested 

against MRSA179. While modifying artemisinin and its derivatives increases the 

antibacterial efficacy, these modified derivatives are not used clinically. However, 

unmodified artemether and artemisinin have been shown to be relatively potent 

at killing Helicobacter pylori, which is a human pathobiont57,58.  

 The gut microbiota has been shown to be important for many aspects of 

health and disease, including malaria. We have previously shown in mice that the 

gut microbiota can modulate the severity of infection, and modifying the 

microbiota through something as simple as changing the diet was sufficient to 

make mice susceptible to severe malaria136. Whereas oral antibiotic treatment 

has profound effects on the gut microbiota, the impact of antimalarial treatment 
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on the gut microbiota is unknown. Using a mouse model, we show that two 

commonly used ACTs do not substantially change the gut microbiota at clinical 

dosing.  

 

Results 

Treatment with Clinically Relevant Doses of ACTs does not Change the 

Taxonomic Composition of the Murine Gut Microbiota 

 To test our hypothesis, we used two common ACTs: artesunate combined 

with amodiaquine (AA) and artemether combined with lumefantrine (AL). Due to 

the hydrophobic nature of lumefantrine, AL was dissolved in olive oil (O), while 

AA was dissolved in saline (H). The ACTs and vehicle controls were given by 

oral gavage daily for three days, similar to clinical practice. Fecal pellets were 

collected before treatment (day 0) and at days 1, 2, 3, 5, 7, 10, 14, and 21 post-

treatment (p.t.) (Fig. 4-1A). 

 Overall, the relative abundance of bacterial species remains consistent 

over treatments when compared to the pooled, pretreatment day 0 samples (Fig. 

4-1B). When the Bray-Curtis beta diversity is viewed in a PCoA plot and the 

samples are colored by time p.t., there is no appreciable separation between any 

of the time points, indicating high similarity (Fig. 4-1C). Whereas a separation 

between two populations can be seen in the panel displaying PC2 vs PC3 (Fig. 

4-1C), this separation is not attributed to any of the treatments or time points but 

rather due to variability between the first and second experiments. The overall 
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variability is small (12.16%) and is explained by the presence or absence of a 

small handful of species in one experiment. Within each experiment, there is no 

discernable pattern between the different time points p.t. Similarly, when the 

samples are colored by treatment received (Fig. 4-1D), there are no major 

differences, indicating neither ACTs or vehicle treatments lead to major changes. 

Overall, when comparing the relative taxonomic abundances and beta diversity 

plots, there are no consistent patterns indicating changes due to antimalarial 

treatment. 

 

Antimalarial Treatments do not Affect the Overall Diversity of the Murine 

Gut Microbiota 

 Alpha diversity analysis (measured by the number of observed OTUs per 

sample) of samples from mice treated with AA and the vehicle control, H, shows 

that the species composition does not change significantly over the course of the 

experiment (Fig 4-2A, B). For the beta diversity/dissimilarity comparisons, the 

day 0 p.t. within-group dissimilarity is compared to either the dissimilarity 

between the day 0 samples and the H-treated mice or between the day 0 

samples and the AA-treated mice, with higher beta diversity indicating greater 

dissimilarity. This comparison will identify time points in either the H- or AA-

treated mice that become more or less similar to the pre-treatment day 0 

bacterial communities following treatments, designated here as the “day 0 

comparison”. In this case, neither H nor AA caused the gut microbiota to change 
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from the day 0 baseline (Fig. 4-2C). The day 0 comparisons are then compared 

between treatments at each time point; this “treatment comparison” identifies 

dissimilarities in the gut microbiotas between treated and untreated mice even if 

there are no significant differences in the day 0 comparisons. Even though mice 

treated with H or AA show no significant day 0 comparisons, there are significant 

differences between the treatment groups at days 7 and 10 p.t., with the H 

treatment having a modestly higher Bray-Curtis distance (Fig. 4-2C). The lack of 

significance of the day 0 comparisons at these time points indicates that the 

differences in treatment comparisons, while significant, are not biologically 

relevant. That these differences were not until 4 to 7 days post H- and AA-

treatment after the last treatments suggests that these differences were not 

attributed to treatments. 

 The next ACT examined was AL and its vehicle O. The alpha diversity for 

mice receiving either vehicle or AL again showed that there were no significant 

changes to the number of species found in the gut microbiota during the 

experiment (Fig. 4-2D, E). The day 0 comparisons of beta diversity found that 

several of both AL- and O-treated samples have a greater dissimilarity to the day 

0 composition than day 0 has internally at day 3 p.t. for both AL (0.3468 versus 

0.2974; p=0.0011) and O (0.3498 versus 0.2974; p=0.0002), day 5 p.t. for AL 

(0.3429 versus 0.2974; p=0.0032), and day 21 p.t. for O (0.3552 versus 0.2974; 

p<0.0001) (Fig. 4-2F). These differences indicate that there are significant, 

though modest, differences in the gut microbiota of these mice at the specified 
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time points. Based on this data, it can be concluded that the treatments are 

contributing to the observed changes. However, with the increase in dissimilarity 

at day 3 for both O and AL, it cannot be ruled out that the olive oil vehicle alone 

caused the difference. The treatment comparisons show significant differences 

between O and AL at days 5 and 21 p.t., with AL samples having higher 

dissimilarity at day 5 p.t. compared to O, and O samples having higher 

dissimilarity at day 21 p.t. (Fig. 4-2F). This is consistent with the previous 

findings from the day 0 comparison, as the time points that show significant 

differences in treatment dissimilarity are the same time points to be significantly 

different compared to day 0. However, it must also be pointed out that these time 

points occur at least three days after the last AL treatment and 19 days after the 

last O treatment, which is considerably later when compared to previous data 

examining diet- or antibiotic-induced changes to the gut microbiota13,14. 

Additionally, these differences, at least for AL, appear to be transient, occurring 

only at the single time point. When the data is considered as a whole, there are 

several significant but minor differences in the microbiotas of mice treated with 

antimalarials, but no robust, long-term changes are seen.  

 

Discussion 

 In this study, we have shown that treatment with common ACTs does not 

change the gut microbiota of mice. This is an important observation, given the 

widespread use of these antimalarials around the globe and the diverse effect of 
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the gut microbiota on the host, including its ability to shape the severity of 

malaria136. Importantly, this work needs to be corroborated in humans, as mice 

and the murine gut microbiota are not perfect analogs of humans.  

 Since the gut microbiota does not change appreciably, it does not appear 

that the antimalarial treatments affect the microbiota directly, despite previous 

research on the antibacterial effects of artemisinin and its derivatives57,58. 

However, in the context of an inflammatory disease like malaria that has been 

shown to have an effect on the composition of the gut microbiota37,38, 

antimalarials may in fact protect the microbiota. In a model of hepatitis, 

artesunate treatment inhibited production of inflammatory cytokines such as 

interferon gamma and tumor necrosis factor alpha while driving production of the 

anti-inflammatory IL-10180. The cytokine modulation was driven by inhibition of 

the NF-kB signaling pathway, as artesunate enhanced phosphorylation of the 

NF-kB pathway and signaling components in liver tissue180. In macrophages, 

artesunate has also been shown to block autophagy-dependent activation due to 

LPS and thus downstream production of inflammatory cytokines181. With this in 

mind, artemisinin and its derivatives may not only eliminate malaria parasites 

during infection but also have secondary effects in maintaining host gut 

homeostasis. 

 There is still much that is unknown about artemisinin and its interactions 

with Plasmodium. However, we have briefly shown that two of the most 

commonly used ACTs do not change the composition of the gut microbiota in 
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mice. As the gut microbiota has become an important area of clinical 

investigation, it is beneficial to know that ACT treatments do not seem to pose 

the same challenges as antibiotic treatments to gut homeostasis and host health. 

However, given the differences between mice and humans, it is critical to 

continue characterizing the role of the human gut microbiota during malaria 

infection and treatment to enhance the effort to defeat malaria as a global 

pathogen. 

 

Materials and Methods 

Animals and Housing: 

 6 week old female C57BL/6 mice were purchased from Envigo 

(Indianapolis, IN). All mice were housed in a specific pathogen-free facility and 

acclimatized for a minimum of 7 days before starting experiments. Animals were 

fed the NIH-31 diet (Modified Open Formula Mouse/Rat Irradiated Diet; Harlan 

7913; Envigo, Indianapolis, IN) and provided autoclaved, non-acidified municipal 

water ad libitum. The mice were kept on a 12-hour light/dark cycle from 6 AM to 

6PM and 6PM to 6AM, respectively. All animal experiments were carried out at 

the University of Louisville in compliance with local and national regulations of 

laboratory animal welfare. Additionally, all animal care and use procedures were 

approved by the University of Louisville Institutional Animal Care and Use 

Committee. 
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Gut Microbiota Analysis: 

Mouse fecal pellets were collected at days 0, 1, 2, 3, 5, 7, 10, 14, and 21 p.t. and 

flash frozen in liquid nitrogen followed by storage at -80°C. DNA was extracted 

using the QIAamp PowerFecal DNA kit (QIAGEN, Germantown, MD) according 

to the manufacturer’s instructions. DNA samples were then shipped overnight on 

ice to the Genome Technology Access Center at Washington University (GTAC, 

St. Louis, MO) for sequencing followed by analysis using MVRSION175. The OTU 

table received from GTAC was CSS normalized and analyzed within QIIME 

v1.9.1 to produce taxa plots and calculate alpha diversity and Bray-Curtis beta 

diversity170. 

 

Antimalarial Drug Treatments: 

 For both AL and AA, clinical dosing was used according to 

recommendations by the World Health Organization20. Artemether was given at 2 

mg/kg and lumefantrine at 12 mg/kg, while artesunate was given at 4 mg/kg and 

amodiaquine at 10mg/kg. AL and AA were diluted in either 100% olive oil 

(Kroger, Cincinnati, OH, USA) or saline (Teknova, Hollister, CA, USA), 

respectively. Mice received AL and AA by oral once daily for three days.  

 

Statistical Analysis: 
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Statistical analyses were performed using GraphPad Prism 7 software 

(GraphPad Software, La Jolla, CA, USA). Specific analyses are described in 

figure legends.  

 

Figures and Figure Legends 
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Figure 4-1. Relative bacterial abundances remain stable despite 

antimalarial treatments. A. Experimental design for antimalarial treatments and 

fecal pellet collections. B. Relative taxonomic abundances of bacterial species 

among different treatment groups. Time points are collapsed by average 

abundance and scaled to sum to 1. PCoA plots of Bray-Curtis distances between 

samples, with either C. time p.t. or D. treatment metadata distinguishing samples. 

Data are the cumulative results of 2 experiments (4 mice/group/experiment); 

untreated (day 0) data for each group is pooled. 
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Figure 4-2. Antimalarial drug treatments cause minor changes to the 

diversity indices of the gut microbiota in mice. Alpha diversity of the gut 

microbiota as measured by observed OTUs in mice treated with A. saline and B. 
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artesunate and amodiaquine. C. Bray-Curtis beta diversity for samples treated 

with either water or artesunate and amodiaquine. The distances compared are 

between the pooled day 0 samples and each treatment group at each time point 

followed by comparisons between treatments at each time point. D. Alpha 

diversity of samples from mice treated with olive oil and E. mice treated with 

artemether and lumefantrine. F. Bray-Curtis beta diversity comparisons for 

samples from mice treated with either olive oil or artemether and lumefantrine as 

in panel C. Data are the cumulative results of 2 experiments (4 

mice/group/experiment); untreated (day 0) data for each group is pooled. Data in 

A-B and D-E were analyzed by one-way ANOVA with Tukey’s multiple 

comparisons test; data in C and F were analyzed by one-way ANOVA with 

Dunnett’s multiple comparisons test followed by a two-tailed t test for treatment 

comparisons at each time point. * = comparison between same-day treatments; # 

= comparison between treatment day and day 0 p.t. 1 symbol = p<0.05; 2 

symbols = p<0.01; 3 symbols = p<0.001; 4 symbols = p<0.0001.
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CHAPTER 5 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

 It is critical to understand mechanisms of host resistance and Plasmodium 

disease pathogenesis. Identifying Plasmodium-host interactions that can be 

exploited for the production of antimalarial drugs or as vaccine candidates has 

always been a relevant strategy. However, since we have shown that the 

composition of the gut microbiota can modulate the severity of infection, the 

dimensionality and complexity of interactions increases to include Plasmodium, 

the host, and the microbiota. With this in mind, the search for malaria treatments 

is both easier and harder simultaneously. It is easier in that it may be possible to 

simply modulate the gut microbiota using a probiotic bacteria, prebiotic fiber, or 

metabolite to enhance the host response to malaria and inhibit the development 

of complicated malaria. On the other hand, antimalarial treatment design must 

also consider the microbiota and its effect not only on the severity of malaria, but 

also on other aspects of host physiology like metabolism or immunity. A 

treatment that affects 
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the composition of the microbiota also has the potential to change the future 

resistance or susceptibility to severe malaria.  

 On a smaller scale, the complete mechanism for how the gut microbiota 

can regulate the severity of malaria is still unknown. Based on the observations 

made here, there are differences in host immunity during Py infection that 

correlate to differences in the gut microbiota; however, despite the fact that the 

compositions of both Tac and CR microbiotas become more similar over 

infection, these changes do not modulate severity of infection. With this in mind, 

one possible conclusion is that instead it is the differential function of the Tac and 

CR microbiotas that is responsible for the modulation of malaria severity. For 

example, Tac and CR mice receive the same diet with the same nutrients, but 

the cecal metabolite profiles are dramatically different during infection despite the 

decreasing dissimilarity between Tac and CR microbiotas. If the functional 

differences lead to the observed differences in severity of malaria, the products 

of the microbiota metabolism quite possibly are the key link between the 

microbiota and the host. However, this metabolite still needs to be identified. 

 One potential method to identify these metabolites that contribute to either 

resistant or susceptible phenotypes would be to isolate cecal or fecal cell-free 

supernatants from Tac or CR mice. These supernatants could then be given 

orally to identify the total contribution of the metabolites, or the supernatants 

could be treated beforehand to narrow down the class of metabolites that are 

active. For example, enzymatic treatments, heat treatments, and size 
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fractionation would help identify whether the active metabolite or metabolites 

were a specific type of molecule, such as a nucleotide or peptide.  

 In germ-free mice, other options exist for identifying active microbes or 

metabolites in resistance or susceptibility. First, limited colonization of gnotobiotic 

mice with microbes of interest, such as Lactobacillus or Bifidobacteria species, 

would help determine the contribution of specific microbes or consortia of 

microbes to resistance or susceptibility. These microbes could have potential 

probiotic functionality for enhancing resistance to malaria. One caveat, however, 

is that the contribution of probiotics that we observed was moderate at best, and 

primarily dependent on antibiotic treatment beforehand. While this does not 

preclude probiotics as a potential treatment, it does highlight the resiliency of the 

established microbiota and the difficulty such future treatments may face. In a 

similar vein, maintaining germ-free mice but treating with metabolites of interest 

or postbiotics from the resistant microbiota may aid in identifying signals from the 

microbiota that confer the resistant or susceptible phenotypes. Also, as diet was 

shown to influence susceptibility to severe malaria, mice could also be given 

diets restricted in certain metabolites such as specific amino acids or flavonoids. 

These diet studies would complement experiments where mice are given an 

abundance of a specific metabolite. 

 On a different note, we showed that treatment with ACTs has very limited 

effects on the gut microbiota. However, one way to confirm that these changes 

do not affect susceptibility to Py infections is to treat with ACTs followed by Py 



  133 

infection; resistant and susceptible mice should have no changes in parasite 

burden or morbidity and mortality.  

 Within the context of human malaria, little work has been done to study 

how the gut microbiota modulates resistance or susceptibility to malaria. As 

discussed previously, different rodent models of malaria can recapitulate different 

aspects of human malaria; Py in particular can model the pathology and the initial 

immune response to malaria. Using mice with humanized microbiota would allow 

for initial characterization of how different human microbiota compositions 

modulate Py severity and the immune response to malaria. Comparisons could 

also be drawn between the baseline Tac or CR microbiota composition and 

function compared to the humanized microbiota. Prebiotic, probiotic, or antibiotic 

interventions could be used to modify the humanized microbiota to resemble the 

Tac microbiota to enhance resistance to Py. It would also be beneficial to 

perform large-scale sequencing efforts to identify microbiota profiles in humans 

that correlate with protection from malaria, as well as contributing factors like 

diet.  

 Overall, this work constitutes extensive characterization of how gut 

homeostasis affects and is affected by mild or severe Plasmodium infection, as 

well as a brief analysis of how clinical ACTs affect the composition of the gut 

microbiota. As the findings associated with the gut microbiota and its interactions 

with malaria are recent, it is hoped that these observations assist in future 



  134

research into the mechanisms of the modulation of severe malaria by the 

microbiota. 
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APPENDIX 

 As the material in Chapter 2 was previously published, permission was 

sought and obtained from the journal Proceedings of the National Academy of 

the Sciences, documented below. 

  

Wednesday, September 26, 2018 at 11:16:25 AM Eastern Daylight Time

Page 1 of 1

Subject: RE: Use of published data for disserta4on

Date: Friday, September 21, 2018 at 4:37:41 PM Eastern Daylight Time

From: PNAS Permissions

To: Denny,Joshua Ethan

Thank you for your message. Authors do not need to obtain permission for the following uses of material they have
published in PNAS:

To use their original figures or tables in their future works;
To make copies of their papers for their own personal use, including classroom use, or for the personal use
of colleagues, provided those copies are not for sale and are not distributed in a systematic way;
To include their articles as part of their dissertations; or
To use all or part of their articles in printed compilations of their own works.

 
Please cite the original PNAS article in full when re-using the material. Because this material published after 2008, a
copyright note is not needed. Feel free to contact us with any additional questions you might have.
 
Best regards,
Kay McLaughlin for
Diane Sullenberger
PNAS Executive Editor
 

From: Denny,Joshua Ethan <joshua.denny@louisville.edu> 
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To: PNAS Permissions <PNASPermissions@nas.edu>
Subject: Use of published data for disserta4on
 
Good morning,
 
I hope you are doing well. I was an author on a paper published in PNAS that was published in 2016
(Composi4on of the gut microbiota modulates the severity of malaria, doi:
hXps://doi.org/10.1073/pnas.1504887113). I am finishing my doctoral work and wri4ng my
disserta4on, and would like to include this data. I wasn’t sure if this was included in the rights of an
author. How do I receive permission to use the data and are what are the guidelines for use? I look
forward to hearing back from you.
Thanks,
Joshua Denny
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Joshua Denny
Schmidt Lab
University of Louisville
502-852-2842
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