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ABSTRACT 

 

MALARIA IN THE PREHISTORIC CARIBBEAN: THE HUNT FOR HEMOZOIN 

Mallory D. Cox 

April 23, 2018 

With the increase in resistance to anti-malarials and global warming trends expanding the 

habitation range of the mosquito vector, research highlighting the biogeographical 

contexts of infected populations is critical to understanding epidemiological patterns. A 

bioarchaeological approach to epidemiology can shed light on previous disease patterns 

and aid in the prediction of future outbreaks of diseases like malaria. Currently, there is 

no direct evidence of malaria in the Americas prior to European contact; however, 

skeletal, archaeological, paleoenvironmental, historic, and ethnohistorical evidence 

strongly suggest the presence of Plasmodium spp. malaria in indigenous Caribbean 

skeletal remains held in the Yale Peabody Museum of Natural History’s (YPMNH) 

Caribbean Collection. Yale’s collection is well preserved and represents indigenous 

populations inhabiting the Greater and Lesser Antilles from 300 BC-AD 600 and AD 

1200-1500. Moreover, some individuals in this collection demonstrate healed or healing 

cribra orbitalia and porotic hyperostosis lesions on the cranium. One explanation for 

these anemia-related skeletal markers could be that they are the result of chronic 

hemolytic anemia, an adaptive response to malaria.  
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Hemozoin, an insoluble biomarker produced by all species of Plasmodium, shows 

promise in identifying malaria infections in blood samples of living individuals as well as 

in ancient skeletal remains. I utilized Matrix Assisted Laser Desorption Ionization Time 

of flight Mass Spectrometry (MALDI tof MS), Attenuated Total Reflectance- Fourier 

Transform Infrared Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy 

(SEM) to identify hemozoin in indigenous Caribbean skeletal remains. The identification 

of Plasmodium spp. hemozoin crystals in this skeletal collection points to the presence of 

malaria in the Americas as early as AD 1000. These data will aid in the generation of a 

more complete epidemiological curve for Plasmodium spp., enhance our understanding 

of the early spread of malaria, and contribute to biogeographical studies on European 

contact with indigenous populations.  
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CHAPTER 1: INTRODUCTION 
 

Written records dating as far back as 5,000 years, including Greek, Babylonian, 

Chinese, Indian, Egyptian, and Assyrian sources, describe in great detail the intermittent 

fevers which are so characteristic of malaria infection (Neghina et al., 2010). These 

records demonstrate the degree to which malaria has burdened the health of humankind 

for millennia.  This project aims to contribute to studies of malaria in both past and 

contemporary populations. Although traditionally thought to have come to the Americas 

with Europeans, recent phylogenetic evidence suggests the presence of Plasmodium vivax 

malaria in the Americas thousands of years before contact with Europeans (Carter, 2003). 

Malaria, unlike tuberculosis or syphilis, is an infectious disease not easily identified by 

bioarchaeologists and paleopathologists in human remains (Smith-Guzmán, 2015b). 

Furthermore, paleopathological investigations of malaria in New World populations are 

limited because of contemporary paradigms that exclude the possibility of malaria in the 

Americas prior to European contact. These paradigms suggest P. vivax malaria was 

transported to the Americas by Europeans and P. falciparum by Africans during the early 

colonial era (Mann, 2011). While it is very likely that each of these populations were 

carrying Plasmodium spp, this does not eliminate the possibility of an earlier 

introduction. This thesis investigates the possible presence of malaria in the Americas 

prior to the arrival of European colonists in the 1490s through multiple lines of evidence, 
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including skeletal, epidemiological, biogeographical, and ethnohistorical analyses. The 

results acquired using mass spectrometry, electron microscopy, and infrared spectroscopy 

reveal the presence of Plasmodium spp. hemozoin crystals in skeletal remains, pointing to 

the presence of malaria in the Caribbean as early as AD 1000.  

In order to understand possible paleoepidemiological environments in 

precolumbian Circum-Caribbean contexts, a thorough understanding of the contemporary 

and historical epidemiology of malaria is necessary. Evidence in ethnohistorical records 

indicates a steady presence of malaria as early as the 16thcentury, only decades after 

European arrival in the Americas. The climate and ecology in the Circum-Caribbean 

supports Anopheles mosquitoes and Plasmodium spp. malaria today, but why do 

contemporary paradigms exclude the possibility of malaria in the Americas before 

European arrival? Does all the available paleoepidemiological evidence support this 

conclusion? What factors contribute to the introduction, incidence and transmission of 

malaria in human populations? Moreover, is there a way to test for the presence of 

malaria in antiquity? Written records constrain our understanding of the epidemiological 

curve for Plasmodium spp. in the Americas. However, a bioarchaeological approach 

permits us to extend our understanding of the paleoepidemiology of malaria by 

incorporating multiple lines of evidence to demonstrate the likelihood that Plasmodium 

spp. were present in the Americas prior to European contact.  

Chapter 2 provides background on malaria as a human disease and discusses the 

current understanding of the geographical and temporal origins and evolution of 

Plasmodium spp. worldwide. I begin by discussing the current epidemiology of malaria, 

with a specific focus on the Americas. I review current research paradigms for the 
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geographic origins for Plasmodium spp., specifically those that focus on the introduction 

of Plasmodium spp. to the Western hemisphere.  I review the pathophysiological 

processes of malaria infections in the human host. In this chapter I discuss the 

relationship between malarial anemia and the etiologies of skeletal lesions attributed to 

anemia. I summarize the current state of the paleoepidemiology of malaria using human 

skeletal remains, and introduce the literature that suggests the biomarker hemozoin is a 

reliable indicator of malaria in skeletal remains.  

Chapter 3 begins with a brief explanation of the current research paradigms 

describing the movement of people into and between the Caribbean islands in prehistoric 

time. I provide a chronology of cultural traditions identified by archaeologists on various 

islands beginning with the earliest inhabitants around 5,000 BC in the Greater Antilles 

(Cuba, Hispaniola, and Puerto Rico), leading up to the time period in which the skeletons 

sampled for this research have been associated including the ‘Saladoid’ cultural tradition 

(800 BC- AD 200) and the ‘Taino’ cultural tradition (AD 1200-contact). I address the 

ambiguity of the term Taino. Then, I recreate the paleoepidemiological environment of 

the Caribbean using ethnographic, ethnohistorical, and archaeological data. I provide 

available evidence for diet and subsistence in indigenous populations that suggests the 

anemia-related skeletal markers observed in these populations may have an alternate 

etiology, such as malaria infection and parasitic load more generally. Alternative 

interpretations of these anemia-related skeletal markers are acknowledged.  

Chapter 4 provides detailed descriptions of the skeletal collections analyzed 

including a breakdown of the individuals sampled by estimated age and sex, reported by 

(Drew, 2009). The archaeological sites where the remains were recovered are provided in 
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a map as well as a table that includes details such as the exact long bone sampled and the 

methods of analysis employed for that sample. Explanations of the instrumentation used 

to analyze the skeletal samples are provided as well as references for hemozoin 

identification parameters, as cited in biomedical literature, and adopted for the purposes 

of this research. I also describe the sampling protocol, methods of sample extraction, 

sample preparation for each instrument, and analyses performed. 

 Chapter 5 presents the results of the analyses and a discussion on some of the 

caveats encountered throughout the investigation. I review the evidence for hemozoin and 

its precursors in this collection, and present images of hemozoin crystals observed in 

samples using scanning electron microscopy. I draw conclusions on the species of 

parasite that most likely produced the hemozoin crystals identified in the Yale Peabody 

Museum of Natural History’s Caribbean Collection. This thesis concludes with a 

discussion on the implications of the findings as well as and possible directions for future 

research involving hemozoin identification in human skeletal remains. 
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CHAPTER 2: THE ETIOLOGY AND EPIDEMIOLOGY OF MALARIA IN 
HUMANS 

 

Epidemiology of Malaria 

Malaria is an infectious disease caused by a parasite of the Plasmodium genus and 

is transmitted between individuals through the bites of female mosquitoes of the genus 

Anopheles (NIH, 2016).  Understanding the epidemiology of malaria, its distribution, and 

pathophysiology is crucial to the present study because these factors can be used to create 

a framework for investigating the presence of malaria in the past. For example, 

knowledge of the habitats of the mosquito vectors that transmit malaria is critical to 

recreating paleoepidemiological contexts which determine the likelihood of the presence 

of a vector-transmitted infectious disease such as malaria. It is also important to 

understand the processes occurring in the human body during an infection by the malaria 

parasite to understand which bones or part of the skeleton from which evidence of the 

parasite is most likely to be preserved. Each of these factors, as well as others that are 

relevant to the paleoepidemiology and identification of malaria in human populations will 

be addressed in this chapter. 

There are five species of Plasmodium that currently infect humans: Plasmodium 

falciparum (P. falciparum), Plasmodium vivax (P. vivax), Plasmodium ovale (P. ovale), 

Plasmodium malariae (P. malariae), and Plasmodium knowlesi (P. knowlesi) (Smith-
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Guzmán, 2015a). Malaria infections vary in their virulence, duration, and 

symptomology by species and strain (Setzer, 2010). The most common symptoms of 

malaria include intermittent fevers, violent chills, headaches, nausea, respiratory distress, 

severe anemia, sweats, and delirium (Masterson, 2014). Symptoms considered diagnostic 

of malaria are the intermittent fevers, which occur in cyclic patterns every 48 hours for P. 

falciparum, P. vivax, and P. ovale, and every 72 hours in the case of P. malariae (NIH, 

2017). These cycles correlate with the asexual stage of the parasite’s lifecycle, which 

occurs in the red blood cells and is responsible for the symptoms associated with the 

illness (Masterson, 2014).  

Geographic Distribution of Malaria Infections.  

 All five species of human malaria are a matter of global concern.  P. vivax and P. 

falciparum are especially relevant to public health because they account for over 95% of 

the malaria infections worldwide (WHO, 2017). In the Americas, P. vivax accounts for 

64% of all cases while 35% of malaria infections are attributed to P. falciparum, and the 

remaining 1% of cases are from P. malariae (WHO, 2017). However, P. malariae is 

commonly misdiagnosed using microscopy, especially in areas which are co-endemic for 

multiple species of Plasmodium (Barber, William, Grigg, Yeo, & Anstey, 2013). Recent 

work with populations in the Venezuelan Amazon demonstrated that 25% of individuals 

with P. vivax infections also contained P. malariae which was undetectable using the 

most common  method of analyses- thick blood smear microscopy (Niño et al., 2016). 

The ability of P. malariae to remain in the host throughout their entire life, while carriers 

often remain asymptomatic, allows for this cryptic species to be overlooked (Rutledge et 
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al., 2017). Therefore, the presence of P. malariae in the Americas is certain, but the 

prevalence remains unclear (Bardach et al., 2015).  

Mosquito Vectors and Their Habitat. 

 Understanding the habitat is crucial for understanding the potency of the vector 

and the likelihood of infection. For this research, knowledge of the vector habitat is 

important for understanding the potential of infection in precolumbian Caribbean 

populations. The mosquito vector is a critical factor in disease transmission because not 

only does malaria invade humans through the bites of infected Anopheles mosquitoes, but 

the sexual stage of the parasite’s lifecycle takes place in the mosquito as well 

(MacKintosh, Beeson, & Marsh, 2004). Anopheles mosquitoes are present on every 

continent except Antarctica (CDC, 2015). There are over 460 Anopheles species (Afrane, 

Githeko, & Yan, 2012), and 30- 40 of them are efficient vectors for Plasmodium (WHO, 

2017). The larvae of Anopheles mosquitoes are typically found in fresh or salt-water 

marshes, mangrove swamps, the edges of rivers and streams, grassy ditches, wet 

cultivation fields, and temporary or small pools of water (WHO, 2017). These larvae 

hatch between 2 days to 3 weeks after being laid onto the surface of the water, depending 

on the ambient temperature of the environment (NIH, 2016). The National Institute of 

Health (NIH, 2016) reports that P. vivax stops developing altogether when the 

temperature falls below 60 degrees Fahrenheit, which limits its seasonality and range in 

temperate regions (Paaijmans et al., 2010). In most tropical areas, reported cases of 

malaria infections increase during the rainy season (NIH, 2016). Climate change, 

deforestation, and urbanization all affect the rate of mosquito-transmitted infections such 

as malaria by changing the duration between feedings as well as the amount of time from 
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larval-to-adult development (Afrane et al., 2012). Andersen and Davis (2017) report an 

increase in the number of mosquito-borne diseases, such as malaria, in recent decades as 

the result of global warming temperatures.                 

Origins of Plasmodium Spp. in Humans 

Sundararaman et al. (2016) highlight phylogenetic evidence for a transfer of P. 

falciparum malaria from gorillas to humans in Africa, likely within the past 10,000 years. 

Similarly, Liu et al. (2014) support the findings of Carter (2003) and deduce from 

phylogenetic analyses that P. vivax most likely represents a bottlenecked lineage that 

originated in Africa.  According to Carter (2003), it is possible that all P. vivax are 

descended from parasites that infected the human populations in Sub-Saharan Africa and 

the Mediterranean between 100,000-20,000 years ago.  

Introduction of Plasmodium spp. to the Americas. 

Rodrigues et al. (2018) analyzed mitogenomes for Plasmodium spp. in human 

malarias worldwide to conclude that P. falciparum strains in the Americas were likely 

introduced in waves via African slaves throughout the 1500’s.  However, the introduction 

of P. vivax to the Americas remains unclear and highly disputed (Buery et al., 2017; 

Cornejo & Escalante, 2006; Loy et al., 2017). Mann (2011) has argued that Plasmodium 

vivax arrived in the New World with Europeans, based on evidence for P. vivax in 

England in the early 1600s. However, genetic analyses of P. vivax in the Americas today 

demonstrate the species has evolved to be sufficiently distinct from P. vivax in Asia and 

Africa to suggest an antiquity of thousands of years for P. vivax malaria in the New 

World (Carter, 2003). Carter (2003) proposes an initial spread from sub-Saharan Africa 

to southern Asia around 10,000 years ago, followed by a spread to the western Pacific 
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region, and by fast sea transport, across the Pacific Ocean to the Americas sometime in 

the last 5,000 years. Roullier (2013) highlights evidence of human contact between the 

Pacific Islands and South America 1,000 years ago. Rodrigues et al. (2018) conclude that 

P. vivax may have been introduced to the New World via Australasian populations prior 

to European contact. They argue this would explain the diversity seen in modern P. vivax 

strains in the Americas. Populations from distant regions of the globe were undoubtedly 

exchanging goods and ideas prior to European contact. It is likely that they were also 

exchanging infectious diseases, such as malaria.  

Plasmodium spp. in the Americas Today 

Nearly 50 years ago, attempts were made to eradicate malaria in the islands of the 

Caribbean (Rawlins, Hinds, & Rawlins, 2008). This was deemed successful in most 

islands with the exception of Haiti and the Dominican Republic. However, malaria is still 

a significant threat to all of the countries in the Caribbean, as demonstrated by the 2006/7 

outbreak of over 340 cases of P. falciparum in Jamaica (Rawlins et al., 2008). In 

Peruvian Amazonia, 80% of all malarial infections are due to P. vivax species, and 

approximately 75% of those cases are asymptomatic low-grade parasitemias (Rovira-

Vallbona et al., 2017). In Brazilian western Amazonia, symptomless infections of P. 

vivax and P. falciparum were identified as four to five times more likely than 

symptomatic infections (Alves et al., 2002). Asymptomatic low-grade parasitemias are 

characteristic of malaria-endemic environments such as those witnessed in Africa 

today(White, 2017). Furthermore, Sulzer et al. (1975) performed immunofluorescence 

testing for malaria antibodies on 123 indigenous people in southeast Peru. These tests 

revealed malaria antibodies in 109 individuals. Overall, P. malariae was identified in 



 
 

10 
 

97% of positive cases and P. vivax in 10%. P. falciparum was not identified in any 

individuals. Sulzer et al. (1975) concludes from these results that it might be possible for 

P. vivax and P. malariae to have been present in South America in precolumbian times. 

Bruce-Chwatt (1965) claimed it was probable that malaria was introduced to the 

Americas before European colonization.  

Secondary Host Populations for Plasmodium spp. in the Americas.  

Host transfers between humans and monkeys are a feature of malaria parasites 

though the direction of transfers in the Americas is debated (Escalante et al., 2005; 

Lalremruata et al., 2015; Rayner, 2015; Tazi & Ayala, 2011). Plasmodium brasilianum, a 

species of malaria found in New World monkeys, was recently identified in indigenous 

Yanomami populations living in remote regions of the Venezuelan Amazon (Lalremruata 

et al., 2015). Additionally, Madureira de Alverenga et al. (2018) found Plasmodium 

simium, another species infecting New World monkeys, in humans in Brazil. These 

trends suggest that host transfers between human Plasmodium spp. and monkeys in the 

Americas are common (Rayner, 2015). Moreover, the presence and prevalence of these 

secondary host populations in the Circum-Caribbean would put them in close living in 

the environments inhabited by indigenous groups for millennia. From an epidemiological 

perspective, this means New World monkeys could act as reservoirs for multiple species 

of Plasmodium that can infect humans (Tazi & Ayala, 2011). This factor lends further 

support to the likelihood that Plasmodium spp. could have transferred between human 

and non-human primate populations prior to European contact in the Americas.   
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Pathophysiology of Malaria  

When investigating evidence of malaria via a biomarker produced in the human 

host, the pathophysiology of the infection is important to understanding where to look in 

the skeleton for evidence of the parasite. This research looks specifically at where in the 

body hemozoin is produced and sequestered. This is achieved by following the parasite 

from the initial point of entry in the human body via the bite of an infected Anopheles 

mosquito, through the following stages of the Plasmodium spp. lifecycle occurring in the 

human host. Within 30 minutes of being injected into the bloodstream of their human 

hosts, malaria sporozoites invade the liver to become protected from the immune system, 

and replicate profusely for 7-10 days (Masterson, 2014). At that time, they exit the liver 

and invade red blood cells to begin what is called the “intraerythrocytic stage” of 

infection, where millions of microbes feed on the protein components of the red blood 

cell and replicate further (Moxon, Grau, & Craig, 2011). The red blood cell is referred to 

by malariologists as the “epicenter of a genetic battle between the host and Plasmodium 

parasite”. Parasite-derived surface antigens effectively minimize the ability of the 

immune system to recognize infected red blood cells and instead allow for chronic 

infection (WHO, 2017). This is the stage where clinical symptoms set in, starting with 

extremely high fevers (Masterson, 2014). This is also the stage where the majority of 

hemozoin is produced by the Plasmodium spp. parasite, and therefore understanding 

these processes is critical to understanding the formation of hemozoin. Understanding the 

pathogenesis of malaria parasites in the human host informs sample selection protocols in 

order to increase the potential of identifying trace amounts of hemozoin in archaeological 

skeletal remains. 
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The Relationship Between Malaria and Anemia. 

Certain infectious diseases, such as tuberculosis and syphilis, can be identified 

through specific skeletal lesions. Other infectious diseases, like malaria, do not produce 

unequivocal bony lesions, but result in conditions that may leave marks on skeletal tissue 

(Smith-Guzmán, 2015a). Alternately, the osteological paradox (Wood et al. 1992) could 

be applied to explain the absence of direct skeletal lesions for malaria in short-lived lethal 

malaria infections, such as those caused by P. falciparum cerebral malaria; the individual 

didn’t live long enough for lesions to develop. Other species of Plasmodium, such as P. 

vivax, is known to cause long-term chronic infections and hemolytic anemia, but is 

associated with low mortality rates (White, 2017). Anemia can cause porotic hyperostosis 

(PH) (porous cranial vault) and cribra orbitalia (CO) (orbital roof lesions), which are 

identifiable in skeletal remains (Walker et al. 2009). However, the etiology of these 

lesions in human remains is not always clear, and they are typically attributed to multiple 

factors, and they may not be related (Rivera and Lahr 2017). Rivera and Lahr (2017) 

present evidence for a disassociation between CO and PH, while Stuart-Macadam (1992) 

argued for iron-deficiency anemia as the causative agent in porotic hyperostosis. Walker 

et al. (2009) have suggested that hemolytic and megaloblastic anemia may play a more 

dominant role in the development of porotic hyperostosis and cribra orbitalia. 

Additionally, Setzer (2014) notes that some inherited hemolytic anemia, such as sickle-

cell anemia and thalassemia, are highly correlated with areas with a history of endemic 

malaria. Hence, although porotic hyperostosis and cribra orbitalia are not direct evidence 

of hemolytic anemia or malaria, these lesions occur in populations that experience 

frequent infections by Plasmodium spp. parasites.   
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Malaria and Skeletal Markers for Anemia. 

Smith-Guzman (2015b) used modern reference samples to compare skeletal 

lesions in 98 individuals from Uganda, where malaria in holoendemic, to skeletal lesions 

in 106 individuals from a malaria-free zone. Smith-Guzman (2015) identified five 

skeletal lesions occurring more frequently in the malaria-endemic populations, including 

porotic hyperostosis, cribra orbitalia, porosity on the femoral and humeral necks, and 

porosity on the vertebral bodies.  Additionally, in a study of 80 mummified individuals 

from Egypt, Rabino Massa et al. (2000) observed porotic hyperostosis in 92% of those 

individuals testing positive for P. falciparum malaria antigens. These data suggest that 

such lesions could be associated with malaria, but with more than one etiological 

explanation for cribra orbitalia and porotic hyperostosis, they can only serve as markers 

of anemia. The results of this thesis will inform studies on the relationship between 

anemia-related skeletal lesions with a potential for differential diagnosis or multiple 

etiologies, in skeletons of individuals with malaria. While beyond the scope of the current 

project, it should be noted that isotopic analysis to reconstruct diet would be a useful first 

step in attempts to understand dietary factors contributing to PH and CO in individuals 

presenting evidence of malaria in the skeleton, either in the form of Plasmodium spp. 

hemozoin, or Plasmodium spp. DNA.  

Malaria Detection in Paleopathology.  

According to Setzer (2014), paleopathologists rely upon three primary methods 

for interpreting malaria in the archaeological record: detection of ancient DNA (aDNA) 

from archaeological remains, immunological assays, and gross examination of human 

remains. Sallares and Gomzi (2003) successfully identified aDNA of the P. falciparum 
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malaria parasite within ancient human skeletal remains the 5th century AD in a Roman 

site in Italy. However, attempts to detect biomolecular signatures of the less virulent P. 

vivax in ancient human tissue have been unsuccessful (Smith-Guzmán, 2015b). 

Immunological assays have proven successful in two cases. Rabino Massa et al. (2000) 

analyzed the mummified remains of 80 individuals from the site of Gebelen in Egypt 

dated to 3200 BC, finding malaria antibodies for P. falciparum in 42% of the samples. A 

study analyzed 155 tissue specimens (livers and spleens) from South American mummies 

(3000 BC to 600 BC) for evidence of malaria (Plasmodium spp.) using ELISA. From 

amongst these, 67% tested positive for P. vivax antibodies (Gerszten, Allison, & 

Maguire, 2012). This latter study is strong evidence for the Plasmodium parasite in the 

Americas as early as 3000 BC.  

This research builds upon studies of paleopathology of malaria infections in 

skeletal remains through novel method of malaria identification via an insoluble 

biomarker: hemozoin. Hemozoin detection as a method of malaria identification, rather 

than aDNA or ELISA, is much less costly and requires less tissue for analysis. Moreover, 

hemozoin is an insoluble crystal that preserves well in settings such as the Caribbean, 

where the climate is not conducive to preservation of DNA. The preservation prospects of 

hemozoin might extend the possibility of detection of malarial infections in the Americas 

farther back in time, filling in gaps between the 5000-year-old infections detected in 

mummified populations (Gerszten et al., 2012) and those identified in the present study 

of Caribbean populations dating from AD 1000. 
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The Role of Hemozoin in the Detection of Malaria 

Hemozoin is an insoluble, crystallized pigment, which sequesters and is preserved 

in specific bones of individuals infected with malaria (Setzer, 2014). Hemozoin is 

produced when the parasites invade red blood cells and digest hemoglobin, synthesizing 

amino acids and peptides from the globin while also releasing large amounts of free heme 

(Sun et al., 2016). The heme is toxic to the parasite because of its tendency for oxidation; 

therefore, it is converted in the parasite’s digestive vacuole, i.e. “gut” into hemozoin, 

which is released into the bloodstream upon rupture of the red blood cell and subsequent 

invasion of other red blood cells by the parasite (Sun et al., 2016).  Hemozoin is also 

deposited in the liver and spleen as a result of various processes including the first stage 

of the parasite’s lifecycle in the human host, and processes initiated by macrophages of 

the immune system in an attempt to rid the blood and the body of waste and damaged red 

blood cells (Masterson, 2014) 

Besides malaria, there are two other parasitic infections that produce hemozoin 

and are present in the Circum-Caribbean: schistosomiasis, (Schistosoma mansoni) and 

Chagas disease, (Trypanosoma cruzi) (Oliveira et al., 2005). Each species of hemozoin-

producing parasite demonstrates uniquely-shaped crystals that can be differentiated using 

Scanning Electron Microscopy (SEM) (Noland et al., 2003). Hemozoin is therefore a 

‘biomarker’ for malaria and other hematophagous organisms. Setzer (2014) argues that 

residual amounts of hemozoin may be detected in medullary cavities using physical, 

chemical, or histological methods.  
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Hemozoin as Evidence of Malaria in Caribbean Skeletal Remains 

Newly developed methods allow archeologists to identify direct evidence of 

malaria in ancient skeletal remains via the biomarker hemozoin (Inwood, 2017). This 

research employs and adapts these methods to inform studies on precolumbian 

populations in the Caribbean Islands, and in Puerto Rico more specifically. Individuals 

sampled from the Caribbean Collection at YPMNH present indicators of anemia in most 

of the crania, markers that could be caused by chronic or inherited hemolytic anemia. In 

the next chapter, I consider the cultural and epidemiological context of the Caribbean, 

demonstrating the presence of the vector in local environments, as well as dietary 

information that suggests iron-deficiency anemia would have been unlikely.  Hence, the 

presence of such lesions, known to be adaptive responses to malaria whether in the form 

of chronic infections or as inherited traits, might indicate a malarious environment.  

Subsequent chapters deal with additional lines of evidence needed to support this initial 

hypothesis. 
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CHAPTER 3: INDIGENOUS CARIBBEAN CULTURAL TRADITIONS: THE 
SALADOID AND THE TAINO 

 

Indigenous Colonization of the Caribbean Islands 

 I analyzed indigenous Caribbean skeletal remains to look for evidence of malaria 

in the Americas prior to contact with Europeans. Archaeological, paleopathological, 

ethnographic and ethnohistorical data strongly suggest the presence of Plasmodium spp. 

in antiquity. In this chapter I review archaeological, ethnographic, and ethnohistorical 

data to highlight evidence to support this hypothesis.  I include considerations of diet and 

nutrition, anthropogenic landscape alterations, and cultural adaptations to mosquitoes as 

pests.  

I begin with a review of the chronologies of human settlements in the Caribbean 

islands in order to contextualize the sample population in antiquity. Caribbean 

archaeologists refer to the first inhabitants of the Caribbean Islands belonging to one of 

two major 'Archaic' period cultural traditions: the 'Ortoiroid' who appear in the record 

around 5000 BC in Trinidad and Puerto Rico, and the 'Casimiroid' who began to 

occupy the coasts of Haiti and Cuba around 4000 BC (Keegan and Hofman, 2017). The 

Ortoiroid cultural tradition is believed to have migrated to the Caribbean from northwest 

Guyana, while the Casimiroid tradition originated in northwestern South America or 

Central America (Keegan and Hofman, 2017). The traditional periodization in Caribbean 

archaeology includes the Archaic period followed by the Ceramic period. However, Reid 
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(2014) has recently identified pottery production in the Archaic period in the islands as 

including a period of experimentation, where different pastes and decorative techniques 

were explored.  

The Early Ceramic period (800-200 BC) in the Caribbean begins with waves of 

migrants of the Saladoid ceramic tradition. This tradition is found in abundance from 

Trinidad and Tobago to Puerto Rico beginning between 800 and 500 BC (Reid, 2014; 

Keegan and Hofman, 2017). The term ‘Saladoid,’ named after the Saladero site in 

Venezuela where they were originally discovered, refers to the highly formalized styles 

used in decorating ceramics, particularly white-on-red incised pottery (Keegan and 

Hofman, 2017).   

In Puerto Rico, the focus of this study, the Saladoid tradition disappears around 

500 AD and is followed by the Early Taino period (AD 600-AD 1200), and then 

the Classic Taino period (AD 1200-contact). The Classic Taino produced ceramics that 

occasionally featured red slip (Curet, 2005). In excavations performed by Rouse and 

Rainey in the 1930s and 1940s, contexts were relatively dated using these ceramic 

sequences. The human remains investigated in this research were recovered alongside 

material artifacts associated with the Saladoid and the Taino ceramic traditions (Drew, 

2009).   

‘Taino’: the Complexity of a Term  

  The term 'Taino' is under heavy scrutiny by Caribbean scholars who claim it 

masks the diversity of peoples and groups inhabiting the islands when Europeans arrived 

(Feliciano-Santos, 2017).Although the term ‘ Taino’ is used by archaeologists to refer to 
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Caribbean Island populations in the past, regional differences in language, culture, and 

group identities were present (Curet, 2005). Evidence of cultural diversity among and 

within the islands is present in the writings of Columbus following his visits to the 

Bahamas in 1493. Columbus’ records indicate that the peoples he encountered in the 

Bahamas greeted him with the word ‘Taino’, which translates into ‘good’ or ‘nice’ in the 

Taino language, but which Columbus began using as a cultural identifier. Those ‘Taino’ 

whom he met in the Bahamas described their neighbors on the island of Cuba as 

the ‘Ciboney’ and the ‘Guanahatebey’ (Keegan and Carlson, 2008). ‘Lucayan’ Taino 

refers to the cultural tradition of those peoples who began colonizing the Bahamas and 

the Turks and Caicos Islands around 600AD (Keegan and Carlson, 2008). ‘Classic’ Taino 

is the term used by archaeologists to describe the material culture of the peoples living 

on the islands of Puerto Rico, Haiti, Cuba, Jamaica and the Dominican Republic from 

AD 1200 onward (Keegan and Carlson 2008). 

Each of these cultural groups, as well as others, has at one time or another been 

grouped into the designation 'Taino,' similar to distinct Native American tribes being 

referred to solely as 'Native Americans.’ Furthermore, there are living populations who 

identify as Taino. In fact, the 2010 US census revealed that 9,399 people in Puerto Rico 

identified as Taino alone or in combination with other categories (Feliciano-Santos, 

2017). Acknowledging the complexity of the term Taino and recognizing the ambiguity 

that may result from its use, it is beyond my experience, and the time constraints of a 

thesis, to propose alternatives lexicons. For this  research the designations ‘Saladoid’ and 

‘Taino’ are used as markers of populations, with Saladoid referring to individuals living 
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after 300 BC at archaeological sites in Puerto Rico and Taino referring to individuals 

inhabiting archaeological sites in Puerto Rico after AD 600 until contact.  

Navigating the Open Water: Networks of Exchange and Interaction  

The Taino, along with their Saladoid ancestors, and other Circum-Caribbean 

populations were accomplished maritime travelers. Canoes were dug out of a single log 

and used as a means of transportation from one island to the next using paddles instead of 

sails (Keegan and Hofman, 2017). Columbus observed many of these brightly colored 

canoes in special sheds on the beach in southern Cuba, and the largest canoes have been 

known to carry approximately ninety passengers (Keegan and Carlson, 2008). 

Ceramic, lithic, botanical and genomic data suggests the entire Orinoco River basin was a 

zone of intensive intercultural contact (Ramos, 2010).  Additionally, recent analyses of 

ancient DNA from remains dating to about 1000AD recovered at a site in the Bahamas 

show a strong affinity between the indigenous Caribbean and modern South American 

populations, particularly the Yanomami from the Amazonian region (Nieves-

Colon, 2014). At some of the earliest Archaic sites in Cuba, archaeologists have 

identified fruits native to Central America (Keegan and Carlson, 2008). The continuity in 

relatively long-distance voyaging between the islands and the mainland is indicated by 

the exchange of people, good, and ideas over millennia (Keegan and Hofman, 2017). As 

a result of the interconnectedness of the indigenous populations of Central America, the 

Caribbean, and northern South America, this research considers this region, the Circum-

Caribbean, to be a paleodemographic unit.  

Diet and Subsistence.   

 The Taino in Puerto Rico practiced a form of slash and-burn horticulture where 

they cleared a patch of forest to create a permanent field close to the main village 
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(Keegan and Hofman, 2017). In the field they built raised mounds of earth to cultivate 

root crops (Keegan and Carlson, 2008). This form of agriculture is referred to as ‘conuco’ 

(Keegan and Hofman, 2017).  Spanish records indicate that the Lucayan Tainos 

cultivated as many as 80 different plants (Keegan and Carlson, 2008). These included 

staples like sweet potatoes and manioc, a tuber that is processed to remove poisonous 

juices, leaving a pulp that is dried and prepared into bread. The Tainos also planted 

coco yams, beans, gourds, corn, cotton, chili peppers, sweet and bitter manioc, papaya 

and guava (Keegan and Carlson, 2008). Animal protein came primarily from the coastal 

marine environment, including crabs, shellfish, and fish, though some land animals, such 

as iguana and hutia, were available in limited quantities (Keegan and Carlson, 2008).  

Ethnohistorical records describe the Taino populations as highly skilled fishermen 

(Keegan and Carlson, 2008). In addition to many species of fish, the Taino were known 

to catch stingrays and sharks. Sharks’ teeth and the stingray spines were used for multiple 

things including to tip hunting spears and for fishing purposes, and also as materials for 

tools like drills, and decorative or symbolic items (Keegan and Carlson, 2008). The use 

of hooks, lines, nets, and bows and arrows are all fishing methods observed in the 

indigenous populations, according to Spanish records (Keegan and Carlson, 2008).  

Human skeletal remains were recovered on Puerto Rico from coastal middens 

overwhelmingly composed of crabs and freshwater mollusk shells (Rouse, 1993). These 

archaeological data, along with skeletal observations showing little evidence for 

malnutrition or frailty, such as thin cortical bones or linear enamel hyperplasia, as 

reported by Drew (2009), suggest that these populations were not suffering from 

inadequate nutrition. The skeletal remains, including the dentition, from the island of 
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Puerto Rico in YPMNH’s Caribbean Collection paint a picture of a subsistence system 

and lifestyle conducive to good health. While this sample is too small to be used to make 

inferences about the health of entire indigenous populations, this sample does suggest 

good 'overall' health for the majority of Saladoid and Taino individuals recovered at sites 

in Puerto Rico. The remainder of this chapter will be aimed at illustrating a 

paleoepidemiological context in the Circum-Caribbean region using available 

archaeological, ethnohistorical, and ethnographic data. 

Settlement Patterns and Anthropogenic Landscape Alterations: Any Relation to 

Incidence of Malaria?  

Taino coastal villages in the Bahamian Islands were composed of houses atop a 

sand dune with the ocean in front and a marshy area behind (Keegan and Carlson, 2008). 

These marshy areas are significant to this research because these small bodies of water 

are ideal microenvironments for Anopheles mosquitoes to complete their lifecycle 

(Barros & Honório, 2015). Additionally, Rivera-Collazo (2015) has found evidence in 

anthrosols that point to forest clearing in the Caribbean islands by indigenous populations 

as early as 3000 BC in Puerto Rico. Forest clearing today has been shown to directly 

correlate with an increase in the malaria vector Anopheles spp.; thus a high risk of 

malaria incidence has been associated with forest fringe environments where 

anthropogenic landscape alterations have occurred (Barros & Honório, 2015). In the 

Archaic period in the Caribbean, and following multiple waves of migrations to the 

islands throughout the Ceramic period, a change in indigenous settlement patterns that 

included forest clearing would have increased the mosquito population at a local level.  

Pesky ‘Jejen’ and ‘Malaria Bark’: Regional Evidence for Mosquito-borne 
Diseases.  
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There is evidence for mosquitoes as a known pest throughout northern South 

America, especially along waterways such as the Orinoco River. The Orinoco River was 

well known by European and Spanish explorers in the 16th century for 

its giant mosquitoes, Anopheles darlingi, which came off the river in the evenings “in 

swarms so thick it was difficult not to inhale them” (Honigsbaum, 2002). The fast-

flowing river, full of silt, provided the perfect breeding grounds for mosquito larvae 

of Anopheles mosquitoes, an effective malaria vector (Honigsbaum, 2002).  ‘Jejen’, a 

Taino term for mosquitoes, occurs frequently in ethnographic narrative. These records, as 

collected and reported by Keegan and Carlson (2008), include Taino descriptions of 

mosquitoes as pests and cultural adaptations to deter mosquitoes. Notably, adaptations to 

an infectious environment are suggested in the use of a mosquito repellant which the 

Taino called ‘bija,’ The repellent includes a paste made of the ground seeds of achiote, 

fruit-bearing trees native to lowland South America that were brought to the Bahama 

archipelago thousands of years ago (Keegan and Carlson, 2008). Clearly, mosquitoes 

were a known pest throughout the Circum-Caribbean.  

It is possible, as suggested by indigenous methods for treating fevers, that 

Saladoid and Taino populations associated increased intermittent fevers with mosquito-

ridden environments. Some medical historians argue that Andean healers used the bark of 

the cinchona tree to treat ‘fevers’ for some unknown length of time before the Jesuits 

took it back to Europe in the mid-17th century (McNeill, 2010). Other historians argue 

indigenous peoples didn’t know of the uses of cinchona bark (Honigsbaum, 2002). 

However, ethnohistorical documents provide insight into the ways indigenous South 

American populations were treating fevers. For example, the journal records of a French 
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botanist Joseph de Jussieu, who was traveling in the Americas looking for cinchonas in 

the mid-1700’s, describe how he fell seriously ill with fever while passing through a 

malarious region in Ecuador (Honigsbaum, 2002). While there, he encountered the 

‘Malacatos Indians,’ who inhabited the region, and a local cacique offered to cure de 

Jussieu. The cacique went to the nearby mountains to fetch the fever bark which 

‘miraculously cured’ the explorer (Honigsbaum, 2002).  

The name ‘fever bark’ or ‘malaria bark’ as it referred to in other ethnohistorical 

records (McNeill, 2010), indexes the medicinal properties of the bark of the cinchona tree 

to treat malarial fevers. This tree grows naturally in Ecuador, Columbia, and Peru, often 

in remote parts of the eastern and northern Andes above 1,500 meters, but has also been 

discovered in Merida, an Andean town in northern Venezuela that is close to the coast 

(Honigsbaum, 2002). In the 17th century, the only place in the world in which this 

antimalarial plant was found growing was in these at high-elevation Andean 

environments. These zones extend into Northwestern Venezuela from which multiple 

indigenous migrations into the Greater Antilles are thought to have originated (Keegan 

and Carlson, 2017). The Puerto Rican Saladoid and Taino peoples were likely in contact 

with coastal populations in northern South America.  Hence, it is likely that indigenous 

knowledge of the medicinal properties of cinchona tree bark for the treatment of malarial 

fevers was shared.  

Detecting Malaria in Antiquity in the Caribbean: The Promise of Hemozoin.   

The epidemiological landscape has been recreated using research conducted in 

archaeology, paleopathology, ethnohistory and ethnography. An epidemiological 

explanation for anemia-related skeletal markers, such as living in a malarious 
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environment, is preferred to a nutritional explanation. Ethnohistorical and 

paleopathological evidence indicate indigenous people did not suffer from inadequate 

iron sources in their diet. Therefore, it is unlikely that the anemia-related skeletal markers 

present in many Caribbean skeletal remains were the result of iron-deficiency anemia, 

especially in the absence of other skeletal markers indicative of inadequate nutrition. 

Given that an antiquity of Plasmodium vivax in the Americas is suggested by genomic 

data (Carter, 2003), and that the paleo-epidemiological landscape strongly supports the 

maintenance and transmission of malaria in the Circum-Caribbean region before the 

arrival of Europeans, an epidemiological explanation for these markers is proposed 

instead. 

Recent investigations have demonstrated hemozoin can be preserved in skeletal 

remains for thousands of years (Inwood, 2017). If malaria was present in the Circum-

Caribbean, the preserved skeletonized Saladoid and Taino populations would present 

evidence of hemozoin left in residual amounts in long bones. 
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CHAPTER 4: MATERIALS AND METHODS 
Materials 

The Yale Peabody Museum of Natural History’s (YPMNH) Caribbean Collections 

are the product of excavations conducted in the 1930s and 1940s by Froelich Rainey and 

Irving Rouse (Drew, 2009). The Caribbean Collections include human remains 

representing 72 individuals with degrees of preservation ranging from excellent to poor 

(Drew, 2009).  In addition to the human remains, this collection includes ceramics, 

worked bone, perforated shells and marine and terrestrial faunal remains (Drew, 2009). I 

chose to sample individuals from only the island of Puerto Rico because these remains 

are the most complete. Furthermore, the Puerto Rican subset represents eight sites 

including coastal and inland locations and includes occupations from both the Saladoid 

(300 BC-AD 600) and the Taino (AD 1200-contact) cultural traditions, according to 

ceramic associations reported by Rouse (1992), as cited in Drew (2009). These factors 

allows for the possibility of comparative analyses across multiple spatio-temporal 

contexts (Fig. 4.1). The remainder of the Caribbean Collection consists of individuals 

from the Bahamas, Cuba, Haiti, and Venezuela (Drew, 2009), but was not observed for 

this research. Individuals from the Puerto Rico subset were recorded as associated with 

the Saladoid cultural tradition if they were recovered interred with Saladoid style 

ceramics. Individuals were associated with the Taino if cranial modifications were 

observed, if the burial was from within a shell midden, or if interred with Boca Chica or 

Santa Elena ceramics (Drew, 2009). I examined the Puerto Rican subset of skeletons,
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including 27 individuals (catalog numbers PA151-PA173), and recovered 32 samples 

from 20 individuals that presented appropriate bones (see Table 4.1). 

 

Figure 4.1 Site Locations for Skeletal Remains Sampled from Puerto Rico 

Map source: Author (2018); Cite locations as reported in Drew (2009) 
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Table 4.1 Summary of Analyses Conducted 

# YPM Catalog 
ID  

Site Sex Age Element Crania  PH   CO SEM FTIR MALDI 

1 PA152 B2,I2 Toa Baja 2 M Adult Femur - NA NA  X* - - 

2 PA152 B3,I4 Toa Baja 2 M Adult Femur - NA NA - - - 

3 *PA163 
B2,IB 

Monserrate M 12-14 Humerus + + NA  X* - X 

4 PA163 B2,IB Monserrate M 12-14 Femur + + NA - X - 

5 *PA161B1,IA Collores 2 F >25 Femur + + +  X* X - 

6 PA161B1,IA Collores 2 F >25 Femur + + + - - X 

7 PA161 B1,IA Collores 2 F >25 Tibia + + + - X - 

8 *PA164 B1 Canas 2  F >45 Femur - NA NA - - X 

9 PA164 B1 Canas 2 F >45 Humerus - NA NA - X - 

10 PA152 B3,I1 Toa Baja 2 M >35 Humerus - NA NA - X - 

11 *PA150 
B1,I1 

Cabo 
Rojo 11 

M Adult Humerus + + NA - X X 

12 *PA151 
B1,I1 

   Toa Baja 2 F >35 Femur - NA NA X X  X* 

13 PA151 B1,I1 Toa Baja 2 F >35 Tibia - NA NA   X* X - 

14 *PA173 B1 Yauco 1 M Adult Tibia +  +     + -  X* - 

15 PA173 B1 Yauco 1 M Adult Femur +  + + -  X* - 

16 PA173 B1 Yauco 1 M Adult Humerus +  + +  X* X X 

16.5 PA173 B1 Yauco 1 M Adult Tibia      +     + + - X - 

17 PA170 Santa Isabel M Adult Femur - NA NA - X X 

18 PA165 B1,I1 Unknown NA Adult Humerus - NA NA - X - 

19 *PA162 B2 Collores 2 NA 2.5 
y.o. 

Femur - NA NA X - - 

20 PA162 B2 Collores 2 NA 2.5 
y.o. 

Femur - NA NA - X - 

21 PA150 B1,I1 Cabo Rojo 
11 

M Adult Humerus - NA NA - - X 
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22 PA153 B2,I4 Toa Baja 2 NA 5 y.o. Humerus - NA NA - X - 

23 PA153 B2,I2 Toa Baja 2 M Adult Ulna - NA NA - - X 

24 PA153 B2,I3 Toa Baja 2 NA 1 y.o. Radius - NA NA - - X 

25 PA163 B2,IA Monserrate NA Adult Ulna - NA NA - - - 

26 PA163 B2,IB Monserrate M 12-14 Ulna - NA NA - - - 

27 PA165 Unknown NA Child Radius - NA NA - - - 

28 PA165 Unknown NA 6 y.o. Ulna - NA NA - X - 

29 PA166 Unknown NA Child Radius + + NA X - - 

30 PA166 Unknown M >50 Femur - NA NA - - X 

31 PA167 Salinas 1  M Adult Ulna - NA NA - - - 

32 PA161 B1,IA Collores 2  F >25 Femur + + + - - - 

   KEY: 
      M-Male             
      F-Female     
      Ind-Indeterminate                  
      Element- Bone sampled                  
      SEM- Scanning Electron 
Microscope    
      FTIR- Fourier Transform Infrared 
Spectroscopy      
      MALDI- Matrix Assisted Laser 
Desorption/Ionization time-of-flight 
Mass    Spectrometry 

      PO-Porotic hyperostosis 
      CO-Cribra Orbitalia  
      (+)- Presence of lesion 
      *next to YPM Catalog ID indicates 
more than one sample taken for the 
individual 
       (-) - Absence of lesion 
      X*- Results identifying hemozoin  
      X- Analysis conducted   
      NA-not available  
      y.o. - years old 
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Table 4.2 FTIR Infrared Wavelengths for Hemozoin (Reference) 

1206 1207 1208 1210  

1661 1662 1663 1664 1712 
        Source: Tempera et al. (2015), Lvova et al (2016)(Oliveira et al. (2007), Samson et 
al. (2012) Egan et al. (2001), Webster et al. (2009) 

 

 

Table 4.3 Parameters* for the Identification of Plasmodium spp. and Schistosoma spp. 
Hemozoin Crystals using SEM 

Plasmodium 
Species 

Size of Hz Crystals Description of crystal 

P. Malariae 200nm(wide)x 200nm(cross-section) 
x 600nm(length) and 100nm x 
100nm x300nm  

Smooth flat-faces 

P.Brasilianum 75nm × 75nm × 400 nm Very similar to malariae 
P. Ovale 75 nm× 75nm×300–400nm  Squarish cross- sections 
P. Vivax 50-100nm x 100-150nm x 300-

500nm  
Some crystals are very thin 
and wide creating rectangular 
cross-section 

Plasmodium 
spp. 

100nm x 100nm x 300-500nm (Hz 
crystal average) 

 

Schistosoma 
spp.  

200 nm long bricks  Assembled into multi-
crystalline spherical structures 

 

*Source: Noland et al. 2003 (Plasmodium spp.); Oliveira et al. 2005 (Schistosoma 
mansoni) 
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Figure 4.2 SEM Hemozoin Crystals from Schistosoma spp. and Trypanosoma spp. 
(Reference) 

 

Field emission scanning electron microscopy of Hz crystals isolated from Schistosoma 
mansoni  

Source: Oliveira et al. 2005 

 

Figure 4.3 SEM Hemozoin Crystals from Plasmodium falciparum (Reference) 

 

Scanning electron microscopy image of hemozoin purified from P. falciparum culture  

(20,000x magnification) 

Source: Tempera et al. 2015 
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Figure 4.4 – ATR-FTIR Wavelengths Identifying Red Blood Cells (Reference) 

 

Source:  Webster et al. 2009 

Mass spectra identifying wavelengths for red blood cells using ATR-FTIR  

 

Figure 4.2 ATR-FTIR- Wavelengths Identifying Bone Marrow (Reference) 

 

Source:  Aksoy et al. 2014  
Mass spectrum identifying wavelengths for bone marrow using ATR-FTIR 
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Figure 4.3 FTIR-ATR Wavelengths for Bone (Reference) 

   

Source: Hollund et al. 2013  

Mass spectrum identifying wavelengths for bone using ATR-FTIR  

 

Figure 4.4 MALDI tof MS Results for Synthetic Hemozoin (Reference) 

 

Source: Laposki (2017) 

Mass spectrum of synthetic hemozoin demonstrating the presence of molecular ion 616* 
and all fragmentary ions associated with hemozoin 
 

  



 
 

34 
 

 

Methods  

Protocol for selecting individuals for sampling. 

Guidelines for selecting individuals for sampling included the presence of two 

long bones per individual skeleton, ideally femora or humeri, and some portion of the 

cranium, with preference given to adults. Cranial fragments allow for further analysis of 

correlations between anemia-related skeletal markers, (i.e. cribra orbitalia and porotic 

hyperostosis), and those individuals in which hemozoin is identified. I planned to select 

adults preferentially based upon the premise that a longer life corresponds to more 

opportunities for infection, thereby increasing the chances for hemozoin production and 

sequestration. This would increase the likelihood of detection. Cranial fragments were 

present for 6 individuals (see Table 4.1) and each demonstrated evidence of porotic 

hyperostosis while 2/2 orbits demonstrated cribra orbitalia (see Figure 4.8.1 (A)). 

In adults where the long bones present were hollow and the cancellous tissue was 

entirely absent from the medullary cavity, the likelihood of hemozoin preservation was 

highly diminished, hence long bones in this state of preservation were given a lower 

sampling priority. Similarly, some long bones were ‘fragmented’ but mostly complete, 

thus, it was impossible to access the medullary cavities with the sampling instruments 

utilized in this research.  

Hemozoin-like Material. 

For the purposes of this research I will use the terms ‘hemozoin-like material’ in 

reference to black pigmented granules with a crystalline surface macroscopically 

observable in sampled long bones (See Figure 4.8.2 (A,B). I observed optimal 
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preservation of this hemozoin-like material in long bones in which the proximal ends 

were complete and the distal end was fragmented. The fragmented end provided access to 

the medullary cavity for sampling instruments, and the complete proximal end protected 

the cancellous bone from taphonomic processes. Thus, femora and humeri with the distal 

end fragmented and the proximal end complete were prioritized over other long bones.  

Sampling Protocol (Step-by-Step).  

I sterilized all surfaces, sampling instruments, and tools with 91% isopropyl 

alcohol between samples. For each sample, I wore new gloves and used fresh pieces of 

aluminum foil, one large 2’x 2’ piece to line the workspace on which the bone lay, and 

another 4”x 4” piece for sample collection. I extracted samples of cancellous bone just 

below the head and neck of humeri and femora by scraping the most proximal section of 

the medullary cavity using a metal spatula and pick. In some long bones the medullary 

cavity was accessible through fragmented sections of proximal cortical bone. Other bones 

that were complete on the proximal end but fragmented on the distal end required long 

metal picks which were used to scrape deep in the cavity to collect bone samples. I 

recovered 0.25-0.5g of bone per element sampled. I sealed samples tightly in 

small foil packets and placed them in appropriately labeled sealed plastic containers.  

Photography.  

I photographed each bone prior to sampling. Where cranial fragments were 

present for the individuals selected for sampling, I photographed the cranial 

fragments to look for the presence of cribra orbitalia (CO) and porotic hyperostosis (PH) 

(See Figure 4.8.1 A, B). I noted the presence and state of these lesions where available 

(see Table 4.1). Where I observed hemozoin-like material during the sampling process, I 

placed the material on a filter paper and examined it under the microscope. I 
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photographed the sample in high magnification (50X -500X) to further document the 

nature of the hemozoin-like material (See Figure 4.8.2 A.B). 

 

Figure 4.8.1 (A,B) Cribra Orbitalia and Porotic Hyperostosis in YPM PA 173 Burial 1 

 

(A-above) Active Cribra Orbitalia  

(B-below) Porotic Hyperostosis in YPM PA173 B1 
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(A-above) Taken by author at 500x magnification (UofL Archaeology   
        Laboratory) 

 (B-below) Taken by author at 400x magnification 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.2 (A,B) Hemozoin-like Material and Trabecular Bone YPM PA151 B1, 
I1 
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Figure 4.8.3 YPM PA152 B2, I2  Figure 4.8.4 (A) YPM PA151 B1, I1  

 

Trabecular bone (brown) and Hz (black) Trabecular bone (brown) and Hz (black) 
(350x magnification)      (400x magnification)  

Photo taken by Author                                    Photo taken by Author  

 

 

 

Figure 4.8.4 (B) YPM PA151 B1, I1  Figure 4.8.5 YPM PA173 B1

Trabecular bone (brown) and Hz (black)   Trabecular bone (brown) and Hz (black)   
 (300x magnification)     (500x magnification)  

Photo taken by Author                                    Photo taken by Author  
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Figure 4.8.6 YPM PA166 

 

Trabecular bone with Hz (black granules uniformly distributed on the surface of the 
bone) (400x magnification) 

Photo taken by Author  

 

Methods of Identification. 

To look for molecular evidence of hemozoin, I first utilized mass spectrometry. 

This technique was employed specifically because it has been successful in identifying 

hemozoin in ancient skeletal remains (Inwood, 2017). However, a potential 

contamination issue arose using the mass spectrometer, therefore I selected infrared 

spectroscopy as an additional method of analysis. This technique is used in biomedical 

contexts for identifying hemozoin and was adopted for the purposes of this research. The 

final analysis performed was scanning electron microscopy to magnify the sample in 

order to characterize and measure individual hemozoin crystals. Unique challenges were 

presented with each analysis. The steps involved in each analysis, as well as the caveats 

and results are presented in the remaining chapters of this thesis.   
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MALDI tof MS.  

Inwood (2017) determined Matrix-Assisted Laser Desorption/Ionization time-of-

flight Mass Spectrometry (MALDI tof MS) to be the most effective instrument when 

detecting Plasmodium-produced hemozoin crystals in skeletal remains. The MALDI tof 

MS operates by firing a 337nm nitrogen laser at the sample to charge the particles (i.e. 

ionization) and a detector measures the components to generate a mass spectrum. These 

‘spectra’ are used like fingerprints in identification. The data appear as peaks on an X-Y 

plane, referred to as a mass spectrum, and units of measurements are (m/z), read as 

‘mass-to-charge ratios’ (Wilkins and Lay 2005).  A complete identification profile is 

present for a molecule when the ‘molecular ion’ is identified in the spectra. A partial 

identification profile is present when the ‘fragmentary ions’ are identified. The molecular 

ion for hemozoin is 615/616 (m/z), and associated fragmentary ions for hemozoin include  

498, 512, 526, 556, 571(m/z)  (Demirev, 2002). The intensity of the peaks should be over 

30% to say with certainty the hemozoin is parasite produced and blood-born, rather than 

preserved heme (Laposki, 2017). 

Sample Preparation for MALDI tof MS. 

Samples were prepared in the basement of 51 Hillhouse in the Yale University 

Archaeology Laboratory (YUAL) according to the protocol used by Inwood (2017). An 

additional step was added to the protocol utilized by Inwood (2017) prior to grinding 

down the sample in a mortar and pestle. This step included placing the sample on a filter 

paper, into a petri dish, and under (300-450x) magnification using a digital microscope 

(Colemeter AE 7900). I used a pair of tweezers and a scalpel to remove any visible bone 

from pigmented material, to increase the yield and improve the results. This step is not 
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included in Inwood (2017) protocol, and is therefore an original method currently being 

refined in University of Louisville’s Archaeology Laboratory.   

I weighed 250mg of cancellous bone on sample paper and then ground it into a 

fine powder using a mortar and pestle. First, 5mg of ground bone powder was measured 

in an Eppendorf tube, and I used a pipette to add 5mL of hydrochloric acid (HCL) to 

the tube. Then, the Eppendorf tube was vortexed until the bone appeared suspended in the 

HCL, which took about three minutes on average. The resulting solution was dropped 

onto the plate and run on the MALDI. This preparation protocol did not yield clear 

spectra, thus an amended protocol was used. In the 2nd protocol, I substituted the 

hydrochloric acid for 0.1% trifluoracetic acid (TFA). Also, the samples were prepared in 

the same ratio (1:1) but in smaller quantities. Specifically, I weighed 1 mg of ground 

bone powder in an Eppendorf tube and used a pipette to add 1mL of TFA to the tube. 

Then, the Eppendorf tube was vortexed until the bone appeared suspended in the HCL, 

which took about three minutes on average. I used a pipette to drop the resulting solution 

onto a 100-well MALDI plate, dropping 10 spots from each sample onto the plate, 

leaving one row of sample wells empty between samples from different individuals to 

prevent mixing and eliminate error. I allowed the sample-spotted plate to dry for 20 

minutes before loading it into the instrument. The latter protocol using TFA and smaller 

quantities of material proved optimal. This preparation protocol was employed thereafter. 

It was used to prepare sample 12, which presented spectra identifying the molecular ion 

for hemozoin.  
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MALDI tof MS Analysis.  

I analyzed 32 samples using the MALDI tof MS in Yale’s Chemical and 

Biophysical Instrumentation Center (CBIC). A Voyager DE Pro MALDI tof MS 

(Yale CBIC, New Haven, CT) was set to an intensity of 1,200 with a time delay of 100 ns 

to begin. The intensity of the laser was adjusted until the mass spectra appeared clean 

with low baselines and minimal background noise. The ideal intensity for all samples on 

this instrument was 1,467. The linear mode provided the clearest results and all plates 

were run in this mode. I set the instrument to fire 300 shots per run, and analyzed each 

spot on the plate three times. If I observed peaks for fragmentary ions, but not the 615-

616 m/z molecular ion, I ran the sample three additional times with different laser 

intensities. Increasing the laser intensity by 15% improved the results in some samples. 

Data were compiled and reviewed using software provided at Yale’s CBIC. 

FTIR Spectroscopy. 

Fourier Transform Infrared (FTIR) Spectroscopy, a type of non-destructive 

analysis that can be utilized to identify and quantify molecular compounds, was used to 

analyze prepared samples for wavelengths corresponding to hemozoin. FTIR 

Spectroscopy has been used in clinical and biomedical settings to identify hemozoin 

(Egan, Mavuso, & Ncokazi, 2001; Lvova et al., 2016; Oliveira et al., 2007; Samson et al., 

2012; Tempera et al., 2015; Webster et al., 2009). An FTIR spectrometer operates by 

shining multispectral beams of infrared light onto a sample and a receiver detects 

remnant wavelengths of light. The instrument can then infer the wavelengths of light 

absorbed by the sample. Analysis involves measuring the infrared wavelengths absorbed 

a sample, which are reported as peaks or bands on an X-Y spectrum plot (Figure 4.4). 

The amount of light absorbed by a sample at each wavelength is unique to its molecular 
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components, thus producing a ‘fingerprint’ spectrum that is used to identify individual 

components of a sample. Although an FTIR spectrometer allows for quantification of 

components that is beyond the scope of this research.  I selected a diamond Attenuated 

Total Reflectance (ATR) interface to use with the FTIR spectrometer because this 

method is ideal for the analysis of solids and the sample size required is minimal (20-25 

mg) (Wilkins and Lay 2005). 

Reference Spectra to Identify Hemozoin Using FTIR Analysis. 

Tempera et al. (2015) reported FTIR spectra for hemozoin with bands at 1664 and 

1209 cm.  Lvova et al. (2016) identified hemozoin with bands at 1660 and 1207 cm 

which identify   the carbon-oxygen bond of the carbonyl group by the ferric iron. The 

1660 and 1207cm bond is responsible for the structure of hemozoin at the molecular level 

(Oliveira et al., 2007). Samson et al. (2012) identified prominent bands for hemozoin at 

1661 and 1206 cm, while Egan et al. (2001) found bands at 1663 and 1210 cm for 

purified hemozoin. Webster et al. (2009) identified three bands assigned to hemozoin 

including 1664, 1209 and 1712 cm. These signature hemozoin bands were used as a 

reference to interpret the results of FTIR analyses of samples from indigenous Caribbean 

skeletal remains. 

Experiments in ATR-FTIR Sample Preparation Protocols.  

 I experimented with different protocols to prepare samples for ATR-FTIR 

analysis. Hollund et al. (2013) report that excessive grinding down of bone samples has 

negative effects on the spectra produced. I ground a sample of bone (0.1g) using a mortar 

and pestle with a minimal amount of force, and analyzed the sample. I repeated the 

process using the material from the same sample, but instead I used excessive amounts of 
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force to pulverize the bone sample. I observed no differences in the results for each 

sample, and neither spectra contained wavelengths indicative of hemozoin.  

Next, I used a metal scalpel and tweezers to section a piece of bone presenting 

pigmented granules on the surface. With those tools I modified the shape and size of the 

sample to fit the ATR-FTIR diamond aperture. I placed a thin slice of bone directly onto 

the aperture, applied the press, and ran the analysis.  The results indicated wavelengths 

for bone, but not for hemozoin.  I did not observe any improvements in the results 

acquired using either of the experimental protocols; therefore I used a standard procedure 

which involved grinding of bone samples in a mortar and pestle prior to placing them on 

the diamond interface of the ATR-FTIR.  

ATR-FTIR Analyses. 

I used an Agilent 4300 Handheld FTIR (UofL Archaeology Laboratory, 

Louisville, Kentucky) to analyze 17 samples representing 14 individuals to look for 

infrared wavelengths indicative of hemozoin (see Table 4.1). I ran all samples twice to 

corroborate results, with additional runs performed when contradictory or uncertain 

wavelengths were observed. I compiled the data using MicroLab software. 

Scanning Electron Microscopy.     

Scanning electron microscopy (SEM) is used to in a wide range of magnifications 

from 25x to over 1,000,000X to characterize a material and record features as small as 

1nm. SEM also has the ability to determine elemental composition of particles being 

examined as a result of the x-rays produced when the electron beam of the microscope 

strikes a target. If coupled with an x-ray analyzer the emitted x-rays are sorted by their 

energy or wavelength values, related to specific elements (Kobilinsky, 2012).  
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SEM analysis was conducted at the University of Connecticut’s ThermoFisher 

Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA), with the 

assistance of Dr. Roger Ristau, to analyze the size and morphology of the crystals in the 

samples which presented signatures for hemozoin using the MALDI tof MS. I selected 

samples in which the molecular ion was present in the mass spectra. A Teneo Low 

Vacuum SEM was utilized to analyze 8 samples representing 7 individuals from the 

Caribbean collection (Table 4.1). A guideline for differentiating between hemozoin 

crystals from each Plasmodium spp. as well as Schistosomiasis and Chagas, two 

additional parasites that produce hemozoin and inhabit the region under study, is 

provided by Oliveira et al.( 2009) and Noland et al. (2003) and used to interpret the 

results gathered using SEM to analyze Caribbean skeletal samples (see Table 4.3).
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CHAPTER 5: RESULTS AND DISCUSSION 
 

Table 5.1 Results for Analyses Conducted 

           FTIR FTIR FTIR FTIR FTIR 
# YPM Catalog 

ID  
Sex Age Element Crania  PH   CO SEM FTIR MALDI Hz 1206-

1210 
Hz 1660-

1664 
Hz  1713-

1716 
RBC   

2800-3000 
Hematin 

1625  
1 PA152 B2,I2 M Adult Femur - NA NA  X* - - NA NA NA NA NA 
2 PA152 B3,I4 M Adult Femur - NA NA - - - NA NA NA NA NA 
3 *PA163 B2,IB M 12-14 Humerus + + NA  X* - X NA NA NA NA NA 
4 PA163 B2,IB M 12-14 Femur + + NA - X - X* X* - - X* 
5 *PA161B1,IA F >25 Femur + + +  X* X - - - - - - 
6 PA161B1,IA F >25 Femur + + + - - X NA NA NA NA NA 
7 PA161 B1,IA F >25 Tibia + + + - X - X* X - - X* 
8 *PA164 B1 F >45 Femur - NA NA - - X NA NA NA NA NA 
9 PA164 B1 F >45 Humerus - NA NA - X - X* - - - - 
10 PA152 B3,I1 M >35 Humerus - NA NA - X - - X* - - X- 
11 *PA150 B1,I1 M Adult Humerus + + NA - X X - X* X- - X- 
12 *PA151 B1,I1 F >35 Femur - NA NA X X X* - X* X* - X- 
13 PA151 B1,I1 F >35 Tibia - NA NA   X* X - - - X- - - 
14 *PA173 B1 M Adult Tibia +  +     + -  X* - X* X* X* - X* 
15 PA173 B1 M Adult Femur +  + + -  X* - X* X* X* - X- 
16 PA173 B1 M Adult Humerus +  + +  X* X X - X- - - - 

16.5 PA173 B1 M Adult Tibia      +     + + - X - - X* - - - 
17 PA170 M Adult Femur - NA NA - X X X* X* X - X* 
18 PA165 B1,I1 NA Adult Humerus - NA NA - X - X* X* - X X* 
19 *PA162 B2 NA 2.5 y.o. Femur - NA NA X  - - NA NA NA NA NA 
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20 PA162 B2 NA 2.5 y.o. Femur - NA NA - X - X* - - - - 
21 PA150 B1,I1 M Adult Humerus - NA NA - - X NA NA NA NA NA 
22 PA153 B2,I4 NA 5 y.o. Humerus - NA NA - X - - X- - - - 
23 PA153 B2,I2 M Adult Ulna - NA NA - - X NA NA NA NA NA 
24 PA153 B2,I3 NA 1 y.o. Radius - NA NA - - X NA NA NA NA NA 
25 PA163 B2,IA NA Adult Ulna - NA NA - - - NA NA NA NA NA 
26 PA163 B2,IB M 12-14 Ulna - NA NA - - - NA NA NA NA NA 
27 PA165 NA Child Radius - NA NA - - - NA NA NA NA NA 
28 PA165 NA 6 y.o. Ulna - NA NA - X - X* - - - X* 
29 PA166 NA Child Radius + + NA X - - NA NA NA NA NA 
30 PA166 M >50 Femur - NA NA - - X NA NA NA NA NA 
31 PA167 M Adult Ulna - NA NA - - - NA NA NA NA NA 
32 PA161 B1,IA F >25 Femur + + + - - - NA NA NA NA NA 

Key: YPMNH –Yale Peabody Museum of Natural History 
PO-Porotic hyperostosis    
      CO-Cribra Orbitalia  
      (+)- Presence of lesion or element 
      (-)- Absence of lesion or element 
      (*YPM Catalog ID) -more than one sample taken from 

individual 
       RBC- Red blood cell                             
      (X-)- Peak present but slight 
      (X)-  Peak present and clear 
      (X*)- Peak present as a shoulder 
       y.o.- Years old   
      Hz- Hemozoin                                                        
      WL- Wavelength 

      B- Burial (A,B,1,2,.)     
      I-Individual     
      Ind-Indeterminate                     
      NA-Not available  
      SEM- Scanning Electron Microscope      
      FTIR- Fourier Transform Infrared Spectroscopy                
      MALDI- Matrix Assisted Laser Desorption/Ionization 

time-of-flight Mass Spectrometry 
      F-Female 
      (X)- Analysis conducted   
      (X*)- Results identifying hemozoin  
      M-Male  
      PO-Porotic hyperostosis   
      Element- Bone sampled   

Sources: Tempera et al. (2015), Lvova et al (2016),Oliveira et al. (2007), Samson et al. (2012) Egan et al. (2001), Webster et 
al. (2009)                                                                     
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Results 

MALDI tof MS Analyses.   

I analyzed 32 samples using a MALDI tof MS in Yale’s Chemical and 

Biophysical Instrumentation Center. Demirev (2002) established the identification 

criteria for hemozoin using a MALDI tof MS as the molecular ion (615 m/z) and 

fragmentary ions (484, 498,512, 526, 557, 571 m/z). Using these criteria, I was able to 

identify the molecular ion and all of the fragmentary ions for hemozoin in sample 12, a 

female adult (PA 151 Burial 1, Individual1) recovered at the site of Toa Baja below Santa 

Elena style ceramics, which were radiocarbon dated to AD 890-AD 1210 (Rouse and 

Allaire, 1978). Results from these analyses showed molecular ions and fragmentary ions 

for hemozoin in a majority of the samples analyzed; however, due to a possible 

contamination issue after analysis of the first sample, data for the remaining 31 are 

considered inconclusive. Adaptation of the sample preparation protocol for identification 

of hemozoin in samples of cancellous bone tissue with a MALDI tof MS should improve 

results in the future, but such refinements are beyond the scope of the current project. 

Currently, I am accepting the results from sample 12 because it was prepared and 

analyzed first.  Our current understanding is that this sample may have contaminated the 

remainder of the samples, which results have been discarded for this reason. To further 

investigate these results, additional testing of this set of samples was conducted with 

ATR-FTIR and SEM, which have also been shown to be effective in the detection of 

hemozoin (Egan et al. 2001, Lvova et al 2016, Noland et al. 2003, Oliveira et al. 2007, 

Oliveira et al. 2009, Tempera et al. 2015, Samson et al. 2012, Webster et al. 2009). 
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Figure 5.1 MALDI tof MS Results (Sample 12) YPM PA 151B1, I1 

 

Figure 5.1: Y axis= intensity, X axis= (m/z) mass-to-charge-ratios. The 616*peak 
indicates the presence of the molecular ion for hemozoin; 484,498,512,526,556, and 571 
are fragmentary ions associated with hemozoin. 
 

 

Results of ATR-FTIR Analyses. 

I analyzed 17 samples using ATR-FTIR in University of Louisville’s 

Archaeology Laboratory (see Table 4.1). The spectra acquired presented ‘shoulders’ (see 

Figure 5.2(A)) around the expected wavelengths for hemozoin. This is a known problem 

with FTIR when multiple components are present that produce overlapping wavelengths. 

This suggests that carbon and phosphate are masking potential hemozoin wavelengths. 

The dominant wavelengths for bone overlap with those of hemozoin, which makes sense 

in this research because these samples were extracted from archaeological bone.  

 In addition, I observed wavelengths indicative of bone marrow and red blood cell 

lipids. These results are interesting due to the pathophysiology of malaria in the human 

host. Hemozoin is formed within the red blood cells; hence, finding these remnants of red 
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blood cells in association with pigmented granules in skeletal remains is in accordance 

with clinical knowledge of disease progression. Although these components are involved 

in other disease processes, they are not in conflict with the processes involved in 

hemozoin production.  

Shoulders for hemozoin, rather than distinct peaks, are present in 8 of the samples 

analyzed using ATR-FTIR. Both the 1209 and 1660 cm-1 peaks should be present to 

identify hemozoin. For sample #7 (YPM-PA161 B1, IA), the 1660 cm-1 peak is present 

but not the 1209cm-1. These results are not conclusive for hemozoin without both peaks 

for the iron carboxylate bond (1209 cm-1 and 1660 cm-1). However, they do suggest a 

need to continue the investigation of this collection for evidence of hemozoin with 

additional methods of analysis. With respect to the suitability of ATR-FTIR to the goals 

of this project, the results indicate a need for refinement of sample preparation protocols 

to eliminate bone minerals and other biological residues prior to further attempts at 

hemozoin identification in ancient skeletal remains.

  



 
 

51 
 

Figure 5.2 (A) ATR-FTIR Results for YPM- PA170 (Sample 17) 

 

 

Figure 5.2(A): Mass spectrum demonstrating the presence of a ‘shoulder’ wavelength 
(black arrows)  for hemozin in YPM- PA170 (Sample 17).  
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Figure 5.2 (B) ATR-FTIR Results for YPM PA165 B1, I1 (Sample 18) 

 

 

Figure 5.2B: Mass spectrum demonstrating wavelengths for red blood cell lipids in YPM 
PA165 B1, I1 

As referenced in (Webster et al., 2009) 
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Results of Scanning Electron Microscopy Analyses. 

Eight samples were analyzed using SEM: seven were imaged using a Teneo Low 

Vacuum SEM, and one sample was analyzed and imaged using a FEI Helios 460 SEM. 

Hemozoin crystals were identified in samples 1,3,5,12,13, and 16. From amongst these, 

all but samples 3 and 5 presented rectilinear hemozoin crystals indicative of Plasmodium 

spp. malaria. Samples 3 and 5 demonstrate hemozoin crystals, but they are circular, thus 

the causative parasite was most likely Schistosoma spp. or Trypanosoma cruzi (Fig 5.6 

and 5.7 (B)). In addition to hemozoin crystals, SEM analyses revealed what might be 

parasite bodies for Schistosoma mansoni and Trypanosoma cruzi. Specifically, in sample 

5 there is an identifiable flagellum from Trypanosoma spp. (Figure 5.7 (A)) and in 

sample 19 I observed what might be the oral and ventral suckers for a Schistosoma 

mansoni parasite (Fig 5.9.2). Preliminary observations are detailed below. 
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Table 5.1 Results of Scanning Electron Microscopy 

Sample # Figure # Presence of 
Hemozoin 

Hemozoin Crystal 
Dimensions 

Causative Species of HZ 
Crystals 

1 4.8.3 

5.3  

5.4 

5.5 

X 

 

200nm, 500nm, 
400nm 

 

P. Malariae* 

Plasmodium spp. 

3 5.6 X 50-1000nm Schistosoma spp. 

5 5.7.1 

5.7.2 

X 
50-1500nm Schistosoma spp. Or 

Trypanosoma spp. 

12 4.8.4 

4.8.5 

5.7.2 

X 100nm P. vivax* 

13 5.8.2 X 400-500nm Plasmodium spp. 

16 4.8.6 

5.8.3 

X 

 

500nm 

 

 

Plasmodium spp. 

19 4.8.7 

5.8.4 

__ __ __ 

29 5.8.5 __ __ __ 

* indicates species estimation has been made based upon crystal dimensions (Noland et 
al. 2003; Oliveira et al. 2005). 
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Discussion 

Caveats of FTIR Analysis: the Bone and Zoin’ Problem. 

Previous and contemporary research to identify and characterize hemozoin using 

ATR-FTIR is conducted in clinical and biomedical settings wherein samples are isolated 

from blood, bone marrow, livers, the guts of mosquitoes, and other contexts. This is not 

the case for archaeological bone. One complication of using FTIR- ATR to identify 

hemozoin in archaeological bone samples is that bone generates wavelengths in the 

infrared spectrum that overlap with those wavelengths identifying hemozoin including 

the amide at 1640, carbon at 1415 and phosphate at 1215(Hollund, Ariese, Fernandes, 

Jans, & Kars, 2013). The two different set of wavelengths are so close on the spectra that 

one ‘wave’ may be hidden behind another (see Figure 4.6 for wavelengths associated 

with bone). My samples are archaeological and have been extracted from the medullary 

cavities of bones thousands of years old. Many of the samples were recovered from 

exposed cavities and contain additional sediments, and therefore require additional 

processing to separate potential hemozoin from tissue, sediments, and other residues.  

Observations Associated with MALDI tof MS and Hemozoin. 

In accordance with the results of recent work by Inwood (2017), the results of this 

project suggest mass spectrometry as an effective way to identify hemozoin in 

archaeological bone samples. However, issues of contamination may arise, the etiology 

of which has yet to be identified. The only difference in my altered sample preparation 

protocol is the absence of a matrix, prior to dropping the samples on the plate. This may 

or may not be related to the issues of contamination, but like other caveats that have 

surfaced throughout this project, will be explored further in the future research. 
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Caveats of MALDI tof MS Analysis of Archaeological Samples. 

In accordance with the results of recent work by Inwood (2017), the results of this 

project suggest mass spectrometry as an effective way to identify hemozoin in 

archaeological bone samples. However, issues of contamination may arise, the etiology 

of which has yet to be identified. The only difference in my altered sample preparation 

protocol is the absence of a matrix, prior to dropping the samples on the plate. This may 

or may not be related to the issues of contamination, but like other caveats that have 

surfaced throughout this project, will be explored in future research. 
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Figure 5.3 YPM PA152 B2, I2 (Sample 1) 

 

Scanning electron microscope image of sample from YPM PA152 B2, I2  

Plasmodium spp. Hz crystals (20,000x magnification) 

Figure 5.4 SEM YPM- PA152 B2, I2 (Sample 1) 

  

Scanning electron microscope image of sample from YPM PA152 B2, I2 

 Plasmodium spp. Hz crystals 200nm (50,000x magnification) 
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Figure 5.5 SEM YPM PA152 B2, I2 (Sample 1) 

 

Scanning electron microscope image of sample from YPM PA152 B2, I2 

Plasmodium spp. Hz crystals 500nm (60,000x magnification) 

 

Figure 5.6 SEM YPM PA163 B2, IB (Sample 3) 

 

Scanning electron microscope image of sample from YPM PA163 B2, IB 

Schistosoma mansoni or Trypanosoma cruzi Hz crystals; crystals range from 50-1,000nm 
in diameter (100,000x magnification) 
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Figure 5.7 (A) SEM YPM PA161 B1, IA (Sample 5)  

 

Scanning electron microscope image of sample from YPM PA161 B1, IA 

(20,000x magnification) 

Possible flagellum from a Trypanosoma cruzi parasite body (see below) 

 

Trypanosoma cruzi, (the causative agent of Chagas disease) (Reference) 

 

Source: Teixeira, Benchimol, Crepaldi, & de Souza, 2012 
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Figure 5.7 (B) SEM YPM PA161 B1, I1 (Sample 5) 

 

Scanning electron microscope image of sample from YPM PA161 B1, I1 

Schistosoma spp. or Trypanosoma spp. Hz crystals; crystals range from 50-1,500nm in 
diameter 

Figure 5.8 SEM YPM PA151 B1, I1 (Sample 12) 

 

Scanning electron microscope image of sample from YPM PA151 B1, I1 

 Plasmodium spp. Hz crystals (20,000 x magnification) 
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Figure 5.9 SEM YPM PA151 B1, I1 (Sample 13) 

 

Scanning electron microscope image of sample from YPM PA151 B1, I1 

 Plasmodium spp. Hz crystal 400-500nm - (20,000x magnification) 

Figure 5.9.1 SEM YPM PA173 B1 (Sample 16) 

 

Scanning electron microscope image of sample from YPM PA173 B1 

 Plasmodium spp. Hz crystal 500nm - (20,000x magnification) 
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Figure 5.9.2 SEM YPM PA162 B2 (Sample 19) 

 

Scanning electron microscope image of sample from YPM PA162 B2 

Possible oral and ventral suckers of Schistosoma mansoni parasite 1000nm (wide) 

(20,000x magnification) 

 

 

Figure 5.9.3 SEM YPM PA1 (Sample 29) 

 

Scanning electron microscope image of sample from YPM PA166 

No observable Hz crystals- (20,000x magnification)
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CHAPTER 6: CONCLUSION 
 

The Caribbean collection of skeletal remains at Yale’s Peabody Museum of 

Natural History provides a rich opportunity to contribute bioarchaeological and 

paleoepidemiological data towards the broader understanding of the lifeways and health 

of indigenous Caribbean populations. The results of this investigation suggest that 

Plasmodium spp. were present in the Americas and infecting Caribbean populations as 

early as AD 1000. However, the initial introduction of malaria to the Americas is likely 

to have been much earlier, as suggested by the Plasmodium spp. antibodies isolated in 

South American mummies nearly 5000 years old (Gerszten et al., 2012). Based upon all 

available data, I postulate P. vivax and P. malariae, as well as Schistosoma mansoni and 

Trypanosoma cruzi to be the causative species for the hemozoin crystals observed in 

Yale’s Caribbean Collection. Furthermore, if contemporary epidemiological trends are 

indicative of trends occurring in the past, then it would not be surprising if P. simium or 

P. brasilianum hemozoin crystals are eventually identified in the samples from Puerto 

Rico. To my knowledge there are no current reference samples of non-human primate 

malaria species hemozoin crystals isolated from human hosts, but once available, these 

data will greatly improve the aspects of accurately identifying hemozoin at the species 

level using scanning electron microscopy.  

This research has shown that hemozoin detection is a promising method for the 

identification of malaria in other ancient populations where the disease is hypothesized 
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and aDNA is either inaccessible or poorly preserved. These results suggest a number of 

future directions for understanding the epidemiological curve of Plasmodium spp. in the 

Americas. A follow- up study with increased sample size and the geographical and 

temporal range represented would further substantiate these data. Ideally, skeletal 

remains that include cranial fragments recovered from multiple islands would be 

included. Isotopic analysis to discern possible dietary deficiencies would contribute 

toward an understanding of population health and skeletal manifestations thereof. 

Additionally, studies of samples of multiple sections of various bones would be worth 

exploring, given that our understanding of that pathophysiology of the disease suggests 

hemozoin could be deposited in any cavity with bone marrow. With larger sample sizes, 

mass spectrometry, a rapid method, would be used to identify samples presenting the 

molecular ion for hemozoin; these would then be analyzed using scanning electron 

microscopy coupled with aDNA to identify the parasite. The results would be then 

compared with the anemia-related skeletal lesions observed in the crania, thus 

contributing to the understanding of these lesions in ancient remains.  

This study detecting Plasmodium spp. hemozoin in Caribbean skeletal remains 

changes our understanding of the global spread of malaria. This research contributes 

towards the development of a more complete epidemiological curve for Plasmodium spp, 

which should include the Caribbean Islands before the arrival of Europeans. Combined 

with phylogenetic data and immunohistological evidence for Plasmodium antibodies, 

these results suggest the need to amend contemporary paradigms of the introduction of 

malaria to the Americas. In particular, if data emerges that supports the presence of 

malaria in the Andes and the Caribbean, 5000 and 1000 years ago respectively, other 
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routes of introduction should be considered including early waves of colonizers from the 

Eurasian landmass.
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