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ABSTRACT

A FRAMEWORK FOR CLUSTERING AND ADAPTIVE TOPIC TRACKING ON

EVOLVING TEXT AND SOCIAL MEDIA DATA STREAMS

Gopi Chand Nutakki

December 1, 2017

Recent advances and widespread usage of online web services and social media plat-

forms, coupled with ubiquitous low cost devices, mobile technologies, and increasing ca-

pacity of lower cost storage, has led to a proliferation of Big data, ranging from, news,

e-commerce clickstreams, and online business transactions to continuous event logs and

social media expressions. These large amounts of online data, often referred to as data

streams, because they get generated at extremely high throughputs or velocity, can make

conventional and classical data analytics methodologies obsolete. For these reasons, the is-

sues of management and analysis of data streams have been researched extensively in recent

years. The special case of social media Big Data brings additional challenges, particularly

because of the unstructured nature of the data, specifically free text. One classical approach

to mine text data has been Topic Modeling. Topic Models are statistical models that can

be used for discovering the abstract “topics” that may occur in a corpus of documents.

Topic models have emerged as a powerful technique in machine learning and data science,

providing a great balance between simplicity and complexity. They also provide sophisti-

cated insight without the need for real natural language understanding. However they have

been designed to cope not with the type of text data abundant on social media platforms,

but rather traditional medium size corpora consisting of longer documents, adhering to a
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specific language and typically spanning a stable set of topics. Unlike traditional document

corpora, social media messages tend to be very short, sparse, noisy, and do not adhere to a

standard vocabulary, linguistic patterns, or stable topic distributions. They are also gener-

ated at high velocity that impose high demands on topic modeling. Finally, their evolving

or dynamic nature makes any set of results from topic modeling quickly become stale in the

face of changes in the textual content and topics discussed within social media streams.

In this dissertation, we propose an integrated topic modeling framework built on

top of an existing stream-clustering framework called Stream-Dashboard, which can ex-

tract, isolate, and track topics over any given time period. The proposed approach to topic

modeling is different from a generic Topic Modeling approach because it works in a compart-

mentalized fashion, where the input document stream is split into distinct compartments,

and topic modeling is applied on each compartment separately. In this new framework,

Stream Dashboard first clusters the data stream points into homogeneous groups. Then

data from each group is ushered to a topic modeling algorithm which extracts finer topics

from the group. The proposed framework tracks the evolution of the clusters over time to

detect milestones corresponding to changes in topic evolution, and to trigger an adaptation

of the learned groups and topics at each milestone.

Furthermore, we propose extensions to existing topic modeling and stream cluster-

ing methods, including: an adaptive query reformulation approach to help focus or adapt

topic discovery with time and an adaptive stream clustering algorithm incorporating the

automated estimation of dynamic, cluster-specific temporal scales for adaptive forgetting

to help facilitate clustering in a fast evolving data stream.

Our experimental results show that the proposed adaptive forgetting clustering al-

gorithm can mine better quality clusters; that our proposed compartmentalized framework

is able to mine topics of better quality compared to competitive baselines; and that the pro-

posed framework can automatically adapt to focus on changing topics using the proposed

query reformulation strategy.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Recent advances and widespread usage of online services and social media platforms,

coupled with ubiquitous low cost devices, mobile technologies, and increasing capacity of

lower cost storage, has led to a proliferation of big data, ranging from e-commerce and

online business transactions to news and entertainment website dynamic content and click-

streams, continuous event logs, and social media expressions. This data can be a potent

source for mining knowledge about human activity online and how it relates to their social

environment. Applications of this knowledge discovery range from real-time disaster man-

agement to social sensing for monitoring news and opinions for diverse applications such as

humanitarian aid, marketing, and political campaign management. These large amounts of

online data, often referred to as data streams, because they get generated at extremely high

throughputs or velocity, can make conventional and classical data analytic methodologies

obsolete. For these reasons, the issues of management and analysis of data streams have

been researched extensively in recent years. A very important component in managing

massive amounts of information is the integration of tools which can process data rapidly

and efficiently. Processing large volumes of information has always been a challenging task

and in many instances, the processing must be done online and the results presented in

real-time [6–8]. For the online scenario, data arrive as streams which are fast, continuous,

mutable, ordered, and potentially unbounded [9].

The special case of social media Big Data brings additional challenges, particularly

because of the unstructured nature of the data, specifically free text. Natural language

text has a rich structure where individual words are composed of morphemes, words are

pieced together to reflect syntactic structure, and all pieces collaborate to express meaning

1



[10]. Inferring these three types of structure from text morphology, syntax, and semantics

has occupied much of computational linguistics and natural language processing research

through the years [11]. One classical approach to mine text data has been topic todeling

[3, 12]. Topic Models are statistical models that can be used for discovering the abstract

topics that may occur in a corpus of documents. Topic modeling is a form of machine

learning that is based on the assumption that a document is composed of multiple topics

and that a collection of documents represents a collection of topics [12]. A topic captures

the information of what the document is speaking about and influences many aspects of

the document, including word selection, sentence structure, and tone of writing etc [13].

Latent semantic indexing (LSI) is a classical technique to store and retrieve docu-

ments that addresses challenges caused by ambiguity in natural language. LSI has roots in a

probabilistic framework through the development of probabilistic latent semantic indexing

(pLSI) [11,14]. This formulation has led to several additional probabilistic topic models for

documents, most notably latent Dirichlet allocation (LDA) [3]. Since 2003, probabilistic

topic models have been applied to many applications in natural language processing and

machine learning, and several extensions have been proposed to the LDA model [15].

Topic models and related techniques such as LSI and pLSI have emerged as pow-

erful techniques in machine learning and data science, providing a great balance between

simplicity and complexity. They also provide sophisticated insight without the need for

real natural language understanding. However they have not been designed to cope with

the type of text data that is abundant on social media platforms, but rather for traditional

medium size corpora consisting of longer documents, adhering to a specific language and

typically spanning a stable set of topics. Unlike traditional document corpora, social media

messages tend to be very short, sparse, noisy, and do not adhere to a standard vocabulary,

linguistic patterns, or stable topic distributions. They are also generated at high velocity

that impose high demands on topic modeling; and their evolving or dynamic nature, makes

any set of results from topic modeling quickly become stale in the face of changes in the

textual content and topics discussed within social media streams.
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Another family of machine learning techniques that has been used for unsupervised

knowledge discovery in big data is clustering. Clustering is the process of grouping items

in such a way that there is high intra-cluster similarity and low inter-cluster similarity.

Organizing the data into clusters shows the internal structure of the data. Thus, Cluster-

ing is very useful to discover knowledge in the data [16, 17]. A data stream can roughly

be thought of as a transient, continuously increasing sequence of time-stamped data [18].

Stream clustering is a technique that performs cluster analysis of data streams that is able

to produce results in real time. The ability to process data in a single pass and summarize

it, while using limited memory, is crucial to stream clustering. Partitioning a data stream

into groups which are similar in a certain sense can help extract finer topics from each

group. In order to maintain an up-to-date topic structure, it is necessary to analyze the

incoming data in an online manner, tolerating not more than a constant time delay [19].

In this research, we explore and use online topic modeling techniques, coupled with

an online stream clustering framework to extract and track topics, discussed on an online

social media platform over a period of time.

1.1 Research Motivation and Challenges

Social media offers a platform to track and discover stories evolving over time all

over the world. Extracting topics/stories along with the trends of sentiments of these topics

provides a fast way to discover and follow new and interesting events. The extraction of new

filtering terms may provide more leads to focus the discovery of stories evolving in different

directions that the user may not be aware of, or are completely unknown to the user.

One application of our research is to use the ability to discover evolving clusters of

topics within a fast moving text data stream, in order to be able to support specific tasks in a

real life setting. For instance journalists and law enforcement professionals are faced with a

challenging task when trying to extract information about certain events. One application

of the proposed work is to develop an automated system to try to retrieve information

related to a certain topic or event from social media streams. Unlike traditional Information
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Retrieval, the problem is not limited to searching an existing index of documents against

an input query. The differences are as follows:

• The query itself is not easy to formulate, thus it will need to be gradually constructed

starting from an initially formulated query.

• There is no pre-indexed collection, rather a vast pool of social media data that has

been collected with new data being added continuously.

• The collected data has a temporal and in some cases, location characteristic, and may

need to be searched at different time instants and using a different location focus.

• The collected data is mainly generated by users on twitter. It reflects often sponta-

neous, uncensored Human conversations and free expression without editing or any

kind of expectations of properness of language. Twitter streams tend to be rich in

vernacular, and in many cases improper or offensive language, in addition to being

extremely short (less than 140 characters).

• The desired retrieval results, unlike traditional IR, should be in the form of an evolving

story. Story telling can be supported by an automated extraction of topics. Detecting

milestones of change can be used to segment a story into pieces. When needed, stories

can become complex searchable objects, and multiple stories can be combined into a

bigger story or chain of events and vice versa.

1.2 Overarching Goals

The overarching goal of this dissertation is to develop an integrated framework for

mining topics from massive text or social media data streams in real time. This goal requires

solving the following problems: (1) Learning evolving topics from social media data streams;

(2) Handling the diversity and open ended nature of discussion topics on social media data

streams; (3) Adapting topic mining to automatically focus on emerging topics of discussion.
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1.3 Outline of the Proposed Framework

We propose an integrated framework that is built based on the following components

that together, address the problems that were stated above: (1) Handling content hetero-

geneity using a stream clustering algorithm with adaptive forgetting / dynamic temporal

scales; (2) Topic Modeling for characterizing the discovered clusters in the case of text or

social media data streams; (3) Handling temporal heterogeneity using automated milestone

detection; (4) Adapting the initial text stream filtering strategy using query reformulation.

Below, we briefly review some background and challenges for the building blocks of these

components.

1.3.1 Topic Models

Topic models [3, 20] can discover the latent semantics embedded in documents, and

the semantic information can be much more useful to identify document groups than raw

term features. Generally, in document clustering approaches, documents are represented

with a bag-of-words (BOW) model [21] which is purely based on raw terms and is insufficient

to capture all semantics. Topic models are able to put words with similar semantics into

the same group called topic where synonymous words are treated as related. Under topic

models, a document corpus is projected into a topic space which reduces the noise that

can affect similarity measures and the topic structure of the corpus can be identified more

effectively.

1.3.2 Conquering Content Heterogeneity using Clustering

In a heterogeneous dynamic social media stream, documents usually belong to several

big groups. Each group can have its own set of finer topics. Let ζ = {C1,n, C2,n, C3,n, · · · , Ck<kmax,n}

be the set of clusters after n data points were encountered. Let Sn = {S1,n, S2,n, · · · , Sk<kmax,n}

be a set of data points that were assigned to the respective clusters. Clustering can help

identify the latent groups in a document collection and subsequently local topics specific to

each group can be extracted using topic modeling. These fine-grained topics can facilitate
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storytelling. Group-specific local topics can be used to summarize stories. Global topics

can be used to remove background words and describe the general contents of the whole

collection. When considering social media data like tweets, extracting topics from such an

unstructured, small length, continuous new vocabulary, is a very challenging problem.

Unfortunately, Topic modeling is an intensive and costly process, both in terms of

iterations and memory cost. When the data is a fast moving stream, topic modeling can find

it hard to cope, despite some work on online topic modeling and distributed topic modeling.

On the other hand, stream clustering methods, such as RINO-Streams (Robust clustering

of data streams using INcremental Optimization) [22] and the STREAM-DASHBOARD

[23] framework offer a fast alternative for online unsupervised learning from massive data

streams. Hence, the idea of coupling topic modeling with the scalable stream clustering of

RINO-Streams and the online cluster tracking, validation and evolution summarization of

STREAM-DASHBOARD, seems to be a promising direction to reach the overarching goal

of massive stream topic modeling and tracking. Stream clustering can provide a divide and

conquer strategy to accelerate and improve the convergence properties of topic modeling

even within the extremely challenging fast moving stream environment.

Document stream clustering and online topic modeling can mutually benefit each

other. Document clustering can be combined with topic models to extract local topics

specific to each cluster and global topics shared by all clusters. Thus, a unified framework

can provide a platform to extract local and global stories. The unified framework tightly

couples two components: the Stream-Dashboard framework [23] is used for discovering

latent clusters in document streams and a Topic Modeling component [4] is used for mining

finer topics specific to each cluster.

1.3.3 Conquering Temporal Heterogeneity

The quality of a learned topic model is sensitive to the choice of the window size, filter

words etc; of a data stream. Since Stream Dashboard [23] can detect milestones (changes in

topic trends) from the data streams automatically, it promises to be useful to divide the data

6



into homogeneous subsets that are later fed to the topic modeling component, which can in-

turn extract finer topics. Stream-Dashboard can detect several trending clusters as well as

their behavioral changes over time, including milestones which are time stamps of significant

change. Topic Modeling with Stream-Dashboard can therefore extract trending clusters that

are presented as a story in terms of a set of events, corresponding to cluster milestones.

Whenever Stream-Dashboard encounters a milestone, topic modeling is triggered to extract

topics from a particular cluster.

1.3.4 Query Reformulation

From these topics, seed words can be extracted to help guide topic modeling in the

upcoming time intervals. Seed words can be generated using Query Reformulation and then

used to filter the stream, thus providing more relevant and focused data to extract stories.

1.4 Research Contributions

Starting with an initial cross-section of a data stream, filtered using a small set

of keywords, the proposed framework consists of multiple stages to (1) cluster the stream

data, (2) extract the topics from each cluster, (3) extracts seed words from each cluster,

and furthermore (4) track the topic evolution over time, while performing all the mining

stages. The initial stage involves using the Stream-Dashboard framework which clusters

the data stream points (i.e. documents). Stream-Dashboard divides the data points into a

set of homogeneous clusters. This acts as a data stream filtering to help extract finer topics

from a similar set of documents. Stream-Dashboard also provides a mechanism to identify

temporal milestones which indicate a new trend of topics in the data stream.

In order to cope with the challenges inherent in clustering evolving data streams, we

propose a new stream clustering algorithm called AFTER-Streams (Adaptive

Forgetting T ime-Decay Evolving Robust Stream Clustering Algorithm), en-

dowed with adaptive forgetting/temporal decay to be able to cope with clusters

with different temporal dynamics (lifetimes or horizons) which in turn necessitate
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different forgetting rates. This adaptive forgetting via dynamic cluster-specific temporal

scales in turn allows us to discover better quality clusters. Our new clustering algorithm

is evaluated on a variety of data streams, including: synthetic data (to control for stream

properties), text documents from the TREC collections, social media posts, and network

intrusion event log data.

The second stage involves invoking the topic modeling (TM) component. When

Stream-Dashboard detects milestones, the topic modeling is performed on the clusters where

the milestone occurred. Stream-Dashboard dynamically creates, merges, dissolves the clus-

ters based on the detected milestones. The topic modeling component also performs similar

operations on the topic models, i.e. to extract topics from the documents of a given cluster,

to merge topic models from merged clusters, and to dissolve the topic models after their

clusters have decayed enough.

The combination of the proposed stream clustering with adaptive forgetting and

topic modeling within each cluster results in a new proposed compartmentalized ap-

proach that can mine topics from a diverse data stream by automatically par-

titioning the stream in both content and time. Content Partitioning partitions

the data into different content clusters by automatically estimating content boundaries

between the clusters based on text. In a similar fashion, the proposed Temporal Par-

titioning compartmentalizes the data in time by automatically estimating optimal time

boundaries of change within each cluster. Temporal Partitioning also includes an automated

adaptation to the temporal relevance horizon for each cluster and hence adapting to the

forgetting of the topic clusters as they become no longer the subject of discussions on the

social media stream. In order to automate the topic mining, we also present an approach

to optimize the choice of hyper-parameters used for topic modeling.

Finally, whenever a milestone is detected, several potential future seed

words are extracted from the discovered topics and are relayed back as a re-

formulated query to the initial data stream filters to help guide or focus the

future discovery toward emerging or more specific topics. Our compartmentalized
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topic mining with query reformulation is evaluated on several social media data streams

from Twitter.

To summarize our contributions, we list our main goals, proposed methods, and

evaluation plan, in Table 1.1. Our research questions, which guide the evaluation of our

proposed methods, can be stated as follows:

Research Question 1 (RQ1): Does the proposed clustering with adaptive forgetting/temporal

decay result in better quality clusters compared to baseline methods? This in turn can be

refined into the following specific research questions:

• RQ1.1: Which parameters of the data stream show a significant effect on AFTER-

Streams performance?

• RQ1.2: Which parameters of the AFTER-Streams algorithm show a significant effect

on its performance?

• RQ1.3: Does the AFTER-Streams algorithm perform better than the baseline algo-

rithms.

Research Question 2 (RQ2): Does the proposed compartmentalized topic mining ap-

proach result in better quality extracted topics compared to baseline methods? This in turn

can be refined into the following specific research questions:

• RQ2.1: Does auto-tuning the Online LDA hyperparameters have a significant effect

on the quality of the topics?

• RQ2.2: Does the Compartmentalized Framework perform better than the baseline

algorithm?

• RQ2.3: Does the Compartmentalized Framework with Query Reformulation perform

better than the baseline algorithm?

• RQ2.4: Does the Compartmentalized Framework with Query Reformulation produce

more diverse set of topics?
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TABLE 1.1

Summary of Research Contributions

Framework

Component

Goal Methodology Research

Questions

Validation

Metrics

Evaluation

Section

Clustering

evolving

data

streams

Adapt to

different

evolving

cluster data

arrival

speeds

Dynamic

Forgetting

(Chapter 3)

RQ1.1,

RQ1.2,

RQ1.3

Internal and

External

cluster

validation

metrics, e.g.

F1-Score,

DB-Index etc.

Sec 3.3

Topic

Mining in

evolving

data

streams

Obtain

pure topics

Compatme-

ntalized

Frame-

work (Sec

4.2)

RQ2.1,

RQ2.2

Perplexity and

Coherence
Sec 4.3

Reduce

vocabulary

size

Detect

milestones

Adapt

stream data

filters to

evolving

topics.

Query

Reformu-

lation

(Sec 4.2.7)

RQ2.3,

RQ2.4

New filter

terms and

unseen topics,

Topic

Agglomeration

(qualitative

evaluation).

Sec 4.3.8

Discover

new topics
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1.5 Organization of this Document

Chapter 2 presents the background and related work, mainly an overview of topic

modeling and data clustering techniques, in particular for data streams. Chapter 3 presents

our proposed extension to the RINO-Streams clustering algorithm, where an addition tem-

poral scale is used in addition to content based scales, thus increasing the cluster quality.

Chapter 4 presents our proposed Compartmentalized Online Topic Modeling Framework.

All the evaluation experiments for the proposed research are presented at the end of their

respective chapters. Finally, Chapter 5 concludes the dissertation.
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CHAPTER 2

RELATED WORK

In this chapter, we review clustering algorithms in Section 2.1. Then we review

similarity measures used in data clustering in Section 2.1.2. The Stream-Dashboard frame-

work is reviewed in Section 2.1.10, presenting the basic ideas of Stream-Dashboard and its

components, such as RINOStreams and TRACER. We then present an introduction to the

topic modeling techniques, PLSI, LDA, Online LDA etc, in Section 2.3. We then present

the concept of relevance feedback in Section 2.5 which lays the foundation for enriching

the proposed compartmentalized online topic modeling framework with automated query

reformulation.

2.1 Clustering Algorithms

The goal of data clustering is to discover the natural groupings of a set of patterns,

points, or objects [24]. An operational definition of clustering can be stated as: “Given

a representation of n objects, find K groups based on a measure of similarity such that

the similarities between objects in the same group are high while the similarities between

objects in different groups are low” [24]. An ideal cluster can be defined as a set of points

that is compact and isolated.

Clustering algorithms can be broadly divided into two groups: hierarchical and

partitional [25]. Hierarchical clustering algorithms recursively find nested clusters either

in agglomerative mode or in divisive (top-down) mode. Partitional clustering algorithms

find the clusters simultaneously as a partition of the data and do not impose a hierarchical

structure. The most well-known hierarchical algorithms are single-link and complete-link;

the most popular and the simplest partitional algorithm is K-means [26]. The goal of
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K-means is to minimize the sum of squared errors over all K clusters.

J(C) =
K∑
k=1

∑
xi∈ck

‖xi − µk‖2 (2.1)

The K-means algorithm depends on three user-specified settings: number of clusters

K, cluster initialization, and distance metric. The most critical choice is K. While no

perfect mathematical criterion exists, a number of heuristics are available for choosing K.

The basic K-means algorithm has been extended in many different ways [24]. Some of these

extensions deal with additional heuristics involving the minimum cluster size and merging

and splitting clusters. In K-means, each data point is assigned to a single cluster. Fuzzy

C-means [27] is an extension of K-means where each data point can be a member of multiple

clusters with a membership value. Data reduction by replacing group examples with their

centroids before clustering them was used to speed up K-means and fuzzy C-means. Bisect-

ing K-means [17] recursively partitions the data into two clusters at each step. X-means [28]

automatically finds K by optimizing a criterion such as Akaike Information Criterion (AIC)

or Bayesian Information Criterion (BIC). These extensions introduce some additional algo-

rithmic parameters that must be specified by the user. The Stream-Dashboard framework

is discussed in Section 2.1.10. Later sections will also discuss various clustering algorithms,

limitations of clustering, Relevance Feedback, and Topic Modeling with Sentiment Analysis.

2.1.1 Expectation-Maximization (EM)

Algorithm 2.1 Expectation Maximization Algorithm.

1. Select an initial set of model parameters (Θ)

2. Expectation Step: Find the probability that each data point belongs to each dis-
tribution

3. Maximization Step: Use the probabilities found in the E step to find new estimate
of the model parameters (Θ) that maximize the likelihood (2.3)

4. Repeat steps 2 and 3 until the parameters’ change is below a specified threshold value

The Expectation-Maximization algorithm (EM) [29], models the dataset as a mixture
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of data points generated by K distributions with known form, such as Gaussian. EM tries to

determine the model parameters, θj , using posterior probabilities to maximize the likelihood

of the data under these estimated model parameters. If the jth distribution has parameters

θj , then prob(xi|θj) is the probability of the ith data point coming from the jth distribution.

Each distribution has a weight wj which reflects the probability of being chosen to generate

a data point, and the weights for all distributions sum to 1. If Θ is the set of all parameters,

then the probability of the ith object is given by:

prob(xi|Θ) =

K∑
j=1

wj prob(xi|θj) (2.2)

If the objects are assumed to be identically generated, then the probability of the

dataset X (or the likelihood function) is the product of the probabilities of each data point:

prob(X|Θ) =
N∏
i=1

K∑
j=1

wj prob(xi|θj) (2.3)

where N is the number of data points. EM is listed in Algorithm 2.1. The EM

algorithm provides a more general representation of data using mixture models.

2.1.2 Similarity Measures for Clustering Text Data

Web stream content is typically represented as a vector consisting of the suitably

normalized frequency counts of words or terms. Each document contains only a small

percentage of all the words that are ever used on the web. Document clustering is high

dimensional, characterized by a highly sparse word-document matrix with positive ordinal

attribute values and a significant amount of outliers. When documents are represented by

a bag of words, the resulting document-word matrix typically represents data in over a

thousand dimensions. Methods like spherical K-means algorithm for document clustering,

graph based clustering approaches etc. attempt to avoid the pitfalls of dimensionality by

transforming the problem formulation and uses a variety of similarity measures [30].

The Minkowski distance [31] is given as Lp (xa, xb) =
(∑d

i=1 |xi,a − xi,b|
p
)1/p

and

is the standard metrics for geometrical problems. The Euclidean normalized similarity is
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given as s(E) (xa, xb) = e−‖xa−xb‖
2
2 . The Cosine similarity measure is given as s(C) (xa, xb) =

x↑axb
‖xa‖2·‖xb‖2

. Cosine similarity does not depend on the length, this allows documents with

the same composition but different totals to be treated identically. In collaboration filter-

ing, correlation is used to predict a feature from a highly similar mentor group of objects

whose features are known. The normalized Pearson correlation is defined as s(P ) (xa, xb) =

1
2

(
(xa−x̄a)†(xb−x̄b)
‖xa−x̄a‖2·‖xb−x̄b‖2

+ 1
)

. Jaccard similarity can be extended to continuous or discrete

non-negative features using s(P ) (xa, xb) = x†axb
‖xa‖22+‖xb‖22−x

†
axb

.

Similarity measures should be invariant to transformations natural to the problem

domain. Normalization may strongly affect clustering in a positive or negative way. The

features have to be chosen carefully to be on comparable scales and similarity has to reflect

the underlying semantics for the given task. Euclidean similarity is translation invariant

but scale variant while cosine is translation variant but scale invariant.

2.1.3 Challenges in Clustering

Data representation is one of the most important factors that influences the perfor-

mance of the clustering algorithm. Clustering being a difficult problem, the definition of

clusters can be very vague, and it is difficult to define an appropriate similarity measure

and objective function. Automatically determining the number of clusters has always been

one of the most difficult problems in data clustering [32]. Most methods for automati-

cally determining the number of clusters cast it into the problem of model selection [33].

Usually, clustering algorithms are run with different values of K; the best value of K is

then chosen based on a predefined criterion. A minimum message length (MML) criteria

in conjunction with the Gaussian mixture model (GMM) can be used to estimate K [24].

Another approach using the principle of Minimum Description Length (MDL) was used for

selecting the number of clusters. The other criteria for selecting the number of clusters are

the Bayes Information Criterion (BIC) and Akaike Information Criterion (AIC) [34]. Gap

statistics [35] is another commonly used approach for deciding the number of clusters.
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2.1.4 The COBWEB Algorithm

COBWEB [36] is a conceptual clustering algorithm and can discover understandable

patterns in data. It computes a hierarchical clustering model, in the form of a classification

tree. Given a new point, COBWEB descends the tree along an appropriate path, updating

the counts in the interior nodes along the way and looks for the best node to place the

point on, using a category utility function. COBWEB is ill suited because it is not height

balanced. The time complexity to add a new point to the clusters might degrade dramat-

ically. COBWEB analyzes the resulting placements and computes whether it is a better

choice than placing the point in one of the current clusters, and this way, outliers can be

identified.

2.1.5 Spherical K-means

The objective of the standard k-means clustering is to minimize the mean-square

error [37]:

E =
1

N

∑
x

∥∥x− µk(x)

∥∥2
(2.4)

where k(x) = arg mink∈{1,··· ,K} ‖x− µk‖is the index of the closest cluster centroid

to x, N is the total number of data vectors. The underlying probability distribution for the

standard k-means algorithm is Gaussian.

For high-dimensional data such as text documents and market baskets, cosine simi-

larity is a superior measure to Euclidean distance. The spherical K-means algorithm aims

to maximize the average cosine similarity objective given by:

L =
∑
x

xTµk(x) (2.5)

where k(x) = arg maxk x
Tµk. The main difference from standard k-means is that

the re-estimated mean vectors need to be normalized to unit-length and the underlying

probabilistic models are not Gaussian.

16



Document clustering has become an increasingly important technique for unsuper-

vised document organization, automatic topic extraction, and fast information retrieval or

filtering. If a vector space model, like Bag Of Words (BOW) is used, a text document gets

mapped to a high dimensional vector with one dimension per term. Such vectors tend to be

very sparse, and they have only non-negative entries. Also, vectors have vector properties

such as length of the vector is much less important than their direction. This has led to

the widespread practice of normalizing the vectors to unit length before further analysis,

as well as to the use of the cosine between two vectors as a popular measure of similarity

between them. Using unit-length term frequency-inverse document frequency (TF-IDF)

vectors can lead to better clustering results than simply representing a document by mul-

tivariate Bernoulli or multinomial models [37].

2.1.6 Density-Based Stream Clustering

Discovering patterns hidden in a data stream imposes a great challenge . Require-

ments for stream clustering an evolving data streams may be listed as [38]:

• No assumption on the number of clusters.

• Discovery of clusters with arbitrary shape.

• Ability to handle outliers.

Data stream applications impose a limited memory constraint, and it becomes more difficult

to provide arbitrary-shaped clustering results using conventional algorithms. Clusters with

arbitrary shape are often represented by all the points in the clusters, which is generally

unrealistic in stream applications. Due to the dynamic nature of evolving data streams,

the role of outliers and clusters are often exchanged, and consequently new clusters often

emerge, while old clusters fade out, it is more complex with noisy data. The DenStream

algorithm [38] discovers arbitrarily shaped clusters in an evolving data stream with salient

features listed as:
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• The core-micro-cluster synopsis is designed to summarize the clusters with arbitrary

shape in data streams. The memory is limited with the guarantee of the precision of

micro-clusters.

• An outlier-buffer is introduced to separate the processing of the potential core-micro-

clusters and outlier-micro-clusters.

• DenStream achieves consistently high clustering quality.

Cluster partitions on evolving data streams are often computed based on certain time in-

tervals. There are three popular models: landmark window, sliding window, and damped

window. In the damped window model, the weight of each data point decreases exponen-

tially with time t via a fading function f(t) = 2−λ·t, where λ > 0. The higher the value

of λ, the lower the importance of the historical data compared to more recent data. The

overall weight of the data stream is a constant W = v
(∑t=tc

t=0 2−λt
)

= v
1−2−λ

, where tc is

the current time and v denotes the speed of the stream (i.e. the number of points arrived

in one unit time) [38].

2.1.7 Stream Clustering

Numerous challenges exist in analyzing and updating the models that reflect the new

data as it is observed in continuously arriving massive data streams [39]. One challenge is

to design algorithms that can track changes in an incremental way without making growing

demands on computation and storage resources. A Data stream is a continuous stream of

new data points that makes computations on the past portions of the data repeatedly an

impractical approach. Finding changes in clusters as new data is collected can be fruitful in

scenarios like tracking the evolution of various events or topics on the internet. The basic

requirements for stream clustering can be specified as [39]:

• Compactness of representation. Using a lengthy description of the clusters is not an

option and would grow unbounded as new points arrive. Secondary memory repre-

sentations of the current clusters in also neither possible nor desirable. A data stream
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clustering algorithm must provide a representation of the clusters that is compact,

grows appreciably with the number of points processed. Even a linear growth is

intolerable.

• Fast, incremental processing of new data points. The tasks are generally on-line

natured and there is a need for speed and incremental processing.

• The placement of new points cannot be decided by a function that requires comparison

with all the points that have been processed in the past as this is too expensive with

respect to time and resources.

• The function that decides the placement of new points has to exhibit good perfor-

mance.

• The data stream can exhibit different trends during its lifetime, and consequently the

points received at any given time may not fit well under the clustering model.

• The function that evaluates the point placement must have within its range a value

for outlier. Dealing what to do with the outliers in an application dependent issue.

2.1.7.1 Tracking Clustering Models

As a new point i arrives, we need to check whether a new clustering model is needed.

Equation 2.6 shows a bound that has been used to find the probability of a “hit”, where

X is the sum of independent variable Xi, p is the probability of a hit, n is the number of

points, ε is the desired deviation of the estimate with respect to the real value and δ is an

arbitrarily small probability. Equation 2.6 establishes that the estimate and the real value

can be made to be arbitrarily close by the choice of δ [39].

Pr

[
|X
n
− p| ≤ ε

]
> 1− δ (2.6)

Using the Chernoff inequality [40], the estimate of the success probability can be

bounded, by bounding the probability that the estimate X
n surpasses (1 + ε)p, as shown in

equation 2.7.
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Pr

[
X

n
> (1 + ε)p

]
≤ e(−pne2/3) (2.7)

Equation 2.6 will hold if the number of successful attempts, s to cluster points, is

bounded by Equation 2.8 while n is bounded by Equation 2.9.

s >
3(1 + ε)

ε2
ln(

2

δ
) (2.8)

n ≤ 3(1 + ε)

(1− ε)ε2p
ln(

2

δ
) (2.9)

Equations 2.8 and 2.9 are very important to decide whether the current clustering

model is valid under the new data that is being received. If after processing n points the

model is able to successfully cluster atleast s of them, the clustering model is still valid;

otherwise a new model needs to be developed. Developing a new model is application

dependent and two actions are possible:

• Re-cluster the entire set of points seen so far, including the last n points that prompted

the decision to re-cluster.

• Discard the old clusters and produce new clusters by considering only the previous n

processed points. These bounds were used to effectively track clusters in data streams.

Re-evaluation of the number of clusters is also needed.

2.1.7.2 Limitations of Stream Clustering Algorithms

BIRCH can only deal with metric attributes, it treats all the data points in the same

way without considering the time when the data points arrived. COBWEB is targeted for

handling discrete attributes and the category utility measurement used is very expensive to

compute. All instances ever encountered are retained as terminal nodes in the hierarchy.

As the dimensionality grows, the memory demands of FC can grow beyond the available

memory. Speedup heuristics such as Pruning strategies can be used for better results, also

sampling schemes. The computational bottleneck is the normalization. The technique uses a
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basic distance metric to calculate the nearest micro-cluster for merging. Heavily dependent

on the input parameters. Developments should be made in the discovery of clusters with

arbitrary shape at multiple levels of granularity, dynamic adaption of the parameters in

data streams, and investigation of the framework for outlier detection and density-based

clustering in other stream models, in particular, in a sliding window model.

2.1.8 Robust Statistics

Nasraoui [41] presented a brief overview of Robst Statistics. Classical statistics

guarantee optimality in their estimates given that the model assumptions are correct [42],

however these assumptions are rarely met in practice. Rather, they are used only for

mathematical convenience [43]. For example, if we assume that a sample of data follows

a normal distribution, then the optimal estimate of the expected value is the mean of the

data points. However, the presence of outliers, which is common in real data, can have

an extreme influence on the mean value. Robust statistics [1, 42] seek to obtain a robust

estimation of the parameters of a parametric model while not being too affected by outliers

or small deviations from the assumed model.

Most existing clustering algorithms optimize a variant of Least Square (LS) cost,

which estimates the parameters of a distribution by minimizing the squared residuals, i.e.

its objective function is given by

min

N∑
j=1

r2
j (2.10)

where rj = xj − θ is the residual between the jth data point xj and its assumed

model θ, and N is the number of data points. LS is not robust since extreme outliers with

arbitrarily large residuals can have a large influence on the resulting estimate [43].

2.1.8.1 M-Estimators and W-Estimators

An M-estimator attempts to limit the influence of outliers by replacing the square

of residuals with a less rapidly increasing loss function.
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The M-estimator Θ(x1, x2, ..., xN ) estimates the parameter θ by minimizing the loss

function ρ as follows

min
θ

J =

N∑
j=1

ρ(xj ; θ)

 . (2.11)

The optimal estimate of the parameter is found by setting the derivative of the loss

function to zero as follows

∂J

∂θ
=

N∑
j=1

∂ρ(xj ; θ)

∂θ
=

N∑
j=1

ψ(xj ; θ) . (2.12)

When the M-estimator is shift equivariant, i.e. Θ(x1+c, ..., xN+c) = Θ(x1, ..., xN )+c

for any constant c, the loss function ρ and its derivative ψ can be written in terms of the

residuals r = x−θ. Moreover, a scale estimate S is used to obtain a scaled residual r = x−θ
S .

Hence, the objective function can be written as

min
θ

J =

N∑
j=1

ρ(
xj − θ
S

)

 . (2.13)

W-estimators are an alternative to M-estimators, obtained by introducing a robust

weight function w(x) that represents the importance of each data sample x in estimating

the parameter θ. Its relation to the M-estimator is given by

ψ(r) = w(r)r (2.14)

Using (2.13) and (2.14), the optimal estimate of the parameter θ is found by solving

N∑
j=1

w(
xj − θ
S

)
xj − θ
S

= 0 (2.15)

The ρ, ψ and w functions for some familiar M-estimators and W-estimators [1,42,44]

are listed in Table 2.1. M-estimators and W-estimators rely on an estimate of scale and a

constant tuning c. Most estimators use a multiple of the Median of Absolute Deviations
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TABLE 2.1: Common M-estimators and W-estimators [1]

Type ρ(r) ψ(r) w(r) Range of r Scale

L2(mean) 1
2r

2 r 1 R none

L1(median) |r| sign(r) sign(r)
r R none

Huber
1
2r

2 r 1 |r| ≤ k
MAD

k|r| − 1
2k

2 k sign(r) k sign(r)
r |r| > k

Cauchy c2

2 log
[
1 + ( rc )

2
]

r
1+( r

c
)2

1
1+( r

c
)2 R MAD

Tukey
1
6

[
1− (1− r2)3

]
r(1− r2)2 (1− r2)2 |r| ≤ 1

c×MAD1
6 0 0 |r| > 1

Andrews
1
π2 [1− cos(πr)] 1

πsin(πr) 1
rπsin(πr) |r| ≤ 1

c×MAD2
π2 0 0 |r| > 1

Welsch c2

2

[
1− exp(−( rc )

2)
]

r exp(−( rc )
2) exp(−( rc )

2) R MAD

(MAD) as a scale estimate, which assumes that the noise contamination rate is 50%. MAD

is defined as follows:

MAD(xi) = medi {|xi −medj(xj)} (2.16)

2.1.9 Tracking Noisy Evolving Data Streams

Data streams are massive datasets that arrive with a throughput that is very high,

for that reason, the data can only be analyzed sequentially with a single pass. Existing

approaches use processing the data points in an incremental manner [43], or by process-

ing the data points in small batches. For stream mining, the optimal solution is based

on minimizing the Sum of Squared Distances (SSQ) [45, 46], which is the same as the one

used in k-means [43]. TECNO-STREAMS [47] incorporates temporal weights that allow

gradual forgetting of older portions of the data stream, and focuses on the newer data.

CluStream [45] performs Micro-Clustering [48] with the new concept of pyramidal time-

frames. CluStream divides the clustering process into an online process that periodically

stores summary statistics, and an offline process that uses only summary statistics [43].
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Micro-clusters are an extension of BIRCH’s Cluster Feature (CF) with temporal statistics,

and the incremental updating of the CF is similar to BIRCH [43]. BIRCH, in turn, solves

a LS criterion because the first order statistics are nothing more than the mean centroid

values [43, 49]. TRAC-STREAMS [43] tracks evolving and noisy data streams by estimat-

ing clusters based on density, while taking into account the possibility of the presence of

an unknown amount of outliers, the emergence of new patterns, and the forgetting of old

patterns. TRAC-STREAMS is used for mining noisy and evolving data streams that is

based on a fast iterative optimization approach amounting to robust statistical estimation,

and is free of assumptions about the noise contamination rate or scale value.

2.1.10 Stream-Dashboard

Stream-Dashboard [23] is a framework that can be used to mine, track, and val-

idate evolving data stream clusters simultaneously. Stream-Dashboard consists of three

main components: an online clustering component, a tracking and validation component

and a configuration adaptation component. The online clustering component incrementally

maintains a clustering model of the data stream. The clustering model is represented as a

set of properties or metrics for each of the clusters, such as the centroids and scales. The

clustering model can be used as an input to a higher level application like Topic Modeling.

The tracking and validation component monitors the characteristics of the clustering model

by building and maintaining regression models.

2.1.10.1 The RINO-Streams Algorithm

RINO-Streams (Robust clustering of data streams using INcremental Optimization)

[22], an incremental clustering algorithm inspired by TRAC-Streams [43]. Both algorithms

extract evolving clusters from a massive data stream in a single pass, with detection of and

resistance to the presence of outliers. The algorithms incrementally updates the clustering

model using an estimation of centroids and scales, rooted in robust statistics [50]. Moreover,

they detect outliers and merge clusters using a robust distribution-independent statistical

24



Chebyshev test [51], which ensures robustness to outliers and cluster compactness.

A data stream X consists of a set of data points that are indexed based on the order

of their arrival, and presented as: x1, x2...., xN where N is the size of the data stream.

Each cluster i at time n (i.e. after receiving n points) is defined using its centroid ci,n,

its scale σ2
i,n, its soft cardinality (sum of weights of data points) Wi,n and its age ai. The

centroid represents the location of the cluster center with respect to other clusters at any

time, while the scale represents the influence zone around the centroid [43]. This scale value

is determined using a weighted function with temporal aspect, such that it decreases with

distance from the cluster centroid as well as with the time at which the data was presented

to the cluster. Hence, newer data points would have more effect on the model than older

ones, which allows capturing the evolution of clusters over time. The soft cardinality is the

sum of the robust weights of each data point belonging to the cluster, and is an indicator

of the quality of the cluster; a high cardinality means that the cluster represents a large

portion of the data stream. The age is the difference between the current time/iteration

or step (n) and the time when the cluster was first created, and is used to provide the

cluster with a grace period amature before testing its quality based on the minimum density

threshold δmin, which prevents deleting clusters while in its infancy.

RINO-Streams would update the cluster parameters with the arrival of a new point

incrementally, and it would keep, as a summary of the data stream, only the centroid

(ci,n), scale (σ2
i,n), the sum of weights (Wi,n =

∑n
j=1wij,n) and the age ai for each cluster.

Moreover, a test is added to eliminate bad clusters whose density is less than a threshold

(δmin) and are mature enough (i.e. ai > amature).

The input parameters to RINO-Streams include the maximum number of clusters

Kmax which is a higher bound on the allowed number of clusters and is needed to control

the size of memory used to store the clusters, the initial scale σ0 which is assigned to the

newly created cluster, the density threshold δmin which is used to ensure that only good

clusters with high density are kept, the maturity age amature which provides the newly

created clusters with a grace period before testing its density quality, the forgetting factor
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e
−1
τ which controls the decay of the data point weights over time and the Chebyshev bound

constant t.

Cluster Parameter Updates in RINO-Streams In a dynamic environment, the data

model is updated with one data point at a time. The cluster centroid and scale, density, and

other measures are updated with each new point. A cluster is characterized by its location

or center, its scale, or its age etc. The set of clusters and their characteristic parameters

define a synopsis representation of the data stream, since the currency of the stream is taken

into account to define the influence zone around each cluster, the synopsis will also reflect

a more current summary of the data stream. The model will evolve with the arrival of new

topics in the data stream. Each cluster defines an influence zone over the data space. Data

that is more current will have higher influence compared to data that is less current. The

influence zone is defined in terms of a weight function that decreases not only with distance

from the data to the cluster prototype, but also with the time since the data has been

presented to the cluster model. It is convenient to think of time as an additional dimension

to allow the presence of evolving clusters [43].

For the ithcluster, Ci and jthdata point, at the moment when the total size of the

data stream accumulated to J inputs: x1, x2, · · · , xj , · · · , xJ , as:

wij,J = wi,J
(
d2
ij

)
= e
−
(

d2ij

2σ2
i,J

+
(J−j)
τ

)
(2.17)

where τ is an application-dependent parameter that controls the dime decay rate

of the contribution from old data points. The size of an influence zone around a cluster

prototype is defined and data samples falling far from this zone are considered outliers [43].

The old weights would experience a decay given as [43]:

wij,J = e
−1
τ wij,(J−1) (2.18)

The optimal dense cluster locations and scale values are searched by optimizing the criterion

[43]:
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min
ci,J,σi,J

TiJ =
∑
j=1

wij,J
d2
ij

σ2
i,J

− α
J∑
j−1

 ,= i, · · · , C (2.19)

where α = 1, weight wij,J can also be considered as the degree of membership of

data point xj in the inlier set or the set of good points.

Optimal incremental center update Given the previous centers resulting from the

past (J-1) data points, ci,J−1, the new centroids that optimize the equation 2.19 after the

J thdata point is given as [43]:

ci,J =
e−

1
τ ci,J−1Wi,J−1 + wiJ,JXJ(
e−

1
τWi,J−1 + wiJ,J

) (2.20)

where Wi,J−1 =
∑J−1

j=1 wij,(J−1) = Wi,J−2 + wi(J−1),(J−1)is the sum of the contribu-

tions from previous data points, x1, x2, · · · , xj , · · · , xJ−1

Optimal incremental scale update Given the previous scales resulting from the past

(J-1) data points, σ2
i,J−1the new scales that optimize the equation 2.19 after the J th data

point is given by [43]:

σ2
i,J =

(2 + α)e−
1
τ σ2

i,J−1WDi,J−1 + wij,Jd
4
iJ

(2 + α)
(
e−

1
τWDi,J−1 + wiJ,Jd2

iJ

) ·WDi,J−1

=

J−1∑
j=1

wij,(J−1)d
2
ij = WDi,J−2 + wi(J−1),(J−1)d

2
i(J−1)

(2.21)

is the sum of the contributions from previous data points x1, x2, · · · , xj , · · · , xJ−1.

Learning New data points and Relation to Outlier Detection A potential outlier

is a data point that fails the outlyingness test for the entire cluster model, it may either be

an outlier or a new emerging pattern. An outlier will form no mature clusters in the cluster

model. Chebyshev bounds [52] can be used to test whether a data point is an outlier [43].

The Chebyshev bound for a random variable X with standard deviation σis given as:

Pr {|X − µ| ≥ tσ} ≤ 1

t2
(2.22)
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For testing a data point or a new cluster for outlyingness with respect to cluster

Ci using Chebyshev Bound with significance probability 1/t2, the equation 2.22 can be

rewritten as,

Pr
{
|X − µ|2 ≥ t2σ2

}
≤ 1

t2

or equivalently.

Pr

{
e
−|X−µ|2

2σ2 ≤ e−t2/2
}
≤ 1

t2

So, IF
(
wij,J < e(−t

2/2)
)
THEN xj is an outlier with respect to cluster Ci. For testing a

compatibility of cluster Ciand Ckwith scales σ2
i,Jand σ2

k,J using Mutual Chebyshev Bounds

with significance probability 1/t2, given the distance between these two clusters, d2
ik, if the

clusters are compatible, then the equation 2.22 can be rearranged in the form:

Pr

{
e

−d2ik
2σ2
i ≤ e−t2/2

}
≤ 1

t2

and

Pr

{
e

−d2ik
2σ2
k ≤ e−t2/2

}
≤ 1

t2

and results in the test:

IF
(
dist(Ci, Ck) < t2σ2

i ANDdist(Ci, Ck) < t2σ2
k

)
THEN MergeCi andCK

The new cluster center is given as:

cnew,J =
ci,JWi,J + ck,JWk,J

Wi,J +Wk,J
(2.23)

The density of the ithcluster after presenting J data points from the stream is defined

as:

δi =

∑J
j=1wij,J

σ2
i,J

(2.24)

Clusters with low density and zero cardinality are eliminated. The computational

complexity of TRAC-STREAMS [43] is given as O(N). This framework is useful in scenarios

like network activity data, newsfeeds and Web clickstreams etc.
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RINO-Streams meets all the requirements of data stream clustering algorithms,

noted as:

• Compactness of representation: Each cluster is represented using four compo-

nents: centroid ci which is of size equal to the dimensionality of data, the scale σi,

the sum of weights Wi and the age ai. Hence, the total memory requirement of the

clustering model is a very compact representation.

• Fast processing of new data points & Fast handling of outliers: Each new

data point is compared against all the clusters in a linear time O(K) , and then is

discarded. And if the data point was determined to be an outlier, then it is used to

create a new cluster which is also done in linear time.

• Integration of offline and online data: The clustering model is very compact and

can be stored in main memory. However the clustering model at different time steps

can also be stored offline in secondary memory, and can be easily accessed.

• Presenting the discovered clusters instantly: The cluster representatives can

be used directly to plot the clustering model as a set of hyper-spheres centered at the

cluster centroid and with influence area equal to the scale.

• Making no assumptions on the number of clusters: RINO-Streams does not

assume the number of clusters in advance and only requires a maximum number of

clusters allowed to control the memory space used.

• Handling evolution: RINO-Streams handles the evolution of data by the very def-

inition of its “dynamic” robust weight, which uses a forgetting factor to give more

emphasis to newer data points.

2.1.10.2 TRAcking and Validating Cluster Evolution using Regression Analy-

sis

The TRACER (TRAcking and validating Clusters Evolution using Regression anal-

ysis) [53] framework aims at tracking the detected cluster’s evolution over time by building
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and maintaining a summarized regression model for each cluster’s property (e.g. centroid

coordinates, scale, or density). For each detected cluster, a set of regression models is built

and maintained throughout the lifetime of the cluster (i.e. until it disappears or merges

with other clusters). Four properties are used to describe a cluster: centroid (c), scale (σ),

the sum of robust weights (W ), or density (δ). The regression models are found by estimat-

ing the regression coefficients (β̂0 and β̂1) at intervals of time called Regression Windows

each having width ∆Reg, and reflects the desired details in the description of the evolution

of clusters. The regression window should be relatively small to justify the use of a linear

model instead of a more complex model for regression. Using a nonlinear model is possible,

but would result in a more complicated estimation of regression coefficients.

The output of regression analysis are the linear regression coefficients β0 and β1

which are stored for every ∆Reg data samples, hence for each cluster i at time n (i.e. after

encountering n points) the β0 coefficients are stored as β0,ci,n , β0,σi,n , β0,δi,n and β0,Wi,n for the

properties ci,n, σi,n, δi,n andWi,n respectively, and the same for the slope (β1) coefficients.

These regression coefficients can be used to examine the behavior of the cluster during the

lifetime of the data stream.

TRACER: Milestone Detection The stored regression coefficients are used to model

or summarize the behavior of each cluster over time, and possibly to predict future clus-

ter behavior or detect any deviation from that behavior. These deviations are detected

automatically using the R2 regression diagnostics test, and the times at which these devi-

ations occur are called milestones. Milestones represent important phases in the lifetime

of a cluster, because they represent when major changes took place either in the structure

of the cluster (i.e. internal changes) or in its relationship with other clusters (i.e. external

changes). Each time that a milestone is detected, a new regression model is built (since it

reflects a new behavior that needs to be captured), otherwise the old regression model needs

only be updated to reflect the changes that took place. If no milestone was detected between

two consecutive time periods T1[z∆Reg+1, (z+1)∆Reg] and T2[(z+1)∆Reg+1, (z+2)∆Reg]

where z is a constant z ∈ {0, 1, 2, 3...}, then the updated model is found as follows:
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β1,T1+T2 =

[
∆2
Reg − 1

]
× [β1,T1 + β1,T2] + 6∆Reg × [yT2 − yT1]

8∆2
Reg − 2

(2.25)

β0,T1+T2 =
yT1 + yT2

2
− β1,T1+T2 ×

[
2∆2

Reg(z + 1) + ∆Reg

]
(2.26)

where β0,T1 and β1,T1 are the regression coefficients at time period T1, β0,T2 and

β1,T2 are the regression coefficients at time period T2, yT1 and yT2 are the means of the

dependent variable at time periods T1 and T2 respectively.

TRACER: Profiling and Monitoring Evolving Cluster Behavior Monitoring the

regression models can eventually help build behavioral profiles for each cluster, which reflects

how each of the cluster properties has behaved over time. A stable cluster has properties

that remain stable for some time (i.e. the regression line is a plateau), which statistically

means that the slope (β1) is equal or close to 0. If the cluster is not stable then a test on

the sign of the slope can reflect how the cluster quality is changing (e.g. a positive slope in

the density metric means that the cluster is improving). Using the confidence intervals CI

provides a more reliable test for stability, because we are only interested in a plateau-like

regression line and not necessarily a strict plateau.

TRACER is invoked every time ∆Reg data points are encountered, and as an input,

requires the ∆Reg values of the cluster properties (σ, δ andW ). These values are temporar-

ily stored and then are discarded once TRACER is completed. TRACER quantifies the

behavior and labels it as stabilizing, increasing or decreasing. When two clusters are to

be merged, the new cluster should carry on both the structural (e.g. scale) as well as the

behavioral (i.e. stability) information of the two clusters, while giving more importance to

the one with higher quality (i.e. higher density). For clusters Ci and Ck to be merged,

the stability measures of the higher quality cluster are inherited by the new cluster. The

previous regression models of clusters Ci and Ck’s metrics are combined only when the re-

gression coefficients are similar, because they may represent different histories of the cluster

evolutions, which is not always the case.
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Advantages of TRACER Advantages of using TRACER over other comparable meth-

ods include:

• Validates the detected cluster on the fly. This is done via the behavioral profiles built

for each cluster’s metric.

• Low complexity, which is linear with the number of clusters (C) and number of snap-

shots (S) (which is equal to N
∆Reg

).

• Tracking and detecting the internal and external cluster changes that take place over

time, while the other algorithms can only work with the internal changes or the

data/domain changes.

2.2 Modeling Text Data and Dimensionality Reduction

The Bag of words (BOW) is a very common and widely used representation of docu-

ments. BOW vectors have a very high dimensionality where each dimension may correspond

to one concept or one topic. Dimension reduction can be used to find the semantic space and

its relationship to the BOW representation [54]. Clustering uses similarity (or dissimilarity)

between documents to place them in their respective natural groupings or clusters. Soft

clustering techniques can associate each document with multiple clusters, by viewing each

cluster as a dimension [55]. Clustering hence induces a low-dimensional representation of

documents. Finding a lower dimensional representation that reflects the original representa-

tion, and that maintains more of the original information than clustering is very beneficial,

and can be used to extract more narrowed-down topics. Interpretation of the compressed

dimensions may still be very difficult, and a document can only be fully understood by

considering all of the dimensions together. Documents are associated with a number of

latent topics, which correspond to both document clusters and compact representations

identified from a corpus. Each document is assigned to the topics with different weights,

which specify both the degree of membership in the clusters as well as the coordinates of

the document in the reduced dimension space. The original feature representation plays a
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key role in defining the topics and in identifying which topics are present in each document.

The result is an understandable representation of documents that is useful for analyzing the

themes in documents. The multinomial distribution [56] is a commonly used probabilistic

model for text:

M (X | β) ∝
|W |∏
v=1

βxvv

Let D be a corpus of documents, indexed by d. W is the distinct set of terms in the

vocabulary, indexed by v. X is a |W | × |D| matrix encoding the occurrences of each term

in each document. K is set of a given number of topics, index bsy i. Ni is the number of

tokens assigned to topic i. It captures the relative frequency of terms in a document. It is

essentially equivalent to the BOW-vector with `1 − norm standardization as
∑W

v=1 βv = 1.

The Dirichlet distribution [13] is a conjugate distribution to the multinomial distribution,

therefore serving as a commonly used prior for multinomial models:

D (θ | α) =
Γ
(∑|K|

i=1 αi

)
∑|K|

i=1 Γ (αi)

|K|∏
i=1

θαi−1
i

These distributions favor imbalanced multinomial distributions, where most of the

probability mass may be concentrated on a small set of values. Thus, it is well suited

for models that reflect commonly observed power law distributions in human language.

Latent Semantic Indexing (LSI) [57] is based on the singular value decomposition (SVD) [58]

of the term-document matrix. LSI projects both the documents and words into a lower

dimensional space representing the semantic aspects of a document. Using these projections,

LSI enables the analysis of documents at a conceptual level, overcoming the drawbacks of

purely term-based analysis. LSI overcomes the issues of synonymy and polysemy [21].

Let X be the term-document matrix of a corpus. The dthcolumn, Xd represents a

document d in the corpus and the v − th row of the matrix X, denoted by Tv, represents a

term v. SVD of X is given as:

X = U
∑

V T
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The matrices U and V are orthonormal and
∑

is diagonal.

∑
=


σ1

. . .

σmin{W,M}


The values σ1, σ2, . . . , σmin{W,M}are singular values of the matrix X and σ1 ≥ σ2 ≥

. . . ≥ σmin{W,M}.

X̂ = Û
∑̂

V̂ T =

[
U1 · · · Uk

]
σ1

. . .

σK



V T

1

...

V T
K


SVD produces the (rank−K) matrix X̂ that minimizes the distance from X in terms

of the spectral norm and the Frobenius norm. Certain terms are very likely to be present

based on the topic of a document. Latent topic models capture this idea by modeling the

conditional probability that an author will use a term given the topic the author is writing

about, by providing a mechanism to explicitly reason about latent topics.

2.3 Topic Modeling

Topic modeling [59] is a set of algorithms generally used for discovering a latent set

of topics in any given set of documents. Topic modeling is an unsupervised method that

analyzes the words in their original form and discovers the latent topics. In this section, we

will provide a brief overview of two of the main approaches for topic modeling: Probabilistic

Latent Semantic Indexing (PLSI) in Section 2.3.1 and Latent Dirichlet Allocation (LDA)

in Section 2.3.2.

2.3.1 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI) was proposed by Hofmann [14], and

uses the same conceptual assumptions as in Latent Semantic Indexing (LSI) [60], but follows

a probabilistic approach. The initial step in finding the latent models is to convert a given
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dataset into a bag-of-words (BOW) representation. BOW is represented as a matrix that

captures the frequency (or the existence) of every word in each document. For a set of D

documents and W unique words, the BOW matrix X would be of size |D|× |W | where each

row represents a document and each column represents a unique word. PLSI assumes that

each word w ∈ W is generated into a document d ∈ D that belongs to topic i ∈ K, where

K is a set of topics. following the generative probabilistic approach specified in Algorithm

2.2.

Algorithm 2.2 PLSI Generative Probabilistic Approach.

1: First, a document d is sampled following a multinomial distribution of documents p(d)
2: Second, a topic i is sampled based on the topic distribution with respect to the selected

document θdi = p(z = i|d).
3: Finally, a term v is sampled based on the multinomial distribution of the selected topic

Φiv = p(v = w|z = i)

PLSI aims at associating a topic z with each term v in each document d. This joint

probability can be expressed as:

p(v, d) = p(d)× p(v|d)

where p(v|d) =
∑|K|

i p(v|z = i)× p(z = i|d)
(2.27)

The Expectation Maximization algorithm [29] can be used to find these probabilities

by maximizing the log-likelihood given by:

L =

|D|∑
d=1

|W |∑
v=1

xvd × logp(w = v, d) (2.28)

L =

|D|∑
d=1

|W |∑
v=1

xvd × log
|K|∑
i=1

p(w = v|z = i)× p(z = i|d)× p(d) (2.29)

where xvd is the frequency of the term v in document d.
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Figure 2.1: LDA Generative Process [3]

2.3.2 Latent Dirichlet Allocation (LDA)

Description

D A set of a given number of documents in a collection

W A set of a given number of distinct words in a vocabulary

N Total number of words in collection

K A set of a given number of topics

wdi ith observed word in document d

zdi Topic assigned to wdi

Nwk Count of word assigned to topic

Ndw Count of topic assigned in document

φk Probability of word given topic k

θd Probability of topic given document d

Γ Gamma Function

TABLE 2.2

Description of variables used for LDA based algorithms.

PLSI might suffer from over-fitting, as it generates a large number of parameters

(i.e. a parameter for each document and for each word into each topic). Also, it cannot find

the probability of completely new documents nor incorporate new words. Latent Dirichlet
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Allocation (LDA) was proposed by [3] as an alternative that solves the problems of PLSI.

LDA follows a similar probabilistic approach to PLSI to generate the data. The list of

variables is provided in Table 2.2. The generative process can be summarized as follows:

• The multinomial term distribution Φk =
{
φk1, · · · , φk|w|

}
for topic k is a multinomial

distribution that follows a symmetric Dirichlet distribution with parameter in the

vector β =
{
β1, · · · , β|W |

}
, where Γ denotes the Gamma function.

p(Φk|β) =
Γ(|W |β)

Γ(β)|W |

|W |∏
v=1

φβ−1
kv (2.30)

• The multinomial topic distribution θd =
{
θd1, · · · , θd|K|

}
for document d is a multi-

nomial distribution that follows a Dirichlet distribution with parameters in the vector

α =
{
α1, · · · , α|k|

}
p(θd|α) =

Γ
∑|K|

i αi∏|K|
i=1 Γ(αi)

|K|∏
i=1

θαi−1
di (2.31)

• The topic zdn for each token indexed by n in document d is sampled from document

topic distribution θd

p(zdn = i|θd) = θdi (2.32)

• Each token w is sampled from the distribution associated with the selected topic

p(wdn = v|zdn = i, φi) = φiv (2.33)

The generative process is shown in Figure 2.1. LDA provides a mechanism to find patterns

of co-occurrence between the terms, and then using these patterns to find coherent topics.

Hence, LDA finds topics in which the most probable terms frequently co-occur together

in the documents, thus helping with polysemy. This is quite different from more naive

independent term assumptions. Another advantage of LDA is that in the topic-specific

term distributions p(Φi|β), the Dirichlet prior provides smoothing that assigns non-zero

probabilities even to unseen terms in a document [61]. Finding the parameters of LDA (i.e.
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β and α) can be accomplished by maximizing the likelihood function:

L =

|D|∏
d=1

|W |∏
n=1

p(wdn|zdn,Φ)× p(zdn|θd)× p(θd|α)× p(Φ|β) (2.34)

= φzwθdz
Γ
(∑|K|

i=1 αi

)
∏|K|
i=1 Γ (αi)

|K|∏
i=1

θαi−1
di

Γ (|W |β)[
Γ (β)|W |

] |W |∏
v=1

φβ−1
v (2.35)

Optimizing the likelihood directly is hard since the topic assignments zdn are not

given. As a result, approximation methods are used such as Collapsed Gibbs Sampling [62].

An online version of LDA was proposed in [4], which is based on online variational Bayes

optimization. Online LDA aims at handling massive collections of documents, where each

document is only examined once and then discarded.

2.3.2.1 Efficient Methods of Topic Model Inference

Yao, McCallum et.al [63] evaluated three different sampling-based inference methods

Gibbs1, Gibbs2, and Gibbs3 for LDA and proposed a new method SparseLDA. Gibbs sam-

pling is an MCMC [64] method that involves iterating over a set of variables while sampling

each one of them. Given enough iterations, Gibbs sampling for LDA produces samples from

a posterior P (z|w). The first method Gibbs1, samples new topics from the entire corpus;

the second method Gibbs2 samples only new documents, holding the parameters for a train-

ing corpus fixed; and the third method Gibbs3 samples each new document independently.

Gibbs3 is therefore an online version. When a new document arrives, the topics are sampled

for a number of iterations using only topic word counts from the training documents and

the new document, this differs from Gibbs1 and Gibbs2 in that it produces estimates of θd

given only the words from a given training set of documents and in document d. Gibbs1

and Gibbs2 produce estimates given the entire data set.

SparseLDA involves a sampling algorithm and a data structure that substantially

improves sampling performance. The probability of topic z in document d given an observed

word w is given as:
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P (z = t|w) ∝
(
αt + nt|d

) β + nw|t

βV + n·|t

P (z = t|w) ∝ αtβ

βV + n·|t
+

nt|dβ

βV + n·|t
+

(
αt + nt|d

)
nw|t

βV + n·|t
(2.36)

where V is the vocabulary, nw|t is the number of tokens for w assigned to topic t

and n·|t =
∑

w nw|t, nt|d is the total number of tokens in the document assigned to topic

t. The SparseLDA divides the process into three terms as show in Equation 2.36. The

first term only changes when there is a change in α, the second term depends only on

the document-topic counts, and the third term changes with the value of w. The method

iterates over only a selected set of topics to improve the performance. The efficiency of the

method depends on the ability to rapidly identify topics such that nw|t 6= 0. The method

also uses a data-structure tuple
(
t, nw|t

)
in a single 32 bit integer by dividing the bits into

count segment and a topic segments The tuple helps the method improve the storage and

retrieval efficiency.

2.3.3 Online Topic Modeling using Online Variational Bayes Inference for LDA

Algorithm 2.3 Online LDA with Variational Bayes [4].

Function: OnlineLDAVB()
Input: A list of documents, hyper-parameters α and η.
Output: Topic and Word distributions.

1: Define ρt
∆
= (τ0 + t)−k

2: Initialize λ randomly
3: for t=0 to ∞ do
4: Initialize γtk = 1
5: repeat
6: Set φtwk ∝ exp{Eq [log θtk] +Eq [log βkw]}
7: Set γtk = α+

∑
w φtwkntw

8: until 1
K

∑
k |change in γtk| < 0.00001

9: Compute λ̃kw = η +Dntwφtwk
10: Set λ = (1− ρt)λ+ ρtλ̃
11: end for

The Batch Variational Bayes algorithm has constant memory requirements and em-

pirically converges faster than batch collapsed Gibbs sampling [3, 4]. Yet the batch Varia-

tional Bayes still requires a full pass through the entire corpus each iteration and therefore
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applying it on large datasets takes a lot of time. Hoffman and Blei et.al [4] have proposed

an online variational inference algorithm for fitting λ, the parameters to the variational

posterior over the topic distributions β. The algorithm, being simple, converges faster than

the batch version. The list of variables is provided in Table 2.2.

The posterior over the per-word topic assignments z is parameterized by φ, the

posterior over the per-document topic weights θ is parameterized by γ, and the posterior

over the topic β is parameterized by λ. A good setting of the topics λ is one for which the

Evidence Lower Bound (ELBO) L [20] is as high as possible after fitting the per-document

variational parameters γ and φ with the Expectation step. Let γ(nd, λ) and φ(nd, λ) be the

values of γd and φd produced by the E-step. The goal is to set λ to maximize Equation

2.37, below.

L (n, λ)
∆
=
∑
d

` (nd, γ (nd, λ) , φ (nd, λ) , λ) (2.37)

where ` (nd, γd, φd, λ) is the dth document’s contribution to the variational bound.

The online VB for LDA is provided in Algorithm 2.3. As the tth vector of word counts nt is

observed, an E step is performed to find locally optimal values of γt and φt, while holding λ

fixed. In the true online case D →∞, corresponding to empirical Bayes estimation of β. λ

is updated using a weighted average of its previous value and λ̄. The weighted value given

to λ̄ is given by ρt
∆
= (τ0 + t)−k, where k ∈ (0.5, 1] controls the rate at which old values of

λ̄ are forgotten and τ ≥ 0 slows down the early iterations of the algorithm. Algorithm 2.3

presents pseudocode for the online LDA with variational bayes.

2.3.4 Hyper Parameter Estimation

Blei et.al. [3] and [65], discussed a method to optimize the hyper-parameters using

the Newton-Raphson method [66], which can be used for estimating maximum likelihood

of a Dirichlet distribution.

The Newton’s method optimized a hyper parameter as:

αnew = αold −H(αold)−1g(αold)
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where H(α) and g(α) are the Hessian matrix and gradient respectively at the point α. If

the Hessian matrix is of the form:

H = diag(h) + 1z1T, (2.38)

where diag(h) is a diagonal matrix with the elements of the vector h along the diagonal,

and applying matrix inversion we get:

H−1 = diag(h)−1 − diag(h)−111Tdiag(h)−1

z−1 +
∑k

j=1 h
−1
j

Multiplying by the gradient, the ith component can be obtained as:

(H−1g)i =
gi − c
hi

where

c =

∑k
j=1 gj/hj

z−1 +
∑k

j=1 h
−1
j

.

2.3.5 Online LDA with Infinite Vocabulary

Topic models based on LDA [12] assume a predefined vocabulary. Zhai et.al. [5],

presented a extension to Online LDA [12, 20], by drawing topics from a Dirichlet process

which is a distribution over all strings instead of a finite Dirichlet distribution. The gener-

ative process is identical to that of the LDA. Algorithm 2.4 presents the generative process

and the rest being identical of Online LDA algorithm presented it Section 2.3.3.

We present a set of experiments in Section 4.3.4, where we extended the Online

LDA with infinite vocabulary by introducing the automatic hyperparameter estimation as

discussed in Section 2.3.4.

Algorithm 2.4 Generative process for LDA with Infinite Vocabulary [5].

1: for all topics k do

2: Draw words ρkt, (t = 1, 2, ...) from G0

3: Draw bkt Beta(1, αβ), (t = 1, 2, ...) from G0

4: Set stick weights βkt = bktΠs<t(1− bks)

5: end for
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2.3.6 Topic Modeling Evaluation

2.3.6.1 Perplexity

The most common way to evaluate a probabilistic model is to measure the log-

likelihood of a held-out test set [67]. This is usually done by splitting the dataset into two

parts: one for training, the other for testing. For LDA, a test set is a collection of unseen

documents wd, and the model is described by the topic matrix Φ and the hyperparameter α

for the topic-distribution of documents. The LDA parameters θ is not taken into consider-

ation as it represents the topic-distributions for the documents of the training set, and can

therefore be ignored to compute the likelihood of unseen documents. Therefore, we need to

evaluate the log-likelihood L(w) of a set of unseen documents wd given the topics Φ and the

hyperparameter α for the topic-distribution θd of documents as shown in Equation 2.39.

L(w) = log p(w|Φ, α) =
∑
d

log p(wd|Φ, α) (2.39)

The likelihood of unseen documents can be used to compare models; with higher likelihood

(or lower perplexity) implying a better model. The measure, traditionally used for topic

models, is the perplexity of held-out documents wd defined as:

perplexity(test set w) = exp

{
− L(w)

count of tokens

}
which is a decreasing function of the log-likelihood L(w) of the unseen documents

wd; the lower the perplexity, the better the model [67].

2.4 Sentiment Analysis

The rise of social media has fueled a great interest in sentiment analysis. With the

proliferation of online reviews, ratings, various user recommendations, and other forms of

online user expression, sentiment analysis provides a way to look into what the users are

discussing in regards to a given topic. Sentiment analysis helps in automating the process

of filtering out the noise, better understand conversations, identifying relevant content,

and actioning it appropriately [68]. A common problem is that most sentiment analysis
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algorithms use simple terms to express sentiment. Cultural factors, linguistic nuances and

differing contexts make it extremely difficult to identify the correct sentiment of the written

text [68]. Also, the fact that humans often disagree on the sentiment of text illustrates how

big a task it is. The shorter the string of text, the harder it becomes. Sentiment analysis

has shown that Twitter can be seen as a valid online indicator of political sentiment [69].

Twitter political sentiment demonstrates close correspondence to various political positions,

indicating that the tweets plausibly reflects the offline political landscape [69].

Sentiment analysis approaches may be grouped into four main categories: keyword

spotting, lexical affinity, statistical methods, and concept-level techniques [70]. Keyword

spotting classifies text by affect categories based on the presence of unambiguous affect

words such as happy, sad, afraid, and bored [71]. Lexical affinity not only detects obvious

affect words, it also assigns arbitrary words a probable “affinity” to particular emotions [72].

Statistical methods leverage on elements from machine learning such as latent semantic

analysis, support vector machines etc. Unlike purely syntactical techniques, concept-level

approaches leverage on elements from knowledge representation such as ontologies and se-

mantic networks and, hence, are also able to detect semantics that are expressed in a subtle

manner [73]. Hatto and Eric et.al. [74] has proposed Valence Aware Dictionary for sEnti-

ment Reasoning (VADER), which uses a combination of qualitative and quantitative meth-

ods. VADER constructs and empirically validates a gold-standard list of lexical features

(along with their associated sentiment intensity measures) which are specifically attuned

to sentiment in microblog-like contexts. These lexical features are combined with consid-

eration for a set of general rules that embody grammatical and syntactical conventions for

expressing and emphasizing sentiment intensity.

2.4.1 Joint Sentiment Topic Modeling: The Batch Approach

Latent Dirichlet Allocation is effectively a generative model from which a new doc-

ument can be generated in a predefined probabilistic procedure. The existing framework of

LDA has three hierarchical layers, where topics are associated with documents, and words
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are associated with topics. In order to model document sentiments, a joint sentiment layer,

between the document and the topic layers, was proposed by Lin, He et.al. [75]. Joint

Sentiment Topic modeling (JST) uses a lexicon based training data set containing positive,

negative and neutral scores for each lexicon. JST is effectively a four layer model, where

sentiment labels are associated with documents, under which topics are associated with

sentiment labels and words are associated with both sentiment labels and topics [75].

Let there be D set of documents, denoted by collection C = {d1, d2, · · · , dD}; where

each document in the corpus is a sequence of Nd words denoted by d = (w1, w2, · · · , wNd),

and each word in the document is an item from a vocabulary index with V distinct terms

denoted by {1, 2, · · · , V }. Let S be the number of distinct sentiment labels and T be the

total number of topics. The generative process for the hierarchical Bayesian model is shown

in Algorithm 2.5.

Algorithm 2.5 Generative process for the Hierarchical Bayesian model [75].

1: for all document d do
2: choose a distribution πd ∼ Dir(γ)
3: for all sentiment label l under document d do
4: choose a distribution θd,l ∼ Dir(α)
5: for all word wi in document d do
6: choose a sentiment label li ∼ πd
7: choose a topic zi ∼ θd,li
8: choose a word wi from the distribution over words defined by the topic zi and

sentiment label li, ϕ
li
zi

9: end for
10: end for
11: end for

The hyper-parameters αand β in JST can be treated as the prior observation counts

for the number of times topic j is associated with sentiment label l, sampled from a document

and the number of times words sampled from topic j associated with sentiment label l,

respectively, before having observed any actual words [75]. The hyper-parameter γ can be

interpreted as the prior observation count for the number of times sentiment label l sampled

from documents before any words from the corpus are observed. In JST, there are three

sets of latent variables that we need to infer, including the joint sentiment/topic-document
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Algorithm 2.6 Gibbs sampling procedure for JST [75].

Input: A list of documents, hyper-parameters, lexicons with sentiments.
Output: A list of topics per each sentiment.

1: Initialize V × T × S matrix Φ, T × S ×D matrix Θ, S ×D matrix Π.
2: for m = 1 to M Gibbs sampling iterations do
3: repeat
4: Read a word i from a document
5: Calculated the probability of assigning word i to topic and sentiment label.
6: Sample a topic j based on the estimated probability.
7: Sample a sentiment label k.
8: Update the matrix Φ, Θ and Π with new sampling results.
9: until all words have been processed

10: end for

distribution and the joint sentiment-document distributions. Algorithm 2.6 lists the steps

involved in JST.

2.5 Relevance Feedback

In the field of Information Retrieval [76, 77], “Relevance Feedback” is used as a

mechanism to get the user involved, to improve the final results. The process is based on

the idea that it is difficult to formulate a good query when the user does not have any idea

on the data collection, but it is easy to judge particular documents, and so it an interactive

query refinement provides a very good platform. In such a scenario, relevance feedback can

also be effective in tracking a user’s evolving information need [76]: seeing some documents

may lead users to refine their understanding of the information they are seeking [76]. The

user provides feedback on the initial set of results, specifying the documents that are relevant

and irrelevant [76]. The procedure involves the user issuing a simple query and the system

returning an initial set of results [76]. The user then marks some of these returned results as

relevant or irrelevant. The system then computes a better representation of the information

based on this user feedback [76]. This feedback and re-computation can go for more than

one iteration. The Rocchio Algorithm [78] is a classic algorithm for relevance feedback. It

models a way of incorporating relevance feedback information into the vector space model,

where the representation of a set of documents is in terms of vectors in a common vector
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space [76].

Let a query vector be represented as −→q , that maximizes similarity with a set of

relevant documents while minimizing the similarity with irrelevant documents. If Cr is the

set of relevant documents and Cnr is the set of irrelevant documents, then the optimal query

is given as [79]:

~qopt = arg max [sim (−→q , Cr)− sim (−→q , Cnr)]
−→q

where sim can be the cosine similarity. The optimal query (~qopt) is the vector

difference between the centroids of the relevant and irrelevant documents for separating the

relevant and irrelevant documents is given as [79]:

~qopt =
1

|Cr|
∑
~dj∈Cr

~dj −
1

|Cnr|
∑
~dj∈Cnr

~dj

The Rocchio Algorithm [77] uses a modified query ~qm given as:

~qm = α~q0 + β
1

|Dr|
∑
~dj∈Dr

~dj − γ
1

|Dnr|
∑

~dj∈Dnr

~dj (2.40)

where, q0 is the initial query vector. Dr and Dnr are the set of known relevant

and irrelevant documents, and α, β, γ are the weights to each respectively. These weights

control the balance of trusting the judged documents set against the query [77]. Starting

from the initial query, each new query is expected to move towards the centroid of the

relevant documents in the vector space. The positive quadrant of the vector space can be

obtained by subtracting off an irrelevant documents vector [77].

Pseudo relevance feedback [80–82], provides a mechanism for automatic local anal-

ysis where the manual part of choosing the relevant documents is automated and has the

advantage that assessors are not required. The aim of the mechanism is to perform normal

information retrieval to find an initial set of most relevant documents, then choose the top

k ranked documents as the most relevant, and finally to do relevance feedback under this

assumption [83].
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2.6 Summary and Conclusions

This chapter discussed Clustering along with basic clustering algorithms and few

similarity methods. The chapter then presents the Stream-Dashboard framework and it’s

components like RINOStreams and TRACER. The chapter then discussed Topic Modeling

techniques PLSI, LDA, Online LDA etc. The chapter then presented sentiment analysis, and

relevance feedback to help the Compartmentalized Topic Modeling Framework to extract

quality topics.

Latent Dirichlet Allocation (LDA) provides a sophisticated way of extracting topics

from documents but suffers from the fact that it requires multiple passes over the dataset.

The Online LDA with Variational Bayes provides a faster convergence compared to LDA.

However, using Online LDA alone may not be suitable for streaming data. This is because,

streaming data tends to become very diverse and heterogeneous over time, which in-turn

makes pre-defining the number of topics challenging and may result in loss of information.

Sentiment analysis can help understand the changes in the general public’s perspective

regarding a given topic, which can in turn help explain given topic in a better fashion.

Query reformulation helps explore the unknown dimensions or terms of a given topic and

thus narrow the focus or expand a given topic dynamically. Chapter 4 will present a new

framework that uses streaming data to generate topics on the fly or per user queries. The

proposed framework leverages the power of Stream-Dashboard, Topic Modeling, Sentiment

Analysis, and Query Reformulation to extract a set of high quality topics and their trends.
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CHAPTER 3

AFTER-STREAMS: A NEW STREAM CLUSTERING ALGORITHM WITH

ADAPTIVE FORGETTING

In this chapter, we present a new stream clustering algorithm, that we call AFTER-

Streams (Adaptive Forgetting Time-Decay Evolving Robust Stream Clustering Algorithm).

The algorithm employs Adaptive/Dynamic Temporal Decay instead of a constant decay fac-

tor that RINO-Streams [22] uses.

The rest of this chapter is organized as follows. Some definitions are first presented

in Section 3.2, then the equations for incremental updates of the centroid and scale are

presented in Section 3.2.1. Section 3.2.2 discusses the use of Chebyshev bounds to detect

outliers, while merging and splitting clusters are discussed in Section 3.2.3, and the complete

AFTER-Streams algorithm pseudo code is listed in Section 3.2.4. The time and memory

complexities of AFTER-Streams are discussed in Section 3.2.5, and the relation between the

proposed objective function and M-estimators is discussed in Section 3.2.6. Section 3.2.7

shows how AFTER-Streams complies with the requirements of online stream clustering

algorithms. Section 3.2.8 analyzes the differences between AFTER-Streams and the most

competitive stream clustering algorithms from the literature. Finally Section 3.3 presents

our evaluation experiments.

3.1 Problem Statement

Given a data stream X, with new data points xi arriving at time i (or more accu-

rately, sequential/order), we are interested in detecting a set of evolving clusters ζ (i.e. a

clustering model) that reflects the evolving behavior of the data stream, while being robust

to outliers. Each cluster represents a portion of a the data stream seen so far, where the
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data points in this portion are more similar to each other than data points in other clusters.

Each cluster consists of a set of metrics/properties that distinguish it from other clusters.

Such metrics include a cluster representative (i.e. cluster centroids), scales (i.e. the size of a

cluster’s influence area in terms of temporal and content space). Data streams are charac-

terized by a dynamic nature, where new clusters emerge, old ones may undergo changes in

their metrics (i.e. internal changes), merge together if they become very similar, or split if

they become too general (i.e. external changes). Hence, the classical definition of a cluster

needs to be modified to capture the reality of evolving clusters in a data stream.

Cluster partitions on evolving data streams are often computed based on certain

time intervals. There are three popular models: landmark window, sliding window, and

damped window. In the damped window model, the weight of each data point decreases

exponentially with time t via a fading function f(t) = 2−λ·t, where λ > 0. The higher the

value of λ, the lower the importance of the historical data compared to more recent data.

The overall weight of the data stream is a constant W = v
(∑t=tc

t=0 2−λt
)

= v
1−2−λ

, where tc

is the current time and v denotes the speed of the stream (i.e. the number of points arrived

in one unit time) [38].

In the following sections, we will extend the temporal importance (λ) to become (1)

cluster-specific and (2) adtaive to the speed to the data streams.

3.2 Definitions

In the following, we present the definitions related to AFTER-Streams. We note

that most definition as based on RINO-Streams [22] except for the introduction of a new

temporal scale parameter which will affect all teh other parameter update equations and

the objective functions. We start with viewing a data stream X as consisting of a set of

data points (xi) that are indexed based on the order of their arrival i (that we also call

time stamp or timestamp) , and presented as: x1, x2...., xN , where N is the size of the data

stream and xi is a d-dimensional data record (i.e. xi =
(
x1
i , .., x

d
i

)
). Each cluster i at time

n (i.e. after receiving n points) is defined as follows:
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Figure 3.1: Sample data distribution with content space and temporal space. Dotted vertical
lines show the temporal centroids.

Definition 3.2.1. Cluster: The ith cluster at time n (Ci,n) is defined using two spatial

parameters: a centroid ci,n and a scale σ2
i,n. Figure 3.1 shows the distribution of a sample

dataset in both content space and temporal space. The centroid ci,n and scale σ2
i,n correspond

to the bottom part of the figure. The data stream points may arrive in the order of the

horizontal axis, or a random one. Two additional measures are used to keep track of stream-

specific properties, namely the soft cardinality Wi,n (the sum of the robust weights of the

data points) and the age of the cluster, ai. In addition a temporal scale parameter τ2
i,n

captures the speed of decay in Ci,n with a temporal centroid c′i,n.

The centroid ci,n represents the location of the ith cluster center at any time step

(n), while the scale σ2
i,n represents the size of an influence zone around the centroid, where

data from the stream has landed in the past. Both centroid and scale are affected by a

robust weight function wij (See Definition 2) that is defined for each data point, relative

to each cluster, and that decreases with the distance from the data instance to the cluster

centroid, and also decreases with the timestamp of arrival of the data in the stream [22].

Hence, newer data points would have more impact on the model than older ones, which

allows capturing the evolution of clusters over time. The soft cardinality Wi is the sum

of the robust weights of each data point belonging to the cluster, and is one indicator of the

quality of the cluster: a high cardinality means that the cluster represents a large portion of

the data stream. The age ai is defined as the difference between the current data arrival’s
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timestamp (n) and the time when the cluster was first created. In addition to keeping

track of the cluster creation time, the age is used to compute a grace period amature for

the cluster before it becomes eligible for testing its quality based on the minimum density

threshold δmin, which is an important criterion for cluster survival. Shielding new clusters

from premature deletion serves to prevent deleting clusters that are still in infancy stage [22].

In addition to the centroid ci,n and scale σ2
i,n in content space, the cluster Ci,n also

uses two additional corresponding parameters in temporal space. One is an additional

temporal centroid c′i,n and the other is a temporal scale τ2
i,n. Figure 3.1 (top part) shows

the temporal centroid c′i,n and temporal scale (i.e. influence zone or width) τ2
i,n. In the

process of clustering a new data stream point, both the temporal distance and the distance

in content space are used to assign the robust weight as discussed in the next sections.

Definition 3.2.2. Adaptive Robust Weight: At any given timestamp n (i.e. after the arrival

of data points x1, x2, ..., xn in the stream), the robust weight of the jth data point, arriving

at timestamp j, 1 ≤ j ≤ n, is defined as follows, for the ith cluster, Ci, i = 1, ...,K

wij,n = e
−
(

d2ij

κσ2
i,n

+n−j
τ

)
(3.1)

where τ is an optional application-dependent parameter that controls the desired

time decay or forgetting rate (e−1/τ ) of the old data points (when needed, i.e. τ <∞), and

how much importance is given to newer data points, d2
ij is the distance from the jth data

point to the ith cluster’s centroid ci, σ
2
i,n is the scale of cluster i at timestamp n, and κ is

a tuning constant that can be used for some applications, particularly for data with high

dimensionality [22].

Without the time decay (τ → ∞), the robust weight wij,n is essentially a Welsh

estimator (Table 2.1) as we will show in Section 3.2.6. W-estimators are used to optimize

the scaled residuals (i.e. r2

σ ), hence, the distances are divided by the scale of the distances

as shown in (2.13). Moreover, in many robust estimators, a tuning constant (c) is used

along with the scale, as shown in Table 2.1, thus the total scale is typically set to a constant
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multiplier of MAD [44], i.e. c×MAD, where MAD is the median of the absolute deviations

of distances given in (2.16). However, in the context of data streams, the data point is seen

only once and then discarded; hence, neither the past data nor their distances to the clusters

are kept. We solve this problem by exploiting the fact that for normal data scaled squared

Euclidean distances follow a Chi-Square distribution which variance equal to 2d, where

d is the number of dimensions. Hence, the distances can be normalized by the standard

deviation of a Chi-Square distribution, which is equal to σχ2 =
√

2d (i.e κ =
√

2d) [22].

The second term (e
−(n−j)

τ ) represents a forgetting factor, that causes the weight of

the data point j to decrease geometrically by the value of n − j. Hence a new data (with

j = n) would have a higher weight since the forgetting factor would be close to 1, while

an older data point (with j ≪ n ) would have a lower value for the forgetting factor (i.e.

approaching 0 as n increases), which results in a smaller weight [22].

Assuming that the parameters of the model do not change significantly with every

new point, then each old data point’s weight, and thus its influence on the cluster parameter

estimates, can be easily shown to decrease, after the arrival of each additional new data

point, as follows [22]:

wij,n = e
−1
τ wij,n−1 (3.2)

Thus the time forgetting factor controls the speed of forgetting older data. As

τ → ∞, the time decay rate 1/τ → 0, resulting in a maximal forgetting factor (e
−1
τ → 1),

meaning that no forgetting occurs, and both the oldest and the most recent data would

contribute equally to the parameter estimation [22].

Definition 3.2.3. Temporal Aware Adaptive Robust Weights: At any given timestamp n

(i.e. after the arrival of data points x1, x2, ..., xn in the stream), the content and temporal

space robust weights of the jth data point, arriving at timestamp j, 1 ≤ j ≤ n, is defined as

follows, for the ith cluster, Ci, i = 1, ...,K

wij,n = e
−
(

d2ij

κσ2
i,n

)
(3.3)
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fij,n = e
−
(

η2
ij

ρτ2
i,n

)
(3.4)

where σ2
i,n and τ2

i,n are the scales in content and temporal spaces of cluster i at times-

tamp n respectively. κ and ρ are tuning constants that can be used for some applications,

particularly for data with high dimensionality. η2
ij is a unit temporal distance from the jth

data point to the ith cluster’s temporal centroid c′i

The temporal robust weight fij,n replaces the second term e
−(n−j)

τ from Definition

3.2.2, i.e. a dynamic temporal decay is employed instead of a constant forgetting factor.

Thus, while using a constant forgetting factor, fij,n can be interchangeably replaced with

e
−(n−j)

τ .

Definition 3.2.4. Temporal Aware Sum Of Weights: For the ith cluster, Ci, i = 1, ...,K,

the sum of the robust weights of the data points Wi,n at time n is defined as follows (using

Definition 3.2.3):

Wi.n =

n∑
j=1

wijfij (3.5)

Given that the robust weights decrease with the distance from the respective cluster

centroids of content and temporal spaces, the sum of weights will decrease for an older

cluster, if no new data arrives to land in its influence zones.

Definition 3.2.5. The Clustering Model: The clustering model at time n is defined as

follows:

ζn = C1 ∪ C2 · · · ∪ CK (3.6)

where, Ci = (ci,n, c
′
i,nσ

2
i,n, τ

2
i,n, ai,Wi,n)

Also, c′i,n and τ2
i,n are applicable only when a dynamic temporal decay is employed.

Definition 3.2.6. Temporal Aware Density Optimization Function: After encountering

n data points, we search for a maximum of K cluster centroids ci,n, K cluster temporal

centroids c′i,n, and scales σi,n and τi,n, by optimizing the density objective function:
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max
ci,n,c′i,n,σi,n,τi,n

{
K∑
i=1

δi,n

}
i = 1, ...,K, σ2

i,n > 0 τ2
i,n > 0 (3.7)

where

δi,n =
n∑
j=1

wij,nfij,n
σ2
i,nτ

2
i,n

(3.8)

The robust weights wij,n and fij,n can be considered as the degrees of membership

of the point j in the cluster i in content and temporal spaces respectively. The sum of the

weights Wi.n for each cluster represents the soft cardinality of that cluster in terms of both

the content and temporal spaces.

The scales σi,n and τi,n are related to the size of the influence zone of the cluster (i.e.

all points inside that zone are considered part of the cluster). Hence, a small scale means

that it is a good and compact cluster.

The density of the cluster, δi,n in (3.8), combines these metrics of the cluster, and

hence it increases as the soft cardinality increases and the scale decreases. The advantage

of optimizing the density, which combines the two metrics, is that judging the quality of

the cluster using only the sum of weights (the numerator) is not enough, because a cluster

with a large number of points is not desirable from the point of view of density, unless these

data points are confined within a small influence zone [22].

Note that we added an inequality constraint on the scale in (3.7) to make sure that

it remains greater than zero. Without this constraint, the optimization of the density with

respect to the scale can lead to the scale shrinking to zero. This is because a zero scale would

result in a singleton cluster which is a degenerate optimum of the objective function [22].

3.2.1 Incremental Optimization of the Cluster Density Criterion

Optimizing the density objective function is done using alternating optimization,

where finding each parameter is done by fixing all the other parameters, and the same pro-

cess is repeated for each parameter in an alternating fashion. This is the same optimization

approach used in the Expectation Maximization (EM) algorithm [84].
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The first step is to turn the objective function in (3.7) for each cluster Ci into a

Lagrangian, to include the constraints as follows:

L = δi − λσ2
i − λτ2

i =

n∑
j=1

wij,nfij,n
σ2
i,nτ

2
i,n

− λσ2
i − λτ2

i (3.9)

Now we find the optimal values by first setting the derivative of the Lagrangian with

respect to the centroid to zero while fixing the scale. Then we set the derivative with respect

to scale to zero while fixing the centroid. We need also to check for the Karush-Kuhn-Tucker

conditions to handle the inequality condition on σ2
i,n and τ2

i,n.

Theorem 3.2.1. Temporal Aware Optimal Incremental Centroid Update : Given the pre-

vious centroids, ci,n−1, and assuming that the scales do not change much relative to the

scale that resulted from the previous iteration, the new centroid that optimizes (3.9) after

the arrival of the nth data point is given by:

ci,n =
ci,n−1Wi,n−1 + win,nfin,nxn

Wi,n−1 + win,nfin,n
(3.10)

Proof. The proof can be found in the Appendix (Theorem A.1.4).

The centroid update in (3.10) can be applied to centroids in both the content and

temporal spaces. The first term in the numerator (and the denominator) represents the pre-

vious knowledge about the location of the centroid obtained from the points (x1, .., xn−1).

The second term in the numerator (and denominator) represents the new information ob-

tained from the new data point xn from the both the content perspective and the temporal

perspective.

Theorem 3.2.2. Temporal Aware Optimal Incremental Centroid Update : Given the pre-

vious temporal centroids, c′i,n−1, and assuming that the temporal scales do not change much

relative to the scale that resulted from the previous iteration, the new temporal centroid that

optimizes (3.9) after the arrival of the nth data point at time tn is given by:

55



c′i,n =
c′i,n−1Wi,n−1 + win,nfin,ntn

Wi,n−1 + win,nfin,n
(3.11)

Proof. The proof can be found in the Appendix (Theorem A.1.5).

Theorem 3.2.3. Temporal Aware Optimal Incremental Scale Update: Given the previous

content space scale σ2
i,n−1, the new scales that optimizes (3.7) after the arrival of the nth

data point is given by:

σ2
i,n =

κ
(
σ2
i,n−1Wi,n−1

)
+ win,nfin,nd

2
ij

κ (Wi,n−1 + win,nfin,n)
(3.12)

Proof. The proof can be found in the Appendix (Theorem A.1.6).

Theorem 3.2.4. Temporal Aware Optimal Incremental Scale Update: Given the previous

temporal scale scale τ2
i,n−1, the new scale that optimizes (3.7) after the arrival of the nth

data point is given by:

τ2
i,n =

ρ
(
τ2
i,n−1Wi,n−1

)
+ win,nfin,nη

2
ij

ρ (Wi,n−1 + win,nfin,n)
(3.13)

Proof. The proof can be found in the Appendix (Theorem A.1.7).

Similar to the centroid update equation, the first term in the numerator (and denom-

inator) represents the sum of the contributions of all the previous data points (x1, .., xn−1).

The second term represents the new information obtained from the new data point xn.

3.2.2 Detecting outliers using Chebyshev bounds

Outliers are a common nuisance in raw data sets, and they can be due to many

reasons such as Human error, machine error, or the randomness of a few data points that

follow no cluster. Detecting outliers is a very challenging task in data mining, and is even

more challenging in mining data streams. This is because in stream data mining, the data

points are processed only once, and since there is no control over the flow of data, a data
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point that is flagged as an outlier at the beginning of the data stream might turn out to be

part of a cluster that evolves later in the data stream lifetime [22].

The proposed algorithm, AFTER-Streams, is resistant to outliers because its objec-

tive function is rooted in robust statistics (by virtue of using an objective function that

resists outliers using robust weights) as shown in Section 3.2.6, and not in standard non-

robust estimation methods that make rigid assumptions about the distribution of the data.

An outlier is defined as a data point that does not belong to any of the existing clusters

(i.e. not in their influence zone) and that does not form any cluster with other points. If

the point is determined to be an outlier with respect to all existing clusters, then it will

create a new cluster with the point itself being the centroid. This newly created cluster

will be allowed a grace period, amature, and if after this threshold, it is still weak (it has a

density less than a threshold δmin), then it will be considered an outlying cluster and will

be deleted [22].

In order to tackle outliers, we need to define the notion of a cluster’s influence zone,

which is an area around the centroid, that bounds the normal data inside the cluster.

There exist some upper tail bounds in statistics, that bound the total probability that some

random variable is in the tail of a distribution with some significant value (i.e. far from the

mean) [43]. One of these bounds is the Chebyshev bound [85], which is a tight bound that,

unlike bounds such as the Chernoff bounds for example, relies on no assumptions about the

distribution of the data. The only assumption is that a reliable scale is available, which is

available using AFTER-Streams by virtue of its robust estimation [22].

Definition 3.2.7. Chebyshev Bounds : The Chebyshev bound for a random variable Y in

a distribution with mean µ and standard deviation σ for any real number t > 0, is given by:

Pr {|Y − µ| ≥ tσ} ≤ 1

t2
(3.14)

The Chebyshev inequality can be rearranged as follows:
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Pr
{
|Y − µ|2 ≥ t2σ2

}
≤ 1

t2
(3.15)

For data with d dimensions, the bound can be written as

Pr

{
d∑

m=1

|Ym − µm|2 ≥ t2
d∑

m=1

σ2
m

}
≤ 1

t2
(3.16)

which, in the simple case of σm = σ, becomes

Pr

{
d∑

m=1

|Ym − µm|2 ≥ t2.d.σ2

}
≤ 1

t2
(3.17)

The Chebyshev bound allows us to design an outlyingness test for any new data point

with respect to cluster Ci with significance probability 1/t2. The rearranged Chebyshev

inequality in (3.15) can be applied directly on the robust weight as follows [22,43]:

Pr

{
e
−|Y−µ|2

κσ2 ≤ e
−t2
κ

}
≤ 1

t2
=⇒ Pr

{
wij ≤ e

−t2
κ

}
≤ 1

t2
, (3.18)

which means that if the robust weight wij of data point j with respect to cluster Ci

is less than the constant value of e
−t2

2 , then point j is considered an outlier with respect to

cluster Ci with a significance probability of 1
t2

. This means that the probability that a good

data point from that cluster gets incorrectly labeled as outlier (because its robust weight

wij ≤ e
−t2
κ ) is less than 1

t2
. This constitutes an error bound on the uncertainty of detecting

outliers in the data stream [22].

The notion of an outlier can be formalized using the following definition [22]:

Definition 3.2.8. Outlier with Chebyshev probability 1
t2

: the data point xj is an outlier

with respect to cluster Ci at time n with a significance probability of 1
t2

if [22, 43]:

wij,n < e
−t2
κ (3.19)

From equations (3.3) and (3.4), Definition (3.2.8) can be extended to data in tem-

poral space using the following definition:
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Definition 3.2.9. Outlier in content and temporal spaces with Chebyshev probability 1
t2

: the

data point xj is an outlier with respect to cluster Ci at time n with a significance probability

of 1
t2

if:

wij,nfij,n < e
−t2
κρ (3.20)

3.2.3 Robust Cluster merging and splitting

The detected clusters in a real data stream typically evolve over time, thus besides

giving more importance to newer data points, the online clustering algorithm should detect

when two or more clusters become more similar to each other in order to merge them.

Similarly, a cluster can become too diffuse and split into one or more sub-clusters [22].

To handle the merging of two clusters, AFTER-Streams uses the Chebyshev bound

to design a compatibility test for merging clusters Ci and Ck. This is done by checking

their mutual Chebyshev bounds (i.e. testing if each cluster’s centroid can be considered

as an outlier with respect to the other cluster) with significance probability 1
t2

: Given the

distance dik between the centroids ci and ck, then using (3.15), the clusters are merged if

none of them is found to be an outlier with respect to the other cluster, i.e. [22],

d2
ik < t2σ2

i & d2
ik < t2σ2

k (3.21)

which means that the centroid ci is not an outlier, and thus is inside the influence

zone of cluster Cj with significance probability equal to 1− 1
t2

,. The same condition applies to

centroid cj with respect to cluster Ci. Equations (3.18) and (3.21) mean that the probability

of incorrectly merging clusters is less than 1
t2

. This constitutes an error bound on the

uncertainty of merging clusters.

When clusters Ci and Ck are merged, the centroid of the new cluster becomes a

weighted average of the two centroids as follows [22],

cnew,n =
ci,nWi,n + ck,nWk,n

Wi,n +Wk,n
, (3.22)
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and the new scale is also a weighted average as follows,

σ2
new,n =

σ2
i,nWi,n + σ2

k,nWk,n

Wi,n +Wk,n
(3.23)

Equations (3.22) and (3.23) preserve the optimal equations for the centroid and

scale respectively, given the combination of points that contributed to each cluster before

merging them, with only one assumption: that the old weights of the data points in the

respective clusters are not very different from the new weights in the new merged clusters,

an assumption that is reasonable given the similarity between the two clusters. Similarly

the temporal scales can be merged as [22]:

τ2
new,n =

τ2
i,nWi,n + τ2

k,nWk,n

Wi,n +Wk,n
(3.24)

The new age, anew, for the new cluster is set as the maximum of the ages, ai and

ak, of the merged clusters , i.e. anew = max(ai, ak), while the new sum of weights (soft

cardinality) is simply the sum of the old sum of weights of the two merged clusters Ci and

Ck:, i.e. Wnew = Wi +Wk.

Splitting clusters in AFTER-Streams occurs naturally and does not require any

special treatment. A cluster split occurs when points from one cluster bifurcate by evolving

in two or more different directions, and hence their weights with respect to the original

centroid would start decreasing to the point where they start being considered outliers,

which continues until they form their own new clusters [22].

3.2.4 The Complete AFTER-Streams Algorithm

Following the update equations (3.12) and (3.10), AFTER-Streams updates the clus-

ter parameters with the arrival of a new non-outlying data point incrementally, and keeps

as a summary of the data stream only the centroids (ci,n, c′i,n), scales (σ2
i,n, τ2

i,n), sum of

weights (Wi,n =
∑n

j=1wij,nfij,n) and the age ai for each cluster. Moreover, a test is added

to eliminate weak clusters whose density (δi,n falls below a minimum threshold (δmin) and

are mature enough (i.e. ai > amature). The complete steps of AFTER-Streams are listed in

Algorithm 3.1.
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The input parameters to AFTER-Streams include the maximum number of clusters

Kmax which is a higher bound on the allowed number of clusters and is needed to control

the memory space used to store the cluster models, the initial scale σ0 which is assigned

to the newly created cluster, the density threshold δmin which is used to ensure that only

good clusters with high density are kept, the maturity age amature which provides a newly

created cluster with a grace period before testing its density quality. An initial temporal

scale τ0, if a dynamic temporal decay is employed, else the time decay τ which sets a

constant forgetting factor e
−1
τ is used. This controls the decay of the data points’ weights

over time. A Chebyshev bound constant t from equations (3.18) and (3.21) to set the

significance probabilities of the test is also used.

3.2.5 Complexity

3.2.5.1 Time Complexity

For each new data point, AFTER-Streams computes the distance and the weights

with respect to all the clusters in the clustering model ζ, which is done in linear steps.

Since the clustering model is updated incrementally, nothing is recomputed from scratch,

and hence the computational complexity of AFTER-Streams is O(NK2) where N is the size

of the data stream and K is the highest number of clusters throughout the stream clustering

(which is a very small value compared to the size of the data stream, N). Note that the K2

term is due to the pairwise-cluster compatibility tests for merging, and could be reduced to

K by performing these pairwise tests only after every K data points have arrived instead

of after each data point. Another way to reduce the complexity is by checking the pairwise

compatibility only within local neighborhoods confined to surroundings of the cluster in

which the current data point has landed.

3.2.5.2 Memory Requirements

The memory requirements of AFTER-Streams are linear with the number of clusters,

because at any point in time, only the cluster model properties (ci, σi, τi,Wi, ai) are kept in
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Algorithm 3.1 AFTER-Streams

Input: Maximum number of clusters (Kmax), Initial scales (σ0, τ0), density threshold
(δmin), maturity age (amature)

Output: Cluster model after n points ζ = C1 ∪ C2.... ∪ CK , where Ci =
(ci,n, c

′
i,n, σ

2
i,n, τ

2
i,n, ai,Wi,n)

1: K = 0
2: for n = 1 to K do
3: Compute the distances: d2

in, η2
in, and robust weights: win,n, fin,n between xn and

clusters Ci, ∀i = 1, ..,K {single pass over the data stream of size N}
4: if K < Kmax And xn is an outlier with respect to all clusters in ζ (Definition 4)

then
5: K = K + 1 {Create a new cluster centered on xn}
6: cK = xn {centroid}
7: σK = σ0 and τK = τ0 {initial scales}
8: aK = 0 {initial age}
9: WK = 1 {initial sum of robust weights}

10: δK = 1
σ2

0τ
2
0
{initial density}

11: end if
12: for all Clusters (Ci, where i = 1, ..,K) do
13: if xn is NOT an outlier with respect to cluster i then
14: Update ci,n using equation (3.10)

15: Update c′i,n as: c′i,n =
c′i,n−1Wi,n−1+win,nfin,ntn

Wi,n−1+win,nfin,n

16: Update σ2
i,n using equation (3.12)

17: Update τ2
i,n as: τ2

i,n =
ρ(τ2

i,n−1Wi,n−1)+win,nfin,nη
2
ij

ρ(Wi,n−1+win,nfin,n)

18: Update sum of weights using equation (3.5)
19: Update density using equation (3.8)
20: end if
21: Update age ai = ai + 1
22: end for
23: for all Pairs of clusters Ci&Ck, where i, k = 1, ..,K do
24: if Ci and Ck are Chebyshev-compatible using equation (3.21) then
25: Merge clusters Ci and Ck using equations (3.22) and (3.23)
26: end if
27: end for
28: for all Clusters (Ci, where i = 1, ..,K) do
29: if (ai > amature) & (δi < δmin) then
30: ζ = ζ − Ci {remove mature clusters that have low density}
31: K = K − 1
32: end if
33: end for
34: end for
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addition to the most recent data point. The memory requirements at time n (i.e. after the

arrival of n data points in the stream) can be written as

M(n) = (4 + d)×B ×Kn, (3.25)

where B is the number of bytes needed to store one value (for simplicity, we assume

that all cluster model properties are stored using the same number of bytes), d is the number

of dimensions in the data, and Kn is the number of clusters at time n. The first term in

(3.25) consists of the three scalar values (σi,Wi, ai) and the d dimensions of each centroid

vector ci. The maximum memory requirements are therefore controlled by the number of

clusters, Kn, at time stamp n.

Since the maximum number of clusters is limited by Kmax, Kn ≤ Kmax, hence

M(n) ≤ (4 + d)×B ×Kmax, (3.26)

This gives an upper bound on the memory requirements at any point throughout the

stream, and can be configured depending on the application. Furthermore, a limit on the

number of time stamps a valid cluster is stored can be used to further reduce the memory

requirements.

Theorem 3.2.5. For a temporal aware cluster Ci (with dynamic temporal decay), which

was valid at time step t, it is stored for a maximum of m time steps, where m is bounded

as:

m > amature and δi,m ≤ δmin (3.27)

When using a dynamic temporal decay, the temporal information is incorporated

into the density function (see Equation (3.8)). A valid cluster may remain valid when the

age of the cluster Ci at time step m, is less than the maturity age amature. If the cluster age

exceeds the maturity age, the cluster is removed if the density of the cluster δi,m ≤ δmin.

63



Theorem 3.2.6. For a cluster Ci (with constant forgetting factor τ), which was valid at

time step t, it is stored for a maximum of m time steps if it was inactive, where m is bounded

as:

m > −τ ln(
δmin
δi,t

) (3.28)

Proof. The proof can be found in the Appendix Theorem (A.1.3).

This sets a horizon of life on any valid cluster that depends not only on δmin, but

also on the initial strength δi,t of the cluster before new data stopped arriving to the cluster,

and depending on the decay rate τ . Depending on the application, one may want to set

m ∈ [mmin,mmax], which makes it possible to choose the values of δmin and τ to control the

survival horizon limits for a cluster. Indirectly, this can also control the maximum capacity

of the clustering model, and thus the memory requirements. A small m leans toward newer

clusters, and will quickly eliminate older ones.

3.2.6 The objective function as a robust M-estimator and W-estimator

The objective function in (3.7) can be written as an M-estimator (See (2.11)), as

follows, where for simplicity, we ignore the decay term.

max
ci,σ2

i

J =

N∑
j=1

K∑
i=1

ρ(r2
ij ; ci, σ

2
i )

 (3.29)

where

r2
ij =

−d2
ij

κσ2
i

=
−(xj − ci)t(xj − ci)

κσ2
i

(3.30)

ρ(r2
ij ; ci, σ

2
i ) =

e

−d2ij
κσ2
i

σ2
i

(3.31)

The parameters can be estimated by seeking the null points of the gradient as follows

∂J

∂ci
=

N∑
j=1

ψ(r2
ij , ci, σ

2
i ) = 0 (3.32)
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where

ψ(r2
ij , ci, σ

2
i ) =

∂ρ(r2
ij ,ci,σ

2
i )

∂ci

=
∂ρ(r2

ij ,ci,σ
2
i )

∂rij
× ∂rij

∂ci

=
−2rij
κσ2
i
× e

−r2ij

σ2
i
× −1

σ2
i

= constant× rij × e−r
2
ij

(3.33)

We can further interpret the objective function as a W-estimator by extracting the

robust weight, in a similar fashion to (2.14)

w(rij) =
ψ(rij)
rij

= constant× e−r
2
ij

(3.34)

which has the form of a Welsh estimator (see Table 2.1) [44].

Theoretical Resistance Properties

Having established that the clustering process performs robust estimation through

the stream on multiple clusters, we conclude that the cluster centroid estimation benefits

from the same advantages as the Welsch estimator in terms of its resistance to outliers. The

Influence Curve (IC) [42] approach can be used to further illustrate resistance to outliers.

The Influence curve (IC) tells us how an infinitesimal proportion of contamination affects the

estimate in large samples, and has the same shape as the ψ-function (i.e.IC = (constant×

rij×e−r
2
ij ) which is shown in Figure 3.2. This curve summarizes the influence of data points

with given residuals on the resulting estimate. It can be inferred from IC that the influence

is asymptotically zero at locations corresponding to infinite residuals, meaning that gross

outliers have almost no effect on the estimate. Also, most importantly, at any point, the

influence is bounded. This constitutes the most important resistance property of any robust

estimator.
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Figure 3.2: Influence Curve

3.2.7 Compliance with data stream clustering requirements

Below, we show how AFTER-Streams meets all the requirements of data stream

clustering algorithms.

1. Compactness of representation:

Each cluster is represented using four components: The centroid ci in content space

which is a vector of size equal to the dimensionality of data and the temporal centroid

c′i, the scales σi and τi, the sum of weights Wi and the age ai. Hence, the total

memory requirement of the clustering model is given in (3.25), which is a very compact

representation compared to the original data stream (Section 3.2.5.2).

2. Fast processing of new data points:

The second requirement is also met since each new data point is compared against the

existing clusters in a linear time O(K), and is thereafter discarded (Section 3.2.5.1).

3. Fast handling of outliers:

If the data point was determined to be an outlier (see Definition 7), then it is used to

create a new cluster and this verification is also done in linear time with the number

of clusters (Section 3.2.5.1).

4. Integration of offline and online data:

The fourth requirement suggests the ability to store the clustering model offline and

to access it easily, which is also met in AFTER-Streams because the clustering model
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is very compact and can be stored in main memory. However, if needed, the clustering

model at different time steps can also be stored offline in secondary memory, and can

be easily accessed.

5. Making no assumptions about the number of clusters:

AFTER-Streams does not assume a number of clusters in advance. Instead, it only

requires a maximum number of clusters which is also used to control the memory

space used (Section 3.2.5.2).

6. Handling evolution:

AFTER-Streams handles the evolution of data by the very definition of its dynamic

robust weights in (3.3), which uses a dynamic forgetting mechanism to give more

emphasis to the newer data points, thus allowing adaptation to the changing nature

of the data stream, and allowing old inactive clusters to disappear and new clusters

to emerge.

3.2.8 Comparison with related work

Table (3.1) compares the proposed online clustering algorithm, AFTER-Streams,

compared to some of the competing algorithms as discussed in Section 2.1, while Table

(3.2b) explains the meaning of the symbols used in Table (3.1). The following conclusions

can be drawn from the comparison:

• All algorithms provide an explicit way to detect outliers with the exception of CluS-

tream, since it maintains a constant number of micro-clusters. Hence, it might misla-

bel outliers as valid micro-clusters.

• Both AFTER-Streams and TRAC-Streams have a low complexity (which depends on

the number of points (N) as well the number of clusters (K)). On the other hand,

the remaining algorithms have a complexity that includes the number of data points

(N) as well as the number of micro-clusters (MC), which is typically a much higher

value than the number of regular clusters (K).
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TABLE 3.1: Comparison between AFTER-Streams and most related stream clustering
algorithms

(a) Comparison

Property RINO-

Streams

DenStream CluStream TRAC-

Streams

StreamKM++ AFTER-Streams

Detecting Outliers X X × X × X
Complexity of online

clustering

O(NK2) O(NMC) O(NM2
C) O(NK2) O(dNm) O(NK2)

Complexity of offline

clustering

× O(M2
C) O(KMCd) × × ×

Requiring specification of No.

Clusters

× × X × × ×

Requiring an offline step × yes (upon

request)

yes (upon

request)

× × ×

Memory requirements (1d+ 3) ∗K (2d+ 1) ∗MC S ∗MC ∗ (2d+3) (1d+ 3) ∗K Θ(dm log(N/m)) (1d+ 4) ∗K
Needing special Initialization

(typically Batch clustering)

× Run DBSCAN

on initial set of

pts.

Run K-Means

on initial set of

pts.

× Needs

initialization via

coreset size.

×

Built-in robustness to noise X × × X × X
Built-in forgetting mechanism

for old data

X X × X × X

Adaptive Forgetting × × × × × X
Reference [22] [86] [87] [43] [88] Our Proposed Algorithm

Symbol Meaning

K No. of clusters
N No. of data points
MC No. of micro-clusters (or grids in the case of D-Stream) (MC ≫ K)
S No. of snapshots
d No. of dimensions
m No. of data points in the coreset

(b) Symbol meanings

• CluStream is the only algorithm that requires specifying the number of clusters in

advance.

• The space costs of each cluster in AFTER-Streams (1d + 4) is small compared to

the other algorithms. Moreover, the number of cluster they maintain (C) is much

smaller than the number of micro-clusters (MC) which is maintained by the rest of

the algorithms. Hence, the memory requirement for AFTER-Streams and TRAC-

Streams is small.

• AFTER-Streams and TRAC-Streams are less sensitive to the model assumption and

data distributions, thanks to the use of robust statistics in their objective functions
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via the robust weights.

• AFTER-Streams is a direct descendant of RINO-Streams [22] with the addition of

dynamic, cluster-specific temporal scales to adapt the forgetting to each cluster’s

data arrival speed.

3.3 AFTER-Streams Experiments

In this section, we evaluate the performance of AFTER-Streams. The experimen-

tal settings are presented in Section 3.3.2, then we present a sensitivity analysis of the

performance of AFTER-Streams with respect to the data stream properties as well as the

AFTER-Streams parameter values in Section 3.3.3. We will present thorough compar-

isons between AFTER-Streams, RINO-Streams [89], CluStream [87], DenStream [86] and

StreamKM++ [88] on synthetic and real datasets in Sections 3.3.4 and 3.3.5, respectively.

The effectiveness of handling cluster splitting and merging is tested in Section 3.3.6.

Overall, our sensitivity experiments encompass close to a 1000 settings and 8640

synthetic data streams, in addition to real data streams with the biggest data stream con-

sisting of around 500,000 data points (KDD Cup 99). In Section 3.3.3, we present the

ANOVA tables used to analyze AFTER-Streams’ performance sensitivity with respect to

the properties of the datasets as well as the parameter inputs.

3.3.1 Evaluation Plan

The research contributions for AFTER-Streams can be outlined as shown in Table

3.2.
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TABLE 3.2

Summary of Research Goals and Evaluation Plan

Framework

Component

Goal Methodology Research

Questions

Validation

Metrics

Evaluation

Section

Data Baseline

Clustering

evolving data

streams

Adapt to

different

evolving cluster

data arrival

speeds

Dynamic

Forgetting

(Chapter 3)

RQ1.1,

RQ1.2,

RQ1.3

Internal and

External

cluster

validation

metrics, e.g.

F1-Score,

DB-Index

etc.

Sec 3.3 Synthetic,

TREC,

KDDCUP99

(Sec 3.3.2.2)

RINO-

Streams [22],

CluStream [87],

DenStream

[86],

StreamKM++

[88]

3.3.1.1 Research Questions

The goal of AFTER-Streams is to cluster data streams as described in Section 3.1.

Solving the following research problems will show how the AFTER-Streams is an effective

algorithm for clustering data streams.

Research Question 1.1: Which parameters of the RBF data stream generator show a

significant effect on AFTER-Streams performance?

Research Question 1.2: Which parameters of the AFTER-Streams algorithm show a

significant effect on its performance?

Research Question 1.3: Does the AFTER-Streams algorithm perform better than the

baseline algorithms.

3.3.2 Experimental Settings

3.3.2.1 Evaluating Data Stream Clustering Results

Continuously validating the clustering model in live data streams is much more

challenging compared to traditional clustering models for several reasons. First, the data

points are viewed only once and then discarded, and the clustering model is just a summary

of those data points. Hence, trying to use traditional validation metrics (e.g. purity) would
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be impossible. Second, the clustering model is evolving over time, so a cluster at time

t1 might shift to a new location at time t2. And finally, the clustering model cannot be

predicted because the data stream is infinite, hence no realistic ground truth can be created.

For these reasons, in this work, we will follow two approaches to evaluate a data

stream [22]:

(i) we find the evaluation metrics at predefined periods of time, and

(ii) we propose performing the validation hand in hand with detecting the clusters,

and constructing behavioral profiles of clusters over time, that provide some form of online

real-time validation.

3.3.2.2 Datasets

Synthetic Data Streams To emulate an infinite data stream in a typical real world

scenario, we used the random Radial Basis Function (RBF) data stream generator provided

as part of the Massive Online Analysis (MOA) stream data benchmarking framework 1 [2].

MOA is an open source framework designed to analyze massive streams of data. Using

the data stream generators allows us to control all the aspects of a data stream to mimic

realistic data streams. For example, we can control the frequency of merging clusters. RBF

generates a continuous data stream following a normally distributed hypersphere. The

parameters that control the RBF generator and their descriptions are listed in Table 3.3.

Real Datasets We will use several real text datasets and one network activity dataset.

The real text datasets are provided with the CLUTO toolkit2 [90] and are derived from the

TREC collection3. The KDD Cup 99 dataset4 represents network activity traces, collected

over a period of nine weeks of normal activity interspersed with various attacks and intru-

sions simulated in a military network environment . We used the training dataset with the

33 continuous features. There are a total of 23 different attacks that fall into four main

1http://moa.cms.waikato.ac.nz/
2http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto
3http://trec.nist.gov
4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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TABLE 3.3: RBF Data Stream Generator Parameters [2].

Parameter Description

Stream Length Number of data points generated in the data stream
No. Clusters Number of random centroids

No. Dimensions Number of Dimensions
No. Clusters Range Deviation of the number of centroids in the model

Radii The average radii of the centroids in the model
Density Range Offset of the average weight a cluster has. A value of 0

means all clusters contain the same amount of points
Speed Kernels move a predefined distance of 0.01 every X points

(X is the speed)
Noise Noise level

Event Frequency Frequency of events taking place (i.e. merging/splitting or
emerging/disappearance)

TABLE 3.4: Real Text and Network Intrusion Detection Data Set Descriptions

Dataset Source Num.
Points

Num.
Dimen-
sions

Num.
Classes

Mean
Class
Size

Balance

tr11 TREC 414 6424 9 46 0.0455
tr12 TREC 313 5799 8 39 0.0968
tr23 TREC 204 5831 6 34 0.0659
tr31 TREC 927 10127 7 132 0.0057
tr41 TREC 878 7453 10 87 0.037
tr45 TREC 690 8261 10 69 0.0875

KDD CUP 99 KDD CUP 99 494021 33 23 21479 7e-06

categories.

The properties of the real datasets are listed in Table 3.4. The balance is the ratio

of the smallest cluster (in terms of number of points) to the largest cluster.

3.3.2.3 Evaluation Metrics

As discussed in Section 3.3.2.1, evaluating data stream clusters is done at predefined

periods of time since the data stream keeps evolving over time, hence, the final clustering

model does not necessarily represent earlier data points. Hence, we performed the evaluation

every 10% of the stream length, and then we computed the average, minimum and maximum

metric values.
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TABLE 3.5: RBF Data Stream Generator Parameters

Parameter Range of values

Stream Length 1000, 5000, 10000
No. Clusters 20, 60, 80, 100

No. Dimensions 2, 5, 10
No. Clusters Range 5

Radii 0.05, 0.1
Density Range 0 , 0.1

Speed 500
Noise 0, 0.1

Event Frequency 100, 500, 1000

We compared the results using the following two internal validity metrics: Silhouette

index [44] and Davies-Bouldin index [91]. In addition to the internal validity metrics, since

class or cluster labels are provided with the data sets, we computed four external validity

metrics: V-measure [92], Fowlkes-Mallows Index [93], Recall [94] and F1 Score [94].

3.3.2.4 Experimental Setup

For each of the baseline algorithms, we varied the parameter values and found the

best results for each dataset, then we calculated the average performance over all the

datasets. To ensure a fair and realistic comparison, we initialized the algorithms (with

the exception of AFTER-Streams since it is not required) with the first data points, i.e. the

centroids of the first K clusters were set to the values of the first K data points.

AFTER-Streams The parameters, along with their descriptions and values, are shown

in Table 3.6. There is a total of 192 parameter settings.

Baseline Algorithm: RINO-Streams The parameters for RINO-Streams [22] are ex-

actly the same as AFTER-Streams, except that the initial temporal scale τ0 is considered

as the forgetting lifetime τ
|X| . The parameters, along with their descriptions and values, are

shown in Table 3.6. There is a total of 192 parameter settings.
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TABLE 3.6: AFTER-Streams Parameter Values

Parameter Description Values

Kmax
KG

The maximum number of clusters allowed
(Kmax) as a percentage of the real number of

clusters in the ground truth (KG).

50%, 100%, 150%

σ0 Initial Scale 0.05, 0.1

τ0 Intial Temporal Scale (or optional forgetting
lifetime (τ) as a fraction of the data stream

length |X|)

0.01 , 0.1, 0.2

1
toutlier

Chebyshev constant for outlier detection 0.05, 0.1
1

tmerging
Chebyshev constant for the cluster merging test 0.05, 0.1

amature
|X| The maturity age (amature) as a percentage of

the data stream length (|X|)
1%, 2%

TABLE 3.7: CluStream Parameters

Parameter Description Values

Kmacro
KG

The number of macro clusters (Kmacro) as a
percentage of the real number of clusters in the

ground-truth (KG).

50%, 100%, 150%

Kmicro×Kmacro
KG

The number of micro clusters (Kmicro) as a
percentage of the number of macro clusters

(Kmacro)

50%, 100%

trecency Threshold used to delete micro clusters when a
new micro cluster is created

10, 20

Baseline Algorithm: CluStream The implementation of CluStream [87], provided by

the MOA framework [2], was used in these experiments. CluStream incrementally updates

a set of micro-clusters and generates the final clusters (i.e. macro-clusters) using K-means.

The number of micro-clusters is usually higher than the final number of generated macro-

clusters. In contrast, AFTER-Streams and RINO-Streams incrementally maintain the final

clusters, which are considered the equivalent of CluStream’s resulting macro clusters. Hence,

to make a fair comparison, the evaluation metrics for CluStream are generated from the

macro-clusters that are found using K-means at the end of each evaluation time period.

The CluStream parameters, along with their description and values, are shown in Table 3.7
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TABLE 3.8: DenStream Parameters

Parameter Description Values

ε The epsilon neighborhood which is the
maximal radius of micro-clusters.

0.02, 0.1

µ The minimum points with which a
core-micro-cluster needs to be created.

1, 10

β A multiplier for µ to detect outlier
micro-clusters.

0.05, 0.2

λ The decay constant. 0.2, 0.5
i
|X| The number of points to use for initialization as

a percentage of the data stream length (|X|).
0.5%, 1%

Xspeed The number of incoming points per time unit. 1, 1000

TABLE 3.9: StreamKM++ Parameters

Parameter Description Values

K
KG

The number of clusters (K) as a percentage of
the real number of clusters in the ground truth

(KG).

50%, 100%,
150%

s
|X| The size of the coreset as a percentage of the

data stream length (|X|).
5%, 10%,

20%

Baseline Algorithm: DenStream The implementation of DenStream [86], provided by

the MOA framework [2], was used in these experiments. DenStream requires multiple input

parameters: the range of the window, epsilon neighborhood which is the maximal radius of

micro-clusters, minimum points core-micro-cluster needs to be created with, decay constant,

processing speed etc. These parameters, along with their description and values, are shown

in Table 3.8.

Baseline Algorithm: StreamKM++ The implementation of StreamKM++ [88], pro-

vided by the MOA framework [2], was used in these experiments. StreamKM++ requires

two input parameters: the number of clusters and size of coreset. These parameters, along

with their description and values, are shown in Table 3.9.
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3.3.3 Sensitivity Analysis

In this section, we will analyze AFTER-Streams’ performance sensitivity with re-

spect to the properties of the datasets as well as the parameter inputs to AFTER-Streams.

We will use the synthetic datasets generated by the RBF data stream generator. The values

of the different parameters controlled by the RBF generator are shown in Table 3.5. There

are a total of 864 different experimental settings, and for each one of them, we generated

10 datasets. Hence, we have 8640 different datasets. We used the values in Table 3.6 for

AFTER-Streams which resulted in 144 different settings. For each of the datasets we found

the average over all 144 different AFTER-Stream settings, and then we found the average

for every 10 datasets that have the same RBF data stream generator settings. To evaluate

the quality of the clusters, we calculated the Davies-Bouldin index, Silhouette score and

other metrics as shown in Figure 3.4.

3.3.3.1 Sensitivity based on the data stream properties

In this section, we will evaluate how AFTER-Streams behaves under different data

stream conditions. We analyzed the results using an analysis of variance test (ANOVA) with

the hypothesis that the RBF data stream generator parameters do not affect the quality of

AFTER-Streams.

Hypothesis 1.1: From RQ1.1 (Sec 3.3.1.1), the RBF stream parameters do not have a

significant effect on the quality of the clusters generated by AFTER-Streams.

If the p-value is less than α (i.e. 0.05) then the factor (i.e. one of the RBF stream

parameters) has a significant effect on the quality of the clusters generated by AFTER-

Streams.

The results of performing ANOVA with α = 0.05 are shown in Table (3.11) for

Davies-Bouldin, Silhouette index, and V-Measure (all rounded to two decimal points). The

results show that the density range and the event frequency do not have a significant effect

on the performance of AFTER-Streams based on all three quality measures. Moreover, the
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radii of the clusters and the dimensionality of the data stream do not affect the Davies-

Bouldin index. The rest of the RBF stream parameters have a significant effect on AFTER-

Streams.

To further analyze the effect of the data stream properties on the performance of

AFTER-Streams, we plotted the cluster quality, reflected by the metrics (as shown in Figure

3.4) versus the different values of seven of the parameters controlling the generation of the

continuous RBF stream. The results can be summarized as follows:

• Density Range and Event Frequency do not significantly affect the quality of the

clusters. Only Davies-Bouldin metric seems be have been affected by Density Range.

• The dimensionality and the cluster radius has seem to be having an affect on the

metrics.

• The rest of the RBF stream parameters also affect the quality of the clusters generated

by AFTER-Streams.

3.3.3.2 Sensitivity based on AFTER-Streams parameters

In this section, we will analyze the effect of using different parameter values for

AFTER-Streams on the quality of the clustering models.

ANOVA

We analyzed the results using the analysis of variance test (ANOVA) with the hy-

pothesis that AFTER-Streams’ parameter settings do not affect the quality of the clustering

model.

Hypothesis 1.2: From RQ1.2 (Sec 3.3.1.1), the AFTER-Streams parameters do not have

a significant effect on the quality of the clusters generated.

If the p-value is less than α (i.e. 0.05) then the factor (i.e. one of the AFTER-

Streams parameters) has a significant effect on the quality of the clusters generated.
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The results are presented in Table (3.15). The results show that most AFTER-

Streams’ parameters have a significant effect on the quality of the clustering model. Only

a few of the parameters show no significant effect on some of the quality metrics, namely,

tmerge, toutlier and amature. The results can be summarized as follows:

• The Chebyshev constant (tmerge), used for merging (Section 3.2.3), does not have a

significant effect on Davies-Bouldin and Silhouette scores.

• The Chebyshev constant (toutlier), used to detect outliers (Section 3.2.2), and the

minimum sum of weights (Wmin) are inversely proportional to the quality of the

clustering model.

• When using dynamic temporal scale, there is not significant effect of the initial tem-

poral scale on the cluster quality as the clustering model automatically adjusts to the

temporal distribution of the data points. RINO-Streams’ forgetting factor (τ), affects

the speed of decay of the data point weight (Section 3.2), is directly proportional to

the quality of the clustering model. A lower value, emphasizing only newer clusters,

generally leads to lower overall quality.

• The initial scale (σ0) has a directly proportional to the quality of the clustering model

based on Davies-Bouldin and Silhouette Index.

• The maturity age (amature), which provides a grace period for outliers (Section 3.2.2),

shows no significant effect on the quality metrics.

• The maximum number of clusters allowed has a significant effect, it generates best

results if it was closer to the real number of clusters.

Pareto Frontier

An important and difficult problem in data mining in general, is to find the best

parameter values to maximize the quality of the model. However, analyzing the effect of the

AFTER-Streams parameters on the quality of the clustering model showed that different
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Figure 3.3: AFTER-Streams: Pareto Frontier

TABLE 3.10: MOA RBF Stream Generator Parameters’ Significance p-values (Synthetic
Data)

Parameter F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

Event Frequency 0.877 0.855 0.877 0.911 0.973 0.894
No. Clusters 0.000 0.000 0.000 0.000 0.000 0.000

Noise 0.000 0.000 0.000 0.000 0.000 0.000
Radii 0.000 0.000 0.000 0.000 0.000 0.000

No. Dimensions 0.000 0.000 0.000 0.000 0.000 0.000
Density Range 0.707 0.697 0.707 0.972 0.000 0.455
Random Seed 0.000 0.000 0.000 0.000 0.000 0.000

values can improve or reduce the quality of the generated clusters. Some, like maximum

number of allowed clusters, can even have different effect on different measures of quality.

Hence, there are trade-offs that we need to consider when choosing the parameter values.

To solve this problem, we perform a Pareto efficiency analysis [95]. Pareto efficiency

deals with the problem of trade-offs between multiple solutions to a problem and it selects

a set of efficient solutions which can not be further improved. These are called the Pareto

Frontier and are shown in Figure 3.3 as red points. Analyzing the Pareto Frontier points

shows that some parameters generate the best results when they are set to a specific value

(e.g. Kmax
KG

) while other parameters may need a specific combination with other parameters

(e.g. σ0).
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TABLE 3.11: MOA RBF Stream Generator Parameters’ Effect Size (Synthetic Data)

Parameter F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

Event Frequency 0.003 0.003 0.003 0.003 0.002 0.003
No. Clusters 0.689 0.726 0.689 0.702 0.208 0.718

Noise 0.032 0.041 0.032 0.103 0.125 0.091
Radii 0.23 0.227 0.23 0.259 0.288 0.294

No. Dimensions 6.645 5.808 6.645 4.403 2.077 4.388
Density Range 0.002 0.002 0.002 0.004 0.028 0.0
Random Seed 0.215 0.2 0.215 0.311 0.391 0.112

TABLE 3.12: AFTER-Streams compared to RINO-Streams, CluStream, DenStream,
StreamKM++ (Synthetic Data, p-values)

AFTER-Streams vs F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

RINOStreams 0.000 0.000 0.000 0.000 0.000 0.000
CluStream 0.000 0.000 0.000 0.000 0.000 0.000
DenStream 0.000 0.000 0.000 0.000 0.000 0.000

StreamKM++ 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 3.13: AFTER-Streams compared to RINO-Streams, CluStream, DenStream,
StreamKM++ (Synthetic Data, Effect Size)

AFTER-Streams vs F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

RINOStreams 0.045 0.029 0.045 0.024 -0.047 0.022
CluStream 1.587 0.592 1.457 2.344 0.253 1.405
DenStream 1.861 0.711 1.248 0.693 0.470 -0.336

StreamKM++ 0.585 -1.050 -0.570 0.653 0.953 0.764

TABLE 3.14: AFTER-Streams Parameters’ Significance p-values (Synthetic Data)

Parameter F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

Kmax 0.000 0.000 0.000 0.000 0.000 0.000
σ0 0.000 0.000 0.000 0.000 0.000 0.000
τ0 0.695 0.322 0.695 0.020 0.705 0.169
1

toutlier
0.000 0.000 0.000 0.000 0.000 0.000

1
tmerging

0.000 0.000 0.000 0.000 0.424 0.413

amature 0.938 0.912 0.938 0.899 0.206 0.854

80



(a) F1-Score (b) Fowlkes-Mallows Index

(c) Recall (d) V-Measure

(e) Davies-Bouldin Index (f) Silhouette Score

Figure 3.4: AFTER-Streams compared to RINO-Streams, CluStream, DenStream,
StreamKM++

Default Parameter Values

Based on the ANOVA, sensitivity analysis and the Pareto Frontier results discussed

above, we will use the parameter values in Table 3.16, unless stated otherwise, for AFTER-

Streams parameters in the next experiments.

3.3.4 AFTER-Streams Performance (Synthetic Data Streams)

In this section, we present the results obtained from comparing AFTER-Streams

with RINO-Streams, CluStream, DenStream, and StreamKM++ on the synthetic datasets

generated by the RBF stream generator of the MOA framework.
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TABLE 3.15: AFTER-Streams Parameters’ Effect Size (Synthetic Data)

Parameter F1-Score Fowlkes-Mallows Recall V-Measure DB-Index Silhouette

Kmax 0.184 0.254 0.184 0.127 0.429 0.364
σ0 0.577 0.583 0.577 0.761 0.459 0.312
τ0 0.005 0.009 0.005 0.017 0.012 0.006
1

toutlier
0.159 0.111 0.159 0.246 0.067 0.045

1
tmerging

0.026 0.03 0.026 0.04 0.005 0.005

amature 0.0 0.001 0.0 0.001 0.001 0.007

TABLE 3.16: AFTER-Streams Default Parameter Values, resulting from sensitivity and
Pareto efficiency analysis

Parameter Default Value
Used

Kmax
KG

100%

σ0 0.05

τ0 0.2
1

toutlier
0.05

1
tmerge

0.1
amature
|X| 2%

Hypothesis 1.3: From RQ1.3 (Sec 3.3.1.1), clustering the data stream with AFTER-

Streams produces clusters with the same quality as the baseline algorithms.

If the p-value is less than α (i.e. 0.05) then the quality of clusters generated by

AFTER-Streams algorithm is significantly different from the quality of the clusters gener-

ated by the baseline algorithms. The results are summarized in the following sections.

3.3.4.1 Overall Performance

Figure 3.4 shows the results of the internal and external validity metrics. The sta-

tistical significance of the results is validated by finding the p-value as shown in Table

TABLE 3.17: Parameter configurations for cluster splitting and merging

Parameter Kmax τ σ0
1
t2

amature

Merging 15 5% of |X| 0.1 0.075 50
Splitting 15 2% of |X| 0.1 0.075 50
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(a) At time=10% of |X| (b) At time=30% of |X| (c) At time=60% of |X| (d) At time=100% of |X|

Figure 3.5: A cluster that gradually splits into three clusters over time

(a) At time=10% of —X— (b) At time=30% of —X— (c) At time=70% of —X— (d) At time=100% of —X—

Figure 3.6: AFTER-Streams: Three clusters that gradually merge into one cluster over
time

3.13. The results show that AFTER-Streams and RINO-Streams outperform the bench-

mark algorithms in most cases. For F1-score and V-Measure, AFTER-Streams outperforms

all the other benchmark algorithms. For Fowlkes-Mallows index and Recall, AFTER-

Streams seems to be performing better than CluStream and DenStream. For Silhouette

score, AFTER-Streams seems to be performing better than CluStream and StreamKM++.

3.3.4.2 Performance with respect to Stream Properties

We compared the performance of AFTER-Stream to that of RINO-Streams, CluS-

tream, DenStream, and StreamKM++ with respect to some of the synthetic stream datasets

properties (Table 3.3). Figure 3.4 show the validity metric values of the algorithms when

varying the number of clusters, number of dimensions, noise level and stream length of the

generated stream datasets.
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3.3.5 AFTER-Streams Performance (Real Data Text and Intrusion Detection

Data Sets)

In this section, we compare the performance of AFTER-Streams against RINO-

Streams, CluStream, DenStream, and StreamKM++ using the 6 real text datasets (TREC)

and network activity dataset (KDD CUP 99) listed in Table 3.4. For each of the experiments,

we show the best results obtained from varying the parameter values for each algorithm as

well as the significance of the difference using their p-values. The validation metrics are the

same as the ones used in the previous section for the MOA synthetic stream data.

3.3.5.1 Results for TREC Text Datasets

Figures 3.4 show the best validity metric values, obtained from all the parameter

configurations for the F1-score, V-Measure, cluster recall, Fowlkes-Mallows score, Davies-

Bouldin index, Silhouette score etc.

The results show that AFTER-Streams (and RINO-Streams) significantly outper-

forms CluStream, DenStream, and StreamKM++ for the TREC datasets, except for Fowlkes-

Mallows score, where StreamKM++ seems to be having a higher value.

3.3.5.2 Results for KDD CUP 99 Network Intrusion Data

Figure 3.4 shows the external validity metrics for AFTER-Streams, RINO-Streams,

CluStream, DenStream, and StreamKM++. AFTER-Streams performs better for F1-Score,

Fowlkes-Mallows index, Recall, V-Measure. StreamKM++ seems be performing better for

Davies-Bouldin, and DenStreams seems to be having better Sihouette values.

3.3.6 Validating Cluster splitting and merging

To illustrate how clusters merge and split in AFTER-Streams, we designed two

experiments where one cluster evolves into three different clusters to show cluster splitting,

and one where three clusters evolve into one cluster to show cluster merging. Table 3.17

lists the configuration parameter values. Figure 3.5 shows the cluster output evolution at
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five different time periods, where time is measured in terms of the number of data points

that arrived relative to the data stream size (|X|). It can be seen that one cluster (cluster

number 1) is detected at the beginning, and then, as the cluster splits, two more clusters

are detected. Figure 3.6 illustrates the gradual merging of three different clusters, over five

different time periods, into one cluster.

3.4 Summary and Conclusions

In this chapter, we presented an extension to RINO-Streams [22], where the cluster-

ing algorithm is equipped with automatic temporal scale estimation. The new algorithm

can automatically cluster the data in both content space and temporal space. Our extensive

experimental results showed that AFTER-Streams outperform the benchmark algorithms

on TREC, KDDCUP99, and synthetic datasets. Our sensitivity analysis experiments have

also validated the role of the different parameters and their impact on performance.
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CHAPTER 4

COMPARTMENTALIZED ONLINE STREAM TOPIC MODELING

In this chapter, we present a new compartmentalized topic modeling framework

which uses Stream-Dashboard, topic modeling, and pseudo relevance feedback to generate

topics and new seed terms to adapt the initial filter query.

4.1 Introduction

Social media presents a very challenging scenario, where millions of users continu-

ously produce huge amounts of streaming, diverse data. Social media data can be analyzed

to extract stories as they evolve [96]. To handle the volume and unsupervised nature of

social media data, we have employed a combination of single-pass stream clustering and

topic modeling techniques. In particular, we have adopted Stream-Dashboard, a stream

mining framework [23], which contains two components, RINO-Streams and TRACER, be-

cause it is the only available tool that allows simultaneous mining, tracking, and validation

of evolving clusters in noisy data stream.

We also exploit topic modeling techniques that can learn unsupervised models of

documents and words, simultaneously, such that each document and each term can be

represented as a vector of topic proportions. Extracting topics, as the stream unfolds,

can help extract stories from the social media data stream. Furthermore, using the Stream-

Dashboard framework in combination with Topic Modeling, we created a compartmentalized

framework that can extract, track, and validate stories from social media streams. To cope

with large volumes of data, we use Online LDA which is faster than Gibbs sampling based

LDA [4], while also relying on Stream-Dashboard’s capability to perform single-pass stream

clustering to discover clusters of similar tweets and to track their evolution. As a result, the
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Figure 4.1: Compartmentalized Online Stream Topic Modeling Framework

compartmentalized framework extracts evolving topics on a real time basis. The following

sections will discuss the proposed framework in more detail. Section 4.2 discusses the

proposed framework, including online topic modeling, online joint sentiment topic modeling,

the compartmentalized stream clustering and tracking, adaptive query reformulation, etc.

Section 4.3 presents our evaluation results and Section 4.4 concludes the chapter.

4.2 A Compartmentalized Online Stream Topic Modeling Framework

The compartmentalized topic modeling approach handles the diversity of the data

stream by partitioning the data in both content space and time space using the Stream-

Dashboard framework into more homogeneous clusters. Extracting topics within specific

clusters, and only at appropriate times, is expected to lead to faster, easier and better

topic extraction compared to tracking, the entire data stream. Figure 4.1 shows the flow of

the complete compartmentalized online stream topic modeling framework. The compart-

mentalized framework involves components to preprocess the social media posts, Stream-

Dashboard-based clustering and milestone detection, online topic modeling, and finally
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Figure 4.2: Stream-Dashboard Module for Compartmentalized Online Stream Topic Mod-
eling

Figure 4.3: Relevance Feedback for Compartmentalized Online Stream Topic Modeling
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query reformulation to help adapt the filtering of the input data stream to a particular user

need or task.

4.2.1 Data Stream Source Filter

The Twitter micro-blog post stream source components play a vital role in choosing

the data that is passed on to the succeeding stages of mining. The Stream-Dashboard and

topic modeling components will later generate topics based on the data filtered through this

component. The Twitter stream filter component accepts a stream of tweets, and filters

it to include only data containing words that are entered by the user. The filter words

are later refined using the query reformulation component, presented in Section 4.2.7. The

Twitter stream filter component then sends the filtered posts to the next component, i.e.

the pre-processing component, where the tweets will further be processed.

4.2.2 Pre-processing Component

The preprocessing component preprocesses the tweets, obtained from the filtered

Twitter fire-hose API. The component extracts different kinds of information, e.g. URLs,

Hashtags, multimedia content such as pictures and videos etc. This extra information can

be useful to validate and enrich the topics in the next iterations. For example, posts can

later be clustered/grouped together if they contain similar hashtags, URLs or multimedia

content. This extra information, in addition to the tweet text, can help validate the quality

of the topics.

4.2.3 Online Clustering and Topic Modeling Component

The online topic modeling component is the main component where the topics are

extracted, while Stream-Dashboard [23] mines and keeps track of the clusters and their prop-

erties. Whenever a milestone is encountered, the topic modeling component is triggered.

Stream-Dashboard then streamlines the data from each cluster to the topic modeling com-

ponent, where the specialized topics are extracted. The topic modeling component accepts
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Algorithm 4.1 Merging topics from different clusters for Online LDA.

Function: MergeTopicDistributions()
Input: Two Topic ×Word distributions, λ and λ̃ that are to be merged, where λ.N
denotes the number of words in the distribution λ, words in the distribution λ is given by
λ.words, and λw denotes frequency distribution for word w. Weight of the information
for a given batch/distribution is denoted by: ρt ∈ [0, 1].
Output: A single unified topic distribution: λ, where the distribution λ̃ is merged into
λ (i.e. λ is updated with values from λ̃).

1: W = λ.words ∪ λ̃.words // Merge the words from both distributions.
2: distinctWords = set (W ) // Get unique words
3: totalWords = |distinctWords| // Get total words, where N is the count

of words for a given topic distribution.
4: Scale: s = (1− ρt)× totalWords/ (λ.N)

5: Scale: s̃ = (ρt)× totalWords/
(
λ̃.N

)
6: for all word w in distinctWords do
7: newWordFreqDist = s× λw + s̃× λ̃w // Merge the frequency distributions.
8: if newWordFreqDist >= 1 then
9: λw = newWordFreqDist

10: else
11: λw = 0
12: Delete word w

13: end if
14: for all topic k in K number of topics do
15: newTopicFreqDist = s×λwk+ s̃× ˜λwk // Merge the frequency distributions

for a word w and topic k.
16: if newTopicFreqDist >= 1 then
17: λwk = newTopicFreqDist // Update frequency distribution

for w.
18: else
19: λwk = 0
20: Delete word w from topic k

21: end if
22: end for
23: end for

the number of topics to be extracted from each cluster as a user input this can also estimated

from the cluster properties such as scale, density, cardinality etc.

Stream-Dashboard continuously receives new data from the stream, and updates the

cluster model. Various actions are performed on the clusters when a milestone is encoun-

tered, such as merging, deletion etc. These updates are then pushed to the topic modeling

component, which consequently merges topic models from merged clusters, deletes topic

models from defunct clusters, etc. Algorithm 4.1 provides the pseudocode for merging two
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Figure 4.4: Topic Modeling Framework.

topic models. Since the framework is completely online, revisiting the old data is not a

viable option, hence the need to merge the topic models themselves instead of re-extracting

topics. Once the topics are extracted for each cluster, they are streamlined to the query

reformulation component which will adapt the initial user queries, and as a result, improve

the filter terms.

4.2.4 Online Joint Sentiment Topic Modeling

Our proposed framework uses sentiment analysis to facilitate the extraction of topics

that are furthermore annotated with a sentiment polarity. This can help understand the

driving factors and general public opinon on a given topic. We combined a probabilistic mod-

eling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic

model (JST) [75], which detects sentiments and topics simultaneously from text with Online

LDA [4] to discover topics and sentiments in an online fashion.

The proposed technique, described in Algorithm 4.2, assumes a real time streaming
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Algorithm 4.2 Online LDA Variational Bayes with Sentiment Analysis.

Function: OnlineLDAVBSentiments()
Input: A list of documents, hyper-parameters α and β. Document set/batch D with
sentiment labels. Sentiment Label set S 3 {positive, negative, neutral}
Output: Topic and Word distributions.

1: for all s in S do

2: Define ρt
∆
= (τ0 + t)−k

3: Initialize λ randomly
4: for t=0 to ∞ do
5: Initialize γtks = 1
6: repeat
7: Set φtwks ∝ exp{Eq [log θtks] +Eq [log βkws]}
8: Set γtks = α+

∑
w φtwksntws

9: until 1
K

∑
k |change in γtks| < 0.00001

10: Compute λ̃kws = η +Dntwsφtwks
11: Set λs = (1− ρt)λs + ρtλ̃s
12: end for

13: end for

data input and is replicated using process calls to the database/storage records containing

the posts. For LDA, each post is considered as a single document. The stages include the

following:

Stage-1: The documents are first passed through a data pre-processing pipeline to strip

unwanted data, such as foreign language phrases, special characters, etc. The stop

words are currently retained especially for sentiment extraction. The documents are

converted to lower case for uniformity.

Stage-2: As an optional stage, the sentiment polarity for each document is extracted using

a pre-trained Naive Bayes classifier, or a Lexicon based technique such as Vader [74].

Stage-3: The resulting documents are then passed through to the topic modeling process.

Part of our research explores the quality of the topic models that are extracted through

Sentiment enabled Online LDA that receives the streaming documents that are labeled and

grouped together with respect to their sentiment. Since Online LDA is considerably faster,

labeling the documents before the topic modeling process should result in a faster technique

compared to JST. Figure 4.4 depicts this combined framework. Once the posts are obtained

from the Twitter API, each one is tagged, then the posts with the same sentiment level are
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grouped together as a batch which is then independently passed to the Online LDA topic

modeling process. The latter will result in topics extracted from documents with the same

sentiment. This is comparable to the JST results but is expected to converge faster and to

handle a growing number of streaming documents.

The JST technique uses Gibbs sampling along with the sentiment labels to extract

topics such that all the documents in a given topic must share the same sentiment. Figure

4.4 shows the proposed framework for Online LDA. Note that the JST model does not

require a separate sentiment analysis layer . In Stage-2 above, once the tweets arrive as

batches, either a Naive Bayes classifier or Lexicon based techniques (e.g. Vader [74]) can be

used to extract the sentiment levels. The tweets are then regrouped based on the sentiments

and the topic modeling is applied, resulting in topics that are associated with a sentiment.

4.2.5 Stream Clustering and Tracking

Algorithm 4.3 Pseudo-Code for Stream Clustering Component Adopted from Stream-
Dashboard [23].

Input: Data Stream X = {xj = (x1
j , ..., x

d
j ),∀j = 1, ..., N}

Output: Clustering Model ζ = {Ci,∀i = 1, ...,K}, Regression Models ΞP
1: for j = 1 to N {Loop through the data stream X} do
2: ζ = StreamClustering(xj) {Update clustering model ζ, using Modified AFTER-

Streams; Algorithm 4.4}
3: if mod(j, ∆Reg) = 0 {The size of the Regression Window (data points) was encoun-

tered.} then
4: ΞP = TRACER(Pζ) {Call TRACER module with input =∆Reg metric values for

each cluster in ζ. }
5: end if
6: end for

The stream clustering component essentially invokes an adaptation of the Stream-

Dashboard algorithm [23] (see Algorithm 4.3). The component utilizes a stream clustering

algorithm, with the arrival of each new data point, updates the clustering model. When a

new cluster is created by the clustering algorithm, it is added to a stream cluster genealogy,

and will be tracked over time. When a predefined regression window size of data has been

processed, the TOPIC-TRACER [23] component is invoked.
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Algorithm 4.4 Modified AFTER-Streams: Stream Clustering with Online Topic Model-
ing.

Function: StreamClustering(xn)
Input: Maximum number of clusters (Kmax), Initial scales (σ0, τ0), density threshold
(δmin), maturity age (amature)
Output: Cluster model after n points ζ = C1 ∪ C2.... ∪ CK , where Ci =
(ci,n, c

′
i,n, σ

2
i,n, τ

2
i,n, ai,Wi,n)

1: K = 0
2: for n = 1 to K do
3: Compute the distances: d2

in, η2
in, and robust weights: win,n, fin,n between xn and

clusters Ci, ∀i = 1, ..,K {single pass over the data stream of size N}
4: if K < Kmax And xn is an outlier with respect to all clusters in ζ (Definition 4)

then
5: K = K + 1 {Create a new cluster centered on xn}
6: cK = xn {centroid}
7: σK = σ0 and τK = τ0 {initial scales}
8: aK = 0 {initial age}
9: WK = 1 {initial sum of robust weights}

10: δK = 1
σ2

0τ
2
0
{initial density}

11: end if
12: for all Clusters (Ci, where i = 1, ..,K) do
13: if xn is NOT an outlier with respect to cluster i then
14: Update ci,n using equation (3.10)

15: Update c′i,n as: c′i,n =
c′i,n−1Wi,n−1+win,nfin,ntn

Wi,n−1+win,nfin,n

16: Update σ2
i,n using equation (3.12)

17: Update τ2
i,n as: τ2

i,n =
ρ(τ2

i,n−1Wi,n−1)+win,nfin,nη
2
ij

ρ(Wi,n−1+win,nfin,n)

18: Update sum of weights using equation (3.5)
19: Update density using equation (3.8)
20: end if
21: Update age ai = ai + 1
22: end for
23: for all Pairs of clusters Ci&Ck, where i, k = 1, ..,K do
24: if Ci and Ck are Chebyshev-compatible using equation (3.21) then
25: Merge clusters Ci and Ck using equations (3.22) and (3.23)
26: Merge their topic models Ti and Tk {Call : MergeTopicDistributions() in

Algorithm 4.1}
27: end if
28: end for
29: for all Clusters (Ci, where i = 1, ..,K) do
30: if (ai > amature) & (δi < δmin) then
31: ζ = ζ − Ci {remove mature clusters that have low density}
32: K = K − 1
33: end if
34: end for
35: end for
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Algorithm 4.5 TOPIC-TRACER (At time period t) [23].

Function: TRACER(Pζ)
Input: Cluster metric values Pi stored after receiving the last ∆Reg data points
Output: Regression Models ΞPi,[t−1,t] and Behavioral Profiles Hi

1: for all cluster Ci , i = 1, ..,K do
2: for all metric Pi do
3: if a milestone is detected then
4: Invoke Topic Modeling { Call: OnlineLDAVBSentiments() for all senti-

ments, Algorithm: 4.2 }
5: Create a new regression model for Pi
6: else
7: Update the regression model for Pi

8: end if
9: end for

10: Find the cluster transitions using the cluster rules [23].
11: Update the behavioral profile Hi [23].

12: Update Stream Genealogy graph where transitions took place [23].
13: end for

The stream clustering algorithm can be any generic online clustering algorithm that

returns basic cluster metrics such as centroid, scale, and density, even though our research

has exclusively used AFTER-Streams [97] and RINO-Streams [22]. The pseudocode for

a modified AFTER-Streams is described in Algorithm 4.4. The modification reflects the

need for merging the topic models when any two clusters are merged by AFTER-Streams.

AFTER-Streams creates new clusters when a new data point is not an outlier. As these

clusters grow and whenever a milestone is encountered by the TOPIC-TRACER component,

the topic modeling component gets invoked and topics are extracted. AFTER-Streams

handles the cluster merging and removal of matured clusters automatically. Algorithm 4.5

provides the pseudocode for TOPIC-TRACER which is modified from [23] to invoke topic

modeling, where for each cluster, the metrics are updated, and whenever a milestone gets

detected, the Online LDA topic modeling is invoked.

4.2.6 Topic Agglomeration

The topics generated by the topic modeling component can be merged into a smaller

set of topics. This provides a reduced set of keywords for Query Reformulation. The topic
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agglomeration can also provide a more concise summary of the discovered topics as we have

done in the SNOW competition [98], and a good way for validating the generated topics.

Section 4.3.8 presents a set of initial experiments with topic agglomeration.

4.2.7 Query Reformulation

The topic modeling component provides knowledge feedback in terms of new terms

that can be adapted by query reformulation techniques [78, 99]. The query reformulation

component uses pseudo relevance feedback to improve the query that the user had provided.

After a user provides an initial query, the user is presented with the results and along

with that, the query is reformulated with new terms from the current data and new data

crawled from Twitter Advanced Search web pages1. Section 2.5 provided an overview of

the relevance feedback mechanism. Recall that the pseudo relevance feedback mechanism

uses the current data and the newly crawled data to generate a new set of terms, that are

passed to the initial tweet filter, which will in turn help collect more data that is relevant

to a specific topic(s), that the user has been exploring. Figure 4.3 shows an overview of

the reformulation process. Once the initial terms/query and the topic terms from the topic

modeling component are provided to the reformulation component. Meanwhile, a new set

of documents are collected from the Twitter stream data source. The ROCCHIO approach

is finally applied on this collection to compute a reformulated query. The new terms in this

query are then used as a new filter, to obtain a more relevant set of documents.

4.2.7.1 Pseudo Relevance Feedback

The pseudo-relevance feedback [80–82] procedure involves taking the very top results

returned by an initial query as relevant results, and then selecting the top n terms from

these documents using for instance tf-idf weights. Query Reformulation is finally performed,

by adding these terms to the previous query which is then submitted again to find more

relevant documents. This automated feedback technique has been shown to work well within

1https://twitter.com/search-advanced?lang=en
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Algorithm 4.6 Query Reformulation with Pseudo-Relevance Feedback

Input: Initial query ~qcurrent, Precision threshold Pt
Output: Reformulated query ~qopt

1: Pcurrent = 0
2: while Pcurrent < Pt do
3: Get a new set of documents Dcurrent with the query ~qcurrent for the timestamps of

the documents used for the topic model.
4: Get relevant (Dr) and non-relevant (Dnr) documents with Implicit/Explicit/Blind

feedback. {Relevant documents (Dr) have a cosine similarity of greater than 0.1 with
the top topic terms.}

5: Get current precision Pcurrent = |Dr|
|Dcurrent|

6: Index and weigh current posts set.
7: if Pcurrent = 0 then
8: Exit; {Cannot reformulate any more.}
9: end if

10: if Pcurrent < Pt then
11: Optimize query ~qcurrent with Equation: ~qcurrent = α~q0 + β 1

|Dr|
∑

~dj∈Dr
~dj −

γ 1
|Dnr|

∑
~dj∈Dnr

~dj
12: end if
13: end while

the context of text/web search [100]. Through a query expansion, some relevant documents

that have been missed in the initial round, can then be retrieved to improve the overall

performance. Algorithm 4.6 presents the pseudocode for the query reformulation.

Definition 4.2.1. Current Precision for Psuedo-Relevance Feedback: For a given set of

queried/retrieved documents Dcurrent and a set of relevant documents Dr within Dcurrent,

the precision is defined as:

Pcurrent =
|Dr|

|Dcurrent|
(4.1)

Precision is calculated implicitly based on the number of relevant documents from a

batch of queried/retrieved documents using the top topic terms of a topic.

The relevant documents are computed by using cosine similarity, where if a retrieved

document has a similarity of greater than 0.1 with the top topic terms, the document is

deemed as relevant else non-relevant.

97



4.3 Experiments

Topic modeling is generally applied on a collection of documents. Our research deals

primarily with social media data such as Twitter. Each tweet from a user can only have

a maximum length of 140 characters, this implies that the length of these documents is

very small compared to typical text collections. Our dataset consists of tweets that were

acquired from Twitter by continuous querying using the Twitter API (Twitter Firehose 1).

Section 4.3.2 provides detailed information about the datasets and the pre-processing step.

4.3.1 Evaluation Plan

The research contribution for the Compartmentalized Framework can be outlined as

shown in Table 4.1.

TABLE 4.1

Summary of Research Goals and Evaluation Plan

Framework

Component

Goal Methodology Research

Questions

Validation Metrics Evaluation

Section

Data Baseline

Topic Mining

in evolving

data streams

Obtain pure

topics

Compatmen-

talized

Framework

(Sec 4.2)

RQ2.1,

RQ2.2

Perplexity and

Coherence
Sec 4.3

Trump,

Hurricanes

4.3.2

Online

LDA [4]
Reduce

vocabulary size

Detect

milestones

Adapt stream

data filters to

evolving topics.

Query

Reformul-

ation (Sec

4.2.7)

RQ2.3,

RQ2.4

New filter terms

and unseen topics,

Topic Agglo-

meration (qualitat

-ive evaluation).

Sec 4.3.8
Trump,

Hurricanes

4.3.2

Google

Trends

Discover new

topics

4.3.1.1 Research Questions

The goal of the Compartmentalized Framework is to mine topics from an evolving

data stream, detect milestones, adapt-to and discover new and evolving topics. Solving

the following research problems will show how the Compartmentalized Framework is an

effective method to mine topics in evolving data streams.

1Twitter Firehose: \url{https://dev.twitter.com/streaming/firehose}
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Research Question 2.1: Does auto-tuning the Online LDA hyperparameters have a

significant effect on the quality of the topics?

Research Question 2.2: Does the Compartmentalized Framework perform better than

the baseline algorithm?

Research Question 2.3: Does the Compartmentalized Framework with Query Refor-

mulation perform better than the baseline algorithm?

Research Question 2.4: Does the Compartmentalized Framework with Query Refor-

mulation produce more diverse set of topics?

4.3.2 Datasets

TABLE 4.2

Twitter Dataset Details

Dataset Name # of Tweets Vocabulary

Size

Filtering

Keywords

Data Range

Hurricanes 454,109 18,288 hurricane,

harvey, irma

Aug 25th, 2017 to

Sep 19th, 2017

Trump 646,470 21,306 trump May 1st, 2016 to

Nov 24th, 2017

Experiments were performed to extract topics from two datastreams, one on Presi-

dent Donald Trump, and the other related to Hurricane Harvey and Irma. The data/tweets

were collected using the filter words: Trump and {Hurricane, Harvey, Irma} respectively.

Table 4.2 provides the dataset descriptions.
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4.3.2.1 Dataset Preprocessing

The datasets were preprocessed by removing stopwords, numbers, terms of a single

character. We also added bi-grams at the end of the document (i.e. tweet) if the bi-

gram appeared in atleast 20 other documents of the dataset. We also removed words that

appeared in less than 20 documents. The dataset vocabulary details (including bi-grams)

are provided in Table 4.2. Hashing can be used to convert text to feature vectors for

clustering in the stream clustering component. The document words are hashed to specific

locations of the feature vector. This provides a solution for building feature vectors when

the vocabulary of the dataset or the data stream is not available. For experimental purposes

we used a regular count based feature vector for the stream clustering component.

4.3.3 Evaluation Metrics

To evaluate the topic models we used two metrics namely, Perplexity [3] and Topic

Coherence [101]. For a good topic model, the Perplexity value is expected to be lower,

while the Topic Coherence (UMass) should be higher [101]. Perplexity and Topic Coherence

(UMass) are given as:

perplexity (Dtest) = exp

{
−
∑M

d=1 log p (wd)∑M
d=1Nd

}
(4.2)

where M is the number of documents in the document set Dtest, wd represents the

words in document d, and Nd is the count of words in document d.

CoherenceUMass =
2

N · (N − 1)

N∑
i=2

i−1∑
j=1

log

(
p (wi, wj) + ε

p (wj)

)
(4.3)

where N is the number of top words of a topic, wi is a term from the top topic terms

list, p(wi) is the probability of topic containing term wi, ε is a constant. Word probabilities

are estimated based on document frequencies of the original documents used for learning

the topics [101,102].
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Figure 4.5: Dataset: Trump. Performance of Online LDA [4] with and without automatic
hyperparameter estimation. Lower Perplexity values are better.

4.3.4 Online LDA Hyperparameter Estimation

The Dirichlet distribution is a multivariate distribution [3]. LDA assumes that a

single document may contain multiple topics, and a single topic is spread over a number of

vocabulary words. Section 2.3.4 introduced the hyperparameter estimation for LDA.

Hypothesis 2.1: From RQ2.1 (Sec 4.3.1.1), Online LDA produces topics of the same

quality regardless of whether the hyperparameters are auto-tuned or are set to a constant

value.

If the p-value is less than α (i.e. 0.05) then the factor (i.e. one of the LDA hyper-

parameters) has a significant effect on the quality of the topics generated. The results can

be summarized as:

Figure 4.5 shows the Perplexity trends for the Online LDA algorithm [4] under

different hyperparameter settings. The quality of the topics extracted is higher (i.e. lower

Perplexity) when the hyperparameters are autotuned using Newton’s method [3,65]. When

using an auto-tuned hyper parameter the quality of topics is significantly higher with a

p-value of 0.0001 and with a moderate Effect Size (Cohen’s d) of -0.505.

Figure 4.6 shows the Perplexity evaluations for the Online LDA with the infinite

vocabulary algorithm [5] under different hyperparameter settings. When using an auto-
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Figure 4.6: Dataset: Trump. Performance of Online LDA with infinite vocabulary [5] with
and without automatic hyperparameter estimation.

tuned hyper parameter the quality of topics (i.e. lower Perplexity) is significantly higher

with a p-value of 0.0043 but with a very small Effect Size (Cohen’s d) of -0.078.

4.3.5 Compartmentalized Framework Performance

Hypothesis 2.2: From RQ2.2 (Sec 4.3.1.1), the Compartmentalized Framework produces

topics of same quality when compared to Online LDA.

If the p-value is less than α (i.e. 0.05) then the Compartmentalized Framework has

significant effect on the quality of topics. The results can be summarized as:

Figure 4.7 shows the Perplexity and Topic Coherence evaluation for the Compart-

mentalized Framework with AFTER-Streams and RINO-Streams compared to the Online

LDA algorithm [4] while using only autotuned hyperparamters. The quality of the top-

ics extracted using AFTER-Streams are higher (i.e. lower Perplexity and higher Topic

Coherence) when compared to RINO-Streams and Online LDA.

Tables 4.3 shows the Effect Size and p-value (Cohen’s d) for ANOVA performed on

the Perplexity and Topic Coherence results. The values convey that the Compartmentalized

Framework has a moderate to significant effect on the quality of the topics compared to

Online LDA.
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Figure 4.7: Datasets: Trump and Hurricanes. Performance of Compartmentalized Frame-
work with AFTER-Streams and RINO-Streams compared to Online LDA [4].

TABLE 4.3: Compartmentalized Framework with AFTER-Streams and RINO-Streams
compared to Online LDA. Cohen’s d Effect Size (p-value).

AFTER-Streams vs Perplexity Topic Coherence

RINOStreams -0.13 (0.04) 0.67 (0.0001)
Online LDA -1.06 (0.000) 2.22 (0.000)

4.3.6 Online Joint Sentiment Topic Modeling

Figure 4.8 shows the top 3 topics of positive and negative sentiments extracted.

4.3.7 Compartmentalized Framework

The Online Stream Topic Modeling framework can be evaluated using the Perplexity

metric. We have performed experiments comparing the benchmark Online LDA [4], with

the proposed Compartmentalized topic modeling framework. Our experiments have consis-

tently shown that the proposed methodology produces better perplexity results compared to

Online LDA. Figure 4.7 and Table 4.3 show the performance evaluation of the Compartmen-

talized Framework using Perplexity and Topic Coherence metrics. The plots show that the

Compartmentalized Framework outperforms conventional Online LDA. Compartmentalized

103



Figure 4.8: Datasets: Trump. Top 3 topics of positive and negative sentiments extracted
using the Compartmentalized Framework.

Framework also helps reduce vocabulary size of the topic models [103].

4.3.7.1 Query Reformulation with Pseudo-Relevance Feedback

Hypothesis 2.3: From RQ2.3 (Sec 4.3.1.1), the Compartmentalized Framework with

Query Reformulation produces topics of the same quality when compared to Online LDA.

If the p-value is less than α (i.e. 0.05) then the Compartmentalized Framework has

significant effect on the quality of topics. The results can be summarized as:

Figures 4.9, 4.10 and 4.11 show the top topics and their respective reformulated

terms. These new terms are added to the data stream filter which facilitates the cap-

ture of new evolving topics. The distinctiveness of the topics extracted while using query

reformulation is higher as discussed in Section 4.3.8.

Figure 4.12 shows the performance of the Compartmentalized framework while using

Query Reformulation. The figure shows that the Compartmentalized framework yields

better quality topics with respect to Perplexity and Topic Coherence. Tables 4.4 and 4.5

shows the Effect Size and p-value for ANOVA performed on the Perplexity and Topic

Coherence results. The values convey that the Compartmentalized Framework with Query

Reformulation achieves significant effect on the quality of the topics compared to Online
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Figure 4.9: Datasets: Trump. Top topics extracted using the Compartmentalized Frame-
work, and their respective new reformulated terms. The wordclouds with white background
are the topic terms, and the ones with black backgrounds are new reformulated terms. The
word clouds are ordered from left to right.

Figure 4.10: Datasets: Trump. Top topics extracted using the Compartmentalized Frame-
work, and their respective new reformulated terms. The wordclouds with white background
are the topic terms, and the ones with black backgrounds are new reformulated terms. The
word clouds are ordered from left to right.

105



Figure 4.11: Datasets: Hurricanes. Top topics extracted using the Compartmentalized
Framework, and their respective new reformulated terms. The wordclouds with white back-
ground are the topic terms, and the ones with black backgrounds are new reformulated
terms. The word clouds are ordered from left to right.

LDA.

Figure 4.12: Datasets: Hurricanes, Trump. Performance of Compartmentalized Framework

with Query Reformulation compared to Online LDA [4].
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TABLE 4.4: Dataset: Hurricane. Compartmentalized Framework with Query Reformula-
tion compared to Online LDA. Cohen’s d Effect Size (p-value).

Compartmentalized vs Perplexity Topic Coherence

Online LDA -2.003 (0.000) 1.563 (0.000)

TABLE 4.5: Dataset: Trump. Compartmentalized Framework with Query Reformulation
compared to Online LDA. Cohen’s d Effect Size (p-value)

Compartmentalized vs Perplexity Topic Coherence

Online LDA -6.127 (0.000) 3.284 (0.000)

If the p-value is less than α (i.e. 0.05) then the Compartmentalized Framework has

significant effect on the quality of topics. The results can be summarized as:

Figures 4.13 to 4.15 show the Google Trends corresponding to few of the topics in

Figures 4.9, 4.10, and 4.11. The Google Trend figures show that the topics were extracted

or picked up at a similar time when there was a general public interest. This is one way to

verify the validity of the discovered topics and their timeliness.

4.3.8 Topic Agglomeration with Compartmentalized Framework

Hypothesis 2.4: From RQ2.4 (Sec 4.3.1.1), the Compartmentalized Framework with

Query Reformulation produces more diverse topics when compared to Online LDA.

One way to both visualize, summarize and evaluate the quality of the mined topics

is to apply Hierarchical Agglomerative Clustering [104] to see how the extracted topics are

related. A good set of topics is expected to have topics that are internally consistent and

Figure 4.13: Dataset: Trump. Google Trend for one topic’s top term(s): muslimban.
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Figure 4.14: Dataset: Trump. Google Trend for one topic’s top term(s): charlottesville.

Figure 4.15: Dataset: Hurricanes. Google Trend for one topic’s top term(s): gas price
harvey.

compact as already evaluated. In addition, topics should be distinct to cover a diverse

range of non-redundant topics in the data stream using Perplexity and Coherence. Topic

Agglomeration can be used as a tool to help organize, understand, and visualize the mined

topics whose number can be very large when mining real-life social data streams [98].

Figures 4.16 and 4.17 show the results of topic agglomeration using Ward link Hier-

archical Agglomerative Clustering [104] and Jensen-Shannon Divergence [105] as distance

measure for the top 60 topics (i.e. highest Topic Coherence) for the Trump and Hurricanes

datasets respectively. The Jensen-Shannon Divergence is given by:

JSD(P ‖ Q) =
1

2
×DKL(P ‖M) +

1

2
×DKL(Q ‖M)

where, P and Q are two probability distributions, M = 1
2(P +Q), and DKL(P‖M)

is the KL-Divergence [106] given by:

DKL(P‖M) = −
∑
i

P (i) log

{
M(i)

P (i)

}
The topics are listed in the order of extraction and the agglomeration of these topics

resulted in grouping the topics from the same clusters first, which means that the topics
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(a) Topic Agglomeration With Query Reformulation

(b) Topic Agglomeration Without Query Reformulation

Figure 4.16: Topic Agglomeration using Jensen-Shannon divergence for topics with and
without Query Reformulation on Dataset Hurricanes. The blocks along the diagonal of
the distance heatmap are smaller when using Query Reformulation, indicating that the
consecutive top topics are diverse. Bigger blocks indicate overlap of the top topic terms.

are very different for each cluster and are very granular. This contributes to the validation

of the results.
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(a) Topic Agglomeration With Query Reformulation

(b) Topic Agglomeration Without Query Reformulation

Figure 4.17: Topic Agglomeration using Jensen-Shannon divergence for topics with and
without Query Reformulation on Dataset Trump. The blocks along the diagonal of the dis-
tance heatmap are smaller when using Query Reformulation, indicating that the consecutive
top topics are diverse. Bigger blocks indicate overlap of the top topic terms.
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4.4 Summary and Conclusions

This chapter presented the proposed Compartmentalized Topic Modeling framework

which uses the modified Stream-Dashboard with AFTER-Streams to initially cluster the

data stream and then applies Topic Modeling to extract finer quality topics. The framework

also uses Query Reformulation to control the filtering of the input data stream in such a

way that the quality of topics is improved.

The chapter also presented experiments on several datasets. Section 4.3 presented a

set experiments on different datasets while using the conventional Online LDA. Even though

Online LDA has a comparatively low time complexity, looking at the perplexity plots, there

is a great room for improvement in terms of the quality of the topics extracted. Section 4.3.6

discussed experiments while using Online LDA, along with sentiment analysis. The results

show that the quality of the topics was comparatively better than the conventional Online

LDA. The proposed framework used Stream-Dashboard, Online LDA with Sentiment Anal-

ysis, and Query Reformulation to provide an integrated platform to extract and track high

quality topics. The results showed that the proposed framework can extract higher quality

topics than Online LDA with different sentiment values. Using Query Reformulation, the

framework can relay new seed information to the initial data filter which can help explore

evolving topics.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed a new stream clustering methodology based on

the AFTER-Streams clustering algorithm, which extends the RINO-Streams clustering al-

gorithm with an automatic, dynamic, and cluster-specific temporal scale estimation. The

proposed algorithm can automatically cluster the data in both the content and tempo-

ral spaces. Our extensive experimental results showed that AFTER-Streams outperforms

the competitive baseline stream clustering algorithms on TREC (text data), KDDCUP99

(network intrusion logs), and a large battery of synthetic datasets controlling critical param-

eters that characterize the difficulties associated with a data stream (size, velocity, noise,

evolution patterns, etc).

We have also proposed a Compartmentalized Topic Mining framework which uses

Stream-Dashboard to initially cluster the data stream and then applies Topic Modeling

to extract finer and better quality topics. The framework also uses Query Reformulation

to control the input data stream to improve the quality and novelty of topics that are

discovered.

The proposed compartmentalized framework clusters the stream data, extracts the

topics and seed words from each cluster, and tracks the topics over time. The initial stage

involves using a modified Stream Dashboard framework which clusters the data stream

points (i.e. documents) and the second stage involves invoking the topic modeling compo-

nent. From the topics that are extracted, several potential future seed words are extracted

and are relayed back to the data stream filters to help focus the discovery on a specific set

of topics. We also presented an approach to automatically optimize the hyper-parameters

used for topic modeling.
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The evaluation experiments confirmed the quality of the topics extracted using topic

modeling techniques, then finer topics are extracted using the integrated Stream-Dashboard

+ Topic Modeling + Query Reformulation Framework. The validation results support

our claim that when using Stream-Dashboard + Topic Modeling + Query Reformulation

framework, the topics extracted are of higher quality.

Limitations and Future Work

Demographics can play a critical role in the context of social media data and sen-

timent analysis of any given discussion. Extracting topics for users in a given location or

demographic cross-section may provide a more targeted and possibly more accurate and

useful results, depending on the application goals.

The compartmentalized framework uses Query Reformulation to set the data stream

filter to extract topics of evolving interest. The topics extracted are dependent on this initial

data stream filter. The user should be able to specify additional parameters for this filter

e.g. location, query terms, a specific sentiment, etc. The user may also choose some topics

of interest in an interactive manner which can later be used to guide subsequent topic

discovery.
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APPENDIX A

Proofs

A.1 AFTER-Streams

In this section, we will present the proofs for the theorems presented in Chapter 3.

Theorem A.1.1. Optimal Incremental Centroid Update : Given the previous centroids,

ci,n−1, and assuming that the scales do not change much relative to the scale that re-

sulted from the previous iteration, the new centroid that optimizes density function in the

manuscript after the arrival of the nth data point is given by [22]:

ci,n =
e
−1
τ ci,n−1Wi,n−1 + win,nxn

e
−1
τ Wi,n−1 + win,n

(A.1)

Proof. Since the time dependency has been absorbed into the weight function, and by

fixing the previous centroid ci,n−1, scale σi,n−1 and weight sums Wi,n−1, the equations for

the center updates are found by finding the derivative of the Lagrangian of the density

δi,n with respect to the centroid ci,n, while all the other parameters are held constant as

follows [22]:

∂L
∂ci,n

=
1

σ2
i,n

×
n∑
j=1

wij,n
∂d2

ij

∂ci,n
−
∂
(
λσ2

i,n

)
∂ci,n

= 0 (A.2)

In case an inner norm inducing metric is used such as d2
ij = (xj − ci,n)tA(xj − ci,n), where

A is a positive semi-definite matrix (A is the identity matrix for the Euclidean norm), it is

easy to show that
∂d2
ij

∂ci,n
= −2A(xj − ci,n). For the case of A = I (identity matrix), we have
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∂L
∂ci,n

= 1
σ2
i,n
×
∑n

j=1
∂wij,n
∂ci,n

− ∂(λσ2
i,n)

∂ci,n

∂L
∂ci,n

= 1
σ2
i,n
×
∑n

j=1wij,n ×
∂(
−(xj−ci,n)t(xj−ci,n)

κσ2
i,n

)

∂ci,n
− 0

∂L
∂ci,n

= 1
σ2
i,n
×
∑n

j=1wij,n ×


∂(−(xj−ci,n)t(xj−ci,n))

∂ci,n
×κσ2

i,n−
∂(κσ2

i,n)

∂ci,n
×−(xj−ci,n)t(xj−ci,n)

(κσ2
i,n)2


∂L
∂ci,n

= 1
σ2
i,n
×
∑n

j=1wij,n ×
{
−2(xj−ci,n)×κσ2

i,n−0×−(xj−ci,n)t(xj−ci,n)

κ2σ4
i,n

}
∂L
∂ci,n

= 1
σ2
i,n
×
∑n

j=1
−2wij(xj−ci,n)

κσ2
i,n

∂L
∂ci,n

= 2
κσ4
i,n
×
{∑n

j=1wij,nci,n −
∑n

j=1wij,nxj

}
= 0,

Therefore,∑n
j=1wij,nci,n =

∑n
j=1wij,nxj

ci,n =
∑n
j=1 wij,nxj∑n
j=1 wij,n

(A.3)

Given the previous centroids, ci,n−1, and assuming that the scales do not change

much relative to the scale that resulted from the previous point, the new centroid that

optimizes (15) in the manuscript after the arrival of the nth data point, and by penalizing

the previous information as in (11) in the manuscript, is given by [22]:

ci,n =
∑n
j=1 wij,nxj∑n
j=1 wij,n

ci,n =
∑n−1
j=1 wij,nxj+win,nxn∑n

j=1 wij,n+win,n

ci,n =
∑n−1
j=1 (e

−1
τ wij,n−1)xj+win,nxn∑n

j=1(e
−1
τ wij,n−1)+win,n

ci,n =
e
−1
τ
∑n−1
j=1 wij,n−1xj+win,nxn

e
−1
τ
∑n
j=1 wij,n−1+win,n

ci,n =
e
−1
τ (ci,n−1

∑n
j=1 wij,n−1)+win,nxn

e
−1
τ (
∑n
j=1 wij,n−1)+win,n

ci,n =
e
−1
τ ci,n−1Wi,n−1+win,nxn

e
−1
τ Wi,n−1+win,n

(A.4)

Theorem A.1.2. Optimal Incremental Scale Update: Given the previous scale σ2
i,n−1, the

new scale that optimizes the density function in the manuscript after the arrival of the nth

data point is given by [22]:
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σ2
i,n =

κe
−1
τ

(
σ2
i,n−1Wi,n−1

)
+ win,nd

2
ij

κ
(
e
−1
τ Wi,n−1 + win,n

) (A.5)

Proof. For the cluster Ci at time n, we find the derivative of the Lagrangian of the density

δi,n with respect to the centroid σ2
i,n, while all other parameters are held constant, giving

∂L
∂σ2
i,n

=
∑n

j=1

∂wij,n

∂σ2
i,n

×σ2
i,n−wij,n×

∂(σ2
i,n)

∂σ2
i,n

(σ2
i,n)2 − ∂(λσ2

i,n)
∂σ2
i,n

=
∑n

j=1

wij,n×
∂(
−d2ij
κσ2
i,n

)

∂σ2
i,n

×σ2
i,n−wij,n×1

σ4
i,n

− λ

=
∑n

j=1

wij,n×


∂(−d2ij)

∂σ2
i,n

×κσ2
i,n−

∂(κσ2
i,n)

∂σ2
i,n

×−d2ij

(κσ2
i,n

)2

×σ
2
i,n−wij,n

σ4
i,n

− λ

=
∑n

j=1

wij,n×
{

0×κσ2
i,n−κ×−d

2
ij

κ2σ4
i,n

}
×σ2

i,n−wij,n

σ4
i,n

− λ

=
∑n

j=1

wij,nd
2
ij

κσ2
i,n

−wij.n

σ4
i

− λ = 0

(A.6)

The Karush-Kuhn-Tucker conditions are necessary (but not sufficient) for the scale to be

maximum. The conditions are:

λ ≥ 0 & λσ2
i.n = 0 (A.7)

Which means that we have two cases. In the first case, λ = 0, and the scale can be found

by setting the gradient

n∑
j=1

wij,nd
2
ij

κσ2
i,n
− wij.n

σ4
i

− λ =

n∑
j=1

wij,nd
2
ij

κσ2
i,n
− wij.n

σ4
i

= 0 (A.8)

Thus ∑n
j=1

wij,nd
2
ij

κσ2
i,n

=
∑n

j=1wij,n∑n
j=1wij,nd

2
ij = κσ2

i,n

∑n
j=1wij,n

σ2
i,n =

∑n
j=1 wij,nd

2
ij

κ
∑n
j=1 wij,n

(A.9)

In the second case, λ > 0, thus σ2
i,n = 0. Hence, we need to have a test to make sure that

the scale does not become zero. This can be done by checking whether the value of λ is

non zero, in this case, we set the scale to the initial value (i.e. σ2
i,n = σ2

0). The value of λ
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is derived from

n∑
j=1

wij,nd
2
ij

κσ2
i,n
− wij.n

σ4
i

− λ = 0 (A.10)

Thus

λ =
n∑
j=1

wij,nd
2
ij

κσ2
i,n
− wij.n

σ4
i

(A.11)

Given the previous scales, σ2
i,n−1, the new scale that optimizes (15) in the manuscript after

the arrival of the nth data point, can also be rewritten as follows, which explicitly shows the

penalizing effect of the forgetting mechanism on the previous information via the weight

decay expression in (11) in the manuscript,

σ2
i,n =

∑n
j=1 wij,nd

2
ij

κ
∑n
j=1 wij,n

σ2
i,n =

∑n−1
j=1 wij,nd

2
ij+win,nd

2
ij

κ(
∑n−1
j=1 wij,n+win,n)

σ2
i,n =

∑n−1
j=1 (e

−1
τ wij,n−1)d2

ij+win,nd
2
ij

κ

(∑n−1
j=1 (e

−1
τ wij,n−1)+win,n

)
σ2
i,n =

e
−1
τ (
∑n−1
j=1 wij,n−1d

2
ij)+win,nd

2
ij

κ

(
e
−1
τ (
∑n−1
j=1 wij,n−1)+win,n

)
σ2
i,n =

e
−1
τ (2σ2

i,n−1

∑n−1
j=1 wij,n−1)+win,nd

2
ij

κ

(
e
−1
τ (
∑n−1
j=1 wij,n−1)+win,n

)
σ2
i,n =

κe
−1
τ (σ2

i,n−1Wi,n−1)+win,nd
2
ij

κ

(
e
−1
τ Wi,n−1+win,n

)

(A.12)

Theorem A.1.3. For a cluster Ci, which was valid at time step t, it is stored for a maximum

of m time steps if it was inactive, where m is bounded as follows [22]:

m > −τ ln(
δmin
δi,t

) (A.13)

Proof. For simplicity, assume that cluster Ci was valid at time stamp t. Assuming no new

points are assigned to Ci during m time stamps, after time stamp t, the density is given by
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δi,m =
m∑
j=1

wij,m
σ2
i,m

δi,m =
m∑
j=1

e(− 1
τ

)mwij,t
σ2
i,m

δi,m =
e(− 1

τ
)m

σ2
i,m

m∑
j=1

wij,t

Hence,

σ2
i.m =

e−
m
τ

δi,m

m∑
j=1

wij,t (A.14)

Since Ci does not get updated for m steps, its scale at time m decreases over time

using the update equation, and hence:

σ2
i,m ≤ σ2

i,t

e−
m
τ

δi,m

m∑
j=1

wij,t ≤ σ2
i,t

e−
m
τ

∑m
j=1wij,t

σ2
i,t

≤ δi,m

e−
m
τ δi,t ≤ δi,m

Cluster Ci will become invalid and thus be eliminated when δi,m = δmin, and by

using (15):

e−
m
τ δi,t ≤ δmin

e−
m
τ ≤ δmin

δi,t

−m
τ
≤ ln(

δmin
δi,t

)

m > −τ ln(
δmin
δi,t

)
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Theorem A.1.4. Optimal Incremental Centroid Update : Given the previous centroids,

ci,n−1, and assuming that the scales do not change much relative to the scale that resulted

from the previous iteration, the new centroid that optimizes (3.8) in the manuscript after

the arrival of the nth data point is given by:

ci,n =
ci,n−1Wi,n−1 + win,nfin,nxn

Wi,n−1 + win,nfin,n
(A.15)

Proof.

∂L
∂ci,n

=

∂

(∑n
j=1

wij,n
σ2
i,n
× fij,n

τ2
i,n

)
∂ci,n

−
∂
(
λσ2

i

)
∂ci,n

−
∂
(
λτ2

i,n

)
∂ci,n

=

∂

∑n
j=1

e

 −d2ij
κσ2
i,n


σ2
i,n

× fij,n
τ2
i,n


∂ci,n

− 0− 0

=
fij,n
σ2
i,nτ

2
i,n

×

∂

∑n
j=1 e

(
−d2ij
κσ2
i,n

)
∂ci,n

=
fij,n
σ2
i,nτ

2
i,n

×
n∑
j=1

wij,n

(
−2(xj − ci,n)× κσ2

i,n − 0× (xj − ci,n)T (xj − ci,n)

κ2σ4
i,n

)

=
fij,n
σ2
i,nτ

2
i,n

×
n∑
j=1

−2wij,n(xj − ci,n)

κσ2
i,n

=
2× fij,n
κσ4

i,nτ
2
i,n

×

 n∑
j=1

wij,nci,n −
n∑
j=1

wij,nxj

 = 0

Therefore,
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ci,n =

∑n
j=1wij,nfij,nxj∑n
j=1wij,nfij,n

=

∑n−1
j=1 wij,n−1fij,n−1xj + win,nfin,nxn∑n−1

j=1 wij,n−1fij,n−1 + win,nfin,n

=
ci,n−1

∑n−1
j=1 wij,n−1fij,n−1 + win,nfin,nxn∑n−1

j=1 wij,n−1fij,n−1 + win,nfin,n

=
ci,n−1

∑n−1
j=1 wij,n−1fij,n−1 + win,nfin,nxn∑n−1

j=1 wij,n−1fij,n−1 + win,nfin,n

=
ci,n−1Wi,n−1 + win,nfin,nxn

Wi,n−1 + win,nfin,n

Theorem A.1.5. Optimal Incremental Temporal Centroid Update : Given the previous

temporal centroids, ci,n−1, and assuming that the scales do not change much relative to

the scale that resulted from the previous iteration, the new temporal centroid that optimizes

(3.8) in the manuscript after the arrival of the nth data point at time tn is given by:

c′i,n =
c′i,n−1Wi,n−1 + win,nfin,ntn

Wi,n−1 + win,nfin,n
(A.16)
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Proof.

∂L
∂c′i,n

=

∂

(∑n
j=1

wij,n
σ2
i,n
× fij,n

τ2
i,n

)
∂c′i,n

−
∂
(
λσ2

i

)
∂c′i,n

−
∂
(
λτ2

i,n

)
∂c′i,n

=

∂

∑n
j=1

e

 −η2
ij

ρτ2
i,n


τ2
i,n

× wij,n
σ2
i,n


∂c′i,n

− 0− 0

=
wij,n
σ2
i,nτ

2
i,n

×

∂

∑n
j=1 e

(
−η2
ij

ρτ2
i,n

)
∂c′i,n

=
wij,n
σ2
i,nτ

2
i,n

×
n∑
j=1

fij,n

−2(tj − c′i,n)× ρτ2
i,n − 0×

(
tj − c′i,n

)T (
tj − c′i,n

)
ρ2τ4

i,n


=

wij,n
σ2
i,nτ

2
i,n

×
n∑
j=1

−2fij,n(tj − c′i,n)

ρτ2
i,n

=
2× wij,n
ρσ4

i,nτ
2
i,n

×

 n∑
j=1

fij,nc
′
i,n −

n∑
j=1

fij,ntj

 = 0

Therefore,

c′i,n =

∑n
j=1wij,nfij,ntj∑n
j=1wij,nfij,n

=

∑n−1
j=1 wij,n−1fij,n−1tj + win,nfin,ntn∑n−1
j=1 wij,n−1fij,n−1 + win,nfin,n

=
c′i,n−1

∑n−1
j=1 wij,n−1fij,n−1 + win,nfin,ntn∑n−1

j=1 wij,n−1fij,n−1 + win,nfin,n

=
c′i,n−1

∑n−1
j=1 wij,n−1fij,n−1 + win,nfin,ntn∑n−1

j=1 wij,n−1fij,n−1 + win,nfin,n

=
c′i,n−1Wi,n−1 + win,nfin,ntn

Wi,n−1 + win,nfin,n

Theorem A.1.6. Optimal Incremental Scale Update: Given the previous scale σ2
i,n−1, the

new scale that optimizes (3.8) in the manuscript after the arrival of the nth data point is

given by:
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σ2
i,n =

κσ2
i,n−1Wi,n−1 + win,nfin,nd

2
ij

κ (Wi,n−1 + win,nfin,n)
(A.17)

Proof.

∂δi,n
∂σ2

i,n

=

∂

∑n
j=1

fij,n×e

 −d2ij
κσ2
i,n


σ2
i,nτ

2
i,n

− λσ2
i − λτ2

i,n


∂σ2

i,n

=

∂

∑n
j=1

fij,n×e

 −d2ij
κσ2
i,n


σ2
i,nτ

2
i,n


∂σ2

i,n

− ∂λσ2
i

∂σ2
i,n

−
∂λτ2

i,n

∂σ2
i,n

=

∑n
j=1

fij,n
τ2
i,n
×

wij,n × ∂

(
−d2ij
κσ2
i,n

)
∂σ2
i,n

× σ2
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The Karush-Kuhn-Tucker conditions are necessary (but not sufficient) for the scale

to be maximum. The conditions are:

λ ≥ 0 & λσ2
i.n = 0 (A.18)

Which means that we have two cases. In the first case, λ = 0, and the scale can be found

by setting the gradient. In the second case, λ > 0, thus σ2
i,n = 0. Hence, we need to have a

test to make sure that the scale does not become zero.

When λ = 0, we get:
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Theorem A.1.7. Optimal Incremental Temporal Scale Update: Given the previous scale

τ2
i,n−1, the new scale that optimizes (3.8) in the manuscript after the arrival of the nth data

point is given by:

τ2
i,n =
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i,n−1Wi,n−1 + win,nfin,nη

2
ij

ρ (Wi,n−1 + win,nfin,n)
(A.19)
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The Karush-Kuhn-Tucker conditions are necessary (but not sufficient) for the scale

to be maximum. The conditions are:

λ ≥ 0 & λσ2
i.n = 0 (A.20)

Which means that we have two cases. In the first case, λ = 0, and the scale can be found

by setting the gradient. In the second case, λ > 0, thus σ2
i,n = 0. Hence, we need to have a

test to make sure that the scale does not become zero.

When λ = 0, we get:
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A.2 ANOVA Tables

TABLE A.1

ANOVA Table for RBF Parameter Sensitivity on Davies-Bouldin Index Evaluation Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Event Frequency 0.148 2 0.074 0.027 0.973

No. Clusters 2164.019 3 721.340 267.580 0.000

Noise 1251.508 1 1251.508 462.937 0.000

Radii 6660.964 1 6660.964 2506.008 0.000

No. Dimensions 99519.243 2 49759.621 26489.519 0.000

Density Range 62.302 1 62.302 22.961 0.000

Random Seed 9801.957 2 4900.978 1862.321 0.000

Error 203816.162 119107 1.71120221

Total 323276.303 119119
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TABLE A.2

ANOVA Table for RBF Parameter Sensitivity on Silhouette Index Evaluation Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Event Frequency 0.011 2 0.006 0.112 0.894

No. Clusters 357.420 3 119.140 2482.139 0.000

Noise 12.612 1 12.612 247.809 0.000

Radii 128.219 1 128.219 2568.378 0.000

No. Dimensions 3396.926 2 1698.463 75549.211 0.000

Density Range 0.000 1 0.000 0.001 0.972

Random Seed 13.914 2 6.957 136.727 0.000

Error 2165.76 119107 0.018
Total 6074.859 119119

TABLE A.3

ANOVA Table for RBF Parameter Sensitivity on V-Measure Evaluation Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Event Frequency 0.016 2 0.008 0.094 0.911

No. Clusters 535.377 3 178.459 2236.336 0.000

Noise 26.709 1 26.709 317.707 0.000

Radii 165.754 1 165.754 1999.407 0.000

No. Dimensions 5964.429 2 2982.215 87144.346 0.000

Density Range 0.047 1 0.047 0.558 0.455

Random Seed 160.384 2 80.192 966.787 0.000

Error 3188.082 119107 0.027
Total 10040.798 119119

TABLE A.4

ANOVA Table for AFTER-Streams Parameter Sensitivity on Davies-Bouldin Index Evalu-
ation Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Kmax 6898.274 2 3449.137 1298.607 0.000

σ0 7693.783 1 7693.783 2904.052 0.000

τ0 1.900 2 0.950 0.350 0.705
1

toutlier
164.165 1 164.165 60.521 0.000

1
tmerging

1.737 1 1.737 0.640 0.424

amature 4.347 1 4.347 1.602 0.206

Error 308512.097 119111 2.590
Total 323276.303 119119
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TABLE A.5

ANOVA Table for AFTER-Streams Parameter Sensitivity on Silhouette Index Evaluation
Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Kmax 174.173 2 87.087 1758.016 0.000

σ0 303.473 1 303.473 6263.504 0.000

τ0 0.181 2 0.091 1.779 0.169
1

toutlier
6.765 1 6.765 132.806 0.000

1
tmerging

0.034 1 0.034 0.671 0.413

amature 0.002 1 0.002 0.034 0.854

Error 5590.231 119111 0.047
Total 6074.859 119119

TABLE A.6

ANOVA Table for AFTER-Streams Parameter Sensitivity on V-Measure Evaluation Metric.

Source Sum Sq. Errors. Degrees of Freedom Mean Sq. F -statistic p-value

Kmax 26.708 2 13.354 158.845 0.000

σ0 1268.712 1 1268.712 17228.110 0.000

τ0 0.656 2 0.328 3.889 0.020
1

toutlier
149.272 1 149.272 1797.598 0.000

1
tmerging

4.020 1 4.020 47.714 0.000

amature 0.001 1 0.001 0.016 0.899

Error 8591.429 119111 0.072
Total 10040.798 119119
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