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ABSTRACT

FUNCTIONAL DATA ANALYSIS METHODS FOR PREDICTING
DISEASE STATUS

Sarah Kendrick

November 20, 2017

Introduction: Differential scanning calorimetry (DSC) is used to determine

thermally-induced conformational changes of biomolecules within a blood plasma

sample. Recent research has indicated that DSC curves (or thermograms) may have

different characteristics based on disease status and, thus, may be useful as a moni-

toring and diagnostic tool for some diseases. Since thermograms are curves measured

over a range of temperature values, they are often considered as functional data. In

this dissertation we propose and apply functional data analysis (FDA) techniques to

analyze DSC data from the Lupus Family Registry and Repository (LFRR). The aim

is to develop FDA methods to create models for classifying lupus vs. control patients

on the basis of the thermogram curves.

Methods: In project 1 we examine how well standard functional regression

is able to capture the differences in curves for cases and controls and compare this

to a multivariate approach. In project 2 we develop a semiparametric model; the

Generalized Functional Partially Linear Single-Index Model (GFPL). This model is

useful when there exists some curvature or non-linearity in the logit, which cannot

be modeled by the standard Functional Generalized Linear Model (FGLM). It also

mitigates the curse of dimensionality, is a more flexible model, and yields interpretable

v



results. In project 3, we propose a tree-based method: Local Basis Random Forests

(LBRF) for Functional Data. This non-parametric method allows us to focus on

significant parts of the functional covariates and reduce the noise level.

Results: The standard functional logistic regression model with FPCA scores

as the predictors gives an 81.25% correct classification rate on the test data, compa-

rable to results from the multivariate approach. The proposed GFPL gives prediction

accuracies and standard errors that are better than the standard FGLM when there

is nonlinearity present. The LBRF for functional data yields high prediction accuracy

(as high as 97% in simulations and 92% in the Lupus data), especially when the true

signal is localized, and is able to capture where the true signal lies.
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CHAPTER 1

INTRODUCTION

Differential scanning calorimetry (DSC) is used to determine thermally-induced con-

formational changes of biomolecules within a blood plasma sample. The sample is

treated at increasing temperature increments and excess specific heat capacity given

off is measured at each temperature. The excess specific heat capacity can be plotted

against temperature producing a curve referred to as a thermogram. Recent research

has indicated that these curves may have different characteristics based on disease sta-

tus and, thus, may be useful as a monitoring and diagnostic tool for some diseases[1,

2].

One example where DSC thermograms may be helpful in diagnosis and dis-

ease monitoring is with lupus patients. Systemic lupus erythematosus, Lupus, is an

auto-immune disease in which individuals’ immune systems produce antibodies to

cells within the body leading to inflammation. Lupus can affect a wide array of or-

gans/systems within the body and often has symptoms that mimic other diseases.

This makes it very difficult to diagnose and monitor Lupus. The American College

of Rheumatology provides a list of 11 criteria for potential Lupus diagnosis. An in-

dividual is classified as being positive for Lupus if they meet at least 4 of the 11

criteria. This methodology often leads to over-diagnosis, under-diagnosis, and often

misses early and mild cases. Therefore, researchers and doctors are looking for new

and improved Lupus diagnostic tools [3-5]. We apply our methods to data obtained

from the Lupus Family Registry and Repository (LFRR), which consists of 600 de-
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identified samples [6]. Plasma samples for 300 patients classified as having Lupus

using the ACR criteria were obtained. Another 300 plasma samples from controls

without lupus who were matched with diseased individuals based on sex, race, and

age were also obtained. However, eight of these were flagged as being poor scans thus

we end up with 592 observations; 298 cases and 294 controls.

The idea of using thermograms as a diagnostic tool is still relatively new. Ther-

mograms can be analyzed using multivariate or functional data techniques; most prior

work in this area has taken the multivariate approach to analyzing these curves. This

dissertation dives into functional analysis of the data with the goal of developing a

model(s) that is interpretable and yields high prediction accuracy. We first implement

standard functional regression and compare it to multivariate approaches. Then we

develop a semiparametric model that extends standard functional regression to allow

for more flexibility. We compare this model to the standard functional generalized

regression. Finally, we develop a functional extension of the random forest method.

This nonparametric method method allows us to focus on significant parts of the

functional covariates and reduce the noise level. We compare this model to several

other tree-based methods.
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CHAPTER 2

APPLICATION AND INTERPRETATION OF FUNCTIONAL

DATA ANALYSIS TECHNIQUES TO DIFFERENTIAL

SCANNING CALORIMETRY DATA FROM LUPUS PATIENTS

2.1 Introduction

Project one implements several existing Functional Data Analysis (FDA) tools to

analyze the DSC data. Functional data analysis is the analysis of curves or func-

tions as a whole. In FDA, the entire curve or function is considered as one unit of

observation instead of multiple observations along a time continuum. Ramsay and

Silverman described the FDA framework in 2005. Their work shows how to specify

basis systems for building up functions, how to build functional data objects, how

to smooth functional curves, how to perform functional principal component anal-

ysis, and how to implement linear regression within the functional framework [7].

Febrero-Bande and de la Fuente developed a model for functional generalized linear

models (FGLM) in 2012 that is capable of handling categorical response variables

with functional predictors [8].

The use of thermogram profiles as a diagnostic tool is a relatively new research

idea. Few papers have been published in this area and functional data analysis has

never been used to analyze thermograms. Fish et al. focused strictly on classification

of individuals as cases or controls. They used a non-parametric method and calculated

a similarity metric for classification [9]. Fish et al. did not apply functional data

3



techniques, nor did they explore the effects of covariates on classification. Vega et al.

presented a novel method for analyzing thermograms in which they first broke down

the thermograms into six individual peaks to represent the curves. They then used

parameters corresponding to each peak in a multiparametric comparative method to

develop classification criteria [10]. Similar to Fish’s paper, Vega et al. only focused on

classification, did not implement standard functional data analysis techniques, and

did not explore the effect of other covariates on their methods. Finally, Garbett et

al. used ANOVA on the first principal component for thermograms along with other

covariates to assess the relationship between thermograms, additional covariates, and

disease status. They used modified linear discriminant analysis for classification [1].

Garbett et al. used multivariate analysis instead of functional data analysis, and their

results are difficult to interpret.

2.2 Methods

The main aim of project 1 is to apply standard Functional Data Analysis techniques to

the Lupus DSC data. The techniques we use are regression with a functional response

variable and scalar/categorical predictor variable, regression with a scalar/categorical

response variable and a functional predictor, and regression with a scalar/categorical

response and functional principal component analysis (FPCA) scores as the predictor.

Below we describe each method in detail and then illustrate how these methods can

be applied to the Lupus data.

2.2.1 Linear Models for Functional Responses

Linear models with a functional response variable and scalar/categorical covariates

are used when a researcher is interested in predicting a functional response based on

4



the values of the covariate(s). The traditional linear model,

yi =

p∑
j=1

xijβj + εi (2.1)

can be extended to the case where the response is now functional. To accomplish

this, we first define basis functions. Basis functions and basis expansions are the

building blocks of all FDA techniques. The following is an example of a basis function

expansion: x(t) =
∑K

k=1 ckφk(t) = c′φ(t). Often, we are interested in a sample of N

basis functions; we now have: xi(t) =
∑K

k=1 cikφk(t) for i = 1, · · · , N . Using basis

expansions, the model becomes,

yi(t) = β0(t) +

p∑
j=1

xijβj(t) + εi(t), (2.2)

β0(t) =
K∑
k=1

b0,kφk(t), (2.3)

β1(t) =
K∑
k=1

b1,kφk(t), ..., βp(t) =
K∑
k=1

bp,kφk(t), (2.4)

Plugging (2.3) and (2.4) into (2.2),

yi(t) =
K∑
k=1

b0,kφk(t) +

p∑
j=1

K∑
k=1

xijbj,kφk(t) + εi(t), (2.5)

where i = 1. . . n indicates the individual observations, t is the time indicator, K is

the number of basis functions used for setting up the basis expansion for β(·), φ is

our matrix of K basis functions, bj,k are the unknown β coefficient vectors; and xij

represents the ijth entry of the design matrix. In the case of the thermogram data,

the design matrix will be (m=451 x n=592), with each column containing the excess

specific heat capacity values for each individual (n) and each row representing one

temperature value (m). This model can also handle additional covariates [11].

Just as in non-functional regression, in functional regression we may be inter-

ested in answering some common statistical questions such as,

5



1. Are the thermograms for cases and controls statistically distinguishable?

2. Are there statistically significant relationships between thermogram profiles and

disease status, gender, race, and other covariates?

Functional equivalents of the standard t- and F-tests can be performed to answer

such questions. Due to the fact that functional data are inherently high-dimensional,

permutation tests are used to determine the critical values for these tests (See Ramsay

& Silverman 2009 for details) [11].

2.2.2 Generalized Linear Models with Functional Covariates

Generalized linear models are often used in the presence of a categorical response.

Here, as we are interested in using DSC profile to predict disease status, we consider

functional logistic regression. In this case, the link function is the logit function,

g(µi) = ln

(
µi

1− µi

)
= β0 +

∫
xi(t)α1(t)dt, (2.6)

where

xi(t) ≈
L∑
l=1

φl(t)ci,l = φ(t)′ci, (2.7)

α1(t) ≈
K∑
k=1

ξk(t)bk = ξ(t)′b, (2.8)

Plugging (2.7) and (2.8) in to (2.6), we get

g(µi) = ln

(
µi

1− µi

)
= β0 +

∫
ξ(t)′bφ(t)′cidt, (2.9)

Therefore, we can rewrite the link function as,

g(µi) = ln

(
µi

1− µi

)
= β0 + β′1ci, (2.10)

where β′1 =
∫
ξ(t)′bφ(t)′dt, i indicates the observations; t indicates the time values; φ

and ξ represent the spline basis functions for the data and β, respectively; c represents

6



the spline coefficients for the data; b represents the spline coefficients for β; and L &

K are the number of basis functions used for the data and β, respectively. Again, the

model can be extended to include additional covariates by updating equation 2.10,

g(µi) = ln

(
µi

1− µi

)
= β0 + β′1ci +

p∑
j=2

βjZj, (2.11)

where, Zj contain the data for each of our additional covariates [7].

2.2.3 Generalized Linear Models using Functional Principal Component Analysis

In the previous section we approximated the functional covariates and regression

coefficients using B-spline basis approximation. Here we consider a special basis -

functional principal components. Principal component analysis (PCA) can be de-

scribed as the search for a probe, ξ, that captures the greatest variation in the data.

In other words, we try to find ξ such that the probe scores have the largest variation,

ρξ(xi) =

∫
ξ(t)xi(t)dt, (2.12)

where, ∫
ξ2(t)dt = 1. (2.13)

In multivariate PCA, all pairs of eigenvalues and eigenvectors are computed by solving

the equation,

V ξj = µjξj, (2.14)

where, V is the covariance matrix and

µj =
∑
i

ρ2
ξ(xi), (2.15)

subject to
∫
ξ2(t)dt = 1. The process is very similar in the functional setting. Here,

the eigenfunctions (or harmonics), are calculated as solutions to,∫
v(s, t)ξj(t)dt = µjξj(s), (2.16)

7



where, v(s, t) is the bivariate covariance function [11]. The function pca.fd in the fda

package in R can be used to perform FPCA on a functional object. Once FPCA has

been performed, the eigenvalues, µj, can be plotted against their indices, j, creating

a scree plot which can be used to determine the number of harmonics to use. The

number of harmonics used is chosen by identifying where the line starts to level-out

or straighten. The point where this occurs is a visual indication of the number of

harmonics that should be included. Once the number of harmonics to use has been

determined, we then regress the categorical outcome variable onto the scores obtained

from the FPCA using a generalized linear model with the logit link function. The

model now becomes,

p(yi; θi;φ) = exp

{
yiθi − b(θi)

α(φ)
+ c(y + i, φ)

}
, (2.17)

g(µi) = ln

(
µi

1− µi

)
= β0 +

L∑
l=1

γilβl, (2.18)

where γil are the principal component scores for i individuals and l harmonics. Since

γil =
∫
ξl(t)(xi(t)− x̄(t))dt, equation 2.21 now becomes,

g(µi) = ln

(
µi

1− µi

)
= β0 +

∫ L∑
l=1

βlξl(t)(xil(t)− x̄(t))dt, (2.19)

giving us,

β(t) =
L∑
l=1

βlξl(t). (2.20)

Incorporation of additional covariates into the model is an easy extension. Equation

(2.21) now becomes,

g(µi) = ln

(
µi

1− µi

)
= β0 +

L∑
l=1

γilβl +
P∑

j=L+1

βjZj (2.21)

where, Zj contain the data for each of our additional covariates. Since normally only

the first few principal components are needed to capture the majority of the variation

within the data, FGLM using FPCA allows for dimension reduction which decreases

8



the degrees of freedom for error in the model. This decrease allows for a more stable

estimate and, thus, may be more ideal than the standard FGLM described previously

[8, 11].

2.3 Results

2.3.1 Functional linear model with thermogram data as the response and disease

status as the predictor

In the Lupus thermogram framework, the response variable of interest is thermo-

gram shape and structure predicted by disease status (case or control). Therefore,

in equation 2.5, i = 1, 2, ..., 592; j = 1, 2 indicating disease status; t = time points

(termperature in this case); K = 35; and the values of xij are 0 or 1 indicating either

case or control, respectively. Our design matrix is then a 592×3 matrix with the first

column being all 1’s, the second column cotains 1’s for cases and 0’s for controls, and

the third column contains 1’s for controls and 0’s for cases.

Since we used 35 B-spline basis functions, we have 35 terms for each of the

three coefficients - intercept, cases, and controls. These β values can then be plotted

against temperature (a sequence that ranges from 45 to 90◦C). Since there are only a

few values for each coefficient the plots will look very rough. Therefore, we implement

some smoothing to yield more interpretable plots. These plots give the mean ther-

mogram (intercept), and the perturbations of the overall mean required to fit a curve

for cases and controls. We can also use the predicted response values, returned to us

from the regression, to get the predicted curves for both cases and controls (Figure

2.1).

Plotting the results of the functional t-test we see that the most significant

differences between the curve for cases and the curve for controls lies in the [60, 69]◦C

and [72, 85]◦C ranges (Figure 2.2). Figure 2.2 also shows the maximum value of the
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test statistic (highest value of the red line), the critical value for each individual t-test

performed (dotted blue line), and the overall critical value (dashed blue line). From

this, the value of the test statistic, Tobs, was 14.22, and the critical value from the

permutation test was 2.92. This indicates a significant overall difference between the

curves for cases and the curves for controls.

With additional covariates

Now, we extend the above model to include additional covariates. In the thermogram

application we include sex, race, and year of birth as covariates in the model. Disease

status (case or control) will require one coefficient; sex (male or female) will require

one additional coefficient; race (Black or White) will require one additional coefficient;

and year of birth (1924-1944, 1945-1955, 1956-1971, or 1972-1993) will require three

additional coefficients, making p = 7 in equation 2.5.

Figure 2.3 shows the estimated regression coefficients from this model. Now,

w ith more than two groups in the model, we no longer perform the functional t-test

but can, instead, implement the functional F-test. Just as with the functional t-test,

we can get a plot for the funcitonal F-test results (Figure 2.4), and calculate the

F-statistic = max(F (t)). Again, we use a permutation test to determine the critical

value for performing the hypothesis test. Figure 2.4 indicates that the strongest

predictive relationship between the covariates and thermogram structure lies within

the [60, 85]◦C range. The test yields an observed statistic, Fobs, of 0.48 and a critical

value of 0.06 indicating a strong predictive relationship between the covariates and

the response variable.

The results of the linear regression with functional response variable and

scalar/categorical covariate(s) shows a significant difference between curves for cases

and curves for controls as well as a strong predictive relationship between disease sta-

tus + covariates and thermogram structure. Both models show the largest differences
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and strongest relationships occur between 60◦C and 85◦C. Therefore, we choose to

only include DSC data within that temperature range when running the rest of the

regression models.

2.3.2 Generalized linear models: disease status as the response and thermogram

data as the predictor

Now we shift the focus to the case where the response variable of interest is categorical

and at least one of the covariates is functional. In the Lupus data, our response

variable is disease status, 1 indicating cases and 0 indicating control. The thermogram

functional object now becomes the predictor variable. We want to investigate how

well thermogram shape and structure predicts disease status. We run the regression

using the generalized linear model. In this example we set up 15 spline basis functions

(K=15) for the regression coefficients, and use 20 spline basis functions (L=20) for

the data. We then use the fregre.glm function in the fda.usc package in R to run the

regression. Since we use a set of basis functions for the regression coefficient basis

expansion, the results from the regression yield estimated regression coefficients that

are a functional data object. These are plotted in Figure 2.5 and we see that there

seems to be a significant edge effect near the 85◦C mark.

A χ2 goodness-of-fit test was used to test for lack of fit. With a test-statistic

of 796.50 on 576 degrees of freedom, we get a p-value ≈ 0 indicating evidence of a

lack of fit in the model. Next, we split the data into a training data set and a test

data set in order to evaluate the predictability of the model. A 2/3 vs 1/3 split is

used giving 200 cases and 200 controls in the training set; 98 cases and 94 controls

in the test set. We run the regression using only the training set and use the results

to predict the response values for the test set. An observation within the test set is

classified as a case if their predicted value is greater than 0.5; classified as a control

if their predicted response value is less than 0.5. Comparing predicted classification
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to true classification, this model yields a 76.56% correct classification rate.

With additional covariates

Motivated by the lack of fit from the previous model, we investigate the effect addi-

tional covariates have on the model. We use the same covariates as above. From the

regression we get the estimated regression coefficients, test for lack of fit, and split

the data into training and test sets to estimate predictability of the model. Figure 2.6

plots the regression coefficient functional data object associated with the thermogram

predictor variable. Again we see a large edge effect near the 85◦C mark, and we also

see a big peak around 67◦C that was not present in the reduced model. Summary of

the regression indicates that none of the additional covariates are significant in the

model. Since individuals were matched based on age and gender, these results make

sense. The χ2 goodness-of-fit test produced a test-statistic = 576.32 on 567 degrees of

freedom giving a p-value = 0.38. Therefore, the addition of these covariates improves

the fit of the model. After splitting the data into training and test sets, running

the regression on the training set, and using this to predict the response for the test

set, responses are classified into case and control if their predicted response is greater

than 0.5 or less than 0.5, respectively. Comparing predicted classification to true

classification this model had a 74.47% correct classification rate; a rate slightly lower

than in the model with only the functional predictor variable.

Testing potential interactions

Lastly, we extend the model to test potential interactions between the scalar/categorical

covariates. First, we included all potential interactions to see their effect on the model.

Figure 2.7 shows the functional regression coefficients and Table 2.1 gives the esti-

mated regression coefficients for the main effects and interaction effects for each of

the additional covariates. This model yields a deviance value of 564.81 on 560 degrees
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of freedom with a p-value of 0.44 indicating no significant lack of fit. From Table 1

we see that sex does not have a significant effect on the model but race, year of birth,

and their interaction do. Therefore, we update the model and remove the main effects

and interactions involving sex. These regression coefficients are presented in Table

2.2. This reduced model gives a deviance of 567.14 on 565 degrees of freedom and a

p-value of 0.47. It also has a 74.47% correct classification rate.

2.3.3 Generalized linear models using functional principal component scores as the

predictor and disease status as response

The final model we consider uses disease status, case (1) or control (0), as the response

variable, and principal component scores as the functional covariate. We first perform

FPCA on the thermogram data. Figure 2.8 shows the scree plot of the first 15

principal components (PCs). From the scree plot, we conclude that only the first six

PCs are needed since together they explain 99% of the variation in the data (Figure

2.8). Figure 2.9 plots the overall mean thermogram curve as well as two additional

lines for each PC. These two additional lines show what happens to the mean curve

when a small amount of the PC is added (+) or subtracted (-). We see that the

first harmonic captures 68.4% of the total variation about the mean and shows the

contrast between cases and controls. The second harmonic, explaining an additional

14.5% of variation, indicates a vertical shift in the mean. The third harmonic captures

the vertical shifts about the two main peaks, and the remaining harmonics capture

much smaller noise and variation.

Now that we have determined the number of PCs to include, we use the func-

tion glm in the stats package in R to fit the model in Section 2.2.3. Table 2.3 gives the

values, standard error, t-statistic, and p-value for the coefficient estimates and Figure

2.10 plots the functional object representing the regression coefficient estimates. We

no longer see the edge effect we saw in previous models, and the estimated coeffi-
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cients have a smaller magnitude than in the previous models. We get a test-statistic

of 613.54 on 585 degrees of freedom when testing for a lack of fit. This gives a p-value

of 0.20 indicating no evidence of a lack of fit in the model. Finally, individuals are

classified as case or control if their predicted response value is more than 0.5 or less

than 0.5, respectively. Comparing these predicted classifications to true disease status

we get 81.25% correct classification from the model, a value greater than that from

any of the previous models.

Figure 2.11 shows the first six principal components. The first principal com-

ponent curve models individuals starting with excess specific heat capacity values

around average that then drop below average, and then increase to above average

values, eventually decreasing back to average. Thus individuals with thermograms

matching this pattern will have a positive γi value, and individuals experiencing the

opposite of this will have a negative γi value. This curve very closely resembles the re-

gression curve for cases in Figure 2.1, therefore we can conclude that cases will tend to

have positive γi values and controls will likely have negative γi values. From Table 2.3,

we see that the first principal component is highly significant for disease status and

that individuals with curves described as above have an odds ratio of e6.600 = 735.10

of being a case relative to an average person. The second principal component was

also found to be significant and represents individuals that have above average excess

specific heat capacity values between 55◦C and 85◦C. Individuals experiencing this

type of vertical shift from the average curve have an odds ratio of e−4.467 = 0.011 of

being a case relative to the average person.

The third principal component was not significant for disease status and the

remaining three principal components explain only a small portion of the total vari-

ance. However, principal components 5 and 6 were found to be highly significant.

This suggests that we may be underestimating the standard errors in the first few

principal components, and this is being captured in the latter principal components.

14



Finally, the intercept coefficient, β0 = 0.068 gives the probability of an average indi-

vidual within our dataset having Lupus = 1− 1
1+e0.068

= 0.52. Given that 298 out of

592 (50.3%) individuals within the Lupus dataset truly do have lupus, the estimated

beta makes sense.

2.4 Tables and Figures

Table 2.1: Estimated regression coefficients for the additional covariates and their
interactions in the FGLM

Coefficient Estimate Std. Err Z value p-value
Intercept 1.20 0.47 2.58 0.01
Sex-Male 0.18 0.71 0.25 0.81

Race-White -1.22 0.51 -2.38 0.02
Year of Birth (1944, 1955] -0.69 0.53 -1.30 0.19
Year of Birth (1955, 1971] -1.67 0.54 -3.11 0.002
Year of Birth (1971, 1993] -1.31 0.58 -2.25 0.02

Sex*Race -0.12 0.63 -0.18 0.85
RaceWhite*Year of Birth (1944, 1955] 0.87 0.74 1.18 0.24
RaceWhite*Year of Birth (1955, 1971] 2.02 0.99 2.05 0.04
RaceWhite*Year of Birth (1971, 1993] 1.13 0.66 1.71 0.09

SexMale*Year of Birth (1944, 1955] -0.13 0.78 -0.17 0.87
SexMale*Year of Birth (1955, 1971] 0.69 0.89 0.77 0.44
SexMale*Year of Birth (1971, 1993] 0.14 0.71 0.20 0.84
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Table 2.2: Estimated regression coefficients after removing sex and its interactions
from the model

Coefficient Estimate Std. Err Z value p-value
Intercept 1.23 0.45 2.75 0.01

Race-White -1.25 0.50 -2.50 0.01
Year of Birth (1944, 1955] -0.72 0.51 -1.41 0.16
Year of Birth (1955, 1971] -1.54 0.51 -3.03 0.002
Year of Birth (1971, 1993] -1.28 0.56 -2.26 0.02

RaceWhite*Year of Birth (1944, 1955] 0.85 0.67 1.27 0.20
RaceWhite*Year of Birth (1955, 1971] 2.59 0.79 3.29 0.001
RaceWhite*Year of Birth (1971, 1993] 1.14 0.66 1.73 0.08

Table 2.3: Estimated regression coefficients for the first 6 principal components in
the FGLM model using FPC scores

Coefficient Estimate Std. Err t-value p-value
Intercept 0.07 0.10 0.68 0.50

PC 1 6.6 0.62 10.69 < 0.001
PC 2 -4.47 1.15 -3.88 < 0.001
PC 3 -1.25 1.45 -0.87 0.39
PC 4 0.96 2.32 0.42 0.68
PC 5 18.93 3.57 5.31 < 0.001
PC 6 -17.52 5.14 -3.41 0.001
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Figure 2.1: Smoothed regression coefficients estimated for predicting thermograms
from disease status. The first panel is the intercept coefficient, corresponding to
the overall mean thermogram. The second and third panels show the estimated
perturbation (regression coefficients) of the overall mean needed to fit a curve for cases
and controls respectively. The last panel shows the predicted mean thermograms for
cases and controls.

17



Figure 2.2: A test for the difference in thermogram profiles for cases and controls.
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Figure 2.3: Smoothed regression coefficients estimated for predicting thermograms
from disease status, sex, race, and year of birth. From left to right, top to bottom,
panel 1 is the intercept coefficient, corresponding to the overall mean thermogram.
The second panel shows the estimated perturbation (regression coefficients) of the
overall mean needed to fit a curve for cases. The third panel shows the estimated
perturbation of the overall mean needed to fit a curve for males. Panels 4-6 show the
estimated perturbation of the overall mean thermogram needed to fit a curve for indi-
viduals with a birth year in (1944, 1995], (1955, 1971], and (1971, 1993], respectively.
Panel 7 shows the estimated perturbation of the overall mean thermogram needed to
fit a curve for individuals identifying as White. Finally, panel 8 shows the predicted
curves for each combination of disease status, sex, year of birth, and race.
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Figure 2.4: Permutation test for a predictive relationship between disease status,
sex, race, and year of birth and thermogram structure.
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Figure 2.5: Estimated regression coefficients for the FGLM when disease status is
the response variable with thermograms as the functional predictor variable.
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Figure 2.6: Estimated regression coefficients for the thermogram predictor variable
in the FLGM framework when additional covariates are added to the model.
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Figure 2.7: Estimated regression coefficients for the thermogram predictor variable
in the FLGM framework when additional covariates and their interactions are added
to the model.
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Figure 2.8: Scree plot of the first 15 PC’s resulting from FPCA on thermogram
data
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Figure 2.9: The first 6 functional PC’s and the percent variation they capture.
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Figure 2.10: Estimated regression coefficients associated with the thermogram pre-
dictor variable when disease status is the response variable and principal component
scores from FPCA are the predictor variables.
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Figure 2.11: The first 6 principal component curves for thermogram profiles.
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CHAPTER 3

FUNCTIONAL GENERALIZED PARTIALLY LINEAR

SINGLE-INDEX MODEL

3.1 Introduction

In project 1, we assumed the relationship between the logit of the response variable

and the predictor variables is linear. However, this may not always be the case; there

may be some curvature in the logit. A violation of the linearity assumption can give

misleading results. An alternative to the standard linear-logistic regression model

is the generalized single-index model, g(E(Y )) = η(x′β), where η is an unknown

function. Along with being able to capture any non-linearity in the logit, single-index

models also provide increased flexibility, circumvent the curse of dimensionality, and

yield interpretable results.

In our second project, we address the restrictiveness of the parametric model

with our proposed model: generalized functional partially linear single-index model

(GFPL). Shujie Ma proposed the functional single index model (FSiM) in 2014. Ma

used B-spline basis functions to approximate the slope and link function and imple-

mented an iterative estimating method using the least squares criterion to estimate

the functions [12]. Carroll et al. developed the generalized partially linear single

index model (GPLSiM) in 1997 [13]. The GPLSIM is useful when the relationship

may not be linear. Carroll et al. implements an unknown nonparametric function to

allow for nonlinearity in the logit and implement an iterative estimation procedure

to estimate the slope and the link function. Ma’s method can not handle categorical
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responses. On the other hand, Carrol et al. proposed a method that is not applicable

to functional data. Therefore, we propose the GFPL which borrows from both of

these proposed methods to build our new method.

3.2 Methods

3.2.1 The Model

Let Y denote the response variable, which belongs to a natural exponential family

with natural parameter θ. That is, Y has the density

f(y|θ) = c(y) exp(θy − b(θ)), (3.1)

with respect to a σ-finite measure ν. Let Θ be the natural parameter space, i.e. the

set of all θ such that 0 <
∫
c(y) exp(θy)dν <∞. Then Θ is convex, and all derivatives

of b(θ) and all moments of y exist for θ ∈ Θ0, the interior of Θ. Denote Eθ [Y ] = b′(θ)

by µ(θ) and varθ(Y ) = b′′(θ) by σ(θ).

Let X(t) =
(
X(1)(t), · · · , X(p)(t)

)T
and Z(t) =

(
Z(1)(t), · · · , Z(q)(t)

)T
denote

p-dimensional and q-dimensional functional predictors with a compact support T ,

respectively. A generalized functional model satisfies

(i) The functional covariates X(t) and Z(t) influence Y in the form of a linear

combination

γ =

p∑
j=1

∫
T
αj,0(t)X(j)(t)dt+

q∑
k=1

∫
T
βk,0(t)Z(k)(t)dt

=

∫
T

αT0 (t)X(t)dt+

∫
T

βT0 (t)Z(t)dt,

(3.2)

where α0(t) = (α1,0(t), · · · , αp,0(t))T and β0(t) = (β1,0(t), · · · , βq,0(t))T are p-

dimensional and q-dimensional smooth coefficient functions.

(ii) The influence is related to µ(θ), the mean of Y , by a known injective link
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function g : R→ R: γ = g(µ(θ)). The link function g is defined as in [14]. We

also use the injective function h = (g ◦µ)−1 to relate γ to the natural parameter

θ, i.e. θ = h(γ).

As pointed out by [13], the linear structure in Equation 3.2 is not always complex

enough to model the relationship between the response variable and the associated

covariates. We consider the following generalized functional partially linear single

index model:

g (µ (θ)) = η0

(∫
T
αT0 (t)X(t)dt

)
+

∫
T
βT0 (t)Z(t)dt, (3.3)

where η0 is an unknown nonconstant smooth function.

3.2.2 Notations and regular conditions

To develop our GFPL model, we first introduce some notations as follows. Given a

random sample Z1, · · · , Zn, let Gn(f) = Gn(f(Zi)) := n−1/2
∑n

i=1(f(Zi) − E[f(Zi)])

and Enf = Enf(Zi) :=
∑n

i=1 f(Zi)/n. We use ‖ · ‖r to denote the lr-norm of a vector

or function. In particular, we denote the l2-norm by ‖ · ‖. Given any function f ,

‖f‖r,A denotes the lr-norm of f on the area A. Let ∧ and ∨ denote the minimum

operator and the maximum operator respectively. Given square matrices A and B,

we write A ≤ B if and only if B−A is non-negative definite, and we use λmin(A) and

λmax(A) to denote the minimum and the maximum eigenvalue of the matrix.

(C1) αj,0(·) ∈ C(d)(T ), βk,0(·) ∈ C(d)(T ),∀1 ≤ j ≤ p, 1 ≤ k ≤ q, and η0(·) ∈ C(d)(U),

where C(d)(Y) :=
{
φ :
∥∥φ(d)

∥∥
∞,Y ≤ C

}
denotes the space of functions with the

dth order derivative bounded by C over a given set Y , for some integer d ≥ 2

and constant C.

(C2) The functionals X(j)(·);Z(k)(·); j = 1, · · · , p; k = 1, · · · , q, are random variables
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on X (T ), where

X (T ) :=

{
φ : max

1≤j≤p
sup

t1 6=t2,t1,t2∈T

|φ(t1)− φ(t2)|
|t1 − t2|

≤ C

}
.

(C3) The function h(·) and b(·) have three continuous derivatives with ‖h′′′(·)‖∞,U ,

‖b′′′(·)‖∞,U ≤ CD.

(C4) Let m∗n = min1≤i≤nmi and m∗n = max1≤i≤nmi.

max
1≤i≤n

max1≤l≤mi ti,l+1 − ti,l
min1≤l≤mi ti,l+1 − ti,l

≤ CK ,

for some constant Ck > 0.

Remark 3.2.1. Conditions (C1) and (C2) are widely adopted in functional analysis

literature (see [12,15] ). From the compactness of T and Conditions (C1) and (C2),

it can be inferred that
∫
T α

T (t)X(t)dt,
∫
T β

T (t)Z(t)dt, and η0(
∫
T α

T (t)X(t)dt) +∫
T β

T (t)Z(t)dt are all bounded uniformly over X(j)(·), Z(k)(·) ∈ X , j = 1, · · · , p, k =

1, · · · , q,. Thus, without loss of generality, U can be regarded as a bounded set in R.

The boundedness of U , coupled with Condition (C3) implies that h(·), h′(·) and σ(·)

are bounded in U .

Estimation

Let Bn,1(t) = (B1,1(t), · · · , BJn,1,1(t))T and Bn,2(t) = (B1,2(t), · · · , BJn,2,2(t))T be sets

of κ1th and κ2th order normalized B-spline basis functions with knot sequences {τs}

and {νr}, respectively, where {τs} and {νr} satisfy τ1 = · · · = τκ1 < τκ1+1 < · · · <

τJn,1 < τJn,1+1 = · · · = τJn,1+κ1 and ν1 = · · · = νκ2 < νκ2+1 < · · · < νJn,2 < νJn,2+1 =

· · · = νJn,2+κ2 . Following the literature of spline estimators [16, 17], we also require

maxκ1≤s≤Jn,1 τs+1 − τs
minκ1≤s≤Jn,1 τs+1 − τs

∨
maxκ2≤r≤Jn,2 νr+1 − νr
minκ2≤r≤Jn,2 νr+1 − νr

< CK ,
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uniformly in n, to investigate the asymptotic properties of our proposed estimators.

Throughout the rest of the chapter, we choose κ1 = κ2 = κ to ease the presentation

and simplify the theoretical development. However, our results can easily be extended

to the κ1 6= κ2 case. In addition, we may suppress the dependence of Jn,1, Jn,2,Bn,1(·),

and Bn,2(·) on n for notational simplicity, when there is no confusion.

The unknown link function η0(·) and the coefficient functions αj,0(·) and βk,0(·)

can be approximated by B-spline functions:

η0(u) ≈ η∗(u) =

J1∑
s=1

λ∗sBs,1(u) = λ∗TB1(u),

αj,0(t) ≈ α∗j (t) =

J2∑
r=1

δ∗r,jBr,2(t) = δ∗j
TB2(t),

and βk,0(t) ≈ β∗k,0(t) =

J2∑
r=1

ω∗r,kBr,2(t) = ω∗k
TB2(t),

where λ∗ = (λ1, · · · , λJ1)T , δ∗j = (δ1,j, · · · , δJ2,j)T , j = 1, · · · , p, and ω∗k =

(ω1,k, · · · , ωJ2,k)T , k = 1, · · · , q, such that

λ∗ = arg min
λ
‖η0(u)− λTB1(u)‖∞, δ∗j = arg min

δj

‖αj,0(t)− δTj B2(t)‖∞, 1 ≤ j ≤ p,

and ω∗k = arg min
ωk

‖βk,0(t)− ωTkB2(t)‖∞, 1 ≤ k ≤ q.

According to [18], under Condition (C1)

sup
u∈I
|η∗(u)− η0(u)| = O(J−d1 ), (3.4)

sup
t∈T ,1≤j≤p

|α∗j (t)− αj(t)| = O(J−d2 ), and (3.5)

sup
t∈T ,1≤k≤q

|β∗k(t)− βk(t)| = O(J−d2 ). (3.6)

As the curves
{
X

(j)
i (t), j = 1, · · · , p

}
and

{
Z

(k)
i (t), k = 1, · · · , q

}
are discretized
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at dense time points ti,1, · · · , ti,mi+1 with mi →∞ as n→∞, by Riemann integration,∫
T
αj(t)X

(j)
i (t)dt

≈
mi∑
l=1

(ti,l+1 − ti,l)αj(ti,l)X(j)
i (ti,l)

≈
J2∑
r=1

δr,j

mi∑
l=1

(ti,l+1 − ti,l)Br,2(ti,l)X
(j)
i (ti,l)

(3.7)

∫
T
βk(t)Z

(k)
i (t)dt

≈
mi∑
l=1

(ti,l+1 − ti,l)βk(ti,l)Z(k)
i (ti,l)

≈
J2∑
r=1

ωr,k

mi∑
l=1

(ti,l+1 − ti,l)Br,2(ti,l)Z
(k)
i (ti,l).

(3.8)

We further introduce some notations as follows:

φi,r,j =

mi∑
l=1

(ti,l+1 − ti,l)Br,2(ti,l)X
(j)
i (ti,l),

φi,j = (φi,1,j, · · · , φi,J2,j)T ,φi = (φTi,1, · · · ,φTi,p)T ,

ψi,r,k =

mi∑
l=1

(ti,l+1 − ti,l)Br,2(ti,l)Z
(k)
i (ti,l),

ψi,k = (ψi,1,k, · · · , ψi,J2,k)T ,ψi = (ψT
i,1, · · · ,ψT

i,q)
T ,

δ = (δT1 , · · · , δTp )T , ω = (ωT1 , · · · ,ωTq )T , and ζ = (δT ,ωT )T .

Let

Ln(λ, ζ) :=
n∑
i=1

h
(
BT

1

(
φTi δ

)
λ+ψT

i ω
)
Yi − b

(
h
(
BT

1

(
φTi δ

)
λ+ψT

i ω
))

(3.9)

be the log-likelihood function for the parameters λ and ζ. In practice, it is almost

infeasible to maximize Equation 3.9 with respect to λ and ζ simultaneously. Thus,

we apply an iterative estimation method as is frequently used in the partially linear

single index model.
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Step 1: (Initialization step). Obtain an initial value ζinit by assuming a parametric form

for η0(·), and set δinit = δinit
(∑p

j=1 δ
initT

j

(∫
T B2(t)BT

2 (t)dt
)
δinitj

)−1/2

.

Step 2: Obtain λ̂(ζinit) = (λ̂1(ζinit), · · · , λ̂J1(ζinit))T as

λ̂(ζinit) = arg max
λ

`n(λ; ζinit), (3.10)

where `n(λ; ζinit) := Ln(λ; ζinit) is constructed based on the approximation

in Equation 3.7 and Equation 3.8, and b(·) is defined in Equation 3.1. Con-

sequently, the estimators η̂(u; ζinit) of η0(u) and η̂′(u; ζinit) of η′0(u) can be

obtained as

η̂(u; ζinit) = BT
1 (u)λ̂(ζinit), η̂′(u; ζinit) = B′

T
1 (u)λ̂(ζinit).

Step 3: Update ζ̂ as

ζ̂ = arg max
ζ: δ1,1≤···≤δJ2,1

˜̀
n(ζ; λ̂), (3.11)

where ˜̀
n(ζ; λ̂) := L(λ̂; ζ), and set δ̂ = δ̂

(∑p
j=1 δ̂

T

j

(∫
T B2(t)BT

2 (t)dt
)
δ̂j

)−1/2

.

Step 4: Repeat Steps 2 and 3 until convergence.

Step 5: Obtain λ̂ by using ζ̂ from Step 2. The final estimate of η0 is BT
1 (u)λ̂.

Theoretical properties

Proposition 3.2.1. Under Conditions (C1) – (C4), if J1 = o
(
n1/3 ∧ J2d/3

2 ∧m2/3
∗n

)
,

J2 = o(J2
1 ), J

5/2
1 J

1/2
2 (log n)2 = o(n) , then for any an that satisfies n−1/2 = O(an) and

an = o(J
−3/2
1 ), we have
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(i)

sup
‖ζinit−ζ∗‖≤an

∥∥η̂(u; ζinit)− η0(u)
∥∥
∞ = Op

( (
bn + n−1/2 log n

)
J

1/2
1

)
,

sup
‖ζinit−ζ∗‖≤an

∥∥η̂′(u; ζinit)− η′0(u)
∥∥
∞ = Op

( (
bn + n−1/2 log n

)
J

3/2
1

)
,

where bn = J−d1 + J−d2 +m−1
∗n + anJ

−1/2
2 .

(ii) let Ui =
∫
T α

T
0 (t)Xi(t)dt, γi = η0 (Ui) +

∫
T β

T
0 (t)Zi(t)dt, ρi = h′ (γi)

(
Yi −

µ (h (γi))
)

, Fi = (h′ (γi))
2 σ(h(γi), and Wi =

(
η′0(Ui)φ

T
i ,ψ

T
i

)T
,∥∥∥∥∥λ̂(ζinit)− λ∗ − n−1V−1

1

n∑
i=1

ρiB1 (Ui) + V−1
1 E

[
FiB1(Ui)Wi

T
] (
ζinit − ζ∗

) ∥∥∥∥∥
= Op

((
J−d1 + J−d2 +m−1

∗n
)
J

1/2
1

)
+ op

(
J

1/2
1 J

−1/2
2 an

)
.

where V1 = E
[
FiB1 (Ui) BT

1 (Ui)
]
.

The result (i) in Proposition 3.2.1 establishes the uniform convergence rates of

the resulting estimators λ̂(ζinit), η̂(u; ζinit) and η̂′(u; ζinit) from Step 1, for any given

ζinit in a an-neighborhood of ζ∗. The result (ii) provides a linear characterization

of λ̂(ζinit), which shows that the estimation error consists of three pieces: (1a) the

systematic error, Op

((
J−d1 + J−d2 +m−1

∗n
)
J

1/2
1

)
, that results from the spline approx-

imation errors in (3.4) and (3.6), and the integration approximation errors in (3.7)

and (3.8); (1b) the oracle estimation error, n−1V−1
1

∑n
i=1 ρiB1 (Ui), which is obtained

by assuming that Ui and
∫
T β

T
0 (t)Zi(t)dt are hypothetically known in advance; and

(1c) the error introduced by the initial ζinit, n−1V−1
1 E

[
FiB1(Ui)Wi

T
] (
ζinit − ζ∗

)
+

op(J
1/2
1 J

−1/2
2 an).

Next, we establish the theoretical properties of the updated estimator ζ̂ in

Step 2 by using λ̂ from Step 1.

Proposition 3.2.2. Under the conditions in Proposition 3.2.1, we have
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(i)

sup
‖ζinit−ζ∗‖≤an

∥∥ζ̂ − ζ∗‖ = Op

( (
bn + n−1/2 log n

)
J

1/2
2

)
.

(ii)

sup
‖ζinit−ζ∗‖≤an

∥∥∥∥∥ζ̂ − ζ∗ − n−1V−1
2

n∑
i=1

ρiWi+

n−1V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1

n∑
j=1

ρjB1 (Uj)

−V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
] (
ζinit − ζ∗

) ∥∥∥∥∥
= Op

((
J−d1 + J−d2 +m−1

∗n
)
J

1/2
2

)
+ op (an) .

Similar to Proposition 3.2.1, the result (i) of Proposition 3.2.2 provides the

uniform convergence rate of the updated estimator ζ̂, for any given ζinit in a an-

neighborhood of ζ∗, and the linear characterization in result (ii) depicts the four pieces

of estimation errors of ζ̂: (2a) the systematic error from spline approximation and

integration approximation, Op

((
J−d1 + J−d2 +m−1

∗n
)
J

1/2
1

)
; (2b) the oracle estimation

error, n−1V−1
2

∑n
i=1 ρiWi, obtained by knowing the nonparametric part η0(·); (2c) the

error coming from the oracle estimation of η0(·), n−1V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1

∑n
j=1 ρj

B1 (Uj); and (2d) the error brought by ζinit,

V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
] (
ζinit − ζ∗

)
+op(an), which is inherited

from λ̂(ζinit).

As the first three pieces of estimation errors, (2a) – (2c), are constant over

iterations, a natural question is whether the last piece, (2d), would get amplified

after iterations, leading to inconsistent estimations. By [19], we can show that

V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
]
≤ I(p+q)J2×(p+q)J2 ,

and hence ‖V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
] (
ζinit − ζ∗

)
‖ ≤

∥∥ζinit − ζ∗∥∥ ,
which implies that the estimation error from the initial ζinit would rather shrink over
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iterations. This ensures the convergence of our algorithm.

Following [13], we need the initial ζinit to be O(J
1/2
2 n−1/2) consistent and the sys-

tematic error to be well bounded as o(n−1/2) to investigate the properties of the final

estimator ζ̂f . By Proposition 3.2.2, the final estimator ζ̂f must satisfy

ζ̂f − ζ∗ = n−1V−1
2

n∑
i=1

ρiWi − n−1V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1

n∑
j=1

ρjB1 (Uj)

+ V−1
2 E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
] (
ζ̂f − ζ∗

)
,

which yields a solution

ζ̂f = ζ∗ + n−1
(
V2 − E

[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FiB1(Ui)Wi

T
] )−1

×
n∑
i=1

ρi

(
Wi − E

[
FiWiB

T
1 (Ui)

]
V−1

1 B1 (Ui)
)
. (3.12)

The following theorem shows that the ζ̂f obtained above is indeed the maximizer of

the likelihood.

Theorem 3.2.1. Under Conditions, let ζ̂mle denote the maximizer of the likelihood

function, then

ζ̂mle − ζ∗ = n−1V−1
3

n∑
i=1

ρi

(
Wi − E

[
FiWiB

T
1 (Ui)

]
V−1

1 B1 (Ui)
)
.

and
√
n
(
ζ̂mle − ζ∗

)
L→ N (0,V3) ,

where V3 = V2 − E
[
FiWiB

T
1 (Ui)

]
V−1

1 E
[
FjB1(Uj)Wj

T
]
.

3.2.3 Proofs

Here we present the proofs of Theorems.
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Conditions

Define Q(x, y) = h(x)y− b(h(x)), where h is the injective funciton, and denote Q(l) =

(∂l/∂xl)Q(x, y), l = 1, 2, 3. Then

Q(1)(x, y) = h′(x) (y − µ(h(x)))

Q(2)(x, y) = h′′(x) (y − µ(h(x)))− (h′(x))
2
σ(h(x))

Conditions:

A1 The function Q(2)(x, y) < 0 for all x ∈ R and y in the range of the response

variable.

A2 There exist two positive constants C1 and C2 such that C1J
−1
2 ≤ λmin(

E
[
(φTi ,ψ

T
i )T (φTi ,ψ

T
i )
])
≤ λmax

(
E
[
(φTi ,ψ

T
i )T (φTi ,ψ

T
i )
])
≤ C2J

−1
2 . This con-

dition is analogous to the eigenvalue conditions widely adopted in multivariate

literature. The order J−1
2 follows from Equation (12) in [19].

Proofs

We introduce some notations and state several results which will often be used in the

proofs of our theoretical results.

According to [17], BT
1 = Bκ−1

1
T
D, where Bκ−1

1 = (Bκ−1
s,1 , 2 ≤ s ≤ J1)T is the B-spline

basis functions with order κ− 1, and

D = (κ− 1)



−1
τκ+1−τ2

1
τκ+1−τ2 0 · · · 0 0

0 −1
τκ+2−τ3

1
τκ+2−τ3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1
τκ+J1−1−τJ1

1
τκ+J1−1−τJ1


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is a (J1 − 1)× J1 matrix. For i = 1, · · · , n, define

γi(λ, ζ) = λTB1

(
φTi δ

)
+ψT

i ω, Wi(λ, δ) :=
(
λTB′1

(
φTi δ

)
φTi ,ψ

T
i

)T
,

θi(λ, ζ) := h (γi(λ, ζ)) , µi(λ, ζ) := µ(θi(λ, ζ)), σi(λ, ζ) := σ(θi(λ, ζ)),

si(λ, ζ) : h′(γi(λ, ζ))
(
Yi − µi(λ, ζ)

)
, Fi(λ, ζ) := σi(λ, ζ)

(
h′
(
γi(λ, ζ)

))2
,

Ri(λ, ζ) := h′′
(
γi(λ, ζ)

)(
Yi − µi(λ, ζ)

)
, Hi(λ, ζ) := Fi(λ, ζ)−Ri(λ, ζ),

Ψi(λ, ζ) :=
∂ (si(λ, ζ)Wi(λ, δ))

∂λ

= −Hi(λ, ζ)Wi(λ, δ)BT
1 (φTi δ) + si(λ, ζ)

 φi

0

B′1
T

(φTi δ).

In particular, we may write Λi(λ
∗, ζ∗) as Λ∗i for any Λi(λ, ζ) defined above.

By Conditions (C1), (C4), (3.4), and (3.6), it is easy to observe that∣∣∣∣ψT
i ω
∗ −

∫
T
βT0 (t)Zi(t)dt

∣∣∣∣
≤

∣∣∣∣∣ψT
i ω
∗ −

mi∑
l=1

(ti,l+1 − ti,l)βT0 (ti,l)Zi(ti,l)

∣∣∣∣∣
+

∣∣∣∣∣
mi∑
l=1

(ti,l+1 − ti,l)βT0 (ti,l)Zi(ti,l)−
∫
T
βT0 (t)Zi(t)dt

∣∣∣∣∣
≤ O

(
qJ−d2 +m−1

∗n
)
,

∣∣∣∣λ∗TB1

(
φTi δ

∗)− η0

(∫
T
αT0 (t)Xi(t)dt

)∣∣∣∣
≤
∣∣∣λ∗TB1

(
φTi δ

∗)− η0

(
φTi δ

∗)∣∣∣
+

∣∣∣∣η0

(
φTi δ

∗)− η0

(∫
T
αT0 (t)Xi(t)dt

)∣∣∣∣
≤ O

(
J−d1 + pJ−d2 +m−1

∗n
)
.

By the mean value theorem, there exists a Ũi between Ui and φTi δ
∗, such that

B1(φTi δ
∗)−B1(Ui) = DTBκ−1

1 (Ũi)(φ
T
i δ
∗−Ui). As ‖D‖1 = O(J1) and ‖Bκ−1

1 (·)‖∞ =
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O(1), by (3.6) and (3.13), we have

B1(φTi δ
∗) = B1(Ui)(1 +O(J1(J−d1 + J−d2 +m−1

∗n )). (3.13)

According to Equation (12) in [19],

C1J
−1
1 ≤ λmin

(
E
[
B1 (Ui) BT

1 (Ui)
] )
≤ λmax

(
E
[
B1 (Ui) BT

1 (Ui)
] )
≤ C2J

−1
1 , (3.14)

and consequently,

C1J
−1
1

≤ λmin

(
E
[
B1

(
φTi δ

∗)BT
1

(
φTi δ

∗)] )
≤ λmax

(
E
[
B1

(
φTi δ

∗)BT
1

(
φTi δ

∗)] ) ≤ C2J
−1
1 ,

(3.15)

By the definition of the lr-norm of a matrix, (3.14), Condition (A2), and Condition

(C3), ∥∥E[W∗
iB

T
1 (Ui)]

∥∥ ∨ ∥∥E[W∗
iB

T
1

(
φTi δ

∗)]∥∥ ≤ C2J
1/2
1 J

1/2
2 . (3.16)

Proof of Theorem 3.2.1: By Proposition 3.2.1, given any ζ such that ‖ζ−ζ∗‖ ≤ an,

the log-likelihood function Ln(λ, ζ) in (3.9) is maximized at

λ̂(ζ) = λ∗ + n−1V−1
1

n∑
i=1

ρiB1 (Ui)

−V−1
1 E

[
FiB1(Ui)Wi

T
]

(ζ − ζ∗)

+ op(bnJ
1/2
1 ).

(3.17)

Thus, Ln(λ, ζ) can be considered as a function of only one argument ζ only, namely

Ln(λ, ζ) = `n(ζ) =
n∑
i=1

h
(
γi(λ̂(ζ), ζ)

)
Yi − b

(
h
(
γi(λ̂(ζ), ζ)

))
. (3.18)

By a Taylor expansion of `n(ζ), we obtain that

`n(ζ)− `n(ζ∗) =
∂`n(ζ)

∂ζ

∣∣∣∣
ζ∗

(ζ − ζ∗) +
1

2
(ζ − ζ∗)T ∂

2`n(ζ)

∂ζ∂ζT

∣∣∣∣
ζ̆

(ζ − ζ∗),
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where ζ̆ is a point between ζ and ζ∗.

By (3.17), we obtain that

∂λ̂(ζ)

∂ζ
= V−1

1 E
[
FiB1(Ui)Wi

T
]

(1 + op(1)). (3.19)

and consequently

∂`n(ζ)

∂ζ

∣∣∣∣
ζ∗

=
n∑
i=1

h′
(
λ̂(ζ∗)

T
B1

(
φTi δ

∗)+ψT
i ω
∗
)

(
Yi − µ

(
h(λ̂(ζ∗)

T
B1

(
φTi δ

∗)+ψT
i ω
∗)
))

×
{(
λ̂(ζ∗)TB′1

(
φTi δ

∗)φTi ,ψT
i

)T
−
(
BT

1

(
φTi δ

∗)V−1
1 E

[
FiB1(Ui)Wi

T
] )T}

.

By Proposition 3.2.1, λ̂(ζ∗) − λ∗ = n−1V−1
1

∑n
i=1 ρiB1 (Ui) = Op(J

1/2
1 n−1/2). Then

by the arguments used in Propositions 3.2.1 and 3.2.2, we can show that

∂`n(ζ)

∂ζ

∣∣∣∣
ζ∗

=
n∑
i=1

ρi

(
Wi −

(
E
[
FiWiB

T
1 (Ui)

] )
V−1

1 B1 (Ui)
)

(1 + op(1)).

Similarly, it can be shown that

∂2`n(ζ)

∂ζ∂ζT

∣∣∣∣
ζ̆

= −nV3(1 + op(1)).

Therefore, we obtain that

ζ̂mle = n−1V−1
3

n∑
i=1

ρi

(
Wi −

(
E
[
FiWiB

T
1 (Ui)

] )
V−1

1 B1 (Ui)
)
.

Then according to Central Limit Theorem,

√
n
(
ζ̂mle − ζ∗

)
L→ N(0,V−1

3 ),

This completes our proof of Theorem 3.2.1. �

Lemma 3.2.1. Under Condition (C1), there exists δ̃1 with δ̃1,1 ≤ δ̃2,1 ≤ · · · ≤ δ̃J2,1

such that ‖α1 − δ̃
T

1 B2(t)‖∞ = O(J−d2 ).

Proof: Let {εr, r = 1, · · · , J2} be a sequence on T , such that εr = ν1 + (r −
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1)(νκ+1 − νκ)/κ for r = 1, · · · , κ and εr = νr for r = κ + 1, · · · , J2. Since α1(t)

is monotone nondecreasing in t, α1(εr) is monotone nondecreasing in r. Define

α̃1,n(t) =
∑J2

r=1 α1(εr)Br,2(t). Given any t ∈ [νl, νl+1),

|α̃1,n(t)− α1(t)| ≤
J2∑
r=1

|α1(εr)− α1(t)|Br,2(t) =
l∑

r=l+1−κ

|α1(εr)− α1(t)|Br,2(t)

≤ max
l+1−κ≤r≤l

|α1(εr)− α1(t)| ≤ CD max
l+1−κ≤r≤l

|εr − t|d ≤ CD(κ+ 1)d
(

max
κ≤r≤J2

|νr+1 − νr|
)d

= O(J−d2 ),

where the two inequalities are elementary, the first equality follows from the fact that

Br,2(t) = 0 for all r < l+ 1−κ and r > l, the third inequality follows from Condition

(C1), and the fourth inequality follows from the fact |εr−t| ≤ (κ+1) maxκ≤r≤J2 |νr+1−

νr|, and the second equality follows from our choice of {νr}. This completes the proof

of Lemma 3.2.1. �

3.2.4 Simulations

In these simulations we examine the finite sample performance of the generalized

functional partially linear single index model (GFPL). We explore both logistic and

poisson regression models. The logistic model includes a binary outcome variable and

the poisson model has a count outcome variable. Both set ups have two functional

predictor variables. The predictor variables are defined as,

Xi,k(t) = t+
4∑
j=1

φj,k(t)
′cijk, (3.20)

where k=1, 2; i=1,...,n; and cijk are i.i.d N(0, σ2
j ). We define σ2

1 = 1, σ2
2 = 1

2
, σ2

3 =

1
4
, σ2

4 = 1
8

and φ1,k(t) = 1√
2

sin(2πt), φ2,k(t) = 1√
2

cos(2πt), φ3,k(t) = 1√
2

sin(4πt), φ4,k(t) =

1√
2

cos(4πt). We let n = (200, 400, 800) (the number of observations), and m=100

evenly spaced time points in [0, 1]. We also define, β1(t) = cos(πt + π) and β2(t) =

sin(πt) such that ||β1|| + ||β2|| = 1. Next, we define Ui = 1
m

[
∑2

k=1 βk(t)Xi,k(t)dt].
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We then generate the responses from the GFPL as ln( pi
1−pi ) = η0(Ui), for the logistic

setting and ln(yi) = η0(Ui) for the poisson setting using four different link functions,

η0, defined as follows and plotted in Figure 3.1:

1. 5Ui + 1

2. sin(π(Ui − Umin)/(Umax − Umin)− π
2
)

3.
U2
i

5
+ exp(Ui)

5
− 2 sin(2πUi) + 0.5

4.
U2
i

5
+ 2 cos(2πUi) + 0.5

Using the generated probabilities, we generate our true responses from a binomial(n, 1, pi)

distribution for the logistic setting; from a poisson(n, pi) distribution for the poisson

setting. We used cubic B-splines with order q=4 and N= 3 knots to approximate the

nonparametric functions η0(·) and βk(·).

We ran 100 simulations, splitting the data into training and test sets using

a 50/50 split. For each set up we calculated the mean standard error for β̂1 =∑m
t=1[β1(t)−β̂1(t)]2

m
and β̂2 =

∑m
t=1[β2(t)−β̂2(t)]2

m
; for the logistic setting we also calculated

the mean correct predicted classification percentage and compare our results to the

functional generalized linear model using functional principal component scores de-

scribed in Project 1. The results are summarized in Tables 3.1-3.6.

3.2.5 Application

Lastly, we apply our methods to the Lupus dataset described in Project 1. In this

application, we compare our proposed method to the functional generalized linear

model using functional principal component scores. To approximate the data, we use

q=4 order B-splines for our method and the first four principal components for the

FGLM with FPCA model. We then split the data into training and test sets using a

2
3

vs. 1
3

split; yielding 200 cases and 200 controls in the training set and 98 cases and
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94 controls in the test set. We repeat this splitting 100 times and calculate the mean

correct predicted classification percentage. These results are summarized in Table

3.7.

3.3 Results

3.3.1 Simulations

From Tables 3.1-3.3, in the Logistic setting, we see that our methods perform slightly

worse than the FGLM with FPCA for the first two link functions. The first link

function is strictly linear, so we would expect the standard FGLM to perform best

in this setting. The second link function is almost linear so it is not a surprise that

the FGLM is able to still perform well in this setting. The last two link functions

are much more non-linear than the first two. Here we see that our model performs

significantly better than the FGLM. The GFPL has a significantly higher prediction

accuracy and much more stable regression coefficient estimates than the FGLM.

From Tables 3.4-3.6, in the Poisson setting, we see a similar trend as we saw

in the Logistic setting. The two models yield comparable results for the first two

link functions. Here, the GFPL yields a more stable β1 estimate, whereas the FGLM

yields a more stable β2 estimate. However, when looking at the last two link functions

we see the same trend we saw with the Logistic set up - the GFPL produces much

more stable estimates of the regression coefficients than the FGLM.

In conclusion, as greater non-linearity is introduced, the GFPL is able to esti-

mate the correct injective link function between the logit and the predictor variables.

The FGLM is not able to capture this non-linear relationship. Therefore, the non-

linearity is captured in the regression coefficient estimates leading to much larger,

more unstable estimates than we see in the GFPL. Additionally, this leads to reduced

prediction accuracies for the FGLM in the logistic setting. We can conclude that if the
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assumption of a linear relationship between the logit and the predictors is violated,

the GFPL would be best.

3.3.2 Application

From Table 3.7 we see that our model has a slightly higher correct classification rate

compared to the FGLM with FPCA model. While this difference is not significant we

can conclude that our methods perform as well as the standard FGLM with FPCA

in this setting. We also note that the correct classification rate is not as high as

we would hope. We believe this may be due to a high level of noise from including

all functional points on the curve and that only some parts of the curve are truly

important. This leads us to the motivation for Project 3 which is to develop a model

that is able to determine where the true signal lies.

3.4 Tables and Figures

Table 3.1: Simulation Results for logistic setting with n=200

η0 GFPL FGLM

Pred SE(β1) SE(β2) Pred SE(β1) SE(β2)

5U + 1 80.42% 0.11 (0.08) 0.15 (0.15) 82.27% 0.29 (0.13) 0.12 (0.13)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
55.09% 0.14 (0.09) 0.25 (0.22) 56.87% 0.41 (0.06) 0.10 (0.05)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 61.61% 0.10 (0.09) 0.12 (0.20) 53.35% 0.56 (0.10) 0.13 (0.07)

U2

5
+ 2 cos(2πU) + 0.5 65.39% 0.09 (0.10) 0.12 (0.17) 58.86% 0.66 (0.11) 0.17 (0.06)
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Table 3.2: Simulation Results for logisitc setting with n=400

η0 GFPL FGLM

Pred SE(β1) SE(β2) Pred SE(β1) SE(β2)

5U + 1 81.57% 0.08 (0.08) 0.12 (0.11) 82.60% 0.23 (0.05) 0.05 (0.04)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
54.87% 0.13 (0.10) 0.22 (0.20) 56.72% 0.41 (0.05) 0.09 (0.03)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 65.78% 0.06 (0.07) 0.06 (0.11) 54.90% 0.52 (0.05) 0.12 (0.04)

U2

5
+ 2 cos(2πU) + 0.5 65.68% 0.08 (0.11) 0.12 (0.23) 60.77% 0.63 (0.07) 0.14 (0.04)
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Table 3.3: Simulation Results for logisitc setting with n=800

η0 GFPL FGLM

Pred SE(β1) SE(β2) Pred SE(β1) SE(β2)

5U + 1 82.59% 0.05 (0.05) 0.07 (0.06) 83.46% 0.23 (0.03) 0.03 (0.02)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
56.26% 0.10 (0.08) 0.22 (0.16) 57.61% 0.41 (0.03) 0.08 (0.02)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 67.87% 0.06 (0.08) 0.04 (0.13) 56.41% 0.53 (0.03) 0.11 (0.02)

U2

5
+ 2 cos(2πU) + 0.5 70.35% 0.07 (0.05) 0.05 (0.13) 61.53% 0.61 (0.04) 0.13 (0.03)
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Table 3.4: Simulation Results for poisson setting with n=200

η0 GFPL FGLM

SE(β1) SE(β2) SE(β1) SE(β2)

5U + 1 0.08 (0.07) 0.12 (0.12) 0.22 (0.01) 0.02 (0.01)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
0.11 (0.08) 0.18 (0.16) 0.41 (0.03) 0.08 (0.02)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 0.05 (0.08) 0.08 (0.15) 0.49 (0.05) 0.11 (0.03)

U2

5
+ 2 cos(2πU) + 0.5 0.04 (0.05) 0.04 (0.17) 0.60 (0.04) 0.13 (0.03)
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Table 3.5: Simulation Results for poisson setting with n=400

η0 GFPL FGLM

SE(β1) SE(β2) SE(β1) SE(β2)

5U + 1 0.08 (0.05) 0.08 (0.09) 0.22 (0.01) 0.02 (0.01)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
0.08 (0.08) 0.15 (0.12) 0.41 (0.02) 0.07 (0.01)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 0.04 (0.06) 0.03 (0.12) 0.49 (0.03) 0.10 (0.02)

U2

5
+ 2 cos(2πU) + 0.5 0.06 (0.07) 0.04 (0.12) 0.58 (0.03) 0.12 (0.02)
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Table 3.6: Simulation Results for poisson setting with n=800

η0 GFPL FGLM

SE(β1) SE(β2) SE(β1) SE(β2)

5U + 1 0.05 (0.04) 0.07 (0.06) 0.21 (0.01) 0.02 (0.01)

sin
(

π(U−min(U))
(max(U)−min(U))

− π
2

)
0.07 (0.06) 0.11 (0.08) 0.41 (0.01) 0.07 (0.01)

U2

5
× exp(U)

5
− 2 sin(2πU) + 0.5 0.03 (0.04) 0.02 (0.02) 0.49 (0.03) 0.10 (0.01)

U2

5
+ 2 cos(2πU) + 0.5 0.05 (0.07) 0.02 (0.12) 0.58 (0.02) 0.12 (0.01)
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Table 3.7: Prediction accuracies of each method

Method Accuracy
FGLM 70.73% (0.05)
GFPL 71.49% (0.02)
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Figure 3.1: The four link functions for simulations
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CHAPTER 4

LOCAL BASIS RANDOM FORESTS FOR FUNCTIONAL DATA

4.1 Introduction

The main characteristic of functional data is the intercorrelation between consecutive

features. As a result, direct use of traditional multivariate machine learning classifiers

face the difficulty of multicollinearity, and therefore may not have satisfactory results.

For example, most linear models in this case will suffer high variances on their pa-

rameter estimates. Naturally, principal component analysis (PCA) arises for dealing

with correlated features. As a data preprocessing tool, PCA considers correlated fea-

tures collectively and finds the directions with the largest variations. By projecting

the original features onto these PC directions, performance of the traditional clas-

sifiers can sometimes be improved. However, in many classification problems, not

all features are relevant to predicting the class label. For functional data, signals

can concentrate on some local regions of the entire curve only. Since, in PCA, each

principal component is a linear combination of all features, it sometimes mixes those

relevant features and makes it difficult to assess the importance of the original fea-

tures. For example, as we saw in Project 1 and as we see in Figure (4.1(a)), only a

local region (60 - 70◦C) received a high importance estimate. On the other hand, fea-

tures at other temperatures seem to provide little discriminatory information. In this

situation variable selection is needed and using principal components, as we did in

Projects 1 and 2, that involve all variables may fail to emphasize on those important

features.
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Decision tree based methods have been shown as powerful tools to conduct

variable selection and classify groups [21, 22, 23]. A traditional decision tree is con-

structed by recursively splitting the data set. At each node, one single variable is

selected for splitting the data within that node. Usually, the splitting variable is the

one that carries the most discriminatory information about the two classes. Since,

at each time, only one variable is considered, the variance of the effect of that vari-

able is not inflated by multicollinearity. Meanwhile, tree based methods enjoy several

other advantages including, but not limited to: 1. Nonparametric; 2. relatively fast

computation time; 3. stability can be increased by using an ensemble; 4. able to deal

with nonlinear decision boundaries.

We propose to develop a decision tree method that can utilize the discrimina-

tory information in X i to predict the class of Yi. There have been numerous related

works in the literature: [24] proposed an approach to make inference about the prob-

ability density of functional data through what they call density ascent lines; [25]

employed a two-stage shrinkage method in the functional linear regression model to

handle the situation where certain regions of the functional curve have a zero coef-

ficient function; and [26] proposed a kernel-induced random forest approach for the

functional data classification problem.

We want to examine a nonparametric approach and use local information for

prediction. Therefore we consider a tree-based method. However, the traditional

decision tree method has disadvantages when it comes to functional data. Because of

the univariate type of splits, the resulting decision boundary must be perpendicular

to certain variable axes. Since, for functional data, due to the intercorrelation among

functional features, data points lie mostly along the directions of diagonal lines in the

hyperspace, the hyper-rectangular decision boundaries may not be the most efficient

ones. There are several ways to remedy this situation. First, [27] uses a penalized

linear model within each tree node to find a linear combination of features. The set of
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linear coefficients determines a splitting direction that is adapted to the locally best

class separation. In our study, we find their method is generally competitive at clas-

sifying functional data; however, using linear models to determine splitting direction

puts a limit on its application to nonlinear decision boundaries. In our simulation

study, this method fails in some nonlinear cases. Another remedy is the rotation for-

est [28]. Rodriquez, et al. proposed applying block-wise PCA to the original feature

matrix. Therefore, the resulting splitting direction is a linear combination of original

features that is adapted to data variation. However, in their method, all features are

randomly divided into several groups, and PCA is applied within each group. Thus,

this method does not account for the continuity of the functional data. We propose

a PCA-based local basis expansion method

4.2 Method

4.2.1 Proposed Method

Notation and tree-based method

Assume that for each observation we have a binary response variable Yi, where i

denotes the index of the observation, and a px1 feature vector X i· = Xij, where

1 ≤ j ≤ p, is the jth feature of the ith observation.

In the decision tree algorithm, the feature space is partitioned into several

non-overlapping bins. This is done by recursively splitting the training data based

on a certain splitting rule. For example, in a traditional decision tree, at a node

A, the splitting rule is that we select a certain variable, say Xk, as our splitting

variable, where 1 ≤ k ≤ p, and the training data within node A are divided into

two parts according to the value of Xk. That is, we set a critical value c, and if

Xk > c is satisfied for an observation, this observations goes to the left child of A,

otherwise it goes to A’s right child. Then, for the left and right child of A, we repeat
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this procedure until all of the leaf nodes are small enough, in which case we call it

a terminal node. In practice the splitting variable at each node is selected from a

subset of all features, and the critical value, c, is searched over all possible splits of

Xk. Usually, the combination of Xk and c that brings the largest decrease in the Gini

impurity after the split will be employed as the splitting rule. Furthermore, if we

construct a large number of trees, each of which is fitted using a bootstrap sample of

the training data, we get the so-called random forest algorithm.

For predicting the response of a new observation, we drop this new observation

down the tree and see which bin it falls into. The same splitting rule is used here to

determine which child node the new observation goes to. In other words, if at node

A, Xk > c is used for splitting the training data, then the new observation goes to the

left child of A if Xk > c is also true for the new observation, otherwise it goes to A’s

right child. This way the new observation keeps going down the tree until reaching a

terminal node. Then the averaged value of the responses of the training data within

that terminal node will be output as the predicted value. For the random forest

algorithm, the output of each tree is again averaged. In the context of classification,

taking the average is replaced by majority vote.

To facilitate our discussion, we first need to formalize our notation for a general

splitting rule. Let b denote a px1 vector, and let c denote the critical value. Then,

for the ith observation, a general splitting rule of a decision tree can be written as

X i(t)b > c (4.21)

In other words, b is a coefficient vector that determines the splitting direction in the

hyperspace.

Equation 4.21 is a general form of the splitting rule of a tree, and it can be

specialized to various kinds of splitting rules. For example, when only one element of

b is non-zero while all other elements are 0, Equation 4.21 boils down to the univariate
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splitting rule as in traditional random forest. In the case of oblique forest, b is the

coefficients from either a linear model or support vector machine (SVM), and in the

rotation forest, b is the loading vector produced by the block-wise PCA. For our task,

simply speaking, we need to find a set of coefficients that works the best for functional

covariates.

Proposed functional splitting rule

One suitable tool for processing functional data is principal component analysis

(PCA). First, it decorrelates features. In the case of functional data, as the features

next to each other tend to vary together, PCA finds the direction that simultane-

ously explains their joint variation. Also, the principal components can be viewed as

a set of basis functions used to expand the curve. Compared to other basis expan-

sion approaches, PCA is particularly effective when we have no idea what important

features may look like since PCA identifies features that can explain data variability

well and automatically [29]. Meanwhile, it can be shown that for a fixed number of

basis functions, principal components have the smallest mean squared error among all

basis function approximations [7]. In this paper, we propose a PCA-based local basis

expansion method. Essentially, at each split we focus on a local region of the curve

and apply PCA on the local curve. The loading vector of the principal components

provides possible splitting directions. Equivalently, speaking in terms of Equation

4.21, we select two indices, s and e such that 1 ≤ s ≤ e ≤ p, and we set the constraint

that bj = 0 for 1 ≤ j < s and e < j ≤ p, and bs through be are determined by the

loading vector obtained from the local PCA. The pseudocode in Algorithm 1 explains

our proposed method.

There are several tuning parameters in our method. The bandwidth determines

how many features are present in a band. In our study, bandwidth is generated

randomly and uniformly from 1 to bandwidth.max, where bandwidth.max is a tuning
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parameter. mtry is analogous to the mtry in the traditional random forest algorithm.

It is the number of different bands that are sampled at each node. In our algorithm,

we set mtry= 1.5× p/bandwidth. The intuition is that the smaller the bandwidth, the

more bands we need to sample in order to have a good cover of the whole curve. L

is the number of principal components to keep. By keeping the first few principal

components, we hope to filter out the noises.

One issue regarding PCA is that as the sample size becomes small, the direc-

tions learned from PCA will become dominated by noise, and will lose the ability

to capture the true signals. In our tree algorithm, at each node, we only use the

observations within the current node to calculate the sample covariance matrix, and

PCA is carried out on this covariance matrix. As we go down the tree, the sample

size becomes smaller and smaller. Near terminal nodes the directions obtained from

PCA are too noisy. In order to deal with this situation, we set a threshold parameter,

m. Suppose at node A the sample size is less than or equal to m, then for all of the

descendent nodes of A, PCA will be done on the current covariance matrix at A. In

the following analysis, we set m = log(n), where n is the sample size of the training

data.

The main advantages of LBRF are three-fold: 1. The PCA-based splitting

rule handles the correlation among functional features; 2. The local basis expansion

approach enables LBRF to focus on the local region where the true signal lies, and

prevents the true signal from being mixed with misleading noises; 3. The multiple

candidate splitting locations allows LBRF to adaptively choose the location with the

strongest signals. In essence, LBRF is an analog to the traditional random forest

algorithm; the only difference being that instead of sampling one variable, LBRF

samples a band of features at a time.
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Algorithm 1: splitting a node

Input: Tree node A
if nA ≤ nodesize then

Output: A is a terminal node
end
for i from 1 to mtry do

Let XA denote the feature matrix at node A. Randomly sample a band of
features of length bandwidth. Form a submatrix of XA, with the columns
corresponding to the sampled features. Denote this submatrix by Xsub

Apply PCA on Xsub. Keep the first L principal components, which we
denote by (PC

(i)
1 , PC

(i)
2 , . . . , PC

(i)
L )

for j from 1 to L do

Randomly generate a splitting point of PC
(i)
j that divides PC

(i)
j into

two parts, calculate the corresponding reduction in Gini impurity,
and denote it by gij

end

end
Let imax and jmax be the indices of the largest gij. Then split corresponding

toPC
(imax)
jmax is used to split the data at A. The resulting two parts of the

data are passed down to the two children nodes of A
Output: Return the two children nodes

Variable Importance

In many machine learning applications, variable selection is often as important as

prediction accuracy. In practice, smaller models are usually preferred for their sim-

plicity and interpretability. Many modeling approaches come with a variable selection

mechanism. For example, in penalized linear models, when the Lasso penalty is used,

some coefficients are shrunk to 0, meaning the corresponding variables don’t play any

role in predicting the outcome and can be dropped from the model.

The random forest algorithm is able to perform variable selection through its

variable importance. In random forest, there are two types of variable importance.

The first is permutation importance. This type of importance is calculated by per-

muting the values of the out-of-bag (OOB) samples for a given variable, dropping

the original/permuted (OOB) data down the tree, and calculating the decrease in
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prediction accuracy before and after the permutation. The second one is Gini im-

portance, which is the decrease in Gini impurity after splitting a node. In terms of

computational efficiency, Gini importance is easier to calculate since it doesn’t involve

permuting data and walking each OOB observation down the tree.

The oblique forest also implemented another kind of variable importance by

calculating the analysis of variance table at each split and counting for each variable

how often it is considered significant in the ANOVA table [26].

The rotation forest was constructed by projecting the original data to the

principal component directions and fitting a decision tree to the resulting data. The

Gini importance of each PC can be calculated on the transformed data. Then these

importance measures can be mapped back to the original features through the loading

vector of the PC.

We develop a variable importance measure that is similar to the Gini impor-

tance in the random forest. Algorithm 2 shows the procedure of calculating variable

importance.

Algorithm 2: Variable Importance

Input: Tree T
Initialize V IT to be a length p vector of 0s
for Node I in T do

if Node I has decendents then
Calculate the decrease in Gini impurity after the split I, which we
denote by dI

Normalize the coefficient vector bI , which was used for the splitting
node I (Equation 4.21), to a unit vector

Set V IT = V IT + dIbI
end

end
Normalize V IT to a unit vector
Output: Return V IT as the vector of variable importance of tree T

For an ensemble of trees, we take the element-wise average of V IT over all

trees, and output the resulting length p vector as our variable importance measure.
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Simulation study

Our first focus is the cross validation accuracy. We test the performance of our tree

algorithm on four simulated functional datasets and we compare its cross validation

accuracy with the penalized linear model (from “glmnet” R package), random forest

(from “randomForest” R package), oblique forest (from “obliqueRF” R package), and

rotation forest (from “rotationForest” R package). The four datasets represent four

different data generating scenarios. Let t be the index variable of the simulated

random functions. In our simuation, t ranges from 1 to 10, and is discretized into 400

equally spaced time points (thus, p = 400). Then we simulate the deterministic curve

X0(t) = 5sin(t), and the noise term Z(t) = µ1sin(α1+β1t)+µ2sin(α2+β2t)+ε(t). The

parameters µ1, µ2, α1, α2, β1, β2 are independent normal random variables randomly

generated for each observation. The first two terms of Z(t), which are two random

sinusoidal waves, can be viewed as a functional noise component. They provide a

unique shape change to each individual base curve, and the intercorrelations among

functional covariates are also induced by these terms. ε(t) is a series of i.i.d normal

random variables; they mimic the measurement errors. We let F (t) = X0(t) + Z(t).

The four different scenarios are:

Scenario 1: For class 0,

X(t) = F (T ); (4.22)

For class 1,

X(t) = F (t) + 15.25≤t≤5.710.85e48.94×(t−5.5)2 , (4.23)

where 1{·} is an indicator function. The difference between the two classes is that

class 1 has a local bump at the region 5.28 ≤ t ≤ 5.71

Scenario 2: For class 0,

X(t) = X0(t) + Z(t). (4.24)
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For class 1,

X(t) = 1.06X0(t) + Z(t). (4.25)

Class 1 has a larger amplitude for the base curve than class 0.

Scenario 3: Both class 0 and class 1 have the curve

X(t) = F (t)

+ α113.03≤t≤3.46(e−23.782(t−3.24)2 − 0.0781)

+ α215.28≤t≤5.71(e−23.782(t−5.5)2 − 0.0781)

+ α317.54≤t≤7.97(e−23.782(t−7.76)2 − 0.0781),

(4.26)

where α1, α2, α3 ∼ U(0, 2). In other words, there are three bumps of width approxi-

mately 0.43 that are centered at t = 3.24, t = 5.5, t = 7.76. The class label is 1 if all

α1, α2, and α3 are greater than 1.587.

Scenario 4: Both class 0 and class 1 have the curve

X(t) = F (t). (4.27)

There are four possible bumps that are centered at t = 2.12, t = 4.37, t = 6.63, and

t = 8.88. A bump is realized by adding 0.9e−48.94×(t−c)2 , where c is the center of the

bump. Their occurrence probabilities are mutually independent. The class label of

an observation is 1 if either the first bump or the last bump, or both of them occur;

otherwise the class label is 0. The second and third bumps are merely noise.

Figure 4.2 shows each simulation scenario with the base curve and noises re-

moved.

We run each classifier with several different sets of tuning parameters. Table

4.1 shows all combinations of tuning parameters we consider. Parameters that stay

the same throughout the simulation are omitted from the table. For each simulation

scenario, we generate 1200 samples, 200 of which are randomly selected for training

the classifiers, and the remaining 1000 samples are used for testing the performance.
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We repeat this training-testing splitting 50 times for a given set of tuning parameters,

and the averaged prediction accuracy is used to evaluate the classifiers.

As we have noted, PCA is frequently used for data preprocessing. FPCA

projects the functional data onto principal component directions and drops the PCs

with small variance. This way, we hope to filter out noise. In our simulation, for the

penalized linear model and random forest approaches, we also consider projecting the

original features onto the PC directions and then feed the first 50 PC scores to the

classifiers. Details are shown in Table 4.1.

4.3 Results

4.3.1 Simulation Results: Cross Validation Accuracy

Figure 4.3 uses a box plot to show the performance of different classifiers in each

simulation scenario. Each box depicts all cross validation accuracies of the classifier

under different sets of tuning parameters (listed in Table 4.1). In Table 4.2, for each

classifier we pick the set of tuning parameters which yielded the highest accuracy

among all combinations of tuning parameters from Table 4.1, and present the resulting

mean predicition accuracy in the table. In the parentheses is the corresponding

standard deviation estimated from the 50 runs.

We can see from Table 4.2 that for Scenario 1, 3, and 4, LBRF achieved the

highest prediction accuracy, which demonstrates the ability of LBRF to utilize lo-

calized discriminatory signals. The improvement brought by LBRF over traditional

random forest is at least two times their standard deviations, which is significant. Sce-

narios 3 and 4 both possess nonlinear decision boundaries. In these scenarios, LBRF

outperforms linear models by at least 5.5%, which shows its adequacy for dealing with

nonlinear decision boundaries. The standard deviation is also the smallest or second

smallest for LBRF among all classifiers, which suggests better stability. For scenario
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2, the best performance is achieved by oblique forest. LBRF’s performance, though

not the highest, is comparable to the best performing classifier; with their difference

being smaller than one standard deviation.

In summary, LBRF performs consistently better than other classifiers consid-

ered here when the true signal concentrates on local regions of the whole curve. In

scenarios 3 and 4, different local signals have interactions with each other, and the

true decision boundaries are not linear. We can see that in these cases the linear

models fall behind in prediction accuracy by a significant amount. The second best

accuracies are still 3.2% and 5.3% lower than LBRF, which are more than 10 times

their standard deviations.

4.3.2 Simulation Results: Variable Importance

In this section, we compare our variable importance measure to some existing meth-

ods, namely, penalized linear coefficients, oblique random forest variable importance,

rotation forest variable importance, and random forest permutation importance. In

Figure 4.4, we plot the variable importance measures for each combination of ap-

proach and simulated data scenario. The tuning parameters which we use to calculate

these variable importance estimates are chosen to be the ones with the highest cross

validation accuracies in Table 4.1.

Comparing Figure 4.4 to Figure 4.2, it can be seen that LBRF successfully

finds the region where the true signal lies in all cases. In Scenarios 1, 3, and 4, it

pinpoints the location where we place the discriminatory information, and in Scenario

3, it assigns higher importance to those variables where the difference of the amplitude

between the two classes is larger.

Compared with LBRF, the variable importance produced by the penalized

linear model, random forest, and oblique forest are overly noisy. Rotation forest, on

the other hand, seems to provide a better importance estimate than LBRF. In LBRF,
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regions that are near the true signals also received a certain amount of importance

and this diminishes as you move further away from the signal. We consider this

reasonable for functional data since regions near the true signals are also correlated

with the true signal. As a result, these regions do possess some predictive information.

In comparison, rotation forest uses a randomly selected subset of features and applies

PCA on these features to acquire splitting directions. This process does not take the

continuity of functional curves into account. Therefore the rotation forest is able to

give a clean cut-off at the end points of the true signal region.

4.3.3 Lupus data analysis

In this section we test the performance of LBRF on the Lupus dataset detailed in

Project 1. We run each classifier with the different sets of tuning parameters. Fig-

ure 4.5 shows different accuracies under different sets of tuning parameters for each

method. Table 4.3 reports the best prediction accuracy for each method. Also, Fig-

ure 4.6 plots the variable importance produced by each of the classifiers. Comparing

Figure 4.6 to Figure 4.1, we can see that the most significant signal occurs around

the region from 60◦C to 70◦C, and neither the penalized linear model nor the oblique

forest captured this signal. Random forest does find some true signals, but still only

a few variables pop out in its variable importance plot, and a large amount of dis-

criminatory information is not revealed.

4.4 Tables and Figures
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Table 4.1: Tuning Parameters

Method Tuning Parameters
glmnet α ∈ {0, 0.25, 0.5, 0.75, 1}

RF
nodesize ∈ {1, 5, 10}
mtry ∈ {p/3,√p}

obliqueRF
method ∈ {ridge, svm, log, rand}

mtry ∈ {p/3,√p}

rotationforest
K ∈ {3, 5, 10}

minsplit ∈ {2, 10, 20}
cp ∈ {0, 0.01, 0.1}

LBRF

nodesize ∈ {1, 5, 10}
L ∈ {nodesize/2,

√
nodesize}

bandwidth ∈ {p/2,√p}

Table 4.2: Cross validation accuracies of each classifier

Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4
glmnet 0.944 (0.015) 0.823 (0.022) 0.689 (0.031) 0.877 (0.024)

glmnet (50 PCs) 0.944 (0.015) 0.826 (0.020) 0.711 (0.025) 0.890 (0.021)
RF 0.918 (0.012) 0.825 (0.015) 0.731 (0.027) 0.895 (0.016)

RF (50 PCs) 0.914 (0.016) 0.835 (0.015) 0.722 (0.024) 0.850 (0.031)
obliqueRF 0.906 (0.020) 0.838 (0.010) 0.690 (0.020) 0.862 (0.023)

rotationForest 0.965 (0.014) 0.832 (0.013) 0.735 (0.023) 0.901 (0.014)
LBRF 0.970 (0.009) 0.831 (0.013) 0.766 (0.021) 0.954 (0.011)
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Table 4.3: Cross validation accuracies of each classifier

Method Accuracy
glmnet 0.867 (0.029)

glmnet (50 PCs) 0.909 (0.027)
RF 0.769 (0.039)

RF (50 PCs) 0.906 (0.028)
obliqueRF 0.904 (0.030)

rotationForest 0.837 (0.035)
LBRF 0.921 (0.026)

Figure 4.1: The motivating example. Lupus data. An illustration of the functional
data classification problem.
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Figure 4.2: Simulated functional curves. The base curve X0(t) and the noise term
Z(t) are not plotted.
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Figure 4.3: Cross validation accuracies of different classifiers for each simulation
scenario
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Figure 4.4: Variable importance estimates of the simulated functional datasets.
LBRF 1 uses the set of tuning parameters with the highest predicition accuracy, and
LBRF 2 has the fixed bandwidth.max = 0.1p.
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Figure 4.5: Cross validation accuracies of each classifier on the Lupus data.
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Figure 4.6: Variable importance of Lupus data. LBRF 1 uses the set of tun-
ing parameters with the highest prediction accuracy, and LBRF 2 has the fixed
bandwidth.max = 0.1p.
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CHAPTER 5

CONCLUSION

In Project 1 we explored a parametric approach to functional regression using Lupus

DSC data. We implemented three different regression models: 1. Functional linear re-

gression with thermogram as the response variable and disease status as the predictor;

2. Functional generalized linear regression with disease status as the response vari-

able and thermogram as the predictor; and 3. Functional generalized linear regression

with disease status as the outcome variable and FPCA scores as the predictors. Here,

the FGLM model with FPCA scores gave the highest correct prediction accuracy and

most stable regression estimates. One limitation of Project 1 is the assumption that

the relationship between the response and predictors is linear. However, this may

not always be the case. If this linearity assumption is violated, the FGLM will not

perform well. This motivated us to develop a semi-parametric method that is capable

of capturing the true underlying relationship - generalized functional partially linear

single-index model (GFPL). This model performs well when the linearity assumption

is violated. When the relationship is linear, the GFPL performs on par with the

standard FGLM. Both projects 1 and 2 take the entire curve into account, however

results from these projects indicate that only part or parts of the curve may be truly

important. Thus, in Project 3, we develop local basis random forests for functional

data, a nonparametric approach to perform classification and calculate variable im-

portance. This method yielded the highest correct classfication in the Lupus data

of all methods introduced in this paper and was able to pinpoint the location of the
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true discriminatory signal in a variety of simulation settings as well as in the Lupus

data. Overall, this dissertation shows that there is promise in using DSC data for

predicting disease status for Lupus.

In this dissertation we only examine how our methods perform on the Lupus

dataset. However, these methods could be applied to a range of diseases to poten-

tially aid in diagnosis. Also, although this dissertation only explores binary classi-

fication, these methods could be extended to the case where there are more than

two outcome categories. In future work we would like to examine the performance

of the LBRF on derivative curves of functional data; develop methods for handling

longitudinal/repeated measures functional data; and explore how using independent

component analysis (ICA) in place of PCA would affect the models.
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APPENDIX

Appendix 1

Chapter 2 of this dissertation is modified from a paper recently published in Plos One

Journal. The paper is entitled ”Application and Interpretation of Functional Data

Analysis Techniques to Differential Scanning Calorimetry Data from Lupus Patients”

and authored by S.Kendrick, Q. Zheng, N. Garbett, and G. Brock.

PLOS ONE publishes all of the content in the articles under an open access

license called Â“CC-BY.Â”
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