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ABSTRACT

NONSPREADING SOLUTIONS IN INTEGRO-DIFFERENCE MODELS WITH ALLEE AND
OVERCOMPENSATION EFFECTS

Garrett Luther Otto

November 17, 2017

Previous work in Integro-Difference models have generally considered Allee ef-

fects and over-compensation separately, and have either focused on bounded domain

problems or asymptotic spreading results. Some recent results by Sullivan et al. (2017

PNAS 114(19), 5053-5058) combining Allee and over-compensation in an Integro-Difference

framework have shown chaotic fluctuating spreading speeds. In this thesis, using a

tractable parameterized growth function, we analytically demonstrate that when Allee

and over-compensation are present solutions which persist but essentially remain in a

compact domain exist. We investigate the stability of these solutions numerically. We

also numerically demonstrate the existence of such solutions for more general growth

functions.
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CHAPTER 1

INTRODUCTION

Spatial population models are used to model the densities of a species, infectious

disease, or a genetic variant of a species across both space and time. Spatial population

models can include reaction-diffusion equations, and integro-difference equations.

Reaction-Diffusions equations are continuous time partial differential equation

models where growth and diffusions take place simultaneously (Grinrod 1996, Zhou

2011). Typically Fickian diffusion is assumed and modeled by the Laplacian operator

(Murray 2001). However some variants may assume fractional-order diffusion (El-Sayed

2009), or density dependant diffusion (Bertsch 1986). An early example of the applica-

tion of Reaction-Diffusion models to population biology were by R.A. Fisher in 1937 as

well as Kolmogorav et al. 1937. Fisher, for instance, used the equation

∂u
∂ t

= d
∂ 2u

∂x2 + r u(1−u)

to model the spread of an advantageous gene into the environment , u being the fraction

of the population with the advantaged gene. Fisher was able to demonstrate that the

advantaged population front would move at the constant speed 2
√

d r , where sufficiently

far in front of the invasion front u(x) = 0 and sufficiently far behind u(x) = 1. Slightly

later Skellam (1951) used reaction-diffusion equations to model muskrat populations.

More modern work has for instance taken into account periodic spatial varia-

tion (Huang 2009). Often analysis of reaction diffusion models falls under either deter-

mine the asymptotic spreading speed on an infinite domain (Otto 2017), or determining

the minimum domain size required when hostile (Dirichlet) boundary conditions are as-

1



sumed (Shi 2006). If an advective term is added, reaction-diffusion equations can be

used to model fish and insect populations in streams (Seo 2011, Lutsher 2011, Vasilyeva

2016, Li /Fagan/Wang 2014). This can be used ,for instance, to determine at what flow

rates a species will be washed out of a river. If the density dependant per-capita growth

rate is allowed to vary spatially and temporally then reaction-diffusion equations can be

used to model global climate change. Much recent work has been devoted to determin-

ing conditions in which a species can and cannot persist in the face of global-warming

(Bereestycki 2009, Li/Bewick 2014, Potopov 2004). Reaction-diffusion equations can

be used to model the interaction between multiple species. For instance Okubo in 1989

modeled the competitive invasion of the grey squirrel against the native squirrel in Britain.

Owen (2001) used reaction-diffusion models to study when and if a predator can stop an

invasive prey species.

Prior to discussing Integro-difference models, it is worthwhile to have some dis-

cussion about non-spatial discrete time recursion models. Models of the form

Nt+1 = g
(

Nt

)
can used to model population with non-overlapping generations. Here N is the population

or density, t is the year or season, and g is a fecundity function Some examples of species

well matched to these hypothesis are fruit flies (Murray 2001), and annual plant species

(Edelstein-Keshet 2004).

Broadly speaking g can be said to exhibit mono-stability, Allee effect (positive

density dependance), or overcompensation (negative density dependance) (Schreiber 2003).

A Mono-stable growth function is increasing, bounded by its tangent line at 0, (g(x) ≤

g′(0)x) and possesses a single stable positive equilibrium Ne where g(Ne) = Ne. Any

solution introduced above or below Ne will smoothly increase or decrease respectively

towards Ne. The Beverton-Holt model (Beverton 1957) is a commonly used mono-stable

growth function. In the most basic form it can be derived by integrating the logistic
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growth O.D.E , Ṅ = r N
(

1− N
K

)
from the start to end of the season (t = 0 . . .T ). One

obtains

Nt+1 =
K erT Nt

K +Nt (erT −1)
,

where K is the equilibrium population.

Allee effect, or a positive dependance of the per-capita growth rate on density,

was first noticed in the 1930’s by the biologist Warder Allee, in an experiment involving

goldfish populations (Allee 1937). There are many biological mechanisms that can lead

to Allee effects:

• cooperative predation or defense (Stephens 1999)

• mate finding failures at low density (Boukal 2002, Calabrese 2004, Hopf 1985,

Lindstrom 1998, Viet 1996)

• pollination failure at low densities (Groom 1998)

• predator saturation (dr Roos 1998, Wilson 1997)

There is an important distinction to be made between what is termed the weak

Allee effect and the strong Allee effect (Wang 2002). Weak Allee effect is said to occur

when g′(0) > 1 but g′′(0) > 0. In other words arbitrarily small populations continue to

grow at an increasing rate until saturation is reached. With strong Allee effect g′(0) <

1 and there is some threshold value uallee whereby g(uallee) = uallee and g′(uallee) > 1.

Populations introduced below this threshold perish, whereas those introduced above grow

until saturation is reached. Throughout this paper we will focus on the strong Allee effect.

As an example in Boukal (2002) they discuss a 2-sex model where the rate of

female pregnancy is assumed to be proportional to M×F , the females are assumed to be

only able to reproduce once per season, and the sex-ratio is fixed. Under these assump-

tions one finds the per-capita growth rate to be

r
(

1− e−aN
)
,
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where r is the offspring per pregnant female, and a involves mate finding efficiency,

length of reproductive season, and sex ratio. In the Mathusian version of this model

the Allee threshold is the solution to r
(

1− e−aN
)
= 1 or Nallee =

ln
(

r
r−1

)
a

. A more

realistic full model can be constructed by assuming a impulsive reproductive period at

the beginning of the season followed by logistic decay, Ṅ =−d N−β N2 until the end of

the season.

Overcompensation is said to occur when negative density dependant factors cause

g to reach some maximum value and then decrease (Schreiber 2003). One of the earliest

models with overcompensation was the Ricker model (1954), which was derived from

a model were adults cannibalized juveniles in fishing stocks. In units of the carrying

capacity, the Ricker model is given by

Nt+1 = Nt exp
(
r (1−Nt)

)
where r is the intrinsic growth rate. The single non-trivial equilibrium is N = 1. For

0< r < 2 N = 1 is stable, for 2< r < 2.69 period doubling occurs, and for r > 2.69 chaotic

dynamics ensue. Escola et al. (2007) was able to mechanistically derive a number of

other models with overcompensation by considering in season O.D.E. adult and juvenile

system, where various permutations of either adults or juveniles or both preying on either

adults or juveniles or bothare considered.

Some other mechanisms for overcompensation can include overcrowding in plants,

for instance Deng (2012) showed that for crop plants, the yield per area of seed biomass

decreased in proportion to N
−1
3 for super-optimal planting densities. Some other mecha-

nisms for overcompensation include resource depletion (Tillman 1982) and environmen-

tal modification (Jones 1997).

Finally, when strong Allee effect, and overcompensation are combined it possible

to have a phenomena called essential extinction occur (Schrieber 2003). Essential ex-

tinction occurs when very strong overcompenation causes large densities to be mapped
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below the Allee threshold. Formally if umax = maxu>0 g(u) and g(umax) < uallee then

essential extinction is said to occur. Schrieber (2001) has shown that under some rather

general hypothesis involving the Schwarzian derivative, if essential extinction occurs then

almost every solution initiated between 0 < u0 < umax will eventually be mapped below

the Allee threshold and face extinction. Here “almost every” is meant in the sense that

only a set of Lebesgue measure zero does not face extinction. In other words randomly

picking an initial condition, there is a 100% probability that it will face extinction.

Integro-difference equations (IDE’s) can be considered as the natural spatial ex-

tension of discrete time recursion models. It is assumed that there are discrete genera-

tions and that the reproductive process takes place relatively synchronously followed by a

dispersal process (Kot 1986). In the simplest case, the reproduction is assumed to be gov-

erned by a growth function that only depends on the local density, g(u(x)). The dispersal

is governed by a probability distribution k, that determines the probability of an offspring

(or seed) starting at point y and landing at point x. Again assuming the simplest case, of

a spatially and temporally homogenous environment and density independent dispersal,

we obtain

ut+1(x) =
∫

∞

−∞

k(x− y)g(ut(y))dy (1.1)

The unspecified dispersion kernel k allows a very wide variety of dispersal be-

haviors to be modelled as compared to what is possible within the confines of reaction-

diffusion framework (Zhou 2011). As is discussed in Kot (1996) many species dispersal

data indicates a more Leptokurtic dispersal pattern then what would result from Gaussian

dispersal implied by Fickian diffusion. Roughly speaking leptokurtic means the tails and

center contain more mass then what would be expected from a Normal distribution of the

same variance.

As cursory look at some of the important biological results obtained within the

IDE framework:

• (Kot 1986) obtained results concerning a minimum domain size with an IDE on a
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bounded domain.

• (Van Kirk 1997) used IDE’s to study persistence in fragmented habitats.

• (Fagan 2005) used an IDE model to study if the invasion of plant could be stopped

by a herbivore.

• (Lutscher 2008) studied density dependant dispersal kernels within the IDE frame-

work.

• (Zhou 2011) used an IDE model to study persistence in the face of climate change.

• (Meyer 2013) used an IDE model to study the spread of plants with seed banks.

Now we will discuss some of the more important mathematical results involving

IDE’s.

Weinberger (1978, 1982) proved some very general results for an operator Q that

can be considered a generalization of the left hand side of Eq. 1.1 when g is a mono-

stable growth function. Weinberger showed that there exists a minimum spreading speed

, c∗, of a class of travelling waves which may generally depend on direction. Solutions

introduced with compact support will travel outwards at this speed, far ahead of this

invasion front, zero population will be seen, while far behind the positive equilibrium

population density will be seen.

Weinberger gave a method for calculating the spreading speed based on the mo-

ment generator of the linearization of Q about the 0 population (Otto 2017). For example

linearizing Eq. 1.1 about ut(x) = 0 we obtain

Q̃
[

f (s)
]
(x) = g′(0)

∫
∞

−∞

k(x− s) f (s)ds .

We then define the moment generator as

Λ(µ) := Q̃
[
e−µ s

]
(0) = g′(0)

∫
∞

−∞

k(−s)e−µ s ds .
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The forward spreading speed can then be calculated as

c∗ = inf
µ>0

ln(Λ(µ))
µ

,

thus reducing the problem of determining the spreading speed to a simple minimization

problem in the case that the moment generator of k has a closed form.

In 1985 Roger Lui proved under rather general circumstances that monotone

growth functions with Allee effects have stable travelling wave solutions of a constant

speed in the IDE setting.

In 2002 Wang, Kot and Nuebert determined a easily calculable condition for when

monotone growth functions with strong Allee effect either retreat (c < 0) or advance

(c > 0). If ustab. is the stable super-Allee threshold equilibrium, then the sign of∫ ustab.

0
g(u)−u du

determines the sign of c.

In 2009 Li, Lewis and Weinberger proved that non-monotone (over-compensatory)

growth functions without Allee effects have an invasion front with a constant speed. Un-

like the other cases the dynamics behind the invasion front can be be quite chaotic de-

pending on the severity of the over-compensation.

Very little work has been done on IDE’s in the case that g exhibits both strong

Allee effect and over-compensation. Some recent numerical work by Sullivan (2017)

has shown that when these effects are combined the year to year spreading speed oscil-

lates chaotically. While previous work on unbounded domains has typically focused on

spreading behaviour, in this work we will demonstrate that a very different behaviour is

possible when Allee and over-compensation effects are combined. Namely, we show that

under certain conditions solutions exist where the population persists but only remains in

a compact location.

In Chapter 2 we introduce our general IDE model, and provide a rigorous defini-

tion of non-spreading solutions.
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In Chapter 3 we use a specific 3 parameter piecewise constant growth function

and an ansatz solution to derive an algebraic conditions for the existence of equilibrium

nonspreading solutions. There is some history of using simplified growth functions to

obtain tractable results, for instance Kot (1996) uses a piecewise 1-step constant function

with strong Allee effect to derive a closed form spreading speed, and Wang (2002) ex-

tends these results by considering a linear ramp and deriving a asymptotic approximation

of the spreading speed.

For the case when k is the Uniform-distribution we are able to derive an closed

form algebraic condition for the existence of nonspreading equilibrium solutions. We

then subsequently show that these are robust in that they exist on a full 3-dimensional

volume of the parameter space. Numerical algebraic techniques are employed to show

solutions also exist in full-measure for the Gaussian dispersal kernel. Since the expo-

nential power distribution is often used to model dispersal with variable kurtosis (Fitt

1987, Wilson 1993), we also study the existence of non-spreading solutions for various

exponents.

In Chapter 4.0.4-4.0.6 we use numerical methods to test the stability of the equi-

librium solutions derived analytically. In the case of the Uniform dispersal kernel we

produce bifurcation diagrams showing for what initial conditions solutions tend towards

non-spreading solutions versus spreading solutions.

In Chapter 4.0.7 we demonstrate numerically the existence of non-spreading so-

lutions for more realistic growth functions then the piecewise one we considered.

Pattern formation is a common topic of study in spatial population dynamics. Of-

ten pattern formations requires the interaction of multiple species. For example, Nuebert

(1995) and de Roos (1998) both consider pattern formation in IDE models with predator-

prey interactions. In Chapter 4.0.8 we demonstrate patch emergence in the single species

model with Allee and over-compensation effects from perturbed constant initial data.

As was mentioned earlier, in non-spatial models growth functions with essen-
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tial extinction go extinct almost-surely. In Chapter 4.0.9 we demonstrate when essential

extinction is coupled to spatial spread it is possible to have a persistent and expanding

population.
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CHAPTER 2

MODEL AND DEFINITIONS

We consider a single species discrete time model in a one-dimensional habitat ,

that conforms to the biological assumptions of an integro-difference model (Kot 1986).

We assume dispersion and fecundity are not spatially or temporally dependant and we

assume dispersion is not density dependant. The operator Q[·] mapping the population

density profile un(x) of season n to that of season n+1 is thus defined by

un+1(x) = Q[un](x) :=
(

k ∗ (g◦un)
)
(x) =

∫
∞

−∞

k(x− y)g
(

un(y)
)

dy. (2.1)

Where k(·) is a probability density function describing dispersal, and g(·) is the

fecundity function.

For the purposes of this paper we will limit our attention to symmetric disper-

sal kernels, and we will assume there is a unique inverse cumulative distribution func-

tion. We will assume the growth function exhibits both the strong Allee effect and over-

compensation. Mathematically we will define strong Allee effect to mean there exists a

ua > 0 such that for all u ∈ (0,ua), g(u)< u. We will define over-compensation to mean

there exists some uoc > 0 such that g(u) is non-decreasing on (0,uoc), and g(u) is non-

increasing on (uoc,∞), additionally we will stipulate g(u) < g(uoc) for all u > uoc. By

boundedness of g(u) and properties of convolution, we see Q[un](x) will be bounded and

continuous.

We provide the following rigourous definition of non-spreading solutions:
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DEFINITION 2.1. Non-spreading Solutions

We say a solution of Model 2.1,
{

un

}∞

n=0
, is non-spreading if:

(i) There exists a δ > 0 such that for all n≥ 0 there exists a xn such that un(xn)> δ .

(ii) For every ε > 0 there exists a σ > 0 such that un(x)< ε for all n≥ 0 and |x|> σ .

Condition (i) can be interpreted as a persistence condition, namely that for ev-

ery generation there will be at least some point where the density exceeds the threshold

δ . Condition (ii) can be interpreted as a non-spreading or localization condition, where

outside of a fixed interval the density will remain arbitrarily small.
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CHAPTER 3

EQUILIBRIUM SOLUTIONS-ANALYTICAL RESULTS

To demonstrate the existence of non-spreading and persistent solutions when

strong Allee effect and over-compensation are present, we first analytically demonstrate

the existence of spatially localized equilibrium solutions for a particular class of parame-

terized fecundity functions. If ue is a fixed point of Q and is localized in the sense of (ii)

in definition 2.1 then clearly it will satisfy the persistence condition.

In this section we will first give some preliminary definitions and then present a

theorem for the existence of equilibriums within our particular class of fecundity func-

tions. The theorem gives algebraic conditions in terms of the cumulative distribution

function of k(·) as well as the parameters of the growth function. When these conditions

are satisfied it guarantees the existence of equilibria.

We define our growth function to be a 3-level piecewise constant function. By

way of scaling, we may in generality assume that the Allee threshold occurs at u = 1.

The growth function, pictured in Figure 3.1, is then given by

g(u) :=



0 , 0≤ u≤ 1

n2 , 1 < u < n1

n0 , u≥ n1

. (3.1)

The growth function is thus determined by the 3 parameters, n0, n1, n2. To exhibit

over-compensation and have the possibility of non-decaying solutions, the parameters

must satisfy the inequalities n0 < n1 < n2 and 1 < n1,n2.
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L

Figure 3.1: fecundity function and the line y=u

To determine conditions for the existence of equilibriums, we invoke the following

ansatz about the form of the composition of the growth function with the equilibrium. We

assume g(ue(x)) takes the form pictured in Figure 3.2, and is given by the equation

g(ue(x)) = G{a,b}(x) :=



n0 , |x|< a

n2 , a < |x|< b

0 , |x|> b

. (3.2)

-b -a 0 a b
0

n0

n2

x

G
8a,

b<Hx
L

Figure 3.2: plot of G{a,b}(x)
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We see this form of g(ue(x)) is consistent with ue being a symmetric, unimodal

function where the following conditions hold:

Condition (C1)

1. ue(±a) = n1

2. ue(±b) = 1

3. ue(0)> n1.

Noting if ue is truly a fixed point of Q and g(ue(x)) = G{a,b} then ue(x) =
(

k ∗

G{a,b}
)
(x) and therefore Condition C1 implies

1.
(

k ∗G{a,b}
)
(a) = n1

2.
(

k ∗G{a,b}
)
(b) = 1

3.
(

k ∗G{a,b}
)
(0)> n1.

We define K(x) to be the cumulative distribution function of k(x), i.e. K(x) =∫ x
−∞

k(s)ds. With the addition of the following definitions we will have completed the

preliminaries for our sufficiency theorem regarding the existence of equilibriums.

A(a,b) :=
(

k ∗G{a,b}
)
(a)−n1

=−n1−
(n2 +n0)

2
+n2

(
K(a+b)+K(b−a)

)
− (n2−n0)K(2a) ,

B(a,b) :=
(

k ∗G{a,b}
)
(b)−1

=−1+n2

(
K(2b)− 1

2

)
+(n2−n0)

(
K(b−a)−K(b+a)

)
, (3.3)

C(a,b) :=
(

k ∗G{a,b}
)
(0)−n1

=−(n1 +n0)+2n2 K(b)−2(n2−n0)K(a) .
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THEOREM 3.1. If there exists an a, b where 0 < a < b such that

A(a,b) = 0, B(a,b) = 0, C(a,b)> 0

and furthermore the function

ue(x) :=
∫

k(x− y)G{a,b}(y)dy

is such that ue(x)> n1 if |x|< a, 1 < ue(x)< n1 if a < |x|< b, and ue(x)< 1 when |x|> b

then ue(x) is an equilibrium of Q[·].

Proof: Consider there exists an a, b such that 0 < a < b and

A(a,b) = 0, B(a,b) = 0, C(a,b)> 0.

Letting u1(x) =
(

k ∗G{a,b}
)
(x), it then follows from the definition of A, B,C in Eq. 3.3

that u1(0)> n1, u1(a) = n1, u1(b) = 1. Therefore if

• for all x ∈ (−a,a), u1(x)> n1

• for all x ∈ (−b,−a)∪ (a,b), 1 < u1(x)< n1

• for all |x|> b, u1(x)< 1

it then follows by the definition of g(·) in Eq. 3.1 that g(u1(x)) = G{a,b}(x). We therefore

see that Q[u1] =
(

k∗g◦u1

)
=
(

k∗G{a,b}
)
= u1 and therefore u1 is an equilibrium of Q.

To determine further results the dispersal kernel must be specified. In the follow-

ing sections we analyze the case of the uniform and Gaussian dispersal kernels.
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3.0.1 Uniform dispersal kernel

We consider k(·) to be the symmetric uniform distribution with support (−1
2 ,

1
2),

k(x) =


0, |x|> 1

2

1, |x| ≤ 1
2 .

By scaling argument it can be shown the existence or non-existence of equilibria

is unaffected by choice of support, therefore the support of k, (−1
2 ,

1
2), can be considered

fully general. While perhaps not totally biologically realistic, this may be considered the

limiting case of several families of distributions, as they are made more platykurtic while

fixing the variance. For instance, the exponential power distribution
β exp

(
− |x|

β

αβ

)
2αΓ

(
1
β

) con-

verges almost-everywhere to U(−1
2 ,

1
2) as β → ∞ with α = 1

2 .

We are able to offer a simple characterization for when parameters n0, n1, n2 have

an associated equilibrium. We first define the following functions of n0, n1, n2 :

â(n0,n1,n2) :=
2n0(n1−n2)+n2(2−2n1 +n2)

4(n2−n0)2 (3.4)

b̂(n0,n1,n2) :=
2n2

0 +n2(6−2n1 +n2)+2n0(n1−2n2−2)
4(n2−n0)2 .

We also define A to be the open triangular region in the (a,b) plane with vertices

(0, 1
2), (

1
4 ,

3
4), (

1
4 ,

1
4). A is depicted in Figure 3.3.
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Figure 3.3: Region A of the (a,b) plane.

The following theorem then characterizes the equilibria.

THEOREM 3.2. If the point
(

â(n0,n1,n2), b̂(n0,n1,n2)
)
∈A then there exists a unique

equilibrium of the form given in Eq. 3.2.

Furthermore ue(x) =
(

k ∗G
{

â(n0,n1,n2), b̂(n0,n1,n2)
})

(x).

Proof:

wish to derive the conditions on n0, n1, n2 where the conditions in Theorem 3.1

will be satisfied for the uniform dispersal kernel. We first note that in equations A, B,C

(Eq. 3.3), a and b only appear in the arguments of K(·) in the form a+ b, 2b, 2a, b−

a, b, a.

Since a+b, 2b, 2a, b−a, b, a are all positive and K(·) is piecewise defined as
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K(x) =



0, x < −1
2

1
2 + x, −1

2 ≤ x≤ 1
2

1, x > 1
2 ,

we see it is necessary to make assumptions about if a+b, 2b, 2a, b−a, b, a are less then

or greater then 1
2 to determine which sub-function of K(·) is applicable in Eq. (3.3). In

Figure 3.4 the different colored regions correspond to different values for the Boolean

valued vector {a+b > 1
2 , 2b > 1

2 , 2a > 1
2 , b−a > 1

2 , b > 1
2 , a > 1

2}.

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a

b

Figure 3.4: Regions of the (a,b) plane where the Boolean vector {a+b> 1
2 , 2b> 1

2 , 2a>

1
2 , b−a > 1

2 , b > 1
2 , a > 1

2} takes distinct values.

For each region we make the appropriate substitution for the sub-functions of

K(·) and attempt to solve the system A(a,b) = 0, B(a,b) = 0. We find that for regions
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R1,R5,R6,R7,R8,R9,R10 the resulting system, which is linear in a, b, has a zero

determinant, and thus generally no solutions.

For region R2 the resulting system A(a,b) = 0, B(a,b) = 0 becomes

2(n2−n0)a−2n2b =−n1

4(n2−n0)a = n2−2.

The solution to this system is

a =
n2−2

4(n2−n0)
, b =

n2 +2n1−2
4n2

.

However when this result is substituted into C(a,b) with the appropriate assump-

tions, it is found C(a,b) = 0 thus violating the hypothesis of Theorem 3.1 and there are

not any valid equilibriums.

For region R3 and R4 the resulting system for A(a,b) = 0, B(a,b) = 0 becomes

(2n0−3n2)a+n2b =−n2

2
+n1

(n0−n2)a+(n2−n0)b = 1− n0

2
.

The unique solution to the system, which we use to define the functions â(n0,n1,n2), b̂(n0,n1,n2)

is given by

a = â(n0,n1,n2) :=
2n0(n1−n2)+n2(2−2n1 +n2)

4(n2−n0)2

b = b̂(n0,n1,n2) :=
2n2

0 +n2(6−2n1 +n2)+2n0(n1−2n2−2)
4(n2−n0)2 .

When C(a,b) is evaluated at
(

â(n0,n1,n2), b̂(n0,n1,n2)
)

and simplified with the

assumption that
(

â(n0,n1,n2), b̂(n0,n1,n2)
)
∈R3∪R4 it is found C(â, b̂)> 0. Thus the

characterization for the existence of equilibriums with the uniform kernel becomes:
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There exists an equilibrium if
(

â(n0,n1,n2), b̂(n0,n1,n2)
)
∈R3∪R4.

The equilibriums are robust in the parameter space {(n0,n2,n3) ∈ R3|n2 > n1 >

n0 n1,n2 > 1, n0 > 0} in the sense that they exists on set of full-measure in the parameter

space. To demonstrate this, in Figure 3.5 we show a region plot of where equilibriums

exist for constant n2 slices of the parameter space.
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(a) n2 = 2.05 (b) n2 = 2.25

(c) n2 = 2.75 (d) n2 = 4

(e) n2 = 15

Figure 3.5: Constant n2 slices of parameter space. The shaded regions are parameters

values where an equilibrium solution exists.

21



A typical equilibrium is depicted in Figure 3.6. For the parameter values depicted

â = 0.2275 and b̂ = 0.5775. We see the function is a linear spline, as would be expected

from the convolution of two piecewise constant functions. The support for ue is of course

compact, as would be expected since both k and G{â,b̂} have compact support.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

x

u e
HxL

Figure 3.6: The equilibrium solution with parameter values (n0, n1, n2) = (1.3,1.5,2.3)

3.0.2 Gaussian dispersal kernel

We consider the case where k(·) is the Gaussian kernel. This is consistent with

the biologically realistic assumptions of a random diffusion process with a fixed stopping

time. Since, as with the uniform case, scaling does not effect the existence/non-existence

of equilibria for a given set of parameters, we choose to set the variance to 1
12 to match

the variance and proximately the length scale of the uniform case. With this choice,

k(x) =
√

6
π

e−6x2
.

With this definition of k(x), Eq. 3.3 becomes
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A(a,b) =−n1 +
(n0−n2)

2
erf
(

2
√

6a
)
+

n2

2

(
erf
(√

6(a+b)
)
+ erf

(√
6(b−a)

))

B(a,b) =−1+
n2

2
erf
(

2
√

6b
)
+

(n2−n0)

2

(
erf
(√

6(b−a)
)
− erf

(√
6(b+a)

))
(3.5)

C(a,b) =−n1 +(n0−n2) erf
(√

6a
)
+n2 erf

(√
6b
)
.

Where erf(x) =
∫ x

0
2√
π

e−s2
ds.

With the definitions of A, B, and C given in Eq. 3.5, it is difficult to develop

analytic conditions to determine when the algebraic system given in Theorem 3.1 has

solutions for a given set of parameters. We instead rely on numerical methods to make

this determination. Depending on how often the curves A(a,b) = 0, B(a,b) = 0 intersect

in the region of the (a,b) plane where C(a,b)> 0, we find that there are parameter values

for which there are 0,1, or 2 distinct (a,b) satisfying Theorem 3.1. This is illustrated in

Figure 3.7. In the case of sub-figure (c), the two distinct solutions, correspond to two

distinct equilibria for that set of parameters. In Figure 3.7 we use coordinates (b−a,b+

a) for the purpose of allowing better visualization of the intersection(s) of the curves.
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(a) n0 = 1.2, n1 = 1.55, n2 = 2.3 (b) n0 = 1.3, n1 = 1.4, n2 = 2.3

(c) n0 = 1.15, n1 = 1.48, n2 = 2.3

Figure 3.7: Sub-Figure (a) illustrates a set of parameters having no solution to the alge-

braic system in Theorem 3.1, and thus no equilibria. Sub-Figure (b) illustrates a set of

parameters having a single solution, and thus a unique equilibrium. In sub-figure (c) we

see a set of parameters where there are two distinct equilibria.

Similar to the case of the uniform kernel, we find that parameter values with two

distinct equilibria and those with a single equilibria, both occupy a set of full measure in

the parameter space {(n0,n1,n2) ∈ R3|n0 < n1 < n2 and n1,n2 > 1}. In Figure 3.8 we
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delineate the regions with single and double equilibria. To make the region plot in Figure

3.8, we developed an algorithm that takes (n0,n1,n2) as an input and returns the number

of equilibria for those parameter values. The algorithm first determines where the A = 0

and B = 0 curves intersect the C = 0 curve, these are the points labeled p1, p2, q1, q2 in

Figure 3.7. In Figure 3.7,(a) and (c) we see q1 and q2 are nested between p1 and p2 along

the C = 0 curve. By the continuity of the A = 0, B = 0 curves, with this condition it is

only possible to have either zero-points where A = 0 intersects B = 0, as in sub-figure (a),

or to have two-points where A = 0 intersects B = 0, as in sub-figure (c). If this condition

is detected, the algorithm performs constrained numerical minimization of A2 +B2 with

C > 0. If the minimum of A2 +B2 is less the 10−6 the algorithm returns 2, as it is not

possible to have only one intersection in this case. If the minimum is greater then 10−6

then the algorithm returns 0. If the algorithm determines only single q lies between p1

and p2 on the c = 0 curve, such as in sub-figure (b), then the only possibility is that A = 0

and B = 0 have only 1 intersection in the C > 0 region, so the algorithm returns 1.
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(a) (b)

(c)

Figure 3.8: Constant n2 slices of parameter space. The salmon colored regions are pa-

rameter values with a single equilibria. The blue regions are parameter values with 2

distinct equilibria.

In Figure 3.9 typical equilibria for the gaussian kernel are depicted. In sub-figure

(a), the parameter values have a single unique equilibrium. The value of a and b are

0.0626 and 0.2949 respectively. In sub-figure (b), there are two distinct equilibria. For

the red equilibrium curve a and b are 0.0887 and 0.3543 respectively. For the blue equi-

librium curve a and b are 0.2184 and 0.5372 respectively.
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(b) n0 = 1.15, n1 = 1.48, n2 = 2.3

Figure 3.9: Typical equilibrium solutions for the Gaussian dispersal kernel. In sub-figure

(a) the parameters have a unique equilibria. In sub-figure (b) the parameters have two

distinct equilibria.

3.0.3 Exponential power distribution

Thus far we have considered the Uniform and Gaussian kernels with variance

1
12 . Kurtosis, which is the ratio of the 4th central moment to the square of the variance
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(Casella 2002), can be considered as a measure of how heavy the tails of a distribution

are for a fixed variance. For instance the kurtosis of the uniform distribution is 1.8 while

for the Gaussian the kurtosis is 3, reflecting what might be expected regarding the relative

weights of the tails. To better understand the effect of kurtosis we consider k(·) to be the

exponential power distribution, whose probability density function is

k(x) =
γ

1
γ exp

(
−| x

σ |
γ

γ

)
2σ Γ

(
1+ 1

γ

) .

It is well defined for any γ > 0 and σ > 0 but we will only consider γ ≥ 1. For the

variance to be 1
12 ,

σ =

√
Γ

(
1
γ

)
2
√

3 γ
1
γ

√
Γ

(
3
γ

) .

It is worth noting that when γ = 1, γ = 2, and γ → ∞ the exponential power

distribution is the Laplace, Gaussian, and Uniform distribution, respectively. In Figure

3.10-a, we plot the kurtosis as a function of γ where we see kurtosis is a decreasing

function of γ and the value asymptotically approaches that of the uniform kernel. The

term leptokurtic is applied to the heavier tailed distributions where γ < 2 , and platykurtic

is applied to those with lighter tails where γ > 2. In Figure 3.10-b we plot the probability

density functions for several values of γ .
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Figure 3.10: A plot of the kurtosis vs. γ and probability density functions for several

values of γ . The dashed line y = 1.8 in sub-figure (a) is the kurtosis of the uniform

distribution.

In Figures 3.11-3.14 we create region plots showing where in parameter space the

algebraic system in Thm. 3.1 has solutions. We show again that equilibriums exist on
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a set of full measure in parameter space for γ = 1.2, 1.5, 3, 5. One can reasonable infer

that they exists for all γ > 1. To determine if solutions to the algebraic system exist, we

use a numerical method similar to that used for the Gaussian distribution in section 3.0.2.

In Sub-Figure (c) of Figures 3.11-3.14 we see that the larger n2 = 2.5 generally favors

smaller values of n1 and n0 then those of n2 = 2.1.

In Figure 3.15 through 3.17 we compare the regions where equilibria exist for

successive values of γ . For instance, in Figure 3.15 we see the existence region for

γ = 1.2 is contained within the region for γ = 1.5. This trend continues for larger values

of γ , as is shown in Figure 3.16 and 3.17. This suggests that lower kurtosis kernels favor

the formation of equilibrium solutions.
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Figure 3.11: Plot of the parameter regions where equilibriums exist when k is an expo-

nential power distribution with γ = 1.2. Note differing scales in sub-plot (a) and (b).

31



0.0 0.5 1.0 1.5
1.50

1.55

1.60

1.65

1.70

n0

n 1

n2=2.1

(a) n2 = 2.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.25

1.30

1.35

1.40

1.45

n0

n 1

n2=2.5

(b) n2 = 2.5

0.0 0.5 1.0 1.5

1.3

1.4

1.5

1.6

1.7

n0

n 1

(c) n2 = 2.1 and n2 = 2.5 combined

Figure 3.12: Plot of the parameter regions where equilibriums exist when k is an expo-

nential power distribution with γ = 1.5. Note differing scales in sub-plot (a) and (b).
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Figure 3.13: Plot of the parameter regions where equilibriums exist when k is an expo-

nential power distribution with γ = 3. Note differing scales in sub-plot (a) and (b).
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Figure 3.14: Plot of the parameter regions where equilibriums exist when k is an expo-

nential power distribution with γ = 5. Note differing scales in sub-plot (a) and (b).
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0.0 0.5 1.0 1.5
1.25

1.30

1.35

1.40

1.45

n0

n 1

n2=2.5

(b) green region is γ = 1.2, turquoise region is γ = 1.5, n2 = 2.5

Figure 3.15: A comparison of the parameter values producing equilibrium for γ = 1.2 to

γ = 1.5. Note the region for γ = 1.2 is a proper subset of that for γ = 1.5 for both values

of n2 depicted.

35



0.0 0.5 1.0 1.5

1.3

1.4

1.5

1.6

1.7

1.8

n0

n 1

n2=2.1

(a) green region is γ = 1.5, brown region is γ = 3, n2 = 2.1

0.0 0.5 1.0 1.5

1.3

1.4

1.5

1.6

1.7

1.8

n0

n 1

n2=2.5

(b) turquoise region is γ = 1.2, red region is γ = 3, n2 = 2.5

Figure 3.16: A comparison of the parameter values producing equilibrium for γ = 1.5 to

γ = 3. Note the region for γ = 1.5 is a proper subset of that for γ = 3 for both values of

n2 depicted.
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Figure 3.17: A comparison of the parameter values producing equilibrium for γ = 3 to

γ = 5. Note the region for γ = 3 is a proper subset of that for γ = 5 for both values of n2

depicted.
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CHAPTER 4

NUMERICAL RESULTS

4.0.4 Uniform dispersal with piecewise constant fecundity function

4.0.4.1 Perturbed equilibria In Section 3.1 we demonstrated the existence of

non-spreading equilibrium solutions for the uniform kernel with the fecundity function

defined in Eq. 3.2. In this section we will examine the behavior of perturbed equilibria.

The iterates of Model 2.1 are particularly easy to numerically compute for these defini-

tions of k and g. If u0 is a piecewise defined linear spline, then the intervals of x where

{x |0 < u0(x) < 1}, {x |1 < u0(x) < n1}, and {x |n1 < u0(x)} can be determined, which

in turn determines g
(

u0(x)
)

. The convolution with k(x) can then be exactly determined,

thus giving u1(x).

To choose a parametric form of perturbation for ue, Eq. 3.2 provides us a sugges-

tive form. Namely by shifting the discontinuity points of G{a,b} from {−b,−a, a, b} to

the respectively nearby points {−b1,−a1, a2, b2} and then taking the convolution with k,

we can create a four parameter perturbed equilibrium that converges to ue as b1, b2→ b

and a1, a2 → a. This form is fairly general, in that it represents the first iterate of any

uni-modal initial data that exceeds n1 at its maximum.

We define the perturbed initial state as

ũe = k ∗ G̃{−b1,−a1,a2,b2},
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where

G̃{−b1,−a1,a2,b2}(x) =



n2, −b1 < x <−a1

n0, −a1 < x < a2

n2, a2 < x < b2

0, otherwise.

(4.1)

Obviously the parameters must conform to the inequality −b1 <−a1 < a2 < b2,

and so as to neglect trivial translations we choose {−b1,−a1, a2, b2} so as to fix the

center of mass of G̃{−b1,−a1,a2,b2}(x) at x = 0.

To study the stability of the equilibriums it is helpful to use a domain-size versus

time plot. For our purposes we define the domain size of ui(x) to be the length of the

support of ui(x) in the case that the support is a single interval, or more generally as

sup
{

x |ui(x)> 0
}
− inf

{
x |ui(x)> 0

}
.

For instance, if the domain size is linearly increasing with time, this indicates the per-

turbed solution has converged to a spreading solution. If the domain size oscillates with a

period p, this is a strong indication that the perturbed solution has converged to a period-p

attractor.

We observe a wide variety of behaviors. For a fixed n2, if weaker growth parame-

ters are chosen for n1 and n0, then perturbations to the equilibrium can lead to extinction.

This is observed in Figure 4.1. For a fixed n2, if strong growth parameters are chosen

for n1 and n0, then perturbations to the equilibrium can lead to spreading solutions, as

is observed in Figure 4.2. However for intermediate values of n1 and n0 a wide variety

of stable non-spreading periodic solutions can be found. For example in Figures 4.3-4.5,

the same set of parameters can lead either to a non-spreading period-5 orbit, or a non-

spreading period-105 orbit depending on the initial perturbation. A wide a variety of

short and long periodicities can be observed for other parameter values.
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Figure 4.1: A domain-size vs. time plot of an equilibrium where perturbation leads to

extinction. {n0, n1, n2}= {1.1, 1.4, 2.5}. The equilibrium is k ∗G{0.2334, 0.5548}, and the

perturbed initial state is k ∗ G̃{−0.5553,−0.2212, 0.2353, 0.5586}.
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(b) Plot of u1(x) through u40(x) vs. x. Red denotes odd years, blue denotes even years.

Figure 4.2: A case where perturbations lead to spreading solutions. {n0, n1, n2} =

{1.4, 1.6, 2.5}. The equilibrium is k ∗G{0.1508, 0.4236}, and the perturbed initial state is

k ∗ G̃{−0.4189,−0.1439, 0.1471, 0.4193}.
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Figure 4.3: A domain-size vs. time plot for a perturbation leading to a period-5 orbit.

{n0, n1, n2}= {1.3, 1.45, 2.5}. The equilibrium is k ∗G{0.2205, 0.5122}, and the perturbed

initial state is k ∗ G̃{−0.5024,−0.2078, 0.2134, 0.5035}.
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Figure 4.4: A plot of u30(x) through u35(x) showing a complete period. The parameters

and initial condition are the same as in Figure 4.3.
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(b) Plot of u1(x) through u325(x). Curves are rendered partially transparent so as to

show points of accumulation.

Figure 4.5: A case where the same parameters used in Figure 4.4 have a different orbit

when a different initial condition is used. The periodicity of this orbit is 105. The initial

state is k ∗ G̃{−0.5160,−0.2232, 0.2387, 0.5193}.
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4.0.4.2 Initial domain size It interesting to consider what initial domain size

will lead to non-spreading solutions as opposed to extinction or spreading solutions. To

gain some insight into this question we conduct simulations where the initial data is a

Heaviside Pi (boxcar) function, where the half-width ,w, is treated as a free parameter.

We thus let the initial data be

u0(x) = hw(x) :=


n2 , |x|< w

0 , |x|> w.

We would expect that for w sufficiently small, Q[hw](x)< 1 as g
(

hw(x)
)

will have

insufficient mass to exceed the Allee threshold when convolved with k. In fact we can put

a lower bound on the minimum survivable domain size by computing Q[hw](0) with the

assumption w < 0.5. Since Q[hw](x) will be symmetric and uni-modal Q[hw](0) will be a

maximum. We find Q[hw](0) = 2n0 w, therefore setting Q[hw](0) = 1 we find if w < 1
2n0

the population will go extinct. In Figures 4.6 through 4.11 we plot the half-domain size

as a function of w at t = 88, t = 100, and t = 112. The domain size is defined the same

as in Section 4.0.4.1. The t = 88 data points are rendered in red, t = 100 are rendered in

green, and t = 112 are rendered in blue.

In the simplest case for a set of parameters where spreading solutions are possible,

we might expect that there would be an interval (0,w1) where extinction occurs, followed

by the interval (w1,w2) where non-spreading solutions occur, and then finally on (w2,∞)

we would expect spreading solutions to occur. Indeed in Figure 4.6 we find such a case,

where on the interval 0.36 < w < 0.64 the tight clustering of the respective generations

indicates non-spread. For w > 0.64 we see the respective generations are well separated

by a positive distance indicating spread. In sub-figure (b), as evidence that solutions for

0.36 < w < 0.64 are non-spreading, we demonstrate with a domain size vs. time plot that

the solution for w = 0.5 settles into a long period non-spreading solution. Similarly, in

sub-figure (c) we demonstrate that for w > 0.64 solutions evolve into spreading solutions
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by way of a domain size vs. time plot for w = 0.75.
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(b) domain vs. t for w = 0.5
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(c) domain vs. t for w = 0.75

Figure 4.6: Domain size after 88 iterations (red), 100 iterations (green), and 112 iterations

(blue) as a function of initial domain half-width. In sub-figure (b) a the domain vs. time

plot is shown for w= 0.5. In sub-figure (c) the domain vs time plot is shown for w= 0.75.

Parameter values used are (n0, n1, n2) = (1.6, 1.75, 2.1).

We see in Figure 4.7 we see it largely follows the pattern of Figure 4.6, with non-

spreading solutions for most of 0.57<w< 0.8, however we see at w= 0.66 and w= 0.76

spreading solutions emerge, indicating more complex dynamics then with Figure 4.6.
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(b) domain vs. t for w = 0.6
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(c) domain vs. t for w = 0.665

Figure 4.7: Domain size after 88 iterations (red), 100 iterations (green), and 112 iterations

(blue) as a function of initial domain half-width. In sub-figure (b) a the domain vs.

time plot is shown for w = 0.6. In sub-figure (c) the domain vs time plot is shown for

w = 0.665. Parameter values used are (n0, n1, n2) = (1.2, 1.9, 2.1).

In Figure 4.8 we see for all w > 0.57 there are 5 distinct bands of domain sizes.

This indicates regardless of initial domain size, the solution will converge to a non-

spreading period 5 attractor. In Figure 4.8-b we show the domain-size vs. time for

w = 1.1 which demonstrates the solution settling into a period 5 orbit. While all val-

ues of w > 0.57 eventually reach a period 5 orbit, we see by multi-coloration of the bands
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in Figure 4.8 that clearly the phase will be sensitive to w.
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(b) domain size vs. t for w = 1.1

Figure 4.8: In sub-figure (a) domain size after 88 iterations (red), 100 iterations (green),

and 112 iterations (blue) as a function of initial domain half-width. In sub-figure (b)

domain size vs. t for w = 0.6 is depicted. Parameter values used are (n0, n1, n2) =

(1.2, 1.6, 2.1).

In Figure 4.9 we see the dependance on initial domain size becomes even more
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complex. At w≈ 0.48 we see there is an interval of spreading solutions between the ex-

tinction and non-spreading initial domain lengths. There are 2 intervals of non-spreading

w, (0.49,0.54), and (0.59,0.64) which are disrupted by an interval of spreading solutions.

Finally for w > 0.64 we see the solutions are spreading.
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(c) domain vs. t for w = 0.475

Figure 4.9: Domain size after 88 iterations (red), 100 iterations (green), and 112 iterations

(blue) as a function of initial domain half-width. In sub-figure (b) a the domain vs.

time plot is shown for w = 0.62. In sub-figure (c) the domain vs time plot is shown for

w = 0.475. Parameter values used are (n0, n1, n2) = (1.3, 1.6, 2.5).
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In Figure 4.10 we again see a complex dependency on initial domain size. We see

on the interval 0.69 < w < 0.9 there are non-spreading solutions interspersed with two

intervals of spreading solutions. Unlike in Figure 4.9 we see at w≈ 0.7 it transitions from

extinction to non-spreading solutions.
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(c) domain vs. t for w = 0.82

Figure 4.10: Domain size after 88 iterations (red), 100 iterations (green), and 112 itera-

tions (blue) as a function of initial domain half-width. In sub-figure (b) a the domain vs.

time plot is shown for w = 0.86. In sub-figure (c) the domain vs time plot is shown for

w = 0.82. Parameter values used are (n0, n1, n2) = (1, 1.7, 2.5).

Finally in Figure 4.11 we see an irregular pattern of non-spreading solutions and
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regions of extinction. This pattern continues even for larger values of w then what are

displayed on the graph.
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Figure 4.11: In sub-figure (a) domain size after 88 iterations (red), 100 iterations (green),

and 112 iterations (blue) are depicted as a function of initial domain half-width. In sub-

figure (b) the domain size vs. time is depicted for a w with a non-spreading solution, in

sub-figure (c) the domain size vs. time is depicted for a w producing extinction. Parameter

values used are (n0, n1, n2) = (1.1, 1.4, 2.5).
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4.0.5 Gaussian dispersal with piecewise constant fecundity function

In Section 3.2 we analytically demonstrated the existence of equilibrium solutions

in the form k∗G{a,b} when k is the Gaussian distribution. In this section we will examine

the evolution of perturbed equilibria. As in Section 4.1, we will consider initial data in the

form k∗ G̃{−b1,−a1,a2,b2} where G̃ is defined as in Eq. 4.1. Since the Gaussian distribution

does not have compact support, we must define domain-size slightly differently then in

Section 4.1. In this section we define the reference domain-size of ui(x) to be the length of

the interval where ui(x)> 1 in the uni-modal case, The threshold of ui(x) = 1 is chosen as

that corresponds to the Allee threshold. More generally we define the reference domain

size to be

sup{x |ui(x)> 1}− inf{x |ui(x)> 1}.

As with the uniform case, we see a wide variety of phenomena. We have found

instances of perturbed solutions converging to period-2 orbits, period-4 orbits, irregular

orbits, and extinction. For parameter values with 2 distinct equilibria (blue regions in

Figure 3.8) we observe that the perturbed solutions converge to the same pattern of oscil-

lation regardless of which perturbed equilibrium the solution was initiated with. We also

do not observe any distinction between the patterns of periodic oscillations that occur

with the 1-equilibrium parameters versus the 2-equilibrium parameters. Stated slightly

differently, for a given pattern of oscillation, instances of parameters exhibiting that type

of oscillation can be found in both the blue and salmon regions of Figure 3.8. In contrast

to the uniform-kernel case, we did not observe spreading solutions for small perturba-

tions.

In Figure 4.12 a set of parameters with an attracting period-2 orbit is depicted.

Both the equilibriums, depicted by the dashed-curves in sub-Figure (b), when perturbed

stabilize to the same period-2 pattern. In Figure 4.13 a case where a single equilibrium

is attracted to a period-4 orbit is depicted. Finally in Figure 4.14 a set of parameters that
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develops an irregular, but non-spreading orbit is depicted. A high sensitivity to initial

conditions is observed for the parameters in Figure 4.14, suggesting chaotic dynamics.
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(b) Plot of u20(x) through u40(x) vs. x. Equilibriums are the dashed curves, period-2

curves are in blue.

Figure 4.12: A case where perturbations lead to period-2 oscillations. {n0, n1, n2} =

{1.25, 1.36, 2.6}. The equilibriums are k ∗G{0.1399, 0.3322} and k ∗G{0.3087,0.5279}. The

perturbed initial state used in this figure is k ∗ G̃{−0.3373,−0.1560, 0.1374, 0.3330}.

54



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0 10 20 30 40 50 60

0.45

0.50

0.55

0.60

t HgenerationsL

re
f.

do
m

ai
n

si
ze

(a) ref. domain-size vs. time

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

de
ns

ity

(b) Plot of u10(x) through u20(x) vs. x, the single equilibrium is the dashed curve.

Figure 4.13: A case where perturbations lead to period-4 oscillations. {n0, n1, n2} =

{1.25, 1.3, 2.6}. The equilibrium is k ∗G{0.0849, 0.2618}. The perturbed initial state used

in the figure is k ∗ G̃{−0.2634,−0.0933, 0.0845, 0.2618}.
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(b) Plot of u20(x) through u150(x) vs. x, equilibriums are the dashed curves. The ui(x)

(in blue) are rendered semi-transparent so as to show points of accumulation.

Figure 4.14: A case where perturbations lead to irregular oscillations. {n0, n1, n2} =

{1.05, 1.34, 2.6}. The equilibriums are k ∗G{0.0929, 0.2889} and k ∗G{0.3091,0.5576}. The

perturbed initial state used in this figure is k ∗ G̃{−0.2866,−0.0884, 0.1011, 0.2891}.
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4.0.6 Leptokurtic dispersal kernel with piecewise constant fecundity function

In Section 3.0.3 we demonstrated the existence of equilibrium solutions for lep-

tokurtic exponential power kernels (γ < 2) with the growth function defined as in Eq. 3.1.

We use the leptokurtic kernel

k(x) = 1.6488exp
(
−5.1362 |x|1.5

)
.

We then follow the methodology used in Section 4.0.4.1 and 4.0.5, with initial data in the

form k ∗ G̃{−b1,−a1,a2,b2} where G̃ is defined as in Eq. 4.1.

Similar to the Uniform and Gaussian case, for some values of (n0, n1, n2) we

see stable periodic orbits of varying periodicities emerge from perturbed equilibria. For

instance in Figures 4.15, 4.17, and 4.18 we see attracting orbits of periodicity 2, 4, and

6 respectively. Unlike what was observed for the Uniform and Gaussian case observe

some parameters appear to produce asymptotically stable equilibrium, as is shown in

Figure 4.16. Of the parameter space producing equilibria for the γ = 1.5 kernel (see

Figure 3.12), a larger portion appear to be unstable equilibrium where perturbations lead

to extinction. For instance for all equilibrium producing parameters tested where n0 < 1,

we found the perturbed solutions went extinct.
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Figure 4.15: Perturbations leading to a period-2 oscillations. {n0, n1, n2} =

{1.53, 1.63, 2.1}. The equilibria is k ∗G{0.0830, 0.4149}. The perturbed initial state used

in this figure is k ∗ G̃{−0.4124,−0.0821, 0.0786, 0.4122}.
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Figure 4.16: Perturbations lead to a stable equilibrium. {n0, n1, n2} = {1.1, 1.55, 2.1}.

The equilibria is k ∗G{0.0092, 0.3181}. The perturbed initial state used in this figure is

k ∗ G̃{−0.3181,−0.0097, 0.0069, 0.3180}.
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Figure 4.17: Perturbations leading to period-4 oscillations. {n0, n1, n2} =

{1.24, 1.37, 2.5}. The equilibria is k ∗G{0.0977, 0.2904}. The perturbed initial state used

in this figure is k ∗ G̃{−0.2943,−0.1041, 0.0985, 0.2933}.
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Figure 4.18: Perturbations leading to period-6 oscillations. {n0, n1, n2} =

{1.1, 1.38, 2.5}. The equilibriums are k∗G{0.0973, 0.3028}. The perturbed initial state used

in this figure is k ∗ G̃{−0.2991,−0.0982, 0.0938, 0.2983}.
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4.0.7 Numerical results for other growth functions

Thus far our results have focused on non-spreading solutions involving the piece-

wise constant growth function described in Eq. 3.1. To demonstrate that non-spreading

solutions can occur for more general growth functions, we conduct numerical simulations

for several variants of the Ricker growth function. Using the example of Schreiber (2003)

we consider a growth function of the form g(u) = u exp
(

r(1−u)
)

I(u), where the posi-

tive density dependance at low densities (i.e. Allee effect) is encapsulated in I(u). While

Schreiber specifically examines a case where I(u) is a Hill function with exponent 1, we

will consider the more general case where I(u) is any Hill function. Throughout this sec-

tion we use the exponential power distribution k(x) = 1.1109 exp
(
−
(

x
0.4965

)4
)

, whose

variance is 1
12 in keeping with the previous cases, and whose kurtosis is intermediate to

that of the Gaussian and Uniform distributions of the same variance. Throughout, we

also use Heaviside Pi (boxcar function) initial data of half-width 0.5 and height 1.25.

4.0.7.1 Truncated Ricker function We first consider the limiting case as the

Hill exponent tends to infinity, and I(u) becomes a step function. This truncated Ricker

function was studied by Sullivan (2017) in terms of fluctuating invasion speeds for an

integral-difference model. Parameterizing so that the Allee threshold occurs at u = 1 and

the second equilibrium occurs at u = q we have

g(u) =


0 , u < 1

u exp
(

r(q−u)
)
, u > 1.

In Figure 4.19 we show an example of an asymptotically stable non-spreading

solution with r = 1.2 and q = 1.7. We find that for q = 1.7 we obtain asymptotically

stable non-spreading solutions for 1.05 < r < 1.29 (to 2 decimal places) . For r > 1.05

extinction occurs and for r < 1.29 chaotic spreading solutions occur. Similarly, we find

for r = 1.2 we obtain asymptotically stable non-spreading solutions for roughly 1.65 <

q < 1.72 (to 2 decimal places). For q < 1.65 extinction occurs and for r > 1.72 chaotic

62



spreading solutions occur.
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Figure 4.19: Plots of the growth function, transient iterations, and asymptotic attractor

for the truncated Ricker function with r = 1.2 and q = 1.7.
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4.0.7.2 Hill-Ricker function We next consider

g(u) = u exp
(

r(1−u)
) (1+1.37)

(
u

1.3

)7

1+
(

u
1.3

)7

 , (4.2)

where we leave r as a bifurcation parameter. An example of this function with r = 2.5 is

depicted in Figure 4.20.
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Figure 4.20: The Hill-Ricker growth function g(u) = u exp
(

2.5(1 −

u)
) (

(1+1.37)( u
1.3)

7

1+( u
1.3)

7

)
.

For r < 2.44 (to 2 decimals) we find chaotic spreading solutions.

For 2.44< r < 2.64 we find stable period 2 oscillations as depicted in Figure 4.21.
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Figure 4.21: Plots of solution curves for r = 2.5.

For 2.64 < r < 2.91 we find a asymptotically stable equilibriums as depicted in

Figure 4.22.
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Figure 4.22: Plots of solution curves for r = 2.8.

For r > 2.91 extinction occurs.

4.0.7.3 Truncated-Ricker function with linear strong-Allee effect Thus far

we have only considered growth functions with rather severe forms of strong Allee effect,

such as g(u) being zero on [0,1), or in the case of the Hill-Ricker growth function we

considered, g(u)∼ u8 for small u. To demonstrate that non-spreading solutions can occur

even for linear strong Allee effect, we consider the following growth function:
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g(u) =


ρ u , u < 1

u exp
(

1.35(1.5−u)
)
, u > 1.

(4.3)

We find that for 0 ≤ ρ ≤ 0.55 there are asymptotically stable non-spreading so-

lutions. The solutions for ρ = 0.4 are depicted in Figure 4.23. For ρ > .55 non-chaotic

spreading solutions occur.
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Figure 4.23: Plots of the growth function, transient iterations, and asymptotic attractor

for the growth function in Eq. 4.3 with ρ = 0.4.
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4.0.8 Patch Formation

In section 4.0.7 we have considered the evolution of the population with relatively

simple initial data, namely a boxcar function whose support, (−0.5,0.5), is comparable

in length scale to that of a typical non-spreading solution, such as that seen in Figure

4.22. In this section we wish to examine pattern emergence from more complex initial

data, in the case of growth functions which produce non-spreading solutions. We first

examine the case of the evolution of two interacting non-spreading solutions. We next

examine pattern emergence from perturbed constant initial data over lengths much larger

then the length scale of the non-spreading solutions.

Throughout this section we will use Hill-Ricker Growth function (Eq. 4.2) and

k(x) = 1.1109 exp
(
−
(

x
0.4965

)4
)

. We will examine the dynamics for both the case that

r = 2.8 and there exists exhibits a single asymptotically stable non-spreading solution

(Figure 4.22), and for r = 2.5 where there exists a stable period-2 orbit (Figure 4.21).

It should be noted that the final end-states produced by these simulations are ex-

tremely sensitive to mesh-size, however the qualitative behavior remain largely insensi-

tive. Throughout this section the mesh-size used was δ = 0.00664.

4.0.8.1 Two interacting stable equilibrium To study the effects of two inter-

acting patches in the case r = 2.8 with a period-1 stable attracting non-spreading solution,

we let ue(x) be the stable attractor depicted in Figure 4.22. We determine ue(x) numer-

ically by iterating until a max difference fixed point stopping criteria is met. We then

initialize the simulation with

u0(x) = ue

(
x+

w
2

)
+ue

(
x− w

2

)
.

w, the inter-patch spacing is then treated as a bifurcation parameter vs. the total final

population. We iterate the system until the fixed point stopping criteria is reached, calling

the final state uΩ.

Since the total population of ue is
∫

∞

−∞
ue(s)ds = 1.606 we might expect that total
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final population,
∫

∞

−∞
uΩ(s)ds would be very close to an integer multiple of 1.606 depend-

ing on how many patches form. Indeed, in Figure 4.24 we see this is indeed the case. The

grey dashed lines represent multiples of 1.606. We see either extinction (blue), merger

into one patch (green), or two separate patches persisting (red) can occur. The fact that

extinction occurs for small values of w < 0.77 is not surprising as the near superposi-

tion of the maxima creates a very high density that is subsequently mapped below the

Allee threshold by the strong overcompensation. Similarly we see for very large values

of w > 1.85 we see 2-patches persist, which is not surprising as the interaction between

them is extremely weak. For intermediate values of w we see there is merger into a single

patch interspersed with intervals of extinction. In Figure 4.25 we show the evolution of

the patches merging into a single patch. In Figure 4.26 we show the evolution of the

patches collapsing into extinction.
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Figure 4.24: Total population of end-state versus spacing parameter (w).
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Figure 4.25: Evolution of solution ending a merger of patches. w = 1.77
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Figure 4.26: Evolution of solution ending in extinction. w = 1.65

4.0.8.2 Two interacting period-2 equilibrium We now study the effects of

two interacting patches in the case r = 2.5 with a stable period-2 attracting non-spreading

solution. we let ue1(x) and ue2(x) be the stable attractor depicted in Figure 4.21, assigned

so that ue1(0)> ue2(0). As previously, we determine uei(x) numerically by iterating until

the even year solutions meet max difference fixed point stopping criteria. In this section,

we will consider both a symmetric initial condition,

u0(x) = ue1

(
x+

w
2

)
+ue1

(
x− w

2

)
,
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and an asymmetric initial condition

u0(x) = ue2

(
x+

w
2

)
+ue1

(
x− w

2

)
.

For each case we then iterate the system until the fixed point stopping criteria is

reached on the even year solutions, calling this final (even-year) state uΩ. For this period-

2 solution
∫

∞

−∞
ue1(s)ds = 2.388 and

∫
∞

−∞
ue2(s)ds = 2.012.

We first examine the case of the symmetric initial data,

u0(x) = ue1

(
x+

w
2

)
+ue1

(
x− w

2

)
.

On the y-axis we plot the average of the total population for the even and odd year final

state. Therefore we would expect the result to an integer multiple of
1
2
(2.388+2.012) =

2.2.

In Figure 4.27 we see final states with total populations given by 0× 2.2, 1×

2.2, and 2× 2.2 (grey dashed lines), indicating populations with 0, 1, 2, or 3 patches.

The final populations which are 2.2 (green) appear to be numerical artifacts, where a

numerical instability slowly leads to an asymmetric density curve. For example, in Fig-

ure 4.28 we see that at about t = 134 the asymmetry develops enough to be visually

detectable. In Figure 4.29 we show an example of the initial symmetric 2-patch state

collapsing to extinction.
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Figure 4.27: Total population of even year end-state versus spacing parameter (w) for

symmetric initial data. Grey dashed lines are multiples of 2.2.
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Figure 4.28: Illustration of collapse from 2-patches to one patch for symmetric initial

data. w = 1.387
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Figure 4.29: Illustration of extinction from symmetric two-patch initial data. w = 1.96

Next we examine the case of the asymmetric initial data,

u0(x) = ue2

(
x+

w
2

)
+ue1

(
x− w

2

)
.

On the y-axis we plot the total population of the odd year final state. Depending on the

number of total final patches, and their relative phase, we would expect the final (odd or

even year) population to be of the form 2.388ne1 + 2.012n2, where ne1 and ne2 are the

number of ue1 and ue2 phased patches respectively.

In Figure 4.30 we see there are populations at 2.388∗2 = 4.776 and 2.012∗2 =
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4.024 represented by the blue-grey datum. These represent solutions where out of phase

patches settle into 2 in-phase patches. In Figure 4.31 we illustrate the evolution of these

dynamics.

Populations terminating at 2.388+2.012 = 4.4, represented in fuchsia, represent

two patches remaining in phase. Population ending in either 2.012 or 2.388 (green) rep-

resent 2 patches merging into one. The dynamics of this merger are represented in Figure

4.32. Finally in Figure 4.33 we show the dynamics of a solution collapsing to extinction.
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Figure 4.30: Total population of final state odd year end-state versus spacing parameter

(w) for asymmetric initial data.
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Figure 4.31: Illustration of merger from 2-patches to one patch for asymmetric initial

data. w = 1.47
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Figure 4.32: Illustration of out of phase 2 patch initial data, forming into an in-phase 2

patch oscillation. w = 1.646
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Figure 4.33: Illustration of extinction from asymmetric two-patch initial data. w = 1.3

4.0.8.3 Patch formation over large perturbed initial domain with single sta-

ble equilibria We now wish to consider the evolution when the support of the initial

data is much larger then that of a single non-spreading solution. We will use the growth

function in Figure 4.20 which has a single asymptotically stable non-spreading solution

(depicted in Figure 4.22). Since the length scale of the equilibrium is roughly 2 length

units, we will initiate over an interval of length much larger then 2, and let the density

be super-Allee threshold with small fluctuations over length-scales of σ . To accomplish

this we will use a piecewise constant function, constant over sub-intervals of length σ ,
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whose height on each sub-interval is given by a random variate drawn from the uniform

distribution on (1.1,1.2). The functional form is thus

u0(x) =



0 , |x|> nσ

u{−n} , −nσ < x < (−n+1)σ

u{−n+1} , (−n+1)σ < x < (−n+2)σ

. . . . . .

u{n−2} , (n−2)σ < x < (n−1)σ

u{n−1} , (n−1)σ < x < nσ

where u{i} are i.i.d. unif(1.1,1.2) random variates.

We then consider cases where σ >> 2, σ = 2 , and σ << 2 while holding the

initial support to be (−40,40).

As can be seen in Figures 4.34-4.36, stable non-interacting patches emerge from

the initial data after sufficient time. As can be seen in Figure 4.34, when the scale of

variation in the initial data in long compared to the size of the equilibrium, stable patches

are sparse and tend to occur only near places of relatively large fluctuations in the initial

data such as near x = −36, x = −30 for instance. In Figure 4.35 with σ = 2 we see the

density of stable patches is much higher then in the σ = 6 case with patch formations

till tending to occur near places sharp jumps in initial density. In the case of small σ in

Figure 4.36 we see the total patch formation density is not significantly different form

that in Figure 4.35 suggesting saturation. The pattern of where stable patches will form

is not readily discernable.
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Figure 4.34: Pattern formation with σ = 6. Initial data is shown in blue, iterations 110−

120 are shown in red.
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Figure 4.35: Pattern formation with σ = 2. Initial data is shown in blue, iterations 110−

120 are shown in red.
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Figure 4.36: Pattern formation with σ = 0.25. Initial data is shown in blue, iterations

110−120 are shown in red.

4.0.8.4 Patch formation over large perturbed initial domain with period-2

equilibria We now consider a circumstance similar to that in Section 4.0.8.1, however

we will use the growth function g(u) = u exp
(

2.5(1−u)
) (

(1+1.37)( u
1.3)

7

1+( u
1.3)

7

)
which has a

stable period-2 orbit, as demonstrated in Figure 4.21.

We find results very similar to those from Section 4.0.8.3, where after sufficient

time, we are left with a sequence of essentially non-interacting period-2 equilibria. In

Figures 4.37-4.39, (b) we see the emergent final stable solutions. The transients take a

much longer time to evolve then they did in case of 4.0.8.3. For example, with σ = 0.25,

it took over roughly 400 iterations for the transients to dampen, while only taking about

100 for the same case in 4.0.8.3.
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(a) t = 120, . . . ,130
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(b) t = 210, . . . ,220

Figure 4.37: Pattern formation with σ = 6. Sub-figure (a) depicts transient phenomena,

while sub-figure (b) shows the terminal state. In (b) odd-years are depicted in blue, and

even-years are red.
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(a) t = 120, . . . ,130
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(b) t = 386, . . . ,396

Figure 4.38: Pattern formation with σ = 2. Sub-figure (a) depicts transient phenomena,

while sub-figure (b) shows the terminal state. In (b) odd-years are depicted in blue, and

even-years are red.
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(a) t = 250, . . . ,260
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(b) t = 590, . . . ,600

Figure 4.39: Pattern formation with σ = 2. Sub-figure (a) depicts transient phenomena,

while sub-figure (b) shows the terminal state. In (b) odd-years are depicted in blue, and

even-years are red.
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4.0.9 Spread with essential extinction

In the context of non-spatial recursive population dynamics (un+1 = g(un)), growth

functions with strong-Allee effect and a particularly virulent form of overcompensation

are said to exhibit essential. Essential extinction occurs when high output densities are

subsequently mapped to sub-Allee threshold densities. More formally, if uallee is the

Allee-threshold of g(u), and umax = maxu≥0 g(u) then g(u) has essential-extinction if

g(umax)< uallee.

It is well known in non-spatial dynamics (Gyllenberg 1996, Schrieber 2001) that

growth functions exhibiting essential extinction will face extinction for almost-every ini-

tial condition, where of course “almost-every” is used in the measure theoretic sense. The

only condition that need apply is that g(u) be smooth, and the Schwartzian derivative, de-

fined by

g′′′(u)
g′(u)

− 3
2

(
g′′(u)
g′(u)

)2

,

be negative for all u > uallee. This condition is found to hold for most commonly studied

growth functions, however uni-modal growth functions can be constructed which violate

the negative Schwartzian hypothesis while simultaneously possessing essential extinction

and a positive stable-equilibrium (Schreiber 2001). We will numerically demonstrate that

its possible , when coupled with spatial dispersion, for growth functions with essential

extinction that satisfy the Schwartziann hypothesis to have spatial spread and unbounded

population growth.

Using the growth function mentioned in Section 4.0.7.2, with r = 2.3, we let

g(u) = u exp
(

2.3(1−u)
) (1+1.37)

(
u

1.3

)7

1+
(

u
1.3

)7

 .

It can be verified graphically that g satisfies the Schwartzian hypothesis.
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Figure 4.40: The Hill-Ricker growth function used for this simulation.

Similarly, as throughout Section 4.0.7, we will use the kernel

k(x) = 1.1109 exp

(
−
(

x
0.4965

)4
)
.

Also as in Section 4.0.7 we use the initial data

u0(x) =


1.25 , |x|< 0.5

0 , |x| ≥ 0.5.

We then iterate the equation for 4000 generations, and for each generation determine the

domain size and total population. For the purposes of this Section the domain size of ui

is defined as

sup
{

x |ui(x)> 0.1
}
− inf

{
x |ui(x)> 0.1

}
,

or in other words the length of the interval from where ui(x) first rises above 0.1 to where

it falls below 0.1 for the final time.

The total populations of ui(x) is of course defined as

tot. pop. =
∫

∞

−∞

ui(x)dx .

In Figure 4.41 we sample of the progression of density vs. x for several different

starting times. A general trend that can be seen is that the solutions spread, and as time
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progresses the density becomes more oscillatory. In some loose sense however we see

that the length-scale of the oscillations or “finger”-like regions is still on the order of a

few length units regardless of the generation. An important dynamical feature can be

seen for t = 299, 300, 301 near x = −7. From t = 299 to t = 300 we see the relatively

wide patch from −9 < x <−5 grow to near the maximum value of g(u), 2.5 (see Figure

4.40), at which point the region splits into 2 “fingers” due to strong overcompensation.

This splitting dynamic appears to drive the oscillatory behavior.
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Figure 4.41: A sample of the density ut(x) vs. x for several different generations when r =

2.3. Note immediate successors are shown across the columns, and large time differences

across rows. Also note the x-scale varies across rows.

In Figure 4.42 we plot the total population and domain size as a function of time.

It can clearly be seen that the long term trend is that both are increasing linearly with

time, with some (deterministic) stochastic variation. The blue data points, which are the

total population clearly exhibit a spreading fan shape, while the domain length appears

as straight line with some jaggedness.
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Figure 4.42: A plot of the total population and domain size vs. time. Total population is

blue, and domain size is violet.

To explain why the total population is fan shaped , we first note that this is consis-

tent with a process whereby the variance of the increment (pop(t+1)−pop(t)) is increas-

ing. In fact when a linear regression is performed and the accumulated square residuals

are plotted, the accumulated square residuals are fitted very well by a quadratic. This

indicates the variance of the increment increases linearly (the derivative of the quadratic).

We then perform a iterative procedure where a regression is performed on total popu-
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lation, the increment variances are determined by fitting a quadratic to the accumulated

square residuals, whereby a new weighted regression is performed using these variances,

until a fixed point is reached. Using this procedure we determined the regression lines

for the total population, and variance of increment are

pop(t) = 5.518+0.0825t

variance of increment(t) = 14.35+0.0278t . (4.4)

In Figure 4.43 we plot the regression line versus the data, and plot the integral of

the variance of increment versus the accumulated total square residuals.
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Figure 4.43: Sub-figure (a) is plot of total population together with the regression line

from Eq. 4.4. Sub-figure (b) is total accumulated residual square error, together with the

fitted quadratic, 14.35t +0.0139t2.

To understand why the variance of increment increases linearly, it is reasonable to

speculate that there is some de-correlation length scale for ui(x), l, and whereby ui(x+l)

would be statistically independent from ui(x). If the total population change on each
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populated patch of length l is a random variable with mean zero and variance σ2
{pop,l},

and the total domain length is Ldom, then the change in total population can be considered

the sum of approximately
Ldom

l
independent identically distributed random variables of

mean zero and variance σ2
{pop,l}. Thus neglecting the contributions from the edge of

the domain where spreading is occurring, which will be negligible for large domains,

we see the variance in change in total population will be
Ldom

l
σ2
{pop,l}. Since Ldom is

increasing linearly, we would therefore expect the slope of the variance of increment (Eq.

4.4) to be well approximated by
L′dom
l

σ2
{pop,l}. We will try to determine these quantities

independently from simulation data and compare them to the slope of the variance of

increment line, 0.0278.

To demonstrate the existence of a de-correlation length and dtermine its value, we

take random sample of size 10,000 of the form {ut(xi), ut(xi + s)} where s is fixed ,xi is

chosen randomly from populated domain and t is chosen randomly from 900, . . . ,1200.

The sample covariance is then computed. Recall the sample covariance of two generic

random variables, {yi,zi} is

S.C. =
1

n−1

n

∑
i=1

(yi− ȳ)(zi− z̄) .

For large sample sizes where the Central Limit Theorem is applicable if xi and zi are i.i.d

then it can be shown that S.C. will be normally distributed with mean zero and Variance
σ4

n
, N(0,

σ4

n
), where σ2 is the variance of x and y. Thus if S.C. lies far out on the tails

of the N(0,
σ4

n
) distribution, it is reasonable to assume a non-zero covariance. To apply

this test to our {ut(xi), ut(xi + s)} sample we must determine σ2
u . Taking all the u values

on all our mesh points in the domain from t = 900, . . . ,1100 we obtain 734,054 density

values which are depicted in the histogram in Figure 4.44-(a). We find µu = 1.306 and

σ2
d = 0.4272. If we wish to consider covariances significant to the 99% confidence level,

the criteria to be a statistically significant covariance becomes |S.C.| > 2.56
σ2

u√
10000

=

0.0110. If Figure 4.45-(b) we plot the base-10 Log of S.C. versus length (s) from s = .01
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to s = 2.5 in increments of 0.01. The red dashed line is log10(0.011) so points below it

may be considered un-correlated. We see there is a significant dip at s = 1.1, however

this is where S.C. crosses from positive to negative (see Figure 4.44-(a)), and therefore

should not be considered the de-correlation length. Starting at about s = 1.85 we see S.C.

remains below the significance threshold, thus it is reasonable to set the de-correlation

length as l = 1.85.

Finally to to generate the i’th data point so as to determine σ2
{pop,l} we choose a

equally weighted random time from 900 < ti < 1100. For the domain of ut , we randomly

pick (uniform weighting) an xi that is not within l of right endpoint of the domain. We

then calculate the yearly change in population for interval,

∫ xi+l

xi

ut+1(s)−ut(s)ds .

We generate 5000 data points, which are shown in the histogram in Figure 4.44-(a).

The mean (-0.0067) does not differ from zero in a statistically significant way (Ztest

pvalue=60%). From the data we determine σ2
{pop,l} = 0.708.

As will be discussed next, the value of L′dom as determined by the linear regression

of the domain-size data is L′dom = 0.06296. Therefore we would estimate the variance of

increment slope to be

L′dom
l

σ
2
{pop,l} =

0.06296
1.85

0.708 = 0.0241 .

We find this to be in close agreement (15% relative error) to the value determined by the

regression line, 0.0278.
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Figure 4.44: Sub-figure (a) shows a histogram of all density values on all mesh-points

(in populated domain) from t = 900 to t = 1100. Sub-figure (b) shows a histogram of the

1-year total population change on 5000 randomly selected intervals of length l = 1.85,

also selected from years t = 900 to t = 1100.
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(b) log10 of sample covariance vs. length

Figure 4.45: Sub-figure (a) is plot of the sample covariance of ut(xi) and ut(xi + s) for

10,000 points. t is picked randomly from 900, . . . ,1100, and xi is picked randomly

from the populated domain of ut . s is the value plotted on the x-axis. Sub-figure (b)

is log10
(
|S.C.|

)
vs. length. Values falling below the red dashed line can be considered to

have no statistically significant covariance.

Next we examine the domain length (denoted as dom(t)) versus time relation-

ship. In Figure 4.46-(a) we see the domain length data is well approximated by its linear

98



regression. The determined regression equation is

dom(t) = 4.634+0.06296t .

In Figure 4.46-(b) we plot the residual error of the data values and regression, defined by

residual error = dom(t)−dom(t) .

From the plot of the residuals we see that there are long runs of increasing increments

of small step size punctuated by dramatic drops. The fact that the overall variance of the

residuals remains relatively constant, as opposed to fan shaped, indicates that the distri-

bution of domain length changes, (∆dom), is largely independent of time, with perhaps

some temporally short range time correlations. In Figure 4.47 we see that the majority

of the ∆dom lie in the interval (−0.05,0.15), corresponding to the short increasing incre-

ments of Figure 4.46-(b). It should be noted that in Figure 4.46-(b), the discrete values of

∆dom are a artifact of the mesh size (0.018) used in the simulation. The outlying values

of ∆dom ranging from −0.1 to −3.3 account for only 0.7% of the data, but have a large

effect on the mean of ∆dom. The mean of ∆dom is 0.064 which is very close to the slope

of the regression line. If values of ∆dom less then −0.1 are censored, the mean becomes

0.072, with the effect of the bottom 0.7% quantile decreasing the mean by 12%.
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Figure 4.46: Sub-figure (a) shows the domain length data (red), and fitted line (dashed

black). Sub-figure (b) shows the residual errors vs. time, the residual error is the differ-

ence between the data and fitted line.
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Figure 4.47: Yearly changes in domain length plotted vs. time. Sub-figure (b) shows

a detailed view of ∆dom near the ∆dom = 0 line. The black dashed line is the average

value of ∆dom.

To better understand these large outlying decrements in domain size, we refer to

Figure 4.46, where we see a large decrement occurs at approximately t = 1000. In Figure

101



4.48 we show the leftward edge of the solutions from t = 991 to t = 1002. In frame

t = 997 we see a large region from −38 < x <−31 has built up to almost the maximum

value of g(u). Due to severe overcompensation we see an isolated population is “calved”

from the domain , as can be seen on the frame t = 1000,−38 < x <−36. This population

is sub-Allee threshold and subsequently perishes. The overall result being that over the

course of t = 991 to t = 1002 the leftward edge of the domain decreases in absolute

value from x =−38 to x = 34. For reference purposes, Figure 4.49 shows the entirety of

u991(x).

Again, referring to Figure 4.46, we see there is a long run of small mostly positive

increments of ∆dom from t ≈ 600 to t ≈ 1000. In Figure 4.50 we show the evolution of

the rightward edge of the domain from t = 621 to t = 654.
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Figure 4.48: An illustration of the calving process
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Figure 4.49: A detailed view of u991(x).
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Figure 4.50: An illustration of a run of gradual increases.
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CHAPTER 5

REMARKS AND CONCLUSION

In this paper we were able to show the rather surprising result that when Allee

effect and over-compensation are combined, it is possible to produce solutions that persist

only in a bounded domain, even though the environment is completely homogenous. In

Chapter 3 we analytically demonstrated the existence of these solutions for the case of our

specially chosen 3-parameter piecewise constant growth function. Through the use of the

power exponential distribution, we were able to demonstrate that the formation of these

solutions favored platykurtic distribution, in the sense of parameter space containment.

This relation was illustrated in Figures 3.15-3.17.

In Chapters 4.0.4-4.0.6 we showed that a wide variety of behaviors could emerge

when the equilibrium solutions from Chapter 3 are perturbed. Everything from simple

period-2 oscillations (e.g. Fig. 4.12), long period oscillations (Fig. 4.5), to apparently

chaotic oscillations (fig. 4.14) were observed. So long as the oscillations remain uni-

modal, the density ut(x) can be described as the convolution of k with G̃{−b1(t),−a1(t),a2(t),b2(t)}

from Eq. 4.1. Thus the system is actually equivalent to a 4-dimensional discrete time re-

cursion map on the parameters (b1(t),a1(t),a2(t),b2(t)). In future work we could take

advantage of finite-dimensional techniques to better characterize the oscillations of the

system.

In Chapter 4.0.4.2 we studied the bifurcation of solutions with the uniform-kernel

as a function of the width of the initial data. In the simplest case, such as Fig. 4.6, we find

that for narrow initial data, the solution collapses to extinction, for intermediate widths

the solution is attracted to a non-spreading periodic orbit, and for wide initial data, the

106



solution spreads. In more complicated cases such Fig. 4.9 we see the intermediate values

of initial width are punctuated by regions were spreading emerges.

In Chapter 4.07 we numerically demonstrated the existence of either stable or

period-2 non-spreading solutions with various realistic growth functions. Clearly there is

a need to develop easily testable necessary and/or sufficient conditions on growth func-

tions, kernel pairs to determine when non-spreading conditions occur. One possible route

to this goal would be to follow the example in Kot and Schaffer (1986). In the case of

determining an equilibrium for a bounded domain problem, Kot converted the IDE into

an ODE, and applied standard ODE techniques.

In Chapter 4.0.8.1 we studied the evolution of 2 interacting stable equilibrium as

a function of separation distance when the system is initialized with

u0(x) = ueq

(
x+

w
2

)
+ueq

(
x− w

2

)
.

In Fig. 4.24 we find for small separations extinction occurs due to high initial densi-

ties facing severe over-compensation. For large separations the two patches persist as

the interaction is very weak. For intermediate separations we see merger into a single

patch progressively punctuated with extinction. Analogous results are seen for interact-

ing period-2 patches in Chapter 4.0.8.2.

In Chapter 4.0.8.3 and 4.0.8.4 we examine patch emergence from perturbed con-

stant initial data over a large domain. One possible avenue of biological exploration of

this phenomena would be that these non-spreading patches could act as population reser-

voirs during good year/bad year scenarios. For instance, one can imagine a scenario

where each year either the “bad year” growth function with non-spreading dynamics

(gn.sprd(u) ) would be chosen with probability p, or the “good year” growth function with

spreading dynamics (gsprd(u)) would be chosen with probability 1− p. Alternatively, de-

terministic periodic sequences of gn.sprd and gsprd could also be considered. Persistence

and spread under such a scenario could be analyzed following the ideas of Nuebert, Kot
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and Lewis (2000).

Finally in Chapter 4.0.9 we demonstrated that a growth function with essential

extinction, and a Schwartzain derivative meeting the hypothesis of Schreiber (2003) can

undergo spatial spread and linear population growth when coupled to spatial spread. This

is in sharp contrast to what is predicted by the non-spatial model, which would be extinc-

tion. We examine some statistical properties of the domain and population changes. We

offer a statistical explanation as to why the variation in total population increases with

domain size. We show that the changes in domain length are mostly small increments,

with a small number of outlaying large decrements due to “calving” events as depicted in

Fig. 4.48. Clearly there is a great deal of future work required to have a more complete

understanding of spread with growth functions exhibiting essential-extinction.
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