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ABSTRACT 

NUTRITIONAL VIRULENCE OF LEGIONELLA PNEUMOPHILA 

Ashley Best 

 April 18, 2018 

 Legionella pneumophila is an environment organism that parasitizes a wide range of 

protozoa. Growth within the environmental host primes L. pneumophila for infection of 

human alveolar macrophages when contaminated aerosols are inhaled. Intracellular 

replication within either host requires the establishment a replicative niche, known as the 

Legionella-containing vacuole (LCV). Biogenesis of the LCV depends on the type IVb 

translocation system, the Dot/Icm, to translocation >320 effectors into the host cytosol. 

Effectors are responsible for preventing lysosome fusion to the LCV, recruitment of ER-

derived vesicles to the LCV, and modulation of a plethora of host processes to promote the 

intracellular survival and replication of L. pneumophila.  Nutrient requirements of the 

pathogen are reflective of its intracellular lifecycle, consuming host amino acids for carbon 

and energy. Amino acids, particularly serine and cysteine, are used to generate pyruvate to 

feed into the TCA cycle, which is the main metabolic pathway for generation of energy. 

Endogenous levels of host amino acids are insufficient to support robust intracellular 

replication. Excess host amino acids are generated by the AnkB effector through 

ubiquitination and proteasomal degradation of host proteins in the cytosol. Host amino acids 

must be transported across the LCV membrane to be utilized by L. pneumophila. Host solute
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 carrier (SLC) transporters are the most likely candidate to import amino acids into the LCV 

lumen, as they have been detected in the LCV proteome of multiple mass-spectrometry 

studies. We sought to confirm the role of human SLCs in nutrient acquisition during 

intracellular growth of L. pneumophila. No amino acid-transporting SLCs were confirmed to 

colocalize to the LCV by confocal microscopy. However, a glucose transporter, 

SLC2a1/Glut1 was shown to be recruited the LCV in a Dot/Icm-dependent manner. The role 

of glucose in intracellular replication of L. pneumophila is poorly understood. Glucose 

minimally used through glycolysis, but metabolized through the Enter-Doudoroff pathway. 

Glucose does not support the replication of L. pneumophila during in vitro growth. We 

identified 10 SLC-like transporters in L. pneumophila based on their structural similarity to 

human SLCs. We characterized the role of two putative SLC-like glucose transporters, LstA 

and LstB of L. pneumophila, in import of glucose and in intracellular replication within 

human macrophages and amoebae. Single transporter mutants decrease L. pneumophila’s 

ability to import glucose but do not affect the ability to replicate within the host. 

Interestingly, the double mutant, lstA/lstB, is severely defective for import of glucose and for 

intracellular replication within human macrophages and Acanthamoeba polyphaga. These 

data show that glucose uptake by the redundant transporters, LstA and LstB, is required for 

in vivo growth. L. pneumophila encodes putative amylases effectors that may be degrading 

host glycogen as a means to generate glucose that is imported by LstA and LstB. We 

characterized the L. pneumophila amylase, LamB, because of its uniqueness amongst 

Legionella species. Here we describe LamB as a functional amylase that is required for 

intracellular replication of L. pneumophila in human macrophages and A. polyphaga. 

Additionally, the lamB mutant is completely attenuated in intra-pulmonary proliferation in 
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the A/J mouse model. Taken together, these data further characterize nutritional virulence of 

L. pneumophila.  
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NUTRITIONAL VIRULENCE OF LEGIONELLA PNEUMOPHILA  
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INTRODUCTION 

 
Eponymous outbreak of Legionnaires’ disease 

Legionella pneumophila has intrigued scientists since it first appeared on the 

world stage and continues to do so today.  The first recognized outbreak of Legionnaires’ 

disease occurred in 1976 during the 56th annual American Legion Convention in 

Philadelphia at the Bellevue-Stratford Hotel corresponding with the nation’s bicentennial 

celebrations [1]. There were 180 individuals who were diagnosed with severe pneumonia, 

34 of which resulted in death [1, 2]. After six months of microbiological and 

epidemiological studies, preceded by viral and toxic etiologies, it was determined by 

CDC scientists, that the causative agent of the pneumonia in Philadelphia was a 

previously unidentified bacterium, Legionella pneumophila [3, 4]. It was designated as 

such after the American Legion, to which a large number of infected individuals 

belonged, and Philadelphia, for the city of the outbreak.  

 What scientists did not know then was that the bacterium was unique in its 

nutrient requirements and therefore needed special agar plates to be cultured, adding to its 

difficulties in being isolated. Additionally, the bacteria could only replicate in alveolar 

macrophages, making identification from lung tissue samples difficult.  The investigation 

ended up lasting over six months and involved teams of toxicologists, parasitologists, 

virologists, bacteriologists, and epidemiologists. Interestingly, had the CDC not used 

guinea pigs to confirm the bacterium identified in a tissue sample was the causative
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 agent, and instead used mice – the CDC would have been unable to identify the 

pathogen, as mice are not susceptible to Legionnaire’s disease [3].   

Immune compromised individuals and smokers are more susceptible to 

Legionnaire’s disease but healthy individuals acquire the disease [5, 6]. In the 

Philadelphia outbreak, many of the victims were elderly, male smokers, who were 

staying at the Bellevue-Stratford Hotel.  It was suspected later that a contaminated 

cooling tower of the hotel was the specific source for the 1976 outbreak, based on 

epidemiological studies of other Legionella outbreaks; however, the proper 

environmental tests for Legionella were not feasible in 1976, so the exact source remains 

unknown [7].  

 The prevailing dogma, for nearly four decades, was that transmission from the 

environment to the human host was the only mechanism of transmission [8-10]. There 

were no documented cases of L. pneumophila transmission between individuals. 

However, an unusual case report from Portugal outlines the transmission of L. 

pneumophila from a maintenance worker at an industrial cooling tower to his elderly 

mother he visited, 180+ miles from the outbreak [11, 12]. Nearly forty years passed 

between the first described outbreak and an incident of person-to-person transmission 

was documented. This was not due to changes in the bacterium to allow it to be more 

transmissive but rather the difficulty in isolating a single case that can be directly 

attributed to person-to-person contact. Multiple factors must be considered for this to be 

possible; the second individual must have had absolutely no contact with the infected site, 

the second individual must also be immunocompromised, and the two need to have 

prolong contact. All of these factors were present in the this unusual case report from 
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Portugal where the first infected individual had very close, repeated contact with his sick 

mother for a few days [12].  

Outbreaks dating back to 1959 were retroactively attributed to Legionella [13]. In 

addition, many other previously identified, or left unidentified, bacteria would also be 

reclassified under this genus [14]. Outbreaks of Legionella infections have only emerged 

within the past few decades due to human alterations to the environment that generate 

water aerosols as a vehicle to transmit Legionella from aquatic sources. Some examples 

of these modifications are the use of cooling towers, air conditioning systems, whirlpools/ 

hot tubs, grocery store misters, shower heads, humidifiers, etc [15]. The general method 

of infection follows a similar process. First, Legionella within a protozoan host or free 

Legionella enter water holding units. Then, water within these units is, in some way, 

aerosolized. These aerosolized droplets contain the bacterium, or protozoan containing 

Legionella, which are inhaled to cause disease [7, 16-18].  

 

Epidemiology of L. pneumophila infections 

L. pneumophila is a Gram-negative facultative intracellular bacterium that 

proliferates within alveolar macrophages, causing Legionellosis [15].  There are more 

than 60 species of Legionellae, 30 of which are known to cause disease , but L. 

pneumophila continues to be responsible for more than 85% of cases of Legionellosis in 

most of the world with the exception of Western Australia, where Legionella 

longbeachae is the most predominant species, whose pathogenesis is distinct from L. 

pneumophila [15, 19-24].  

Legionellosis manifests in two clinically distinct forms; Legionnaire’s disease and 

Pontiac Fever [15]. Legionnaire’s disease is a multisystem disease with pneumonia; 
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whereas, Pontiac fever is a self-limiting flu-like illness [25, 26]. The incubation period of 

both varies from 2-14 days. Symptoms of Legionnaires’ disease include; cough, fever, 

muscle pains, shortness of breath, and headaches. Some patients also experience ataxia, 

diarrhea, vomiting, bloody sputum, abnormal electrolyte levels, and/or loss of appetite. 

Infection usually results in hospitalization with a fatality rate of 9% [27]. Cause of death 

is usually attributed to respiratory shock and/or multi-organ failure [22]. No vaccine 

exists for the prevention of infection. Disease can be treated with antibiotics: macrolides, 

tetracyclines, ketolides, and quinolones being the most effective [28-33].  

The CDC reported that 6,100 cases of Legionnaire’s disease were diagnosed in 

2016 in the United States but acknowledge this number may be higher because it is an 

underdiagnosed disease [34]. Between 2001 and 2016, reported cases have grew more 

than four and a half times [35]. Patients that come into the clinic with pneumonia are 

usually just treated with antibiotics without further tests to prove the etiological agent. 

Confirmation of Legionella infection is done by urine-ELISA, which only detects L. 

pneumophila serogroup 1 [36-38].  Therefore, an exact case number is difficult to 

determine. 

The best method of control is proper maintenance of water handling systems. 

However, many water-holding units are not properly cared for in order to prevent 

Legionella growth. This problem is wide-spread, since a CDC study found Legionella 

DNA in 84% of cooling towers tested across the United States [39].  

 Continual treatment of the contaminated water source is needed. For total 

eradication, methods such as continuous treatment with monochloramine or copper-silver 

ions and sustained temperatures above 55°C is recommended [40-42]. The usual course 
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of action is a single treatment by UV irradiation, biocides, or overheating of the water 

which is done following identification of Legionellae in the water [40, 42, 43]. This is 

successful as a short-term intervention but the organism can reappear after some time [42, 

44].   

 Legionellae are ubiquitous in natural aquatic environments, usually in low 

numbers, but within human-made aquatic habitats, at temperatures between 25°C and 

43°C, they are found in high quantities [45-47]. Additionally, Legionellae from infected 

amoebae, rather than free-living, are more resistant to chemical disinfectants and 

biocides, making eradication more difficult [40, 48, 49]. Given the prevalence in the 

environment, and lack of proper maintenance, infections with L. pneumophila will likely 

continue to be a public health risk. 

 

L. pneumophila is an environmental, accidental human pathogen 

It was first suggested by Rowbotham, in 1980, that Legionella  could live 

intracellularly within amoebae, specifically Acanthamoeba & Naegeria [50]. The number 

of protozoa known to be infected by Legionella has grown to 19 species of amoebae and 

9 species of non-amoebal protozoa, a number that is likely to rise as more continue to be 

identified (Table 1-1).  Amoebae in the environment serve as the bacterium’s source of 

carbon and energy, as Legionella consumes its host’s amino acids [51]. Legionella’s 

unique nutrient requirements are representative of an intracellular lifestyle and thus are 

not commonly found growing free in the environment [52].  The bacterial nutrient 

requirements will be discussed in further detail in the section on nutrient acquisition.  

Amoebae obtain their nutrients from consuming bacteria, yet Legionellae have 

evolved to evade the host’s attempts at consuming them, a trait that isn’t unique to 
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Legionellae. Mycobacterium sp., Francisella tularensis, Escherchia coli O157, and 

others, have transient associations with amoebae [53-57]. 

Table 1-1. Protozoan species that can support intracellular growth of Legionella 

pneumophila. †Indicate non-amoebal species. 
Protozoan species  Reference 

Acanthamoeba castellannii , A. culbertsoni, A. hatchetti, A. polyphaga, 

A. royreba,  
[50, 58-60] 

Balamuthia mandrillaris [61] 
Hartmanella (Vermamoeba) vermiformis, H. cantabrigiensis [55, 59, 60] 
Naegleria lovaniensis, N. fowleri,  N. gruberi, N. jadini [50, 56, 58] 
Dictyostelium discoideum† [62, 63] 
Tetrahymena spp. (tropicalis, pyriformis, thermophila, vorax) † [64-66] 
Willaertia magna [67] 
Echinamoeba exundans [59, 68] 
Vahlkampfia jugosa, V. ustiana [55, 60, 69] 
Oxytricha bifaria† [70] 
Stylonychia mytilus† [70] 
Ciliophrya sp. † [70] 
Paramecium caudatum† [71] 
Comandonia operculata [60] 
Cochliopodium minus [72] 
Filamoeba nolandi [60] 

 

Some species of Legionella have evolved to be so in-tune with the amoebal host 

that they cannot be cultured by any means, except with co-cultivation with amoebae. 

These organisms are called Legionella-like amoebal pathogens (LLAP) [73]. One LLAP 

was isolated from a pneumonia patient’s sputum, indicating that they are capable of 

causing disease in humans [73].  

 Legionellae can also survive outside of the amoebae in the environment within 

biofilms [74]. These biofilms usually exist with other microbial communities, which 

could provide the Legionellae with the nutrients they require to support growth. 

However, the relationship between Legionellae and other members of the biofilm 

communities is unknown. 
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Because amino acids, particularly serine, are the preferred carbon source, life 

within the amoebae is much more preferable due to the ease of access to amino acids [75, 

76]. L. pneumophila has evolved to synchronize amino acid auxotrophies with that of the 

amoebae (for more information see “Nutrient acquisition by L. pneumophila”) [52]. This 

allows the bacteria to better prepare for any nutrient stresses they may encounter [52].  

 In response to unfavorable conditions, the bacterium can enter a dormant state and 

when conditions become more favorable, become metabolically active again with the 

amoebae. This dormant state is characterized as “viable but non-culturable” (VNBC), in 

which the only known way of recovering these bacteria is through co-culture with 

amoebae [77, 78].  

 The largest impact of their environmental reservoirs on human disease is the 

priming of L. pneumophila for subsequent infection. Amoebae have been referred to as 

the “trojan horses of the microbial world” [79, 80]. This is because as Legionella prepare 

to exit the amoebae, they enter a transmissive state, becoming more virulent [79]. L. 

pneumophila that have escaped the amoebae are more infectious and can cause a more 

robust disease (see “Phase variation and stress response”) [81-83]. Protozoa are also 

capable of releasing vesicles that contain many L. pneumophila which are of respirable 

size, thus increasing the dose of bacteria to the individual [84]. 

 

The intracellular lifestyle within amoebae and macrophages 

 To proliferate, L. pneumophila depletes its host of nutrients leading to lysis of the 

cell to find a new source of nutrients [85]. Therefore, the bacteria are constantly cycling 

through host cells. Whether it is its natural host, a protozoan, or its accidental host, a 

human macrophage, the intracellular lifecycle is very similar. 
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 In short, a flagellated bacterium will enter the host, avoid fusion with the 

lysosomes and reside within a vacuole called the Legionella-containing vacuole (LCV), 

replicate in high numbers in the LCV, break out into the cytosol to replicate more, 

become flagellated again, and finally breaking out of host cell to repeat the cycle again 

(Fig. 1-1). The whole cycle lasts, under in vitro conditions, around 18 hrs and is a highly 

orchestrated event [86, 87]. 

 In step one of Figure 1-1, a flagellated bacterium enters the host cell, primarily 

by micropinocytosis, although a unique form of entry has been observed, called coiling 

phagocytosis [54, 88]. Immediately upon attachment, L. pneumophila begins to alter the 

host by translocating effectors into the cytosol via the type 4B translocation system, 

Dot/Icm (more on this will be discussed in the next section) [89, 90]. 

 Within the host, as seen in step two of Figure 1-1, the bacterium resides within the 

Legionella-containing vacuole (LCV). To create this protective environment, the 

bacterium avoids acidification and endosomal-lysosomal degradation [91, 92]. The 

vacuole is rapidly remodeled by intercepting ER-to-Golgi vesicles [93, 94]. Modification 

of the vacuole occurs immediately upon uptake [95]. This modified vacuole is 

surrounded by endoplasmic reticulum (ER) [91, 96]. Additionally, polyubiquitinated 

proteins begin to cloud around the LCV (Fig. 1-1) [97-99].  
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Figure 1-1. The environmental life cycle of L. pneumophila within protozoa. 
Flagellated L. pneumophila infect protozoa in the aquatic environment. (2) The LCV 
evades the default endosomal–lysosomal degradation pathway and becomes rapidly 
remodeled by the ER through intercepting ER-to-Golgi vesicle traffic and becomes 
rapidly decorated with polyubiquitinated proteins in an AnkB-dependent manner. (3) 
Under unfavorable stress conditions, such as nutrient deprivation, amoebae encyst, and 
bacterial proliferation will not occur due to nutrient limitation. Under growth-permissive 
conditions for the amoeba, the LCV is decorated with polyubiquitinated proteins, which 
are targeted for proteasomal degradation leading to elevated cellular levels of amino acids 
(AA) that power bacterial proliferation of the wild-type strain, while the ankB mutant is 
defective in this process and is unable to grow despite formation of ER-remodeled 
replicative LCV. (4) During late stages of infection, the LCV becomes disrupted leading 
to bacterial egress into the cytosol where the last 1–2 rounds of proliferations are 
completed. Upon nutrient depletion (see magnified box), RelA and SpoT are triggered 
leading to increased level of ppGpp, which triggers phenotypic transition into a 
flagellated virulent phenotype followed by lysis of the amoeba and bacterial escape from 
the host cell. Excreted vesicles filled with bacteria are also released. The infectious 
particle is not known but may include excreted Legionella-filled vesicles, 
intact Legionella-filled amoebae, or free Legionella that have been released from host 
cell. (5) Transmission to humans occurs via aerosols generated from man-made devices 
and installations, such as cooling towers, whirlpools, and showerheads [100]. 
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 L. pneumophila is then able replicate to high numbers within the LCV, step three 

of Figure 1-1. Eventually, around 18hrs, the bacteria will outgrow the LCV and break-out 

into the host cytosol, step four of Figure 1-1 [79, 101, 102]. The bacteria will undergo a 

few more rounds of replication in the cytosol [101]. At this point, nutrient levels in the 

cytosol are very low, triggering the bacterial alarmone, ppGpp, and inducing a transition 

into the transmissive phase (see “Phase variation and stress response” for more detail) 

[85, 103-105].  

 One of the key changes in the transmissive phase is the production of the 

flagellum, which allows the bacteria to find a new host [105]. Free, flagellated bacteria 

can go on to repeat the cycle with a new host [106]. It is at this point that infection of 

humans can easily occur by aerosolization of infectious particles of either free bacteria, 

bacteria within vesicles, or even bacteria-filled amoebae, as seen in step five of Figure 1-

1 [7]. Inhaled bacteria will enter the lungs and be taken up by resident alveolar 

macrophages and continue the cycle just as they would have in a protozoan host [91, 

107]. As previously mentioned, growth within amoebae prepares the bacteria for 

subsequent infection, making them primed to cause disease in humans [108]. 

 

A type IVb translocation system, Dot/Icm, of L. pneumophila modulates host 

processes 

Successful infection of any host cell by L. pneumophila depends on the presence 

of a functional translocation system, the Dot/Icm [109, 110]. Two loci involved in 

intracellular replication were identified in L. pneumophila by transposon mutagenesis; the 

dot (defect in organelle trafficking) locus and the icm (intracellular multiplication) locus 

[111, 112]. The dot/icm locus contains the genes necessary to produce a type IV 
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translocation apparatus and chaperone proteins needed for ushering some effectors into 

the apparatus [113, 114]. Defects in the Dot/Icm system lead to severe intracellular 

growth defects within every host cell tested. One such mutant, dotA, a common negative 

control for intracellular replication and translocation, is still able to enter a host cell but 

fails to generate a replicative LCV due to inability to translocate substrates, since DotA is 

an essential structural component of the Dot/Icm translocation apparatus [115]. 

The Dot/Icm is classified as a Type IV translocation system. Type IV 

translocation systems are divided into two subclasses; Type IVa are homologous to the 

virB operon of Agrobacterium tumefaciens and Type IVb are homologous to the 

conjugation machinery of IncI plasmids [116]. The Dot/Icm translocation system is 

classified as Type IVb and is capable of conjugation [116-118]. Interestingly, L. 

pneumophila also contains a Type IVa translocation system on the lvh locus but it is not 

required for intracellular replication [119]. 

The dot/icm locus is composed of 27 genes that make up both a translocation 

channel and a coupling protein/complex [116]. This machinery traverses the bacterial 

inner membrane and the cell envelope to deliver substrates into the host cytosol [114]. 

The coupling complex, DotL, DotM, and DotN, recruits substrates and delivers them to 

the translocation channel with the assistance of chaperone proteins, IcmW and IcmS 

[114, 120, 121]. IcmSW recruits substrates to DotL by binding to a recognition sequence 

on the C-terminus [122, 123]. However, some substrates can still bind to the DotMLN 

coupling complex without the help of IcmSW [90, 124]. These are considered to be 

IcmSW-independent substrates, whose binding appears to be mediated by a C-terminus 

that is glutamic acid-rich [90, 124].  
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Substrates of the Dot/Icm are collectively referred to as “effectors”. Large 

bioinformatics screens have led to the identification of over 300 effectors of the Dot/Icm 

[125-127]. The translocation of 300+ effectors, 10% of the genome, into the host cell by 

L. pneumophila is substantially greater than the next highest  number of injected effectors 

by a pathogen, at >100 by Coxiella burnetii [128].Delivery of a subset of these proteins 

occurs immediately upon attachment and occurs throughout intracellular growth [89, 90]. 

Intracellularly, Dot/Icm machinery is located at the poles of the bacterium [129]. 

Surprisingly, non-polar localization of the Dot/Icm structures fails to evade the lysosomes 

despite translocating effectors [129]. Regardless of translocating a large number of 

different effectors, on average, only 4 Dot/Icm structures are located at a pole [129]. It 

has been shown that only ~200 molecules of the effector VipD are delivered into the host 

cell, a relatively low number compared to the secretion of ~6,000 molecules of SipA by 

Salmonella entrica [130, 131]. However, host cell toxicity could play a role in the 

minimal translocation of individual effectors.  

Few effector null mutants exhibit intracellular growth defects, which is likely due 

to the functional redundancy of many effectors [132-134]. Even minimalizing the L. 

pneumophila genome, eliminating 31% of the known effectors, barely caused any 

intracellular growth defect in mouse macrophages [134]. Redundancy among the L. 

pneumophila effectors occurs in different manners: molecular redundancy, target 

redundancy, pathway redundancy, cellular process redundancy, and system redundancy 

[132].  

As an example of molecular redundancy, effectors have been shown to perform 

the same function on the same host cell target, like with the SidE family [133]. SidE, 
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SdeA, SdeB, and SdeC catalyze the ubiquitination of the host proteins Reticulon 4 and 

Rab33b [135, 136]. Deletion of all four of these effectors together, but not individually, 

impairs intracellular growth, which can be restored with complementation of just SdeA 

[136, 137]. Paralogs of VipD (VdpA, VdpB, and VdpC) may appear to be redundant but 

have actually do not bind the same proteins [130, 138]. The targeting of different 

components of the host endocytic pathway by VipD and SidK is an example of pathway 

redundancy [130, 139]. Target redundant effectors, like SidM and AnkX, both modulate 

the activity of host small GTPase Rab1 through different mechanisms [140-143]. Cellular 

process redundancy is the targeting of redundant or complementary host pathways that 

collectively govern a single process, like with SidF and SidP modulating host lipid 

metabolism and the abundance of phosphoinositides at the LCV [144-146]. System 

redundant effectors modulate more than one host cellular process to accomplish the same 

task; for example, inducing host cell survival mechanism by LegK1 (activates nuclear 

factor κB by degrading its inhibitor, IκB), Lgt1/Lgt2/Lgt3 (blocking host protein 

synthesis and thus replenishment of IκB), and SidF (inhibiting pro-apoptotic proteins) 

[145, 147, 148]. 

Redundancy in microbes is often lost over time, but L. pneumophila has retained a 

large number of seeming redundant effectors. Growth in a variety of environmental hosts 

and temporal regulation may explain why L. pneumophila have retained these effectors.   

Effector redundancy is common among Legionella spp.; members of the genus do 

however, each contain their own set of effectors, which vary from 52 – 300+ putative 

effectors [149]. Of the 38 Legionella spp. analyzed, only seven of effectors were 

identified to be present across the genus [149]. These seven proteins were determined to 
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be “core effectors”, although the function of most is unknown: AnkH, MavN (iron 

acquisition), RavC, VipF (GNAT family N-aceytltransferase), cetLp1, Lpg3000, and 

Lpg2832 are present in all 41 Legionella spp. tested [149-152]. Another 30 effectors can 

be found in 31-40 species, while 78% of Legionella effectors are only shared by ten or 

fewer species [149]. L. pneumophila contains 30 species-specific effectors [149]. 

 The GC content of these core effectors suggests they evolved as part of the 

Legionella genus over an extend period of time, as difference between the GC content 

core effectors (37.4%) and the genome (38.3%) is minimal [149]. However, the GC 

content of species-specific effectors is consistently lower than the GC content of the 

genome (~34%) for all tested Legionella species, indicating that these genes might have 

been recently acquired [149]. 

Protozoan genomes are typically characterized by a low GC content [153].  The 

long-term coevolution of L. pneumophila with various protozoa has likely influenced the 

genomic structure of this organism through inter-kingdom horizontal gene transfer (HGT) 

[154-157]. Even within strains of the same Legionella species, a high degree of plasticity 

is observed [158]. Between L. pneumophila strain Paris and L. pneumophila strain Lens, 

2,664 genes are conserved but 428 and 280, respectively, are strain-specific genes [158]. 

Potential hot spots for genomic rearrangement have been identified that contribute to the 

plasticity of the organism [158, 159]. L. pneumophila strains contain independent 

plasmids and/or plasmids that have inserted into the genome [158]. Notably, the region 

containing the Type IVa secretion system locus, lvh, can be encoded in the chromosome 

or excised as a multicopy plasmid, and has a much higher GC content than the rest of the 

genome at 43% [158].  
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This L. pneumophila genomic plasticity and long-term coevolution with amoebae 

and intral-amoebal species likely has contributed to the large cadre of effectors in L. 

pneumophila, many of which contain eukaryotic-like domains and motifs [157, 158, 

160,]. Amoebae may act as the gene melting pot, allowing diverse microorganisms to 

evolve by gene acquisition and loss, and then either adapt to the intra-amoebal lifestyle or 

evolve into new pathogens.  

L. pneumophila is a naturally competent organism that takes up DNA through 

conjugation as well as natural transformation [117, 118, 161]. Long-term convergent 

evolution and modification of the genes acquired through HGT by splicing of introns, 

acquiring prokaryotic promoters and regulators, and the addition of translocation motifs 

is likely what allowed eukaryotic proteins to become translocated bacterial effectors with 

functional activities in the host cell [156]. It is to be expected that many of the 

eukaryotic-like proteins in L. pneumophila are still undergoing convergent evolution 

through modifications that might enable them to become translocated and functionally 

active effectors [154].  

Many L. pneumophila effectors contain eukaryotic proteins domains and motifs 

such as: F-box, U-box, ankyrin repeats, SEL-1 repeats, farnesylation motifs, and post-

translational modification motifs [154, 155, 158, 162, 163]. These L. pneumophila 

effectors are involved in various host processes which include signaling, vesicular 

trafficking, apoptosis, protein synthesis, ubiquitination, etc; aiding in their ability to 

interfere in host processes using eukaryotic domains [155, 158, 160, 162].  
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Exploitation of conserved eukaryotic processes by the eukaryotic-like AnkB effector 

and its role in nutrient acquisition  

 Many effectors have been described for their function in LCV biogenesis. For 

example, SidM (DrrA) recruits, activates, and retains Rab1 at the LCV membrane 

causing vesicular trafficking between the ER and Golgi to be redirected to the LCV 

[164]. SidM works in conjunction with another effector, LidA, which enhances function 

of SidM [140]. Knockout of SidM has no effect on bacterial replication within host cells 

[140]. LidA, does however show a slight defect in replication [165]. As previously 

mentioned, this phenotype is common among knockouts in effector proteins due to the 

high number of redundant effectors that are translocated [140]. 

Among the ~300 effectors of L. pneumophila, AnkB is one of the few effectors 

known to be indispensable for the intracellular infection of both human macrophages and 

amoebae [97, 98, 127, 149, 166, 167]. Additionally, it is essential for virulence in the A/J 

mouse model [75, 168]. It is not surprising that recent studies on the AnkB effector and 

its exploitation of multiple highly conserved eukaryotic processes may just be the tip of 

the iceberg of our continued unraveling of L. pneumophila-host interaction and its 

evolution from invading amoebae to invading human cells and causing pneumonia.  

The AnkB effector harbors multiple eukaryotic domains and motifs that enable 

this protein to hijack a number of evolutionarily conserved eukaryotic processes [163, 

167-170].  AnkB harbors three Ankyrin domains (ANK), 33-residue repeats involved in 

protein-protein interactions, which is the most common domain in eukaryotic proteins 

[163, 171]. These Ankyrin domains play a role in interaction of AnkB to the host SCF1 

ubiquitin ligase complex [172]. This promotes the K48-linked polyubiquitination of host 

proteins, targeting the proteins for degradation by the proteasome. AnkB also contains a 
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C-terminal eukaryotic CaaX motif (C, cysteine; a, aliphatic amino acid; X, any amino 

acid) which allows the protein to be lipidated through farnesylation by the host 

farnesyltransferase (FTase), thus anchoring AnkB into the LCV membrane [172, 173]. 

Because this process is localized to the LCV a “cloud” of polyubiquitinated proteins can 

be observed surrounding the LCV [75]. Increased host protein degradation provides an 

abundance of amino acids in the cytosol for metabolism by L. pneumophila (Figure 1-1) 

[75].  

              The ankB mutant of L. pneumophila is severely defective in intracellular 

proliferation in amoebae and human macrophages due to the defect in assembly of K48-

linked polyubiquitinated proteins decorating the LCV and subsequent lack of increased 

levels of amino acids (Figure 1-1) [75, 98, 154]. This triggers a bacterial starvation 

response, mediated by the induced expression of RelA and SpoT, and results in elevated 

ppGpp levels (more on this will be discussed in the next section) [75, 154]. 

              Intracellular growth can be restored to the ankB mutant within amoebae and 

human cells by supplementing excess amino acids, similar to genetic complementation 

[75, 154, 174]. Thus, it is clear that higher levels of cellular amino acids are needed for 

intracellular replication of L. pneumophila than the endogenous amounts. Remarkably, 

supplementation of infected cells with certain single amino acids, such as serine or 

cysteine, reverses the growth defect of the ankB mutant in amoebae and human 

macrophages [75]. Interestingly, in human cells cysteine is semi-essential and is the least 

abundant amino acid, but in amoebae cysteine is essential [75, 174]. However, serine is 

not essential for either but is favored by L. pneumophila for use in the TCA cycle [175]. 

Similar to cysteine and serine, supplementation of infected cells with pyruvate or citrate 
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to feed the TCA cycle, rescues the ankB mutant for intracellular proliferation [75, 154, 

174]. Additionally, in vitro growth of L. pneumophila in rich medium requires 

supplementation with 3.3 mM cysteine [75]. Therefore, AnkB is a remarkable example of 

an effector involved in exploitation of multiple host processes that are highly conserved 

in unicellular eukaryotes and mammals [154]. By promoting proteasomal degradation of 

proteins in amoebae and human macrophages though the AnkB F-box effector, L. 

pneumophila generates a gratuitous supply of cellular amino acids, particularly the 

limiting and metabolically favorable ones such as Cys and Ser, which are the favorable 

source of carbon and energy for L. pneumophila to power intracellular growth within 

amoebae and human macrophages [174]. 

 Nutritional based virulence is an emerging topic in microbial pathogenesis [176]. 

Legionella’s unique nutritional needs make it an interesting subject to study how 

virulence is tied to the drive for food. 

 

Phase Variation and Stress Response 

Nutrient availability governs the biphasic lifestyle of L. pneumophila [177-179]. 

When nutrient levels are high the organism exists in the replicative phase. When nutrient 

levels are low, the bacterium enters a transmissive phase, making it more capable of 

finding the next meal. The intracellular lifecycle of L. pneumophila within the LCV also 

rotates through replicative phase and a transmissive phase, exhibited upon escape into the 

cytosol [86, 101, 102, 180].  

The biphasic lifestyle is characterized by dramatic changes in the transcriptome, 

which result in phenotypic modulations [177, 179, 181]. During the replicative phase, the 

bacterium is undergoing exponential growth (E); it is non-motile, and represses 
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transmissive traits, such as lysosomal evasion (Figure 1-1, step 2) [182]. The transmissive 

phase, during post-exponential (PE) growth prepares the bacteria for life outside of the 

protective environment of the LCV. Traits expressed during PE phase correspond with an 

increased virulence of the bacteria, which become cytotoxic, motile, sodium sensitive, 

and osmotically resistant [86, 182]. These changes are necessary to invade a new host and 

start a second cycle of intracellular proliferation [86, 102, 181-185].   

The transition between replicative and transmissive phenotypes is highly 

orchestrated, and is governed by many factors that are influenced by intracellular nutrient 

levels [86, 87, 154, 186]. Upon amino acid depletion, uncharged bacterial tRNAs activate 

RelA to synthesize the bacterial alarmone guanosine-3’-5’-buspyrophosphate (ppGpp) 

(Fig. 1-2) [86]. SpoT, a bifunctional synthetase/hydrolase that responds to a variety of 

stimuli, such as fatty acid starvation, also synthesizes ppGpp leading to increased levels 

of the alarmone (Fig. 1-2) [187]. DksA acts as a co-factor for ppGpp-dependent 

transcriptional regulation, but it is not required for replication in the macrophage, unlike 

the other factors of the regulatory cascade (Fig. 1-2) [104, 187, 188]. Accumulation of 

ppGGpp, activates RpoS, an alternative sigma factor [189-191]. RpoS regulates the two-

component system CpxR/A and LqsR/S (Fig. 1-2) [192]. CpxR/A controls the expression 

of 27 Dot/Icm effectors and virulence substrates of the type-II secretion system [193, 

194]. LqsR/S functions as the quorum sensing response regulator, resulting in production 

of Legionella autoinducer-1,3-hydroxypentadecane-4-one (LAI-1) [195]. 

Activation of the RNA binding protein and chaperone, Hfq, by RpoS and LetA/S, 

turns on transcription upon the onset of the late PE phase (Fig. 1-2) [196, 197]. 

Additionally, LetA/S activation by ppGpp accumulation activates the small, non-coding 
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RNAs, RsmX/Y/Z, which contain multiple binding sites for csrA [87, 198-200]. The 

sequestering action of RsmX/Y/Z on CsrA, a negative regulator of transmissive traits and 

activator of replication, allows for the translation of transmissive traits like motility, 

virulence, and stress resistance (Fig. 1-2) [201-203]. The PmrA/B two component system 

positive regulates CsrA and is responsible for post-translational repression of CsrA-

regulated effectors (Fig. 1-2) [87, 179]. 

 

 

Figure 1-2. The starvation response in L. pneumophila. Starvation is triggered upon 
sensing depletion in the amino acids and fatty acids of the intracellular environment, 
which triggers RelA and SpoT, leading to an increase level of the alarmone, ppGpp. 
Accumulation of ppGpp is sensed by the two-component system LetA/S and the 
alternative sigma factor, RpoS. LetA/S induce the small non-coding RNAs, RsmX/Y/Z, 
which block the global repressor of transmissive traits, CsrA. RpoS regulates the Hfq, 
CpxR/A, and LqsR/S pathways, leading to an increase in transmissive traits. PmrA/B 
activates 43 effectors and positively regulates CsrA, acting as a switch upon entry to the 
transmissive phase. 
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In addition to triggering flagellation and various virulence-related traits, elevated 

ppGpp levels result in upregulation of the Dot/Icm effectors [177, 179, 181]. For 

example, during infection AnkB is temporally and differentially regulated at the PE phase 

[95, 97, 98, 166, 179, 204].  Complex cascades of regulatory networks govern phenotypic 

transition at the PE phase and most or all of these networks are under the direct or 

indirect control of ppGpp. 

 

Nutrient Acquisition by L. pneumophila 

 It has been known since the discovery of Legionella that the bacteria have strict 

nutrient requirements, obtaining carbon and energy from amino acids [175, 205-208]. 

This is what contributed to the difficultly in isolating and growing Legionella [3]. Special 

agar plates, called Buffered Charcoal Yeast Extract (BCYE), are used for Legionella 

which are supplemented with cysteine and α-ketogluterate, to meet the high demand by 

the organism, and charcoal, to mitigate the effects of oxygen radicals generated during 

autoclaving of the agar [209]. 

 Instead of using glycolysis to generate pyruvate from glucose, L. pneumophila 

uses amino acids [175, 205, 210]. Serine, cysteine, and alanine – in order of preference – 

are converted directly into pyruvate. Glutamate can be converted into the TCA cycle 

intermediate, α-ketogluterate, and aspartate into fumerate and oxaloacetate [174, 205, 

208, 211] [174]. L. pneumophila can also take up host pyruvate to use directly in the 

TCA cycle [75, 154, 174]. Eylert et al. showed that the amino acids (alanine, glutamic 

acid, glycine, asparagine, leucine, threonine, arginine, isoleucine, valine, and aspartic 
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acid) are imported from A. castellanii into the LCV and are converted by L. pneumophila, 

suggesting their use in the TCA cycle [175].   

While L. pneumophila relies on amino acids for carbon and energy it is also 

auxotrophic for seven amino acids (cysteine, leucine, methionine, valine, threonine, 

isoleucine, and arginine) [158, 162, 175]. These auxothropies are synced with their 

eukaryotic host, as a way of nutritional adaptation to the host (Fig. 1-3) [52]. Humans are 

auxotrophic for histidine, isoleucine, leucine, lysine, methionine, phenylalanine, 

threonine, tryptophan, and valine [212].  Macrophages are additionally auxotrophic for 

glutamine and asparagine (Fig. 1-3) [212]. Acanthamoeba, one of the most prevalent 

environment hosts for Legionella, is auxotrophic for arginine, isoleucine, leucine, 

methionine, and valine [213].  

  

Figure 1-3. Amino acid auxotrophy in human macrophages, Acanthamoeba, and L. 

pneumophila. There is considerable overlap in auxotrophy between L. pneumophila and 
its most common environmental host, Acanthamoeba. Many of these auxothropies are 
also seen in human macrophages, the accidental host.  
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Why L. pneumophila prefers amino acids over glucose, like most other genera of 

bacteria studied, is unknown. The answer likely lies within its genome and through better 

understanding of its evolution with protozoa. Like most driving factors for evolution, use 

of amino acids could keep it reliant on its host, limiting growth only when within a host, 

thus giving L. pneumophila an evolutionary advantage. Nutrition of L. pneumophila 

within protozoa has been likely a major driving force in its evolution as an intracellular 

pathogen. 

 

Differential glucose utilization by L. pneumophila and generation of a storage 

molecule 

  Historically, L. pneumophila was described as being defective in glycolysis. 

However, it does have a functional glycolytic pathway, also referred to as Embden-

Meyeroff-Parnas (EMP) pathway, which is minimally utilized [175, 214]. Instead, it 

favors the Enter-Doudoroff (ED) pathway for glucose catabolism (Fig. 1-4) [175]. The 

Pentose Phosphate Pathway (PPP) functions only to generate mannose and histidine 

within L. pneumophila (Fig. 1-3) [214, 215]. During exponential (E) phase, isotopologue 

labelling demonstrates that serine is the preferred amino acid to generate pyruvate to feed 

into the TCA cycle (Fig. 1-4) [175, 214]. Some serine is diverted to the EMP and PPP to 

generate mannose and histidine, and to generate the storage molecule poly-3-

hydroxybutyrate (PHB) (Fig. 1-4, 1-6) [175]. A shift into the post-exponential (PE) phase 

of growth occurs when amino acids (and fatty acids) are low, when glucose becomes the  

predominant molecule metabolized (Fig. 1-4) [175, 216-218]. Glucose is metabolized by 

ED pathway to generate pyruvate then acetyl-CoA, used for the synthesis of large stores 

of PHB (Fig. 1-3, 1-5).   
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Figure 1-4. Utilization of serine and glucose is differentially regulated in exponential 

(E) phase and post-exponential (PE) phase. Isotopologue labeling experiments have 
demonstrated that in E phase of growth, serine is the preferentially used amino acid to 
generate pyruvate and feed into the TCA cycle. Also during this time, small amounts of 
serine (green) and glucose (red) are used to generate poly-3-hydroxybutyrate (PHB) from 
acetyl-CoA and are shuffled into the PPP to generate mannose and histidine. During PE 
phase growth, amino acids are low and glucose becomes the predominate molecule 
metabolize, which is primarily used to generate large stores of PHB.  

 

 

This stage-specific metabolism is governed by the CsrA regulatory system [219]. 

The CsrA regulator binds directly to, and induces transcription of, the glucose utilization 

operon in L. pneumophila, which contains: a glucose-6-phosphate-1-dehydrogenase 
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(lpg0416, zwf), a 6-phosphogluconolactonase (lpg0417, pgl), a 6-phophogluconate 

dehydratase (lpg0418, edd), a glucokinase (lpg0419, glk), a KHG/KFPG aldose (lpg0420, 

eda), and a D-xylose proton symporter (lpg0421, ywtG ) (Fig. 1-5)[175, 220]. Two 

separate reports on knockout of a glucose utilization gene cluster, in different strains 

showed conflicting requirement for glucose [175, 203, 220].  Harada et al. demonstrated 

a requirement for edd, glk, eda, and ywtG in a Philadelphia strain derivative, for 

intracellular growth in A. culbertsoni, the human epithelial cell line A549, and the A/J 

mouse model,  [220].  In contrast,  Eylert et al. demonstrated no requirement for any of 

the proteins in this glucose operon within the Paris strain of L. pneumophila and 

additionally showed that the glucose transporter, ywtG, was not part of the operon [175]. 

Therefore the need for glucose during infection is still unclear. While the need for 

glucose in long-term survival has yet to be investigated.  

 

 

Figure 1-5. Glucose gene cluster in L. pneumophila. Zwf, Pgl, Glk, and Edd, of the 
glucose utilization cluster in L. pneumophila are responsible for glucose metabolism 
through the ED pathway.  Eda converts an intermediate of the ED pathway into 
Glyceraldehyde-3-P, an intermediate of the EMP pathway. Lpg0421 (YwtG) is a glucose 
transporter. 
  

Being completely dependent on the host can still cause its own set of problems for 

any pathogen; so it would be advantageous for the pathogen to evolve strategies to 

survive outside the host. For that, the bacteria use a carbon and energy storage molecule. 

Polyhydroxyalkanoates are a common family of carbon and energy reserve molecules 

generated by many bacterial species [221]. The most abundant member, poly-3-
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hydroxybutyrate (PHB), is produced by many environmental microorganism such as, 

Bradyrhizobium japonicum, Cupriavidus necator, Methylobacterium rhodesianum, and 

Bacilius megaterium [221]. PHB is also produced by Legionella starting in the late 

exponential stage of growth [175, 214, 218]. PHB is a homopolymer of 3-hydroxybutyric 

acid which is generated from acetyl-CoA (Fig. 1-6) [221]. Large granules of PHB can be 

observed as empty spaces by electron microscopy, as PHB dissolves during the fixation 

process (Fig. 5) [222-225]. In early stages of growth, serine is converted into PHB until 

post-exponential growth, when glucose transport is greatly increased, and then glucose 

serves as the main precursor for PHB biosynthesis (Fig. 1-4, 1-6) [218, 220].   

Generation of PHB helps to prepare the bacterium for life outside the cell, 

enabling it to survive nutrient-poor conditions [226]. Catabolism of PHB does occur 

during the VNBC state and in the stationary phase [218, 226]. PHB has been assumed as 

the major product of glucose utilization in L. pneumophila [175, 214]. Contribution of the 

glucose-utilization gene cluster to the generation of PHB has not been studied. Four PHB 

synthesis genes have been identified in L. pneumophila strain Paris [218]. A mutation in 

one gene, lpp0650, results in only 15% PHB compared to the WT strain but does not 

result in an intracellular growth defect in human macrophages nor A. castellanii, up to 72 

hrs post-infection [218]. Glucose metabolism by the ED pathway is connected to PHB 

synthesis as a zwf mutant, which encodes the first enzyme of the ED pathway) has 68% 

less PHB than the WT strain [218]. 
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Figure 1-6. Serine and glucose are converted into poly-3-hydroxybutyrate. Glucose, 
the preferential molecule for PHB synthesis, is metabolized into pyruvate by the ED 
pathway, which is converted into acetyl-CoA. Acetyl-CoA can feed into the TCA cycle 
or converted into PHB through two intermediates, Acetoacetyl-CoA and (R)-OH-
Butanoyl-CoA. PHB is a polymer that is used as a storage molecule. Granules of PHB 
can be seen during electron microscopy as large empty areas (insert), due to the fixation 
process [53]. 
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SPECIFIC AIMS 

It is clear that L. pneumophila relies on amino acids for optimal growth in vivo 

and that these can be acquired from the host cell [51, 75]. However, it is unclear by which 

mechanism L. pneumophila imports host amino acids from the cytosol into the LCV 

lumen. Human SLC transporters are a likely candidate of amino acid transporters, as they 

have been previously identified to be present on the LCV membrane by mass-

spectrometry [227-229]. I sought to study the mechanism by which L. pneumophila 

acquires amino acids through human SLCs.  

L. pneumophila has evolved with numerous eukaryotic-like genes acquired 

through inter-kingdom horizontal gene transfer. Therefore, I sought to identify eukaryotic 

SLC-like transporters in L. pneumophila that were structurally similar to human SLCs, 

due to the lack of characterized transporters in amoebae.  

The role of glucose during intracellular infection has yet to be fully characterized. 

Glucose catabolism through the ED pathway is required for intracellular replication of L. 

pneumophila [220]. The mechanism of glucose import by L. pneumophila is not well 

understood. To better understand the role of glucose acquisition in L. pneumophila, I 

sought to characterize two putative eukaryotic SLC-like glucose transporters, LstA and 

LstB of L. pneumophila.  

I hypothesize that L. pneumophila has acquired host solute carriers (SLCs) to 

important metabolites across the LCV membrane. Additionally, SLC-like transporters in 

L. pneumophila are important for acquisition of intracellular metabolites. 

In addition to the generation of surplus amino acids in the cytosol, used to feed 

the TCA cycle, L. pneumophila contains multiple amylases that may contribute to 

nutritional virulence by increasing the host levels of glucose in the host cytosol. I sought 
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to characterize the putative amylase, LamB, to understand its role in intracellular 

replication. 

I will test the hypothesis that, L. pneumophila produces amylases to generate a 

surplus of host glucose.  

 

            To test these two hypotheses, my specific aims are: 

Specific Aim 1: Determine Dot/Icm-dependent recruitment of host SLCs to the 

LCV membrane during intracellular infection of human macrophages. 

 

 Specific Aim 2: Identify and characterize eukaryotic SLC-like proteins in L. 

pneumophila virulence. 

 

 Specific Aim 3: Identify and characterize the role of the LamB amylase of L. 

pneumophila in intracellular growth. 
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CHAPTER 2: 

DOT/ICM RECRUITMENT OF HOST AMINO ACID TRANSPORTERS DURING 

INTRACELLULAR L. PNEUMOPHILA INFECTION 
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SUMMARY 

Within the host cytosol, the L. pneumophila effector AnkB triggers 

polyubiquitination of host proteins, targeting them for proteasomal degradation [75, 97, 

98, 170]. In order to be able to utilize the amino acids generated by AnkB, L. 

pneumophila must import them into the LCV. The only mechanism for amino acid 

movement across intact membranes is through active transport. Given that the LCV is 

derived from host membranes and many host Solute Carrier (SLC) transporters have been 

identified by mass-spectrometry to be present on the LCV, in numerous studies [227-

229], I hypothesize that SLCs are responsible for importing amino acids to the LCV 

lumen [230-232]. Here I describe the attempts to validate localization of host SLC 

transporters on the LCV by confocal microscopy. Through a variety of cell types and 

time points, I was unable to confirm the presence of host amino acid-transporting SLCs 

on the LCV, in a Dot/Icm-dependent manner. I did identify amino acid-transporting SLCs 

present during infection of both WT L. pneumophila and dotA, the translocation-deficient 

mutant [110, 115]. Therefore, I could not confirm that amino acid-transporting SLCs are 

directed to the LCV, since the dotA mutant is contained within a phagolysosomes [233]. 

Instead, likely due to general vesicle trafficking and recruitment during infection, amino 

acid-transporting SLCs are “accidently” retained on the phagosomal membrane. 

Alternatively, this may be a very transient process which is difficult to capture through 

fixed-time point microscopy. However, I did confirm the presence of a glucose- 

transporting SLC, SLC2a1/Glut1, on the LCV, in a Dot/Icm-dependent manner, 

indicating an important role for glucose utilization by L. pneumophila during intracellular 

infection. Additional studies suggest SLC2a1/Glut1 is recruited during late stages of 

intracellular growth, corresponding to when L. pneumophila is utilizing glucose [181, 



34 
 

220]. The exact mechanism of L. pneumophila-mediated SLC2a1/Glut1 recruitment to 

LCV remains unclear. However, these studies were not possible to be continued due to 

termination of commercial antibody production and the lack of detection of 

SLC2a1/Glut1 on the LCV using 3 antibodies from other independent commercial 

sources (Table 2-7). 

 

INTRODUCTION 

Amino acids are the primary source of carbon and energy for Legionella; it is 

reasonable to conclude these are acquired from the host cell, macrophages or amoebae 

[76, 192, 205, 234]. Indeed, studies have shown during infection of Acanthamoeba 

castellanii, pre-fed with labeled glucose, which the amoebae converted into amino acids, 

that L. pneumophila acquires these amino acids from the amoebae [76]. However, the 

mechanism by which the bacterium accesses those amino acids is still unknown. 

Generation of large amounts of amino acids by the AnkB effector is done in the host 

cytosol, inaccessible to the replicating bacteria, and requires a transporter for amino acids 

to cross the LCV membrane [75, 231].  

One likely set of candidates to aid in the transport of amino acids across the LCV 

membrane in human macrophages are the Solute Carrier (SLC) family of transporters, of 

which homologs are present in amoebae [231, 235].  The SLC group of membrane 

transporter proteins within humans is large and diverse; consisting of ~386 members, 

divided into 55 families [231, 232]. Of these, twelve families are involved in the transport 

of amino acids and/or oligopeptides (SLC1, 3, 6, 7, 15, 17, 18, 25, 26, 32, 36, and 38) 

[231, 235]. Within a family, members share primary sequence identity of ≥20%, to at 

least one other family member [232]. SLCs show tissue-specific tropism, and are 
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separated into families based on substrate-specificity, number of transmembrane helices, 

and mechanism of transport [231, 235]. Importantly, homologs of these transporters can 

be found in protozoa and can be found by comparing the amino acid sequences of SLCs 

to the database of protozoan genomes in BLAST but none to-date have been functionally 

described. They are members of an evolutionarily conserved family of transporters 

known as the Major Facilitator Superfamily (MFS), which are present in all kingdoms of 

life [236, 237]. Within the environmental host is where L. pneumophila would have 

acquired the ability to exploit these host transporters [156, 238]. However, a dearth of 

information on general biology and lack of molecular tools for transporters in protozoa 

make them a difficult target to study. Thus, the human counterparts are more feasible to 

study.  

The mammalian SLC1a5 amino acid transporter is a high-affinity importer of 

glutamate but also imports neutral amino acids: cysteine, serine, and alanine [239, 240]. 

This transporter works in a super-complex with other SLCs and scaffolding proteins: 

SLC7a5, SLC3a2, SLC16a1, CD147, and Ep-CAM [241-245]. Signaling through this 

complex to mTOR that appropriate levels of amino acids are available leads to translation 

initiation by eIF3 and suppression of autophagy [241, 242]. In competing interest to L. 

pneumophila, increasing the activity of any of these transporters would increase the 

amino acid uptake of the host, but would initiate translation, causing the cell to use the 

free amino acids. Within mouse macrophages, L. pneumophila has been shown to inhibit 

mTORC1 to prevent protein synthesis, thus liberating more amino acids to drive 

intracellular replication, which could off-set any changes leading to increased uptake by 

the SLCs in the super-complex [246]. SLC1a5 has been shown to be required for 
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replication of L. pneumophila in the MM6 monocytic cell line via RNA silencing of 

SLC1a5 [247]. Additionally, knockdown of the aforementioned super-complex with the 

inhibitor BCH, leads to decreased replication in human macrophages [247]. To date, this 

is the only SLC shown to have a role in L. pneumophila intracellular replication. Presence 

of SLC1a5 on the LCV or recruitment of other SLCs to the LCV, in a Dot/Icm-dependent 

manner, has not been shown.  

Glucose uptake in cells is achieved through the SLC2 (Glut) family of 

transporters [248]. Within the cell, once SLC2a1/Glut1 is synthesized, it remains in 

vesicles in the cytoplasm until a signal is received to traffic to the plasma membrane 

[249]. The primary signals for SLC2a1/Glut1 trafficking are IL-3 and 

granulocyte/macrophage colony-stimulating factor (GM-CSF) [249].  IL-3 and GM-CSF 

are involved in the proliferation of myeloid cells and the maturation of macrophages 

[250, 251]. Elevated levels of glucose (hyperglycemia), such as seen in diabetic patients, 

promote inflammatory activation of macrophages and aid in classical M1 activation of 

macrophages [252]. SLC2a1/Glut1 is the rate limited step of a proinflammatory 

phenotype in macrophages [253]. Overexpression of SLC2a1/Glut1 causes an increase in 

reactive oxygen species along with a pro-inflammatory response [253]. Outside of being 

a part of the macrophage response to general bacterial infections, no role for 

SLC2a1/Glut1 has been shown during intracellular infection of human macrophages with 

L. pneumophila or other intracellular bacterial pathogens. 

Many SLCs have been identified to be part of the LCV proteome by mass-

spectrometry in multiple studies [227-229]. Table 2-1, represents all the SLCs contained 

in the LCV-proteome identified by mass-spectrometry by various studies [227-229]. Each 
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study determined the proteins on the LCV in different host cells and time-points. 

Hoffmann et al. used the mouse macrophage cell line, RAW264.7, with a short infection 

of 1 hr [229]. The caveats of this approach is the use of RAW264.7, as these cells are of 

mouse origin restrictive to Legionella growth; but the transformed cell line is permissive 

to L. pneumophila growth [254-256]. Bruckert et al. used a human macrophage cell line, 

U937, with an infection duration of 4 hrs [228]. The longer time of infection could also 

allow for a variation in the dynamics of SLC recruitment or retention on the LCV. 

Finally, Naujoks et al. used primary macrophages but from C57BL/6 mice; these 

restrictive bone marrow-derived macrophages (BMM) were infected for 2 hrs with the 

flaA mutant, to prevent pyroptosis and pathogen restriction [227].  

The amount of protein, and thus cells, needed to do mass-spectrometry is very 

high, making the use of primary human cells nearly impossible. Being able to overcome 

this technical limitation would provide more reliable data. Additionally, proteomics on 

the LCV of a well-annotated protozoan host would allow for comparisons of transporters 

that may be evolutionarily conserved. However, these three experiments provide a step 

towards identifying SLCs involvement during L. pneumophila infection. 

The amount of protein, and thus cells, needed to do mass-spectrometry is very 

high, making the use of primary human cells nearly impossible. Being able to overcome 

this technical limitation would provide more reliable data. Additionally, proteomics on 

the LCV of a well-annotated protozoan host would allow for comparisons of transporters 

that may be evolutionarily conserved. However, these three experiments provide a step 

towards identifying SLCs involvement during L. pneumophila infection. 

 



38 
 

Table 2-1. Identification of SLCs on the LCV by mass-spectrometry studies. 
 

SLC Common 

synonym 
Substrate Hoffmann 

[229] 

Bruckert 
[228] 

Naujoks 
[227] 

1a5 ASCT2 glutamine, alanine, cysteine, serine ✓ ✓ ✓ 

2a1 GLUT1 glucose  ✓ ✓  

2a6 GLUT6  glucose ✓  ✓ 

3a2 CD98 valine, leucine, isoleucine, 
tryptophan, tyrosine 

✓ ✓ ✓ 

7a5 LAT1 cysteine, alanine, serine, 
pheylalanine, tyrosine, leucine, 
arginine, tryptophan,  

✓ ✓ ✓ 

9a3r1 NHEFR-1 Sodium/Hydrogen Exchanger - 
scaffold 

 ✓ ✓ 

15a3 OCTP Oligopeptide ✓  ✓ 

16a1 MCT1 Monocarboxylates ✓ ✓ ✓ 

16a3 MCT4 Monocarboxylates ✓ ✓ ✓ 

25a3 PTP/PHC Phosphate (mitochondrial) ✓ ✓ ✓ 

25a4 ANT1 ADP (mitochondrial) ✓ ✓ ✓ 

25a5 ANT2 ADP (mitochondrial) ✓ ✓ ✓ 

25a10 DIC Dicarboxylate (mitochondrial) ✓  ✓ 

25a11 OGCP Oxoglutarate/malate exchange 
(mitochondrial) 

✓  ✓ 

25a12 AGC1 Aspartate/Glutamate 
(mitochondrial) 

✓  ✓ 

25a13 CTLN2 Aspartate/Glutamate 
(mitochondrial) 

✓ ✓ ✓ 

25a22 GC-1 Glutamate (mitochondrial) ✓  ✓ 

25a24 APC1 ATP-MG/ Phosphate exchange 
(mitochondrial) 

✓  ✓ 

30a1 ANT1 Zinc  ✓ ✓ 

 

The amount of protein, and thus cells, needed to do mass-spectrometry is very 

high, making the use of primary human cells nearly impossible. Being able to overcome 

this technical limitation would provide more reliable data. Additionally, proteomics on 

the LCV of a well-annotated protozoan host would allow for comparisons of transporters 

that may be evolutionarily conserved. However, these three experiments provide a step 

towards identifying SLCs involvement during L. pneumophila infection  [227-229]. 
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The SLCs represented in Table 2-1 is not a complete list of all of those found in 

each individual study but a selection based on their appearance in two or more studies 

[227-229]. The Naujoks study alone identified 60 SLCs to be present on the LCV, while 

Hoffmann and Bruckert identified 20 and 21, respectively [227-229]. Differences in the 

number and type of SLCs identified could be due to numerous reasons, such as: cell type, 

length of infection, and experimental preparation [227-229]. This also could suggest a 

dynamic and temporal presence of SLCs on the LCV. Data from infections at late time-

points, such as 8 hrs, could provide better representation of SLCs, as this is when the 

bacterium is preparing for replication and the demand for nutrients rises.  The SLC25 

family of transporters function at the mitochondrial membrane, rather than the plasma 

membrane [257]. LCVs have been shown to be closely associated with mitochondria 

during infection [56, 91, 258, 259]; therefore, their appearance on the LCV could be due 

to this close association contaminating LCV purification, through fusion of mitochondrial 

membranes with the LCV, or targeting of these by effectors. Most of these transporters 

target multiple substrates which contributes to strong overlap, especially for amino acids 

which feed into the TCA cycle (Ala, Cys, Ser, Trp, Arg, Phe, Pro, Met, Val, Iso, Gly, 

Leu, Tyr, Thr) and covers the amino acids for which L. pneumophila is auxotrophic (Thr, 

Arg, Iso, Met, Leu, Cys, Val) (Table 2-1) [52, 175]. 

Total human transcriptome microarray of hMDMs revealed minor changes in 

transcription of SLCs during infection with WT L. pneumophila, after 1 hr, compared to 

uninfected cells [260]. Only minimal fold changes between -1.2- and 1.4-fold were 

observed for SLCs [260]. For example, transcripts of SLC7a5 and SLC7a2 were 

increased by 1.2- and 1.4 -fold, respectively; whereas, SLC1a5 and SLC2a1 showed no 
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change [89, 260]. All but two of the mitochondrial transporters listed in Table 1 

(SLC25a5 and SLC25a13) were found to be minimally down-regulated the hMDM 

microarray [260]. Given how minor the changes were, these data may not account for 

normal variation between hosts.  This data suggests that L. pneumophila may not alter 

SLCs at the level of transcription, as there were no significant changes in the 

transcriptome of SLCs during infection with L. pneumophila or that changes to the 

transcription profile occur at later time-points during the infection.  

Utilizing the findings from the three mass-spectrometry studies of the LCV 

proteome [227-229], along with the role of SLC1a5 in intracellular growth of L. 

pneumophila as a foundation [247], we choose to validate the presence of these specific 

SLCs on the LCV based on their repetitive appearance in the mass-spectrometry studies 

and their biological importance (essential and favored amino acids). We also included 

SLCs that transport other small molecules that are of use to L. pneumophila such as, 

monocarboxylates (pyruvate), tricarboxylates (citrate), and glucose.  We did not take into 

consideration tissue-tropism, as the organism could be causing aberrant gene translation 

of SLCs.  

The role of these SLCs and their mechanism of potential acquisition by the LCV, 

is unclear. It is possible that the SLCs are acquired by the LCV without intervention by 

the bacterium, as a consequence of recruiting ER-derived vesicles. Therefore, energy 

does not have to be expended by the bacterium to acquire transporters. Along this line, 

the SLCs present on the plasma membrane, during uptake, and retained on the LCV 

membrane may be sufficient. Alternatively, effectors could be responsible for the altered 

trafficking and expression of SLCs, in a direct or indirect manner.  
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Given that SLCs transporters are the only source of amino acid and small 

molecule movement in and out of mammalian cells, due to their identification on the 

LCV by mass-spectrometry, and the requirement for the SLC1a5 transporter during 

infection, we determined the presence of SLCs directly on the LCV in a Dot/Icm-

dependent manner. Using single cell analysis by confocal microscopy we determined 

subcellular localization of SLCs during infection with WT L. pneumophila and the dotA 

mutant. Additionally, we sought to confirm hMDM transcriptome data by targeting select 

SLCs and directly measuring transcriptional changes during intracellular infection [260]. 

 

RESULTS 

Effect of SLC transcription during infection with L. pneumophila 

 Alteration of subcellular expression may be the underlying mechanism for 

manipulation of host SLCs. SLCs are known to play a role in signaling pathways to the 

host, like the previously mentioned signaling of mTOR by the 

SLC1a5/SLC3a2/SLC7a5/SLC16a1 complex [241, 242]. L. pneumophila is known to 

inhibit signaling of mTORC1 by the SidE family of effectors in mouse macrophages, 

preventing free amino acids from being utilized for host translation [246]. Additionally, 

L. pneumophila could be dampening SLC translation, thus indirectly inhibiting mTOR 

signalling. Alternatively, increasing SLCs on the plasma membrane would allow for the 

uptake of more amino acids that L. pneumophila could use for carbon and energy, while 

still being able to mitigate the effects of mTOR signaling with the SidE  family effectors 

[246].  

We chose to look at the expression of the four SLCs known to affect mTOR 

signaling (SLC1a5, SLC3a2, SLC7a5, and SLC16a1), which includes SLC1a5 that is 
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known to be required for intracellular replication of L. pneumophila [247]. After a 2 hr 

infection of hMDMs, transcript levels of SLC1a5, SLC3a2, SLC7a5 and SLC15a1 were 

quantified in the WT strain, dotA translocation-deficient mutant, and uninfected 

conditions, by qPCR, using three unique human donors (Table 2-2).  

 

 Table 2-2. Fold change of SLCs in hMDMs. Expression SLC1a5, SLC3a2, SLC7a5, 
and SLC16a1 in hMDMS infected with WT L. pneumophila, the dotA mutant, or 
uninfected cells, normalized to gapdh, using three individual human donors (1,2,3).  
 SLC1a5 SLC3a2 SLC7a5 SLC16a1 

Uninfected vs 
WT 

-9.521 
-1.462 
-2.223 

-5.651 
1.112 
-1.563 

-1.571 
-1.262 
1.003 

-39.481 
1.092 
-4.223 

Uninfected vs 

dotA 

1.991 
1.972 
4.943 

-8.291 
1.022 
7.173 

5.791 
1.232 
9.253 

30.111 
2.372 
1.793 

 WT vs dotA  -18.891 
-2.952 
-5.473 

1.471 
1.092 
-5.563 

-5.791 
-1.552 
-4.453 

-30.111 
-2.162 
-4.373 

 

 

When comparing these results to that of the transcriptome microarray data of 

hMDMs, two transcriptional variants for SLC1a5 showed varying fold changes (1.0-fold 

increase and a -1.1-fold decrease) when comparing WT to uninfected cells, indicating 

little-to-no change in transcription during infection [261]. When targeting SLC1a5 

directly in this experiment, using probes that recognize all transcriptional variants, a 

consistent down-regulation of SLC1a5 is observed when comparing WT to uninfected 

hMDMS and a slight increase in transcript levels when comparing dotA to uninfected 

cells (Table 2-2). This supports the idea that L. pneumophila may be actively dampening 

the signaling through SLC1a5, possibly to prevent mTOR activation, through Dot/Icm 
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effectors. Indeed when comparing the WT strain to the dotA mutant, an even more 

drastic, negative fold-change of SLC1a5 can be seen (Table 2-2). However, this is 

surprising given that SLC1a5 is required for intracellular replication of L. pneumophila in 

human-derived MM6 cells [247]. L. pneumophila may be finely tuning the function of 

SLC1a5 during infection to optimize amino acid uptake and host cell signaling or could 

be due to host species variations.   

When examining the other SLCs involved in this mTOR-signaling complex, 

down-regulation of these transcripts is usually seen; however, there is much more 

variation. With each SLC, there is one replicate where there was a positive fold-change 

when comparing uninfected cells to L. pneumophila infected cells, which was not of the 

same donor (Table 2-2). Again, with SLC3a2, SLC7a5, and SLC16a1, there is an increase 

in the transcription of these transporters when comparing uninfected cells to infection 

with the dotA mutant as seem with SLC1a5 (Table 2-2). With SLC7a5 and SLC16a1, 

there is again a strong repression when comparing WT to the dotA mutant, indicating that 

the presence of Dot/Icm effectors are playing a role altering the transcriptome profile of 

these SLCs (Table 2-2). 

These genes are expressed and transcribed at low levels in the macrophage, thus 

making detection threshold prone to variable results [262].  This is supported by the fact 

that exponential amplification of the SLC transcripts by qPCR occurred between cycles 

20 – 25. Additionally, there could be donor variability in hMDMs that contributes to the 

lack of a strong consistent trend.   

L. pneumophila does not appear to play a large role in altering the transcription of 

these SLCs during infection, as seen in the transcriptome of L. pneumophila infected 
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hMDMs and this study [260]. With dozens of SLCs to target, L. pneumophila could be 

altering transcription of other SLCs we have not examined. When examining the hMDM 

transcriptome, with no changes greater than 1.4-fold, there does not seem to be any 

obvious candidate [260].  Since L. pneumophila was not significantly altering gene 

expression in this pilot study, it may act solely at the protein level and altering subcellular 

localization.  

 

Screen of SLC transporters present on LCV during infection of HEK293T cells 

 There is considerable substrate overlap when looking at the SLCs identified by 

mass-spectrometry on the LCV (Table 2-1). In order to cover as many SLC transporters 

as possible, FLAG-tagged fusion proteins of SLCs were generated for detection of LCV-

colocalization by confocal microscopy. FLAG-tag constructs for 19 SLCs, including 

transcriptional variants, were generated using cDNA from human macrophages as a 

template for insertion into the p3xFLAG-CMV10 vector, allowing for overexpression in 

mammalian cells. Human embryonic kidney cells, HEK293T, were chosen as the host for 

their ability to take up and express plasmids. L. pneumophila are capable of invading and 

replicating normally within these cells [150]. Nineteen transporters were examined for 

LCV-colocalization during infection, 7 of which had extremely low transfection 

efficiencies and therefore LCV-colocalization was not determined (SLC1a2, SLC1a5v2, 

SLC3a2, SLC6a5, SLC13a2, SLC17a6, and SLC25a2) (Table 2-3). The SLCs examined 

expands beyond that listed in Table 2-1 to prevent bias and perform a more 

comprehensive screen. Additional amino acid transporters were added into this study 

(SLC1a1, SLC1a2, SLC1a4, SLC1a6, SLC7a2, SLC7a10, SLC13a2, SLC16a7, 

SLC17a6, and SLC25a2), while many non-TCA cycle substrate transporters from Table 
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2-1 were not included (SLC2a1, SLC2a6, SLC9a3r1, SLC25a3, SLC25a4, SLC25a5, 

SLC25a10, SLCa24, SLC30a1, and SLC37a2). 

 

Table 2-3. SLCs examined by overexpression in HEK293T. 

SLC Common 

synonym 

Substrate 

1a1 EAAT3 glutamate, aspartate 
1a2 EAAT2 glutamate, aspartate 

1a4 (v1, v2) ASCT1 alanine, serine, cysteine, threonine 
1a5 (v2, v3) ASCT2 neutral amino acids 

1a6 EAAT4 glutamate, aspartate 
3a2 CD98 valine, leucine, isoleucine, tryptophan, tyrosine 
6a5 NET1 glycine 
7a2 CAT2 arginine, lysine, ornithine 
7a3 CAT3 arginine, lysine, ornithine 
7a5 LAT1 cysteine, alanine, serine, pheylalanine, tyrosine, leucine, arginine, 

tryptophan, L-DOPA, T3, T4 
7a10 ASC-1 serine, alanine, glycine, threonine, cysteine 
13a2 NaDC1 succinate, citrate 
13a5 NaCT citrate 
16a1 MCT1 monocarboxylates 
16a7 MCT2 monocarboxylates 
17a6 VGLUT2 glutamate 
25a2 ORC2 ornithine (mitochondrial) 

 

The experiment infection was performed for 8 hrs, which corresponds to the start 

of bacterial replication, when nutrient demand is high. Additionally, this time-point could 

allow for sufficient accumulation of SLCs to the LCV and aid in visualization by 

microscopy. Positive colocalization was determined if >50% of the LCV was stained 

with α-FLAG when visualizing 3-dimensional LCVs.  The WT strain and the dotA 

mutant were used in this study to determine if SLCs on the LCV are present in an 

effector-driven manner (Fig. 2-1). 
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Figure 2-1. LCV-colocalized SLCs in HEK293Ts. Colocalization of FLAG-tagged host 
SLC transporters with the LCV was examined during infection of HEK293 cells with WT 
L. pneumophila and the dotA mutant, 8 hrs post-infection. LCV colocalization was 
evaluated in Z-stack confocal images and data points represent positive LCV-
colocalization, indicated by >50% coverage of the vacuole, n>50 infected cells and are 
representative of one experiment. 
 

 The data suggest at least four SLCs could be detected on the LCV during 

infection of HEK293 cells: SLC1a1, SLC1a4 transcriptional variant 2 (SLC1a4v2), 

SLC1a5 transcriptional variant 3 (SLC1a5v3), and SLC1a6 (Fig. 2-1). The latter three 

appear to be dependent on the T4SS (Fig. 2-1). Our data are consistent with the 

requirement for SLC1a5, a neutral amino acid transporter, during infection with L. 

pneumophila [247]. SLC1a4 is responsible for the transport of alanine, serine, cysteine, 

and threonine, and SLC1a1 and SLC1a6 are transporters glutamate and aspartate, all of 

which can feed into the TCA cycle [263].  

 Functionally, this approach works to screen a large number of SLC transporters; 

however, it may not be a biologically relevant system and may produce false negatives. 
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Overexpressing just one of these transporters will not affect the expression of the other 

proteins within these complexes, like in the case of the previously described SLC1a5, 

which interacts with SLC3a2/SLC7a5/SLC16a1, potentially causing aberrant protein 

localization. Alternatively, overexpression can lead to false negatives because many of 

these SLCs function in heterodimers with other SLCs or other proteins. This setup gave 

us a starting point for narrowing down the list of SLCs involved in transport at the LCV 

membrane. 

 

Screen of SLC transporters in the human macrophage cell line U937 

 We were interested in a more biologically relevant model to determine roles of 

SLCs transporters in the transport of nutrients across the LCV membrane. Therefore, we 

utilized the human monocytic cell line, U937, to determine native SLCs expression using 

protein-specific antibodies. SLCs are known to be poorly expressed in macrophages. A 

pool of SLCs were chosen to be studied based on data from HEK293 that show 

localization to the LCV: SLC1a4, SLC1a5, and SLC1a6 (Table 2-4). SLC3a2, SLC7a5, 

and SLC16a1 were included because they function in complex with SLC1a5 which was 

shown to be on the LCV (Table 2-4). For this study we chose to study SLC1a4, SLC1a5, 

SLC1a6, SLC3a2, SLC7a5, and SLC16a1. 
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Table 2-4. Selected SLCs for further study in U937. 

SLC Common 

synonym 

Substrate 

1a4 ASCT1 alanine, serine, cysteine, threonine 
1a5 ASCT2 Neutral amino acids 
1a6 EAAT4 aspartate, glutatmate 
3a2 CD98 valine, leucine, isoleucine, tryptophan, tyrosine 
7a5 LAT1 cysteine, alanine, serine, pheylalanine, tyrosine, leucine, arginine, 

tryptophan, L-DOPA, T3, T4 
13a3 NaDC3 sodium-dicarboxylate cotransporter 
16a1 MCT1 monocarboxylates 

 

 

 Detection of any of the selected native SLCs in U937 macrophages by confocal 

microscopy was not possible. The expression levels of these proteins were too low to 

detect even with high concentrations and extended incubations of primary and/or 

secondary antibody. Whole cells and isolated LCVs were both tested for SLC-

colocalization to the LCV. With either method, SLCs could not be detected. 

 

Screen of SLC transporters in human liver cell line HepG2 

 In order to continue on with our preliminary screens of SLCs, we utilized the liver 

cell line, HepG2. Due to the function of the liver, many SLCs are expressed in high 

quantities within these cells [264]. Therefore, this cell line may provide a starting point 

for identification of which native SLCs are recruited to the LCV and, allow for detection 

and testing of our antibodies where U937 cells did not. Like HEK293T cells, L. 

pneumophila also invades and replicates normally within this cell line. HepG2 cells were 

infected with WT L. pneumophila and the dotA mutant for 1, 4, and 8hrs. 
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Figure 2-2. LCV-colocalization of native host SLC transporters in HepG2. 
Colocalization of SLCs to the LCV during infection of HepG2 cells with WT L. 

pneumophila and the dotA mutant, 8hrs post-infection. LCV colocalization was evaluated 
in Z-stack confocal images and data points represent positive LCV-colocalization, 
indicated by >50% coverage of the vacuole, n>50 infected cells and are representative of 
one experiment. 
 

For this study we chose to examine LCV-localization of SLC1a4, SLC1a5, 

SLC1a6, SLC 2a1, SLC3a2, SLC7a5, and SLC16a1. Poor detection of SLC1a4, SLC1a6, 

and SLC2a1 in this cell line eliminated them from further examination. SLC1a4 should 

have been detectable as it is widespread throughout tissues, but is expressed the highest 

in brain tissues [263, 264]. SLC1a6 is primarily expressed in lung, skeletal muscle, 

intestine, kidney, and adipose tissue [263, 264]. SLC2a1 is also widespread but 

expression in the liver is lower than most organs [264]. Failure to detect these three 

transporters can be explained by their tissue-tropism. This also implies that expression in 

HepG2 cells is not altered by L. pneumophila infection. 
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 No colocalization was observed for any transporter at 1 or 4 hrs post-infection. 

Colocalization was only observed at 8 hrs post-infection or this phenotype could be an 

artifact of the cell type. This supports the idea that SLCs may be accumulating on the 

LCV. The data supported, again, the role for SLC1a5 during infection, as previously seen 

in the study by Wieland et al. and with our preliminary HEK293T screen (Fig. 2-1, 2-2) 

[247]. However, in this cell type, there is no significant difference between the amounts 

of SLC1a5 on the LCV during infection with the WT strain or the dotA mutant, is 

localized in a phagolysosome . SLC1a5 either does not appear on the LCV during the 

early stages of infection or it does so in such low amounts that below the threshold of 

antibody detection.  Interestingly, while there was staining of SLC3a2, which functions in 

complex with SLC1a5, there was no staining of the transporter on the LCVs of either the 

WT strain or the dotA mutant in HepG2 cells (Fig. 2-2). SLC7a5 and SLC16a1, also part 

of the same complex, were detected on the WT LCV but not the dotA LCV (Fig. 2-2). 

 The benefit of using cell lines is the ease of access and manipulation for studies. 

However, it was clear that the data generated in these studies was inconsistent, which 

may not necessarily be reflective of the true biological nature of SLCs during infection. 

However, this study allowed for confirmation of proper detection of some of our targeted 

SLCs, which was not possible in U937 macrophage. 

 

Screen of SLCs during infection of human monocyte-derived macrophages 

 The previous cell types were used as a means to narrow the search for important 

SLCs. However, each system produced unique colocalization profile, along with a set of 

unique caveats. Therefore, we utilized human monocyte-derived macrophages (hMDMs). 

Infection with the WT strain or the dotA mutant proceeded for 8bhrs before being 
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visualized by confocal microscopy for LCV colocalization with SLCs. As previously, 

native expression of SLC1a4, SLC1a5, SLC1a6, SLC2a1, SLC3a2, SLC7a5, and 

SLC16a1 was tested.  SLC2a2, a glucose transporter, and SLC16a3, a monocarboxylate 

transporter, were added to this study to broaden our scope outside of just amino acids. 

SLC16a3 can also function within the SLC1a5/SLC3a2/SLC7a5/SLC16a1 complex, 

which has been shown to be important for the intracellular replication of L. pneumophila 

when inhibited by BCH, by replacing SLC16a1 as they are functionally redundant [247, 

265]. SLC2a2 is important in glucose sensing and glucose homeostasis [266]. Within 

these primary cells, detection of SLC1a4, SLC1a5, and SLC3a2 was not possible with 

antibodies; whereas in this study, SLC1a4 and SLC1a5 stained extracellular bacteria and 

therefore were not analyzed for LCV-colocalization.  

 Unlike what was observed during infection of HepG2 cells, neither SLC16a1 nor 

SLC7a5 were localized to the LCV during infection of hMDMs, nor the SLC16a1 

replacement, SLC16a3 (Fig. 2-3). Interestingly, we did see strong colocalization, in a 

T4SS-dependent manner, with the glucose transporter SLC2a1/Glut1 (Fig. 2-3). This was 

specific to SLC2a1, as another glucose transporter, SLC2a2, did not colocalize to the 

LCV (Fig. 2-3). Tissue-tropism could explain this, as SLC2a2 is primarily expressed in 

the liver, intestine, and kidney, where SLC2a1 is widespread spread and main transporter 

for glucose in non-specialized cells [248]. These data were surprising given that L. 

pneumophila utilizes amino acids for carbon and energy, not glucose [175, 220].  
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Figure 2-3. LCV-colocalization of native SLCs in hMDMs. Colocalization of SLCs 
with the LCV of hMDMs infected either WT L. pneumophila or the dotA mutant, 8hrs 
post-infection, was examined. LCV colocalization was evaluated in Z-stack confocal 
images and data points represent positive LCV-colocalization, indicated by >50% 
coverage of the vacuole, n>50 infected cells and are representative of three experiments. 
 

 

Time-dependent LCV co-localization of SLC2a1/Glut1 

 Glucose is metabolized by L. pneumophila during late stages of growth [175, 

220]. At which point, glucose utilization and uptake genes are upregulated [177, 181]. To 

determine if SLC2a1/Glut1 recruitment to the LCV followed this trend, hMDMs were 

infected with WT L. pneumophila and the dotA mutant for 2, 4, 8, and 10 hrs and 

visualized by confocal microscopy using antibody against Glut1 (Santa Cruz, H-43). 

 Indeed at 2 and 4 hrs, little colocalization of Glut1 to the LCV was observed, 

which was not affected by the Dot/Icm translocation system (Fig. 2-4). As observed in 
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our initial screen in hMDMs, colocalization of Glut1 to the WT LCV was near 80% at 8 

hrs post-infection (Fig. 2-3 and 2-4). Surprisingly, like the early time points, little 

colocalization of Glut1 to LCVs was observed at 10 hrs post-infection (Fig. 2-4). This 

could have been due to experimental error, or change in LCV biogenesis after multiple 

rounds of replication in the vacuole.  
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Figure 2-4. Time-dependent LCV-colocalization of native SLCs in hMDMs. 

Colocalization of SLCs with the LCV of hMDMs infected either WT L. pneumophila or 
the dotA mutant was examined at 2, 4, 8, and 10 hrs post-infection. LCV colocalization 
was evaluated in Z-stack confocal images and data points represent positive LCV-
colocalization, indicated by >50% coverage of the vacuole, n>50 infected cells and are 
representative of one experiment. 
 

 Given that Glut1 is retained on ER-vesicles until appropriate signals are received 

that induce trafficking to the plasma membrane, like IL-3 or hyperglycemia, we sought to 

determine the subcellular localization of Glut1 during infection with L. pneumophila 

[249, 252]. Two distinct patterns of Glut1 localization can be observed, strong membrane 



54 
 

colocalization with cytosolic staining, and just cytosolic staining (Fig. 2-5B) [253]. 

Analyzing where Glut1 is localized, at 8 hrs post-infection from all previous studies, we 

see that when Glut1 is localized to the LCV it is predominately also membrane localized 

(Fig. 2-5AB).   
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Figure 2-5. Subcellular localization of Glut1 during LCV-colocalization conditions. 
A) The trafficking patterns of Glut1 was analysed when positively colocalized to the 
LCV membrane during infection of hMDMs at 8 hrs post-infection with WT L. 

pneumophila or the dotA mutant. Glut1 subcellular localization and LCV colocalization 
was evaluated in Z-stack confocal images. Strong plasma membrane staining of Glut1 
was used as a threshold for membrane localization despite appearance in the cytosol vs 
only cytosolic staining. Data points represent positive colocalization, indicated by >50% 
coverage of the vacuole, n>50 infected cells and data are representative of three 
experiments. B) Representative confocal images of membrane, membrane/cytosol, and 
cytosol staining of Glut1 (Red), during infection of L. pneumophila (green), with DAPI 
(blue). 
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Unfortunately, this data could not be reproduced to confirm time-dependent Glut1 

colocalization. The Santa Cruz antibody (Glut1, H-43) used in this study and previous 

studies is no longer commercially produced (Table 2-5). Many antibodies from other 

companies were tested but none performed as well. Variations in staining patterns or 

failure to stain for confocal were the most common issues. One antibody failed to 

detected plasma membrane localized Glut1, even after triggering trafficking with IL-3 

[249]. Various concentrations of antibody, staining length, and fixing methods were 

tested in order to continue studies with Glut1 but each were unsuccessful. 

 

Table 2-5. SLC2a1/Glut1 antibodies tested in this study. 

SLC2a1 Santa Cruz (H-43), rabbit 
SLC2a1 Santa Cruz (A-4), mouse (poor staining) 
SLC2a1 Proteintech 66290-1, mouse (poor staining) 
SLC2a1 Genetex GTX15309, rabbit (no membrane staining) 

 

 

 These preliminarily data indicate that Glut1 may be recruited to the LCV in a 

time-dependent manner that coincides with increased glucose uptake and utilization by L. 

pneumophila, and recruited to the LCV in a Dot/Icm-dependent manner [177, 181, 220]. 

L. pneumophila may be intercepting Glut1 as it traffics to the membrane either through 

direct targeting of Glut1 or through recruitment of ER-derived vesicles for LCV 

maintenance. However, the lack of detection of Glut1 on the LCV by many other 

antibodies may indicate these data were an artifact of the Santa Cruz antibody. 
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Infection of L. pneumophila increases expression of Glut1 that is independent of 

macrophage activation 

 To determine if L. pneumophila infection is altering expression of Glut1, we 

determined the level of the Glut1 protein present in hMDMs at 2, 8, and 12 hrs post-

infection. LPS/IFNγ-treated cells were used as a control for macrophage activation and 

untreated cells used for base-line expression of Glut1.  

 

Figure 2-6. Expression of Glut1 in hMDMS. Untreated, L. pneumophila infected, or 
LPS/IFNγ treated hMDMs were examined for expression of Glut1 at 2, 8, and 12 hrs 
post-infection or treatment.  
 

No significant changes in Glut1 expression were observed at 2 or 8 hrs post-

infection (Fig. 2-6). At 12 hrs post-infection, a significant increase in the amount of Glut1 

present was observed in cells infected with L. pneumophila, but not untreated or 

stimulated cells, indicating a direct effect on Glut1 by L. pneumophila that was not due to 

macrophage activation (Fig. 2-6).  

 This experiment was repeated using both IL-3 and excess glucose as positive 

controls and included the dotA mutant. At 2 hrs post-infection, an early increase in Glut1 

was observed in hMDMs infected with the dotA mutant that diminished by 8 and 12 hrs 
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(Fig. 2-7). At 8 hrs, a minor increase in Glut1 was observed with the lamA mutant, but 

not under any other conditions (Fig. 2-7). By 12 h post-infection, hMDMs had responded 

to IL-3 and excess glucose treatment by increasing expression of Glut1, similar to that of 

the lamA mutant (Fig. 2-7).  Infection with WT L. pneumophila also caused increased 

expression of Glut1 compared to uninfected cells, as previously seen (Fig. 2-6 and 2-7).  

 

 

Figure 2-7. Glut1 expression in hMDMS. Untreated; L. pneumophila, dotA, or lamA 
infected; IL-3 treated, or excess glucose-treated hMDMs were examined for expression 
of Glut1 at 2, 8, and 12 hrs post-infection or treatment. 
 

 Again, confirmation of this data through repeat studies was not possible after the 

antibody being used was no longer being produced. As previously mentioned, other 

commercial antibodies did not perform as well and had non-specific binding that 

interfered with visualization of Glut1. However, these preliminary studies may indicate a 
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potential role for Glut1 during infection of macrophages with L. pneumophila that is 

Dot/Icm –dependent. 

 

DISCUSSION 

 Transport of amino acids across the LCV has been an open question in L. 

pneumophila biology. It is apparent that the answer may not be as simple as identifying 

host SLCs under static conditions. The process of amino acid transport is likely very 

dynamic and thus difficult to determine by conventional methods. It could also be that 

individual host transporters present on the LCV are in low abundance, and below 

detection threshold by confocal microscopy. Many SLCs that transport similar substrates 

have been identified on LCVs [227, 228, 256]. Families of SLCs, rather than individual 

SLCs, may be employed, which would affect detection when limited to analyzing 

individual transporters at time. Alternatively, low numbers of transporters could be 

sufficient to transport the nutrients needed by L. pneumophila for intravacuolar 

replication. Any or multiple of these explanations may be what is occurring during 

infection. More in-depth experiments will need to be done to determine the role of host 

SLCs, if there are any. 

 We attempted to knockdown SLC expression by siRNA; however, strong 

knockdown was never achieved in primary macrophages for SLC1a5 and SLC2a1 (data 

not shown). Given that these transporters are part of essential homeostatic processes, it is 

understandable that knockdown could be detrimental and only those surviving cells that 

did not have high or complete knockdown are left, a problem that is confounded by the 

difficulty of knockdown in primary macrophages which are not altering their expression 
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profile. If this were achievable, metabolomics could be performed to determine the need 

of individual transporters for the intracellular replication and survival of L. pneumophila.  

 It remains unclear whether SLCs are responsible for transporting amino acids 

through the LCV membrane to the LCV lumen. Recently, it has been shown that the 

vacuole of L. pneumophila in hMDMs is semipermeable, as noted by galactin-3 staining 

of the LCV, which localizes to damaged host membranes [230]. A semipermeable LCV 

could be sufficient to allow amino acids into the LCV lumen. L. pneumophila may be 

providing its own transporters to serve this purpose on the LCV. Alternatively, it could be 

both host and bacterial transporters responsible for amino acid transport. With a variety 

of options for amino acid acquisition the bacteria are fit for survival.  Having many types 

of SLCs, with overlapping substrates, would ensure the bacterium acquires the nutrients it 

needs to account for variations within protozoan hosts or in the event it encounters a host 

with an aberrant transporter profile, which would explain why numerous SLCs are found 

on the LCV by mass-spectrometry (Table 2-1). While many SLC homologs have been 

identified in the model protozoa, Dictyostelium discodium, L. pneumophila may not have 

the same ability to manipulate SLCs in the human host that it does in the environmental 

host.  

 Colocalization of SLC2a1/Glut1 to the LCV is a novel discovery if it can be 

reproduced using reliable antibodies. For macrophages, Glut1 is the most well studied 

glucose transporter, particularly for its involvement in macrophage polarization [267-

272].  

To facilitate rapid metabolic changes, under activation conditions macrophages 

prefer glycolysis, which is a faster method of generating ATP than through the TCA 
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cycle, even though it produces less ATP overall [253, 269, 272, 273]. In order to meet the 

increased demand of glucose, macrophages will increase the amount of SLC2a1/Glut1 

present on the plasma membrane [249]. Using SLC2a1/Glut1 to increase cellular levels 

of glucose, allows for the macrophage to produce a stronger ROS response [253]. The 

presence of Glut1 on the LCV during infection of L. pneumophila could serve as a dual 

purpose, sequestering glucose from the macrophage would dampen the ROS attack, while 

allowing L. pneumophila to increase store of poly-3-hydroxybutyrate for survival outside 

of the host. Further studies to define the role of SLC2a1 during infection should be 

performed. Our attempts at characterizing SLC2a1 were hindered by the termination of 

the commercial production of the SLC2a1 antibody used in our studies. Antibodies 

against SLC2a1 from other companies were insufficient in the detection of the protein by 

confocal and western blot with hMDMs.   
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MATERIALS AND METHODS 

Strains and cell lines 

L. pneumophila strain AA100/130b (ATCC BAA-74) and the dotA T4SS-

deficient mutant, were grown on Buffered Charcoal Yeast Extract (BCYE) agar, as we 

previously described [166]. For infection of cell monolayers, L. pneumophila strains were 

grown in BYE broth with appropriate antibiotic selection, at 37°C with shaking, to post-

exponential phase (OD550nm 2.1-2.2). 

HEK293T cells were cultured in DMEM (Gibco) supplemented with 10% fetal 

bovine serum as previously described [97, 166]. U937 cells were cultured in RPMI 

(Corning) supplemented with 10% fetal bovine serum as previously described [168]. 

HepG2 cells were cultured in DMEM (Gibco) supplemented with 10% fetal bovine 

serum. Human monocyte-derived macrophages (hMDMs) were isolated from healthy 

donors and cultured in RPMI 1640, supplemented with 10%  fetal bovine serum, as 

previously described [97, 166]. All methods were approved and carried out in accordance 

to the University of Louisville Institutional Review Board guidelines and blood donors 

gave informed consent as required by the University of Louisville Institutional Review 

Board (IRB # 04.0358). 

Expression of SLCs during infection of hMDMs 

 To determine expression of SLCs during infection, 1 x 106 hMDMs were infected 

the WT strain or the dotA mutant, MOI of 10, for 2 hrs. RNA was isolated using 

mirVANA isolation kit (Invitrogen). RNA was converted into cDNA and used for 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to quantitate SLC 

expression using the primers listed in Table 2-6. The expression of SLCs was assessed 
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quantitatively via the ΔΔCt method. Ct values corresponding to the SLCs were 

normalized to gapdh.  

 

Analysis of SLC LCV-colocalization 

RNA from hMDMs was isolated using the RNeasy PLUS mini kit (Qiagen), and 

used to generate cDNA. Human cDNA was used as a template for amplifying SLC genes 

using the primers listed in Table 2-6. SLC amplicons were cloned into the p3XFLAG-

CMV10 expression vector.   

Colocalization of SLC transporters to the LCV was determined using confocal 

microscopy. To achieve this, HEK293T, U937, HepG2, or hMDMs were plated into 24-

well plates containing glass coverslips (2 x 105 cells per well). Coverslips for HEK293T 

cells were treated with poly-l-lysine. Monolayers were infected with either post-

exponential phase WT or the dotA mutant, at an MOI of 25 for 1 h, and then treated for 

1h with gentamicin to kill remaining extracellular bacteria as previously described [97, 

166]. At various timepoints, the monolayers were fixed and permeabilized using 

methanol at -20°C for 5 min or 4% PFA for 15 mins. The monolayers were labeled with 

goat or rabbit anti-Legionella antiserum (1/500 dilution or 1/1000 dilution, respectively) 

and α-SLC antibody (Table 2-7), and counter-labelled with Alexa-Fluor 488 anti-rabbit 

or anti-goat IgG antibody and Alexa-Fluor 594 anti-mouse, anti-goat, or anti-rabit IgE 

(1/4000 dilution, Invitrogen) and DAPI to stain nuclei. The cells were examined by 

confocal microscopy using an Olympus FV1000 laser scanning confocal microscope 

(Olympus). Quantification of LCV-colocalization was performed manually by counting 

Z-stack images (8 µM depth with 0.2 µM slices) of infected cells. Over 50 infected cells 

were counted for each condition.  
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Table 2-6. Primers used in this study. 

SLC1a1 F AAGCTTATGGGGAAACCGGCG 
SLC1a1 R GAATTCCTAGAACTGTGAGGTCTGGGTGAAT 
SLC1a2 F GGGCAATCTCTGGACATCTTTATCT 
SLC1a2 R AGGCGAGACATGGAGAACACTTTA 
SLC1a4 v1 F AAGCTTATGGAGAAGAGCAACGAG 
SLC1a4 v1 R GAATTCTCACAGAACCGACTCCTT 
SLC1a4 v2 F AAGCTTATGAACATTTTAGGATTGGTC  
SLC1a4 v2 R GAATTCTCACAGAACCGACTCCTT 
SLC1a5 v2 F AAGCTTATGAACATCCTGGGCTTG 
SLC1a5 v2 R GAATTCTTACATGACTGATTCCTTCTCAGAG 
SLC1a5 v3 F AAGCTTATGTACTCTACCACCTATGAAGAGAG 
SLC1a5 v3 R GAATTCTTACATGACTGATTCCTTCTCAGAG 
SLC1a6 F GTGGCTTAGGGACTGGAAACATA 
SLC1a6 R GGGCACAGACCAGGACTCAC 
SLC3a2 F AAGCTTATGGAGCTACAGCCTCCTGAA 
SLC3a2 R GAATTCTCAGGCCGCGTAGGG 
SLC6a5 F CACCCTCCACCAGTTCAGTCT 
SLC6a5 R TGCGACACTATGCCTACTTTTCTA 
SLC7a2 F AGCTTATGAAGATAGAAACAAGTGGTTATAAC 
SLC7a2 R AAGCTTATGATTCCTTGCAGAGCC 
SLC7a3 F AAGCTTATGCCGTGGCAAGCAT 
SLC7a3 R AGATCTTCAAACTGAGTGGACATAGAGAGTG 
SLC7a5 F GGCCGGTGCGCAGAG 
SLC7a5 R GGCCCAAGGAGACCAAAAG 
SLC7a10 F GGCGGGACAGCGACATG 
SLC7a10 R TGCCAAAACACCTCCTCAATAAA 
SLC13a2 F AAGCTTATGGCCACCTGCTGGC 
SLC13a2 R GGTACCCTAGGGGCTTGGTGTGGT 
SLC13a5 F GCTGCCCCTCACTCGTCTC 
SLC13a5 R TGCCAGAAGGTTCGGTAGTC 
SLC16a1 F AAGCTTATGCCACCAGCAGTTG 
SLC16a1 R GGTACCTCAGACTGGACTTTCCTC 
SLC16a7 F AAGCTTATGCCACCAATGCCA  
SLC16a7 R GGTACCTTAAATGTTAGTTTCTCTTTCTGA 
SLC17a6 F GCCCGCAACTACTTTAAGAGAT 
SLC17a6 R TCCCCACCTAAAATTCTATGACTC 
SLC25a2 F AAGCTTATGAAGTCCGGTCCTG 
SLC25a2 F AGATCTTCAGTATGCTTCCAACTGTT 
gapdh F (qPCR) TGCACCACCAACTGCTTAGC 
gapdh R (qPCR) GGCATGGACTGTGGTCATGAG 
SLC1a5 F (qPCR) CCTCTTCCAGTTCCGCCACG 
SLC1a5 R (qPCR) GGCCGTGACCAGGATGGTGA 
SLC3a2 F (qPCR) TCCTGGACAGCCTATGGAGG 
SLC3a2 R (qPCR) CACTCTGGCCCTTCACAGTC 



64 
 

SLC7a5 F (qPCR) TGGCCGTGGACTTCGG 
SLC7a5 R (qPCR) TCATCACACACGTGAACACG 
SLC16a1 F (qPCR) TATGGTGGAGGTCCTATCAGCA 
SLC16a1 R (qPCR) AGCCCAAGACCTCCAATGAC 

 

Table 2-7. SLC antibodies used in this study and their source. 

Protein Source 

SLC1a4 Santa Cruz (H-60), rabbit 
SLC1a5 Santa Cruz (H-52), rabbit 
SLC1a6 Santa Cruz (K-20), goat 
SLC2a1 Santa Cruz (H-43), rabbit 
SLC2a1 Santa Cruz (A-4), mouse  
SLC2a1 Proteintech 66290-1, mouse  
SLC2a1 Genetex GTX15309, rabbit  
SLC2a2 Novus NBP2-2218, rabbit 
SLC3a2 Abcam Ab193364, mouse 
SLC3a2 R&D systems, MAB52920-SP, mouse 
SLC7a5 Abcam Ab85226, rabbit 
SLC13a5 Abnova, 152-206, rabbit 
SLC16a1 Abcam ab90582, mouse 
SLC16a3 Proteintech 22787-1-AP, rabbit 
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CHAPTER 3: 

MAMMALIAN SOLUTE CARRIER (SLC)-LIKE TRANSPORTERS IN LEGIONELLA 
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*  Best, A.M., Jones, S.C., Abu Kwaik, Y. Mammalian Solute Carrier (SLC)-like 
transporters in Legionella pneumophila. Sci Reports. Manuscript in review 
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Summary 

Acquisition of nutrients during intra-vacuolar growth of L. pneumophila within 

macrophages or amoebae is poorly understood. Since many genes of L. pneumophila are 

acquired by inter-kingdom horizontal gene transfer from eukaryotic hosts, we examined 

the presence of human solute carrier (SLC)-like transporters in the L. pneumophila 

genome using I-TASSER to assess structural alignments. We identified 10 SLC-like 

putative transporters in L. pneumophila that are structurally similar to SLCs, seven of 

which are amino acid transporters, and one is a tricarboxylate transporter. The two other 

transporters, LstA and LstB, are structurally similar to the human glucose transporter, 

SLC2a1/Glut1. Single mutants of lstA or lstB have decreased ability to import, while the 

lstA/lstB double mutant is severely defective for uptake of glucose.  While lstA or lstB 

single mutants are not defective in intracellular proliferation within Acanthamoeba 

polyphaga and human monocyte-derived macrophages, the lstA/lstB double mutant is 

severely defective in both host cells. The two phenotypic defects of the lstA/lstB double 

mutant in uptake of glucose and intracellular replication are both restored upon 

complementation of either lstA or lstB. Our data show that the two glucose transporters, 

LstA and LstB, are redundant and are required for intracellular replication within human 

macrophages and amoebae. 

Introduction 

Legionnaire’s disease, an atypical pneumonia, is a result of inhalation of the 

bacteria Legionella pneumophila [1, 3, 274]. Within the human host, L. pneumophila 

primarily reside and replicate within alveolar macrophages [79, 100, 107]. Infection of 

humans is considered to be “accidental”, as the natural hosts for L. pneumophila are 

protozoa in the aquatic environment [275]. Growth within either host occurs through 
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manipulation of evolutionarily conserved pathways, to avoid fusion to the lysosomes and 

to remodel the vacuole to become ER-derived, which is designated as the Legionella-

containing vacuole (LCV) [91, 276, 277]. The Dot/Icm type IVb translocation system, 

which translocates >320 effector proteins into the host cytosol, is required for biogenesis 

of the LCV and for successful intracellular replication in macrophages and amoebae 

[126, 127, 278, 279]. A plethora of host cell processes are modulated by the translocation 

of effector proteins that allow L. pneumophila to evade innate immunity and acquire 

nutrients [75, 148, 280, 281]. 

L. pneumophila relies on host amino acids (such as, serine, cysteine, and alanine) 

to feed into TCA cycle as the main source of carbon and energy [76, 211]. The bacteria 

are in such high demand for amino acids that endogenous amounts within the host are 

below the threshold needed to support robust intracellular replication [75, 100]. To raise 

host cellular levels of amino acids, L. pneumophila translocates the AnkB effector, which 

hijacks the host ubiquitination-proteasome machinery to degrade proteins [75, 98, 170, 

172].  

Early studies pointed to a preference for amino acids as an energy source and 

identified auxotrophies for seven amino acids: threonine, arginine, isoleucine, 

methionine, leucine, cysteine, and valine [207, 211].  Many of these auxotrophies are 

shared with the amoeba host which may allow the bacterium to synchronize growth with 

that of the host, avoiding deleterious growth during times of environmental stress [52, 

282]. Legionella can enter into a viable but non-culturable (VNBC) state when 

encountering nutritional stress, which has only been shown to be recovered by co-

culturing with amoebae [77].  
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Nutritional virulence studies on L. pneumophila have focused on the generation 

and utilization of amino acids [75, 76, 89, 176]. Only recently has glucose metabolism 

been studied for its role during intracellular replication [175, 220]. However, 

supplementation of glucose in vitro does not enhance growth of L. pneumophila [220]. 

Glycolysis plays a minimal role in glucose catabolism, but is predominately metabolized 

through the ED pathway while the pentose phosphate pathway (PPP) functions only to 

generate mannose and histidine [175, 214, 220].  A gene cluster encoding enzymes for 

glucose catabolism, through the ED pathway of L. pneumophila has been shown to be 

required for growth in the A549 epithelial cell line, A/J mouse macrophages, and 

Acanthamoeba culbertsoni, indicating the importance of the ED pathway in intracellular 

replication of L. pneumophila [220]. Initial studies focused on poly-3-hydroxybuyterate 

(PHB), a 4-carbon storage molecule that is generated by metabolizing glucose, through 

the Enter-Doudoroff (ED) pathway into pyruvate, which gets converted  acetyl-CoA, then 

PHB [226].  PHB is synthesized in late stages of growth and catabolized during 

stationary growth into acetyl-CoA to feed into the TCA cycle [218, 226].  The primary 

usage of glucose by L. pneumophila is considered to be conversion into PHB [175, 218].  

How nutrients are imported by L. pneumophila is not well understood. To date, 

only one amino acid transporter, PhtA, of L. pneumophila has been shown to import 

threonine and is required for intracellular replication in macrophages [283].  Given that 

numerous genes in L. pneumophila have been acquired by inter-kingdom horizontal gene 

transfer from eukaryotic hosts, we sought to identify nutrient transporters in L. 

pneumophila based on their similarity to the human solute carrier (SLCs)  transporters 

due to the lack of well annotated amoebal genomes [156, 284].  This superfamily of 
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transporters consists of over 55 families, grouped based on substrate specificity and tissue 

tropism [235]. They are considered to be part of a larger, evolutionarily conserved group 

of transporters known as the Major Facilitator Superfamily (MFS) [236, 237].  

Ten putative amino acid SLC-like transporters were identified, including a citrate 

transporter, 7 amino acids transporters and 2 glucose transporters. We focused our studies 

on the two putative SLC-like glucose transporters, LstA and LstB, to further understand 

the import of glucose and its role in intracellular replication of L. pneumophila. 

 

Results 

Identification of human SLC-like transporters in L. pneumophila 

Using the primary amino acid sequences from the human cationic amino acid transporter 

family, SLC7, against the genome of L. pneumophila strain AA100/130b, seven putative 

SLC-like amino acid transporters in L. pneumophila were identified by BLAST with 

similarity of 56- 42% and identity of 25-37% (Table 3-1). In addition, using the primary 

amino acid sequence from the SLC13 family, one putative SLC-like transporter of 

tricarboxylates, lpg2876 (24% / 51%), and using primary amino acid sequence from the 

SLC2 family, two putative SLC-like glucose transporters, lpg0421 (33% / 50%) and 

lpg1653 (30% / 48%), were also identified using BLAST (Table 3-1). Structural 

modeling of these proteins was done using the Iterative Threading Assembly Refinement 

(I-TASSER) server, which is a bioinformatics algorithm for predicting three-dimensional 

structure based on fold recognition [285-287]. Structural alignment was performed using 

TM-align, an algorithm that uses known or predicted protein structure to align proteins 

and determine structural similarity [285-287]. A TM-score is given for each alignment 

where, 1.0 indicates an exact copy, 0.0 - <0.3 indicates random structural similarity, and 
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0.5 - <1.0 indicating shared structural topology [287].  L. pneumophila proteins were 

compared to the human SLCs to determine structural homology, as measured by TM-

scores (Table 3-1). Structural comparisons of these SLC-like transporters of L. 

pneumophila with human SLCs showed high structural similarity (TM-scores 0.78 – 

0.977) (Table 3-1 and Fig. S3-1).  Few homologs of mammalian SLCs have been 

identified within amoebae, which also can be used to identify L. pneumophila 

transporters; these are designated as CtrABC in Dictyostelium discodium (Fig. S3-2). We 

have designated these putative transporters as Legionella SLC-like transporters, LstA-J 

(Table 3-1).  

Table 3-1. SLC-like putative proteins in L. pneumophila are homologous human 

SLCs. Ten transporters in L. pneumophila were identified by BLAST amino acid 
sequence homology with human SLC transporters. Predicated structures, generated by I-
TASSER, were used to determine structural similarity with human SLCs by TM-score.  
 Amino 

acid 
identity 
(BLAST) 

Amino 
acid 
similarity 
(BLAST) 

Putative substrates Representative 
SLC, TM-score 

LstA (Lpg0421) 37% 56% Glucose and other 
monosaccharides 

SLC2a1 (0.903) 

LstB (Lpg1653) 25% 44% Glucose and other 
monosaccharides 

SLC2a1 (0.922) 

LstC (Lpg0026) 25% 42% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a1 (0.953) 

LstD (Lpg0049) 25% 53% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a5 (0.954) 

LstE (Lpg0228) 33% 50% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a1 (0.848) 

LstF (Lpg0281) 25% 44% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a4 (0.985) 

LstG (Lpg0970) 30% 48% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a4 (0.855) 

LstH (Lpg1691) 27% 45% Cationic amino acids (arginine, 
lysine, ornithine) 

SLC7a2 (0.756) 

LstI (Lpg2245) 25% 53% Alanine, serine, cysteine, and 
threonine 

SLC1a4 (0.961) 

LstJ (Lpg2876) 24% 51% Succinate, citrate, isocitrate, α-
ketoglutarate 

SLC13a3 (0.931 
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Since the uptake and the role of glucose in intracellular growth and metabolism of 

L. pneumophila is not well understood, we focused our studies on the two putative SLC-

like transporters of L. pneumophila that shared strong structural similarity to 

SLC2a1/Glut1, LstA and LstB (Fig 3-1A, B). LstA of L. pneumophila and Glut1 of 

humans have a TM-score of 0.903, and LstB and Glut1 a TM-score of 0.922, indicating 

very strong structural similarity (Fig. 3-1A, B, D). Members within the Glut family do 

not share this degree of similarity (Glut1 and Glut3, TM-score of 0.88). When comparing 

alignment of LstA to LstB, the TM-score is 0.959, indicating potential redundancy (Fig. 

3-1C, D). These two L. pneumophila proteins are smaller in size than their human 

counterpart proteins but the secondary structural alignment is conserved. LstA and LstB 

are likely members of the major facilitator superfamily (MFS), which are important 

transporters that have been maintained, in all domains of life, with little deviation through 

evolutionary history [237]. These two genes do not appear to be the result of gene 

duplication within L. pneumophila (Fig. S3-3), since the GC content of lstA is 39.7%, 

while lstB is 37.4%, indicating independent acquisition and divergent evolution. 
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Figure 3-1. The predicted structure of two putative glucose transporters, LstA and 

LstB, of L. pneumophila. Structural alignment between A) Glut1 (blue) and LstA (red), 
B) Glut1 (blue) and LstB (red), and C) LstA (red) and LstB (blue), are shown using TM-
align. D) TM-scores, indicating structural similiarity between Glut1, LstA, and LstB, as 
calculated by TM-align.  
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Glucose import by LstA and LstB 

Predicted substrate binding, by I-TASSER, for LstA and LstB indicate glucose as 

a putative substrate [285, 286]. Given their high degree of structural similarity to Glut1, 

we hypothesized that both of these putative transporters were involved in the transport of 

glucose of L. pneumophila. To test if either LstA or LstB were required for the uptake of 

glucose, null mutants were generated, and uptake of glucose was analyzed by liquid 

scintillation using 14C-glucose. L. pneumophila strains were grown to post-exponential 

phase in the presence of 0.1% uniformly labelled 14C-glucose. Broth grown WT L. 

pneumophila was able to effectively take up 14C-glucose in vitro (Fig. 3-2). As a control, 

excess, unlabeled glucose (10mM) was added, which abolished uptake of 14C-glucose 

(Student t-test, p < 0.001) (Fig. 3-2).  The lstA and lstB mutants had significantly reduced 

uptake of 14C-glucose compared to the WT strain (Student t-test, p < 0.001), but glucose 

uptake was more reduced in the lstA mutant (Fig. 3-2). Complementation of the single 

mutants with the respective gene on a plasmid (lstA.C and lstB.C) restored uptake of 

glucose to that of the WT strain levels (Fig. 3-2). 

To determine whether LstA and LstB were redundant, a lstA/lstB double mutant, was 

generated. Loss of both transporters abolished uptake of 14C-glucose compared to the WT 

strain (Student t-test, p < 0.001) (Fig. 3-2). Upon supplementation of excess, unlabeled 

glucose (10mM) uptake of labeled glucose was inhibited in the complemented double 

mutants (Student t-test, p < 0.001) (Fig. 3-2). Interestingly, complementation with a 

single transporter, (lstA.C or lstB.C) restored uptake of 14C-glucose to the double mutant 

similar to the WT strain levels (Fig. 3-2). These data show that LstA and LstB are 

glucose transporters.  



74 
 

Figure 3-2. Glucose uptake in L. pneumophila by lstA and lstB. Uptake of 14C-glucose 
measured in counts per minute (CPM), of WT L. pneumophila (black), single mutants 
(white), and double mutants (grey), was determined. Addition of unlabeled glucose 
(10mM) was used as a negative control (checkered). Data points represent mean CPM ± 
SD, n=4 and are representative of three independent experiments.   

 

LstA and LstB CyaA-reporters are not translocated by Dot/Icm translocation system 

 While it is most likely that LstA and LstB are L. pneumophila membrane proteins, 

it is possible they are translocated into the host cell by the Dot/Icm. Translocation of 

these proteins could allow them to embed into the LCV membrane and access the pool of 

glucose in the host cytosol. Therefore, we sought to determine if LstA and LstB were 

translocated by the Dot/Icm translocation system [126, 127]. The adenylate cyclase 

(CyaA) reporter assay was used to assess translocation by measuring the level of cAMP 

generated by CyaA [137, 288]. Reporter plasmids were expressed in WT L. pneumophila 

and the dotA translocation-deficient mutant. The positive control, CyaA-RalF, was 
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effectively translocated in U937 human macrophages by the WT strain (Student t-test, p 

< 0.001) (Fig. 3-3). Neither CyaA-LstA nor CyaA-LstB reporters were translocated, as 

there was no significant difference in the level of cAMP between these reporters in WT 

L. pneumophila or the dotA mutant, compared to uninfected cells (Student t-test, p > 

0.05) (Fig. 3-3).  

 

Figure 3-3. CyaA-LstA and CyaA-LstB reporters are not translocated by the 

Dot/Icm translocation system.  Adenylate cyclase fusions of LstA and LstB were 
determined in triplicates at 1 h post-infection of U937 macrophages by the WT strain of 
L. pneumophila and the dotA mutant. A known T4SS effector (RalF) was used as a 
positive control. Data points represent mean CPM ± SD, n=4 and are representative of 
three independent experiments.   
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The LstA and LstB glucose transporters are required for growth in Acanthamoeba 

polyphaga and human monocyte-derived macrophages 

 We determined intracellular replication of glucose transporter single mutants, lstA 

and lstB, and the double mutant lstA/lstB in human monocyte-derived macrophages 

(hMDMs) and A. polyphaga. Single transporter null mutants, lstA and lstB, replicated 

similarly to WT L. pneumophila in A. polyphaga or hMDMs (Fig 3-4A, 3-5A), which is 

consistent with the idea that they are redundant transporters. Given that the lstA/lstB 

double mutant resulted in a severely diminished uptake of glucose, we determined the 

ability of the double mutant to replicate intracellularly. In vitro cultures of lstA/lstB grew 

similarly to the WT strain (Fig. S3-4). Preliminary studies indicate no defect in 

intracellular trafficking of the lstA/lstB double mutant determined by confocal 

microscopy to examine co-localization of the LCV with calnexin, LAMP1, and KDEL 

(data not shown).  

Interestingly the lstA/lstB double mutant was severely defective for growth in A. 

polyphaga and hMDMs (Two-way ANOVA, p < 0.001) (Fig. 3-4B, 3-5B). 

Complementation of the double mutant, with individual single transporters, lstA.C or 

lstB.C, restored intracellular growth of the double mutant in A. polyphaga and hMDMs to 

almost that of WT L. pneumophila (Fig. 3-4B, 3-5B). These data show that the two 

glucose transporters, LstA and LstB, are required for intracellular growth of L. 

pneumophila within hMDMs and A. polyphaga and these two transporters are most likely 

to be redundant in their function to import glucose [220]. Our data show that uptake of 

glucose is required for intracellular replication of L. pneumophila within evolutionarily 

distant host cells. 
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Figure 3-4. LstA and LstB are required for growth of L. pneumophila in amoebae. 

Intra-vacuolar replication of the A) the WT strain; the two single transporter mutants, lstA 
and lstB; and the complemented single mutant, lstA.C and lstB.C, was determined in A. 

polyphaga. B) The WT strain; the dotA mutant; the double mutant, lstA/lstB; and the 
complemented double mutant, lstA/lstB lstA.C and lstA/lstB lstB.C was also determined in 
A. polyphaga. The number of CFUs was determined at 2, 8, and 24 hrs post-infection. 
Data points represent mean CFUs ± SD, n=3 and are representative of three independent 
experiments. 
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Figure 3-5. LstA and LstB are required for growth of L. pneumophila in hMDMs. 

Intra-vacuolar replication of the A) the WT strain; the two single transporter mutants, lstA 
and lstB; and the complemented single mutant, lstA.C and lstB.C, was determined in 
hMDMs. B) The WT strain; the dotA mutant; the double mutant, lstA/lstB; and the 
complemented double mutant, lstA/lstB lstA.C and lstA/lstB lstB.C was also determined 
hMDMs. The number of CFUs was determined at 2, 8, and 24 hrs post-infection. Data 
points represent mean CFUs ± SD, n=3 and are representative of three independent 
experiments.  
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Discussion 

 L. pneumophila generates copious amounts of host amino acids for carbon and 

energy but it is also reliant on host glucose [175, 220, 289]. Hauslein et al. described L. 

pneumophila metabolism as being “bipartite”, where amino acids serve as the major 

energy supply in the exponential phase and carbohydrates at the post-exponential phase 

are used in anabolic processes  [214]. The role of glucose during intracellular infection 

can be difficult to study; methods for altering the levels of glucose affect the host cells, 

which may have detrimental effects on intracellular growth of L. pneumophila 

independent of the glucose level. The glucose analog, 2-deoxy-D-glucose (2-DG) causes 

autophagy in macrophages [290]. Increasing the levels of glucose in macrophages 

increases the inflammatory response, while starving cells of glucose mimics treatment 

with 2-DG [253, 291]. Therefore, removing the L. pneumophila’s ability to access 

glucose by deletion of glucose transporters will best highlight the intracellular need for 

glucose without altering the host cell response to infection. 

Our findings indicate that L. pneumophila utilizes two redundant glucose 

transporters, LstA and LstB, both of which transport glucose, and are required for growth 

within hMDMs and A. polyphaga. Surprisingly, the need for intracellular glucose is 

immediate, despite the fact that glucose is thought to be imported by L. pneumophila at 

the post-exponential phase and is thought to be primarily used in the late stages of growth 

for PHB synthesis [175, 218, 220, 226]. Consistent with this idea, lstA is highly 

upregulated in the post-exponential growth phase in vitro, when glucose is being utilized 

[181, 220]. However, lstB expression remains unchanged throughout the growth phases 

[181]. This could represent dual usages for glucose; LstB could transport low basal levels 

of glucose throughout intracellular growth while LstA transports large amounts of 
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glucose when the demand has increased during late stages of growth [175, 220]. 

Interestingly, LstA has been shown to be induced intracellularly during post-exponential 

growth of L. pneumophila in THP and Acanthamoeba castellanii, relative to growth in 

vitro [177, 181]. This supports the idea that glucose is required for intracellular 

replication but not for in vitro growth of L. pneumophila  [220]. However, loss of either 

of the two transporters, lstA or lstB, is not sufficient to affect intracellular growth, which 

is most likely due to functional redundancy.  

LstA is situated adjacent to a glucose utilization gene cluster, which is important 

for the catabolism of glucose via the ED pathway [175, 220]. Conflicting reports have 

shown that the gene cluster is required for growth in A549, A/J mouse macrophages, and 

A. culbertsoni, when mutated in L. pneumophila strain AM511 [220]. However, in the 

Paris strain of L. pneumophila, deletion of one of the genes, zwf, does not result in a 

growth defect in Acanthamoeba castellannii [175].  Additionally, the genetic 

organization of the gene cluster in the AM511 and the Paris strains is different [175, 

220]. The lstA gene is 113bp downstream of the 3’ end of eda of the glucose utilization 

gene cluster, which is sufficient for lstA to have its own promotor. This genetic 

organization is conserved among the Paris and AM511 strains, as well as our strain, 

AA100/130b. 

 The glucose transporter LstB/Lpg1653 is part of a myo-inositol catabolism gene 

cluster in L. pneumophila [292]. Although, LstB has been shown to transport inositol, 

inositol transporters are capable of transporting glucose, which is molecularly similar and 

acts as a competitive inhibitor of myo-inositol transport [292-294]. Therefore, it is 

possible that LstB has dual, or multi-, substrate specificity. Within L. pneumophila, myo-
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inositol is also metabolized into acetyl-CoA, which could also support the generation of 

PHB [292]. 

Although CyaA-LstA and CyaA-LstB reporters are not translocated by the 

Dot/Icm system, CyaA reporter fusions are made at the N-terminus, since the C-terminus 

contains the recognition sequences for translocation by the Dot/Icm system [90]. This 

presents a caveat for trans-membrane proteins, such as for LstA and LstB, since the N-

terminus tag may interfere with translocation or subcellular localization. Therefore, our 

data do not exclude the possibility that native LstA and LstB are translocated and 

embedded in the LCV membrane, providing L. pneumophila with access to the pool of 

glucose in the host cytosol. Alternatively, the LCV may acquire the host Glut1/SLC2a1 

to import glucose into the LCV lumen while LstA and/or LstB are localized to the L. 

pneumophila outer membrane to import glucose from the LCV lumen.  

 Supplementation of glucose in vitro does not enhance the growth of L. 

pneumophila [220]. This may suggest the intracellular requirement for glucose does not 

support replication as a source of carbon and energy. Given that PHB is generated from 

glucose and is essential for survival outside of the host, lack of glucose uptake could be 

triggering stress response genes that prevent L. pneumophila from replicating [226]. If 

this were the case, starving host cells of glucose, would prevent the replication of 

intracellular L. pneumophila; however, starving host cells of glucose triggers cell death 

by autophagy [295]. Glucose is an important requirement for generating a reactive 

oxygen species (ROS) by amoebae and human macrophages in response to invading 

pathogens [253, 291]. Uptake of glucose by L. pneumophila could serve dual purposes of 
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sequestering glucose from the host, to dampen the immune response and to provide the 

precursor for PHB. 

In summary, we have identified two redundant glucose transporters, LstA and 

LstB, which are required for intracellular replication of L. pneumophila in macrophages 

and amoebae. The requirement for glucose uptake by L. pneumophila is essential for 

intracellular growth in hMDMs and A. polyphaga, but not during growth in vitro. This 

presents an interesting question in L. pneumophila biology; why is glucose import 

required only during intracellular replication? This should be the focus of future studies. 

  



83 
 

Materials and Methods 

Strains and cell lines 

L. pneumophila strain AA100/130b (ATCC BAA-74) and the T4SS-deficient mutant, 

dotA were grown on Buffered Charcoal Yeast Extract (BCYE) agar, as we previously 

described [166]. To generate isogenic mutants in lstA and lstB, ~2 kb of flanking DNA on 

either side was amplified using primers listed in Table S3-2 and cloned into the shuttle 

vector, pBCSK+lstAKO and pBCSK+lstBKO (Table S3-1). The entire gene of either lstA 

or lstB was deleted via inverse PCR using the primers listed in Table S3-2, resulting in 

pBCSK+lstAKOi and pBCSK+lstBKOi (Table S3-1). The kanamycin cassette from the 

Ez-Tn5 transposon was amplified using primers listed in Table S2 and the resulting PCR 

product was subcloned into in pBCSK+lstAKOi and pBCSK+lstBKOi between the 

flanking regions of either lstA or lstB, using standard molecular procedures, resulting in 

in pBCSK+lstAKAN and pBCSK+lstBKAN (Table S3-1). Each resulting plasmid was 

independently introduced into L. pneumophila AA100/130b via natural transformation, as 

we previously described [161]. After three days, natural transformants were recovered by 

plated on BCYE supplemented with 50 μg/ml kanamycin, to generate L. pneumophila 

lstA and L. pneumophila lstB (Table S3-2). To confirm deletion of either lstB or lstB, the 

forward primer for sequencing and the reverse primer for generation of the knockout, 

listed in Table S3-2 were used. To generate double mutants, a gentamycin cassette was 

amplified using primers listed in Table S3-2 and the resulting PCR product was 

subcloned into in pBCSK+lstAKOi between the flanking regions of either lstA, using 

standard molecular procedures, resulting in in pBCSK+lstAGENT (Table S3-1). The 

resulting plasmid was introduced into L. pneumophila lstB  via natural transformation, as 

previously described [161]. After three days, natural transformants were recovered by 
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plated on BCYE supplemented with 20 μg/ml kanamycin and 5 μg/ml gentamycin, to 

generate L. pneumophila lstB/lstA (Table S3-1). Deletions were confirmed using the same 

primers as described above. 

  To generate complement mutants of single deletions and double deletions, lstA or 

lstB with flanking upstream and downstream sequences were amplified by PCR using the 

primers listed in Table S3-2, and subcloned into pBCSK+, generating pBCSK+lstA.C and 

pBCSK-lstB.C (Table S3-1).  The pBCSK+lstA.C plasmid was introduced into the lstA 

and lstA/lstB mutants and the pBCSK+lstB.C plasmid was introduced into the lstB and 

lstA/lstB  mutants via electroporation as previously described (Table S3-1) [296]. All 

complement mutants were selected on BCYE plates supplemented with 5 μg/ml 

chloramphenicol, resulting in the following complement strains: lstA.C, lstB.C, lstA/lstB 

lstA.C , and lstA/lstB lstB.C (Table S3-2).  

Human monocyte-derived macrophages (hMDMs) were isolated from healthy 

adult donors and cultured in RPMI 1640 (Corning) supplemented with 10% fetal bovine 

serum, as previously described [166]. All methods were carried out and approved in 

accordance to the University of Louisville Institutional Review Board guidelines and 

blood donors gave informed consent as required by the University of Louisville 

Institutional Review Board (IRB # 04.0358). U937 cells were cultured in RPMI 1640 

(Corning) supplemented with 10% fetal bovine serum and A. polyphaga was cultured in 

PYG media, experiments were performed in PY media, as we previously described [166]. 

Structural comparison of glucose transporters 

Predicted structures were generated via I-TASSER server from the Zhang Lab 

(https://zhanglab.ccmb.med.umich.edu/I-TASSER/) [285, 286, 297]. Structures generated 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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from I-TASSER were aligned using TM-align to determine structural alignment and TM-

scores for similarity (https://zhanglab.ccmb.med.umich.edu/TM-align/) [287, 298].  

Glucose uptake assay 

Uptake of glucose was assayed by growing WT L. pneumophila, lstA, lstB, and 

complemented mutant strains individually in the presence of 14C-label glucose (specific 

activity, 3.3MBq/μmol) (PerkinElmer) and followed the presence of glucose into the 

acid-insoluble fraction, as previously described [220]. One milliliter cultures were grown 

in Buffered Yeast Extract (BYE) broth supplemented with 0.1% D-[U-14C] glucose 

(specific activity, 3.3MBq/μmol) at 37°C, shaking to post-exponential phase (>OD550 

2.0). For control, 10mM sterile glucose was added to broth cultures with 0.1% D-[U-14C] 

glucose.  Samples normalized to 109 bacteria in 5ml 1% Triton X-100 for 30 mins, and 

then incubated for 30mins with 5ml of chilled 10% (w/v) trichloroacetic acid, on ice. To 

capture radioactivity, samples were filtered through nitrocellulose filters (0.45-μm pore 

size; Milipore) and rinsed three times with chilled 5% trichloroacetic acid. Radioactivity 

of the whole sample was determined by liquid scintillation (Tri-Carb 2910 TR, 

PerkinElimer) with BetaBlend scintillation cocktail (MP Biochemical).  

Intracellular replication 

L. pneumophila; the isogenic single mutants, dotA, lstA and lstB; the double 

isogenic mutant lstB/lstA; and the complement mutants lstA.C, lstB.C, lstB/lstA lstB.C, 

and lstB/lstA lstA.C were grown to post-exponential on BCYE plates at 37°C prior to 

infection and used to infect hMDMs or A. polyphaga, as previously described [97, 166]. 

A total of 1 X 105 host cells per well were plated into 96 well plates and infected with L. 

pneumophila at an MOI of 10 for 1h then treated with gentamycin to kill remaining 

extracellular bacteria, as previously described [97, 166]. Host cells were lysed with sterile 

https://zhanglab.ccmb.med.umich.edu/TM-align/
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water (hMDMs) or 0.02% Triton X-100 (A. polyphaga) at various timepoints over a 24h 

timecourse and L. pneumophila CFUs were determined by plating serial dilutions onto 

BCYE agar.  

Translocation assay 

 To assay translocation of LstA and LstB by L. pneumophila T4SS, during 

infection of host cells, an adenylate cyclase fusion (CyaA) reporter was generated using 

standard biological techniques with primers listed in Table S3 [288]. A total of 1 x 106 

U937 cells were infection with WT or dotA mutant L. pneumophila harboring plasmids 

expressing various adenylate cyclase fusions at an MOI of 20 for 1 h, as previously 

described (Table S2) [97, 288]. Following infection, cell monolayers were lysed in 

ddH2O and processed to assess cAMP concentration by ELISA using the Direct cAMP 

ELISA kit (Enzo), according to the manufacturer’s protocol and measured with a 

Syngergy H1 microplate reader (BioTek).   
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Figure S3-1. Structural alignment of human SLCs and SLC-like proteins in L. 

pneumophila. I-TASSER predicted structures of SLC-like proteins aligned, via TM-
align, with human SLCs based on highest TM-score, indicate strong structural similarity.  
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Figure S3-2. Similarity and identity of L. pneumophila SLC-like transporters and 

protozoan SLC-like transporters. SLC-like amino acid transporters are present in 
Dictyostelium discodium. These protozoan transporters share structural homology with 
the human SLC transporters and with L. pneumophila SLC-like transporters. A) Degrees 
of amino acid sequence identity and similarity between these transporters are shown in 
and B) structural alignment. 
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Figure S3-3. The lstA and lstB genes are likely not paralogs. Alignment of lstA within 
lstB indicates these two genes are likely not paralogs within L. pneumophila. 
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Figure S3-3. The lstA and lstB genes are likely not paralogs. Alignment of lstA within 
lstB indicates these two genes are likely not paralogs within L. pneumophila. 
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Figure S3-4. The lstA and lstB mutants grow similar to WT in vitro. Overnight 
cultures of WT and lstA/lstB in BYE broth diluted to OD550nm of 0.05 and grown at 37°C 
for 24 hrs. Growth rates were determined by measuring OD550nm every 2 hrs, for 12 hrs, 
then again at 24 hrs post-inoculation. Data are representative of three independent 
experiments. 
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Table S3-1. Bacterial strains and plasmids used in this study 

Strain or plasmid Genotype 
L. pneumophila  
   AA100/130b  
   dotA  
   lstA lstA, Kanr substitution  
   lstB lstB, Kanr substitution 
   lstA/lstB lstB, Kanr substitution 

lstA, Gentr substitution 
   lstA.C lstA complemented with pBCsk+lstA.C 
   lstB.C lstB complemented with pBCsk+lstB.C 
   lstB/lstA lstA.C lstB/lstA complemented with pBCsk+lstA.C 
   lstB/lstA lstB.C lstB/lstA complemented with pBCsk+lstB.C 
   CyaA-RalF In WT 
   CyaA-LstA In WT 
   CyaA-LstA In dotA 

   CyaA-LstB In WT 
   CyaA-LstB In dotA 

  
  
Plasmids  
   pBCsk-  
   pBCsk+lstAKO 2kB region upstream and downstream of lstA 

   pBCsk+lstBKO 2kB region upstream and downstream of lstB 
   pBCsk+lstAKOi pBCSK+lstAKO with lstA removed 
   pBCsk+lstBKOi pBCKSK+lstBKO with lstB removed 
   pBCsk+lstAKanr pBCSK+lstAKO with lstA replaced with 

kanamycin resistance cassette 
   pBCsk+lstBKanr pBCSK+lstBKO with lstA replaced with 

kanamycin resistance cassette 
   pBCsk+lstAGentr pBCSK+lstAKO with lstA replaced with 

gentamycin resistance cassette 
   pBCsk+lstA.C lstA, with 100bp promotor region 
   pBCsk+lstB.C lpg1649-lstB, with 100bp promotor region 
   pCYA+lstA CyaA-lstA fusion plasmid 
   pCYA+lstB CyaA-lstB fusion plasmid 
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Table S3-2. Primers used in this study 

Primer Sequence 
lstA-KO F GGTACCATATGATTTTGATCGATTGT 
lstA-KO R GAGCTCAAGGAAGCACATAAATTAAAA 
lstB-KOF GGTACCAAAACATTCAATACTTCAACA 
lstB-KO R GAGCTCTCAGTGAATATAAATAAACGCT 
lstA inverse F TATAAATTTTCCTATGATGCCC 
lstA inverse R TTTTCACTCCTTGATTTTAAATTCT 
lstB inverse F GTAACTATCTGTCCCTAATGAAAATTC 
lstB inverse R TCATGAAAAAGAAAATATGTCGAAT 
Kan F, R /5Phos/CTGTCTCTTATACACATCTCAA 
lstA sequence primer TATCAAGAATCATAACTGGTCTTT 
lstB sequence primer TAATTTTTCTGCCCAATTCCTATCGA 
Gent F /5Phos/ATGTTACGCAGCAGCAACGAT 
Gent R /5Phos/TTAGGTGGCGGTACTTGGGTC 
lstA-C F GGTACCTTCGGGTTGAAAAAGCGT 
lstA-C R GAGCTCCGTGTCAGTCAAAGATAACA 
lstB-C F GGTACCGGATAATCTCCTTATTATATTG 
lstB-C R  AGCTCATGCTTTGGTCAATTAAC 
CyaA-lstA F  
CyaA-lstA R  
CyaA-lstB F  
CyaA-lstB R  
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Summary 

Legionella pneumophila invades protozoa with an “accidental” ability to cause 

pneumonia upon transmission to humans. To support its nutrition during intracellular 

residence, L. pneumophila relies on host amino acids as the main source of carbon and 

energy to feed the TCA cycle. Despite the apparent lack of a requirement for glucose for 

L. pneumophila growth in vitro and intracellularly, the organism contains multiple 

amylases, which hydrolyze polysaccharides into glucose monomers. Here we describe 

one predicted putative amylase, LamB, which is uniquely present only in L. pneumophila 

and L. steigerwaltii among the ~60 species of Legionella.  Our data show that LamB has 

a strong amylase activity, which is abolished upon substitutions of amino acids that are 

conserved in the catalytic pocket of amylases. Loss of LamB or expression of 

catalytically-inactive variants of LamB results in a severe growth defect of L. 

pneumophila in Acanthamoeba polyphaga and human monocytes-derived macrophages. 

Importantly, the lamB null mutant is severely attenuated in intra-pulmonary proliferation 

in the mouse model and is defective in dissemination to the liver and spleen. Our data 

show an essential role for LamB in intracellular replication of L. pneumophila in amoeba 

and human macrophages and in virulence in vivo. 

 

Introduction 

The accidental human pathogen, Legionella pneumophila, causes an atypical 

pneumonia when water droplets, stemming from a contaminated water source such a 

cooling tower or humidifier, are inhaled by humans, which are considered as accidental 

host [3, 15, 300]. Over 20 protozoa species are known to harbor Legionella species, likely 

with more yet to be identified [100]. Growth within the natural protozoan host serves as a 
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“training grounds”, priming for infection of human alveolar macrophages, as these 

bacteria are more infectious than their free-living counterparts [79, 301, 302]. Success in 

replicating in macrophages may have been facilitated by the exploitation of 

evolutionarily conserved host processes, which allow L. pneumophila to modulate 

conserved pathways in both macrophages and protozoa [77, 93, 100, 303]. Inhaled 

bacteria enter into the lungs where they primarily reside and proliferate within alveolar 

macrophages [107, 304, 305]. The intracellular lifecycle in the evolutionarily distant host 

cells is nearly identical [100]. Once the bacterium enters the host cell, it actively evades 

lysosomal fusion and intercepts ER-derived secretory vesicles to generate and ER-

derived vacuole, known as the Legionella-containing vacuole (LCV) [53, 91, 96, 306], 

and modulate a plethora of cellular and innate immune processes [307-310].  

Essential to intracellular replication is the Dot/Icm Type 4b secretion system 

(T4SS), which inject proteins, known as “effectors”, from the bacterium to the host 

cytoplasm to modulate host processes [133, 278, 311]. Because of the broad host range, 

L. pneumophila has evolved over 320 effectors that are translocated by the Dot/Icm 

system and utilized as a “toolbox” to modulate cellular processes of various 

environmental hosts [127, 144, 149, 312, 313]. Many unique mechanisms of interfering 

with host processes, such as lysosomal-evasion and trafficking, have been identified and 

attributed to specific Dot/Icm effectors [20, 127, 143, 277-279]. The effector’s ability to 

interfere with the function of eukaryotic host target proteins, comes from their 

evolutionary history; many effectors are derived from eukaryotic proteins acquired by 

inter-kingdom horizontal gene transfer (HGT) [149, 156, 284, 314].  
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The primary food source for L. pneumophila is amino acids which are used for 

carbon and energy through feeding the TCA cycle [175, 210, 211, 315].The generation of 

host amino acids by L. pneumophila is an effector-driven process [75].  Substantial 

generation of host amino acids is required in human macrophages and amoebae where the 

effector AnkB hijacks the host ubiquitin-proteasome protein degradation machinery, 

which is required for successful pathogen replication in the host [75, 98, 168, 316].  In 

contrast to human macrophages and amoebae, during infection of mouse macrophages 

with the L. pneumophila LP02 strain, the mammalian target of rapamycin complex 1 

(mTORC1), a nutrient/energy sensor, is inhibited by multiple effectors to prevent protein 

synthesis, thus liberating amino acids for bacterial consumption [246]. Distinct pathogen 

mechanisms of generating host cell amino acids may be employed within diverse host 

cells and the pathogen mechanism may differ by various strains of L. pneumophila to 

acquire the high levels of host amino acids needed for replication.  

Glucose is minimally metabolized by L. pneumophila through the Entner-

Doudoroff (ED) pathway [175, 214, 220, 317]. Traditional glycolysis through the 

Embden-Meyeroff-Parnas (EMP) pathway is also minimal, despite all the necessary 

genes being present in the L. pneumophila genome [175, 220]. Glucose does not support 

growth of L. pneumophila, but it is predominantly imported by L. pneumophila upon 

termination of growth [175, 220], as the bacterium is preparing for cellular egress, and 

used mainly for the generation of the storage molecule, poly-3-hydroxybutyrate (PHB) 

through the ED pathway [218, 220]. During nutrition deprivation, PHB is converted to 

acetyl-CoA that feeds the TCA cycle [215, 222, 226]. Genes involved in glucose 
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metabolism and glucose uptake are up-regulated during growth in amoebae and may play 

a role in infection [181, 215]. 

Amylases are a conserved group of enzymes that catalyze hydrolysis of starch and 

glycogen into glucose [318]. They are members of a larger family, called glucosidases, 

and include other enzymes such as cellulase and lactase [319].  Interestingly, despite the 

minimal need of glucose by L. pneumophila, four putative amylases have been identified 

in the L. pneumophila genome, Lpg0422, Lpg1669, Lpg1671, and Lpg2528. The 

Lpg0422 (GamA) enzyme is the only characterized amylase [289]. It is secreted by the 

Type II secretion system (T2SS) and expressed during exponential growth but not 

required for intracellular growth [181, 289]. Lpg1669 is a putative amylase that lacks 

putative secretion signals for the T4SS or T2SS, based on bioinformatical analysis. 

Lpg1671 is predicted to be a T4SS substrate but its role in intracellular infection is not 

known [125, 126].  The gene for gamA is found in most Legionella species and lpg1669 

and lpg1671 are found in three species of Legionella. 

The predicted putative amylase, Lpg2528, has been designated as LamB. Among 

the 60 Legionella species, L. pneumophila and L. steigerwaltii are the only two 

Legionella species to harbor lamB. Since L. pneumophila is responsible for 85% of 

Legionnaire’s disease cases, we decided to determine the role of LamB in the 

intracellular infection of amoebae and human macrophages[15, 24].   Here we show that 

despite the minimal role of glucose in L. pneumophila metabolism, the LamB amylase is 

surprisingly necessary for intracellular replication in amoebae and human macrophages, 

and is required for virulence in vivo, in the A/J mouse model.   
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Results 

Identification of amylases in L. pneumophila 

Based on domain sequence homology, three new putative amylases were 

identified in the L. pneumophila genome, in addition to the one described (GamA) 

amylase (Fig S4-1A, B, C) [289, 320]. The Lpg2528 putative amylase is designated as 

LamB, which is encoded by a monocistronic gene (Fig. 4-1D). Considering LamB is only 

present in L. pneumophila and L. steigerwaltii, of the 60 Legionella species, it is more 

likely that LamB has been acquired after the speciation event of L. pneumophila and 

suggests that L. steigerwaltii may have arisen recently from L. pneumophila (Fig. 4-1A). 

The evolution of this gene in L. pneumophila mirrors that of the strain evolution (Fig. 4-

1A). L. pneumophila strain Lens is most related in genome sequence homology to strain 

130b/AA100, which is seen with lamB (Branch length, 99) [321].  Similarly, L. 

pneumophila strain Alcoy is most homologous to strain Corby, as also seen with lamB 

(Branch length, 94) [321]. LamB shares amino acids sequence homology only with other 

soil and freshwater organisms such as, Methylobacterium and Insolitispirillum (see 

Supplementary Fig. S4-2 online).  Thus, it is likely that lamB may have been acquired by 

HGT from other intra-amoebal or planktonic, environmental organisms. Because L. 

pneumophila is responsible for 85% of Legionnaire’s disease cases, we characterized the 

role of this enzyme in the intracellular infections of human monocyte-derived 

macrophages (hMDMs) and A. polyphaga [15, 24]. 
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Figure 4-1. LamB is a putative amylase unique to L. pneumophila. A) Phylogram 
representation of LamB divergence in L. pneumophila strains and L. steigerwaltii. 
Measure of node support was determined by aLRT using Phylogeny.fr  B) LamB is 
conserved among L. pneumophila strains and is only found in one other Legionella 
species, L. steigerwaltii. C) The structure of LamB, generated from I-TASSER server, 
which suggests it is an amylase [285]. Highlighted within the catalytic binding pocket of 
amylases are resides critical for catalytic activity, D193, E227, and D296.  The lamB 
gene is found on a monocistronic operon within the L. pneumophila genome, this area of 
the chromosome is shown in D). 
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Structure of LamB and its potential secretion 

LamB has an α-amylase domain (residues 18-376) that is structurally similar to 

the crystalized glucosidase of Streptococcus mutants, SmDG (Fig. S4-1D) [322, 323].  

The putative catalytic site, which is located within the predicted catalytic pocket of the 

enzyme, is conversed amongst amylases and in LamB of L. pneumophila and L. 

steigerwaltii (Fig. 4-1B, C and Fig. S4-1D).  Iterative Threading Assembly Refinement 

(I-TASSER) is a bioinformatics method of predicting the three-dimensional structure of 

proteins based on fold recognition [286, 297]. The server also predicts ligand binding 

sites, and gene ontology. Structural modeling of LamB using the I-TASSER database 

shows structural similarity with other crystalized glucosidases (Fig. 4-1B).  

 L. pneumophila proteins can access the host cytosol by two major routes, 

translocation via the T4SS or through secretion into the LCV lumen by the type II 

secretion system (T2SS) and into the cytosol through the semipermeable LCV 

membrane[133, 230].  L. pneumophila secretes many proteins via the T2SS, which is 

critical for intracellular growth and pulmonary disease [324-326]. Twenty proteins were 

identified to be secreted by the T2SS of L. pneumophila, while an additional 250+ 

proteins have been suggested to contain a putative T2SS signal [327]. LamB was not 

identified by any of these methods as potential type-II substrate [327]. In addition, LamB 

lacks the N-terminal secretion signal characteristic of T2SS substrates [326].  

In order to be translocated by the Dot/Icm translocation system, effectors are 

recognized by a translocation signal on the C-terminus; alterations at the C-terminus of 

effectors causes a failure in translocation [90, 124, 126]. However, no translocation 

consensus sequence exists for all effectors of the Dot/Icm translocation system. Machine 

learning techniques have identified conserved bi- and tri-residues at the C-terminal end of 
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L. pneumophila effector proteins, 10% of known effectors do not contain at any of these 

motifs and some proteins harboring these motifs are not translocated effectors [126, 328]. 

LamB contains seventeen bi-residues identified to be heavily enriched in the last 100 

amino acids of the C-terminus of T4SS effector proteins (see Supplementary Fig. S4-3 

online) [328].  

 

 

Figure 4-2.  CyaA-LamB reporter is not translocated by the Dot/Icm T4SS. A) 
Adenylate cyclase fusions of LamB expressed in L. pneumophila and infected into 
hMDMs for 1hr, in triplicate, using known T4SS effector, RalF, as a positive control.  
Production of cAMP was assessed by ELISA. Data is shown as mean cAMP 
concentration ± SD, n=3 independent infections.  
 
 
 

To determine whether LamB was Dot/Icm-translocated, the adenylate cyclase 

(CyaA) reporter assay was used [137, 288]. Transformation of plasmids expressing 
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reporters CyaA-LamB or the positive control, CyaA-RalF, as fusion proteins was 

performed in WT L. pneumophila and the translocation-deficient mutant, dotA. The data 

showed that the CyaA-LamB reporter was not translocated by the Dot/Icm translocation 

system, as there was no significant difference between the secretion of CyaA-LamB by 

WT L. pneumophila or the dotA mutant (Student t-test, p > 0.2); whereas, the control, 

CyaA-RalF, was readily translocated into the host cells during infection with WT L. 

pneumophila but not the dotA mutant (Student t-test, p < 0.01) (Fig. 4-2). 

The amylase activity of LamB 

 To confirm the putative enzymatic activity of LamB as an amylase, in vitro 

biochemical activity was determined by using the standard amylase activity colorimetric 

assay, quantifying the cleavage of ethylidene-pNP-G7 to p-nitrophenol, which can be 

measured at 405nm [329, 330]. Three highly conserved residues, D193, E227, and D296 

were identified in the catalytic pocket of LamB and confirmed with domain alignment to 

other amylases (Fig. 4-1B, C). Constructs harboring native LamB or three LamB variants 

of single amino acid substitutions in the catalytic pocket were expressed in E. coli as GST 

fusion proteins, controlled by an IPTG inducible promotor. Expression of these proteins 

was confirmed by western blot (Fig. S4-4). With IPTG induction, amylase activity was 

highest for the wild type protein compared to uninduced (Student t-test, p < 0.001) (Fig. 

4-3). The three catalytic mutants showed no amylase activity after inducing with IPTG. 

These data confirmed that LamB is indeed an amylase and that the identified catalytic 

pocket is essential for enzymatic activity.   
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Figure 4-3.  LamB is a functional amylase. A) Amylase activity of ITPG-inducible (+), 
GST-LamB fusions and catalytic site mutants, expressed in E. coli, was assessed by 
colormetric assay of cleavage of an artificial compound. Data are representative of three 
independent experiments represented by mean amylase activity, of triplicate sample, as 
measured by cleavage of ethylidene-pNP-G7 into p-nitrophenol, shown as mean amylase 
activity ± SD, n=3 independent cultures.  
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Requirement of LamB for growth in amoebae and hMDMs 

 In order to test the role of LamB in intracellular growth, a lamB null mutant was 

generated. Complementation was achieved by expression of lamB on a plasmid, lamB/C. 

The LamB variants with amino acid substitutions in the catalytic domain of LamB, 

D193A, E227A, and D296A were also introduced into the lamB null mutant (Fig. 4-1C). 

Infections of Acanthamoeba polyphaga or hMDMs were performed, as we previously 

described [166].  

Figure 4-4.  LamB is required for growth in amoebae. To determine intra-vacuolar 
replication of the WT strain, the dotA mutant, the lamB mutant, catalytic mutants 
(D193A, E227A, and D296A), and complemented lamB mutant (lamB/C), A. polyphaga 

were infected and number of CFUs were determined at 2, 8, and 24h post-infection. Data 
points represent (mean CFUs ± SD, n=3) and are representative of three independent 
experiments.  
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The lamB mutant was severely defective for intracellular growth in A. polyphaga 

and hMDMs (Fig 4-4, 4-5). At 24 h post-infection, there was a significant difference in 

the replication of the null mutant and the three catalytically inactive mutants compared to 

WT L. pneumophila (Two-way ANOVA, p < 0.001). The growth defect was partially 

restored to the mutant by in trans-complementation of the gene, which is likely due to 

loss of the plasmid. However, complementation of the null mutant with any of the three 

catalytic variants did not restore any growth to the lamB mutant in A. polyphaga or 

hMDMs (Fig. 4-4, 4-5). This defect is not attributed to a growth defect in vitro, as the 

lamB mutant grows just as well as the WT strain in broth (see Supplementary Fig. S4-5). 

These data show that LamB is necessary for intracellular replication of L. pneumophila in 

both hMDMs and A. polyphaga. Indeed, it is the amylase activity of LamB that 

contributes to its essential role in intracellular growth, indicating the requirement for 

degradation of polysaccharides by L. pneumophila. This is surprising, considering the 

minimal role of glucose in metabolism of L. pneumophila, and that it is mainly utilized 

during late stages of growth to synthesize the PHB storage compound.  

 To determine if generation of host glucose by LamB was necessary for 

intracellular replication, A. polyphaga was supplemented with exogenous glucose during 

infection (Fig. S4-6). Glucose supplementation did not rescue the lamB mutant for its 

defect in intracellularly replication nor did it alter the growth of the WT strain or the 

complemented mutant (Fig. S4-6).   
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Figure 4-5.  LamB is required for growth in hMDMs. To determine intra-vacuolar 
replication of the WT strain, the dotA mutant, the lamB mutant, catalytic mutants 
(D193A, E227A, and D296A), and complemented lamB mutant (lamB/C), hMDMs were 
infected and number of CFUs were determined at 2, 8, and 24h post-infection. Data 
points represent (mean CFUs ± SD, n=3) and are representative of three independent 
experiments. 

 

Role of LamB in vivo 

Given that A. polyphaga and hMDMs restrict the lamB mutant, we sought to 

determine the role of LamB in intrapulmonary growth in the mouse model. Intra-tracheal 

infection of A/J mice with WT L. pneumophila, the lamB mutant, or the complemented 

mutant (lamB/C) was performed, as we described previously [168]. Within 10 days, 50% 

of the mice infected with WT or the complemented mutant had died. However, 100% of 

mice infected with the lamB mutant survived for the 10 days of the study (Fig 4-6A). 



108 
 

Analysis of bacterial burden in the lungs of surviving mice, at 24, 48, and 72 hrs showed 

that the lamB mutant had significantly lower numbers of bacteria within the lungs, 

compared to the WT strain (Student t-test, p < 0.05) (Fig. 4-6B). The defective phenotype 

was completely recovered by complementation, indicating minimal loss of plasmid in 

vivo compared to ex vivo infection (Fig. 4-4, 4-5). Histopathology on pulmonary biopsies 

taken at 12 and 24 hrs post-infection, with wild type L. pneumophila showed severe 

inflammatory infiltrates of mononuclear cells (Fig. 4-6C, D). In contrast, following 

challenge with the lamB mutant, minimal inflammatory infiltration into the alveolar, 

bronchial, or peribronical spaces was observed (Fig. 4-6C, D).   

The lamB mutant was less efficient in disseminating to the liver and spleen 

compared to the WT strain (Fig. 4-7A, B). At 48 hrs post-infection, there was a 

significantly lower amount of bacteria in the liver of mice infected with the lamB mutant 

compared to the WT strain (Student t-test, p < 0.01). Compared to the WT strain, fewer 

lamB mutants disseminated into the spleen at 48 hrs (Student t-test, p < 0.05) and 72 hrs 

(Student t-test, p < 0.01) post-infection compared to the WT strain. The reduced 

dissemination of the lamB mutant was completely restored upon complementation by 

lamB.  
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Figure 4-6. Role of LamB in virulence in A/J mice. Mice were infected intra-tracheally 
with 106 CFUs of WT (white), the lamB mutant (black), or the completed, lamB/C (grey). 
A) Survival of the mice over days and B) CFU organ burden in the lungs was assessed at 
the various time points. Pulmonary histopathology scores at 12 h (Student t-test, p < 0.01) 
and 24 h (Student t-test, p < 0.005) are shown in C) and representative images of 
uninfected, WT, and lamB are shown in D). 
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Figure 4-7. The role of LamB in dissemination of L. pneumophila in A/J mice. Mice 
were infected intra-tracheally with 106 CFUs of WT (white bars), the lamB mutant (black 
bars), or the completed, lamB/C (grey bars). Dissemination of the bacteria to the A) liver 
and B) spleen, as measured by CFU organ burden was assessed at the various time points. 
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DISCUSSION 

A “bipartite” metabolism has been used to describe the nutritional needs and 

metabolic regulation of L. pneumophila [49, 100, 214, 222]. During early intracellular 

replication within human macrophages or amoebae, L. pneumophila relies on amino acids 

to generate carbon and energy from the TCA cycle [207, 211]. Once amino acid levels 

become low, the bacteria undergo growth phase transition, switching from the replicative 

phase to the transmissive phase [85, 187, 190, 331]. At this point, L. pneumophila 

increases uptake and utilization of glucose and converts it into the storage compound 

PHB [214, 220].  Experiments with 13C-glucose demonstrated that glucose is used for de 

novo synthesis of amino acids and PHB during late stages of infection [175].  

Additionally, labeling of glucose demonstrated a carbon flux from glucose to pyruvate 

via the Enter Doudoroff (ED) pathway but not the Pentose Phosphate Pathway (PPP) 

[175]. However, addition of excess exogenous glucose does not result in increased 

growth of the organism during any stage [220]. Therefore, generation of excess glucose 

in the host, as a source of carbon and energy, through degradation of polysaccharides by 

LamB is unlikely to support growth. Thus, it is surprising to identify a major role for 

LamB in intracellular growth, since L. pneumophila mainly utilizes amino acids for 

growth [332]. We speculate LamB is involved in processes other than nutritional 

virulence [176, 332].  

 Uptake of glucose is increased by L. pneumophila during post-exponential 

growth, most notably for the generation of the storage molecule, PHB [175, 218, 220], 

and nutrient importers are important for intracellular growth of L. pneumophila [333, 

334]. Having large stores of PHB allows the organism to persist outside of the host for 

extended periods of time [226]. Transcriptomic studies in the human macrophage cell 
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line THP-1 have demonstrated that expression of lamB is highest early in infection (8 hrs) 

rather than later (14 hrs), opposite of when the organism starts increasing consumption of 

glucose[177, 220]. Faucher  et al. also classified this gene as “highly induced in cells” 

[177]. LamB may be involved in increasing availability of glucose in the host ahead of 

when the organism prepares to utilize it during the late stages of infection. However, our 

data excludes that possibility.  Increasing the availability of glucose with an amylase 

could allow L. pneumophila to generate more PHB, promoting long-term survival. It is 

possible that failure to store sufficient amounts of PHB by the lamB mutant results in an 

early defect in intracellular growth, due to the lack of a rapid influx of acetyl-CoA from 

reduced levels of PHB. Alternatively, since amylases are known to act on the 

glycosylation of proteins, LamB may be acting on the post-translational modification of 

host proteins to control processes important for replication, independent of nutrition or 

PHB storage [335]. This could allow the bacterium to evade some aspect of the innate 

host immune response necessary for successful intracellular replication. Targets of 

deglycosylation could be present in the host cytosol or within the LCV lumen from ER-

to-Golgi-derived vesicles depositing glycosylated proteins in the lumen or on the luminal 

side of the LCV membrane. Future studies are aimed at identification of target(s) of 

LamB and how they contribute to infection. Considering LamB is unique to L. 

pneumophila and its loss causes complete defect in intracellular growth in macrophages 

and amoebae, and attenuation in vivo, it may contribute to the enhanced virulence of L. 

pneumophila and its prevalence as a disease-causing species compared to other 

Legionella species.  
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Bioinformatical analysis indicates that LamB does not contain a T2SS secretion 

signal, but it does however contain putative T4SS translocation signals [125, 126, 327]. 

However, through the CyaA reporter assay our data show that LamB is not translocated 

by the Dot/Icm. Previous reports have shown effectors that were not translocated as 

CyaA reporter assay, were actually translocated T4SS effectors [125, 127].  This reporter 

could interfere with the translocation of LamB, like seen with other effectors [127]. 

Predicted strength of the translocation signal is not a definitive answer to whether a 

protein is translocated, low-scoring predicted effectors have been shown to be 

translocated by the Dot/Icm System and high-scoring proteins have been shown to not be 

translocated [125]. Lifshitz et al. identified LamB to be a high-scoring putative effector 

and in the same study tested 10 new high-scoring putative effectors, of which three were 

confirmed to not be translocated by the Dot/Icm system using the CyaA reporter assay, 

but LamB was not tested [125]. Despite being a high-scoring putative effector, LamB 

may not be translocated, as observed in our CyaA reporter assay. Trans-rescue of the 

lamB mutant through expression of lamB in the host, could help determine if function of 

LamB in the host cytosol is what is required for intracellular replication of L. 

pneumophila. Loss of lamB does not affect L. pneumophila’s ability to grow in vitro, 

supporting the idea that LamB is likely secreted into the host cytosol or into the lumen of 

the LCV, but the mechanism remains to be determined.  

In summary, we report an amylase essential for intracellular proliferation of L. 

pneumophila within the two evolutionarily distant hosts, human macrophages and 

amoebae. Given its uniqueness to L. pneumophila, LamB serves as an interesting enzyme 
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that may contribute to the prevalence and virulence of L. pneumophila compared to other 

Legionella species.   
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Materials and Methods 

Strains and cell lines 

L. pneumophila strain AA100/130b (ATCC BAA-74) and the dotA T4SS-

deficient mutant, were grown on Buffered Charcoal Yeast Extract (BCYE) agar, as we 

previously described [166]. To generate the isogenic mutant lamB (lpg2528), 2 kb 

flanking DNA on either side of lamB, was amplified using PCR with primers listed in 

Table S4-1. The resulting amplicon was cloned into the shuttle vector, pBCSk+, to 

generate pBCSK+lamBKO. To delete the entire gene of lamB, inverse PCR was 

employed using the primers listed in Table S4-1, resulting in pBCSK+lamBKO2. The 

kanamycin resistance cassette from the Ez-Tn5 transposon was amplified using primers 

listed in Table S4-1. The resulting PCR product was subcloned in pBSCK+lamBKO2 

between the lamB flanking regions using standard molecular procedures, resulting in 

pBCSK+lamBKO3. This plasmid was introduced into L. pneumophila AA100/130b via 

natural transformation, as we previously described [161]. Natural transformants were 

recovered by plating on BCYE agar supplemented with 50 μg/ml kanamycin. To 

complement the lamB mutant, PCR was used to amplify the lamB gene and its upstream 

promotor region, using primers listed in Table S4-1, and subcloned into pBCSK+, 

generating pBCSK+lamB/C. Complement mutants of lamB with mutations in the 

catalytic pocket were made by substituting the amino acid for alanine, to generate 

pBCSK+lamBD193A, pBCSK+lamBD296A, and pBCSK+lamBE227A, using primers 

listed in Table S4-1. These plasmid was introduced into the lamA mutant, via 

electroporation, as previously described [296]. Complemented lamB mutants were 

selected on BCYE plates supplemented with 5 μg/ml chloramphenicol, resulting in the 

complemented strains, lamB/C, lamB/D193A, lamB/D296A, and lamB/E227A.  
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Intracellular replication  

For infection of cell monolayers, L. pneumophila strains were grown in BYE 

broth with appropriate antibiotic selection, at 37°C with shaking, to post-exponential 

phase (OD550nm 2.1-2.2). A. polyphaga was cultured in PYG media at 22°C, experiments 

were performed in PY media at 35°C, as previously described [166]. Glucose 

supplementation experiments were done in presence of 100mM glucose in the media. 

Human monocyte-derived macrophages (hMDMs) were isolated from healthy donors and 

cultured in RPMI 1640, supplemented with 10% fetal bovine serum, as previously 

described [97, 166]. All methods were approved and carried out in accordance to the 

University of Louisville Institutional Review Board guidelines and blood donors gave 

informed consent as required by the University of Louisville Institutional Review Board 

(IRB # 04.0358).  

The wild type strain; the isogenic mutants, dotA and lamB; and complements 

lamB/C, lamB/D193A, lamB/E227A, and lamB/D296A  were grown to post-exponential 

phase in BYE broth at 37°C with shaking, prior to infection and used to infect hMDMs 

and A. polyphaga, as previously described [97, 166]. A total of 1 x 105 host cells were 

plated in 96 well plates and infected with L. pneumophila at an MOI of 10. Plates were 

centrifuged at 200 x g (5 mins), to synchronize infection. After 1 h, cells were treated for 

1h with gentamicin to kill extracellular bacteria, as previously described [97, 166]. Over a 

24h time course, host cells were lysed with sterile water (hMDMs) or 0.02% v/v Triton 

X-100 (A. polyphaga). L. pneumophila CFUs were determined by plating serial dilutions 

onto BCYE agar.  
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Bioinformatics analysis of LamB 

Protein domain analysis was performed using NCBI’s Search for Conserved 

Domains (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) . Phylogenetic analysis 

was determined using amino acid sequences of LamB, with the Phyologeny.fr platform. 

Branch length was determined by aLRT [336, 337]. Predicted structures were generated 

via I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) [320]. Structures 

generated from I-TASSER were aligned using TM-align to generate a TM-score of 

structural similarity (https://zhanglab.ccmb.med.umich.edu/TM-align/). 

Translocation Assay 

To assess translocation of LamB by L. pneumophila T4SS, during infection of 

host cells, an adenylate cyclase fusion [288] was generated using standard biology 

techniques with primers listed in Table S4-1. A total of 1 X 106 hMDMs were infected 

with wild type or dotA mutant L. pneumophila harboring plasmids expressing various 

adenylate cyclase fusions at an MOI of 20 for 1h, as previously described [97, 288]. 

Following infection, the cell monolayers were lysed and processed to assess cAMP 

concentration by ELISA using the Direct cAMP ELISA kit (Enzo) according to the 

manufacturer’s protocol and measure with a Synergy H1 microplate reader (BioTek). 

Amylase activity 

To determine if LamB is a functional amylase, the lamB gene was cloned into the 

IPTG-inducible GST-fusion expression vector pGEX-6p-1 (Amersham) and expressed in 

E. coli BL21 using primers listed in Table S4-1. Additionally, residues within the 

predicted catalytic pocket were substituted to alanine using inverse PCR using primers 

listed in Table S4-1. E. coli cultures (5 ml) harboring either the empty vector, lamB, or 

the various catalytic inactive mutants were grown in LB broth at 37°C with shaking until 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/TM-align/
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the OD600nm reached 0.8. The cultures were spilt and one half was induced with 0.1 mM 

IPTG for 2.5h at room temperature. One ml of each culture was pelleted by centrifugation 

and subjected to lysis with 0.5 ml buffer (0.1% v/v Triton X-100, 150 nM NaCl, 10 mM 

Tris pH7.5), containing protease inhibitors. Insoluble material was pelleted by 

centrifugation (16000 x g, 10 min, 4°C) and the resulting supernatant was retained. 

Expression of fusion proteins was similar in all cultures (see Supplementary Fig. S4-3 

online). To measure amylase activity, 25 μl of supernatant was analysed using an 

Amylase Assay Kit (Sigma), following the manufacturer’s instructions. This kit utilizes 

an artificial substrate, ethylidene-pNP-G7, which when cleaved by an amylase generates 

a colorimetric product detectable at 405nm. 

Mouse model  

   For testing the virulence of the lamB mutant, specific pathogen-free, 6-8 weeks 

old A/J mice were used, as previously described[97, 168]. Groups of 3 A/J mice, for 

each time point, were infected intratracheally with 1 x 106 CFUs. At 2, 12, 24, 48, and 

72 h after infection mice were humanely sacrificed and lungs, liver, and spleen were 

harvested and homogenized in sterile saline (5ml) followed by cell lysis in distilled 

water. To determine CFUs, serial 10-fold dilutions were plated on BCYE agar and 

incubated at 37°C. For histopathology, lungs of infected mice were fixed in 10% neutral 

formalin and embedded in paraffin. Serial 5 μm sections were cut, stained with 

haematoxylin and eosin (H&E), for light microscopy analysis. Twenty random high-

powered fields (HPFs) were assessed to grade inflammation severity including alveolar 

and bronchial damage, as well as percentage of parenchyma involved. The histology 

assessment included the number of the mononuclear cells and percent of parenchyma 

involved by using modification of double-blind scoring method at a magnification of 



119 
 

40x, as we described previously [338]. The inflammation process was graded normal 

(score of 0), when there were 0-19 monocular cells infiltrates per HPF with no alveolar 

and bronchial involvement; mild (score of 1), for 20 to 49 cells per HPF, including mild 

damage of alveolar and bronchial regions; moderate (score of 2), for 50 to 99 cells per 

HPF with moderate alveolar and bronchial inflammation; or severe (score of 3), for 100 

to 200 mononuclear cells per HPF with severe effacement of alveolar and bronchial 

regions. The murine lung section was examined in sagittal direction and percent of 

parenchyma involved was scored as 0 when no area was compromised. The involvement 

of the parenchyma was scored as 1 when up to 25% of the total area was occupied by 

inflammatory exudate, or scored as 2 when 26 to 50% of parenchyma area was occupied 

with inflammatory cells, and 3 if comprised of more than 51% of the total area. The total 

histology score was calculated as an average of individual criteria scores. Uninfected 

tissue was used as a baseline score. All the experimental procedures were in accordance 

with National guidelines and were approved by the Institutional Animal Care and Use 

committee (IACUC) at Faculty of Medicine, University of Rijeka. 

Data availability 

All data generated or analysed during this study are included in this published article (and 

its Supplementary Information files). 
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Figure S4-1. Putative structure of amylases in L. pneumophila. Two additional 
putative amylases, A) Lpg1672 and B) Lpg1669, were identified in L. pneumophila by 
domain sequence homology.  C) The L. pneumophila GamA has been previously 
described as an amylase and substrate of type-II secretion. D)  The predicted structure of 
LamB is similar to the crystalized structure of Streptococcus mutans dextran glucosidase, 
which share a conserved alpha amylase catalytic domain (NCBI domain: cl07893) and 
catalytic residues that are highlighted. 
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Figure S4-2. LamB-like proteins in intra-amoebal and environmental pathogens. 
Amino acid sequence homology of LamB shows alignment to other intra-amoebal and 
aquatic organisms like; Insolitispirillum peregrinum, isolated from a pond [339, 340]; 
Rhodospirillum centenum, isolated from the edge of a thermal spring [341]; 
Methylobacterium variabile, isolated from a drinking water [342]; and Methylobacterium 

aquaticum, also isolated from drinking water and capable of surviving and lysing 
amoebae [343, 344], but not other known pathogens.  
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Figure S4-2. LamB-like proteins in intra-amoebal and environmental pathogens. 
Amino acid sequence homology of LamB shows alignment to other intra-amoebal and 
aquatic organisms like; Insolitispirillum peregrinum, isolated from a pond [339, 340]; 
Rhodospirillum centenum, isolated from the edge of a thermal spring [341]; 
Methylobacterium variabile, isolated from a drinking water [342]; and Methylobacterium 

aquaticum, also isolated from drinking water and capable of surviving and lysing 
amoebae [343, 344], but not other known pathogens. 
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Figure S4-2. LamB-like proteins in intra-amoebal and environmental pathogens. 
Amino acid sequence homology of LamB shows alignment to other intra-amoebal and 
aquatic organisms like; Insolitispirillum peregrinum, isolated from a pond [339, 340]; 
Rhodospirillum centenum, isolated from the edge of a thermal spring [341]; 
Methylobacterium variabile, isolated from a drinking water [342]; and Methylobacterium 

aquaticum, also isolated from drinking water and capable of surviving and lysing 
amoebae [343, 344], but not other known pathogens.  
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Figure S4-3. The C terminal 100 amino acids of LamB. Bi-residues identified to be 
heavily enriched in the last 100 amino acids of T4SS effectors are highlighted in red for 
multiple strains of L. pneumophila LamB and L. steigerwaltii LamB. Seventeen bi-
residues are found in LamB of the AA100 strain. 
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Figure S4-4. Induction of GST-LamB fusions in E. coli. E. coli BL12 harboring GST-
LamB, GST-LamB D193A, GST-LamB E227E, or GST-LamB D296 constructs were 
grown to an OD600 0.8 in LB broth before induction with 0.1mM IPTG at 37°C for 2.5h. 
Coomassie stain of uninduced and induced cultures shown. 
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Figure S4-5. Growth of mutants in vitro. Overnight cultures of WT, ΔlamB, or catalytic 
mutants in BYE broth were grown overnight at 37°C then diluted to OD550 0.05 and 
grown at 37°C for 24h. Growth rates were determined by measuring optical density at 
550nm every two hours, for 12, then again at 24h post-inoculation. Data representative of 
three independent experiments. 
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Figure S4-6. Supplementation of A. polyphaga with glucose does not compensate for 

the loss of lamB. Intra-vacuolar replication of the WT strain, the lamB mutant, and 
complemented lamB mutant (lamB/C) in A. polyphaga was determined upon glucose 
supplementation.  The number of CFUs was determined at 2, 8, and 24h post-infection. 
Data points represent (mean CFUs ± SD, n=3) and are representative of two independent 
experiments.  
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Table S4-1. Primers used in this study 

Primers Sequence 
lamB-KO F GGATCCTAATGTCTTTATTACTTCAC 
lamB-KO R GTCGACTTTTCGTATCAAATAAACTA 
lamB inverse F TTTACCTGCAGGATAATAATATTTACCGGCT 
lamB inverse R TTTATTGATGCAGATCGCTGACTTCTCAATTTC 
Pcr confirm KO F GAACAGAAATTGAGAAGTCAGC 
PCR confirm KO R TATAAATGCAATATAGCCGGTAAATATTA 
lamB COMP F CTCGAGAGTAAATATGATGCCCATAA 
lamB COMP R GGATCCTTATTTAAATTTAGGTGGTGTT 
Kan F, R /5Phos/CTGTCTCTTATACACATCTCAA 
lamB CYA F GGATCCTTATGTCTCCACGGATTTGTTGC 
lamB CYA R AAGCTTTTATTTAAATTTAGGTGGTG 
lamB-GST fusion (pGEX) F GGATCCATGTCTCCACGGATTTGTTG 
lamB-GST fusion (pGEX) R GTCGACTTATTTAAATTTAGGTGGTG 
lamB D193A F /5Phos/AGCAATACGTATTCCCTG 
lamB D193A R /5Phos/GCCCCAGCCATGGTAAAT 
lamB E227A F /5Phos/TGCTGCAATAATAAGTGG 
lamB E227A R /5Phos/ACCATAGGCAGAGGTTAT 
lamB D296A F /5Phos/AGCATGAGATCCAGGAAA 
lamB D296A R /5Phos/GAGCCACGCTATATTCAG 
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CHAPTER 5: 

CONCLUSIONS AND FUTURE DIRECTIONS 
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Growth within the vacuole allows for certain protections from the host and 

provides a replicative niche. However, that means that nutrients are out of reach in the 

cytosol [75]. In an effort to understand nutritional virulence in L. pneumophila, we sought 

to characterize how amino acids are acquired from the host cytosol, across the LCV 

membrane [176, 345]. This has been an open question in L. pneumophila biology. SLCs 

are the most likely candidate to be the transporters of metabolites across the LCV 

membrane as they have appeared in the proteome of many LCV mass-spectrometry 

studies and are the main metabolite transporters in eukaryotic cells [227-229, 231].  

Given our interest in nutritional virulence, we sought to fill this important gap by 

examining SLC colocalization to the LCV membrane. Surprisingly, we could not confirm 

the presence of any amino acid-transporting SLCs. This does not rule out SLCs as 

potential transporters of amino acids across the LCV. Individual SLCs may not be present 

in large enough quantities on the LCV to be detect by confocal microscopy. Given that 

many SLCs for the same substrates exist, it is likely that families of transporters, rather 

just individual transporters are responsible for amino acid transport [235]. This indeed 

would make detection difficult when limited to detecting a single family member at time. 

If broad antibodies that detected all members within an SLC family existed, we may be 

able to detect LCV-colocalization. Alternatively, these transporters may function well 

enough to provide the bacterium with the nutrient it needs while still being under the 

detection threshold by confocal microscopy. New technologies in confocal microscopy, 
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such as an avalanche photodiode, which can reach single molecule detection, could allow 

us to overcome our current threshold of detection limitation [346]. 

Knock-down of individual SLC transporters poses a problem for the host cell and 

may not indicate that the transporter is required for transporter of amino acids across the 

LCV [347]. Functional redundancy of SLCs means that loss of one transporter would not 

prevent the import of any single amino acid across the LCV, unless only few and specific 

SLC transporters were utilized on the LCV. Wieland et al. showed that SLC1a5 is 

required for L. pneumophila intracellular replication by siRNA silencing of SLC1a5 

[247]. Decreased amino acid uptake by the host cell from the extracellular milieu may 

have been responsible for the failure of L. pneumophila to replicate under SLC1a5-

knockdown conditions [247]. Additionally, it was not confirmed that knockdown did not 

alter the downstream signaling to mTOR by the SLC1a5/SLC3a2/SLC7a5/SLC16a1 

complex, which has been shown to occur during knockdown of SLC1a5 [247, 348]. 

Additionally, treatment with the inhibitor BCH affects the whole complex, not just 

SLC1a5, which would alter mTOR signaling, likely preventing L. pneumophila 

replication due to the initiation of host autophagy rather than the loss of SLC1a5 [247]. 

Understanding how SLCs are recruited to the LCV membrane may help elucidate 

which transporters are important for intracellular replication. SLCs are ubiquitous on the 

plasma membrane, since the LCV is formed from a plasma-membrane derived vacuole, it 

could be that SLCs maintained from uptake are sufficient to support replication. ER-

derived vesicles containing SLCs that are in the process of being trafficked to the plasma 

membrane could be intercepted by LCV-localized Dot/Icm effectors [135, 349].  
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Alternatively, Dot/Icm effectors may directly intercept SLCs to incorporate them 

to the LCV membrane. PDZ domains have been shown to be involved in binding to SLCs 

and directing their trafficking [350, 351]. L. pneumophila contains at least five putative 

proteins with PDZ domains (Lpg0505, Lpg0499, Lpg1331, Lpg2333, and Lpg0903), 

none of which have been functionally characterized. Future studies looking at effectors 

with PDZ domains may elucidate how SLCs are potentially manipulated by L. 

pneumophila.   

Finally, it is also possible that the semi-permeable LCV membrane may allow 

sufficient “leakage” of amino acids into the LCV lumen. As polyubiquitinated proteins 

are abundant on the LCV membrane and AnkB-dependent generation of amino acids 

occurs at the LCV membrane, the flow of nutrients would be skewed towards influx into 

the LCV lumen [75].  

We did demonstrate that SLC2a1/Glut1, a glucose transporter, is recruited to the 

LCV in a Dot/Icm-dependent manner. This finding is interesting because L. pneumophila 

does not use glucose as a source of carbon and energy to replicate [220]. Unfortunately, 

we were not able to pursue this line of study due to termination in production of the 

antibody used in our experiments. If a new functional SLC2A1/Glut1 antibody can be 

found and this finding can be reproduced, it will be interesting to determine why and how 

SLC2a1/Glut1 is trafficked to the LCV membrane in a Dot/Icm-dependent manner. 

Knock-down of SLC2a1/Glut1 could cause harmful effects to the host cell that would 

alter L. pneumophila replication separate of the import of glucose. Therefore, if 

trafficking of SLC2a1/Glut1 to the plasma membrane could be inhibited, it would be 

interesting to see if this blocks colocalization of SLC2a1/Glut1 to the membrane. 
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Transporters with ~50% similarity to SLC2a1/Glut1 can be found in amoebae species 

using NCBI’s BLAST, indicating that modulation of SLC2a1/Glut1 may be done through 

a conserved mechanism. Glucose is a large driver of the macrophage pro-inflammatory 

response and is used to generate ROS [253]. Sequestering glucose from the host could 

dampen this inflammatory response while providing the precursor for anabolism of the 

storage molecule, PHB. 

Because we were still interested in how amino acids were crossing the LCV 

membrane, we chose to examine the possibility that bacterial transporters were 

responsible for this action. Many eukaryotic-like genes in L. pneumophila have been 

acquired by inter-kingdom horizontal gene transfer [284]. We identified a pool of SLC-

like proteins in L. pneumophila with 42% - 56% amino acid similarity to SLCs. Structural 

homology also supports the idea that these transporters are SLC-like, as they share strong 

3-dimensional homology with SLCs. These L. pneumophila transporters are likely 

members of the MFS family of evolutionarily conserved transporters, which can be found 

in other bacterial species as well [236, 237]. SLCs are described to be members of the 

MFS family [237].  

As expected, there was functional redundancy among our pool of SLC-like 

proteins in L. pneumophila. Seven were predicted to be transporters of cationic amino 

acids. Most amino acid transporters show high-affinity for single amino acids, but still 

transport multiple amino acids [231, 235]. Varying substrate specificity is likely the 

difference amongst these seven transporters. Because of substrate overlap, mutations in 

individual genes are unlikely to result in a growth defect of L. pneumophila. Like much 

of the L. pneumophila genome, this functional redundancy likely is what allows the 
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organism to replicate within a variety of environmental hosts and ensures acquisition of 

amino acids needed for replication. 

A single transporter of tricarboxylates was also identified, LstJ. Given that citrate 

can rescue the ankB mutant; this transporter may prove to be required for intracellular 

replication. Further studies on this transporter to confirm substrate-specificity and 

requirement for replication will provide more insight into nutrient acquisition of L. 

pneumophila. 

We confirmed that LstA and LstB are transporters of glucose. Individual gene 

mutations are not sufficient to affect intracellular replication; whereas, a deletion in both 

genes causes a severe intracellular replication defect. Importantly, we identified 

functional redundancy within L. pneumophila as a mechanism to ensure nutrient 

acquisition.  

Similarly to the potential recruitment of SLC2a1/Glut1 to the LCV membrane, 

LstA and LstB could be important, in part, for sequestering glucose from the host to 

dampen the pro-inflammatory response while also acquiring the precursor for PHB. 

Glucose supplementation does not enhance in vitro growth of L. pneumophila, therefore 

the need for glucose is solely during intracellular growth [220].  However, we cannot 

exclude the possibility that other important metabolites are imported by LstA and LstB. 

Future studies examining how L. pneumophila senses intracellular growth vs 

extracellular, thus regulating specific gene transcription, may provide insight as to what 

governs the intracellular need for glucose. It is known that global transcriptional changes 

occur in L. pneumophila within the host compared to in vitro growth, but the mechanism 

by which these changes occur is unknown [177, 181]. 
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The SLC-like proteins in L. pneumophila do not contain any known C-terminal 

translocation sequence nor any known type-II secretion signal. By the CyaA reporter 

assay, we were not able to show translocation of LstA or LstB. This does not exclude the 

possibility that LstA-J are translocated and acting on the LCV membrane to transport 

amino acids, as the CyaA reporter has been shown to interfere with the transport of some 

effectors [127]. So while our initial goals behind identifying SLC-like transporters in L. 

pneumophila were to find out if the bacterium was utilizing bacterial transporters on the 

LCV membrane to acquire nutrients, it is more likely that LstA and LstB are localized 

only to the bacterial membrane to import glucose from the LCV lumen. 

Continuing to characterize the role of glucose in L. pneumophila, we were 

interested in the identification of two new putative amylases that were also potentially 

putative effectors of the Dot/Icm translocation system. We chose to characterize, LamB, 

as it was only found in two Legionella species, L. pneumophila and L. steigerwaltii and 

thus unique. It was surprising to find putative amylase effectors as no amylase has ever 

been shown to be translocated by type-III-VII translocation systems of Gram-negative 

pathogens. However, we were unable to confirm the translocation of LamB using the 

CyaA reporter assay. Strong evidence exists that this protein is a potential Dot/Icm 

effector, as it contains a translocation signal on the C-terminus. However, the CyaA 

reporter can interfere with the translocation of effectors [127]. Future studies examining 

translocation using another reporter assay, such has the β-lactamase reporter assay, may 

show that LamB is translocated by the Dot/Icm. 

 The target of LamB is still unknown. Glucose supplementation in A. polyphaga 

does not rescue the lamB mutant, so it is unlikely that the generation of excess glucose 
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through glycogen or starch degradation is the function of LamB. Generation of large 

amounts of glucose could be detrimental to L. pneumophila as this would support the pro-

inflammatory response of the host cell [253]. LamB may act to control the host response 

in a mechanism that requires the cleavage of glucan bonds. Alpha-amylases are known to 

act on the glycosylation of proteins [335]. Therefore, LamB could be acting on the post-

translational modification of host proteins to control processes important for replication. 

Future studies to identify the target of LamB will help understand why this protein is 

import for intracellular replication. 

LamB could be acting in one of three locations during intracellular growth: the 

bacterial cytosol, the LCV lumen, or the host cytosol. Because LamB lacks a type-II 

secretion signal, it is unlikely that LamB is type-II secreted to function in the LCV 

lumen. Additionally, glycogen, starch, or glycosylated proteins are too large to be 

imported into the LCV lumen by transporters, so it is unlikely that a target for LamB is 

present in the LCV lumen. No target in the bacterial cytosol is likely to exist for LamB 

during intracellular replication. L. pneumophila is not known to make stores of glycogen, 

and if did, it would likely be degrading glycogen to survive extracellular when nutrients 

are limited, not during intracellular growth. Therefore, the more likely and biologically 

relevant space for LamB to function within, is within the host cytosol. 

Our interest in nutritional virulence led us to discover important roles for glucose 

in the intracellular replication of L. pneumophila. The host glucose transporter, 

SLC2a1/Glut1, may play a role during infection to import glucose into the LCV lumen, 

while L. pneumophila SLC-like transporters, LstA and LstB, import glucose in from the 
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LCV lumen and/or host cytosol. Additionally, L. pneumophila employs amylases to 

possibly increase the host levels of glucose within the cytosol. 
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