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ABSTRACT

AUTHORSHIP IDENTIFICATION OF TRANSLATION ALGORITHMS

Keishin Nishiyama

December 1, 2017

Authorship analysis is a process of identifying a true writer of a given doc-

ument, and has been studied for decades. However, only a handful of studies of

authorship analysis of translators are available despite the fact that online transla-

tions are widely available and also popularly employed in automatic translations of

posts in social networking services. The identification of translation algorithms has

potential to contribute to the investigation of cybercrimes, involving translation of

scam messages by algorithmic translations to reach speakers of foreign languages.

This study tested bag of words (BOW) approach in authorship attribution

and the existing approaches to translator attribution. We also proposed a simple but

accurate feature that extracts the combinations of lexical and syntactic information

from texts. Our experiments show that the proposed feature is text size invariant.
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CHAPTER 1

INTRODUCTION

Authorship analysis of translation algorithms, or translator analysis, deals with

identifying which translation engine has been used in a given translation task. In ma-

chine translation, given an input text in a known language, the goal is to generate the

text with the same meaning in a different language. For ages, this task was performed

by professional human translators, who spent countless hours learning their jobs, and

typically, perfecting translation only between a handful of languages. Recently, ma-

chine generated translation has been widely adopted due to the many advancements

in the field of machine learning and natural language processing. This trend is driven

by the popularity of many translation engines such as Google Translate, Bing Trans-

lator, FreeTranslation.com, and many more. Even some social networking services

such as Facebook and Twitter provide machine translation for users viewing posts in

their preferred languages.

For long text corpuses machine translation tends to underperform. However,

for short text, most machine translation algorithms perform almost to an accuracy

similar to that of human expert [1]. In criminal investigations, it may be important

to identify which translation agent or algorithm has been used in producing a given

translation. The identification could be very challenging to do manually; thus, there

is a need to develop an automated way to identify the agent behind a given transla-

tion.

In recent literature, some researchers have presented a few solutions to this

problem. Most previous work seems to follow a common paradigm: a feature extrac-

tion step followed by a classification step. This common classification architecture

has proven to work effectively for the problem at hand. However, the reported per-
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formance has been measured on small and relatively easy datasets. Moreover, the

evaluation was done a decade ago and since then, translation agents have signifi-

cantly improved, making their identification more challenging.

In this thesis, we deal with those shortcomings by proposing a new classi-

fication pipeline for authorship analysis of translation algorithms. Specifically, we

propose new features and show their effectiveness, and also show that our proposed

method performs well on new and challenging datasets. The rest of this thesis is

structured as follows. In section 2, we discuss related work and section 3 presents our

proposed method. The implementation details and results are presented in section 4

and section 5 concludes this thesis.
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CHAPTER 2

LITERATURE REVIEW

This chapter will cover background for authorship analysis, translator analysis

and classification algorithms that will be used in our experiments. Authorship analysis

is covered first since translator analysis is a subset of authorship analysis.

2.1 Authorship Analysis

The recent massive increase of available electronic texts allows various kinds

of electrical texts to be analyzed, e.g., books, email messages, online forum messages,

blogs, source code, etc.. In many cases, the main focus of these studies is to identify

the true author of a give text among a set of possible authors [2].

Authorship attribution studies have seen significant progress as a result of ad-

vancements in machine learning and natural language processing. Previous studies

widely adopted the machine learning models such as Naive Bayes, Support Vector

Machine (SVM), and k-nearest neighbors. [2–4]. As inputs to machine learning algo-

rithms, a wide variety of features extracted from texts have been proposed for different

styles of texts. However, the most popular way of extracting features from a text is

bag-of-words (BOW) approach. BOW approach simply views a document as a bag

full of words by ignoring its structures such as its paragraphs, sentence order, or word

order. It counts the occurrence of each word and provides the frequencies of words

in a text as an input features to machine learning algorithms. BOW approach can

utilize not only words but any tokens such as Part-of-Speech (POS) tags, characters,

etc. as long as it can count the frequencies. BOW can handle anything countable

as tokens, but a specific token type is generally selected to extract both lexical and

syntactical information or either of them from texts. Lexical features employ the
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vocabulary used in texts, while syntactic features extract syntax information.

Lexical text analysis treats each word as a token and establishes frequency

counts for all words via an efficient algorithm [3]. That is, word level BOW and

character-level BOW approaches further decompose a word into a sequence of char-

acters and count the frequency of occurrence of individual characters. In BOW ap-

proaches, moreover, counting a series of tokens as a single token is widely adopted

and called n-grams. Word n-grams can capture phrases and character n-grams can

capture sub-words or morphemes. A word n-gram can be also viewed as a capture of

partial syntactic information since a series of words contains word orders.

In other ways, topic model approaches, tokens, mainly words, are represented

by a mixture of topic distributions [5]. Likewise, word embedding approaches map a

token to a fixed-length vector of real numbers [6,7]. Those two approaches represent

words as fixed-size vectors and provide dense inputs comparing to the features that

contain lots of zero values in BOW. Mapping to dense vector also helps to handle

large vocabulary that contains a large number of rare words, which could be a prob-

lem in BOW approaches.

A use of lexical features with BOW is a simple and efficient approach but ig-

nores word-order information and discards many informative syntactic features. The

underlying idea of using syntactic features is that authors have specific syntactic

patterns that they tend to follow regardless of whether they do so consciously or

unconsciously. For example, a novel writer is likely to use more vocabulary-rich and

longer sentences than a child would. A simple use of syntactic features is to use

Part-of-Speech (POS) tags estimated by a POS tagger with BOW, instead of using

words or characters as tokens directly [8, 9]. POS taggers assign a tag of syntactic

markers to each token, e.g., words, based on the given contextual information around

the token. Since POS tagger estimate tags to words with high accuracy [2] and con-

structing syntax trees for each sentence in texts are expensive operations. Moreover,

grammatical errors need to be handled precisely and this could be a problem for our

translation data. Our data is generated by translation algorithms not by a human

and have more errors. Instead, we will use a common approach, n-grams of POS

4



tags, to extract syntactic information and to represent it as features [10]. Syntactic

features improve the classification results especially when the length of the given text

is short. A large number of short texts make word BOW features sparse and reduce

performance of the classification algorithms. However, the use of syntactic markers

produces considerably smaller vocabulary size compared to that of lexical features,

and improves short-text classification.

Table 2.1 summarizes the features by information group [2,4]. Lexical feature

extract information about vocabulary such as word n-grams, and character n-grams.

Syntactic information is mainly about word order and specific syntactic rules. N-

grams capture partial word orders and functional words and punctuation as well as

syntactic information. Semantic features extracts meaning of sentences, or texts. A

check of synonyms is one of the easiest ways to handle semantics. In many cases,

meaning is represented by some special forms such as Frame semantics [11]. Finally,

other information can be used as a feature as long as we can extract it such as text

length.

5



TABLE 2.1

A classification of features

Groups Feature

Lexical

Word n-gram
Character n-gram
Misspelled words
Special characters
Topic model
Word embedding

Syntactic

Functional word
Punctuation
Syntax tree
POS n-gram
Word n-gram
Syntactic error

Semantic

Synonyms
Semantic dependency
Frame semantic
Sn-gram

Other
Application specific
approaches

2.2 Translator Analysis

Few studies of authorship analysis have been done with the focus of translator

recognition. Hedegaard and Simonsen (2011) investigated authorship attribution of

human translated texts. Their approach demonstrates adding semantics features that

are extracted by frame semantics to lexical and syntactic features would improve

authorship attribution. However, their corpus is built from human translations of

Russian novels to English in Project Gutenberg and limited in terms of available

translations because of a lack of human translators. This study shows that authorship

analysis approach can also identify translators, but the translators are human, not

algorithms.

Suresh et al. (2011) investigated Translator Attribution of Google and Bing

Translate on the French text. Their approach first generates topic distributions of

stop words from Latent Dirichlet Allocation (LDA) [12, 13] and features are created
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by those topic distributions of stop words. Each of documents in their experiment

is a chapter in books and the classification is done with SVM. Their study indicates

a small number of topics and stop words can generate informative features but this

could be because each input document is large.

Caliskan and Greenstadt (2012) tested the translator attribution with the pairs

of the translations between French and English, and those between Dutch and English.

The size of each document was about 500 words. The used translators were Google

Translate, Language Weaver and Systran. The combination of nine different features

(translation set) produced 92.75% accuracy on French dataset, and 94.44% on Dutch

dataset by Support Vector Machine (SVM) and Näıve Bayes (NB) classifiers. The

translation set is a collection of 9 different features namely: average character size

per word, the character counts, the frequencies of function words, the frequency

of letters, punctuation, special characters, top letter bigrams, top letter trigrams,

words, and word lengths. Caliskan and Greenstadt (2012) produced state-of-the-

art accuracy of translation attribution. Their studies show the features in general

authorship attribution also work for true translator detection. Table 2.2 compares

three previous studies for translator classification in terms of translators, the size of

a text, and features. As to length of a text, their studies uses fairly long texts such

as chapters of books and use custom features. This leads us to investigate translator

attribution with respect to text length with simple n-gram approach.

TABLE 2.2

A comparison of three previous studies for translator attribution.

Study Translator Length of a text Feature
Hedegaard and
Simonsen (2011)

Human translators 200 to 33000 words
Character n-gram
Frame semantics

Suresh et, al. (2011)
Google Translate,
Bing

A chapter in a book Topic model by LDA

Caliskan and
Greenstadt (2012)

Google Translate,
Language Weaver,
Systran

500 words
Translation set:
9 different features
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2.3 Classification algorithms

This section reviews classification algorithms for text classification. Though

many of classification algorithms have been applied on text classification, we discuss 2

algorithms that we apply to our datasets: Naive Bayes and Random forest. Although

SVM is selected for classification algorithm in previous studies [5, 14], we omit it for

our experiments due to its computational expensiveness.

2.3.1 Naive Bayes

Naive Bayes is a supervised-learning classification algorithm based on Bayes

theorem and the assumption: all features are independent. The probability of a class

variable y ∈ Y given a document d ∈ D is computed as

P (y|d) =
P (y)P (d|y)

P (d)
. (2.1)

Since Naive Bayes receives a document d as a set of features: xi to xn, it will be

P (y|x1, . . . , xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
. (2.2)

By independence assumption of features, all xi are independent to each other. The

equation is equivalent to

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ..., xn)
. (2.3)

Since P (x1, ...xn) is constant and can be omitted, the above equation is proportional

to

P (y|x1, . . . , xn) ∝ P (y)
n∏

i=1

P (xi|y). (2.4)

For classification, the predicted class ŷ for a given document d is determined by

probabilities of P (y|d). Therefore, ŷ is determined by

ŷ = argmax
y

P (y)
n∏

i=1

P (xi|y). (2.5)
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P (y) and P (xi|y) are estimated by Maximum A Posteriori (MAP) estimation. As-

suming each document is generated by independent trials drawn from a multinomial

distribution of words, P (xi|y) and P (y) are estimated based on empirical counts of

them in given data. P (y) is estimated by the proportion of given training documents

that belong to class y and P (x|y) is approximated as

P (xt|y) =
1 +

∑|D|
i=1NtiP (y|di)

|V |+
∑|V |

s=1

∑|D|
i=1NsiP (y|di)

. (2.6)

Where vocabulary V = {xi, . . .,x|V |}, Nti is the number of times that word xt occurs

in the document di. The additional one in the numerator is to handle zero-frequency

problem and |V | in the denominator is to keep the sum of probabilities to one [15, pp.

100-109] [16].

2.3.2 Random Forest and Decision Tree

A random forest is an ensemble classifier based on the combination of different

decision trees. Therefore, we will cover decision tree first and random forest later.

2.3.2.1 Decision tree

A decision tree is a tree which has two types of nodes; decision nodes and leaf

nodes. A decision node specifies a rule to split a given data from its parent into two

groups, which are passed to dependent child nodes. A leaf node indicates a class.

During inference, new samples are classified by iteratively applying decision rules.

In learning phase, a decision tree is constructed by partitioning the training

data recursively in order to make the resulting subsets as pure as possible. Each

partitioning rule will be a decision node in a tree. Each node chooses the best attribute

and threshold to partition the data at the current node according to the attributes of

the data given to the node. The best attribute and threshold is selected based on the

function which minimize the impurity after the partitioning, or maximize the purity.

Although there are several function that measures impurity such as Gini index [17, p.

134], the most popular function used for decision tree learning is information gain,

9



which is used in C4.5 [18]. Information gain is calculated by using the following

entropy function [15, pp. 100-109].

entropy(D) = −
|C|∑
j=1

P (cj) log2 P (cj) (2.7)

where P (cj) is the probability of class cj in data set D, which is the number of

examples of class cj in D divided by the total number of examples in D. In the

entropy computation, 0× log 0 is defined as 0. In order to detect the attribute which

can reduce the impurity most if it is used to partition D, every attribute is evaluated.

By Letting the number of possible values of the attribute Ai be v and using Ai to

partition the data D, we will divide D into v disjoint subsets D1, D2, . . . , Dv. The

entropy after the partition is

entropyAi
(D) =

v∑
i=1

|Dj|
|D|
× entropy(Dj). (2.8)

Here we assume all Ai is binary value for simplicity, then the information gain of

attribute Ai is computed by

Information gain(D,Ai) = entropy(D)− entropyAi
(D). (2.9)

Algorithm 2.1 finds the best attribute for partitioning to given data by checking im-

purity scores of all possible splits. When the given attributes are continuous features,

we need to find the threshold for partition in addition to finding the best attribute.

The threshold can be determined by sorting values of an attribute and checking all

possible thresholds.

Algorithm 2.2 constructs a decision tree by finding best partitions with Best-

Split in Algorithm 2.1. It calls itself recursively until it reaches a leaf node, which only

has samples of a class. In many case, a decision tree is pruned by setting maximum

depth, minimal number of samples in a node, or more.

2.3.2.2 Random Forest

A random forest classifier is constructed with multiple decision trees and es-

timates by combining the estimations of the trees. A tree in random forests is built

10



Algorithm 2.1 BestSplit(D,A)

Inputs: D: Training data, A: a set of attributes.
Output: Abest: the best attribute to split on

lmin ← 1;
for each Ai ∈ A do

split D into subsets D1, ..., Dl according to the values Vj of A;
if Impurity(D1, ...Dl) < lmin then
lmin ← Impurity(D1, ...Dl);
Abest ← Ai;

end if
end for
return Abest

Algorithm 2.2 DecisionTreeConstruction(D,A)

Inputs: D: Training data, A: a set of attributes.
Output: T : A tree constructed

if D contains only examples of a class cj ∈ C then
return a leaf node labeled with class cj

end if
S ← BestSplit(D,A)
split D into Di according to S;
for each i do

if Di 6= ∅ then
Ti ← DecisionTreeConstruction(D,A)

else
Ti is a leaf node labeled with a class cj of D

end if
end for

with two techniques; bootstrap aggregating and random subspace method. These two

methods let different trees have different subsets of samples and see different subsets

of attributes.

Bootstrap aggregating, or bagging for short, is a simple but effective ensem-

ble method that creates diverse models on different random samples of the original

training data. Samples are drawn uniformly from training data with replacement and

those samples are called bootstrap samples. Because of sampling with replacement,

11



a set of bootstrap samples generally contains duplicated samples and also lacks some

of the original data points even when the size of bootstrap samples is set to the same

size as the original training sample size. Therefore, different trees are constructed

with different bootstrap sample sets but drawn from the same data.

When creating a tree with boost strap samples, random forests apply another

technique called subspace sampling to those samples. Subspace sampling randomly

selects k features from original feature set. A tree can use only randomly-selected

k features of bootstrap samples in its training. The essence of subspace sampling

is to prevent trees from being strongly correlated with each other. If a few features

are very strong predictors for label estimation, most of trees rely on the features and

become correlated. Ensembling less-correlated models leads to better performance.

The number of k is a hyper-parameter but typically
√
K is set when the number of

attributes is K.

Algorithm 2.3 summarize the processes of Random forest training. In inference

time, the final prediction is determined by majority vote of all trees.

Algorithm 2.3 Random Forest Training

Inputs: D: Training data, T : Number of trees

for t in T do
create a subset of samples s from D
select a subset of features k
train a decision tree with subset s by only using selected feature set k

end for

12



CHAPTER 3

EXPERIMENTAL DESIGN

This section will present our approach to translator recognition, data collection,

and experimental details.

3.1 Text feature extractions

Though three of the previous studies presented highly accurate results, their

translated texts are long and there is a space to investigate shorter translations. More-

over, their sophisticated approach could be too complicated and a simpler approach

could produce similar results. Therefore, we initially selected word or POS n-grams

as features to extract lexical and syntactic features. Word frequency approach is one

of the most simple but popular features in text classification tasks. Prior to making

n-grams, all words are stemmed and POS tags are extracted by The Natural Lan-

guage Toolkit (NLTK) [19], which uses 41 POS tags as in Table 3.1. Even though

NLTK tags words with 41 different tags, the main 7 categories are: nouns, adjec-

tives, adverbs, interrogative words, functional words, and symbols. By adding extra

information such as use of singular and plural form, the number of tags expands to

41.

13



TABLE 3.1

POS tags by NLTK

Tag description Tag description
$ dollar NNP noun, proper, singular
” closing quotation mark NNPS noun, proper, plural
( opening parenthesis NNS noun, common, plural
) closing parenthesis PRP$ pronoun, possessive
, comma RB adverb
- dash RBR adverb, comparative
. sentence terminator RBS adverb, superlative
: colon or ellipsis RP particle
CC conjunction, coordinating SYM symbol
CD numeral, cardinal TO ”to” as preposition or infinitive,marker
DT determiner UH interjection
EX existential there VB verb, base form
FW foreign word VBD verb, base form

IN
preposition or conjunction,
subordinating

VBG verb, present participle or gerund

JJ adjective or numeral, ordinal VBN verb, past participle

JJR adjective, comparative VBP
verb, present tense,
not 3rd person singular

JJS adjective, superlative VBZ
verb, present tense,
3rd person singular

LS list item marker WDT WH-determiner
MD modal auxiliary WP WH-pronoun
NN noun, common, singular or mass WP$ WH-pronoun, possessive

WRB Wh-adverb

After making n-grams, both word and POS n-grams are weighted by term

frequency-inverse document frequency (Tf-Idf.) The words that appears in too many

or too few documents are removed and the ratios are determined by validation sets.

Tf-Idf weighting to term t in document d is given by

Tf -Idft,d = Tft,d · (log(
N

dft
) + 1) (3.1)

where N denotes the total number of texts in a collection, Tft,d denotes fre-

quency of term t in document d, and dft denotes the number of documents that

contain term t (document frequency). Our initial experiments with word or POS n-
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gram indicated that unigram of word and bigram of POS tags are useful. Hence, the

combination of word and POS features could produce better results, utilizing both

lexical and syntactic information. Simple concatenation of word and POS n-gram

Tf-Idf values did not improve results. In our experiments, the sequences made by

arranging words and POS tags alternately produced better result. We simply refer to

it as word + POS feature from now on. Table 3.2 shows the samples of word, POS,

and word + POS features. POS tags extracted from the word in word feature and

word + POS feature combines word and POS features by placing words and POS

tags in sequence.

TABLE 3.2

Word, POS, and word + POS samples.

Feature Sample sequence
Word Welcome to the Internet electronic library, Aozora Bunko
POS VB TO DT NNP JJ NN , NNP NNP

Word + POS
Welcome VB to TO the DT Internet NNP electronic JJ library NN , ,
Aozora NNP Bunko NNP

Although a unigram in word + POS feature is just a unigram of word or POS,

a bigram and a trigrams are different. Bigrams could have two sequence patterns:

a set of nth word and nth POS, or a set of nth POS and n + 1th word. A set of

nth POS and n + 1th word can be a new feature that contains lexical and syntax

information, specifying the POS tag appearing before the certain word. Trigrams are

also produced from two kinds of sets: a set of nth word, nth POS and n + 1th word,

or nth POS, n + 1th word and n + 1th POS. They can be considered as the more

specified n-grams of word and POS: POS specified word n-grams and word specified

POS n-grams, containing both lexical and syntactical information. Table 3.3 lists the

possible placements of words and POS tags that can appear in unigrams, bigrams,

and trigrams of word + POS features.
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TABLE 3.3

N-grams in word + POS feature. A token is placed in a pair of round brackets.

N-gram Tokens
Unigram (word), (POS)
Bigram (wordn, POSn), (POSn, wordn+1)
Trigram (wordn, POSn, wordn+1), (POSn, wordn+1, POSn+1)

3.2 Dataset creation

There is no publicly available dataset for translator analysis, and therefore we

start with creating datasets for our experiments. The original texts of our dataset are

the novels that were written in Japanese and collected from the websites called Ao-

zora Bunko1. 127 novels of 5 authors are collected and translated into English using

4 online machine translation services, Google Translate2, Bing Translate3, FreeTrans-

lation.com4, and Systranet5. These four engines were used to translate each of these

Japanese novels respectively. The total of 508 translated texts were used as textual

data. Table 3.4 shows 2 selected sample translations: translations of a sentence by

different translators which could be similar to each other as in translations of input

1, but could be different as in translations of input 2.

1http://www.aozora.gr.jp
2https://translate.google.com
3https://www.bing.com/translator
4http://www.freetranslation.com
5http://www.systranet.com/translate
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TABLE 3.4

Input texts and translation samples. The translations of input 1 are similar but
ones of input 2 are different. FT and SYS stand for FreeTranslation and Systranet
respectively.

Input 1
インターネットの電子図書館、青空文庫へようこそ
(Welcome to the Internet electronic library, Aozora Bunko)

Google Welcome to the electronic library of the Internet, Aozora Bunko
Bing Welcome to the Internet Electronic Library and the Blue Sky Bunko
FT Welcome to the electronic library of the Internet, Aozora Bunko
SYS Welcome to the electronic library and the blue sky library of Internet

Input 2
午後。風がすつかり呼吸を停めた。
(The wind died down in the afternoon.)

Google Afternoon. Wind parked vinegar soaked breathing.
Bing PM. The wind is already soaked breath parked.
FT afternoon. air breathing is to put an end to that.
SYS In the afternoon. The wind does you stopped temporary breath.

Since original Japanese texts are novels and greatly vary in their text lengths

and writing styles, all of texts are grouped by translator and split into sentences,

and normalized so that each sample has the same number of sentences. Though the

precise word count per document minimizes the variance coming from the difference

of text lengths [20], splitting documents by sentences is more natural and similar

to actual usages. The number of sentences per document in a dataset is set to

150, 30, 20, 10, 5, 3, and 1. We refer to them as dataset plus document size, for

example dataset 150. These datasets are considered as different datasets and used for

comparing the effect of document size on classification accuracy since the length of

text greatly affect classification accuracy [20,21]. Sentences that still contain Japanese

characters are removed to avoid situations where the untranslated Japanese characters

are good features and classification results immensely depend on them. Table 3.5

shows the statistics of each dataset: number of samples by translator and mean and

standard deviation of number of words and that of characters in a dataset. Samples

size for translators vary because of the removals of sentences that contain Japanese

characters and different styles of translation, e.g. one-to-one or one-to-many sentence

correspondence between Japanese and English.

17



TABLE 3.5

Statistics of datasets: the numbers of samples and word and character counts. FT
and SYS stand for FreeTranslation and Systranet respectively.

Sentence
size

Samples Mean (std)
Google Bing FT SYS Total Words Characters

150 292 308 386 216 1202 3076 (±414) 13942 (±1553)
30 1458 1536 1929 1076 5999 616 (±107) 2793 (±443)
20 2187 2303 2894 1613 8997 411 (±80) 1862 (±343)
10 4373 4606 5787 3226 17992 206 (±52) 930 (±228)
5 8746 9211 11573 6451 35981 103 (±34) 465 (±156)
3 14576 15352 19287 10752 59967 62 (±26) 278 (±120)
1 43728 46054 57861 32255 179898 21 (±15) 92 (±68)

3.3 Experimental settings

Our experiments are done by changing the following settings in order to see

the effects of document size, feature representations, classification algorithms, n-gram

range, and stop word removal. All other parameters are explained in next section.

• Dataset: Dataset 150, 30, 20, 10, 5, 3, or 1.

• Features: word, POS, or word + POS.

• Classifiers: Random Forest or Naive Bayes.

• N-gram range: n-gram range is set between 1 through 3. We will check each

n-gram itself and combinations of different n-grams.

• Stop words: either removing stop words or not.

3.4 Software implementation detail

We use scikit-learn as the main platform for our experiments and NLTK for

word tokenization and POS tagging. 64% of a dataset is for training, 16% is for vali-

dation, 20% is for testing. All the tokens that appear in more than 97% of documents

or less than 2 times are removed before calculating Tf-Idf scores of each token except
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for the classifications of dataset 150 with Naive Bayes. In these classifications, the

tokens appear in more than 50% of documents or less than 10 times are removed

instead. Multinomial Naive Bayes and Random Forest are selected as classifiers for

the experiments due to training speed and classification accuracies. We determined

the parameters of the classifiers by using validation sets and the same parameters

are used for all experiments for consistency. Random Forests classifiers operate 300

decision trees pruned to maximal depth 90.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we will discuss the experimental results and analysis. Each

result reported have been averaged over 3 experimental runs..

4.1 Results of Classifications

Tables 4.1, 4.2, and 4.3 show all the classification accuracies for different exper-

imental settings. Generally, classification accuracy goes down if the size of document

decreases. Random forests produce better classification accuracies than Naieve Bayes

for long-sized documents. However, Naive Bayes performs better for short-sized doc-

uments.

Table 4.1 shows bigram or trigram of words themselves do not perform well

comparing to unigram. However, when it combined with unigrams, bigrams or tri-

grams of words improves classification.

As to POS ngrams, Table 4.2 shows that unigrams of POS do not perform well

on the contrary. However, bigram and trigrams produce better classification. The

number of POS tags, 41, could be too small by themselves. This could indicate that

syntactic information are highly retained in word order.

Finally, it was observed that the performance of Naive Bayes built with word

+ POS feature deteriorates for long-sized document corpus and shown in the results

for dataset 150 in Table 4.3. This could come from the same reason that Naive Bayes

underperforms with long documents and word features.
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TABLE 4.1

word feature

Model N-gram Stop words
Dataset

150 30 20 10 5 3 1

Random
Forest

(1,1)

included

1.000 0.997 0.986 0.951 0.870 0.788 0.593
(2,2) 0.996 0.993 0.974 0.937 0.831 0.739 0.539
(3,3) 1.000 0.982 0.944 0.868 0.741 0.664 0.431
(1,2) 1.000 0.997 0.979 0.956 0.886 0.802 0.609
(2,3) 1.000 0.989 0.969 0.938 0.829 0.744 0.537
(1,3) 1.000 0.992 0.978 0.955 0.886 0.803 0.610
(1,1)

removed

0.983 0.998 0.984 0.928 0.826 0.722 0.498
(2,2) 1.000 0.961 0.912 0.850 0.623 0.494 0.352
(3,3) 0.971 0.808 0.662 0.479 0.379 0.340 0.328
(1,2) 1.000 0.997 0.986 0.940 0.836 0.730 0.499
(2,3) 1.000 0.961 0.913 0.849 0.623 0.494 0.352
(1,3) 1.000 0.996 0.982 0.942 0.834 0.730 0.501

Näıve
Bayes

(1,1)

included

0.931 1.000 0.998 0.981 0.932 0.844 0.599
(2,2) 0.922 0.937 0.958 0.966 0.919 0.819 0.553
(3,3) 0.950 0.952 0.954 0.911 0.775 0.622 0.399
(1,2) 0.950 0.987 0.988 0.991 0.966 0.903 0.662
(2,3) 0.954 0.950 0.963 0.972 0.924 0.831 0.555
(1,3) 0.977 0.993 0.991 0.995 0.970 0.909 0.664
(1,1)

removed

0.913 1.000 0.998 0.976 0.912 0.804 0.542
(2,2) 0.972 0.990 0.978 0.876 0.625 0.484 0.351
(3,3) 0.686 0.788 0.667 0.481 0.379 0.340 0.328
(1,2) 0.931 1.000 0.997 0.980 0.923 0.811 0.545
(2,3) 0.968 0.992 0.978 0.877 0.626 0.485 0.351
(1,3) 0.940 1.000 0.997 0.981 0.924 0.811 0.545
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TABLE 4.2

POS feature

Model N-gram stopwords
Dataset

150 30 20 10 5 3 1

Random
Forest

(1,1)

included

0.384 0.716 0.643 0.592 0.694 0.614 0.515
(2,2) 1.000 0.983 0.961 0.901 0.809 0.706 0.547
(3,3) 0.996 0.986 0.961 0.891 0.779 0.671 0.521
(1,2) 1.000 0.984 0.958 0.898 0.805 0.704 0.551
(2,3) 1.000 0.987 0.961 0.906 0.804 0.697 0.545
(1,3) 1.000 0.988 0.964 0.913 0.814 0.705 0.556
(1,1)

removed

0.405 0.727 0.651 0.587 0.710 0.626 0.522
(2,2) 1.000 0.988 0.957 0.918 0.813 0.720 0.558
(3,3) 0.996 0.986 0.951 0.908 0.785 0.687 0.536
(1,2) 1.000 0.99 0.958 0.908 0.812 0.723 0.565
(2,3) 0.996 0.99 0.968 0.923 0.812 0.714 0.56
(1,3) 1.000 0.989 0.959 0.923 0.82 0.725 0.569

Näıve
Bayes

(1,1)

included

0.281 0.655 0.593 0.517 0.604 0.53 0.433
(2,2) 1.000 0.99 0.982 0.923 0.831 0.749 0.557
(3,3) 0.826 0.988 0.989 0.943 0.867 0.781 0.574
(1,2) 1.000 0.985 0.982 0.919 0.821 0.737 0.549
(2,3) 0.835 0.992 0.99 0.947 0.868 0.782 0.583
(1,3) 0.835 0.99 0.991 0.944 0.864 0.779 0.579
(1,1)

removed

0.264 0.662 0.598 0.518 0.588 0.509 0.428
(2,2) 1.000 0.987 0.974 0.909 0.81 0.727 0.537
(3,3) 0.926 0.985 0.979 0.937 0.847 0.756 0.555
(1,2) 1.000 0.987 0.973 0.902 0.8 0.717 0.532
(2,3) 0.95 0.987 0.979 0.934 0.846 0.757 0.563
(1,3) 0.942 0.99 0.98 0.934 0.842 0.754 0.562
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TABLE 4.3

word + POS feature

Model N-gram Stop words
Dataset

150 30 20 10 5 3 1

Random
Forest

(1,1)

included

1.000 0.998 0.986 0.948 0.885 0.811 0.632
(2,2) 1.000 1.000 0.992 0.969 0.893 0.805 0.632
(3,3) 1.000 0.997 0.983 0.949 0.860 0.769 0.588
(1,2) 1.000 0.999 0.992 0.970 0.902 0.817 0.647
(2,3) 1.000 0.999 0.989 0.965 0.883 0.796 0.627
(1,3) 1.000 0.999 0.992 0.968 0.897 0.816 0.649
(1,1)

removed

0.979 0.998 0.986 0.936 0.875 0.774 0.600
(2,2) 0.996 0.999 0.991 0.961 0.874 0.781 0.588
(3,3) 1.000 0.992 0.975 0.917 0.819 0.728 0.517
(1,2) 1.000 0.998 0.994 0.969 0.895 0.798 0.619
(2,3) 1.000 0.999 0.988 0.955 0.866 0.778 0.588
(1,3) 1.000 0.998 0.988 0.964 0.894 0.805 0.619

Näıve
Bayes

(1,1)

included

0.954 1.000 0.998 0.982 0.939 0.859 0.625
(2,2) 0.986 0.980 0.989 0.988 0.970 0.919 0.681
(3,3) 0.972 0.943 0.973 0.982 0.960 0.898 0.632
(1,2) 0.963 0.978 0.987 0.987 0.969 0.921 0.694
(2,3) 0.972 0.927 0.966 0.982 0.972 0.925 0.687
(1,3) 0.959 0.935 0.968 0.981 0.975 0.930 0.704
(1,1)

removed

0.945 1.000 0.998 0.977 0.929 0.827 0.582
(2,2) 0.972 0.995 0.990 0.986 0.956 0.885 0.626
(3,3) 0.959 0.987 0.982 0.974 0.934 0.830 0.530
(1,2) 0.940 0.993 0.989 0.984 0.960 0.889 0.645
(2,3) 0.963 0.982 0.980 0.983 0.960 0.891 0.633
(1,3) 0.950 0.982 0.981 0.983 0.964 0.900 0.656

4.1.1 Feature

We summarize the results with respect to features and dataset in Figure 4.1.

Except for dataset 150, classification accuracies deteriorate with the decrease in doc-

ument size. Outliers in word feature are as a result of poor performance of bigrams

and trigrams, and ones in POS result from poor performance of unigrams. Word +

POS features have less outliers and have less variance for n-grams compared to word

features, with long boxes. Word + POS, which combines word and POS features,

produces the most stable results.
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Figure 4.1: Accuracies grouped by feature. The top edge line of a box denotes
25 percentile, a read line denotes a median, and the bottom edge line denotes 75
percentile. From left to right: word, POS, and word + POS features.

4.1.2 Stop words

Figure 4.2 shows classification accuracies for dataset 1 with n-gram of range

1 to 3 grouped by classifier and feature. Blue lines indicate the classification results

of classifications without stop word removal and green lines is for results with stop

words removal. Regarding the dataset size, we observe the effect of stop words more

when document size is small. When the length of documents is small, removing stop

words has negative effect of removing high frequency tokens from a sample. Stop word

removal effects on classifications using word features but does not do on ones using

POS features. Since word + POS feature combines word and POS features, the effect

of stop word removal to classification accuracy is between those of words and POS

features. The effect of stop words can also be seen in the classification of large-sized

documents, dataset 150, with Naive Bayes classifiers and stop-word removal improve

classification results.
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Figure 4.2: Accuracies of dataset 1 classification with n-gram range (1,3)

4.2 Error Analysis

Next, we examine mis-classification errors. Figure 4.3 is a collection of confu-

sion matrices for experiments on dataset 1. N-gram range is set from 1 to 3. Each

translation algorithms are denoted by numbers:

• 1: Google translate

• 2: Bing Translate
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• 3: FreeTranslation

• 4: Systranet

Among the all results, the most distinctive samples are those of label 3 (FreeTrans-

lation). This could caused by the fact that we have more samples of FreeTranslation

than others. This can also be seen in the mis-classified samples, where the samples

of all other 3 labels are mis-classified more to label 3 than others. The second most

accurate algorithm is labeled 4, Systranet, going by their respective accuracies.

Figure 4.3: Confusion matrices for classification of dataset 1 with ngram range (1,3)
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4.3 Decision nodes of trees

Finally, we will check the decision rules generated by decision trees. Table 4.4

contains decision rules up to the depth 2 nodes in the trees built with word, POS,

and word + POS features. The trees are constructed with the training samples of

dataset 30 without stop word removal. The n-gram range is set from 1 to 3. Though

we use Random forests for actual classification, where each tree is constructed with a

random subset of features, we here use decision trees for simplicity and clear decision

rules.

The term ’which’ appears in the trees constructed with word and word + POS

features. The POS tag ’WDT’, WH-determiner also have strong correspondence to

’which’ by seeing the token ’NN which WDT’ in word + POS feature. The decision

nodes for word feature also see some general word collocations such as ’and the’, ’it

be’, and ’some of’. Also, it catches ’ru’ and ’te’ in depth 2 nodes, which are the mis-

translations of Kanji, Chinese characters. The tree build with POS feature mainly

see the collocation around nouns, which are denoted by ’NN’ or ’NNP’. ’NN WDT’

probably has strong relation to the appearance of ’which’ in word tree. In word +

POS feature, ’NN which WDT’ and ’NN which’ correspond to ’which’ in word and

’NN WDT’ in POS features. Also, the token ’and CC the’ corresponds to ’and the’

in word tree. On top of that, it also catches the certain word choice, ’shall’ and

’paragraph’.

TABLE 4.4

Decision rules in nodes up to depth 2: Each tree is built on the training set of dataset
30 with n-gram range (1, 3).

depth word POS word+POS
0 which NN WDT NN which WDT
1 and the CC DT shall MD
1 which NN VBG IN for
2 it be NNP PRP and CC the
2 some of NN TO BV paragraph
2 ru NNP PRP NN which
2 te NNP NNP PRP$ .
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4.4 Comparison

In this section, we will compare the classification results among the translation

set features from Aylin and Rachel [14], and topic model features from Suresh et al. [5].

Random Forest and Naive Bayes are used for the classifications with all 3 feature sets.

The number of topics are set to 10, 15, 20, or 25, and topics are extracted by using

LDA as mentioned in [5]. The results are the average of 4 results with different

number of topics from 10 to 25 by 5 because there is no significant difference among

the classifications with different topic sizes. Our feature is a collection of unigram,

bigram, and trigrams of word + POS features based on its classification accuracy.

Table 4.5 and Figure 4.4 compile those classification results. Figure 4.4 shows that

all the 3 feature sets produce high accuracies on long-document-sized datasets 150,

30, 20, and 10, except for the poor performance of Naive Bayes and word + POS

features. For short document size dataset 5, 3, and 1, however, our proposed method,

word + POS feature produces better classification accuracies. This comparison shows

that our proposed features are robust to short text classification comparing to existing

studies, even though the methods that those previous studies proposed, Translation

set and Topic model, work well on long document size dataset as in their reports.

TABLE 4.5

Classification accuracies of translation, topic model, and word + POS approaches.

Translation set Topic model Word + POS
Dataset RF NB RF NB RF NB

150 1.000 1.000 1.000 1.000 1.000 0.959
30 0.989 0.999 0.997 0.996 0.999 0.935
20 0.975 0.984 0.989 0.986 0.992 0.968
10 0.923 0.942 0.935 0.898 0.968 0.981
5 0.822 0.835 0.756 0.636 0.897 0.975
3 0.732 0.746 0.618 0.459 0.816 0.930
1 0.582 0.538 0.427 0.326 0.649 0.704
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Figure 4.4: Classification accuracies of Translator set, Topic model, and word + POS
features. The top graph is for the results of classification by Random forest and the
bottom is for those of classification by Naive Bayes.
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CHAPTER 5

CONCLUSIONS AND POTENTIAL FUTURE WORK

5.1 CONCLUSIONS

In this thesis, we investigate approaches to translator identification by testing

different feature settings. Three features, word, POS tags, and the combination of

word and POS tags, are selected for feature representation of texts with classifica-

tion algorithms, Random forest and Naive Bayes. Also, the power of n-grams and

stop word removal are checked in our experiments for better accuracy and analysis.

Our experiments shows that the combination of unigrams, bigrams, and trigrams of

extracted feature represented by word + POS produced the best results among the

settings we have tested, by combining lexical and syntactic information. Our pro-

posed method works as good as the ones previous studies proposed for long texts and

even more it outperformed them in short text classification.

5.2 POTENTIAL FUTURE WORK

Our experimental results show that combining lexical and syntactic information

improves classification results. Considering that, a potential future approach could

be applying the classification models taking a sequence of lexical markers as an input

and predicts with the marker order information, such as recurrent neural networks

(RNNs).

We also could extend our experiments to other language pair translations.

The sources of our dataset are novels written in Japanese and the documents in a

dataset are normalized in terms of sentence lengths. To aim for the more realistic

experimental scenario, the source should be obtained in the target domain such as

the sources for translator detection of spam message should be spam messages.
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