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ABSTRACT 

 

ASSESSING THE RELATIONSHIP BETWEEN TALKER NORMALIZATION AND 

SPECTRAL CONTRAST EFFECTS IN SPEECH PERCEPTION 

Ashley A. Assgari 

 

April 9, 2018 

 

Speech perception is influenced by context. This influence can help to alleviate issues 

that arise from the extreme acoustic variability of speech. Two examples of contextual 

influences are talker normalization and spectral contrast effects (SCEs). Talker 

normalization occurs when listeners hear different talkers causing speech perception to be 

slower and less accurate. SCEs occur when spectral characteristics change from context 

sentences to target vowels and speech perception is biased by that change. It has been 

demonstrated that SCEs are restrained when contexts are spoken by different talkers 

(Assgari & Stilp, 2015). However, what about hearing different talkers restrains these 

effects was not entirely clear. In addition, while these are both considered contextual 

influences on speech perception, they have never been formally related to each other. The 

series of studies reported here served two purposes. First, these studies sought to establish 

why hearing different talkers restrained SCEs. Results indicate that variability in pitch (as 

measured by fundamental frequency), a primary acoustic cue to talker changes, restricts 

the influence of spectral changes on speech perception. Second, these studies attempted 

to relate talker normalization and SCEs by measuring them concurrently. Talker 

normalization (as measured by response times) and SCEs were evident in the same task 

suggesting that they act on speech perception at the same time. Further, these measures of 
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talker normalization were shown to be influenced by f0 variability suggesting that SCEs 

and talker normalization are both related to f0 variability. However, no relationship 

between individual’s SCEs and response times was found. Possible reasons why f0 

variability may restrain context effects are discussed. 
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CHAPTER I 

INTRODUCTION 

When perceiving speech, there are many cues that can lead to one percept and one 

cue that can contribute to many different percepts. Despite this fact, speech perception is 

remarkably accurate. Speech perception research seeks to explain this incongruity by 

determining what cues listeners rely upon to accurately perceive speech. Through these 

lines of research, many cues that influence speech perception have been found. The 

proposed studies will seek to understand how two of these cues may be related. The first 

cue is talker acoustics. In speech, talker acoustics are highly variable. When hearing 

different people speak, the acoustics of the speech change dramatically. The other cue is 

the frequency composition of recent sounds. Each of these cues has its own influence on 

speech perception. While these cues have never been directly linked, there is evidence 

that they may be related.  

This dissertation will start by explaining the different types of cues that help 

listeners cope with the variability of speech. Next, how hearing different people speak 

influences speech perception is presented. Third, how the frequency composition of 

surrounding sounds influences perception is discussed. Finally, the possible relationship 

between these two influences on speech perception is assessed.  

How Do We Deal With Variability?
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The perceptual world is full of variability. In every modality, we encounter 

objects that vary dramatically yet all belong to a single category. For example, consider 

an apple. Apples come in many different sizes, colors, and shapes. Despite this 

variability, we know an apple when we see one. Say we encountered two granny smith 

apples. Granny smith apples are characteristically green. Any two apples will surely vary 

in their exact shade of green, but if asked what kind of apples ours are, we will have no 

difficulty telling someone that they are both granny smith apples. Now, consider a gala 

apple and a honey crisp apple. Even though both of these apples are a similar shade of 

pink, we can still differentiate the two types of apples. Two objects that are ostensibly 

different on many key characteristics can still be labeled as the same category reliably.  

Further, two objects that are similar on key characteristics can accurately been 

differentiated. This problem often plagues perception researchers. If there is no direct 

relationship between a key characteristic and the identification of an object, how can it be 

argued that a characteristic is vital for accurate perception?  

Acoustic Variability in Speech 

Speech is no exception to this problem. Speech production is highly variable, so 

just like the granny smith apples, the acoustic characteristics of two instances of the same 

speech sound will vary substantially from each other. If two talkers produce the same 

sound, their productions will have very different acoustics. These differences arise from 

the physiology of the talker, which will be discussed later. Even within the same talker, 

when the same sound is produced, the acoustics will vary. This is due to differences in 

the articulation of speech sounds at any given time. When a single talker produces two of 

the same speech sounds, how they articulate the sounds is unlikely to be exactly the same 
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each time. Furthermore, like the gala and the honey crisp apples, two sounds that have 

similar acoustics can be perceived as two different speech sounds, depending on the 

context in which they are perceived.  

Despite this variability, listeners are extremely accurate at identifying speech. 

This creates an interesting problem for speech researchers: despite substantial variability 

both within and between phoneme categories, speech perception is highly accurate. This 

problem is expressed through the concept of the lack of invariance (Liberman, Cooper, 

Shankweiler, & Studdert-Kennedy, 1967). The lack of invariance states that there is no 

direct correspondence between acoustic cues and speech perception. Put another way, no 

acoustic cue is both necessary and sufficient for recognizing a given speech sound. 

Researchers have attempted to address this issue by understanding what other acoustic 

information can influence speech perception. 

Intrinsic vs Extrinsic Cues to Speech Perception 

In the literature, there is a distinction made between intrinsic and extrinsic cues to 

speech perception. An intrinsic cue is an aspect of the stimulus that is self-contained. In 

our apple example, an intrinsic cue would be the apple’s shape. While the exact shape of 

any given apple may vary from an ideal, they have a generic shape that helps you 

determine its identity. Extrinsic cues are other cues that help identify a stimulus but are 

not a part of the stimulus itself. As such, extrinsic cues are often characteristics of the 

context in which the stimulus is perceived. For our apple, if it was placed in a fruit 

basket, the surrounding fruit cues the perceiver that our stimulus is likely also a fruit. 

In speech, many acoustic cues are considered intrinsic cues. For example, 

properties related to amplitude (e.g., Fairbanks, House, & Stevens, 1950), duration (e.g., 
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Peterson & Lehiste, 1960), and frequency composition of that sound (e.g., Peterson & 

Barney, 1952). Speech perception is also influenced by extrinsic cues (e.g., Ladefoged & 

Broadbent, 1957; Ainsworth, 1975; Nearey, 1989; Stilp, Anderson & Winn, 2015). 

Extrinsic cues in speech are characteristics of the surrounding sounds. Both sounds that 

come before and after a stimulus can influence perception of a given (target) sound. In 

general, the literature shows that sounds that come before the target sound are much more 

influential than sounds that come after. There are many different characteristics of the 

surrounding sounds that influence the perception of the target sound. In this paper, the 

low-level acoustic characteristics of the preceding sounds and their extrinsic influence on 

the perception of the target are discussed. 

The following two sections will discuss two extrinsic cues to speech perception in 

more detail: (1) who is producing the speech and (2) the frequency content of the 

surrounding (i.e., earlier) sounds. First, the consequences of hearing different talkers are 

discussed. As previously mentioned, when hearing different talkers, their speech 

acoustics vary dramatically, and this can impair speech perception. Next, the frequency 

content of earlier sounds has a considerable influence on identification of later sounds; 

this influence will be discussed. Finally, a discussion of the relationship between these 

talker acoustics and the frequency composition of earlier sounds is presented. Gaps in the 

understanding of this relationship are used to motivate the proposed studies. 

Talker Variability 

One of the sources of acoustic variability in speech is the acoustic changes that 

arise from hearing different talkers. These changes can impair and/or slow the listener’s 

speech perception. This is of particular interest because, throughout any given day, 
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listeners will hear speech from many talkers. Furthermore, it is common to hear speech 

from different talkers in close succession. Since the ultimate goal for researchers is to 

understand the perception of speech in natural environments, understanding the 

perceptual consequences of hearing different talkers is essential. 

The Acoustic Underpinnings of Talker Normalization 

Talker information does not influence speech only at the time of perceiving a 

particular speech sound, it can also give the listener some sense of what to expect next. 

When hearing the same talker, the acoustics of the surrounding sounds remain fairly 

consistent and speech perception is uninterrupted. However, when hearing different 

talkers, the surrounding sounds differ dramatically and the listener must perceptually 

adjust for those differences. A large body of research has investigated the consequences 

of hearing different talkers when perceiving speech. The general finding of these studies 

is that perception is slower and less accurate when hearing different talkers relative to 

hearing the same talker. This effect is referred to as talker normalization (e.g., Creelman, 

1957; Fourcin, 1968;Assmann, Nearey, & Hogan, 1982; Geiselman & Bellezza, 1976; 

Mullenix, Pisoni, & Martin, 1989; Mullenix & Pisoni, 1990; Logan & Pisoni, 1987). This 

general pattern has held up in decades of research and for a variety of speech related tasks 

(for a review, see Pisoni, 1993). These tasks include recall of word lists (Goldinger, 

Pisoni, & Logan, 1991), word identification (Ryalls & Pisoni, 1997), vowel monitoring 

(Magnuson & Nusbaum, 2007), word monitoring (Magnuson & Nusbaum, 2007), 

consonant perception (e.g., Rand, 1971), and vowel perception (e.g., Assmann, Nearey, 

& Hogan, 1982). Since this general finding is well established, it is important to 
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understand exactly how and when speech perception is slower and less accurate with 

different talkers. 

 The acoustics of any sound depend on how it was produced; speech is no 

exception. Speech is produced through two separable processes (Fant, 1960). The first 

process is phonation, or the vibration of the vocal folds as air is pushed through them. 

When the vocal folds vibrate, the rate at which they vibrate corresponds to the pitch of 

the talker’s voice. The perception of pitch is most strongly influenced by the 

measurement of fundamental frequency (f0). Thus, when researchers refer to pitch 

changes, they are actually measuring changes in f0. Men generally have longer and 

thicker vocal folds due to testosterone. Men’s vocal folds vibrate relatively slowly 

producing a low f0. Women, on the other hand, generally have shorter vocal folds that 

vibrate more quickly, corresponding to a relatively high f0. Individuals are relatively 

consistent in the f0 of their speech. As a result, hearing different talkers leads to larger 

changes in f0 than hearing the same talker.  

Pitch is a primary if not the primary cue listeners use to distinguish different 

talkers’ voices. Thus, talker normalization effects are likely produced in part by changes 

in the talkers’ f0s. If the vocal folds are held open during speech production (i.e., are not 

vibrating), the result is whispered speech that has no pitch. This makes different talkers’ 

voices less distinct from each other, which might mitigate the perceptual costs associated 

with hearing different talkers. Indeed, the effect of hearing different talkers was smaller 

when the speech was whispered (Fourcin, 1968). This result suggests that f0 is necessary 

to observe talker normalization effects. Later investigations built upon this finding. 

Goldinger (1996) asked listeners to report whether words in word pairs were the same or 
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different. Importantly, on every trial, the words were spoken by different talkers. The 

author observed a wide range of response latencies for accurate responses. Through non-

metric multi-dimensional scaling, the author found that the differences in response 

latencies were best explained by two dimensions. The first dimension was the gender of 

the talker: same-talker-gender responses were faster than different-talker-gender 

responses. The second dimension was the relative f0 within each gender category: 

response times were faster when talkers were acoustically similar (smaller range of f0s) 

than when talkers were more acoustically different (wider range of f0s). These studies 

suggest that f0 variability has a strong influence on talker normalization effects in speech 

perception. 

In follow up experiments, the effects of talker similarity were explicitly 

manipulated (Goldinger, 1996). Listeners were exposed to a list of words and asked to 

identify each word. After a delay, listeners were presented with a different list of words 

and asked whether they had heard the word during exposure (i.e., respond “old”) or they 

had not (i.e., respond “new”). Importantly, listeners heard half of the old words in a 

different voice than they heard during exposure.  A range of hit rates was observed, but 

performance was predicted by an index of similarity between talkers’ voices (higher hit 

rates for acoustically similar voices). Thus, the degree to which the talkers were 

considered similar influenced the accuracy of recall (Goldinger, 1996). These results 

suggest that talker normalization is dependent on the perceived similarity of the talkers. 

When talkers are similar, listeners have difficulty telling them apart (Magnuson & 

Nusbaum, 2007). If listeners cannot tell talkers apart, then it is possible the talkers are 

treated as the same and there is no normalization across different voices. When talkers 
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are less similar, the costs of hearing different talkers increase and talker normalization 

processes are required. 

As previously stated, speech is produced by two separable processes (Fant, 1960). 

The first process is phonation. The second process of speech production is articulation, or 

filtering done by the vocal tract. The vocal tract can be conceptualized as a complex tube 

with many different compartments. Tubes have resonances and so does the vocal tract. 

The shape and size of the vocal tract creates different resonances that amplify certain 

frequencies. These resonances are called formants. These formants that are labeled by 

number based on ascending frequency (i.e., the first major resonance is labeled F1, the 

second resonance is F2, etc.). The first three formants are known to have a strong 

influence on what speech sound in perceived. Anatomical differences produce predictable 

differences in the acoustics of speech for men and women (Peterson & Barney, 1952; 

Hillenbrand, Getty, Clark, & Wheeler, 1995). Men, who generally have longer vocal 

tracts, produce formants that are overall lower in frequency. Women, whose vocal tracts 

are relatively shorter, produce formants that are overall higher in frequency. Further, each 

individual has a fairly unique combination of f0 and formants. As such, there are often 

clear acoustic consequence in speech when hearing different talkers. Researchers attempt 

to tie these acoustic differences between talkers to the behavioral consequences of 

listeners hearing different talkers. 

Initial explanations of talker normalization suggested that listeners were 

‘learning’ the talker. When repeatedly hearing a single talker, listeners ‘learned’ the 

characteristics of the talker’s speech (i.e., f0 and formants). This knowledge could then 

inform the perception of subsequent speech produced by that talker. When hearing 
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different talkers, that ‘learning’ is interrupted, giving the listener less information to 

inform their perception of subsequent speech. One of the characteristics that is 

supposedly ‘learned’ is talkers’ vowel spaces, or their specific frequency distribution of 

vowels (Joos, 1948; Ladefoged & Broadbent, 1957). As previously mentioned, the 

formants of talkers’ vowels vary (Peterson & Barney, 1952; Hillenbrand et al., 1995). 

Listeners were thought to ‘learn’ each talker’s vowel formants through experience with 

their point vowels (i.e., the vowels at the extremes of the vowel space; Joos, 1948). 

However, hearing a talker’s point vowels before a stimulus does not improve the 

perception of that stimulus (Verbrugge, Strange, Shankweiler, & Edman, 1976). Thus, 

the specific content of the surrounding speech sounds had no influence on talker 

normalization. However, when these same stimuli were blocked by talker rather than 

presented in random order, there was an improvement in perception of the target sounds 

(Verbrugge, Strange, Shankweiler & Edman, 1976). By blocking talker, the acoustic 

variability from trial to trail was decreased. This decrease in variability produced an 

increase in accuracy. Once again, the variability of the talkers (or lack of) influences the 

accuracy of speech perception.  

Non- Acoustic Influences on Talker Normalization 

 There have been multiple demonstrations of talker variability influencing talker 

normalization effects in speech perception. When talkers are different, listeners are 

slower and less accurate recognizing speech than when talker are similar.  Not only does 

actual acoustic variability influence talker normalization, but listeners’ expectation of 

variability also has an influence. Magnuson & Nusbaum (2007) took two similar-

sounding talkers (two male talkers with a 10 Hz difference in average f0) and changed 
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listeners’ expectations of what they were going to hear. In one group, listeners were told 

that they would only hear one talker. In another group, listeners were told they would 

hear two talkers. The group that expected to hear two talkers were significantly slower 

when talkers were mixed relative to when talkers were blocked. The group that expected 

to hear a single talker showed no increase in response time from the blocked-talker to the 

mixed-talker condition. These results show that listeners’ expectations can also influence 

talker normalization. However, it is important to mention that a 10 Hz difference in f0 is 

well within the range of variability that an individual talker can produce. It is unlikely 

that listeners’ expectations could negate a large difference in f0 between talkers, but the 

limit of this effect has not been tested. 

In general, talker normalization effects are reported with talkers that are novel to 

the listener. But, what if the listener is already familiar with the talker? Nygaard and 

colleagues have run a series of studies assessing the role of talker familiarity in speech 

perception (Nygaard, Sommers, & Pisoni, 1994; Nygaard & Pisoni, 1998). When 

listeners were trained to identify words spoken by different talkers, word identification 

was better for those talkers (Nygaard, Sommers, & Pisoni, 1994; Nygaard & Pisoni, 

1998). In addition, when sentences were used for training, identifying words that were 

presented in sentences was better for familiar voices (Nygaard & Pisoni, 1998). In other 

words, when using familiar talkers, there is benefit to speech perception. However, when 

trained with sentences, no improvement was observed when tested with words presented 

in isolation. This suggests that the benefit observed with familiar talkers is dependent on 

the context in which familiarization occurs (Nygaard & Pisoni, 1998). It is clear that there 
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is a benefit to speech perception by being familiar with a talker. However, whether or not 

that benefit can overcome the cost of switching talkers has yet to be assessed. 

Higher processing demands have been offered as an explanation for talker 

normalization. As previously mentioned, when hearing different talkers, the listener must 

adjust to the characteristics of each new talker’s voice (e.g., Joos, 1948). This adjustment 

is thought to result in processing demands higher than when the talker stays the same, and 

this leads to longer response times than in same-talker tasks. Evidence from fMRI studies 

support that there are higher processing demands when hearing multiple talkers. While in 

a scanner, participants were asked to monitor word lists for target words (Wong, 

Nusbaum, & Small, 2004). The lists were spoken either by a single talker or by multiple 

talkers. Regardless of the number of talkers, the middle/superior temporal and superior 

parietal regions of the brain were activated bilaterally. However, lists spoken by multiple 

talkers led to higher levels of activation in these areas (Wong, Nusbaum, & Small, 2004). 

Higher levels of activation suggest a harder task, supporting the theory that hearing 

multiple talkers requires more resources than hearing a single talker. The authors 

attributed this to the listener having to ‘learn’ the characteristics of a new talker (Wong, 

Nusbaum, & Small, 2004).  

If talker normalization arises from higher processing demands when hearing 

multiple talkers, then other ways of increasing processing demands should result in 

slower and less accurate speech perception. One way to increase processing demands is 

to increase the difficulty of the task. When listeners hear ‘hard’ words (i.e., low lexical 

frequency), they are less accurate than when listening to ‘easy’ words (i.e., high lexical 

frequency; Goldinger, Pisoni & Logan, 1991). This result replicates well-known findings 
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that ‘hard’ words are less likely to be recalled accurately (Hall, 1954). Lower accuracy 

was also found for words spoken at a fast speaking rate relative to a slower speaking rate 

(Goldinger, Pisoni & Logan, 1991). In this study, higher processing demands lead to 

similar decreases in accuracy observed in talker normalization.  

However, when listeners were distracted by varying the amplitude of stimuli, 

leading to higher processing demands, no decreases in speech perception accuracy or 

increases in reaction times were observed (Magnuson & Nusbaum, 2007). This suggests 

that higher processing demands alone cannot fully account for talker normalization.  

In addition to higher processing demands, how words are initially encoded in 

memory has been offered as an explanation for talker normalization. As mentioned 

previously, the recall of words in word lists is a common task in talker normalization 

research (e.g., Goldinger, Pisoni, & Logan, 1991). The recall of word lists exhibits serial 

position effects (Murdock, 1962). Words at the beginning and end of a list are recalled 

more accurately than words in the middle. These effects are known as the primacy and 

recency effect, respectively (Murdock, 1962). The primacy effect occurs because words 

at the beginning of the list are rehearsed more than words at the middle or end. The 

recency effect is attributed to smaller delays between presentation and recall, making 

recall easier. Talker normalization effects have been shown to be more prevalent at the 

beginning and end of lists. In other words, the difference between recall accuracy with 

multiple talkers versus a single talker is greater at the beginning and end of the list 

(Goldinger, Pisoni, & Logan, 1991). These results suggest that talker normalization 

effects arise from influences on the encoding of words. When hearing different talkers, 

encoding and/or rehearsal of the words is disrupted. This suggest that talker 
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normalization may not only arise due to higher processing demands, but also from poorer 

rehearsal of the words spoken by multiple talkers. 

Conclusion 

 The preceding section argued that when hearing speech from different talkers, 

there is a cost to speech perception (i.e., slower and less accurate). How large of a cost is 

observed is related to how similar the talkers are (especially in regard to f0). When 

talkers are the same or considered very similar, speech perception is faster and more 

accurate. However, listeners’ expectations of the talkers can also influence how large of a 

cost is observed. These costs are suggested to be a result of higher processing demands 

from hearing different talkers and in turn affects the ability to encode words in memory. 

However, higher processing demands cannot fully account for these costs. It is clear that 

talker can create a type of context that influences speech perception. The next section 

discusses another type of context, the frequency composition of surrounding sounds, and 

its influence on speech perception. 

Spectral Contrast Effects 

Contrast effects occur when objects or events differ from surrounding 

objects/events, and that difference is perceptually magnified. For example, imagine if you 

were to open your laptop in a normally lit room. You would perceive the screen to be of 

medium brightness. However, when you open your laptop in a dark room, the screen is 

going to seem extremely bright compared to the dark room. The change in brightness 

from dark to a medium level brightness is perceptually magnified, and you perceive your 

laptop as very bright. That same level of brightness of your screen would seem relatively 

dim if opened in a very bright room such as a hospital room with bright fluorescent 
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lights, white floors and white walls. Now, the change from a high level of brightness to a 

medium level of brightness has been magnified and your laptop may seem dimmer than it 

actually is. Contrast effects happen in every modality and for many perceptual cues 

(Kluender, Coady, & Kiefte, 2003).  

 Of particular interest to this line of research are spectral contrast effects. Spectral 

contrast effects (SCEs) occur when there is a change in the frequency compositions of 

earlier sounds compared to a later target sound. That change will be perceptual magnified 

such that the perceived change is larger than the physical change. In very simplistic 

terms, if earlier sounds contain more low frequencies and are followed by a mid-

frequency sound, that mid-frequency sound will be perceived as higher in frequency. 

Similarly, if earlier sounds contain more high frequencies and are followed by a mid-

frequency sound, that same sound will be perceived as lower in frequency. SCEs can 

occur on short-term and long-term time courses. In this example, short-term SCEs occur 

when the earlier sounds contain more low frequencies right at the end of the sound (e.g., 

Lotto & Kluender, 1998). The sound immediately following will be perceived higher in 

frequency. Long-term contrast effects occur when earlier sounds contain more low 

frequencies overall or as part of its long-term average (e.g., Ladefoged & Broadbent, 

1957). This bias becomes part of the overall quality of the sound. A change from that 

quality to the sound quality of a subsequent sound will be perceptually magnified. 

As previously mentioned, many speech sounds can be differentiated based on 

their formant frequencies. Contrast effects occur for changes in these formant 

frequencies. One example is the vowels /ɪ/ (‘ih’ like in the word “bit”) and /ɛ/ (‘eh’ like in 

the word “bet”), which are primarily differentiated on the first formant (F1) with /ɛ/ 



15 
 

having a higher F1.  If earlier sounds contain a low frequency F1 and the target sound has 

an ambiguous F1 between that found in /ɪ/ and /ɛ/, that ambiguous formant will be 

perceived as a higher, leading to more /ɛ/ responses. Thus, the frequency composition of 

earlier sounds can influence identification of the speech target. 

One of the first demonstrations of SCEs in speech was Ladefoged and Broadbent 

(1957). In this seminal paper, context sentences (‘please say what word this is’) were 

followed by target words. Listeners reported what word out of the four options they 

heard: ‘bit’, ‘bet’, ‘bat’, or ‘but’. Importantly, the authors shifted the F1 and F2 

frequencies in the context sentence. The results presented here concentrate on the 

responses ‘bit’ and ‘bet’ because these options include the vowels /ɪ/ and /ε/. When the 

first formant of the context sentence was not shifted, participants reported hearing a target 

word as ‘bit’ more often. However, when the first formant of the context sentence was 

shifted down, that same target word was reported as the high-F1 ‘bet’ most often. 

Similarly, when the first formant of the context sentence was shifted up to a high 

frequency F1, listeners labeled the target word as low-F1 ‘bit’ more often. Thus, the 

change from the context to the target word was perceptually magnified and listeners 

reported hearing the option opposite of the context more often 

SCEs in Speech vs Non-Speech 

Originally, Ladefoged and Broadbent (1957) interpreted these results as a means 

of compensating for differences between different talkers’ voices. However, subsequent 

evidence has shown that a talker is not necessary to produce SCEs. In fact, later lines of 

research demonstrated SCEs are both consistent and predictable based solely on the 

acoustics of the surrounding sounds (e.g., Holt, 2005; 2006). Holt and colleagues have 
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repeatedly shown that non-speech contexts (i.e., a series of sine tones) were successful at 

producing SCEs. When these sine tones contexts contained more low frequency tones, 

they produce high frequency responses more often. When the sine tones contexts contain 

more high frequency tones, there are more low frequency responses. Non-speech SCEs 

have been observed with long delays between context and target (Holt, 2005), with 

different levels of variation in the frequencies of the context (Holt, 2006) and with 

different durations of contexts (Holt, 2006). In addition to sine tones, SCEs have been 

shown with contexts that were musical instruments (Stilp, Alexander, Kiefte, & 

Kluender, 2010) or signal correlated noise (Watkins, 1991). Further, it has been 

demonstrated that SCEs can be observed when listeners are categorizing musical 

instruments (varying from tenor saxophone to French Horn; Stilp, Alexander, Kiefte & 

Kluender, 2010; Assgari, Frazier, & Stilp, 2018). So, SCEs are observed when both the 

context and targets are non-speech. These findings show that SCEs are an acoustic 

phenomenon and not speech specific.  

 Non-speech SCEs show that adjusting for talker differences cannot be the only 

purpose of these effects. However, just because SCEs occur with non-speech does not 

mean that they do not serve a purpose in speech perception. Speech is a unique stimulus 

for many reasons that non-speech stimuli often fail to capture. Primarily, the spectra of 

non-speech stimuli are extremely simple relative to speech. The majority of studies 

establishing non-speech influences on SCEs use sine-tones as context (Holt, 2005; 2006). 

These sine tones differ from speech in important ways. First, the speech signal spans a 

wide range of frequencies whereas sine tones sampled very limited ranges of frequencies. 

In addition, the amplitude fluctuations of sine tones are extremely simplistic (on versus 
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off) relative to speech. In speech, the amplitudes of different frequencies vary producing 

a complex stimulus. Another non-speech stimulus used in SCE experiments is signal 

correlated noise (e.g., Watkins, 1991). While signal correlated noise captures the overall 

amplitudes of frequencies in speech, it still fails to capture the minute fluctuations of 

frequencies over time. Thus, in order to assess the role of the acoustic complexity of 

speech may play in SCEs, natural speech should be used. 

Listeners have extensive experience with speech as our primary means of 

communication. As such, speech is encountered in many different contexts, while certain 

non-speech stimuli are only encountered in a laboratory environment. There is mixed 

evidence on whether SCEs using non-speech contexts are equivalent to SCEs with speech 

contexts. In a series of studies, Watkins and colleagues (Watkins, 1991; Watkins & 

Makin, 1994) compared speech and non-speech contexts and their ability to elicit contrast 

effects. The authors found that while both types of context elicited contrast effects, 

speech appeared to be more effective, leading to larger SCEs. They also found that 

synthetic speech produced smaller effects than unmodified natural speech, but these 

comparisons were not directly quantified. In addition, Sjerps, Mitterer and McQueen 

(2011) found that when stimuli lacked speech-like acoustic variation, particularly in f0, 

contrast effects appeared smaller. In other words, natural stimuli were more effective at 

producing SCEs than synthesized speech or other laboratory stimuli, but these 

comparisons were only qualitative. On the other hand, Laing et al. (2012) reported no 

statistical difference between the magnitudes of SCEs that were produced with sine tone 

contexts compared to a speech context. Thus, whether non-speech SCEs are comparable 
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to SCEs with speech is not clear. As such, attempts to generalize findings regarding SCEs 

produced by non-speech contexts versus speech contexts need to be done cautiously.  

 In addition to observing SCEs in a variety of conditions, a variety of 

methodologies have been successful in producing these effects. Each method is slightly 

different but accomplishes a similar goal: to create a spectral change from earlier sounds 

to the target sound. Originally, Ladefoged and Broadbent (1957) shifted the entire 

contour of F1 across a sentence up or down using speech synthesis. In a later study by 

Ladefoged (1989), instead of manipulating F1 contours on a computer, the author simply 

adjusted the shape of his mouth when producing sentences. F1 is related tongue height: 

when the tongue is raised, F1 is lower in frequency; when the tongue is lower, F1 is 

higher in frequency. This results in the same manipulation as Ladefoged & Broadbent 

(1957), albeit less controlled. In order to have more acoustic control, researchers digitally 

filter speech in order to produce the desired characteristics. Filtering speech also enables 

experimenters to use a single sentence filtered in two different ways as the context (e.g., 

low F1 emphasized, high F1 emphasized). This way, any observed effects are due to the 

filtering and not any other acoustic differences between sentences. Stilp, Anderson and 

Winn (2015) tested three different methods of filtering: narrowband, broadband, and 

spectral envelope difference filters (Watkins, 1991). All methods were successful in 

producing SCEs.  

Level of Processing of SCEs 

 It can be argued that SCEs make speech perception easier by disambiguating 

otherwise ambiguous sounds. If the frequency composition of a vowel sound does not 

promote clear identification, the frequency content of earlier sounds can bias 
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identification, through SCEs, to make the vowel sound unambiguous. Thus, SCEs aid 

phoneme perception with in turn aids word perception. However, it was not clear when in 

speech perception SCEs occur. Sjerps and Reinisch (2015) sought to address this 

question using a lexically guided learning task. Lexically guided learning occurs when 

listeners identify an ambiguous phoneme based on the context in which is presented 

(Norris, McQueen, and Cutler, 2003). For example, if a sound that is called /f/ or /s/ 

equally often in isolation is presented to listeners in the context of a word that can only 

end in f (e.g., giraffe), listeners learn to identify that sound as /f/. Later, when that same 

sound is presented in the context of words that could end in /s/ or /f/ (e.g., leaf vs lease), 

listeners are more likely to continue to label that sound as /f/ (e.g., indicate they heard 

leaf). In other words, listeners will adjust their category boundaries based on the training 

they receive. Sjerps and Reinish (2015) had listeners perform a lexically guided learning 

task, but the context was also filtered in order to produce a SCE. Using spectral envelope 

difference filters, the authors made context words more /f/-like or /s/-like to promote 

more /s/ and /f/ responses, respectively. When tested, listeners failed to show a lexically 

guided learning effect. This suggests that the ambiguous sound was disambiguated by the 

SCE prior to lexical decision making. At test, with no spectral manipulation to 

disambiguate the sound, the sound was just as ambiguous as before training. This finding 

suggests that SCEs act on speech prior to listeners deciding which word they heard. 

Further evidences for the prelexical nature of SCEs comes from an ERP study. Sjerps, 

Mitterer, & McQueen (2011) found evidence of SCEs occurring at N1. N1 has been 

argued to be pre-decision making (Roberts, Flagg, & Gage, 2004, as cited by Sjerps, 
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Mitterer, & McQueen, 2011). This study supports that SCEs influence speech perception 

prior to listeners deciding what word they heard. 

 Specific inventories of speech sounds vary dramatically across languages. With 

the immense variation in languages, it is possible that SCEs are specific to a select few 

languages. However, evidence exists that suggest otherwise. First, SCEs have been 

demonstrated in a variety of languages including Dutch, English and Spanish (e.g., Sjerps 

& Smiljanic, 2013). Furthermore, SCEs have been shown for listener’s non-native 

language (Sjerps & Smiljanic, 2013). Importantly, all the languages tested have the /o/ - 

/u/ distinction which was the phoneme distinction listeners identified. These results 

suggest that contrast effects are not language specific: as long as the phoneme distinction 

is present in the listener’s language, an SCE can be observed. However, if the listener 

cannot distinguish between the two response options because their language only 

possesses one of those phonemes, all target sounds will be categorized into one category 

and no response shifts can be observed (Kang, Johnson, & Finley, 2016). In other words, 

the context will influence speech perception no matter the language. However, the ability 

to measure that influence may depend on the language experience of the listener. 

Talker Normalization and SCEs 

Arguments for No Influence of Talker in SCEs 

 Originally, Ladefoged and Broadbent (1957) interpreted their findings as a means 

for compensating for differences between talkers. With later research demonstrating that 

non-speech context could elicit SCEs, some argued that talker information did not play a 

role in SCEs. An attempt to directly measure the influence of talker information on SCEs 

used acoustic manipulations of sentences to induce the perception of different talkers 
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(Laing, Liu, Lotto & Holt, 2012). Laing, Liu, Lotto and Holt (2012) amplified different 

regions of F1 or F3 in sentences in order to induce the perception of different talkers. The 

authors reported that these filtered sentences were equally discriminable. In addition, 

non-speech contexts were presented with similar manipulations (i.e., sine tones sampling 

the same F1 or F3 regions). These contexts were presented before consonant targets 

varying from /da/ to /ga/, which are primarily differentiated based on F3. Participants had 

to indicate whether they heard the consonant /da/ or /ga/ following the context. SCEs 

were observed with F3 manipulations but not F1 manipulations. Since /da/ and /ga/ are 

differentiated based on F3, this result is expected. In addition, the same pattern of results 

(i.e., SCEs with F3 tones, no SCE with F1 tones) were replicated using non-speech 

contexts. Since tones were equally effective at producing SCEs as speech, and SCEs were 

not observed simply due to different-sounding talkers (i.e., in all conditions), the authors 

suggested that talker information has no influence on SCEs.  

Evidence for Talker Influence in SCEs 

However, manipulation of single formants fails to capture the complexity of 

acoustic differences between talkers. It is unclear whether these manipulations actually 

resulted in the percept of different talkers. The authors reported that their manipulations 

were discriminable  (Laing et al., 2012)but did not explicitly state that listeners were 

asked if the manipulations sounded like different talkers. Just because two sentences are 

discriminable does not mean that they are perceived as different talkers. As previously 

mentioned, talkers differ on a variety of acoustic cues, not just F1 or F3. To fully capture 

the acoustic differences between talkers, natural speech from different talkers should be 

used. Assgari & Stilp (2015) used speech from 200 different talkers, each speaking a 
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different sentence, in an SCE experiment. In addition, two other conditions were tested: a 

single talker producing one sentence (presented 200 times), and a single talker producing 

200 different sentences. The one talker 200 sentence condition allowed the assessment of 

whether SCEs vary due to the acoustic variability stemming from different talkers or 

simply the variability from different sentences. In all cases, on each trial, listeners heard a 

sentence followed by a target vowel (perceptually varying from “ih” as in “bit” to “eh” as 

in “bet”). Results showed that the degree to which talker information influenced SCE 

magnitudes was dependent on the magnitude of the spectral peaks added to the sentences. 

When spectral peaks were large (i.e., +20 dB amplification), as was typical of contrast 

effect research, all conditions showed equivalent SCE magnitudes. In this case, talker 

information had no influence on the magnitude of contrast effects. However, when 

spectral peaks were modest (i.e., +5 dB amplification), there were clear difference 

between conditions. The 200-talker condition showed smaller SCEs than both single-

talker conditions. Thus, talker variability did lead to a clear decrease in SCE magnitude 

(Assgari & Stilp, 2015). In other words, talker variability decreased the influence of 

earlier sounds on categorization of the subsequent vowel sound.  

These findings likely explain some of the disparity in previous research 

investigating whether or not talker information influences SCEs. Studies that reported no 

effect of talker used dramatic changes from the frequency compositions of earlier sounds 

to the target (e.g., Laing et al., 2012; Assgari & Stilp 2015 Experiment 1). When smaller 

changes from the frequency composition of the earlier sounds to the target were used, 

talker information does influence SCEs (Assgari & Stilp, 2015 Experiment 2). What is 

not clear is exactly what it is about hearing different talkers that influences SCEs. The 
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sentences in the 200-talker condition were chosen randomly. Post hoc acoustic analysis 

of these sentences revealed that these stimuli were highly variable based on f0. Closer 

inspections of this f0 variability suggested that SCEs were smallest when the talkers’ 

mean f0 calculated across the entire sentence were most variable. However, this f0 

variability was confounded with talker gender variability, as talker gender was also not 

controlled.  

Talker normalization and SCEs are both influences of context on speech 

perception. The extent of these influences is both mitigated by low-level acoustic 

variability. But, there is an important distinction between these influences. Talker 

normalization effects are a cost to the listener. When hearing different talkers, the listener 

is slower and less accurate at speech perception compared to hearing just one talker. 

When the talkers are very different, this cost is larger. On the other hand, SCEs act as a 

benefit to the listener. When a sound is otherwise ambiguous, the context of earlier 

sounds can help to disambiguate that sound. When hearing different talkers, this benefit 

is reduced but still present. This is an important distinction when making connections 

between talker normalization and SCEs. 

Study Motivation 

 Talker normalization effects are well established. Speech perception is slower 

and/or less accurate when different talkers are heard relative to hearing a single talker. 

These effects are due in part to differences in the pitch (f0) of each talker’s voice 

(Goldinger, 1996). Recent studies found that talker information influences the extent to 

which SCEs bias categorization of subsequent speech sounds (Assgari & Stilp, 2015). 

Post-hoc acoustic analyses of the stimuli used to measure this effect hinted at an 
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influence of talker f0, but these stimuli confounded f0 variability with gender variability. 

In addition, these sentences were randomly selected, limiting the ability to quantify 

potential links between these measures and SCEs. In order to understand why and how 

talker information modulates SCEs in speech perception, direct investigations of possible 

explanations are still needed. The proposed studies will test a variety of possible ways 

that talker information might influence SCEs in speech perception. 

The first study will seek to control for two different sources of talker variability 

that initially varied in Assgari and Stilp (2015): f0 variability and talker gender. 

Experiment 1 of the first study will isolate talker gender and f0 variability in order to test 

their influence on SCEs separately. Results suggest f0 variability in preceding sentences 

has a stronger influence on SCEs than talker gender. Experiment 2 will confirm this 

influence of f0 variability in preceding sentences on SCEs regardless of talker gender.  

 If f0 variability has an influence on SCEs, it is possible that other sources of low-

level acoustic variability will also affect SCEs in speech categorization. In Study 1, 

stimuli were chosen based on f0, but f0 is just one low-level acoustic cue to talker 

changes. Perhaps, the same approach can be applied to F1 since our target vowels (/ɪ/ and 

/ε/) differ primarily on F1. Study 2 will investigate this possibility and look specifically at 

the influence of F1 variability on SCEs. 

 In order to establish a stronger relationship between low-level variability and 

SCEs, low-level variability should be directly manipulated. Study 3 uses the same stimuli 

in each condition, except for the manipulations of f0 variability. This way, any 

differences in observed SCEs must be due to the manipulation and not any differences 

between stimulus sets. Study 3 will manipulate low-level acoustic variability in natural 
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speech in order to establish a more direct relationship between low-level variability and 

SCEs. 

 Research has supported the idea that local variability (i.e., trial-to-trial variability) 

has a stronger influence on talker normalization than global variability (i.e., total 

variability in a condition) (Johnson, 1991). This has been demonstrated through smaller 

talker normalization effects when stimuli are blocked by talker compared to when they 

are randomly presented (i.e., no increase in response time or decrease in accuracy due to 

talker variability). In addition, blocking by talker essentially eliminates all talker 

variability in that condition. While studies controlling trial-to-trial variability are 

common in talker normalization research, no SCE experiments have manipulated trial-to-

trial variability in talker acoustics. Study 4 tested conditions where talker changes from 

trial to trial were relatively small but overall variability in each the condition remained 

high. In essence, Study 1 measured how high local (trial-to-trial) and global (across the 

entire block) acoustic variability influences SCEs in speech perception; this experiment 

minimized local variability but maintained global variability.  

 Finally, measures of talker normalization were collected in each of the above 

studies. The ways in which talker normalization and SCEs are measured are very 

different. Talker normalization is measured through decreased accuracy and slower 

response times when comparing responses following multiple talkers to responses 

following single talker. SCEs are measured through the magnitudes of shifts in 

categorization of the target speech sounds. Response times and accuracy were measured 

in SCE experiments. This way, we probed whether or not talker normalization can be 

measured in an SCE task. This study served to formally link SCEs and talker 
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normalization by showing that low-level acoustic variability influences both processes in 

the same task. 
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CHAPTER II 

GENERAL METHODS AND ANALYSIS 

In the current studies, many methodological details were consistent across studies. 

They are briefly introduced here. 

Acoustic Measurements 

Acoustic measurements were obtained through Praat (Boersma & Weenink, 

2017). Briefly, Praat is a commonly used tool used by speech researchers that measures a 

variety of parameters in speech. All reported measurements were hand checked and 

edited where necessary to ensure the best degree of accuracy.  

Sentences 

To ensure the current studies were evaluating the effect of speech on contrast 

effects, natural speech was used whenever possible. Context sentences were drawn from 

the same corpus of sentences as Assgari and Stilp (2015): Texas Instrument and 

Massachusetts Institute of Technology speech corpus (TIMIT; Garofolo et al., 1993). 

This corpus consists of 6300 sentences spoken by 630 different talkers from 8 different 

dialect regions in the United States. There are 438 male and 192 female speakers.  In all 

conditions of all studies, gender was balanced except where explicitly manipulated.  

Chosen sentences were randomly assigned to low F1 (100-400 Hz) or high F1 

(550-850 Hz) conditions. Sentences were processed with a band pass filter to add +5 dB 

spectral peaks in either the low F1 or the high F1 region based on condition assignment.
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In order to ensure that our filters had the desired effect, only sentences with relatively 

equal energy in the high vs low f1 regions (within ±5dB of each other) were considered. 

As such, adding spectral peaks resulted in the desired magnitude of spectral difference.  

In all studies except Study 1a, a single talker condition was included. This 

condition served two purposes. First, it served as a replication of previous results (e.g., 

the Single talker one sentence condition from Assgari & Stilp, 2015). Second, it allowed 

for within-subject comparisons for a condition with no long-term acoustic variability. 

Since participants heard the same talker produce the same sentence on every trial, there is 

no long-term f0 variability, which should produce an “upper limit” in terms of SCE 

magnitude. 

Vowels 

Target vowels were a 10-step continuum of vowels ranging for /ɪ/ to /ε/. These 

vowels have been used in previous studies and are reliably biased by SCEs (e.g., Stilp, 

Anderson & Winn, 2015; Assgari & Stilp, 2015; Stilp & Assgari, 2018). Vowels were 

synthesized based on natural recordings from a male talker. These speech samples were 

resynthesized using Linear Predictive Coding (LPC) in Praat (Boersma & Weenink, 

2017). The /ɪ/ endpoint has an F1 that linearly increases from 400 to 430 Hz while F2 

linearly decreases from 2000 to 1800 Hz. The /ɛ/ endpoint has an F1 that linearly 

decreases from 580 to 550 Hz while F2 linearly decreases from 1800 to 1700 Hz. The 

vowel continuum was created by taking these endpoint vowels and morphing their 

formants through a script in Praat. Final vowel stimuli were 246 ms in duration with 

fundamental frequency set to 100 Hz throughout the vowel. 

Trials 
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All filtered sentences and target vowels were equated for root mean square (RMS) 

amplitude. Experimental trials consisted of a filtered sentence followed by a 50-ms silent 

interstimulus interval and then a target vowel. All stimuli were upsampled to 44100 Hz. 

Participants 

All listeners in the reported studies participated in exchange for course credit. No 

listener participated in more than one study and all self-reported normal hearing.  

Procedure 

All experiments began by obtaining informed consent. Listeners were then seated 

in sound attenuated chambers (Acoustic Systems, Inc., Austin, TX). Stimuli were 

presented at 70 dB SPL over circumaural headphones (Beyerdynamic DT-150, 

Beyerdynamic Inc. USA, Farmingdale, NY). The experiments were executed by custom 

scripts in Matlab and were self-paced. 

In all studies, participants first completed a set of practice trials before continuing 

to test. These trials were composed of 20 sentences from the AzBio corpus (Spahr et al., 

2012) paired with the endpoint vowels, as categorizing endpoints of the vowel continuum 

is objectively correct or incorrect. If the participant failed to reach 80% accuracy on 

endpoint vowels after one block, they could repeat the practice trials up to two more 

times to reach 80% accuracy. If after three blocks of practice trials they did not reach 

criterion, they did not continue to test. This ensured that participants could categorize the 

target vowels into their intended categories and made the shifts of category boundaries 

(SCEs) interpretable. If participants passed practice trials, they continued to test. 

However, they had to maintain 80% correct on vowel continuum endpoints across all 
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conditions in order to be included in the data analysis. If a participant elected to withdraw 

from the experiment at any point, his/her data were not included in the analyses.  

In all experiments, participants were asked to respond to the target vowel, 

indicating that they heard “’ih’ as in ‘bit’” or “’eh’ as in ‘bet’”. They were told to respond 

as quickly and accurately as possible. Participants were allowed to take breaks in between 

blocks. Blocks were 160 trials long (4 repetitions of each unique sentence/vowel pairing) 

and each took about 12 minutes to complete. Each experiment tested up to four blocks, 

making the maximum duration of an experimental session roughly one hour. 

Data Analysis 

SCEs 

A schematic of the measurement process is found in Figure 1. In these 

experiments, SCEs were measured as shifts in categorization of vowels following 

contexts filtered to have different reliable spectral properties. To quantify these shifts, 

logistic regressions predicting /ε/ responses were fit to each individual’s responses to 

vowels in the low-F1-amplified context sentences and high-F1-amplified context 

sentences individually. The 50% points of these regressions curves, where listeners are 

equally likely to respond /ɪ/ and /ε/ to a given target vowel, were identified. The 50% 

point was then translated to the corresponding stimulus number along the continuum 

(from 1 to 10); this number was interpolated if needed. The SCE was operationalized as 

the difference between the 50% points, measured in stimulus steps (black arrow in Figure 

1). SCEs were calculated for each participant in a given condition, then averaged over all 

participants. Mean SCEs were then compared across experimental conditions using 

repeated-measures ANOVAs. 
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Figure 1. Measurement of SCEs on example data. Mid-point shifts were assessed for each 

individual as illustrated here on example data (not from any study reported here). These 

mid-point shifts were averaged to obtain a mean midpoint shift in each experimental 

condition. The mean mid-point shifts were compared. 

Deviance Measures 

To assess how well the logistic functions used to obtain mid-points fit each 

participant’s data, measures of deviance were obtained through the glmfit command in 

Matlab. Deviance measures were obtained for the logistic fits to each individual’s 

responses to vowels following the low-F1 and high-F1 context sentences separately. Plots 

of deviance measures can be found in the Appendix. 

Confidence Intervals around midpoints 

 In order to determine a measure of spread around mid-points, 95 percent 

confidence intervals were calculated around the midpoint of each listener’s logistic 

functions using the psignifit package in Matlab. In addition, a measure of overlap of 

confidence intervals was obtained by subtracting the upper bound of the low-F1 

confidence interval from the lower bound of the high-F1 confidence interval. Plots of 

confidence intervals and measures of overlap can be found in the Appendix. 
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Response Times 

Response times were collected in Matlab during Study 1b through Study 4. Response 

times were collected using a button box. The button box records a spike in amplitude 

when a button is depressed, completing a circuit and indicating a response. Response 

times are specifically measured as the duration between the onset of the vowel and the 

spike in amplitude described above.  

Independent of manipulations of talker / acoustic variability, response times were 

expected to differ based on what stimulus along the vowel continuum was presented. 

Ambiguous stimuli (i.e., towards the middle of the continuum) will naturally elicit longer 

response times because listeners are slower to respond to stimuli that are harder to 

identify. Conversely, vowels at the end of the continuum will elicit shorter response times 

because they are less ambiguous and objectively easier to categorize. The changes in 

response times from single-talker to multi-talker conditions were most important. While 

the exact pattern of this change in response times is unknown, some of the more likely 

possibilities are illustrated in Figure 2. If the effect of multiple talkers influences the 

entire continuum equally, then there will be an overall and equal increase in reaction 

times (upper left panel in Figure 2). It is possible that response times are already at 

ceiling for ambiguous stimuli in single talker conditions. Thus, the influence of multiple 

talkers could only occur for non-ambiguous stimuli. If this is the case, then response 

times will increase only for non-ambiguous stimuli toward the ends of the continuum 

(upper right panel in Figure 2). If multiple talkers only influence categorization of 

ambiguous stimuli, then response times will increase for ambiguous stimuli near the 

middle of the continuum (lower left panel in Figure 2). If multiple talkers increase 
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reaction times for the whole continuum but influence ambiguous stimuli more than 

unambiguous stimuli, then a combination of these trends will appear with larger increases 

in response times for ambiguous stimuli (lower left panel in Figure 2). Given these 

possibilities, response times will be broken down and analyzed based on vowel target.  

 

Figure 2. Possible changes in response times from single to multi-talker conditions 

Any response times below 150 ms or 3 standard deviations above the participant’s 

average response time were removed. It has been demonstrated that 150 ms is the lower 

limit of responding after taking into account recognition and motor movements (Luce, 

1986). Three standard deviations above the individual response mean suggest that 

individual may not have responded ‘as quickly and accurately as possible’ for the 

removed trial. After removing these points, average response times were calculated for 



34 
 

each vowel collapsing across filter condition since filter condition should not 

theoretically influence response times. 

Accuracy 

Response accuracy was collected for Study 1b through Study 4. Throughout these 

studies, response accuracy was assessed at endpoints during practice and throughout the 

task. When vowels other than the endpoints are considered along a vowel continuum, 

accuracy can be difficult to characterize. Several of the stimuli are known to fall in an 

ambiguous region between the two vowel categories for listeners (i.e., vowels near the 

middle of the continuum). At the very least, accuracy at the endpoints of the continuum 

can be assessed (e.g., vowels 1 and 10 in the 10-step continuum). Here again, of most 

interest was the change in accuracy from a single-talker to a multi-talker condition. As 

such, proportion of correct responses were compared between single-talker and multi-

talker conditions.  

Accuracy was characterized by how often participants labeled the continuum 

endpoints as the intended categories and measured as proportion correct. Accuracy was 

then averaged over the /ɪ/ and /ε/ endpoints giving a single measure of accuracy for each 

condition. All accuracy measures were rationalized arcsine transformed due to ceiling 

performance in every condition (Studebaker, 1985). All analyses are performed on 

transformed accuracy while the plot in the Appendix P shows accuracy as proportion 

correct. 
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CHAPTER III 

STUDY 1 (ISOLATING CONTRIBUTIONS OF GENDER VARIABILITY AND F0 

VARIABILITY) 

Aims 

Following the suggestion of Assgari & Stilp (2015), this study investigated what 

aspects of talker changes influences SCEs. Study 1 sought to separate the contributions of 

talker gender and f0 variability to diminished SCEs reported in Assgari & Stilp (2015). In 

previous literature, there have been conflicting reports of what influence gender may 

have on SCEs. Watkins (1991) found that talker gender had no influence, with contexts 

spoken by both male and female talkers producing SCEs of similar magnitude. However, 

in this study, there was a single talker from each gender, and perhaps more importantly, 

talker gender was blocked. On the other hand, Johnson, Strand and D’Imperio (1999) 

reported that listeners’ categorization boundaries shifted based on their expectation of the 

gender of the talker. Since f0 and gender were free to vary in Assgari & Stilp (2015), the 

degree to which either or both of these variables influenced SCEs is unclear. In addition, 

since talker gender and f0 are closely related (lower f0s for men, higher f0s for women), 

gender variability and f0 variability were also closely related, so the influences of these 

two characteristics need to be explicitly separated. Study 1a investigated the influence of 

f0 variability when talker gender was blocked. Study 1b mixed talker gender and 

measured the influence of f0 variability in the presence of talker gender variability. 
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Methods 

In Study 1a, the average f0 across each sentence was measured in Praat (Boersma 

& Weenink, 2017). When necessary, f0 contours were hand edited to ensure accurate 

measures. These measures of f0 were converted to z-scores within gender. A distribution 

of z-scores was formed for each gender. High variability sentences were sampled from 

the tails of these distributions while low variability sentences were sampled from the 

centers. The resulting distribution of sentences are displayed in Figure 3. Thus, variability 

was established across trials using average f0 across sentence duration. Forty sentences 

were selected for each condition. This formed four groups: men low f0 variability (Mean 

f0 = 121.29, SD = 9.16), men high f0 variability (Mean f0 = 123.39, SD = 33.18), women 

low f0 variability (Mean f0 = 203.89, SD = 9.17), women high f0 variability (Mean f0 = 

199.84, SD = 33.27). High and low variability conditions were matched as closely as 

possible based on the standard deviation to ensure the variability within each gender is 

equivalent. 

Figure 3. Distributions of Mean f0 of sentences for Study 1a. The left panel depicts 

sentences chosen for men and the left panel depicts sentences chosen for women.  

Average sentence f0 is along the x-axis and number of sentence is along the y-axis. 

Sentences in red were chosen for the low variability conditions. Sentence in black were 

chosen for the high variability conditions.  

In Study 1b, f0 measures were obtained through Praat. These measures were 

converted to z-scores between genders. Similar to Study 1a, a distribution of candidate 

sentences was created based on these z-scores while intentionally mixing talker gender. 
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Low and high variability groups were formed by sampling specific sections of the 

distribution. The resulting distribution of sentences is displayed in Figure 4. Low 

variability sentences were sampled from the center of the distribution (M = 164.81, SD = 

9.78). High variability sentences were sampled from the tails of the distribution (M = 

161.78, SD = 45.64). In general, male speakers were pulled from the lower tail (lower f0) 

while female speakers were pulled from the upper tail (higher f0). Forty sentences were 

pulled for each condition and gender was balanced within each variability condition 

keeping gender variability the same across conditions. 

Figure 4. Distribution of Mean f0 of sentences for Study 1b. Average sentence f0 is along 

the x-axis and number of sentences is along the y-axis. Sentences in red were chosen for 

the low variability condition. Sentences in black were chosen for the high variability 

condition. 

Hypotheses 

In Study 1a, if f0 variability influences SCEs regardless of gender, a main effect 

of f0 variability would be evident such that SCEs are smaller in high-f0-variability 

conditions than low-f0-variability conditions (similar to Assgari & Stilp, 2015). If talker 

gender influences SCEs regardless of variability, differential effects of talker gender 

would be expected for men versus women. Since the target vowels were spoken by a 

male talker, smaller SCEs would be expected when context sentences were spoken by 
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women compared to men. If both gender and f0 variability influence contrast effects, we 

would expect both main effects to be significant. An interaction would suggest that the 

effect of f0 variability depends on talker gender.  

Results 

SCEs 

In Study 1a, 20 listeners participated. No listener was excluded from the analysis. 

A 2 (talker gender: female, male) by 2 (f0 variability: high, low) repeated measures 

ANOVA was conducted (see Figure 5). A main effect of f0 variability was significant, 

with high variability conditions (M = 0.30, SE = 0.09) producing smaller contrast effects 

than low variability conditions (M = 0.50, SE = 0.09) (F(1,19) = 5.31, p = .03, 𝜂𝑝
2 = 0.22). 

Neither the main effect of gender (F(1,19) = 2.32, p = .14, 𝜂𝑝
2 = 0.11) nor the interaction 

(F(1,19) = 0.004, p = .95, 𝜂𝑝
2 = 0.00) were statistically significant.  This pattern of results 

suggests that f0 variability, not talker gender, influences SCEs in speech categorization. 

Specifically, when f0 variability is high, there are smaller shifts in categorization of the 

target vowels regardless of the gender of the talkers. 
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Figure 5. Contrast effect magnitudes from Study 1a. Gender and variability conditions are 

along the x-axis and contrast effect magnitude, measured in stimulus steps, is along the y-

axis. Red bars represent low variability conditions and black bars represent high 

variability conditions. Error bars depict standard error of the mean. 

In Study 1b, 25 listeners participated. Two listeners failed practice and one was 

removed for failing to maintain 80% accuracy on endpoints across the entire experiment, 

leaving 22 listeners in the analysis. In addition, upon inspection of the data, one outlier 

was identified in the High F0 variability condition. This participant exhibited a contrast 

effect that was 4.16 stimulus steps. This is well beyond what is typically expected from a 

+5 dB peak where context effects typically fall between 0.2 and 0.8 stimulus steps (see 

Assgari & Stilp, 2015 and Stilp, Anderson & Winn, 2015). In addition, a contrast effect 

of 4.16 steps was more than three standard deviations from the mean of the high f0 

variability group (M = 0.4104, SD = 0.938 steps). This outlier was removed and the 

remaining 21 participants were included in the analyses. Deviance measures did not 

differ systematically across filter conditions or experimental conditions (see Appendix 

A). The confidence intervals and their overlap around midpoints did not differ 



40 
 

systematically based on filter conditions and experimental conditions (see Appendix B). 

The ANOVA was significant (F(2,40) = 3.360, p = 0.045, 𝜂𝑝
2 = 0.114; see Figure 6). 

Bonferroni corrected pairwise t-tests indicated that the SCE in the high f0 variability 

condition (M = 0.21, SE = 0.10) was significantly smaller than the SCE in the single 

talker condition (M = 0.56, SE = 0.10 p = 0.03). The low f0 variability (M = 0.58, SE = 

0.14) condition was not significantly different from the high f0 variability condition (p = 

0.20) 

 

Figure 6. Contrast effect magnitudes from Study 1b. f0 variability conditions are along 

the x-axis and contrast effect magnitide is along the y-axis. The gray bar corresponds to 

the single talker condition, the red bar corresponds to the low f0 variability condition, the 

black bar corresponds to the high f0 variability condition. Error bars depict standard error 

of the mean. 

 

Response Times 

As previous reported, data from 23 listeners passed criterion from Study 1b and 

were included in the response time analysis. A 3 (Condition: high f0 variability, low f0 
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variability, single talker) X 10 (Vowel Target) repeated measures ANOVA was 

conducted on response times collected during Study 1 (see Figure 7). Mauchly’s test of 

sphericity indicated that the assumption of sphericity was violated for the main effect of 

vowel (p < 0.001). As such, the main effect of vowel is reported with a Greenhouse-

Geisser correction. The ANOVA indicated a significant effect of condition (F(2,40) = 

13.78, p < 0.001, 𝜂𝑝
2 = 0.41). Bonferroni corrected post hoc pairwise t-tests for condition 

indicated that the single talker (M = 832.89, SE = 35.97, p < 0.001) and low f0 variability 

(M = 888.95, SE = 30.77, p = 0.03) elicited faster response times than the high f0 

variability (M = 935.08, SE = 32.72). Differences in response times in the Low f0 

variability and the single talker conditions were marginally significant (p = 0.051). The 

ANOVA also indicated a significant main effect of vowel (F(2.73,54.55) = 13.276, p < 

0.001, 𝜂𝑝
2 = 0.40). The main effect of vowel was driven by faster response times to the 

endpoints relative to the mid-continuum vowels, as was expected (see Appendix C for 

pairwise t-tests with Bonferroni corrections). In addition to the main effects, the 

interaction between condition and vowel was also significant, (F(18,360) = 1.85, p = 

0.02, 𝜂𝑝
2 = 0.09). This significant interaction suggests that the increases in response times 

across talker conditions depended on vowel. Some vowels showed larger increases in 

response times from single to multiple talker conditions relative to others. Particularly, 

vowels at the /ɪ/ endpoint showed greater sensitivity to f0 variability relative to vowels at 

the /ε/ endpoint (see Appendix D for pairwise t-tests with Bonferroni corrections).  
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Figure 7. Response times by condition for Study 1b. The vowel continuum is represented 

along the x-axis with the /ɪ/ endpoint on the left and the /ε/ endpoint on the right. 

Response times in milliseconds are represented on the y-axis. Average response times 

collapsed across vowels are shown on the far right. The black line represents the high f0 

variability condition. The red line represents the low f0 variability condition. The gray 

line represents the single talker condition. Error bars depict standard error of the mean. 

Accuracy 

As previous reported, data from 21 listeners were included in the analyses for 

Study 1b. A one-way repeated measures ANOVA of condition (high f0 variability, low f0 

variability, single talker) indicated that accuracy did not change as a function of 

condition, (F(2,40) = 0.723, p = 0.49, 𝜂𝑝
2 = 0.04). Plots of accuracy can be found in 

Appendix P. 

Discussion 

The results of Study 1 suggest that acoustic variability and not gender variability 

influenced context effects. In Study 1a, talker gender and f0 variability were separated 
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and tested. Yet, only the main effect of f0 variability was significant. This suggests that 

talker gender alone does not influence contrast effects. In Study 1b, gender was mixed 

and f0 variability was tested. Here, f0 variability continued to influence contrast effects. 

Further, the results of Study 1b closely resemble the observed results in Assgari and Stilp 

(2015). In Assgari and Stilp (2015), smaller contrast effects were observed in a condition 

with 200 talkers relative to single talker conditions (0.26 stimulus steps vs. 0.52 stimulus 

steps respectively). In Study 1b, similar results were observed for a high f0 variability 

condition relative to a single talker condition (0.21 stimulus steps vs. 0.56 stimulus 

steps). This suggests that the smaller SCEs observed in the 200-talker condition of 

Assgari and Stilp (2015) was a result of the f0 variability, and not due to variability in 

talker gender.  

Further, results from Study 1b indicate that response times to the target vowels are 

influenced by the f0 variability of the context with different-sounding talkers leading to 

slower response times. When the talkers sounded similar, response times are comparable 

to when hearing a single talker. These results are similar to what would be expected if 

listeners were experiencing talker normalization with different-sounding talkers (e.g., 

Mullenix, Pisoni, & Martin, 1989). The observed pattern of response times combined two 

of the predicted patterns reported in Figure 2. Response times increased across the entire 

continuum but more so for the /ɪ/ end of the continuum than the /ε/ end of the continuum. 

This suggest that the /ɪ/ endpoint vowels may be more susceptible to the influence of f0 

variability than the /ε/ endpoint vowels in Study 1b. 

The influence of f0 on SCEs is similar to the findings of Goldinger (1996) where 

f0 differences influenced talker normalization. In Goldinger’s (1996) findings, listeners 
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were more accurate at recognizing old words when they were spoken by similar talkers 

(with similar f0s) than when they were spoken by different talkers (with different f0s). In 

Study 1, the benefit of disambiguation (i.e., larger SCEs that aid in disambiguating 

ambiguous phonemes) was greater when talkers were acoustically similar than when they 

were different. In addition, response times were faster when talker sounds similar relative 

to when talkers sound different. This suggests that talker normalization is more prevalent 

with different-sounding talkers than similar-sounding talkers. There are two ways to 

interpret the results that speech perception is better disambiguated when f0 variability is 

low. On one hand, it could be argued that less acoustic variability benefits the listeners. 

On the other hand, it could be argued that larger acoustic variability deprives the listener 

of benefits that would otherwise be present. While these are complementary 

interpretations, one suggests that f0 variability is detrimental while the other suggests it is 

the default. In assessing which interpretation is most valid, it is important to consider the 

‘natural state of affairs’ of speech perception. It could be argued that natural speech 

perception arises from a quasi-random sample of talkers. It is unlikely that a listener 

would purposely select their conversational partners solely based on voice characteristics. 

When speech tokens are selected from a large corpus in a quasi-random fashion (as in 

Assgari & Stilp, 2015) they tend to be highly variable. However, controlling for f0 

variability mandates that careful attention be paid to the acoustic characteristics of the 

tokens to be selected. While drawing analogies from methodological procedures to 

natural speech perception may be limited, it seems that quasi-random selection of speech 

will result in highly variable acoustic characteristics. Therefore, it is more likely that 
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highly variable speech is the default and benefits are gained from hearing similar talkers 

rather than lost when talkers are more variable.  

In Study 1a, there was a general trend for female-talker sentences to show smaller 

contrast effects than male-talker sentences. This trend was not statistically significant yet 

it is relatively consistent with previous results. Results of Study 1b suggest that when 

genders are mixed but variability is low, that they can be treated similar to the single 

talker condition (inasmuch as both produced similar SCE magnitudes). Therefore, the 

non-significant trend of gender observed in Study 1a may be attributable to f0 differences 

between the context and the target rather than difference in gender. In Study 1a, the 

average f0 across both conditions containing women was 201.87, which is 101.87 Hz 

higher than the f0 of the target vowels (100 Hz). Thus, f0 was changing by 101.87 Hz, on 

average, from the context to the target when the context was spoken by a woman. The 

average f0 across conditions containing men was 119.71 Hz, which is only 19.71 Hz 

higher than the f0 of the target vowels. Thus, the f0 change from the context to the target 

was much smaller, on average when the contexts were spoken by men. It is likely that 

adjustments for f0 differences on trials where the context was spoken by women were 

much greater than when the contexts were spoken by men. In Study 1b, gender of the 

talkers was mixed and the average f0 of the conditions was more similar (high f0: 161.78 

Hz, and low f0: 164.81 Hz). Any adjustments due to f0 differences from context to target 

would be expected be similar for both the high f0 and low f0 conditions. While the f0 

change from context to target was not the focus of these experiments (and was an 

inevitable consequence of blocking by talker gender), it could potentially inform why a 

non-significant but consistent trend of talker gender is observed in these data. 
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It deserves mentioning that the relationship between gender and f0 is somewhat 

arbitrary for a few reasons. First, it is possible to view gender along a continuum rather 

than as a binary distinction, as is typical in psychological research. In reality, gender is 

more of a continuum with male and female at the endpoints. Individuals can fall 

anywhere on this continuum. When making our male/female distinctions we relied on the 

annotation provided with TIMIT. It is unclear how the gender of each individual speaker 

in TIMIT was assessed or if the corpus contains speakers that do not fall into the typical 

male/female distinctions. What is clear is that each sentence is labeled as either male or 

female suggesting that gender was treated as a binary distinction. Second, the relationship 

between f0 and gender is purely physiological and arises because, in general, those who 

identify as male have larger vocal folds producing lower f0s. So, while the claim that 

males tend to have lower f0 frequencies is generally correct, there will definitely be 

exceptions. It is possible to have a high-pitched male (i.e., a male with small vocal folds) 

and a low-pitched female (i.e., a female with large vocal folds). The ability to find both 

males and females with f0s similar enough to create a mixed gender, low f0 variability 

condition supports this claim. In this condition, we were able to find men and women 

whose f0s ranged a span of 30 Hz (from 150 Hz to 180 Hz), a relatively narrow range. 

Thus, gender and f0 are dissociable but follow predictable patterns. If a gender effect in 

speech perception or production is supported by the data, researchers should assess 

whether that relationship could be better explained by f0 variability. If an effect of f0 is 

also supported, it is likely preferable to interpret differences based on physiological 

measurements rather than an arbitrary societal distinction. Further, f0 is a continuous 

variable whereas gender, as discussed, is typically treated categorically. Continuous 
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variables allow for closer inspection of the relationship between two variables rather than 

relying on claims about group differences. Using f0 variability to assess the relationship 

between variables has been successful in this line of study and is discussed further in the 

interim general discussion following Study 2.
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CHAPTER IV 

STUDY 2 (F1 VARIABILITY) 

Aims 

It is apparent the low-level acoustic variability in f0 influences SCEs. Yet, there 

are many concurrent sources of low-level acoustic variability. As previously mentioned, 

there are well known differences in f0 based on talker gender. In addition, overall 

formant frequencies also differ based on talker gender. Men generally have lower f0s and 

overall lower formants while women’s f0 and formants are generally higher (Peterson & 

Barney, 1952; Hillenbrand et al., 1995). As such, low f0s could be reflective of low F1s 

while high f0s could reflect high F1s. Thus, high f0 variability could be suggestive of 

high F1 variability.  Of particular interest to the current experiment is the variability in 

the region of F1 because the target vowels are differentiated based on F1. If there is an 

effect of low-level acoustic variability, measuring variability in the region that 

differentiates our target vowels may better explain the influence of acoustic variability on 

SCEs. Study 2 investigated this possibility and looked specifically at the influence of F1 

variability on SCEs. 

Methods 

Sentences from Study 1b produced different-sized SCEs when arranged according 

to variability in mean f0 across sentences. In Study 2, these sentences were rearranged 

based on measures of mean F1 variability. If F1 variability has a stronger influence on 

SCE occurring for vowels primarily distinguished by F1, then the differences between 
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low and high F1 variability conditions should be greater than the differences observed in 

Study 1b. The average F1 of entire sentences was measured in Praat (Boersma & 

Weenink, 2017). Formant contours were hand edited to ensure accuracy. Similar to Study 

1a, these measures were converted to z-scores and a distribution was created based on 

these measurements. Groups were formed by pulling high variability sentences from the 

tails of this distribution (Mean F1 = 527.37, SD = 62.42) and low variability sentences 

from the center of this distribution (Mean F1 = 523.37, SD = 16.16; see Figure 8). Forty 

sentences were included in each condition.  

Figure 8. Distribution of Mean F1 of sentences for Study 2. Average sentence F1 is along 

the x- axis, number of sentences is along the y-axis. Sentences in red were chosen for the 

low F1 variability condition. Sentences in black were chosen for the high F1 variability 

condition. 

Hypotheses 

If F1 variability influences SCEs, a high F1 variability condition will produce 

smaller contrast effects than low F1 variability, parallel to the results in Study 1b. This 

experiment also determined whether F1 variability in context sentences has a larger 

influence on SCEs than does f0 variability. If this is the case, then the difference between 
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SCE magnitudes should be greater for low vs high F1 variability than for low vs high f0 

variability. 

Results 

In Study 2, 25 listeners participated. One listener was removed for failing to 

maintain 80% accuracy on endpoints across the entire experiment leaving 24 listeners in 

the analysis. Deviance measures did not differ systematically across filter conditions or 

experimental conditions (see Appendix E). The confidence intervals and their overlap 

around midpoints did not differ systematically based on filter conditions and 

experimental conditions (see Appendix F).  

SCEs 

A one-way ANOVA (3 Levels: High F1 variability, Low F1 variability, Single 

talker) was conducted to assess whether SCE magnitude differed by condition. There 

were no significant differences between groups (F(2,46) = 0.51,  p = 0.60, 𝜂𝑝
2 = 0.02; see 

Figure 9). 
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Figure 9. Contrast effect magnitudes from Study 2. The variability groups are represented 

on the x-axis. Contrast effect magnitude, as measured as number of stimulus steps, is 

represented on the y-axis. The gray bar represents the single talker condition, the maroon 

bar represents the low F1 variability condition and the black bar represents the high F1 

variability condition. Error bars depict standard error of the mean. 

Response Times 

As previous reported, data from 24 listeners passed criterion from Study 2 and 

were included in the response time analysis. A 3 (Condition: high F1 variability, low F1 

variability, single talker) X 10 (Vowel Target) repeated measures ANOVA was 

conducted on response times collected during Study 2 (see Figure 10). The assumption of 

sphericity was violated for all main effects and the interaction so a Greenhouse-Geisser 

correction is reported (all p’s < 0.001). The ANOVA indicated a significant effect of 

condition (F(1.279,29.421) = 8.370, p = 0.004, 𝜂𝑝
2 = 0.267). Bonferroni corrected post-

hoc pairwise t-tests indicated that the single talker condition (M = 806.108, SE = 21.530) 

elicited faster response times compared to the high F1 variability condition (M = 892.395, 

SE = 28.670, p = 0.046) and the low F1 variability condition (M = 938.045, SE = 34.134, 
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p < 0.001). Response times in the high F1 variability condition did not differ from the 

response times in the low F1 variability condition (p = 0.87). The ANOVA also indicated 

a significant main effect of vowel (F(4.174,95.994) = 18.717, p < 0.001, 𝜂𝑝
2 = 0.449). The 

main effect of vowel was driven by faster response times to the endpoints relative to the 

mid-continuum vowels, as was expected (see Appendix G for pairwise t-tests with 

Bonferroni corrections). There was no significant interaction (F(8,183.90) = 0.513, p = 

0.85, 𝜂𝑝
2 = 0.02). 

 

Figure 10. Response times by condition for Study 2. The vowel continuum is represented 

along the x-axis with the /ɪ/ endpoint on the left and the /ε/ endpoint on the right. 

Response times in milliseconds are represented on the y-axis. Average response times 

collapsed across vowels are shown on the far right. The black line represents the high F1 

variability condition. The maroon line represents the low F1 variability condition. The 
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gray line represents the single talker condition. Error bars depict standard error of the 

mean. 

Accuracy 

As previous reported, data from 23 listeners were included in the analyses for 

Study 2. A one-way repeated measures ANOVA of condition (high F1 variability, low F1 

variability, single talker) indicated that accuracy did not vary as a function of condition, 

(F(2,44) = 1.158, p = 0.32, 𝜂𝑝
2 = 0.05). Plots of accuracy can be found in Appendix P. 

Discussion 

The results from Study 2 suggest F1 variability in the context sentences does not 

influence SCEs. The listeners in this study responded to vowels primarily differentiated 

based on F1. Therefore, if listeners are capable of telling the vowels apart (which they are 

based on our inclusion criterion) they must be relying on F1 to make that distinction. If 

the influence of f0 variability observed in Study 1 was simply due to acoustic variability 

of any kind, F1 variability should have also influenced SCEs. Since contrast effects were 

equivalent in all groups, it is clear that not all sources of acoustic variability in the 

context sentences influence context effects in vowel categorization. 

The response time results from Study 2 suggest that F1 variability also does not 

influence response times. Both conditions with multiple talkers produced slower response 

times relative to the single talker condition. The pattern is what is typically reported in 

talker normalization where any increase in the number of talkers elicits slower response 

time. Since the multiple talker conditions did not significantly differ from each other 

there was no influence of F1 variability on response times. The lack of a significant 

interaction suggests that response times increased relatively equally across the entire 

vowel continuum, following the first predicted pattern in Figure 2 (upper left panel). 
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The choice to rearrange sentences from Study 1b allowed for anecdotal 

observations of how f0 and F1 may relate to each other. In Study 1b, sentences were 

group based on mean f0 across the sentence. If F1 and f0 were closely related, then 

sentences with high f0 should also have high F1, and the high F1 variability group in 

Study 2 should contain the same sentences as the high f0 variability group in Study 1b. 

While measures of mean F1 and mean f0 are related (r = 0.48, p < .001), the groups in 

Study 2 did not resemble the groups in Study 1b. In fact, group assignment from the high 

f0 variability condition to the high F1 variability condition was at about chance (19 out of 

40 sentences in the high f0 variability condition were in the high F1 variability 

condition). So, while f0 and F1 may share covariance, it does not appear that they are 

strongly related. It is possible that the ways in which f0 and F1 are used in speech 

perception could explain why f0 influences SCEs but F1 did not. F1 and f0 serve 

different purposes in speech perception. As previously mentioned, f0 is generally 

considered a cue to talker identity and is dictated by the vibration of the vocal folds. F1, 

on the other hand, is considered a primary cue to vowel identity and is related to jaw 

height. The differences in how these cues inform speech perception could explain why f0 

influences SCEs but F1 does not. 

In addition, the extent to which these cues vary in natural speech differs. There 

are multiple ways to quantify acoustic variability in speech. The approach taken here is to 

measure acoustic variability across speech tokens (e.g., trial-to-trial variability in average 

f0 across each sentences). This approach tends to characterize stable properties of a talker 

and can correspond to a talker’s typical pitch and formant range. Another approach is to 

characterize acoustic variability within a speech token.  This approach measures how 
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formants and pitch fluctuate when a person is talking. These measures can correspond to 

changes in intonation, semantics, prosody, etc. Listeners encounter both types of 

variability when perceiving speech and it is possible that how a cue varies within a 

sentence can influence how a listener responds to this cue’s variability across sentences. 

Within a sentence, F1 is inherently more variable than f0 since talkers must change F1 to 

produce different speech sounds. When a phoneme changes, F1 will likely change with it. 

In an attempt to quantify the variability of F1 and f0 across many sentences, the average 

F1 and f0 was calculated for every sentence in TIMIT. The average standard deviation of 

f0 within a sentence for all of TIMIT is 21.38 Hz. The average standard deviation of F1 

within a sentence for all of TIMIT is 127.76 Hz. It is possible that the higher within-

sentence variability of F1 corresponds to lower sensitivity to F1 changes across 

sentences. It is also possible that since listeners have more experience with F1 variability, 

they are less sensitive to this cue overall and essentially weight trial-to-trial F1 variability 

less than f0 variability.  

Study 1 and 2 Synthesis 

It has been established that SCEs are linear in nature: when the size of the change 

between the context and target increases, so does the shift in categorization (Stilp et al., 

2015; Stilp & Alexander, 2016; Stilp & Assgari, 2017a). In these studies, the magnitude 

of the change from context to target to sentences was varied. The resulting shifts in 

categorization also varied. Relating the magnitude of change (from context to target) to 

the size of the categorization shift revealed that they were highly related (e.g., r = 0.88, p 

< 0.005 in Stilp et al., 2015 [when filters were similar to those reported here]). This 

finding suggests that quantifying the magnitude of the contrast effect as a function of 
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other variables may reveal meaningful relationships. In Study 1 and Study 2, we have 

observed that the amount of f0 variability in a condition influences the size of the contrast 

effect. In Studies 1 and 2, f0 variability was treated as a binary variable (low f0 

variability versus high f0 variability) but is actually continuous in nature. Since f0 

variability can be treated as a continuous measure, it is possible to quantify the 

relationship between f0 variability and SCEs. Measures of f0 variability from Studies 1 

and 2 (as well as preliminary data) were used to predict SCE magnitudes via a linear 

regression. There is a negative relationship (r = – 0.63, p = 0.02) between total mean f0 

variability in a condition and SCE magnitude such that more f0 variability in a condition 

resulted in smaller SCE magnitude (see Figure 11). It is interesting to note that the 

preliminary contrast effect magnitudes observed in Study 2, which were grouped based 

on F1 variability, were well predicted by this linear regression when the f0 variability in 

those groups is taken into account. When the study was rerun to collect response times, 

the SCEs were larger than what is typically expected with the high F1 variability 

condition producing a SCE of 0.7 stimulus steps. This occurred despite the stimuli 

presented to listeners being the same. While a SCE magnitude of 0.7 stimulus steps is not 

outside of the range of SCEs observed with +5 dB peaks, it is larger than SCEs observed 

in the single talker conditions in the present studies. Since f0 was still variable in the high 

F1 variability condition, it is unusual that the high F1 variability condition would produce 

a contrast effect larger than a single talker condition. However, there were slight 

differences between the two data collections periods. These differences and their possible 

ramification are addressed in the general discussion.  
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Figure 11. Predicting contrast effect magnitude from standard deviation of average f0 

across a sentence within a condition. Black symbols represent high variability conditions. 

Light gray symbols represent low variability conditions. Dark gray symbols represent 

preliminary data. Squares represent men from Study 1a. Circles represent women in 

Study 1a. Triangles represent data from Study 1b (Mixed gender, f0 variability). Stars 

represent data from study 2 (F1 variability).  

Even though results from Study 2 suggest that F1 does not influence SCEs, a 

similar linear regression was conducted to predict SCE magnitude from F1 variability. It 

is possible that a relationship between F1 and SCE would be illuminated if F1 measures 

from more than two groups were used to predict SCEs. As such, F1 measures from all 

groups in Studies 1 and 2 (as well as preliminary data) were obtained and entered into the 

linear regression. The results of the linear regression confirm that F1 variability in a 

condition is not a good predictor of SCE magnitude (r = – 0.09, p = 0.77; see Figure 12) 
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Figure 12. Predicting contrast effect magnitude from standard deviation of average F1 

across a sentence within a condition. Black symbols represent high variability conditions. 

Light gray symbols represent low variability conditions. Dark gray symbols represent 

preliminary data. Squares represent men from Study 1a. Circles represent women in 

Study 1a. Triangles represent data from Study 1b (Mixed gender, f0 variability). Stars 

represent data from Study 2 (F1 variability).  

The results of these regressions confirm the combined results of Studies 1 and 2: f0 

variability influences SCEs in vowel categorization and F1 variability does not. It is even 

clearer that not all sources of acoustic variability influence SCEs. Based on this result, the 

remaining studies focus on how more fine-grained manipulations of f0 influence SCEs 

and how measures collected in these studies may suggest a connection between SCEs and 

talker normalization.
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CHAPTER V 

STUDY 3 (MANIPULATED F0) 

Aims 

In order to establish a stronger connection between f0 variability and smaller 

shifts in categorization, f0 variability can be acoustically manipulated. By acoustically 

manipulating f0, the same stimuli can be presented in each condition, but differ only on 

f0. By using the same stimuli in each condition, any differences in the size of SCEs can 

be directly attributed to the f0 manipulation. In Study 3, f0 of sentences was manipulated 

to reduce f0 variability in the sentences used in the high f0 variability of Study 1b.  

Methods 

Praat was used to manipulate f0 contours (Boersma & Weenink, 2017). Sentences 

were the same as those used in Study 1b, high f0 variability condition. In each condition, 

the f0 of each sentence was set to the grand average f0 for all sentences. In the f0-shifted 

condition, within-sentence f0 variability remained intact, maintaining natural f0 contours. 

In the f0-flattened condition, f0 contours were flattened and set at the grand average. In a 

third condition, f0 was not manipulated. This condition served as a within-subject 

comparison of low f0 variability versus high f0 variability, similar to other studies 

reported here. In the final condition, the context sentence was one sentence from a single 

talker (previously used in Assgari & Stilp, 2015).  

Hypotheses
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If f0 variability in a condition is responsible for smaller SCEs, then removing 

between-sentence f0 variability should produce SCEs that are at least comparable to, if 

not larger than, those in low-f0-variability conditions. In addition, if our manipulated f0 

conditions produce SCEs similar to low variability conditions, this will establish a strong 

relationship between f0 variability in context sentences and the size of SCEs. If our 

manipulated conditions fail to produce SCEs similar to low variability conditions, then it 

is possible that other types of acoustic variability also influence SCEs. 

Results 

A total of 25 listeners participated in Study 3. Two participants were removed due to 

failing to maintain 80% accuracy over all endpoints, leaving 23 listeners in the analysis. 

In addition, upon inspection of the distribution of SCEs, one outlier was identified in the 

no manipulation condition. This participant showed a contrast effect of -4.33 stimulus 

steps, which is not only beyond the magnitude of what would be expected with +5 dB 

peaks in the context sentences but is also opposite of the predicted direction. This outlier 

was removed and the analysis was conducted on the remaining 22 listeners. Deviance 

measures did not differ systematically across filter conditions or experimental conditions 

(see Appendix H). The confidence intervals and their overlap around midpoints did not 

differ systematically based on filter conditions and experimental conditions (see 

Appendix I).  

SCEs 

A repeated measures ANOVA was conducted comparing mean SCEs across 

experimental conditions. The assumption of sphericity was violated as evidenced by a 

significant Mauchly’s test of sphericity (p = 0.021). Thus, the ANOVA reported here is 
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reported with the Greenhouse-Geisser correction. The ANOVA revealed no significant 

differences between the means (F(2.08, 43.75) = 1.870, p = 0.165, 𝜂𝑝
2 = 0.082; see Figure 

13).  

 

Figure 13. Contrast effect magnitudes from Study 3. Manipulated f0 conditions are along 

the x-axis and contrast effect magnitide is along the y-axis. The gray bar corresponds to 

the single talker condition, the light red bar corresponds to the flattened f0 condition, the 

dark red bar corresponds to the shifted f0 condition, the black bar corresponds to the high 

f0 variability condition. Error bars depict standard error of the mean. 

Response Times 

As previous reported, data from 22 listeners passed criterion from Study 3 and 

were included in the response time analysis. A 4 (Condition: no manipulation, flattened 

f0, shifted f0, single talker) X 10 (Vowel Target) repeated measures ANOVA was 

conducted on response times collected during Study 3 (see Figure 14). Mauchly’s test of 
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sphericity was violated for vowel (p < 0.001). As such, a Greenhouse-Geisser correction 

is reported for the main effect of vowel. A significant main effect of condition was found 

(F(3,63) = 3.04, p = 0.04, 𝜂𝑝
2 = 0.13). This main effect of condition would be primarily 

driven by the difference in response times between the single (M = 868.39, SE = 27.16) 

and the flattened f0 condition (M = 932.75, SE = 25.58; p = .06), however, post hoc 

pairwise t-tests with Bonferroni corrections showed no significant differences (all p’s > 

0.06). A significant main effect of vowel was observed, F(3.56,74.66) = 19.26, p < 0.001, 

𝜂𝑝
2 = 0.48). These results are primarily driven by the increase in response times to the 

ambiguous target vowels in the middle of the continuum (see Appendix J for pairwise t-

tests with Bonferroni corrections). The interaction between vowel and condition was not 

significant (F(10.20,214.26) = 0.98, p = 0.47, 𝜂𝑝
2 = 0.04).  
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Figure 14. Response times by condition for Study 3. The vowel continuum is represented 

along the x-axis with the /ɪ/ endpoint on the left and the /ε/ endpoint on the right. 

Response times in milliseconds are represented on the y-axis. Average response times 

collapsed across vowels are shown on the far right. The black line represents the high f0 

variability condition. The dark red line represents the shifted f0 condition. The light red 

line represents the flattened f0 condition. The gray line represents the single talker 

condition. Error bars depict standard error of the mean. 

Accuracy 

As previous reported, data from 22 listeners were included in the analyses for 

Study 3. A one-way repeated measures ANOVA of condition (no manipulation, flattened 

f0, shifted f0, single talker) indicated that accuracy did not vary as a function of 

condition, (F(3,63) = 0.624, p = 0.602, 𝜂𝑝
2 = 0.03). Plots of accuracy can be found in 

Appendix P. 
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Discussion 

The magnitudes of SCEs in Study 3 indicate several issues. First, it is questionable 

whether the manipulations of f0 were successful in creating talkers that sounded similar. 

While the SCE in the single condition was the largest (M = 0.64, SE = 0.12), as predicted, 

the contrast effects in the shifted (M = 0.53, SE = 0.07) and flattened (M = 0.35, SE = 

0.09) f0 conditions appeared smaller, although not significantly so. If the f0 

manipulations were successful, the f0 variability in the shifted and flattened f0 conditions 

would have been equivalent to single talker condition (i.e., no f0 variability across trials). 

Thus, these conditions should have all produced large contrast effects. Even though the 

SCE magnitudes appear to differ in these conditions, a non-significant ANOVA supports 

that the hypothesis that shifted f0 and flattened f0 show similar contrast effect to the 

single-talker condition. A main effect of condition for response times suggested that 

response times may differ depending on condition. However, following corrected post 

hoc pairwise t-tests, there was no significant difference between the groups. This result 

provides further evidence that the manipulation of f0 may not have been successful. 

However, it is puzzling that the single talker condition also did not differ from the 

manipulated f0 conditions. It is possible that high variability in each of the conditions led 

to this result. Inspection of Figure 14 suggests that if differences between the condition 

had been significant, they would be most like the predicted pattern in the upper left panel 

of Figure 2, with response times increasing across the entire vowel continuum.   

Second, the high f0 variability condition showed contrast effects much larger than 

what would be expected. These stimuli are the same stimuli as in Study 1b. In Study 1b, a 

contrast effect of 0.21 stimulus steps was observed with these stimuli while in this study a 
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contrast effect of 0.57 was observed. Thus, this condition failed to replicate past results. 

While it is not entirely clear why this condition failed to replicate, there are a few 

suggestions that deserve consideration. First, different listeners participated in Study 1b 

compared to the current study. Individual differences in contrast effect magnitude are 

relatively common and could explain why the SCE magnitude for this condition was 

larger in this study relative to Study 1b. However, high f0 variability producing the same 

size contrast effect as the single talker condition suggests that f0 variability had no 

influence on SCEs in these participants, which is problematic. Second, it is possible that 

this failure to replicate occurred because the alternate conditions presented in this study 

differed from those presented in Study 1b. In Study 1b, a single talker condition and a 

low f0 variability condition were presented alongside the high f0 variability. As such, 

there was no overlap in sentences across conditions. In the current study, listeners heard 

the same sentences in all the multi-talker conditions. It is possible that this allowed 

listeners to become familiar with the sentences and the talkers despite the manipulations 

of f0. Why familiarity with sentences may influence contrast effects is addressed further 

in the general discussion. 

While acoustic manipulations of speech are ideal for experimental control, these 

manipulations can sometimes have unintended consequences in the speech signal. As 

previously discussed, speech is a combination of the source and formant filters. The 

source is a complex sound that is comprised of a fundamental frequency and harmonics 

that fall at integer multiples of that fundamental frequency. For example, if a source has a 

fundamental frequency of 100 Hz, the harmonics will fall roughly at 200, 300, 400, 500 

Hz, etc. Shifting the fundamental frequency up to 200 Hz would result in harmonics that 
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now fall at 400, 600, 800, 1000 Hz, etc. The formant filter contains peaks that correspond 

to resonances of the vocal tract.  In order to produce a speech sound, the source is pushed 

through the formant filters. The degree to which the peaks in the formant filter are 

expressed depends on if there is harmonic energy near those peaks. Thus, the amplitude 

of the harmonics in the final speech signal depend on where the formants filter peaks fall. 

If a harmonic falls directly under a formant peak, this harmonic will be higher in 

amplitude than a harmonic that falls farther from a formant peak. Thus, the distribution of 

energy in the final speech sound is closely tied to both f0 and the formant filter. If one or 

both changes, there will be consequences for the distribution of energy in the sound. If 

the formant filters remain the same, the relationship between the harmonics and the 

formant filters will change causing the overall distribution of energy in the signal to 

change as well. 

The method of manipulating f0 changed the fundamental frequency and its 

corresponding harmonics while attempting to maintain the formant filters. This had 

consequences for the overall distribution of energy in the speech signal. SCEs are argued 

to be driven by the distribution of energy in the frequency region that differentiates the 

target phonemes, here the F1 region. Shifting energy through manipulations could have 

had unintended consequences on SCEs. To explore this possibility, the distribution of 

energy in the F1 region was measured and compared in the multi-talker conditions (Stilp 

& Assgari, 2017b). The energy in the low-F1 and high-F1 regions was measured in a 

single sentence using two band pass filters (low-F1: 100-400 Hz; high-F1: 550-850 Hz) 

with a 5-Hz transition between the passband and the stopband. Filters were made using 

the fir2 command in Matlab with 1000 coefficients. The amplitude envelope of both 
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regions was obtained by rectifying the signal and low-pass filtering using a 2nd order 

Butterworth filter with a 30 Hz cutoff frequency. The root-mean-square of each envelope 

was converted to dB. A single measure from each sentence was obtained by subtracting 

the energy in high-F1 region from the energy in the low-F1 regions. This difference is 

referred to at the Mean Spectral Difference (MSD). A negative MSD indicates relatively 

more energy in the high-F1 region than the low-F1 region in the sentence. Importantly, 

MSD is argued to be vital for producing SCEs (Stilp & Assgari 2017b). To evaluate 

whether manipulating f0 changed the MSDs in the current study, average MSDs across 

all sentences were compared for three of the conditions in Study 3: no manipulation, 

shifted f0 and flattened f0. Since the same sentences were used in each of these 

conditions, any differences in MSDs is a direct result of f0 manipulation.  

The first measure obtained was the average MSD when comparing all low-F1-

amplified sentences to all high-F1-amplified sentences in each condition. In the current 

studies, adding + 5 dB spectral peaks targeted an overall MSD of approx. 10 dB. This 

ensured that the overall MSD was roughly equivalent for all groups (i.e., Overall MSD in 

Table 1). However, when overall MSD was broken down further and the MSD for low-

F1 and high-F1 sentences was measured individually, rather than averaged together, there 

was a clear effect of f0 manipulation. First, MSDs in sentences clearly shift depending on 

the f0 manipulation being conducted (see Table 1). This demonstrates that while the 

relative differences between low F1 and high F1 regions were preserved, the spectral 

composition within sentences are being changed in unintended ways by the f0 

manipulations. Shifting f0 pushes a little bit more energy toward low F1 region (more 

positive MSD), and flattening f0 is pushing a lot more energy toward low F1 region (a lot 
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more positive MSD). Further, the variability of MSDs increased as a result of 

manipulations (SD of Overall MSD in Table 1). It is possible that increasing variability 

of MSDs in manipulated f0 conditions was inadvertently decreasing SCEs since MSDs 

were changing more from trial-to-trial. However, if increased MSD variability accounted 

for all differences in SCEs, then both shifted and flattened f0 should have smaller 

contrast effect, which was not the case. Therefore, MSD variability cannot fully capture 

the consequences that our manipulations had on SCEs. These changes in the distribution 

of energy in the F1 regions because of manipulation were unforeseen and could not be 

controlled.  

Table 1. 

Mean spectral differences in multi talker conditions in Study 3 

  
MSD of 

Low F1 Sentences 

MSD of 

High F1 Sentences 

Overall MSD 

(Low F1 – High 

F1) 

SD of Overall 

MSDs 

Not Manipulated 1.73 dB -7.38 dB 9.11 dB 2.47 dB 

Shifted f0 2.59 dB -6.61 dB 9.20 dB 3.38 dB 

Flattened f0 4.67 dB -4.45 dB 9.12 dB 3.38 dB 

  

Finally, as previously mentioned, talkers differ acoustically on more parameters 

than just f0. Previous research has demonstrated that when a cue is no longer informative 

for a phoneme distinction, listeners will decrease reliance on that cue in favor of a more 

informative cue (e.g., Stilp, Anderson, Assgari, Ellis & Zahorik, 2016; Stilp & Anderson, 

2014). It is possible that in the absence of f0 variability, listeners can use other available 
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cues to differentiate between talkers. While Study 2 suggests that F1 variability alone is 

not enough to influence SCE magnitude, there are other acoustic parameters that are 

argued to cue talker changes. For example, F3 has been argued to be related to vocal tract 

length (Johnson, 2005). Vocal tract is a stable property of a talker and differences in 

vocal tract length may cue listeners to changes in talkers. If listeners are able to exploit 

F3 in the absence of the f0, it is possible that talker information related to F3 is 

influencing SCEs. Again, this discussion point will be revisited in further detail in the 

general discussion. 

 Despite the unintended consequences that the manipulations may have had on the 

stimuli, using Praat to manipulate pitch was still the preferred method. During the design 

phase of this study, several other methods were explored with far less optimal results. For 

example, one alternative method used Praat to decompose the sound into the source and 

filter components. The source was manipulated independently to adjust f0. The 

manipulated source and original filter were recombined in an attempt to reproduce the 

original sound with a different f0. In theory, this manipulation should have allowed for an 

independent manipulation of f0 without influencing the formants. However, the resulting 

speech sounds were quite terrible. First, the sounds were no longer intelligible and, while 

intelligibility is not necessary to observe contrast effects, this pointed to larger issues in 

the manipulation. Particularly, it appeared that the formant filter was not extracted 

cleanly and there was evidence that source material was still present in the filter 

component and vice-versa. Second, even if this method had worked, much of the 

unintended consequences regarding the redistribution of energy would have still been an 

issue. Other widely used methods (e.g., STRAIGHT; Kawahara, Takahashi, Morise, & 
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Banno, 2009) were also explored but these methods tend to assume that manipulations of 

f0 reflect the desire to switch the gender of the talker. As such, these methods also shift 

formant frequencies, which was not the goal in these studies. 
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CHAPTER VI 

STUDY 4 (ORDERED F0) 

Aims 

Results from Study 1 make a strong case for f0 variability influencing SCEs in 

natural speech. However, in Study 1, both global (i.e., total variability in a condition) and 

local (i.e., trial-to-trial variability) variability were high. Thus, it was unclear whether 

global or local variability drives the influence of f0 variability on SCEs. Study 4 

investigated whether local or global variability influences SCEs by manipulating local 

(trial-to-trial) variability in the mean f0 of context sentences.  

Methods 

The same stimuli used in Study 1b, High f0 Variability condition were presented 

in the order of ascending or descending f0. Measures of f0 have already been obtained in 

Study 1b. In a third condition, stimuli were arranged so that there is the maximum local 

f0 variability. With regard to the tails of the distribution shown in Figure 4, in the 

maximum local variability condition, the order of presentation was as follows: the 

sentence with the lowest f0 from the lower tail of the distribution, the sentence with the 

lowest f0 in the upper tail of the distribution, the sentence with the second-lowest f0 of 

the lower tail, the sentence with the second-lowest f0 in the higher tail, and so on. The 

Matlab script was edited to control the order of stimulus presentation.  

Hypotheses
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If trial-to-trial variability in average f0 of context sentences influences SCEs, then 

ascending and descending conditions should produce larger SCEs because trial-to-trial 

variability has been minimized. In addition, the maximum variability condition should 

show the smallest SCE. On the other hand, if global variability is more influential than 

local variability, then all multi-talker conditions should have the same size SCE because 

global variability is matched across conditions. Further, since global variability is high in 

all conditions, SCEs should be smaller than single talker conditions. 

Results 

Twenty-five listeners participated in Study 4. One listener failed practice and two 

were removed for failing to maintain 80% accuracy across all endpoints, leaving a total 

of 22 listeners in the analysis. In the exploration of the data, an outlier was identified in 

the descending group. This participant exhibited a contrast effect with the magnitude of 

6.93 stimulus steps which is, once again, beyond what would be expected with +5 dB 

peaks. This outlier was removed and the analysis was conducted with the remaining 21 

listeners. Deviance measures did not differ systematically across filter conditions or 

experimental conditions (see Appendix K). The confidence intervals and their overlap 

around midpoints did not differ systematically based on filter conditions and 

experimental conditions (see Appendix L).  

SCEs 

A repeated measures ANOVA was conducted to test whether mean SCEs are 

different based on condition. The ANOVA revealed no significant difference between the 

mean SCEs based on condition, (F(3, 60) = 0.908, p = 0.442, 𝜂𝑝
2 = 0.043; see Figure 15). 
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It is possible that this omnibus ANOVA was underpowered considering that 3 out 

of 4 group means were predicted to be equal to each other. As a way to probe further into 

this claim, one-sample t-tests comparing contrast effect magnitudes in Study 4 against 0 

were conducted. If one-sample t-tests are not significant, it indicates that no contrast 

effect was observed in that condition. Results of 4 one-sample t-tests reveal a significant 

contrast effect in the single (M = 0.386, SE = 0.12), ascending (M = 0.400, SE = 0.12), 

and descending (M = 0.350, SE = 0.10) conditions (all p’s < 0.003, Bonferroni corrected 

α = 0.0125). However, the contrast effect in the maximum condition (M = 0.176, SE = 

0.10) does not differ significantly from 0, t(20) = 1.697, p = 0.105.   

 

Figure 15. Contrast effect magnitudes from Study 4. Ordered f0 conditions are 

along the x-axis. Contrast effect magnitide is along the y-axis. The gray bar corresponds 

to the single talker condition, the light red bar corresponds to the ascending f0 condition, 
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the dark red bar corresponds to the descending f0 condition, the black bar corresponds to 

the maximum f0 variability condition. Error bars depict standard error of the mean. 

Response Times 

As previously reported, 21 participants had passed criterion in Study 4 and were 

included in the response time analysis. A 4 (Condition: single talker, ascending f0, 

descending f0, and maximum f0) X 10 (Vowel Target) repeated measures ANOVA was 

conducted on response time data collected during Study 4 (see Figure 16). Mauchly’s test 

of sphericity indicated that sphericity was violated for vowel, (p < 0.001). As such, the 

main effect and interaction are reported with a Greenhouse-Geisser correction. A main 

effect of condition was significant, (F(3, 60) = 3.74, p = 0.016, 𝜂𝑝
2 = 0.157). Bonferroni 

corrected post hoc pairwise t-tests indicate that participants are significantly slower in the 

maximum variability condition relative to the single talker condition (p = 0.046) and the 

descending condition (p = 0.04). The ascending condition did not differ from the 

maximum variability condition (p = 0.30). The main effect of vowel was also significant, 

(F(3.04,60.72) = 13.77, p < 0.001, 𝜂𝑝
2 = 0.41). Again, this main effect was primarily 

driven by increases in response times in the middle of our vowel continuum where 

stimuli are most ambiguous (see Appendix M for pairwise t-tests with Bonferroni 

corrections). The interaction between condition and vowel was significant (F(27, 540) = 

4.24, p < 0.001, 𝜂𝑝
2 = 0.18). Post hoc pairwise t-tests suggest that this result is driven 

primarily by the increase in response times observed in the ascending and maximum 

conditions on the /ɪ/ end of the continuum (see Appendix F for pairwise t-tests with 

Bonferroni corrections).  
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Figure 16. Response times by condition for Study 4. The vowel continuum is represented 

along the x-axis with the /ɪ/ endpoint on the left and the /ε/ endpoint on the right. 

Response times in milliseconds are represented on the y-axis. Average response times 

collapsed across vowels are shown on the far right. The black line represents the 

maximum f0 variability condition. The dark red line represents the descending f0 

condition. The light red line represents the ascending f0 condition. The gray line 

represents the single talker condition. Error bars depict standard error of the mean. 

 

Accuracy 

As previous reported, data from 21 listeners were included in the analyses of 

Study 4. A one-way repeated measures ANOVA of condition (single talker, ascending f0, 

descending f0, and maximum f0) was conducted to see if endpoint accuracy differed as a 

function of condition. Mauchly’s test of sphericity indicated that the assumption of 
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sphericity was violated in Study 4 (p = 0.001). As such, the ANOVA results are reported 

with a Greenhouse-Geisser correction. There was no significant effect of condition on 

accuracy, (F(1.73,34.69) = 1.535, p = 0.230, 𝜂𝑝
2 = 0.071). Average accuracy in each 

condition can be found in Appendix P. 

Discussion 

In Study 4, f0 variability was controlled on a trial-by-trial basis by playing the 

stimuli in order of ascending f0, descending f0 or maximally alternating f0. The 

magnitudes of SCE in Study 4 follow the predicted pattern. The maximum variability 

condition showed the smallest SCE. The single, ascending, and descending conditions 

showed similar SCEs that were larger than the maximum variability condition. However, 

the differences between SCE magnitudes were not significantly different.  

The response time results affirm that response times are influenced by f0 

variability, with slower response times observed in the maximum f0 condition relative to 

the single talker condition. Once again, these differences seem to be driven primarily by 

larger increases in response times at the /ɪ/ end of the vowel continuum suggesting that 

the influence of f0 variability is greater for /ɪ/ than for /ε/. The pattern of response times 

in Study 4 do not follow any of the predicted patterns in Figure 2. Instead, response times 

in Study 4 increased only for the /ɪ/ endpoint vowels.  

It is worth mentioning that the lack of differences found between SCEs in these 

studies may be because SCEs with + 5 dB peaks are already small. Since the majority of 

the studies reported here attempt to detect a decrease in SCE magnitude following 

contexts that are highly variable, starting with small SCEs limits the decrease that can be 

observed. Thus, in our analyses using ANOVA, conditions that fail to produce a contrast 
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effect do not differ significantly from conditions that do produce contrast effects. One-

sample t-tests were used to determine whether listeners experienced a contrast effect in 

each condition. The results suggested that the maximum variability condition did not 

produce a contrast effect but all other conditions did. Yet, the ANOVA did not find any 

significant differences between any of the conditions. 

Even though the maximum variability condition did not produce a contrast effect 

greater than zero, it is possible that smaller SCEs could be observed with a few 

adjustments. Using the same stimuli as in the Study 1b high variability condition meant 

that only 40 talkers were used in the all the multi-talker conditions reported here. By 

reusing these stimuli, it was possible to compare the effect of ordering sentences by f0 

with conditions where the same sentences were randomized in previous studies. 

However, only using 40 talkers meant that each talker was repeated 4 times. To ensure 

maximum variability from trial-to-trial, the lowest-pitched man (e.g. Sentence 1) was 

followed by the lowest-pitched woman (e.g., Sentence 2). This order was repeated three 

additional times (e.g., 1, 2, 1, 2, 1, 2, 1, 2) before moving on to the second lowest man 

followed by the second lowest woman (e.g., 3, 4, 3, 4, 3, 4, 3, 4). Repetition of trails also 

occurs in the ascending and descending conditions. Each talker is repeated 4 times before 

moving to the next talker (e.g., 1, 1, 1, 1, 2, 2, 2, 2, etc.). During the repetition of trials, 

the order of the stimuli was predictable. It is possible that high predictability could negate 

or at least limit the influence of high acoustic variability. If a listener could predict what 

the f0 of the next talker would be, perhaps they would be less sensitive to the changes in 

f0.  In order to eliminate predictability in the maximum variability condition, future 

studies should increase the number of talkers so that a new talker is heard on every trial. 
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In addition, the trials could be randomized so that they would not follow a low pitch then 

high pitch pattern. This way, no talker is familiar and the pattern is not predictable in the 

high f0 variability condition.  

 Results from Study 4 still point to the importance of trial-to-trial variability over 

global variability. Conditions with low trial-to-trial variability look more like single 

talker conditions than the maximum variability condition. Ascending and descending f0 

conditions had high global f0 variability whereas the single talker condition has no global 

f0 variability. Yet, no significant differences were found between single talker and 

ascending or descending conditions in the omnibus ANOVA. In addition, contrast effects 

were significantly above zero when trial-to-trial variability was low, but not when trial-

to-trial variability was high. In conjunction, these results suggest that high global 

variability did not drive down contrast effects as much as high trial-to-trial variability. 
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CHAPTER VII 

GENERAL DISCUSSION 

Overview 

The context in which an object is perceived influences how that object is 

identified. This is true in all perceptual modalities. In audition, there are many ways that 

context can influence perception. Here, two well established contextual influences were 

tested in conjunction: talker normalization and SCEs. 

Talker normalizations occurs when listeners hear different talkers and results in 

speech perception being slower and less accurate (e.g., Creelman, 1957; Fourcin, 

1968;Assmann, Nearey, & Hogan, 1982; Geiselman & Bellezza, 1976; Mullenix, Pisoni, 

& Martin, 1989; Mullenix & Pisoni, 1990; Logan & Pisoni, 1987). Spectral contrast 

effects occur when the acoustic context of speech biases subsequent perception. A recent 

study suggested that these contextual effects may be related to one another by observing 

that SCEs were restrained when the context was spoken by different talkers (Assgari & 

Stilp, 2015). However, why hearing different talkers reduced contrast effects was not 

immediately clear.  

The studies reported here served two primary purposes. The first purpose was to 

establish what talker characteristics restrain the influence of spectral content on speech 

sound categorization. The second purpose was to investigate what links may exist 

between SCEs and talker normalization. Both of these contextual influences appear to be 
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modulated by low-level acoustic variability (e.g., Assgari & Stilp, 2015 and Goldinger, 

1996). The common influence of low-level acoustic variability suggests that these 

processes may somehow be related. The current studies attempted relate these effects by 

collecting measures of both SCEs and talker normalization in SCE experiments. 

Recap of Results 

Study 1 sought to tease apart the influence of changes in mean f0 across context 

sentences and talker gender. Results from Study 1 demonstrated that mean f0 variability 

across sentences but not talker gender influenced SCEs. This suggested that low-level 

acoustic variability influenced contrast effects. Study 2 assessed whether another source 

of acoustic variability, F1 variability, also influenced SCEs. Results demonstrated that 

mean F1 variability across sentences did not influence SCEs, suggesting that not all 

sources of low-level variability influence contrast effects. Study 3 manipulated f0 to 

equate mean f0 across sentences. Results suggested that manipulating f0 variability had 

mixed effects likely due to issues with the manipulation method. Study 4 ordered the 

presentation of sentences so that changes from trial-to-trial would be either minimal or 

maximal. Results found that increasing the trial-to-trial variability in f0 eliminated 

contrast effects. Response time results revealed that listeners were slower at responding 

to the target vowels when the contexts were highly variable but no influences on accuracy 

were found. 

Influence of f0 variability on SCEs 

Overall, in these studies when talkers’ mean f0 was more variable from trial to 

trial, SCEs that biased vowel categorization were smaller. If SCEs are smaller in 

magnitude, then ambiguous vowel targets are less disambiguated by context. Thus, when 
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talkers sound more different, the preceding sentence context informs the perception of the 

subsequent vowel target to a lesser degree. The influence of f0 variability on SCEs may 

be adaptive. As previously mentioned, SCEs disambiguate otherwise ambiguous targets. 

Thus, SCEs likely serve as a way to increase the accuracy of speech perception. The 

influence of context should only occur when past perception is informative for current 

perception. When the acoustics of the sound change dramatically as it can across talkers, 

it is unlikely that past speech perception is still informative to the perception of current 

speech. If the influence of context was maintained when sounds are extremely 

acoustically different, using past experience to inform current speech perception could be 

detrimental by unreliably disambiguating sounds. 

However, it is possible that when the acoustics of the talkers are similar, previous 

perception could still be informative. The data reported here show that, at least in the 

present vowel categorization task, similar-sounding talkers can be treated like a single 

talker regardless of gender (Study 1b). This suggests that even when hearing (acoustically 

similar) different talkers, previous experience with similar-sounding talkers will still 

inform perception. One reason this may occur is that talkers that are similar in f0 may 

share other similar spectral properties in their speech. When f0 is more similar between 

talkers, their distribution of energy in the F1 region may also be more similar. In these 

experiments, the low F1 region (100-400 Hz) encompasses typical f0 values. Therefore, it 

is possible that talkers with similar f0s in these studies will also have similar energy in 

the F1 regions thought to influence SCEs with these target vowels. It has been established 

that the long-term average spectrum (LTAS) of speech is consistent across many 

languages (Byrne et al., 1994). In these studies, speech from both men and women across 
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17 different languages was averaged and the LTAS was measured. The most consistent 

departures from the consistent average were based on gender. The authors reported for all 

of the languages surveyed, males had LTASes with a lower frequency bias than females. 

Particularly, these differences were observed below 250 Hz and is likely a result of f0 

differences between genders (Byrne et al., 1994). As previously mentioned, when gender 

is treated as a binary distinction, men have lower f0s and women have higher f0s. Thus, 

within-gender similarity of f0 is likely greater than across-gender similarity. This 

suggests that talkers with similar f0s may have more similar LTASes than talkers with 

different f0s. 

Another reason why similar sounding talkers may show larger influences on 

subsequent speech perception is that the listener might not realize the talker has changed. 

It has been demonstrated that context effects can differ based on listener expectation of 

the number of talkers even when the stimuli are the same (Magnuson & Nusbaum, 2007). 

Further, demonstrations of ‘change deafness’ suggests that it is possible for changes in 

talkers to go undetected if attention is allocated elsewhere (Vitevitch, 2003). In this study, 

listeners were asked to repeat words in a word list. Importantly, for some of the 

participants the talker producing the word lists changed about halfway through the 

experiment. At the end of the study, listeners were asked to answer 3 follow-up questions 

to gauge whether they had noticed the talker change. At least 40% of the listeners in each 

experiment failed to notice the talker change (Vivevitch, 2003). Neuhoff et al., (2015) 

demonstrated that if acoustic changes are more gradient, as in Study 4, this change is 

harder to detect. In this study, listeners heard continuous speech that slowly increased or 

decreased in pitch. Listeners were asked three follow up questions to determine if they 
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had noticed the pitch change. Less than half of the participants noticed any changes in 

pitch (Neuhoff et al., 2015). Therefore, it is possible that our listeners were not noticing 

talker changes especially when talkers were ordered by f0 in Study 4. However, listeners 

were never told to pay attention to talker and whether they noticed talker changes was not 

assessed.   

If f0 variability can cue to the listener that past perception should not bias current 

perception, then perhaps other types of context effects in speech will also be restrained by 

f0 variability. Another type of context effect, temporal contrast, occurs when temporal 

cues differentiate two response options. For example, the consonants /b/ and /p/ are 

primarily differentiated by the duration of voice onset time (VOT). VOT is the duration 

of time that passed between the opening of the lips and the beginning of vocal fold 

vibration in stop consonants. The perception of these phonemes can be pushed around 

based on the speaking rate of the context (e.g., Summerfield, 1981).  If the speaking rate 

of the context is slow, the VOT will be perceived as faster and participants will report 

hearing the shorter VOT option (i.e., /b/). However, if the speaking rate is fast, the same 

VOT will be perceived as slower and listeners will report the longer VOT option (i.e., 

/p/). If f0 variability cues to listeners that this past perception is no longer informative, 

then high f0 variability in a temporal contrast paradigm should also result in smaller 

contrast effects. If temporal contrast effects do not decrease with increased f0 variability 

across contexts, then the influence of f0 variability may be specific to spectral contrast 

effects. 

Since differences in f0 can be related to talker changes, perhaps other acoustic 

cues related to talker changes would have a similar influence on SCEs. Another acoustic 
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parameter suggested to be related to talker changes is the third formant (F3). F3 is said to 

correspond to the length of the vocal tract of the individual (Johnson, 2005), a property 

that is relatively stable over time. If manipulating F3 variability (akin to Studies 1b and 2) 

produces results similar to manipulating f0 variability (i.e., high variability results in 

diminished SCEs), it is likely that cues to talker changes influence context effects and not 

merely f0 variability. However, if manipulating F3 variability fails to show similar results 

(as observed in Study 2 with F1), the influence of f0 on context effects may not be due to 

cueing listeners to changes in talkers per se, but rather acoustic ramification of varying 

f0.  

SCEs are argued to be very low-level acoustic effects (e.g., Lotto & Holt, 2006; 

Sjerps and Reinisch, 2015). It has repeatedly been demonstrated that SCEs can occur 

with non-speech stimuli (Holt, 2005; 2006, Stilp, Alexander, Kiefte, & Kluender, 2010, 

Watkins, 1991; Assgari, Frazier, & Stilp, 2018) suggesting that speech is not necessary to 

observe SCEs. Further, it has been argued that the long-term average spectrum is one of 

the most important considerations when determining if an SCE will occur (e.g., Laing et 

al., 2012). The LTAS characterizes the distribution of energy in key frequency regions 

over the entire sentence. When there is a difference in energy in key frequency regions 

that differentiates target sounds, an SCE will be observed (e.g., Stilp, Anderson & Winn, 

2015; Assgari & Stilp, 2015; Stilp & Assgari, 2017, Laing et al., 2012). In the current 

studies, these key frequency regions are low-F1 (100-400 Hz) and high-F1 (550-850 Hz). 

When the energy in these regions differ within a sentence, categorization of the target 

vowels /ɪ/ and /ε/ is biased. Research in our lab has shown the difference in these specific 

regions produce SCEs (Stilp & Assgari, 2017b). To quantify these differences, MSDs are 
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measured (see discussion of Study 3). In all studies reported here, spectral peaks were 

added to sentences ensuring that MSDs across sentences were the equivalent in each 

condition (approx. 10 dB). If average MSDs was the only parameter necessary for SCEs, 

SCEs should have been equivalent in all conditions. This was clearly not the case. Thus, 

other acoustic parameters must also influence SCEs. Here, f0 variability was manipulated 

and was shown to influence SCE magnitude. It is possible that f0 variability is also 

influencing MSDs. In the discussion of Study 3, it was shown that manipulating f0 (while 

all other aspects of the sentence was held constant) had clear consequences for MSDs. 

However, because the LTAS is determined by a complicated reaction between the speech 

source and the formant filter, measuring the influence of f0 on MSDs in sentences that 

are not manipulated can be difficult. In addition, our experimental sentences are changing 

from trial-to-trial, making them far too variable to illuminate a relationship between f0 

and MSDs. Therefore, two exploratory analyses, measuring of f0 and MSDs, were 

conducted for two sentences in the TIMIT corpus (SA1: “She had your dark suit in 

greasy wash water all year” and SA2: “Don’t ask me to carry an oily rag like that”). 

These sentences were spoken by each of the 630 talkers in the TIMIT database and 

should theoretically contain similar phonetic content, keeping formant filters relatively 

consistent across sentences. When correlating f0 with MSDs, both correlations were 

significant (p’s < 0.03) but the strength of the correlations were minimal (SA1: r = -0.17, 

SA2: r = -0.08). So, while there does appear to be a statistically significant relationship 

between f0 and MSDs, f0 does not explain a meaningful amount of variance in MSDs for 

these sentences. It is important to mention that while semantic content was the same for 

each talker producing these sentences, idiosyncrasies in pronunciation might have caused 
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variations in formant filters. Since formant frequencies have an impact on the shape of 

the LTAS, and by proxy the MSD, varying formant frequencies could be obscuring the 

relationship between f0 and MSDs. Thus, future exploration of the relationship between 

f0 and MSDs where the formants can be controlled is warranted. 

The results of the current studies suggest that f0 variability is a key factor when 

experiencing context effects. Listeners are generally extremely sensitive to changes in f0 

(e.g., Klatt, 1973; Hart, 1981). However, there are certain populations of hearing 

impaired listeners who cannot encode f0. Specifically, cochlear implant users are argued 

to have limited access to spectral pitch cues (Başkent, Mächler, Bolker, & Walker, 2014). 

This is primarily due to two reasons. First, the electrode array of the implant cannot be 

inserted deep enough into the cochlea to encode the frequencies that correspond to f0 

(Faulker, Rosen, & Stanton, 2003). Second, the frequency resolution of CI is low causing 

difficulty in discriminating pitch differences (Başkent, Mächler, Bolker, & Walker, 

2014). Importantly, it has been demonstrated that listeners hearing noise-vocoded single 

talker stimuli do demonstrate SCEs (Stilp, 2017). Here, noise-vocoding was used to 

model the processing of a CI so that normal hearing individuals would respond as CI 

users would. This suggests that CI users will experience contrast effects. Testing whether 

f0 variability influences the size of SCEs in listeners with cochlear implants would allow 

a deeper assessment of whether or not these effects are driven by f0 specifically. If f0 

information is necessary to show the influence of variability on SCEs, CI users should 

not show differences in contrast effect magnitudes for our low and high f0 variability 

groups presented in Study 1b. However, if other sources of acoustic variability cueing 
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talker changes also influence SCEs, the CI listeners may still show smaller contrast 

effects when talkers are highly variable.  

Response Times and Accuracy 

Reaction times were slower overall in conditions where there were multiple 

talkers. This pattern corresponds to what would be expected based on talker 

normalization (e.g., Mullenix, Pisoni, & Martin, 1989). Thus, it appears that listeners are 

adjusting to differences between talkers in the context sentences, and this adjustment is 

influencing how fast they respond to the target vowels. Further, the increases in response 

time seem to combine two of our predicted patterns (see Figure 2). First, there are general 

increases in response times when hearing different talkers that affect the entire vowel 

continuum, following the predicted pattern in the upper left corner of Figure 2. Second, it 

appears that the influence of f0 variability is stronger on the /ɪ/ end of the continuum, in 

part following the predicted pattern in the upper right panel of Figure 2. Therefore, it 

appears that the /ɪ/ endpoint vowel is more strongly influenced by context. Prior to these 

analyses, there was no reason to expect that /ɪ/ would be influenced more by context then 

/ε/. In fact, there was no reason to expect that either of the endpoint vowels would be 

influenced by context. This surprising result suggests that even prototypical speech 

sounds (i.e., vowels categorized with a high degree of accuracy) can be influenced by 

context. 

It is worth mentioning that assessing accuracy on endpoint vowels may be 

limiting our ability to observe differences between conditions. In all the studies presented 

here, a performance criterion dictated that participants had to maintain 80% accuracy 

when labeling endpoints. In addition, listeners had to pass a practice block that required 
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80% accuracy performance on endpoints before moving to the main experiment. This is a 

necessary condition of these experiments to ensure that listeners can identify the vowels 

as two different categories. If listeners cannot identify the endpoint vowels as different 

categories, a categorization shift cannot be observed. The performance criterion may 

have limited the ability to observe changes in accuracy due to the narrow range (80-100% 

accuracy). However, inspections of average accuracy at endpoints in each condition (see 

Appendix P) shows that listeners did not fall below 95% in any of our conditions. This 

suggests listeners that can tell the endpoint vowels apart are very accurate at labeling 

them. 

The results reported here suggest that accuracy and response times are 

dissociable. Here response times were slower with multiple highly variable talkers but no 

change in accuracy was observed. Talker normalization literature often treats these 

measures as related. If an increase in response times is observed, a decrease in accuracy 

should also be observed. Here we showed that does not have to be the case; response 

times can increase or decrease independent of accuracy. Since the sensitivity of these 

measures to task difficulty differs, this is perhaps not surprising. In general, response 

times are a more sensitive measure of task difficulty. Accuracy can still be at ceiling 

levels even if the task has increased in difficulty. This has led speech research to 

alternative approaches to measure task difficulty.  

Interestingly, to the author’s knowledge, this is the first demonstration of contexts 

influencing endpoint vowels. The significant interactions between vowel and condition in 

Study 1b and Study 4 indicated that /ɪ/ vowels were more susceptible to the influence of 

f0 variability. Clear differences on response times between the conditions on the /ɪ/ 
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endpoint are illustrated in Figures 13 and 16. Through measures of SCE magnitude, it 

appeared that endpoints were relatively impervious to the influence of context. This 

finding was so consistent that the influence of context is only assessed in the middle of 

the vowel continuum, where stimuli are intentionally ambiguous.  In addition, accuracy 

revealed no influence of context on endpoints: endpoints are consistently labeled as their 

intended categories regardless of what context preceded them. Here, it was demonstrated 

that context can influence endpoint vowels when using a more sensitive measure of task 

difficulty. When contexts were more variable, listeners were slower at responding to the 

endpoints as well as mid-continuum vowels. In addition, the influence of f0 variability on 

response times seemed to be greater at the /ɪ/ endpoint relative to the other parts of the 

continuum. This suggests that even prototypical speech sounds, which can be consistently 

and accurately identified, can be influenced by context.  

Accuracy has generally been used as a measure of task difficulty. As previously 

mentioned, speech perception is generally accurate, particularly when tested in quiet. 

Thus, ceiling effects of accuracy in speech, like the ones observed here, are common. 

There are a variety of methods that speech researchers can use to pull performance off of 

ceiling if ceiling effects are predicted to occur (e.g., adding noise to the signal). However, 

since the current studies were the first to quantify the influence of talker variability on 

accuracy of endpoints in SCE experiments, they were more exploratory in nature. 

Particularly, these studies attempted to measure if changes in accuracy would occur in 

multiple-talker conditions relative single-talker conditions. This was clearly not the case 

with none of our conditions showing differences in accuracy at endpoints. 
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A key difference between the measures of accuracy reported here and those 

typically reported in talker normalization experiments was when accuracy was assessed 

relative to the manipulation of talker. In the current studies, accuracy was assessed when 

the listener responded to the target vowel. However, the manipulation of talker was in the 

context that preceded the target. Thus, listeners were not responding directly to the 

acoustically varying talkers. In traditional talker normalization paradigms, the 

manipulation of talker is often in the stimulus the listener is identifying. For example, in 

Goldinger (1996), listeners were asked to recall if they had previous heard words in a list. 

Listeners were worse at identifying previously heard words if the talker changed between 

the first presentation of the word and the second presentation of the word. In this case, the 

listener is responding to the word spoken by a different talker. In the current studies, the 

listeners responded to targets spoken by the same talker in all conditions. While other 

measures collected here suggest that the influence of f0 variability can still be observed at 

the time of responding to the target (SCEs, response time), it is possible that vowel 

endpoint accuracy cannot. This key difference could have influenced the ability to detect 

changes in accuracy. However, if the purpose of measuring changes in accuracy is to 

infer task difficulty, measures that are more sensitive to changes in task difficulty may be 

more appropriate. 

Response times can also be used as a measure of task difficulty. As task difficulty 

increases, listeners are slower to respond and response times increase. These increases in 

response times can be related to level of processing (e.g., Chabot, Miller, & Juola, 1976). 

If a task is more difficult, it may require a higher level of processing and response times 

increase. If response times are slow, then it can be inferred that processing the stimulus 
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required a deeper level of processing. Thus, response times can be used to infer both task 

difficulty and level of processing. 

In these studies, response times were measured as how long it took the listener to 

respond to the target vowel once it began playing. Of primary interest was whether there 

are differences between response times following single talker contexts versus multiple 

talker contexts. The differences observed in the current studies can be broadly compared 

to those observed in talker normalization. In the current studies, response times increased 

when comparing a single talker to multiple talkers. This is similar to what is observed in 

studies of talker normalization: increased reaction times with an increase in the number 

of talkers. The current studies expanded on this finding, demonstrating that response 

times were greater when talkers were acoustically variable versus when they were 

acoustically similar. When these results are interpreted in conjunction with SCE 

magnitudes, they suggest that talker normalization and spectral contrast effects are 

influencing the same task. Further, the pattern of response times observed in the current 

studies suggest that response times increase as f0 variability increases. Study 1b 

demonstrated response times in high f0 variability conditions are slower than both single-

talker and low f0 variability conditions. Thus, as with SCEs, simply hearing different 

talkers is not sufficient to slow speech perception: the talkers have to be acoustically 

different to observe an effect of changing talkers. 

Further, it possible to assess whether talker normalization and spectral contrast 

effects may be related to one another using response times. If contrast effect magnitudes 

are decreasing at the same time that response times are increasing, it is possible that these 

effects are related to each other. To assess this relationship, a correlation was conducted 
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on individual’s average deviation in response times and a measure of their contrast effect 

magnitude. There are clear idiosyncrasies in individual’s response times with some 

listeners responding faster than others. In order to account for these differences, each 

individual’s mean response time over all trials was subtracted from each response time. 

These differences were then averaged to obtain one response time measure for each 

individual in each condition. In order to make response times and SCEs more 

comparable, a measure of SCEs was used that accounts for changes in responses across 

the entire vowel continuum. Average difference in response times is measured over the 

entire vowel continuum. However, SCEs, as measured by mid-point shifts, tend to be 

measured in the middle of the vowel continuum. A different measure of SCE magnitude, 

percent shift in /ε/ responses, accounts for changes in responses across the entirety of the 

vowel continuum. Following low-F1 context sentences, listeners should have a higher 

percentage of /ɛ/ responses than following high-F1 context sentence. Thus, changes in 

percent /ɛ/ responses measure categorization shifts following different contexts, similar to 

mid-point shifts, but encompass the entire vowel continuum. Percent shifts in /ε/ 

responses are highly related to mid-point shifts for the data presented in these studies (r = 

0.96, p < .001). In addition, percent shifts in phoneme responses has been used in 

previous literature as measures of contrast effects (e.g., Laing et al., 2012; Holt 2005). 

Again, using this measure has the benefit of encompassing the entire vowel continuum 

making measures of SCEs more comparable to measures of response times. Correlating 

each individual’s average difference in response times with their contrast effect 

magnitudes (measured as changes in percent /ε/) produced a non-significant correlation 

(Figure 17; r = -0.004, p = 0.94). An important consideration when interpreting the 
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results is that different listener groups participated in each experiment. In order to control 

for this, a linear mixed effects regression was conducted in R using average difference in 

response times to predict changes in percent /ε/ responses while including a random 

effect of subject. Average difference in response times was not a significant predictor of 

SCEs (t(1) = -0.08, p = 0.94) confirming that response times were not related to SCE 

magnitudes. Therefore, it appears that, when considered at the level of the individual, 

SCEs and response times were not related. However, both of these effects are still 

influenced by f0 variability. As previously mentioned, SCEs in this study were measured 

when the listener was responding to the target vowel but the manipulation of talker 

occurred in the context. This may have limited the relationship between response times 

and SCEs in these studies. It is possible that a future study with stimuli where the target 

sound occurs within the context sentence, where the talker varies, might be more 

sensitive to the relationship between response times and SCEs. 
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Figure 17. The relationship between individual’s average deviance in response times and 

their shifts in percent /ε/ responses. Triangles represent data from Study 1b. Stars 

represent data from Study 2. Squares represent data from Study 3. Circles represent data 

from Study 4. Gray symbols represent single talker conditions. Black symbols represent 

high variability conditions. Various shades of red represent low variability conditions.  

Recently, researchers claimed that the decrements in speech perception observed 

when hearing different talkers were obligatory (Choi, Hu, & Perrachione, 2018). In this 

study, the authors assessed whether talker normalization influences phonetically 

ambiguous stimuli more than non-ambiguous stimuli. Decreases in response times were 

observed in both conditions. This led the authors to claim that talker normalization was 

obligatory since it occurred with both non-ambiguous and ambiguous stimuli. 
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Importantly, their multi-talker conditions mixed both male and female talkers suggesting 

that acoustic variability was high in these conditions although no measures of acoustic 

variability were reported. Previous research (e.g., Goldinger, 1996) and the research 

results reported here challenge that claim by finding that the influence of context does not 

occur in all conditions. Particularly, the occurrence of a context effect seems to be related 

to how variable the talkers are. Goldinger (1996) demonstrated that listeners were less 

accurate at recognizing words previously heard when the talkers producing the words 

were more acoustically different than when the talkers were more acoustically similar. 

Here, similar results were observed with response times. Study 1b demonstrated that 

listeners were slower at responding to targets when the contexts were spoken by highly 

variable talkers relative to single and similar talkers. When listeners heard similar 

sounding talkers, they were not slower than single talkers (p = 0.051), suggesting that 

similar-sounding talkers can elicit response times broadly similar to single talkers. Thus, 

the decrements in speech perception, in terms of response times, are not obligatory but 

only occur when talkers are acoustically different.   

As mentioned in the introduction, speech acoustics are immensely variable. There 

are a number of parameters that can vary in speech, some of which are related to talker 

differences. Talker normalization has been suggested to be a means to adjust for these 

differences between talkers (e.g., Joos, 1948; Ladefoged & Broadbent, 1957; Mullenix, 

Pisoni, & Martin, 1989; Martin, Mullenix, Pisoni, Summers, 1989). It appears that this 

need to adjust is driven by the acoustic differences between talkers (Goldinger, 1996). If 

speech is highly acoustically variable, greater adjustments need to be made. If speech is 

less acoustically variable, less adjustment need to be made. Here, it is suggested that 
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SCEs are also related to acoustic variability. If talkers are acoustically variable, there is 

less of an influence of context. As evidenced by the regression reported in the synthesis 

of Studies 1 and 2 (Figure 11), a significant portion of the variability observed in SCE 

magnitude is explained by the degree to which mean f0 varies across context sentences. 

In addition, the effects of talker normalization and SCEs may both lead to more accurate 

perception when talkers are similar. In talker normalization, accuracy is a primary 

measure of the effect. Listeners are more accurate when talkers do not change or are less 

acoustically different. In SCEs, similar talkers lead to a greater influence of context. This 

influence helps to disambiguate otherwise ambiguous sounds, leading to more accurate 

perception. Thus, it is possible that these effects work in conjunction to lead to accurate 

perception in the presence of minimal acoustic variability. Restraining the influence of 

context when acoustic variability is high may also lead to more accurate speech 

perception. When acoustic variability is high, there is less of an influence of context to 

disambiguate otherwise ambiguous sounds. As previously mentioned, if the contexts are 

acoustically distinct, disambiguating sounds based on previous context could be 

maladaptive as that context is likely no longer informative for perception of the current 

sound(s).  

Other Possible Influences on SCEs 

In the studies reported here, there were 40 unique talkers in each of the multi-

talker conditions. Previous work in our lab demonstrated that the influence of talker is 

observed with as few as 16 talkers (Mohiuddin, Assgari & Stilp, 2016). Using 40 talkers 

well exceeds this number, ensuring that an influence of talker variability can be measured 

in all conditions. However, using 40 talkers required that the sentence from each talker be 
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repeated 4 times per block in a given condition. When the sentences were randomized, it 

is unlikely that the listener could learn the characteristics of any one talker and a range of 

contrast effects was observed based on f0 variability. However, repeating sentences on 

successive trials in Study 4 may have led to order of talkers being somewhat predictable. 

In the ascending and descending conditions, this may have not been an issue since 

increasing or decreasing pitch would have also lead to predictability. However, in the 

maximum variability condition, listeners may have caught on to the pattern and known 

what to expect during the repeated trials. So, while it seems that a sample of 40 talkers is 

enough to demonstrate decreases in SCEs, the influence of hearing different talkers could 

have potentially been mitigated by talker similarity and predictability. Study 1a and 1b 

showed that the influence of hearing different talkers was mitigated by talker similarity 

even if the trials were randomized. In the discussion of Study 4, it was suggested that 

even when talkers are acoustically different at the level of the condition, predictability 

may restrain the influence of talker variability. 

Another way that the current results support the low-level nature of SCEs is that 

semantic content of the sentence had no influence on the size of the context effects. In 

previous literature and in our single talker conditions, context sentences would often be 

related to the task (e.g., “Please say what vowel this is” Assgari & Stilp, 2015 or “Please 

say what word this is” Ladefoged & Broadbent, 1957). Stilp & Assgari (2017) argued 

that using a single sentence whose semantic content was unrelated to the task, did not 

negatively impact the size of contrast effects. In the multiple talker conditions of the 

current studies, not only was the semantic content of the sentences unrelated to the task, it 

also varied wildly. Importantly, despite semantic variability in low f0 variability 
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conditions, SCEs observed were similar to single-talker conditions. This suggests that 

drawing the listeners’ attention to the task via the content of the sentence is not necessary. 

Again, higher-level influences did not influence the magnitude of lower-level context 

effects in speech perception.  

While the results reported here suggest that low-level acoustic cues are the 

primary influence on SCEs, it is possible that other higher-order information, not tested 

here, may also influence SCEs. Previous research has demonstrated that listener 

expectations can override the influence of low-level acoustic variability on speech 

perception (Magnuson & Nusbaum, 2007). In these studies, two sets of listeners heard the 

same stimuli synthesized with a 10 Hz difference in f0. Importantly, the authors 

manipulated listeners’ expectations of talkers by telling one group they would hear two 

talkers and the other group that they would hear a single talker. When listeners were told 

to expect to hear two different talkers, speech perception was slower. This suggests that 

listeners were experiencing talker normalization and adjusting for differences between 

talkers. Despite hearing the same stimuli, when listeners were told to expect a single 

talker, speech perception was faster. Thus, listener expectations about talkers may 

override the influence that f0 variability can have on speech perception. While intriguing, 

these results have limited applicability to the current students for two reasons. First, in the 

current experiment, listeners were not told to expect anything about the number of talkers 

they would encounter. Despite acoustic similarity, it was possible to tell the talkers apart. 

Second, the context sentences reported here often differed by much more than 10 Hz. It is 

likely that listener expectations can influence context effects in so far as the expectation 

of talkers is reasonably supported by acoustics. In Magnuson and Nusbaum (2007), the 
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stimuli differed in pitch by 10 Hz. This difference can be reasonably attributed to a pitch 

change within talker. For example, in the single talker/200 sentence condition of Assgari 

and Stilp (2015) the standard deviation of mean f0 across sentences was 12.15 Hz. This 

suggests that a 10 Hz difference between two sentences falls well within the range of f0 

differences that can be attributed to a single talker.  In the current studies, pitch 

variability in the high f0 variability conditions was much greater and it is possible that 

this variability would not be able to be modified by listeners’ expectations. 

Another important consideration is whether listeners are familiar with the talker. 

Nygaard and colleagues have demonstrated that speech perception is more accurate if the 

listener is familiar with the talker (Nygaard, Sommers, & Pisoni, 1994; Nygaard & 

Pisoni, 1998). Familiarity with talker has been defined as either extensive experience 

(e.g., family members) or familiarizing listeners with lab training. Both types of 

familiarity lead to increased performance in speech perception tasks. Since increases in 

speech perception are observed when the listener is familiar with the talker, this could 

offset the decreases in speech perception observed when talker changes. In addition, if 

predictability of stimuli influences SCEs (as discussed earlier) then perhaps being able to 

predict the acoustics of the talker through familiarization would also influence SCEs. 

However, both of these claims have yet to be addressed in either talker normalization or 

SCEs.   

Limitations 

When comparing the results of the current experiments to past experiments, there 

were some fundamental differences that deserve consideration. Each of the current 

experiments included a single talker condition. This allowed the SCEs magnitudes from 
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the current studies to be compared with previous results (e.g., Assgari & Stilp, 2015). In 

addition, other between-study comparisons were possible. Preliminary data were 

collected for two experiments: Study 1b and Study 2. Further, in Study 1b and Study 4, 

the high variability conditions were exactly the same. Thus, it was possible to check if 

conditions replicated results across experiments. Differences in the SCEs observed in 

these conditions suggest that groups of listeners may have been responding differently. 

While some of these differences may be attributed to individual differences between 

listener groups, two main methodological differences deserve consideration. First was the 

inclusion of a single-talker condition in all experiments. Single-talker conditions served 

as a control condition to compare each set of listeners to each other. These conditions 

should also estimate the upper limit of SCE magnitudes for each listener group. Since 

there is no acoustic variability due to talker changes, SCEs should be largest in the single-

talker condition. However, it is possible that the presence of a single-talker condition may 

have caused the listener to perceive low-variability conditions as more variable than in 

past experiments where no single-talker conditions was present. Second, listeners in the 

current study were asked to respond using a button box rather than a mouse click. The 

button box was used to allow for the collection of response times. Listeners were told to 

press the left button to respond /ɪ/ and the right button to respond /ε/. However, no further 

instructions were given. It is possible that listeners were using the button box differently 

(e.g., one vs two hands, finger placement after responding, etc.). Due to the repeated 

measures nature of our designs, differences between response methods should be 

controlled for, but it is also possible that a listener switched response methods mid-

experiment, changing their patterns of results. These differences in utilization of the 
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button box should have likely only influenced response times, but it is possible that they 

also produced more variability within subjects than previous reported. Further, which 

button corresponded to which vowel response was not counterbalanced. It is possible that 

this may have caused differences in the time it took to respond to one category relative to 

the other. 

Table 2.  

Observed power when testing SCEs in 

each experiment as output by SPSS 

Study Observed Power 

Study 1b 0.601 

Study 2 0.129 

Study 3 0.376 

Study 4 0.238 

 

In the current studies, small effect sizes and large individual variability were 

observed. This may be resulting in the statistical analyses being underpowered (see Table 

2 for a list of observed power as outputted by SPSS). Effect sizes in the proposal were 

estimated based on the differences between single-talker and the 200-talker conditions in 

Assgari and Stilp (2015). In the current studies, comparisons were drawn between multi-

talker conditions that varied in terms of their variability in mean f0. The differences 

between means are smaller than previously considered. As previously mentioned, each of 

the studies reported here included an additional single-talker condition that has not 

always been included in the past. Comparing additional means that are expected to be 

similar may be introducing issues with the ANOVA method of testing group differences.  
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An alternative approach that may better account for individual differences is using Mixed 

Effects Models with subject as a random variable. Mixed effects models were conducted 

in R (R Development Core Team, 2016) using the lme4 package (Bates et al., 2014) to 

analyze the results for each study. Previous work in our lab has utilized mixed effect 

models to analyze results from SCE experiments (Stilp et al., 2015; Stilp & Assgari, 

2017a). The models conducted here were maximal following the suggestions of Barr, 

Levy, Scheepers and Tily (2013). Thus, each model had every fixed effect also included 

as a random effect. The patterns of results with mixed effects models did not differ from 

the results of ANOVAs. Therefore, attempts to account for variability due to individual 

differences did not change the interpretation of our results. Further, differences between 

multiple talker-conditions and single-talker conditions only arise when spectral peaks are 

modest (here, +5 dB). Modest peaks produce modest SCEs. When there is a small change 

from context to the target, there is a smaller shift in categorization (Stilp, Anderson & 

Winn, 2015; Stilp & Assgari, 2017a). Detecting a decrease in an already modest effect 

requires more power. This is evident by the results of Study 4. In Study 4, the maximum 

variability condition did not produce a contrast effect significantly different than 0, while 

all other conditions did. Despite this fact, the omnibus ANOVA failed to detect any 

differences between means. This suggests that even if the effect is decreased to the point 

that it cannot be claimed that SCEs occurred, it cannot be claimed that this effect is 

smaller than conditions that did produced an SCE. Several of these issues may be 

addressed by adding listeners to the data set in an attempt to reduce variability and 

increase power. However, the number of listeners in the current study met the proposed 

sample sizes and similar studies generally do not test more than 20 listeners. 
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The target vowels in the current studies are primarily differentiated based on their 

F1 frequencies. Differences in the F1 regions in our low-F1 (100-400 Hz) and high-F1 

(550-850 Hz) sentences are argued to produce the SCE. The amplitude in these regions 

was manipulated to ensure MSDs that would produce contrast effects. It is worth noting 

that the low-F1 region often encompasses the fundamental frequency. In these studies, 

the average f0 fell between 80-260 Hz. Since our manipulation of talker was based on f0 

variability, it is possible that these manipulations were somehow confounded with the 

energy in the F1 regions. Previously, the argument was made that changing f0 could have 

an influence on MSDs. However, it is possible that these differences are only confined to 

the low-F1 region where f0 is typically located. If f0 variability influences context effects 

for reasons other than its effect on the distribution of energy in the F1 regions considered 

here, then f0 variability should also influence other types of context effects. 

Demonstrations of f0 variability influencing non-spectral context effects would allow for 

the spectral consequences of changing f0 to be separated from its influence on context 

effects. This idea will be discussed further in the Future Directions section. 

Future Directions 

Several future directions have already been discussed but will be reviewed briefly 

here. First, future studies could explore the extent to which other context effects are also 

influence by f0 variability. For example, it would be interesting to measure how f0 

variability influences other types of contrast effects (e.g., temporal; e.g., Summerfield, 

1981) or spectral calibration (e.g., Stilp et al., 2016). Spectral calibration occurs when a 

spectral property does not change from context to target. In this case, listeners rely less 

on the unchanging parameter in favor of a more informative cue to phoneme distinction. 
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Measuring the influence of f0 variability on other types of context effects would have two 

main advantages. First, if context effects that are not spectrally based show an influence 

of f0, then it is clear that the spectral consequences of changing f0 are not solely 

responsible for the influence of f0 reported here. However, if f0 variability does not 

influence context effects that are not spectrally based, then it is likely acoustic changes 

driven by changes in f0 that are responsible for the influence of f0 variability on SCEs. 

Second, if other context effects are also influenced by f0 variability, the hypothesis that 

f0 changes cue that past perception should no longer bias current perception is further 

supported.  

Second, future studies could explore how f0 influences context effects when f0 is 

not as strong a cue to talker changes. Here, the case was made that f0 cueing changes in 

talker may help explain the influence of f0 on context effects. However, there are 

situations where f0 is not as strong a cue to talker changes. In tonal languages, like 

Mandarin Chinese, f0 is also a cue to lexical changes (Wong & Diehl, 2003). Adjusting 

f0 to cue lexical changes leads to more overlap in f0 of different talkers (Wong & Diehl, 

2003). This suggests that differences in f0 between talkers may be of lesser magnitude in 

tonal languages. As previously mentioned, it is possible that f0 cueing talker changes is 

what drives the influence of f0 variability on SCEs. If this is the case, then in situations 

where f0 changes are not as strong a cue to talker changes, there may be less of an 

influence of f0 variability on SCEs. However, if f0 variability still influences contrast 

effects in tonal languages, then this lends more credibility to the hypothesis that acoustic 

consequences of changing f0 drive the influence of f0 variability on SCEs. 
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Third, if it is f0 cueing different talkers that influences context effects, then other 

acoustic cues that relate to differences between talkers may also influence context effects. 

For example, other acoustic cues, such as F3, have been argued to be important for 

distinguishing between talkers (Johnson, 2005). If F3 variability has a similar influence 

on SCEs in F1 regions as f0 variability, then the hypothesis that acoustic correlates of 

talker changes influence SCEs is further supported. However, if F3 variability does not 

have a similar influence, then future efforts should concentrate on how the acoustic 

consequences of varying f0 may be impacting SCEs.  

Finally, other measures of task difficulty could be utilized to fully explore when 

f0 variability is influencing speech perception. As previously mentioned, accuracy and 

response times are generally used as a way to measure task difficulty. If the task is 

sufficiently difficult, participants are less accurate and slower at responding. More 

recently, it has become apparent that difficulty of listening tasks may not be sufficiently 

quantified using accuracy (e.g., Winn, Edwards, & Litovsky, 2015). There are cases 

where performance is at ceiling but other indicators suggest the task was difficult (e.g., 

reaction time, listener self-report, etc). In these cases, researchers have begun to measure 

listening effort through physiological responses such as pupil dilation (e.g., Winn, 

Edwards, & Litovsky, 2015) and skin conductance (e.g., Mackersie & Cones, 2011). 

These measures are more sensitive to task difficulty. In the SCE paradigm described in 

these studies, it would theoretically be possible to measure listening effort at two vital 

times during each trial. First, is during the context sentences where talkers are changing. 

If hearing different talkers leads to increases in task difficulty, listening effort should 

increase when hearing the contexts spoken by different talkers. Further, the results 
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reported here suggest that acoustically different talkers should lead to increases in 

listening effort over acoustically similar talkers. Second, listening effort could also be 

measured when the participant is listening to the target. In most conditions, talker is 

changing from context to target as well as from context to context and target to context. 

However, in single-talker conditions, the sentence and the target were spoken by the 

same individual. Thus, any increases in listening effort can be attributed to changing the 

talker from context to target. Further, if a single talker condition is included where the 

talker changes from context to target, it is possible to assess how changing talker from 

context to target affects listening effort. An increase in listening effort from this condition 

to a multi-talker condition could be directly attributable to changing talkers from trial-to-

trial and not a context and target mismatch. The ability to measure listening effort during 

passive listening allows a more nuanced analysis of how changing talker is affecting task 

difficulty. Through this method, it could be possible to assess where the influence of 

hearing different talkers is first observed. Further, it would be possible to assess if task 

difficulty continues to increase as talkers continue to vary.  

Conclusion 

Speech is immensely variable with several sources of acoustic variability. 

Contextual influences can serve as a way to accommodate this variability. The current 

studies sought to assess to what degree two of these contextual influences, talker 

normalization and spectral contrast effects, may be related. Talker normalization and 

spectral contrast effects can be measured simultaneously suggesting that they may be 

acting on speech at the same time. In addition, f0 variability modulates the degree to 
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which context influences speech perception, suggesting that these effects are related to 

low-level acoustic variability. 
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APPENDICES 

Appendix A. 

 

Figure 18. Histograms of deviance measures for the conditions in Study 1b. The y-axis displays number of sentences. The x-

axis displays deviance measures as output by the glmfit command in Matlab. Low-F1 deviances are on the left and High-F1 

deviances are on the right. The top row contains deviance measures for the single talker condition. The middle row contains 

deviance measures from the Low f0 variability condition. The bottom row contains deviance measures from the High f0 

variability condition.  
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Appendix B. 

 

Figure 19. Histograms of confidence intervals around midpoints of logistic functions for the conditions in Study 1b. The y-

axis displays number of sentences. For the first two columns, the x-axis displays the width of the 95% confidence interval 

around the midpoint of the logistic function in stimulus steps. The left column contains low-F1 confidence intervals. The 

middle column contains high-F1 confidence intervals. The x-axis of the right column displays the overlap of the low-F1 and 

high-F1 CIs (lower bound of high-F1 CI minus upper bound of low-F1 CI). Negative values indicate overlap. The top row 

contains measures from the single talker condition. The middle row contains measures from the low f0 variability condition. 

The bottom row contains measures from the high f0 variability condition. 
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Appendix C. 

Table 3 

Pairwise t-tests for the main effect of vowel for Study 1b 

Reference Vowel Comparison Vowel Mean Difference SE p-value 

/ɪ/ 2 5.12 12.63 1.00 

 3 -5.71 10.54 1.00 

 4 -49.85 12.74 0.04* 

 5 -86.83 19.70 0.01* 

 6 -72.76 26.49 1.00 

 7 -49.00 20.92 1.00 

 8 -4.45 14.55 1.00 

 9 13.62 12.00 1.00 

 /ɛ/ 42.56 13.09 0.18 

2 3 -10.83 11.44 1.00 

 4 -54.97 14.53 0.05 

 5 -91.95 20.88 0.01* 

 6 -77.88 27.58 0.47 

 7 -54.12 22.07 1.00 

 8 -9.57 16.13 1.00 

 9 8.50 15.75 1.00 

 /ɛ/ 37.45 15.91 1.00 

3 4 -44.14 10.87 0.03* 

 5 -81.116 18.67 0.01* 

 6 -67.04 24.98 0.64 

 7 -43.29 19.67 1.00 

 8 1.26 16.42 1.00 

 9 19.34 13.17 1.00 

 /ɛ/ 48.28 14.97 0.19 

4 5 -36.98 13.72 0.63 

 6 -22.91 20.89 1.00 

 7 0.85 13.84 1.00 

 8 45.40 13.76 0.16 

 9 63.47 13.39 0.01* 

 /ɛ/ 92.42 14.39 <0.001* 

5 6 14.07 14.45 1.00 

 7 37.83 10.73 0.10 

 8 82.38 11.79 <0.001* 

 9 100.45 14.31 <0.001* 

 /ɛ/ 129.39 14.36 <0.001* 

6 7 23.76 10.55 1.00 

 8 68.31 17.42 0.04* 

 9 86.38 18.43 0.01* 

 /ɛ/ 115.32 20.56 0.001 

7 8 44.55 12.18 0.07 
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 9 62.62 13.81 0.01* 

 /ɛ/ 91.56 15.16 <0.001* 

8 9 18.07 9.30 1.00 

 /ɛ/ 47.02 8.70 .001* 

9 /ɛ/ 28.94 9.01 0.20 
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Appendix D. 

Table 4 

Pairwise t-tests for the main effect of vowel for Study 1b 

Vowel Reference 

Condition 

Comparison 

Condition 

Mean 

Difference 

SE p-value 

/ɪ/ 1 2 54.53 22.31 0.07 

  3 135.85 22.51 <0.001* 

 2 3 81.32 25.22 0.01* 

2 1 2 66.27 31.13 0.14 

  3 127.89 29.14 0.001* 

 2 3 61.62 26.77 0.10 

3 1 2 55.33 18.68 0.02* 

  3 132.90 21.90 <0.001* 

 2 3 77.57 24.61 0.02* 

4 1 2 85.45 25.80 0.01* 

  3 156.57 25.80 <0.001* 

 2 3 71.12 29.63 0.08 

5 1 2 9.78 25.67 1.00 

  3 92.47 37.60 0.07 

 2 3 82.68 41.83 0.19 

6 1 2 42.18 26.02 0.36 

  3 72.00 25.65 0.03* 

 2 3 29.82 26.17 0.80 

7 1 2 19.02 23.87 1.00 

  3 65.23 34.27 0.21 

 2 3 46.21 33.97 0.57 

8 1 2 69.20 24.90 0.04* 

  3 78.11 31.07 0.06 

 2 3 8.91 25.59 1.00 

9 1 2 18.13 19.86 1.00 

  3 68.40 26.32 .05 

 2 3 50.27 25.26 .18 

/ɛ/ 1 2 41.36 21.98 .22 

  3 92.40 31.62 .03* 

 2 3 51.04 22.37 .10 
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Appendix E. 

 

Figure 20. Histograms of deviance measures for the conditions in Study 2. The y-axis displays number of sentences. The x-

axis displays deviance measures as output by the glmfit command in Matlab. Low-F1 deviances are on the left and High-F1 

deviances are on the right. The top row contains deviance measures for the single talker condition. The middle row contains 

deviance measures from the Low F1 variability condition. The bottom row contains deviance measures from the High F1 

variability condition. 
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Appendix F. 

 

Figure 21. Histograms of confidence intervals around midpoints of logistic functions for the conditions in Study 2. The y-

axis displays number of sentences. For the first two columns, the x-axis displays the width of the 95% confidence interval 

around the midpoint of the logistic function in stimulus steps. The left column contains low-F1 confidence intervals. The 

middle column contains high-F1 confidence intervals. The x-axis of the right column displays the overlap of the low-F1 and 

high-F1 CIs (lower bound of high-F1 CI minus upper bound of low-F1 CI). Negative values indicate overlap. The top row 

contains measures from the single talker condition. The middle row contains measures from the low F1 variability condition. 

The bottom row contains measures from the high F1 variability condition. 
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Appendix G. 

Table 5 

Pairwise t-tests for the main effect of vowel for Study 2 

Reference Vowel Comparison Vowel Mean Difference SE p-value 

/ɪ/ 2 -2.70 10.51 1.00 

 3 -20.69 12.14 1.00 

 4 -75.42 14.79 0.002* 

 5 -116.18 19.17 <0.001* 

 6 -111.45 21.34 0.001* 

 7 -69.54 17.48 0.03* 

 8 -45.28 14.84 0.26 

 9 -19.06 13.19 1.00 

 /ɛ/ -4.75 11.54 1.00 

2 3 -18.00 11.33 1.00 

 4 -72.72 15.24 0.004* 

 5 -113.49 18.01 <0.001* 

 6 -108.75 18.77 <0.001* 

 7 -66.85 14.75 0.007* 

 8 -42.59 14.51 0.33 

 9 -16.36 11.29 1.00 

 /ɛ/ -2.05 11.40 1.00 

3 4 -54.73 11.20 0.003* 

 5 -95.49 15.93 <0.001* 

 6 -90.76 18.21 0.002* 

 7 -48.85 14.28 0.11 

 8 -24.59 14.00 1.00 

 9 1.64 13.45 1.00 

 /ɛ/ 15.94 11.28 1.00 

4 5 -40.76 14.13 0.38 

 6 -36.03 17.20 1.00 

 7 5.88 13.92 1.00 

 8 30.13 15.04 1.00 

 9 56.36 14.09 0.03* 

 /ɛ/ 70.67 12.06 <0.001* 

5 6 4.73 9.31 1.00 

 7 46.64 12.70 0.06 

 8 70.90 16.68 0.01* 

 9 97.12 16.32 <0.001* 

 /ɛ/ 111.43 16.14 <0.001* 

6 7 41.91 12.31 0.11 

 8 66.16 17.54 0.045* 

 9 92.39 18.31 0.002* 

 /ɛ/ 106.70 17.43 <0.001* 

7 8 24.26 12.58 1.00 
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 9 50.49 14.25 0.08 

 /ɛ/ 64.79 12.56 0.001* 

8 9 26.22 9.26 0.42 

 /ɛ/ 40.54 8.04 0.002* 

9 /ɛ/ 14.31 9.81 1.00 
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Appendix H. 

 

Figure 22. Histograms of deviance measures for the conditions in Study 3. The y-axis displays number of sentences. The x-

axis displays deviance measures as output by the glmfit command in Matlab. Low-F1 deviances are on the left and High-F1 

deviances are on the right. The top row contains deviance measures for the single talker condition. The second row contains 

deviance measures from the Flattened f0 condition. The third row contains deviance measures from the Shifted f0 variability 

condition. The bottom row contains deviance measures from the High f0 variability condition. 
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Appendix I. 

 

Figure 23. Histograms of confidence intervals around midpoints of logistic functions for the conditions in Study 3.The y-axis 

displays number of sentences. For the first two columns, the x-axis displays the width of the 95% confidence interval around 

the midpoint of the logistic function in stimulus steps. The left column contains low-F1 confidence intervals. The middle 

column contains high-F1 confidence intervals. The x-axis of the right column displays the overlap of the low-F1 and high-F1 

CIs (lower bound of high-F1 CI minus upper bound of low-F1 CI). Negative values indicate overlap. The top row contains 

measures from the single talker condition. The second row contains measures from flattened f0 condition. The third row 

contains measures from the shifted f0 condition. The bottom row contains measures from the high f0 variability condition. 
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Appendix J. 

Table 6 

Pairwise t-tests for the main effect of vowel for Study 3 

Reference Vowel Comparison Vowel Mean Difference SE p-value 

/ɪ/ 2 -2.29 7.88 1.00 

 3 -16.77 10.38 1.00 

 4 -62.61 15.64 0.03* 

 5 -120.52 22.58 0.001* 

 6 -112.54 23.56 0.01* 

 7 -62.16 18.85 0.15 

 8 -18.10 19.72 1.00 

 9 40.61 17.42 1.00 

 /ɛ/ 23.14 14.96 1.00 

2 3 -14.49 8.82 1.00 

 4 -60.32 14.49 0.02* 

 5 -118.24 21.84 0.001* 

 6 -110.25 22.90 0.004* 

 7 -59.87 18.01 0.15 

 8 -15.81 17.47 1.00 

 9 42.89 13.98 0.26 

 /ɛ/ 25.42 13.16 1.00 

3 4 -45.84 13.03 0.09 

 5 -103.75 19.77 0.002* 

 6 -95.77 20.54 0.01* 

 7 -45.39 17.70 0.81 

 8 -1.33 17.81 1.00 

 9 57.38 16.05 0.08 

 /ɛ/ 39.91 16.32 1.00 

4 5 -57.92 11.52 0.003* 

 6 -49.93 16.88 0.34 

 7 0.45 16.88 1.00 

 8 44.51 19.02 1.00 

 9 103.21 19.73 0.002* 

 /ɛ/ 85.74 18.02 0.01* 

5 6 7.99 14.08 1.00 

 7 58.36 20.25 0.40 

 8 102.42 21.98 0.01* 

 9 161.13 24.22 <0.001* 

 /ɛ/ 143.66 23.57 <0.001* 

6 7 50.38 14.81 0.12 

 8 94.44 17.49 0.001* 

 9 153.14 22.22 <0.001* 

 /ɛ/ 135.67 23.82 0.001* 

7 8 44.06 12.35 0.08 
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 9 102.77 15.52 <0.001* 

 /ɛ/ 85.30 15.71 0.001* 

8 9 58.70 13.65 0.01* 

 /ɛ/ 41.24 14.60 0.46 

9 /ɛ/ -17.47 10.25 1.00 
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Appendix K. 

 

Figure 24 Histograms of deviance measures for the conditions in Study 4. The y-axis displays number of sentences. The x-

axis displays deviance measures as output by the glmfit command in Matlab. Low-F1 deviances are on the left and High-F1 

deviances are on the right. The top row contains deviance measures for the single talker condition. The second row contains 

deviance measures from the ascending f0 condition. The third row contains deviance measures from the descending f0 

variability condition. The bottom row contains deviance measures from the maximum f0 variability condition. 
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Appendix L. 

 

Figure 25 Histograms of confidence intervals around midpoints of logistic functions for the conditions in Study 4. The y-axis 

displays number of sentences. For the first two columns, the x-axis displays the width of the 95% confidence interval around 

the midpoint of the logistic function in stimulus steps. The left column contains low-F1 confidence intervals. The middle 

column contains high-F1 confidence intervals. The x-axis of the right column displays the overlap of the low-F1 and high-F1 

CIs (lower bound of high-F1 CI minus upper bound of low-F1 CI). Negative values indicate overlap. The top row contains 

measures from the single talker condition. The second row contains measures from the ascending f0 condition. The third row 

contains measures from the descending condition. The bottom row contains measures from the maximum f0 variability 

condition.
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Appendix M. 

Table 7 

Pairwise t-tests for the main effect of vowel for Study 4 

Reference Vowel Comparison Vowel Mean Difference SE p-value 

/ɪ/ 2 6.74 8.44 1.00 

 3 -0.51 11.64 1.00 

 4 -41.02 13.31 0.27 

 5 -73.78 23.37 0.22 

 6 -81.40 21.78 0.06 

 7 -41.61 22.17 1.00 

 8 -4.00 18.62 1.00 

 9 25.83 15.70 1.00 

 /ɛ/ 41.12 16.80 1.00 

2 3 -7.25 7.06 1.00 

 4 -47.76 8.48 0.001* 

 5 -80.52 19.31 0.02* 

 6 -88.14 19.13 0.01* 

 7 -48.35 20.74 1.00 

 8 -10.74 15.80 1.00 

 9 19.09 13.10 1.00 

 /ɛ/ 34.38 14.42 1.00 

3 4 -40.51 8.44 0.01* 

 5 -73.27 18.67 0.04* 

 6 -80.89 19.71 0.03* 

 7 -41.10 20.62 1.00 

 8 -3.49 16.42 1.00 

 9 26.34 14.38 1.00 

 /ɛ/ 41.63 15.85 0.73 

4 5 -32.76 15.96 1.00 

 6 -40.38 18.88 1.00 

 7 -0.60 18.97 1.00 

 8 37.02 15.00 1.00 

 9 66.85 13.46 0.003* 

 /ɛ/ 82.14 13.64 <0.001* 

5 6 -7.62 10.76 1.00 

 7 32.17 13.66 1.00 

 8 69.78 14.72 0.01* 

 9 99.61 13.86 <0.001* 

 /ɛ/ 114.90 16.07 <0.001* 

6 7 39.78 11.17 0.09 

 8 77.39 13.06 <0.001* 

 9 107.23 12.79 <0.001* 

 /ɛ/ 122.52 15.86 <0.001* 

7 8 37.61 13.76 0.58 
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 9 67.44 15.63 0.02* 

 /ɛ/ 82.74 18.93 0.01* 

8 9 29.83 9.24 0.19 

 /ɛ/ 45.13 10.82 0.02* 

9 /ɛ/ 15.29 6.82 1.00 
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Appendix N. 

Table 9 

Pairwise t-tests for the interaction for Study 4 

Vowel Reference  

Condition 

Comparison 

 Condition 

Mean  

Difference 

SE p-value 

/ɪ/ 1 2 -84.67 30.39 0.07 

  3 -9.58 19.35 1.00 

  4 -141.97 28.70 <0.001* 

 2 3 75.09 31.71 0.17 

  4 -57.30 40.72 1.00 

 3 4 -132.39 28.02 .001* 

2 1 2 -46.07 31.40 0.95 

  3 15.47 25.34 1.00 

  4 -123.95 23.16 <0.001* 

 2 3 61.54 33.45 0.48 

  4 -77.88 32.62 0.16 

 3 4 -139.42 21.42 <0.001* 

3 1 2 -43.74 33.32 1.00 

  3 19.62 30.81 1.00 

  4 -90.79 31.82 0.06* 

 2 3 63.36 32.31 0.38 

  4 -47.05 28.69 0.70 

 3 4 -110.41 26.38 0.003* 

4 1 2 -25.54 28.22 1.00 

  3 63.81 25.50 0.13 

  4 -81.58 26.33 0.03* 

 2 3 89.36 32.04 0.07 

  4 -56.04 31.15 0.52 

 3 4 -145.40 26.69 <0.001* 

5 1 2 17.36 27.71 1.00 

  3 42.99 24.51 0.57 

  4 -6.27 33.10 1.00 

 2 3 25.63 36.59 1.00 

  4 -23.62 38.81 1.00 

 3 4 -49.26 30.29 0.72 

6 1 2 30.65 37.91 1.00 

  3 -21.67 28.89 1.00 

  4 -10.96 37.14 1.00 

 2 3 -52.32 31.18 0.65 

  4 -41.61 29.54 1.00 

 3 4 10.71 34.83 1.00 

7 1 2 15.21 32.95 1.00 

  3 1.23 29.33 1.00 

  4 -46.83 29.05 0.74 
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 2 3 -13.98 33.08 1.00 

  4 -62.04 33.61 0.48 

 3 4 -48.06 27.87 0.60 

8 1 2 0.817 26.44 1.00 

  3 -16.23 30.36 1.00 

  4 -34.42 28.07 1.00 

 2 3 -17.04 25.99 1.00 

  4 -35.24 20.74 0.63 

 3 4 -18.20 30.48 1.00 

9 1 2 5.86 16.63 1.00 

  3 -31.40 30.44 1.00 

  4 -14.81 28.59 1.00 

 2 3 -37.25 24.57 0.87 

  4 -20.67 21.23 1.00 

 3 4 16.59 23.83 1.00 

/ɛ/ 1 2 -12.03 30.70 1.00 

  3 -49.16 24.61 0.36 

  4 -36.55 25.00 0.96 

 2 3 -37.13 29.72 1.00 

  4 -24.51 19.71 1.00 

 3 4 12.62 26.53 1.00 
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Appendix O. 

Table 9 

Proportion accuracy in all conditions of all studies 

Study 1b M SE Study 2 M SE Study 3 M SE Study 4 M SE 

Single  0.97 0.01 Single 0.98 0.01 Single 0.98 0.01 Single 0.98 0.01 

Low f0 

Variability 

0.96 0.01 Low F1 

Variability 

0.97 0.01 Flattened f0 0.99 0.00 Ascending 0.98 0.01 

High f0 

Variability 

0.98 0.01 High F1 

Variability 

0.96 0.01 Shifted f0 0.97 0.02 Descending 0.96 0.02 

      High f0 

Variability 

0.98 0.01 Maximum 

Variability 

0.97 0.01 
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Appendix P. 

 

Figure 26. Accuracy at endpoints in all studies. f0 variability conditions are represented 

on the x-axis. Accuracy in proportion correct is represented on the y-axis. The y-axis only 

encompasses the range between 80% and 100% since listeners with less than 80% 

accuracy were removed from further analyses. The gray bars represent the single talker 

conditions. The red bars represent the low variability conditions. The black bars represent 

the high variability condition. Error bars depict standard error of the mean. 
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