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ABSTRACT 

SAMPLE SIZE CALCULATIONS AND NORMALIZATION METHODS FOR RNA-

SEQ DATA 

Xiaohong Li 

July 17, 2017 

High-throughput RNA sequencing (RNA-seq) has become the preferred choice 

for transcriptomics and gene expression studies. With the rapid growth of RNA-seq 

applications, sample size calculation methods for RNA-seq experiment design and data 

normalization methods for DEG analysis are important issues to be explored and 

discussed. The underlying theme of this dissertation is to develop novel sample size 

calculation methods in RNA-seq experiment design using test statistics. I have also 

proposed two novel normalization methods for analysis of RNA-seq data. In chapter one,  

I present the test statistical methods including Wald’s test, log-transformed Wald’s test 

and likelihood ratio test statistics for RNA-seq data with a negative binomial distribution.  

Following the test statistics, I present the five sample calculation methods based on a 

one-sided test. A comparison of my five methods and an existing method was performed 

by calculating the sample sizes and the simulated power in different scenarios. Due to the 

limitations of these methods, in chapter two, I have further derived two explicit sample 

size calculation methods based on a generalized linear model with a negative binomial
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distribution in RNA-seq data. These two sample size methods based on a two-sided 

Wald’s test are presented under a wide range of settings including the imbalanced design 

and unequal read depth, which is applicable in many situations. In chapter 3, I have a 

literature review of the existing normalization methods and describe the challenge of 

choosing an optimal normalization method due to multiple factors contributing to read 

count variability that effect overall the sensitivity and specificity. Then, I present two 

proposed normalization methods. I evaluate the performance of the commonly used 

methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med, UQ and FQ) and two new 

methods I propose: Med-pgQ2 and UQ-pgQ2. The results from MAQC2 data shows that 

my proposed Med-pgQ2 and UQ-pgQ2 methods may be better choices for the differential 

gene analysis of RNA-seq data by improving specificity while maintaining a good 

detection power given a nominal FDR level.  Finally, in chapter 4, I focus on data 

analysis in RNA-seq data using three normalization methods and two test statistic method 

with the aid of DESeq2 and edgeR packages. Through within-group analysis of these real 

RNA-seq data, I have found my normalization method, UQ-pgQ2, performs best with a 

lower false positive rate while maintaining a good detection power. Thus, in my work, I 

have derived the explicit sample size calculation methods, which is a very useful tool for 

researchers to quickly estimate the sample sizes in an experiment design. Furthermore, 

my two normalization methods can improve the performance for differential gene analysis 

of RNA-seq data by controlling false positives for high read count genes. 

Key Words: Sample sizes; RNA-seq; Normalization methods; Power; 

Differentially Expressed Genes (DEGs). 
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SAMPLE SIZE CALCULATION METHODS BASED ON STATISTICAL TESTS IN 

A NEGATIVE BINOMIAL DISTRIBUTION FOR RNA-SEQ DATA 

 

1. Introduction 

Sample size calculations are a prerequisite in an experimental design for 

biological research and clinical trials. Recently, high-throughput RNA sequencing (RNA-

seq) technology has been widely used for gene expression studies in a variety of 

applications, such as expression profiling of mRNAs or non-coding RNA [1-3], de novo 

assembly and characterization of transcriptomes [4, 5], and the identification of novel 

alternatively spliced transcripts [6, 7]. These novel transcripts or differentially expressed 

genes (DEGs) identified from RNA-seq data may serve as human disease biomarkers or 

gene signatures for the clinical diagnosis [8-10]. With the rapid growth of RNA-seq 

applications, sample size calculation methods derived from test statistics with an 

appropriate distribution are important issues to be explored.  

Due to the initial high cost of RNA-seq, sample size, in terms of the number of 

biological replicates, was not seriously considered as part of the experimental design. As 

a case in point, one RNA-seq review article [11] documented several RNA-seq studies 

showing that many had only one or a few biological replicates. While thousands of DEGs 

were identified within these studies, the lack of biological replicates leads to an absence
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of knowledge concerning biological variations and may result in a high percentage of 

false positive genes. Therefore, ignorance of biological variation is the fundamental 

problem with the analyzed results collected from un-replicated data. A recent paper [12] 

was the first to point out that conclusions drawn from un-replicated samples can be 

misleading and unrealistic. Later, another study [13] further addressed design and 

validation issues due to the lack of biological replicates in RNA-seq data.  

One of the key questions in an experimental design is to determine the number of 

biological replicates needed for differential expression analysis in order to achieve a 

desired statistical power given a significance level α and an underlying distribution. Since 

RNA-seq data are read counts, a Poisson distribution is commonly used as the model for 

identifying DEGs in RNA-seq data [14, 15]. Fang and Cui (2011) were the first one to 

derive the sample size calculations based on a Wald statistical test with a Poisson 

distribution for single gene in RNA-seq. Later, several sample size calculation methods 

that were derived from the score statistic and the log-likelihood ratio test (LRT) statistic 

using the Poisson distribution were proposed [16]. However, the assumption of  a Poisson 

distribution that the expected mean and variance are equal usually does not hold for 

RNA-seq studies, where the variance is typically greater than the mean of the read counts 

[17]. Therefore, a negative binomial distribution with a dispersion parameter is used to 

model RNA-seq data by the existing software packages such as DESeq [17] and edgeR 

[18], in which an exact test  is used to test DEGs between conditions. Subsequently, a 

sample size calculation method based on an exact test statistic with the aid of the edgeR 

package [18] was proposed [19]. However, sample size methods derived from other test 

statistics such as the Wald test, the LRT and an extension of Wald test via log-



3 
 

transformation using negative binomial distribution to model the RNA-seq data have not 

yet been explored.  

Like microarray data, an RNA-seq dataset contains thousands of genes to be 

tested simultaneously and independently for differential expression analysis. A method 

for the adjustment or correction of p-values is required to control the type I error rate 

when multiple pairwise comparisons are performed. Instead of setting the critical value 𝜶 

at 0.05 or 0.01 for significance, a much lower critical value 𝜶* is required to correct for 

the inflation of 𝜶. The most common method to control the family-wise error rate 

(FWER) is the Bonferroni correction in which the adjusted p-value is computed via 

dividing the critical p-value by the total number of comparisons being made. The other 

widely used method for this multiple correction problem is an FDR correction [20]. Since 

the Bonferroni correction with a large number of tests is more conservative than the FDR 

correction, using the Bonferroni correction results in a cost of increasing the probability 

of producing false negatives and consequently reducing the statistical power. For high 

dimensional microarray data analysis, an extension of the FDR correction was proposed 

[21] and is widely used by many researchers. To address similar issues for high-

dimensional RNA-seq data, a sample size determination based on the extended FDR 

correction from microarray data analysis was further proposed [16].  

Our study is motivated by exploring sample size calculations using the well-

known test statistics (the Wald test and LRT) and a negative binomial distribution to 

model RNA-seq data. In Section 2, we first define the Wald test, the log-transformed 

Wald test and the LRT statistics using the negative binomial distribution to model a 

single gene in RNA-seq data. Then, we derive sample size calculations based on these 
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defined statistical tests. Lastly, we derived sample size calculation methods for testing 

multiple genes while controlling the FDR [16]. In Section 3, we simulated power for 

testing single gene and multiple genes corresponding to the sample sizes estimated from 

our proposed methods and an existing method. The performance of these six methods is 

compared and evaluated via the required sample sizes and the estimated power.  An 

application of real RNA-seq data to illustrate sample size calculations is presented in 

Section 4. Finally, we end with a discussion and conclusion in Section 5.   

 2. Methods      

Derivation of Test Statistics  

In an RNA-seq experiment, the data contains thousands of genes (𝑔 = 1, … , 𝐺) 

with different number of reads for each sample mapped to the reference genome. Since 

the total number of reads among samples is different, the distribution of the gene in the 

sample with the same condition is not identical. A normalization factor called the size 

factor is used to model RNA-seq data with a negative binomial distribution. For 

simplicity, the following statistical tests and consequent sample size calculation methods 

are based on a single gene tests for DEG analysis. 

For a single gene in RNA-seq data, suppose that, for each condition i (𝑖 = 0, 1), 

the observations 𝑋𝑖𝑗  ( 𝑗 = 1, … , 𝑛𝑖), are independent and identically follow a negative 

binomial distribution as 𝑋𝑖𝑗~𝑁𝐵(𝑠𝑖𝑗𝛾𝑖 , 𝜙) [17, 22]. Under this setting, 𝛾𝑖 is the true gene 

expression level in condition i, 𝑠𝑖𝑗 is a size factor to normalize the raw read for the total 

number of reads mapped in the sample j, and 𝜙 is a dispersion parameter with the 

assumption ф𝑖 = ф. Thus, the summation of reads per gene per condition ( 𝑋𝑖 =
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∑ 𝑋𝑖𝑗
𝑛𝑖
𝑗=1 ) also follows a negative binomial distribution with parameters 𝑛𝑢𝑖 = 𝑡𝑖 = 𝑠𝑖𝛾𝑖 

and ф /n, where 𝑠𝑖 = ∑ 𝑠𝑖𝑗
𝑛𝑖
𝑗=1  is the summation of the size factor for mapping reads in 

condition i and n is the number of biological replicates with the assumption  𝑛𝑖 = 𝑛. 

For detection of a differentially expressed gene from RNA-seq data, the ratio  𝛾1/𝛾0 

typically represents the fold change (𝜌 = 𝛾1/𝛾0). If the fold change equals one, we can 

say that this gene is not differentially expressed. Therefore, we are interested in making 

an inference about the ratio using the Wald statistics and the likelihood ratio methods for 

sample size calculations. 

For testing the hypothesis about the fold change in regards to the DEGs, it is 

equivalent to test the hypothesis, 

 𝐻0: 𝛾1 = 𝛾0 vs. 𝐻1: 𝛾1 ≠ 𝛾0.         

Since 𝛾𝑖  (𝑖 = 0, 1) and ф are unknown parameters, we use the following two sample 

estimates for these parameters under the negative binomial distribution in RNA-seq data 

[23]. 

Unconstrained Maximum Likelihood Estimate (MLE): The likelihood and log-

likelihood function of 𝑋0~𝑁𝐵(𝑠0𝛾0,
𝜙

𝑛
) and 𝑋1~𝑁𝐵(𝑠1𝛾1,

𝜙

𝑛
)  are: 

L(𝛾0, 𝛾1, 𝜙|𝑥0, 𝑥1) = ∏
𝛤(

𝑛

ф
+𝑥𝑖)

𝛤(
𝑛

ф
)∙𝑥𝑖!

1
𝑖=0 (

𝑠𝑖𝛾𝑖ф/𝑛

(𝑠𝑖𝛾𝑖ф/𝑛)+1
)

𝑥𝑖

(
1

(𝑠𝑖𝛾𝑖ф/𝑛)+1
)

𝑛

ф,   

ln L(𝛾0, 𝛾1, 𝜙|𝑥0, 𝑥1) = ∑ ln 𝛤 (
𝑛

ф
+ 𝑥𝑖)1

𝑖=0 − 2ln𝛤 (
𝑛

ф
) − ∑ ln1

𝑖=0 𝑥𝑖! + ∑ 𝑥𝑖ln1
𝑖=0 (𝑠𝑖) +

∑ 𝑥𝑖ln1
𝑖=0 (𝛾𝑖) + ∑ 𝑥𝑖ln1

𝑖=0 (
ф

𝑛
) − ∑ (𝑥𝑖 +

𝑛

ф
) ln1

𝑖=0 (
𝑠𝑖𝛾𝑖ф

𝑛
+ 1),    
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where 𝑡0 = 𝑛𝑢0 = 𝑠0𝛾0 and 𝑡1 = 𝑛𝑢1 = 𝑠1𝛾1.  

 Setting the first derivative to zero, we obtain the unrestricted MLEs with respect to 𝛾𝑖: 

�̂�0 =
𝑥0

𝑠0
 and �̂�1 =

𝑥1

𝑠1
. Subsequently, we can obtain the MLE of �̂� by solving the following 

equation: 

𝜕𝑙

𝜕𝜙
= ∑ ψ (

𝑛

ф
+ 𝑥𝑖)1

𝑖=0 − 2ψ (
𝑛

ф
) +

𝑛

𝜙2
{𝑙𝑛(�̅�0ф + 1) + 𝑙𝑛(�̅�1ф + 1)} −

�̅�0(𝑥0+
𝑛

ф
)

(�̅�0ф+1)
−

�̅�1(𝑥1+
𝑛

ф
)

(�̅�1ф+1)
= 0.                 

Several mathematical optimization methods, such as the Newton-Raphson 

method, can be used to estimate �̂� for the above equation. Since there is no closed form 

to estimate the dispersion ϕ, we derived the sample size formula based on a constant 

value of ϕ estimated from the data. 

Constrained Maximum Likelihood Estimate (CMLE) for 𝛾𝑖  𝒂𝒏𝒅 ф : The 

parameters are estimated under the null hypothesis 𝐻0: 𝛾0 = 𝛾1 . Let 𝑤 =
𝑠1

𝑠0
, 𝜌 =

𝛾1

𝛾0
=

𝑡1
𝑠1

⁄

𝑡0
𝑠0

⁄
 and 𝑡1 = 𝜌𝑤𝑡0 = 𝜌𝑤𝑛𝑢0. Then, the log likelihood function is re-parameterized as: 

ln L (𝜌, 𝑡0, 𝜙|𝑥0, 𝑥1) = ∑ ln𝛤 (
𝑛

ф
+ 𝑥𝑖)1

𝑖=0 − 2ln𝛤 (
𝑛

ф
) − ∑ ln1

𝑖=0 𝑥𝑖! + 𝑥0ln𝑡0 + 𝑥0ln(ф) +

𝑥0ln (
1

𝑛
) + 𝑥1 ln(𝑡0) + 𝑥1 ln(𝑤/𝑛) + 𝑥1ln(ф)+𝑥1 ln(𝜌) − 𝑥0ln (

𝑡0ф

𝑛
+ 1) −

𝑥1ln (
𝜌𝑤𝑡0ф

𝑛
+ 1) −

𝑛

ф
ln (

𝑡0ф

𝑛
+ 1) −

𝑛

ф
ln (

𝜌𝑤𝑡0ф

𝑛
+ 1).      

Using partial derivatives of this equation with respect to ρ and 𝑡0, the MLEs  in the 

unrestricted parameter space are �̂�0 = 𝑥0  and �̂� =
𝑥1

𝑤𝑥0
. However, the CMLE �̃�0  in the 

constrained parameter space and under 𝐻0: 𝜌 = 1 is given by 
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𝜕𝑙(𝜌=1,𝑡0,𝜙|𝑥0,𝑥1)

𝜕𝑡0
=

𝑥0−𝑡0

𝑡0(
ф𝑡0

𝑛
+1)

+
𝑥1−𝑤𝑡0

𝑡0(
𝑤ф𝑡0

𝑛
+1)

.       

Setting this equation to zero, we obtain  

�̃�0 =
√[ф(𝑤𝑥0+𝑥1)−𝑛(1+𝑤)]2+8𝑤ф𝑛(𝑥0+𝑥1)

4𝑤ф
+

[ф(𝑤𝑥0+𝑥1)−𝑛(1+𝑤)]

4𝑤ф
.    

Thus, setting the derivative of ф to the zero and 𝑡0 = �̃�0 and 𝜌 = 1, the CMLE ф̃  for ф is 

estimated by solving the following equation:  

0 = ∑ Ψ (
𝑛

ф̃
+ 𝑥𝑖)1

𝑖=0 − 2Ψ (
𝑛

ф̃
) +

𝑥0−�̃�0

ф̃(
�̃�0ф̃

𝑛
+1)

+
𝑥1−𝑤�̃�0

ф̃(
𝑤�̃�0ф̃

𝑛
+1)

+
𝑛

ф̃2 {ln (
�̃�0ф̃

𝑛
+ 1) +

ln (
𝑤�̃�0ф̃

𝑛
+ 1)}. 

We finally obtain 

 �̃�1 = �̃�0 = �̃�0/𝑠0 =
√[ф (𝑤𝑥0+𝑥1)−𝑛(1+𝑤)]2+8𝑤ф 𝑛(𝑥0+𝑥1)

4𝑤𝑠0ф 
+

[ф (𝑤𝑥0+𝑥1)−𝑛(1+𝑤)]

4𝑤𝑠0ф 
,    

and  �̃�0 =
�̃�0

𝑛
=

√[ф(𝑤�̅�0+�̅�1)−(1+𝜌𝑤)]2+8𝑤ф(�̅�0+�̅�1)

4𝑤ф
+

[ф(𝑤�̅�0+�̅�1)−(1+𝑤)]

4𝑤ф
.   

Since there is no closed form to estimate the dispersion ϕ from MLE and CMLE, 

we derived the sample size formula based on a fixed and constant value. For simplicity, 

we set the dispersion in MLE and CMLE to be equal with a combination of fixed 

dispersion (0.1, 0.5 and 1). 

Wald statistical test and log-transformed Wald statistical test 

Wald statistical test: The Wald statistical test is an asymptotic test based on the 

normal approximation, which utilizes the large-sample properties of the MLE. Following 

procedures from the studies [24-26] for comparing two independent Poisson rates with 

unequal sample frames, we derived the Wald’s inference procedures using the properties 

of �̂�𝑖 and �̂� estimated from MLE and �̃�𝑖and ф̃ from CMLE with a negative binomial 
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distribution in two conditions (�̂�𝑖 =
𝑋𝑖

𝑠𝑖
), where 𝑋0 and 𝑋1 in two conditions are assumed 

to be independent. For simplicity, we set  �̂� =ф̃ = ф with a constant for the sample size 

and power analysis.  

The null hypothesis 𝐻0 is equivalent to 𝐻0: 𝛾1 − 𝛾0 = 0, and consequently we 

make inferences based on the quantity 𝑇 = �̂�1 − �̂�0 =
𝑋1

𝑠1
−

𝑋0

𝑠0
. In this case, the variance 

of T is 𝜎𝑇
2 =

𝛾1

𝑠1
+

𝛾0

𝑠0
+

𝜙

𝑛
(𝛾1

2 + 𝛾0
2) and can be estimated by 𝑠𝑇

2 =
�̂�1

𝑠1
+

�̂�0

𝑠0
+

ф

𝑛
(�̂�1

2 + �̂�0
2) , 

where the parameters are estimated form MLE. Thus, Wald statistical test from MLE can 

be obtained by the statistic 𝑇/𝑆𝑇  

𝑍𝑤1 =
𝑋1−𝑤𝑋0

√𝑋1+𝑤2𝑋0+
�̂�

𝑛
(𝑋1

2+𝑤2𝑋0
2)

 ,                          (1)  

where w = 𝑠1

𝑠0
 , is the ratio of total size factors between the two conditions.  Similarly, for  

𝑇 =
𝑋1

𝑠1
−

𝑋0

𝑠0
, 𝜎𝑇

2 can be estimated by 𝑠𝑇
2 =

�̃�1

𝑠1
+

�̃�0

𝑠0
+

�̃�

𝑛
(�̃�1

2 + �̃�0
2) using the parameters 

estimated from CMLE. By substituting �̃�𝑖 =
𝑛�̃�0

𝑠0
 , the 2nd Wald statistical test can be 

obtained by the statistic T/𝑆𝑇: 

𝑍𝑤2 =
𝑋1−𝑤𝑋0

√𝑛𝑤2�̃�0(1/𝑤 +1+2�̃��̃�0)

.                      (2) 

Log-transformation of Wald’s statistical test: To test the null hypothesis, it is 

also equivalent to test 𝐻0: ln (
𝛾1

𝛾0
) = 0. The logarithmic transformation is usually adopted 

for skewness correction and variance stabilization as suggested by these studies [16, 24]. 
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The statistical inference on the quantity is 𝑈 = ln (�̂�1/�̂�0) = ln (
𝑋1

𝑠1
) − ln (

𝑋0

𝑠0
). Since 

𝑋1

𝑠1
 and  𝑋0

𝑠0
  have asymptotically normal distributions, 𝑁(𝛾1,

𝛾1

𝑠1
+

𝜙

𝑛
𝛾1

2 ) and 𝑁 (𝛾0,
𝛾0

𝑠0
+

𝜙

𝑛
𝛾0

2 ), respectively,  ln 𝑋1

𝑠1
 and ln

𝑋0

𝑠0
  correspondingly also have an asymptotically 

normal 𝑁 (ln 𝛾1 ,
1

𝑠1𝛾1
+

𝜙

𝑛
) and 𝑁 (ln 𝛾0,

1

𝑠0𝛾0
+

𝜙

𝑛
) by the Delta Method and Slutsky’s 

theorem. Thus, the variance of U is  𝜎𝑈
2 =  𝑉𝑎𝑟(𝑈) = 𝑉𝑎𝑟 [ln (

𝑋1

𝑠1
) − ln (

𝑋0

𝑠0
)] = 1

𝑠1𝛾1
+

1

𝑠0𝛾0 
+ 2

ф

𝑛
. U/𝑆𝑈 can be used for testing 𝐻0, when 𝑠𝑈

2 =
1

𝑠1�̂�1
+

1

𝑠0�̂�0
 +2

ф̂

𝑛
 using the 

parameters estimated from MLEs.  Thus, a log-transformation of 𝑍𝑤1is applied and the 

test statistic is defined as 

𝑍𝑙𝑤1 =
ln (

𝑋1
𝑋0

)−ln 𝑤

√1/𝑋1+
1

𝑋0
+2

ф̂

𝑛

, where �̂�𝑖 =
𝑋𝑖

𝑠𝑖
 and ф = ф̂ .     (3) 

Similarly, 𝑈/𝑆𝑈 can be used for testing 𝐻0, when 𝑆𝑈
2 =

1

𝑠1�̃�1
+

1

𝑠0�̃�0
 +2

ф

𝑛
  using the 

parameters estimated from CMLE and  then, we apply the log-transformation of 𝑍𝑤2 and 

use the test statistic 

𝑍𝑙𝑤2 =
ln (

𝑋1
𝑋0

)−ln 𝑤

√
1

𝑛�̃�0
 (

1

𝑤
+1+2�̃�0�̃�)

 , where �̃�1 = �̃�0 =
�̃�0

𝑠0
=

𝑛�̃�0

𝑠0
.     (4)  

We note that the equations defined in (3) and (4) do not exist when 𝑋0 = 0 or 𝑋1 = 0. In 

this case, 𝑋0 or 𝑋1 was adjusted to 0.5 [24, 25].  

Generalized Likelihood Ratio Test (GLRT) 

The GLRT statistic is defined as the ratio of the maximum value of the likelihood 

function under the restriction of the null hypothesis to the maximum likelihood function 
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under the unrestricted parameter space. For a vector of parameters 𝜃 ∈ 𝜣, the GLRT for 

𝐻0: 𝜃 ∈ 𝜣𝟎 versus 𝐻1: 𝜃 ∈ 𝜣𝟏 is expressed as 

𝜆{𝑥0, 𝑥1|𝜃(𝛾𝑖 , ф)} =
sup{𝐿(𝜃(𝛾𝑖,ф)|𝑥0,𝑥1):𝜃∈𝜣𝟎}

sup{𝐿(𝜃(𝛾𝑖,ф)|𝑥0,𝑥1):𝜃∈𝜣}
,      

where 𝐿(𝜃(𝛾𝑖 , ф)|𝑥0, 𝑥1)  is the likelihood function defined. The denominator  

sup{𝐿(𝜃(𝛾𝑖 , ф)|𝑥0, 𝑥1): 𝜃 ∈ 𝛩} in equation (14) is obtained using the MLE of 𝜃, where  

�̂�0 =
𝑋0

𝑠0
 and �̂�1 =

𝑋1

𝑠1
. The numerator sup{𝐿(𝜃(𝛾𝑖 , ф)|𝑥0, 𝑥1): 𝜃 ∈ 𝜣𝟎} is obtained using 

the CMLE of 𝜃 under 𝐻0, where 𝜌 = 𝛾1

𝛾0
= 1. So the GLRT statistic is defined as 

𝑍𝑙𝑟𝑡 =
sup{𝐿(𝜃(�̃�1=�̃�0, ф̃,𝜌=1)|𝑥0,𝑥1):𝜃(𝛾0,𝛾1,ф)∈𝜣𝟎}

sup{𝐿(𝜃( �̂�0,�̂�1,ф̂)|𝑥0,𝑥1):𝜃(γ0,γ1,ф)∈𝜣}
=

(
𝑛

 ф̃
+𝑥0−1

𝑥0
)(

�̃�0 ф̃

�̃�0 ф̃+1
)

𝑥0
(

1

�̃�0 ф̃+1
)

𝑛

ф̃×(
𝑛

 ф̃
+𝑥1−1

𝑥1
)(

𝑤�̃�0 ф̃

𝑤�̃�0 ф̃+1
)

𝑥1
(

1

𝑤�̃�0 ф̃+1
)

𝑛

ф̃

(
𝑛

ф̂
+𝑥0−1

𝑥0
)(

𝑥0ф̂/𝑛

𝑥0ф̂/𝑛+1
)

𝑥0
(

1

𝑥0ф̂
𝑛

+1

)

𝑛

ф̂

×(
𝑛

ф̂
+𝑥1−1

𝑥1
)(

𝑥1ф̂/𝑛

𝑥1ф̂/𝑛+1
)

𝑥1
(

1

𝑥1ф̂
𝑛

+1

)

𝑛

ф̂

.    

Since 𝑇 = −2 ln 𝑍𝑙𝑟𝑡 = −2[ln 𝐿(�̃�1 = �̃�0, ф̃, 𝜌 = 1) − ln 𝐿( �̂�0, �̂�1, ф̂)] approximately 

follows a 2
1 distribution, the p-value for the one-sided test statistic of T is approximately 

[25]: 

𝑝. 𝑣𝑎𝑙𝑢𝑒(𝑥0, 𝑥1) = 0.5{1 − 𝜒1
2(𝑇)}.       (5) 

 The p-value in equation (5) is further adjusted by the FDR correction when multiple 

genes are used for the data analysis. Combining these together, the parameter estimates 

based on the MLEs from two assumptions and the following test statistics are 

summarized in Table 1. 
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Table 1: Statistical tests are used for deriving sample size calculations. The parameters 

are estimated using MLEs and CMLE methods.  

Statistic tests Maximum Likelihood estimates 

(MLE) 

Statistical 

test 

Log Transformed 

test 

Wald test MLE under unrestricted parameter space 𝑍𝑤1 𝑍𝑙𝑤1 
Conditional MLE (CMLE) under 𝐻0: 
𝛾0 = 𝛾1 

𝑍𝑤2 𝑍𝑙𝑤2 

Generalized 

Likelihood ratio 

test 

CMLE/MLE 𝑍𝑙𝑟𝑡  

𝛾0 and 𝛾1 are true gene expression between two conditions. 

  

Sample size calculation for a single gene 

In order to calculate the sample size, a power function needs to be constructed. 

The power of a test is the probability that the null hypothesis is rejected when the 

alternative hypothesis is true. We derive the sample size under the specified power 1-𝜷 

and the significance level 𝜶 with an assumption of a balanced design experiment between 

conditions (i.e., 𝑛0 = 𝑛1 = 𝑛) and one-sided statistical test under H1:  𝛾1

𝛾0
= 𝜌 > 1.  

Derivation of sample size based on the Wald test statistics: Under the null 

hypothesis 𝐻0: 𝛾1 = 𝛾0, 𝑍𝑤 has asymptotically standard normal distribution. Thus, at 

type I error rate α, 𝐻0 is rejected when |𝑍𝑤1(𝑥1, 𝑥0)| > 𝑧1−𝛼/2, where 𝑍𝑤(𝑥1, 𝑥0) is the 

observed value of 𝑍𝑤 and 𝑧1−𝛼/2 is the standard normal distribution. For a specific 

alternative hypothesis  𝐻1: 𝛾1

𝛾0
= 𝜌 > 1, the power of the one-sided test is  

Pr (𝑍𝑤 > 𝑧1−𝛼|𝛾1 = 𝜌𝛾0, 𝜌 > 1).       (6) 
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Sample size calculation of 𝐙𝐰𝟏 from MLE: Under the null hypothesis, 𝑍𝑤 has an 

asymptotically standard normal distribution. From equation (1), the critical region for 

𝑍𝑤1 at the α significance level consists of those points (𝑋1, 𝑋0) that satisfy the inequality 

(6) is 

𝑋1 − 𝑤𝑋0 > 𝑧1−𝛼√𝑋1 + 𝑤2𝑋0 +
�̂�

𝑛
(𝑋1

2 + 𝑤2𝑋0
2).      

Under 𝐻1, 𝑋1 − 𝑤𝑋0 in the above equation is asymptotically normal with mean 𝑢𝑤1 and 

variance 𝜎𝑤1
2  given by 

 𝑢𝑤1 = 𝐸(𝑋1 − 𝑤𝑋0) = 𝑤𝑛𝑢0(𝜌 − 1) and    

𝜎𝑤1
2 = 𝑉𝑎𝑟(𝑋1 − 𝑤𝑋0) = 𝑤𝑛𝑢0(𝜌 + 𝑤 + 𝜙𝑤𝜌2𝑢0 + 𝜙𝑤𝑢0), 

where = 𝑠1

𝑠0
 , 𝜌 =

𝛾1

𝛾0
 and 𝑠0𝛾0 = 𝑛�̅�0𝛾0 = 𝑛𝑢0 under the assumption where 𝑋0 and 𝑋1 are 

independent. The expression √𝑋1 + 𝑤2𝑋0 +
�̂�

𝑛
(𝑋1

2 + 𝑤2𝑋0
2)  converges in probability to 

√𝑤𝑛𝑢0(𝜌 + 𝑤 + 𝜙𝑤𝜌2𝑢0 + 𝜙𝑤𝑢0) (�̂�𝑖 =
𝑋𝑖

𝑠𝑖
, �̂� = 𝜙,  𝑋𝑖

𝑝
→ 𝑠𝑖𝛾𝑖 and 𝑋𝑖

2
𝑝
→ (𝑠𝑖𝛾𝑖)2 . 

Hence, the approximate power Pr can be expressed in the terms of the cumulative normal 

distribution as: 

Pr (𝑍𝑤1 > 𝑧1−𝛼|𝛾1 = 𝜌𝛾0, 𝜌 > 1) = Φ [𝑧1−𝛼 − (𝜌 − 1)√
𝑛𝑢0

(1+𝜌/𝑤+𝜙𝜌2𝑢0+𝜙𝑢0)
],   

where Φ(·) is the standard normal distribution function. Let the power 𝑃𝑟 = 1 − β, we 

can obtain: 

1 − β = 1 − Φ [𝑧1−𝛼 − (𝜌 − 1)√
𝑛𝑢0

(1+
𝜌

𝑤
+𝜙𝜌2𝑢0+𝜙𝑢0)

],     

and solving the equation, we can show  

𝑛𝑤1 =
(1+𝜌/𝑤+𝜙𝜌2𝑢0+𝜙𝑢0)(𝑧1−𝛼+𝑧1−𝛽)

2

𝑢0(𝜌−1)2 ,      (7) 
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where 𝜙 is assumed to be a constant value, 𝜙 and 𝑢0 can be estimated from RNA-seq 

samples. When the alternative hypothesis is 𝐻1: 𝛾1

𝛾0
= 𝜌 < 1, equation (7) is also true. 

Sample size calculation of 𝐙𝐥𝐰𝟏: Under the null hypothesis, 𝑍𝑙𝑤1 has an 

asymptotically standard normal distribution.  The critical region for 𝑍𝑙𝑤1 from equation 

(3) at the α significance level consists of those points (𝑋1, 𝑋0) that satisfy the inequality 

(6) is 

ln (
𝑋1

𝑋0
) − ln 𝑤 > 𝑧1−𝛼√1/𝑋1 +

1

𝑋0
+ 2

�̂�

𝑛
.       

Under 𝐻1, ln (
𝑋1

𝑋0
) − ln 𝑤 in the above equation is asymptotically normal with mean 𝑢𝑙𝑤1 

and variance 𝜎𝑙𝑤1
2  given by 

 𝑢𝑙𝑤1 = 𝐸 (ln (
𝑋1

𝑋0
) − ln 𝑤) = ln 𝛾1 − ln 𝛾0 = ln ρ  and  

𝜎𝑙𝑤1
2 = 𝑉𝑎𝑟 (ln

𝑋1

𝑠1
− ln

𝑋0

𝑠0
) =

1

𝑠0𝛾0𝑤𝜌
+

1

𝑠0𝛾0
+ 2

ф

𝑛
=

1

𝑛𝑢0
(

1

𝑤𝜌
+ 1 + 2ф𝑢0),    

where = 𝑠1

𝑠0
 , 𝜌 =

𝛾1

𝛾0
, and  𝑑0𝛾0 = 𝑛𝑢0. The expression √1/𝑋1 +

1

𝑋0
+ 2

�̂�

𝑛
  has asymptotic 

limit √1/𝑑1𝛾1 +
1

𝑑0𝛾0
+ 2

ф

𝑛
= √

1

𝑛𝑢0
(

1

𝑤𝜌
+ 1 + 2ф𝑢0). Hence, the approximate power Pr 

can be expressed in the terms of the cumulative normal distribution as: 

Pr (𝑍𝑙𝑤1 > 𝑧1−𝛼|𝛾1 = 𝜌𝛾0, 𝜌 > 1) = Φ [𝑧1−𝛼 − ln𝜌√
𝑛𝑢0

(1+
1

𝑤𝜌
+2𝜙𝑢0)

],     

where Φ(·) is the standard normal distribution function of the standard normal 

distribution. Let the power 𝑃𝑟 = 1 − β, we can obtain: 
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1 − β = 1 − Φ [𝑧1−𝛼 − ln𝜌√
𝑛𝑢0

(1+
1

𝑤𝜌
+2ф̂𝑢0)

],        

and solving this equation , we can show  

𝑛𝑙𝑤1 =
(1+

1

𝜌𝑤
+2𝜙𝑢0)(𝑧1−𝛼+𝑧1−𝛽)

2

𝑢0(ln𝜌)2 .       (8) 

Sample size calculation of 𝐙𝐰𝟐 from CMLE: Under the null hypothesis, 𝑍𝑤2 

has an asymptotically standard normal distribution. The critical region for 𝑍𝑤2  from 

equation (2) at the α significance level consists of those points (𝑋1, 𝑋0) that satisfy the 

inequality (6) is 

𝑋1 − 𝑤𝑋0 > 𝑧1−𝛼√𝑛𝑤2�̃�0(1/𝑤 + 1 + 2�̃��̃�0).       

Under 𝐻1, 𝑋1 − 𝑤𝑋0 in the above equation is asymptotically normal with mean 𝑢𝑤2 and 

variance 𝜎𝑤2
2  given by 

 𝑢𝑤2 = 𝑤𝑛𝑢0(𝜌 − 1)  and        

𝜎𝑤2
2 = 𝑤𝑛𝑢0(𝜌 + 𝑤 + 𝜙𝑤𝜌2𝑢0 + 𝜙𝑤𝑢0),  

where 𝑤 =
𝑠1

𝑠0
,

𝛾1

𝛾0
=  𝜌 𝑎𝑛𝑑  𝑠0𝛾0 = 𝑛𝑢0. The 𝑢0 estimate from CMLE,  

�̃�0 =
√[ф(𝑤�̅�0+�̅�1)−(1+𝜌𝑤)]2+8𝑤ф(�̅�0+�̅�1)

4𝑤ф
+

[ф(𝑤�̅�0+�̅�1)−(1+𝑤)]

4𝑤ф
, has limit 

 
√[ф𝑤𝑢0(1+𝜌)−(1+𝑤)]2+8𝑤𝑢0ф(1+𝜌𝑤)

4𝑤ф
+

[ф𝑤𝑢0(1+𝜌)−(1+𝑤)]

4𝑤ф
 ,          (9) 
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where �̂�𝑖 =
𝑋𝑖

𝑠𝑖
 , 𝑋𝑖

𝑝
→ 𝑠𝑖𝛾𝑖 , �̅�0

𝑝
→ 𝑢0 and �̅�1

𝑝
→ 𝜌𝑤𝑢0. Hence, the approximate power Pr can 

be expressed in the terms of the cumulative normal distribution as: 

Pr (𝑍𝑤2 > 𝑧1−𝛼|𝛾1 = 𝜌𝛾0, 𝜌 > 1) 

= Φ [𝑧1−𝛼√
�̃�0(1/𝑤 +1+2�̃��̃�0)

𝑢0(𝜌/𝑤+1+𝜙𝜌2𝑢0+𝜙𝑢0)
− (𝜌 − 1)√

𝑛𝑢0

(1+𝜌/𝑤+𝜙𝜌2𝑢0+𝜙𝑢0)
],    

where Φ(·) is the standard normal distribution function of the standard normal 

distribution. Let the power 𝑃𝑟 = 1 − β, we can obtain: 

1 − β = 1 − Φ [𝑧1−𝛼√
�̃�0(

1

𝑤
+1+2�̃��̃�0)

𝑢0(
𝜌

𝑤
+1+𝜙𝜌2𝑢0+𝜙𝑢0)

− (𝜌 − 1)√
𝑛𝑢0

(1+
𝜌

𝑤
+𝜙𝜌2𝑢0+𝜙𝑢0)

],   

and solving this equation, we can show  

𝑛𝑤2 =
(1+𝜌/𝑤+𝜙𝜌2𝑢0+𝜙𝑢0)(𝑧1−𝛼√

�̃�0(1/𝑤 +1+2𝜙�̃�0)

𝑢0(𝜌/𝑤+1+𝜙𝜌2𝑢0+𝜙𝑢0)
 +𝑧1−𝛽)

2

𝑢0(𝜌−1)2 ,    (10) 

where �̃�0 estimated from CMLE in equation (S.9), �̂� = 𝜙 assumed as a constant value. 

When the alternative hypothesis is 𝐻1: 𝛾1

𝛾0
= 𝜌 < 1, equation (10) is also true. 

Sample size calculation of 𝐙𝐥𝐰𝟐 from CMLE: Similarly 𝑍𝑙𝑤2 is asymptotically 

standard normal distribution.  The critical region for 𝑍𝑙𝑤2 from equation (13) at the α 

significance level consists of those points (𝑋1, 𝑋0) is 

ln (
𝑋1

𝑋0
) − ln 𝑤 > 𝑧1−𝛼√

1

𝑛�̃�0
 (

1

𝑤
+ 1 + 2�̃�0ф̃).       
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Under 𝐻1, ln (
𝑋1

𝑋0
) − ln 𝑤 in the above equation is asymptotically normal with mean 𝑢𝑙𝑤2 

and variance 𝜎𝑙𝑤2
2  given by 

 𝑢𝑙𝑤2 = 𝐸 (ln (
𝑋1

𝑋0
) − ln𝑤) = lnρ,  

𝜎𝑙𝑤2
2 = Var (ln

𝑋1

𝑠1
− ln

𝑋0

𝑠0
) =

1

𝑛𝑢0
(

1

𝑤𝜌
+ 1 + 2ф𝑢0),      

     

where =
𝑠1

𝑠0
 , 𝛾1

𝛾0
=  𝜌 , and  𝑑0𝛾0 = 𝑛𝑢0 . Hence, the approximated power Pr can be 

expressed in the terms of the cumulative normal distribution as: 

Pr (𝑍𝑙𝑤2 > 𝑧1−𝛼|𝛾1 = 𝜌𝛾0, 𝜌 > 1) 

= Φ [𝑧1−𝛼√
𝑢0(

1

𝑤
+1+2�̃�0ф̃)

�̃�0(
1

𝑤𝜌
+1+2𝑢0ф)

− ln𝜌√
𝑛𝑢0

(
1

𝑤𝜌
+1+2𝑢0ф)

],  

where Φ(·) is the standard normal distribution function of the standard normal 

distribution. Let the power 𝑃𝑟 = 1 − β, we can obtain: 

1 − β = 1 − Φ [𝑧1−𝛼√
𝑢0(

1

𝑤
+1+2�̃�0�̂�)

�̃�0(
1

𝑤𝜌
+1+2𝑢0ф)

− ln𝜌√
𝑛𝑢0

(
1

𝑤𝜌
+1+2𝑢0ф)

],     

and solving this equation , we can show  

𝑛𝑙𝑤2 =

(
1

𝑤𝜌
+1+2𝑢0ф)(𝑧1−𝛼√

𝑢0(
1
𝑤

+1+2�̃�0𝜙)

�̃�0(
1

𝑤𝜌
+1+2𝑢0ф)

+𝑧1−𝛽)

2

𝑢0(ln𝜌)2 ,     (11) 

where �̃�0 =
√[ф𝑤𝑢0(1+𝜌)−(1+𝑤)]2+8𝑤𝑢0ф(1+𝜌𝑤)

4𝑤ф
+

[ф𝑤𝑢0(1+𝜌)−(1+𝑤)]

4𝑤ф
, 
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 estimated from CMLE under 𝐻0  , and 𝑢0  is the mean read counts under 𝐻1  or the 

assumed true mean read counts in the control condition. Under the alternative hypothesis 

𝐻1: 𝛾1

𝛾0
= 𝜌 < 1, equations (7-8, 10-11) are also true. 

Derivation of sample size based on the likelihood ratio test (LRT) statistic: 

For the LRT with a negative binomial distribution, it is difficult to derive a closed-form 

expression of the power function. We used the method [19] to calculate the power of the 

LRT given a p-value from the equation (5) under LRT. This method originally borrowed 

a concept from this study [27] to calculate the power. Given a p-value based on the 

observed joint probability 𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1 ), the power under the assumption can be 

expressed as  

𝑃𝑟(𝑛, 𝜌, 𝑢0, ф, 𝑤, 𝛼)

= ∑ ∑ 𝑓 (𝑛𝑤𝜌𝑢0,
ф

𝑛
) 𝑓 (𝑛𝑢0,

ф

𝑛
) 𝐼(𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1 )

∞

𝑥1=0

∞

𝑥0=0

< 𝛼),                        

where 𝑋0 and  𝑋1  are independent, 𝑓(𝑢, ф)  is the probability mass function of the 

negative binomial distribution with mean u and dispersion ф , α is the level of 

significance, and 𝐼(·) is the indicator function of p-value. Thus, given a nominal power 

1 − 𝛽, the power of the test can be represented as the function of the sample size n in the 

form of 

1 − 𝛽 = 𝑃𝑟(𝑛, 𝜌, 𝑢0, ф, 𝑤, 𝛼).        (12) 

Therefore, the required sample size n to attain the nominal power 1 − 𝛽  at a 

significance level α can then be computed by solving (12) through a numerical approach 

with respect to n.   
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Sample size calculation with controlling FDR for testing multiple genes 

In an RNA-seq experiment, thousands of genes need to be tested simultaneously 

for DEGs between conditions. In this case, the sample size calculation for a single gene 

derived above needs to be further adjusted due to the multiple testing problems. In this 

section we derive sample size calculations by incorporating FDR controlling based on the 

statistical tests described in the previous sections. The details of controlling FDR have 

been given in the study [19]. Briefly, FDR (f) is defined as  

𝑓 =
𝑚0𝛼

𝑚0𝛼+𝑡1
 ,          (13) 

where 𝑚0 is the number of true null hypotheses, 𝑡1 = 𝐸(𝑀1) is the expected number of 

true rejections, 𝑀0 is the number of false discoveries, M is the total number of genes 

declared significant, 𝑀1 = 𝑀 − 𝑀0  and f is the control FDR at a specified level. By 

solving equation (13) with respect to α, the marginal type I error level 𝛼∗ for the expected 

number of true rejections 𝑡1 at a given FDR ( f ) is  

𝛼∗ =
𝑡1𝑓

𝑚0(1−𝑓)
 .          (14) 

Replacing α with 𝛼∗ in (7-8,10-11), the corresponding sample size calculation formulas 

corrected by FDR at level  𝑓 are, respectively,  

𝑛𝑤1 =
(1+𝜌/𝑤+ф̂𝜌2𝑢0+ф̂𝑢0)(𝑧1−𝛼∗+𝑧1−𝛽)

2

𝑢0(𝜌−1)2 ,       (15) 

𝑛𝑙𝑤1 =
(1+

1

𝜌𝑤
+2ф̂𝑢0)(𝑧1−𝛼∗+𝑧1−𝛽)

2

𝑢0(ln𝜌)2 ,        (16) 
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𝑛𝑤2 =

(1+𝜌/𝑤+�̃�𝜌2𝑢0+�̃�𝑢0)(𝑧1−𝛼∗√
�̃�0(1/𝑤 +1+2�̃��̃�0)

𝑢0(𝜌/𝑤+1+�̃�𝜌2𝑢0+�̃�𝑢0)
 +𝑧1−𝛽)

2

𝑢0(𝜌−1)2 ,   (17) 

𝑛𝑙𝑤2 =

(
1

𝑤𝜌
+1+2𝑢0�̃�)(𝑧1−𝛼∗√

𝑢0(
1
𝑤

+1+2�̃�0ф̃)

�̃�0(
1

𝑤𝜌
+1+2𝑢0�̃�)

+𝑧1−𝛽)

2

𝑢0(ln𝜌)2 .     (18)  

Similarly, replacing α with 𝛼∗ for the LRT statistic, we obtain the function with 

respect to n as  

1 − 𝛽 = 𝑃𝑟(𝑛, 𝜌, 𝑢0, ф, 𝑤, 𝛼∗).       (19) 

Thus, by solving (19) via a numerical approach, the sample size for controlling FDR at 

level f can be obtained. 

 3. Simulation studies and comparison of results 

The proposed sample size formulas are derived from the likelihood function based 

on large sample theory with an approximate normal distribution. The simulation studies 

include two parts. In the first part, we calculated sample size based on testing single gene 

from the different formulas. In the second part, we calculated sample size based on 

testing the multiple genes using FDR adjusted significance 𝛼∗ level. The parameter 

settings in our simulation studies are based on empirical data sets. A comparison of the 

simulated power for the sample sizes using different methods was performed.  

Sample size calculations and power estimation based on testing a single gene  

The purpose of this study is to compare the performance of sample size 

calculations with the estimated power from our formula with the method based on the 
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exact test in the public study [19]. We set the following inputs based on a single gene. Let 

the type I error rate 𝛼 = 0.05, the power 1 − 𝛽 = 0.8, the ratio of total size factors 

between two condition 𝑤 = 1 and 1.2, the mean counts of gene g in control condition 

𝑢0 = 1, 5 or 10, the dispersion ф = 0.1, 0.5 or 1, and the fold changes 𝜌 = 1.5, 2, 3 or 4. 

Since the read depth across samples in RNA-seq data is usually close to each other, we 

choose 𝑤 = 1.2 instead of 𝑤 = 2 [19]. For each combination of these designed settings, 

at first, we used our derived formulas in equations (7-8 and 10-11) to calculate the 

required sample size, respectively. Then, we calculated the sample size based on the 

exact test computed using the R codes with the same input settings. Moreover, for each 

designed setting, we generated 5000 simulations from independent negative binomial 

distributions based on the calculated sample size n given the dispersion ф with different 

mean counts. For the control condition (𝑖 = 0), we used R to generate random samples 

given the mean 𝑢0 and ф. For the treatment condition (𝑖 = 1), we generated random 

samples given mean  𝑢1 = 𝑤𝜌𝑢0 and ф. The test statistics (1-4 and 5) were applied to 

each simulation sample and the empirical power was obtained as the proportion of 

simulation samples for which 𝐻0 is rejected with the nominal type I error 𝛼 = 0.05. The 

results are shown in Table 2, which reports the estimated sample size with associated 

empirical power given in parentheses under the case w=1 and 1.2. 
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Table 2: Simulated power corresponding to the sample size for testing a single gene from 

six methods given the predefined nominal 𝛼 = 0.05 and 80% power. 

w ρ ф 𝒖𝟎 𝒏𝒘𝟏 𝒏𝒘𝟐 𝒏𝒍𝒘𝟏 𝒏𝒍𝒘𝟐 
 

𝒏𝒍𝒓𝒕 𝒏𝒆𝒙𝒂𝒄𝒕 

1 
 

1.5 
 

.1 1 70(.81) 70(.81) 70(.81) 69(.81) 73(.82) 74(.80) 

5 20(.81) 20(.81) 20(.81) 20(.82) 21(.83) 21(.82) 

10 14(.82) 14(.82) 14(.82) 14(.82) 15(.84) 15(.83) 

0.5 1 102(.81) 101(.80) 100(.80) 99(.80) 105(.80) 104(.79) 

5 53(.82) 52(.81) 51(.81) 50(.79) 54(.83) 52(.81) 

10 46(.82) 45(.81) 44(.80) 44(.80) 48(.83) 45(.81) 

1 1 142(.80) 140(.80) 138(.79) 136(.79) 148(.82) 142(.80) 

5 93(.81) 91(.81) 88(.79) 87(.79) 96(.82) 90(.80) 

10 87(.81) 85(.81) 81(.80) 81(.80) 89(.84) 83(.80) 

2 
 

.1 1 22(.83) 21(.81) 22(.82) 20(.80) 23(.84) 23(.81) 

5 7(.83) 7(.83) 6(.78) 6(78) 7(.84) 7(.81) 

10 5(.82) 5(.83) 5(.83) 4(.77) 5(.83) 5(.82) 

0.5 1 34(.82) 33(.81) 32(.81) 31(.80) 34(.83) 34(.81) 

5 19(.84) 18(.82) 17(.82) 16(.80) 18(.83) 18(.82) 

10 17(.84) 16(.82) 15(.81) 15(.81) 16(.83) 16(.82) 

1 1 49(.83) 47(.82) 45(.81) 44(.80) 48(.83) 47(.81) 

5 35(.84) 33(.83) 30(.80) 29(.79) 32(.83) 31(.81) 

10 33(.86) 31(.84) 28(.81) 28(.81) 30(.83) 29(.82) 

3 0.1 1 8(.85) 8(.85) 8(.85) 7(.82) 8(.85) 8(.81) 

5 3(.88) 3(.87) 2(.76) 2(.78) 3(.89) 3(.87) 

10 2(.84) 2(.86) 2(87) 2(.87) 2(.87) 2(.84) 

0.5 1 14(.86) 13(.84) 12(.82) 11(.80) 12(.82) 13(.82) 

5 9(.89) 8(.86) 7(.83) 6(.78) 7(.83) 7(.81) 

10 8(.87) 7(.85) 6(.86) 6(.82) 7(.85) 7(.85) 

1 1 22(.87) 20(.85) 17(.81) 16(.80) 18(.83) 18(.81) 

5 17(.89) 15(.89) 12(.81) 11(.77) 13(.83) 13(.82) 

10 16(.89) 14(.87) 11(.80) 11(.80) 12(.82) 12(.81) 

4 0.1 1 5(.88) 4(.81) 5(.87) 4(.82) 4(.81) 5(.84) 

5 2(.90) 2(.91) 1(.68) 1(.73) 2(.92) 2(.90) 

10 2(.96) 1(.78) 1(.80) 1(.81) 2(.97) 2(.96) 

0.5 1 9(.87) 8(.86) 7(.80) 6(.79) 7(.82) 8(.83) 

5 7(.93) 5(.85) 5(.87) 4(.80) 5(.87) 5(.85) 

10 6(.92) 5(.88) 4(.84) 4(.84) 4(.83) 4(.82) 

1 1 15(.90) 13(.87) 10(.79) 9(.77) 11(.82) 12(.83) 

5 12(.91) 10(.88) 7(.79) 7(.80) 8(.83) 8(.82) 

10 12(.93) 10(.90) 7(.81) 7(.81) 8(.84) 8(.84) 

1.2 1.5 0.1 1 64(.80) 65(.81) 66(.81) 63(.80) 67(.82) 68(.81) 

5 19(.82) 19(.81) 19(.81) 19(.82) 21(.85) 20(.81) 

10 14(.83) 14(.83) 13(.81) 13(.81) 15(.86) 14(.82) 

0.5 1 96(.81) 96(.81) 96(.81) 93(.80) 101(.82) 99(.80) 

5 51(.81) 51(.81) 50(.80) 49(.81) 53(.84) 51(.81) 

10 46(.82) 45(.81) 43(.80) 43(.80) 47(.83) 44(.80) 

1 1 136(.80) 136(.80) 134(.79) 131(.79) 144(.89) 137(.79) 

5 92(.82) 90(.81) 87(.80) 86(.80) 94(.81) 88(.80) 

10 86(.81) 84(.81) 81(.80) 81(.80) 87(.83) 82(.80) 

2 0.1 1 20(.82) 20(.82) 21(.83) 19(.81) 21(.84) 22(.82) 

5 6(.79) 6(.78) 6(.79) 6(.80) 7(.85) 7(.83) 

10 5(.84) 5(.84) 4(.78) 4(.79) 5(.84) 5(.83) 

0.5 1 32(.83) 32(.82) 31(.81) 29(.80) 32(.83) 32(.81) 

5 19(.84) 18(.83) 17(.82) 16(.79) 23(.90) 17(.81) 

10 17(.84) 16(.83) 15(.81) 15(.81) 16(.83) 16(.83) 

1 1 47(.82) 46(.82) 44(.81) 42(.80) 47(.83) 46(.80) 

5 34(.84) 32(.82) 29(.79) 29(.79) 32(.83) 31(.82) 

10 33(.85) 31(.84) 28(.81) 27(.79) 30(.83) 29(.82) 
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3 0.1 1 7(.83) 7(.81) 8(.86) 6(.79) 7(.83) 8(.83) 

5 3(.90) 3(.90) 2(.78) 2(.80) 3(.91) 3(.88) 

10 2(.86) 2(.87) 2(.87) 2(.88) 2(.87) 2(.86) 

0.5 1 13(.85) 13(.86) 12(.82) 10(.78) 12(.84) 12(.80) 

5 9(.89) 8(.86) 7(.82) 6(.79) 9(.90) 7(.81) 

10 8(.87) 7(.84) 6(.81) 6(.82) 7(.85) 7(.84) 

1 1 21(.87) 19(.84) 17(.82) 16(.81) 18(.84) 18(.81) 

5 17(.90) 15(.87) 12(.80) 11(.78) 13(.83) 13(.82) 

10 16(.90) 14(.87) 11(.80) 11(.80) 12(.82) 12(.81) 

4 0.1 1 4(.83) 4(.83) 5(.89) 3(.77) 4(.83) 5(.87) 

5 2(.91) 2(.92) 1(.70) 1(.75) 2(.93) 2(.91) 

10 1(.76) 1(.79) 1(.80) 1(.82) 2(.97) 2(.97) 

0.5 1 9(.88) 8(.86) 7(.81) 6(.80) 7(.82) 8(.84) 

5 6(.92) 5(.86) 4(.80) 4(.81) 6(.92) 5(.86) 

10 6(.93) 5(.88) 4(.84) 4(.84) 4(.84) 4(.82) 

1 1 15(.90) 13(.87) 10(.80) 9(.78) 11(.83) 11(.80) 

5 12(.91) 10(.88) 7(.79) 7(.80) 8(.83) 8(.82) 

10 12(.93) 10(.90) 7(.81) 7(.81) 8(.85) 8(.84) 

𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 are our methods and 𝑛𝑒𝑥𝑎𝑐𝑡 is the public method. 

 

Sample size calculation based on testing multiple genes via FDR-controlling method 

In this study, we evaluated the performance of the sample size methods based on 

testing the multiple genes via FDR-controlling method rather than the type I error 𝜶, 

which is widely used in the RNA-seq analysis. We set m = 10,000,  𝑚1 = 100, 𝑚0 =

m − 𝑚1 and want to detect the expected number of true DEG 𝑡1 = 80 and the actual 

power corresponding to the nominal power of 1 − 𝛽 = 80%.  We also set 𝑢0𝑔 =

1, 5 or 10, 𝜌𝑔 = 1.5, 2, 3 or 4 and ф𝑔 = 0.1, 0.5 or 1.0 . With these settings, the new 

𝛼∗ = 4.25 × 10−4  was obtained from the equation (14) at a desired FDR (𝑓 = 0.05). 

Then, we calculated the sample size by substituting 𝛼∗ and power into the equations (15-

18) and the published method using the exact test. For each designed setting, we also 

conducted 5000 simulations from an independent negative binomial distribution. The 

number of true DEGs was counted using p-values ≤ 𝛼∗ which is much smaller than the 

nominal type I error rate 0.05. The empirical power was obtained as the proportion of 

simulation samples for which 𝐻0 is rejected with the nominal type I error 𝛼∗ = 4.25 ×

10−4. The expected number of true DEGs under 𝛼∗ can be estimated via the 
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multiplication of the estimated power with the total number of true DEGs. The results in 

Table 3 report the estimated sample size with the empirical power given in parentheses 

under the cases 𝑤 = 1 and 1.2.  

Table 3: Simulated power corresponding to the samples size calculated for testing 

multiple genes. The sample sizes are calculated using six methods given a predefined 

𝐹𝐷𝑅 = 0.05 and 80% power. 

w ρ ф 𝒖𝟎 𝒏𝒘𝟏 𝒏𝒘𝟐 𝒏𝒍𝒘𝟏 𝒏𝒍𝒘𝟐 
 

𝒏𝒍𝒓𝒕 𝒏𝒆𝒙𝒂𝒄𝒕 

1 
 

1.5 
 

.1 1 197(.80) 196(.81) 198(.81) 192(.80) 204(.83) 200(.80) 

5 58(.81) 57(.81) 57(.81) 55(.79) 60(.84) 58(.81) 

10 40(.81) 39(.80) 39(.80) 38(.79) 41(.84) 40(.81) 

0.5 1 288(.81) 284(.82) 283(.81) 277(.80) 293(.83) 286(.81) 

5 148(.82) 145(.81) 142(.80) 140(.80) 149(.83) 143(.81) 

10 131(.82) 127(.80) 124(.81) 123(.80) 131(.83) 125(.80) 

1 1 401(.81) 394(.81) 389(.81) 384(.80) 405(.82) 393(.80) 

5 262(.82) 255(.81) 248(.80) 247(.80) 261(.83) 250(.80) 

10 244(.83) 237(.82) 230(.81) 229(.81) 243(.83) 232(.82) 

2 
 

.1 1 61(.82) 60(.81) 62(.83) 57(.80) 61(.83) 61(.81) 

5 19(.83) 18(.82) 18(.82) 17(.80) 19(.85) 19(.84) 

10 14(.84) 13(.82) 13(.82) 12(.80) 14(.86) 13(.82) 

0.5 1 96(.83) 92(.82) 91(.81) 86(.80) 93(.83) 91(.81) 

5 54(.85) 51(.84) 47(.81) 46(.80) 50(.83) 48(.81) 

10 49(.84) 45(.82) 42(.80) 41(.79) 44(.82) 43(.81) 

1 1 140(.83) 133(.81) 127(.80) 122(.80) 131(.82) 128(.79) 

5 98(.85) 91(.84) 84(.80) 83(.80) 88(.83) 85(.80) 

10 92(.84) 85(.83) 78(.81) 78(.81) 83(.83) 80(.81) 

3 0.1 1 22(.84) 21(.83) 22(.84) 18(.80) 21(.84) 21(.81) 

5 8(.88) 7(.83) 7(.84) 6(.79) 7(.85) 7(.83) 

10 6(.87) 5(.80) 5(.82) 4(.74) 5(.83) 5(.81) 

0.5 1 39(.86) 36(.85) 34(.83) 30(.80) 34(.84) 34(.82) 

5 25(.89) 22(.87) 18(.80) 18(.82) 20(.85) 19(.82) 

10 24(.91) 20(.87) 16(.79) 16(.80) 18(.85) 17(.80) 

1 1 61(.87) 54(.85) 48(.82) 44(.79) 49(.83) 49(.82) 

5 47(.91) 40(.87) 33(.81) 32(.80) 35(.83) 34(.81) 

10 45(.91) 38(.88) 31(.81) 30(.80) 33(.84) 32(.81) 

4 0.1 1 13(.85) 12(.83) 13(.85) 10(.81) 12(.86) 12(.82) 

5 5(.88) 5(.92) 4(.82) 3(.72) 4(.83) 4(.81) 

10 4(.88) 4(.93) 3(.83) 3(.87) 3(.83) 3(.81) 

0.5 1 26(.89) 23(.88) 20(.82) 17(.79) 20(.84) 20(.81) 

5 18(.93) 15(.91) 11(.79) 11(.81) 12(.83) 12(.81) 

10 17(.94) 14(.91) 10(.79) 10(.81) 11(.84) 11(.83) 

1 1 43(.93) 36(.89) 30(.82) 26(.79) 30(.83) 30(.81) 

5 35(.95) 28(.91) 20(.79) 20(.80) 22(.83) 22(.82) 

10 34(.95) 27(.92) 19(.80) 19(.81) 21(.84) 21(.83) 

1.2 1.5 0.1 1 180(.80) 184(.80) 186(.81) 177(.80) 187(.82) 186(.81) 

5 54(.80) 55(.81) 54(.80) 52(.79) 56(.83) 55(.81) 

10 38(.80) 38(.80) 38(.81) 37(.80) 40(.84) 38(.80) 

0.5 1 270(.80) 273(.80) 271(.80) 262(.80) 280(.83) 272(.80) 

5 145(.82) 143(.81) 139(.81) 138(.81) 146(.84) 140(.81) 

10 129(.82) 126(.82) 123(.82) 122(.81) 128(.84) 122(.81) 
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1 1 384(.81) 383(.81) 377(.81) 369(.80) 394(.83) 379(.80) 

5 258(.82) 253(.81) 245(.80) 244(.80) 256(.83) 247(.80) 

10 243(.83) 236(.82) 229(.80) 228(.80) 238(.84) 230(.81) 

2 0.1 1 55(.80) 57(.81) 59(.83) 52(.80) 57(.83) 57(.80) 

5 18(.83) 18(.83) 18(.83) 16(.80) 18(.84) 18(.83) 

10 13(.83) 13(.83) 12(.79) 12(.81) 13(.85) 13(.84) 

0.5 1 90(.82) 90(.82) 88(.81) 82(.81) 89(.83) 87(.80) 

5 53(.85) 50(.83) 47(.81) 45(.80) 49(.83) 47(.80) 

10 48(.84) 45(.83) 41(.79) 41(.80) 44(.83) 46(.85) 

1 1 134(.82) 130(.81) 124(.80) 118(.80) 128(.82) 124(.80) 

5 97(.84) 90(.83) 83(.80) 82(.79) 87(.83) 84(.80) 

10 92(.85) 85(.84) 78(.81) 77(.80) 82(.83) 79(.81) 

3 0.1 1 20(.85) 20(.83) 21(.85) 17(.81) 20(.86) 20(.83) 

5 7(.82) 7(.84) 7(.86) 6(.82) 7(.87) 7(.85) 

10 6(.89) 5(.81) 5(.84) 4(.76) 5(.85) 5(.83) 

0.5 1 37(.86) 35(84) 33(.82) 29(.81) 32(.83) 32(.80) 

5 25(.90) 22(.88) 18(.80) 17(.79) 19(.84) 19(.83) 

10 23(.90) 20(.88) 16(.79) 16(.80) 18(.85) 19(.87) 

1 1 59(.89) 53(.85) 47(.81) 43(.79) 49(.84) 48(.82) 

5 47(.91) 40(.88) 33(.82) 32(.81) 35(.84) 34(.82) 

10 45(.91) 38(.88) 31(.81) 30(.80) 33(.85) 32(.82) 

4 0.1 1 12(.87) 12(.86) 13(.88) 9(.90) 11(.85) 11(.80) 

5 5(.91) 4(.81) 4(.84) 3(.75) 4(.85) 4(.83) 

10 4(.90) 4(.94) 3(.83) 3(.87) 3(.84) 3(.82) 

0.5 1 25(.90) 22(.87) 20(.84) 16(.79) 19(.83) 20(.83) 

5 18(.94) 15(.91) 11(.80) 11(.82) 12(.84) 12(.83) 

10 17(.94) 14(.91) 10(.79) 10(.81) 11(.84) 12(.87) 

1 1 41(.92) 35(.88) 29(.81) 26(.81) 32(.88) 29(.80) 

5 35(.95) 28(.91) 20(.80) 20(.81) 22(.84) 22(.83) 

10 34(.95) 27(.92) 19(.80) 19(.80) 21(.84) 21(.83) 

𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 are our methods and 𝑛𝑒𝑥𝑎𝑐𝑡 is the public method. 

 

Given the sample size obtained from 𝑛𝑙𝑤2, an empirical power for other methods 

is also computed from 5,000 simulations (Table 4). In order to compare the performance 

of these methods the paired Wilcoxon signed-rank test is used to test the simulated power 

in Table 3 for the statistical significance. The results are in Table 5. 
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Table 4: Simulated power for testing multiple genes given the sample size 𝑛𝑙𝑤2, FDR = 

0.05 and 80% power.  

 ρ ф 𝒖𝟎 𝒏𝒍𝒘𝟐 
 

𝒏𝒍𝒘𝟏 𝒏𝒘𝟏 𝒏𝒘𝟐 𝒏𝒍𝒓𝒕 𝒏𝒆𝒙𝒂𝒄𝒕 

w=1 
 

1.5 
 

.1 1 192(.80) .79 .79 .79 .80 .78 

5 55(.79) .78 .78 .78 .79 .78 

10 38(.79) .78 .77 .78 .79 .78 

0.5 1 277(.80) .79 .79 .78 .80 .78 

5 140(.80) .79 .78 .78 .79 .79 

10 123(.80) .80 .78 .80 .80 .80 

1 1 384(.80) .80 .78 .78 .80 .79 

5 247(.80) .80 .78 .79 .80 .80 

10 229(.81) .81 .79 .80 .81 .80 

2 
 

.1 1 57(.80) .77 .77 .78 .78 .76 

5 17(.80) .78 .76 .78 .79 .77 

10 12(.80) .78 .74 .77 .78 .77 

0.5 1 86(.80) .78 .76 .77 .78 .77 

5 46(.80) .79 .74 .77 .79 .78 

10 41(.79) .78 .72 .76 .78 .77 

1 1 122(.80) .78 .74 .77 .78 .78 

5 83(.80) .79 .73 .77 .79 .79 

10 78(.81) .81 .74 .78 .80 .80 

3 0.1 1 18(.80) .70 .71 .71 .76 .72 

5 6(.79) .74 .66 .73 .76 .73 

10 4(.74) .70 .53 .65 .71 .68 

0.5 1 30(.80) .74 .66 .73 .76 .74 

5 18(.82) .80 .63 .75 .79 .79 

10 16(.80) .79 .59 .73 .78 .77 

1 1 44(.79) .76 .62 .72 .76 .74 

5 32(.80) .79 .57 .73 .78 .77 

10 30(.80) .79 .55 .72 .78 .77 

4 0.1 1 10(.81) .65 .62 .71 .75 .69 
5 3(.72) .62 .39 .58 .67 .62 
10 3(.87) .81 .62 .78 .83 .81 

0.5 1 17(.79) .71 .52 .67 .74 .70 
5 11(.81) .79 .41 .69 .78 .76 
10 10(.81) .79 .33 .68 .77 .76 

1 1 26(.79) .74 .44 .66 .74 .71 

5 20(.80) .79 .34 .68 .77 .76 

10 19(.81) .80 .30 .68 .79 .78 

𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 are our methods and  𝑛𝑒𝑥𝑎𝑐𝑡 is the public method. 
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Table 5. P-values are calculated using the paired Wilcoxon signed-rank statistical test of 

the power values.  

 𝒏𝒍𝒘𝟏 𝒏𝒘𝟐 𝒏𝒆𝒙𝒂𝒄𝒕 
 

𝒏𝒍𝒓𝒕 𝒏𝒘𝟏 

𝒏𝒍𝒘𝟐 < .0001*** < .0001*** <.0001*** < .0001*** <.0001*** 
𝒏𝒍𝒘𝟏 - < .001** < .05*** < .0001*** < .0001*** 
𝒏𝒘𝟐  - < .001** < .001* < .05* 

𝒏𝒆𝒙𝒂𝒄𝒕   - < .05* < .001* 
𝒏𝒍𝒓𝒕    - <.0001*** 

*Statistically significant. 

 

Identify the pattern of the sample sizes changing with different values of 𝒖𝟎, ϕ and ρ 

for different methods at 𝜶 and 𝜶∗ levels 

First, we identified patterns of sample size changes with different values of 𝑢0, ϕ 

and ρ for different methods. Although Tables 2-3 show similar pattern of sample sizes 

obtained from the six methods, we found that the required sample sizes 𝑛𝑙𝑤1and 𝑛𝑙𝑤2 

derived from the log-transformed Wald tests are the smallest compared with the other 

methods. 

Figure 1 illustrates 𝑛𝑙𝑤2 varying with the values of 𝑢0 when other parameters, 

such as ρ ∈(1.5, 2, 3, 4), ф ∈(.1, .5, 1) and 𝑤 ∈(1, 1.2) are fixed. Given the nominal 

power (1-𝜷 = 0.8) and 𝜶 = 0.05 or FDR = 0.05, as expected, 𝑛𝑙𝑤2 decreases as 𝑢0 

increases under a fixed ρ and ф. This indicates that for a lowly expressed gene, a larger 

sample size is required to achieve a detection power of DEGs between two conditions. 

For a fixed 𝑢0 and ρ, 𝑛𝑙𝑤2 increases as ϕ increases (Figure 1). This is also expected 

because a larger ϕ indicates higher variation of the genes across conditions. Furthermore, 
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for a fixed ϕ and 𝑢0, 𝑛𝑙𝑤2 decreases as ρ increases. This result indicates a smaller n is 

required for a larger difference of mean read counts between two conditions or vice 

versa. For the same setting of parameters, we found the 𝑛𝑙𝑤2 in Figure 1A and 1C with an 

equal size factor (𝑤 = 1) across conditions is slightly larger than the unequal size factor 

in Figure 1B (𝑤 = 1). Under the same settings, as expected, the sample sizes in Table 

23with FDR = 0.05 are larger than those with 𝜶 = 0.05 (Table 2), indicating that a larger 

n is required for detecting DEGs while testing thousands of genes simultaneously (Figure 

1C and 1D) compared with testing a single gene (Figure1A and 1B). 

 

Figure 1: Sample size (n) for testing a single gene and multiple genes using the 𝑛𝑙𝑤2 

method. n varies with mean reads counts in  𝑢0 given the combination of ρ, ϕ, and w = 1 

or 1.2 at 80% power and a nominal 𝜶 (0.05) for testing a single gene (Figures 1A and 1B) 



28 
 

or  a nominal FDR (0.05) for testing multiple genes (Figures 1C and 1D). The fold 

changes (ρ = 1.5, 2, 3 and 4) are in orange, green, blue and red, respectively.   

Comparison of  the sample calculations from different methods based on testing a 

single genes in Table 2 and multiple genes  in Table 3. 

Next we compared the sample sizes (n)  estimated from our five derived methods 

(𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑤1, 𝑛𝑙𝑤2, 𝑛𝑙𝑟𝑡) and the public method (𝑛𝑒𝑥𝑎𝑐𝑡) [19]. Figure 2 illustrates that n 

decreases as 𝑢0 increases for all methods given w = 1, power = 0.8, FDR = 0.05, ф ∈

(0.1, 0.5,1) and 𝜌 ∈ (1.5, 2). Given 𝜌 = 1.5, the sample sizes from all methods are 

getting close to each other when ϕ is 0.1 for small biological variation (Figures 2A-C). As 

ϕ increases, the difference between the sample sizes for all methods becomes much 

larger. Similar patterns were observed given 𝜌 = 2 (Figures 2D-F). With regards to the n, 

we noticed that the sample sizes calculated from 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 methods (red in Figure 2) 

are the smallest while maintaining the nominal power close to or above 80%. Among the 

other four methods, 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡 performed better than 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 in most 

scenarios. 
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Figure 2: Sample size (n) for testing multiple genes using the six methods (𝑛𝑤1, 𝑛𝑤2, 

𝑛𝑙𝑤1, 𝑛𝑤𝑙2, 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡). n varies with 𝑢0 given the combination of ρ and ϕ at w = 1, 

80% power and  0.05 FDR. 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 in red and blue respectively require smaller n. 
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Figures 2A and 2D illustrate samples sizes for all methods are close to each other when ϕ 

is 0.1. 

In addition, the empirical power in parentheses (Tables 2 -3) was calculated from 

simulations with the size of 5,000 corresponding to the estimated n for all methods. The 

results show almost all of the methods are close to or higher than the desired power. 

Although the sample sizes calculated using 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 are the smallest, we cannot 

arbitrarily conclude that these two methods are the best because the corresponding 

empirical powers are varied corresponding to the sample sizes for each method (Tables 2-

3).  

For a better comparison with the same settings and a fixed and small n estimated 

from the log-transformed Wald method (𝑛𝑙𝑤2), we observed that 𝑛𝑙𝑤1 and  𝑛𝑙𝑤2 

consistently achieve a better power close to the nominal power 80% or higher in all 

scenarios compared to other methods (Table 4). We also observed that 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡 

perform similarly and both of them achieve a higher power than 𝑛𝑤1 and 𝑛𝑤2 when the 

fold change is great than 2. Table 5 from a paired Wilcoxon ranked test indicates that the 

empirical power from 𝑛𝑙𝑤2 is statistically significant from that achieved using other 

methods. Table 5 also shows that  all the methods are significantly different from each 

other. Among these four methods, 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡 performed better than 𝑛𝑙𝑤1 and 𝑛𝑙𝑤2 

with the power closer to an 80% nominal power in all scenarios (Table 4).  

4. Application 

Sample size calculation based on RNA-seq data in Human Breast Cancer: To 

identify DEGs between two conditions, we explored a real human breast cancer dataset to 
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calculate the sample size. Forty Estrogen receptor positive (ER+) and HER2 negative 

breast cancer primary tumors and 29 uninvolved breast tissue sample that were adjacent 

to ER+ primary tumors in .fastq format were downloaded from NCBI GEO (series ID 

GSE58135). The raw sequencing files were mapped to the human hg19 reference genome 

using tophat2 (v2.0.13) with bowtie version (2.2.3.0). The mapped counts for each gene 

per sample were then extracted using HTSeq-scripts-count (version 2.7). There are a total 

of 57,773 genes extracted. After filtering genes with the mean read counts less than one 

in two groups, 35,112 genes were left. These samples were loaded into edgeR to estimate 

common dispersion and size factors. With the aid of edgeR, the normalization factors 

called size factors are estimated using the “RLE” scaling factor method [17] and the 

estimated ratio of total size factors of the samples in each condition  (w) is 1.1. The 

common dispersion ϕ is estimated as 0.48 using the CMLE method [22].   

We assumed the top 400 of 35,122 genes (1.1%) are prognostic and have the 

largest fold changes. The minimum of average read counts among these genes in the 

control group served as pilot data was estimated as 𝑢0 = 1 [16]. In addition, the sample 

sizes were estimated using 𝑢0 = 5, 10 and 20. Suppose we want to set the nominal 

power to 80%, which indicates we want to identify 320 or more of the prognostic genes. 

Under the control FDR at 𝑓 = 0.10 and 80% power, we can set  m = 35,112, 𝑚1 = 400, 

𝑚0 = m − 𝑚1 and 𝑡1 = 320. The parameters  𝜌𝑔 (𝑔 = 1, … , 35,112) were assumed to 

be unknown. Let the mean counts in the control condition 𝑢0𝑔 = 1, 5, 10, or 20 and fold 

change 𝜌𝑔 = 1.5 or 2, 3 and 4 with common dispersion ф𝑔 = 0.48 . With these settings, 

the new 𝛼∗ = 9.992 × 10−4  was obtained from equation (24) at a desired FDR(𝑓 =
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0.10). Then, we calculated the sample size by substituting  𝛼∗ and the power into 

equations (25-29) for each method (Table 6). 

Table 6 reports the samples sizes under different scenarios including various 

minimum mean read counts in control condition (1, 5, 10 and 20) and desired fold 

changes (1.5, 2, 3 and 4) while controlling the FDR at 0.10. We found that the original 

RNA-seq experiment [28] with a minimum sample size 31 in each condition can detect 

more than 80% of the prognostic genes at the FDR (f  = 0.10) and 𝑢0 = 1 if the desired 

fold change is 3 or more. Moreover, with a minimum sample size 42 in each condition, 

we found that it can detect more than 80% of the prognostic genes at the FDR (f  = 0.10) 

and 𝑢0 = 5 if the desired fold change is 2 or more.  

Table 6: The sample sizes per group required for a balanced design in human breast 

cancer RNA-seq data. The sample sizes are calculated given the nominal 𝐹𝐷𝑅 = 0.10 

and 80% power. 

 ρ 𝒖𝟎 𝒏𝒘𝟏 𝒏𝒘𝟐 𝒏𝒍𝒘𝟏 𝒏𝒍𝒘𝟐 
 

𝒏𝒍𝒓𝒕 𝒏𝒆𝒙𝒂𝒄𝒕 

w =1.1 
ф=.48  

1.5 1 242 241 240 234 250 242 

5 125 123 120 119 126 121 

10 111 108 105 104 111 106 

20 103 101 97 97 103 99 

2 1 80 79 77 73 78 78 

5 46 43 40 39 42 41 

10 41 39 35 35 38 36 

20 39 36 33 33 35 34 

3 1 33 31 29 25 29 29 

5 21 19 16 15 17 16 

10 20 17 14 14 15 15 

20 19 16 13 13 14 14 

4 1 22 19 18 15 17 17 

5 16 13 10 9 11 10 

10 15 12 9 8 10 10 

20 14 11 8 8 9 9 
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* The dispersion ф = 0.48 and the ratio of the size factor 𝑤 = 1.1 are estimated using 

edgeR package particularly for RNA-seq data. 

 5. Discussion and conclusion 

In this study, five methods (𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑤1, 𝑛𝑙𝑤2 and 𝑛𝑙𝑟𝑡) were derived to 

calculate sample sizes using the Wald test and LRT statistics based on a negative 

binomial distribution for modeling an RNA-seq experiment. The parameters are 

estimated using the MLE and CMLE methods. Since the dispersion estimated from MLE 

has no closing form, it is difficult to derive the sample size formula. Therefore, all of the 

methods are based on a fixed and constant dispersion. A log-transformed approach 

corresponding to the modified 𝑍𝑤1and 𝑍𝑤2 was used to derive two other test statistics 

(𝑍𝑙𝑤1and 𝑍𝑙𝑤2). For all these statistical tests as well as the exact test [19] that are used to 

derive the sample size calculation formulas,  gene expression levels are assumed to be 

independent in each sample. Although this assumption might not hold in reality, it is 

widely used in RNA-seq as well as in microRNA data analysis. In this study, we assume 

equal sample size in the two conditions to derive the sample size formula.  The derived 

formula for sample size calculations can be easily extended to the unequal sample sizes 

by setting 𝑛1 = k𝑛0. In our simulation study, we set the ratio of total size factors in two 

conditions as 1 and 1.2 instead of 𝑤 = 2 in the study [19]. In reality, the read depths of 

RNA-seq samples generated from the same run are very close to each other across 

conditions. Therefore, we think 𝑤 = 1.2 or close to 1 is more common than 𝑤 = 2. 

Furthermore, in our simulation and application studies, the minimum sample sizes 

required to achieve a nominal power of 80% with a predefined FDR (f = 0.05 or 0.10)  
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are usually larger than those in an RNA-seq experiment due to the real costs. In such a 

situation, we can increase the read depth per sample to indirectly increase the mean of 

read counts 𝑢0 in the control condition. Thus, the required sample sizes can be decreased 

correspondingly.  

Among the methods we evaluated, the simulation results show that 𝑛𝑙𝑤2 from the 

log transformed Wald test with the parameters estimated from CMLE is the best method 

because a smaller sample size is required for designing an RNA-seq experiment while 

achieving a power close to or higher than 80% at a pre-defined FDR = 0.05. The second 

best method is 𝑛𝑙𝑤1with the parameters estimated from unrestricted MLEs. We also 

found that 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡  methods perform better than 𝑛𝑤1 method based on the 

estimated power given the genes with a fold change > 2. However, 𝑛𝑤1 achieve a better 

power than 𝑛𝑙𝑟𝑡 and 𝑛𝑒𝑥𝑎𝑐𝑡 given a fold change ≤ 2. In summary, 𝑛𝑤1, 𝑛𝑤2, 𝑛𝑙𝑟𝑡 and 

𝑛𝑒𝑥𝑎𝑐𝑡 methods varied with different scenarios. Finally, since the log-transformed sample 

size calculation methods are more robust, simpler and require less time, we hope our 

tables can help and benefit for researchers and scientists in the design of RNA-seq 

experiments.  
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SAMPLE SIZE CALCUALTION METHODS FOR RNA-SEQ DATA USING A 

GENERALIZED LINEAR MODEL 

1. Introduction 

High-dimensional RNA-seq is a powerful tool for gene expression profiling and 

has been increasingly used for biomarker discovery and clinical trial studies [29, 30]. 

Differentially expressed genes (DEGs) or novel transcripts identified by RNA-seq have 

served as gene signatures for clinical diagnosis, prognosis, and to estimate the efficacy of 

gene therapy or survival prediction [31-35]. With the rapid growth of clinical trial 

applications using RNA-seq, sample size estimation methods are critically needed for 

experimental design. 

Since RNA-seq data are read counts, sample size calculations were proposed and 

derived on the basis of a Poisson distribution using a Wald’s test, a score test and a 

likelihood ratio test (LRT) statistic in the case of testing a single gene, respectively [13, 

16]. In fact, a sample size formula derived from a score statistic for a Poisson distribution 

is equivalent to the method that was derived from the Wald’s test statistic with 

parameters estimated from a constrained maximum likelihood estimate (MLE) under the 

same null hypothesis (𝐻0). In addition, Li et al. [16] introduced a false discovery rate 

(FDR) when the sample size formula was derived from a score test statistics with a 

Poisson distribution in the case of testing multiple genes. However, studies have shown 

that the variance of the read counts of genes from RNA-seq data with biological 
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replicates is significantly larger than the mean, resulting in an over-dispersed data [17, 

36]. Therefore, the variance needs to be adjusted for proper inference. Consequently, a 

negative binomial (NB) distribution with two-parameters has been proposed and used for 

modeling RNA-seq count data. However, sample size calculations from a NB distribution 

for RNA-seq data is more challenging when compared with that using a Poisson 

distribution. Recently, Li et al. proposed another sample size calculation method using a 

NB distribution and an exact test with the aid of edgeR in the case of testing a single gene 

and multiple genes between two groups [19]. Most recently, several sample size methods 

based on a NB distribution using a Wald’s test, a log-transformed Wald’s test and a 

likelihood ratio test statistics with a one-sided test p-value were proposed by Li et al. 

[37]. However, all these methods assumed independent expression of genes between 

sample groups. In addition, the Wald’s test statistic was based on the fold change (FC) or 

on the ratio of the true expression while the variance was estimated from the formula as 

𝜎𝑇
2 =

𝛾1

𝑠1
+

𝛾0

𝑠0
+

𝜙

𝑛
(𝛾1

2 + 𝛾0
2), in which the parameters 𝛾0 and 𝛾1 were estimated by an 

unrestricted MLE or constrained MLE (CMLE) under 𝐻0 and the dispersion parameter 𝜙 

was assumed to be a constant. In addition, all of these sample size methods assumed 

equal sample sizes for the two comparison groups. Although imbalanced designs are not 

popular for RNA-seq studies, in some situations, especially in the clinical studies, they 

are preferred. For example, in some cancer datasets, sample sizes in a control group are 

usually smaller than those in the cancer patient group.  

Explicit sample size formulas analyzing rates of asthma or chronic obstructive 

pulmonary disease (COPD) in clinical studies has been proposed, which used a standard 

generalized linear model (GLM) with a NB distribution for equal or unequal sample size 
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design [38, 39]. We use a similar approach to derive two explicit sample size calculation 

methods for RNA-seq data using a two-sided Wald’s test that was based on the GLM.  

The variance in the Wald’s test statistic used the variance-covariance matrix calculated 

from the parameters that were estimated from the MLE and the CMLE under two 

scenarios [39]. Using this approach, our method is able to incorporate the ratio of size 

factors for correcting sequencing read depth and the fold change for DEGs at a two-sided 

test statistic. Moreover, the sample size formula is applicable for both balanced and 

imbalanced designs. Since tens of thousands of genes in a RNA-seq sample are tested 

simultaneously for DEG analysis, a FDR is commonly used to adjust p-values in the 

multiple comparisons [16, 19]. Therefore, a much smaller type I error alpha (𝛼∗) was 

calculated and incorporated in our sample size formula in the case of testing multiple 

genes.  

In summary, this study is motivated to develop new sample size calculation 

formulas using a GLM for RNA-seq data that are applicable in different scenarios, such 

as testing a single gene or multiple genes, imbalanced or balanced design, equal or 

unequal read depth across samples, and a two-sided test p-values. A simulation study 

under different parameter settings is carried out to evaluate our formulas from a Wald’s 

test versus an existing method that used an exact test. In section 4, we illustrate how to 

estimate sample sizes using publicly accessible RNA-seq data on breast cancer. 

2. Sample size calculation methods based on a GLM  

2.1 Sample size formulas in the case of testing a single gene 
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For a single gene in RNA-seq data, suppose that independent random sample 𝑌𝑖𝑗 

from the j-th sample (𝑗 = 1, … , 𝑛𝑖) and in the i-th treatment group (𝑖 = 0, 1) has an 

identical negative binomial distribution:  𝑌𝑖𝑗~𝑁𝐵(𝑠𝑖𝑗𝛾𝑖 , 𝜙) or 𝑌𝑖𝑗~𝑁𝐵(𝑢𝑖𝑗 , 𝜙)[17, 22], 

where 𝛾𝑖 is the true gene expression level, 𝑠𝑖𝑗 is a size factor to normalize the raw reads 

in the different number of mapped reads, 𝑢𝑖𝑗 = 𝑠𝑖𝑗𝛾𝑖 is the mean read count, and 𝜙 is a 

common dispersion parameter. Thus, the summation of reads per gene per group 

(𝑌𝑖 = ∑ 𝑌𝑖𝑗
𝑛𝑖
𝑗=1 ) also follows a negative binomial distribution with parameters 𝑛𝑖𝑢𝑖 = 𝑡𝑖 =

𝑛𝑖�̅�𝑖𝛾𝑖 and ф/𝑛𝑖, where �̅�𝑖 =
1

𝑛𝑖
∑ 𝑠𝑖𝑗

𝑛𝑖
𝑗=1  is the mean of the size factor for mapping reads 

in condition i and 𝑛𝑖 is the number of biological replicates with the assumption 𝑘 = 𝑛1/

𝑛0. The probability density function (PDF) of the observation 𝑦𝑖𝑗 for a NB distribution is 

[38, 39]:  

P(𝑦𝑖𝑗) =
𝛤(𝜙−1+𝑦𝑖𝑗)

𝛤(𝜙−1)𝑦𝑖𝑗!
(

𝜙𝑢𝑖𝑗

1+𝜙𝑢𝑖𝑗
)

𝑦𝑖𝑗

(
1

1+𝜙𝑢𝑖𝑗
)

𝜙−1

,      (20)  

where the variance of 𝑦𝑖𝑗 is 𝜎𝑖𝑗
2 = 𝑢𝑖𝑗 + ф𝑢𝑖𝑗

2 . The above NB model utilizes the 

conventional parameterization called NB2 because we only know the mean read counts 

(𝑢𝑖𝑗) of the gene and don’t know the true expression (𝛾𝑖) in the RNA-seq data [40].  

For a GLM, the expected mean read counts (𝑢𝑖𝑗) of 𝑦𝑖𝑗 can be modeled by a log 

link function as: 

log 𝑢𝑖𝑗 = log 𝑠𝑖𝑗 + log 𝛾𝑖 = log 𝑠𝑖𝑗 + 𝛽0 + 𝛽1𝑥𝑖𝑗 ,        
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where 𝑥𝑖𝑗 is the treatment group indicator, with 𝑥𝑖𝑗= 0 if 𝑖 = 0 for the control group, and 

𝑥𝑖𝑗= 1 if 𝑖 = 1 for the treatment group; the quantity log 𝑠𝑖𝑗 denotes an offset. We are 

interested in the true mean per size factor unit: 

log 𝛾𝑖 = 𝛽0 + 𝛽1𝑥𝑖 ,         (21) 

where 𝛾𝑖 =
𝑢𝑖

𝑠̅𝑖
, 𝑢𝑖 denotes the expected mean read counts for gene g in group i,  �̅�𝑖 denotes 

the mean of the size factors in group i. Thus, the true expression 𝛾0 and 𝛾1  from equation 

(21) can be obtained by: 

𝛾0 = 𝑒𝛽0, 𝛾1 = 𝑒𝛽0+𝛽1 and  𝛾1

𝛾0
= 𝑒𝛽1.        

For the detection of a DEG from RNA-seq data, the ratio 𝜌 = 𝛾1/𝛾0 typically 

represents the fold change. If it equals to one, this gene is not differentially expressed. 

Therefore, we are interested in testing: 

 𝐻0: 𝛾1 = 𝛾0 vs. 𝐻1: 𝛾1 ≠ 𝛾0,         

and making inference about the ratio 𝜌 using the Wald’s test statistic. This is equivalent 

to test: 

𝐻0:𝛽1 = 0 vs. 𝐻1: 𝛽1 ≠ 0.        (22) 

Replacing 𝑢𝑖𝑗 = 𝑠𝑖𝑗𝑒𝛽0+𝛽1𝑥𝑖𝑗  in equations (20), the log-likelihood function is: 
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𝑙 ( 𝛽0, 𝛽1, 𝜙|𝑦𝑖𝑗 , 𝑥𝑖𝑗) = ∑ ∑ [log 
𝛤(𝜙−1+𝑦𝑖𝑗)

𝛤(𝜙−1)𝑦𝑖𝑗!
+ 𝑦𝑖𝑗log (𝜙𝑠𝑖𝑗𝑒𝛽0+𝛽1𝑥𝑖𝑗 ) −

𝑛𝑖
𝑗=1

1
𝑖=0

(𝑦𝑖𝑗 +
1

𝜙
) log(1 + 𝜙𝑠𝑖𝑗𝑒𝛽0+𝛽1𝑥𝑖 )].        

           (23) 

The model parameters 𝛽0, 𝛽1 and 𝜙 in equation (23) can be estimated using the 

maximum likelihood estimates (MLE) and the variance-covariance matrix of model can 

be estimated via the inverse of the Fisher information matrix, asymptotically. Since the 

dispersion ϕ does not have a closed form, for simplicity, ϕ was treated as a constant for 

the two groups.  

Deriving Fisher’s information matrix: The first and second partial derivative of 

the log likelihood function (l) in equation 22) with respect to 𝛽1 and 𝛽2 are: 

𝜕𝑙

𝜕𝛽0
= ∑ ∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1

2
𝑖=1 − ∑ ∑ (𝑦𝑖𝑗 + 1/ф) (

𝑑𝑖𝑗

1+𝑑𝑖𝑗
)

𝑛𝑖
𝑗=1

2
𝑖=1 ,    (24) 

𝜕𝑙

𝜕𝛽1
= ∑ ∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1

2
𝑖=1 − ∑ ∑ (𝑦𝑖𝑗 + 1/ф) (

𝑥𝑖𝑑𝑖𝑗

1+𝑑𝑖𝑗
)

𝑛𝑖
𝑗=1

2
𝑖=1 ,    (25) 

𝜕2𝑙

𝜕𝛽0
2 = − ∑ ∑ (𝑦𝑖𝑗 + 1/ф) [

𝑑𝑖𝑗

(1+𝑑𝑖𝑗)
2]

𝑛𝑖
𝑗=1

2
𝑖=1 ,      (26) 

𝜕2𝑙

𝜕𝛽0𝜕𝛽1
= − ∑ ∑ (𝑦𝑖𝑗 + 1/ф) [

𝑥𝑖𝑑𝑖𝑗

(1+𝑑𝑖𝑗)
2]

𝑛𝑖
𝑗=1

2
𝑖=1 ,      (27) 

𝜕2𝑙

𝜕𝛽1
2 = − ∑ ∑ (𝑦𝑖𝑗 + 1/ф) [

𝑥𝑖
2𝑑𝑖𝑗

(1+𝑑𝑖𝑗)
2]

𝑛𝑖
𝑗=1

2
𝑖=1 ,      (28) 

where 𝑑𝑖𝑗 = 𝜙𝑠𝑖𝑗𝑒𝛽0+𝛽1𝑥𝑖  and assuming ф is constant. 

 

The Fisher information matrix is defined as 

𝐼𝑛0,𝑛1
(𝛽0, 𝛽1) = 𝐸 [−

𝜕2𝑙

𝜕(𝛽0,𝛽1)2] = [
𝜉𝛽0𝛽0

𝜉𝛽0𝛽1

𝜉𝛽1𝛽0
𝜉𝛽1𝛽1

]. 
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From equations (24-28), we can obtain by simplification: 

𝜉𝛽0𝛽0
= −𝐸 [

𝜕2𝑙

𝜕𝛽0
2] =

𝑛0𝑠0̅𝑒𝛽0

1+ф𝑠0̅𝑒𝛽0
+

𝑛1𝑠1̅𝑒𝛽0+𝛽1

1+ф𝑠1̅𝑒𝛽0+𝛽1
, 

𝜉𝛽0𝛽1
= −𝐸 [

𝜕2𝑙

𝜕𝛽0𝜕𝛽1
] =

𝑛1𝑠1̅𝑒𝛽0+𝛽1

1+ф𝑠1̅𝑒𝛽0+𝛽1
,  

𝜉𝛽1𝛽1
= −𝐸 [

𝜕2𝑙

𝜕𝛽1
2] =

𝑛1𝑠1̅𝑒𝛽0+𝛽1

1+ф𝑠1̅𝑒𝛽0+𝛽1
,  

where 𝐸(∑ 𝑦0𝑗
𝑛0
𝑗=1 ) = 𝑛0�̅�0𝑒𝛽0 , 𝐸(∑ 𝑦1𝑗

𝑛1
𝑗=1 ) = 𝑛1�̅�1𝑒𝛽0+𝛽1. We also set   𝑠0𝑗 = �̅�0 and  

𝑠1𝑗 = �̅�1 for simplification. 

The Fisher information matrix can be expressed as: 

𝐼 = 𝐸 (−
𝜕2𝑙

𝜕2(𝛽0,𝛽1)
) = (

𝐴 + 𝐵 𝐵
𝐵 𝐵

),         (29) 

where 𝐴 =
𝑛0𝑠0̅𝑒𝛽0

1+𝜙𝑠0̅𝑒𝛽0
 and  𝐵 =

𝑛1𝑠1̅𝑒𝛽0+𝛽1

1+𝜙𝑠1̅𝑒𝛽0+𝛽1
. 

Let (�̂�0, �̂�1)′ be the MLEs of model parameters (𝛽0, 𝛽1)′. The asymptotic normality and 

consistency of (𝛽0, 𝛽1) follow the large-sample properties of MLE; and the variance-

covariance matrix of (�̂�0, �̂�1)′ is the inverse of information matrix of  𝐼𝑛0,𝑛1
(𝛽0, 𝛽1) 

asymptotically and it is: 

∑(�̂�0, �̂�1) = 𝐼− = [
1/𝐴 −1/𝐴

−1/𝐴 1/𝐴 + 1/𝐵
]. 

Thus, the variance of �̂�1 is  

Var (�̂�1) =
1

𝐴
+

1

𝐵
=

1+𝜙𝑠0̅𝑒𝛽0

𝑛0𝑠0̅𝑒𝛽0
+

1+𝜙𝑠1̅𝑒𝛽0+𝛽1

𝑛1𝑠1̅𝑒𝛽0+𝛽1
=

1

𝑛0
(

1+𝜙𝑠0̅𝑒𝛽0

𝑠0̅𝑒𝛽0
+

1+𝜙𝑠1̅𝑒𝛽0+𝛽1

𝑘𝑠1̅𝑒𝛽0+𝛽1
),  (30) 
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where 𝑘 = 𝑛1/𝑛0. Replacing 𝛾0 = 𝑒𝛽0, 𝛾1 = 𝑒𝛽0+𝛽1,  𝜌 =
𝛾1

𝛾0
= 𝑒𝛽1 , 𝑤 =

𝑠1̅

𝑠0̅
, 𝑢0 =

�̅�0𝛾0 and  𝑢1 = �̅�1𝛾1 = 𝑤𝜌𝑢0  in equation (30), the variance of �̂�1  becomes 

Var (�̂�1) =
1

𝑛0
(

1+𝜙𝑠0̅𝛾0

𝑠0̅𝛾0
+

1+𝜙𝑠1̅𝛾1

𝑘𝑠1̅𝛾1
) =

1

𝑛0
(

1+𝜙𝑢0

𝑢0
+

1+𝜙𝑢1

𝑘𝑢1
) =

1

𝑛0
(

1+𝜙𝑢0

𝑢0
+

1+𝜙𝑤𝜌𝑢0

𝑘𝑤𝜌𝑢0
) 

=
1

𝑛0
[

1

𝑢0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
)𝜙],       (31) 

where w denotes the ratio of mean size factor for a gene g in condition i and ρ denotes a 

fold change. 

 Wald’s Test statistic: To test the null hypothesis 𝐻0: 𝛽1 = 0, �̂�1 asymptotically 

follows a normal distribution with mean log(𝜌) = log (
𝛾1

𝛾0
) and variance Var (�̂�1) with 

𝜌 = 1 under 𝐻0.  The two-sided Wald’s test is to reject 𝐻0 if 

|𝑍𝑤| =
|�̂�1|

√𝑉0(�̂�1)

> 𝑍1−
𝛼

2
.        (32) 

Thus, a power of (1 − 𝜷) is obtained under the alternative hypothesis 𝐻1 : 𝛽1 ≠ 0.  When 

|𝑍𝑤| > 𝑍1−𝛼/2, an approximately 2-sided Wald’s test of �̂�1with an expected mean 

log(𝜌) = log (
𝛾1

𝛾0
)and variance 𝑉1 can be expressed as:  

| �̂�1−𝐸(�̂�1)|

√𝑉1(�̂�1)

> [
𝑍1−𝛼/2√𝑉0(�̂�1)− log(

𝛾1
𝛾0

)

√𝑉1(�̂�1)

]. 

Hence, the approximate power can be expressed as: 
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1 − 𝛽 = 1 − 𝜙 [
𝑍1−𝛼/2√𝑉0(�̂�1)−√𝑛0 log(

𝛾1
𝛾0

)

√𝑉1(�̂�1)

].        

Solving the above equation , we obtain the sample size formula as: 

𝑛0 =
(𝑍1−𝛼/2√𝑉0+𝑍1−𝛽√𝑉1)2

{log (𝜌)}2 ,       (33) 

where 𝑍𝑝 is the quantile of the standard normal distribution, 𝜌 =
𝛾1

𝛾0
 denotes a fold change 

of a gene between two groups under 𝐻1,  𝑉0 and 𝑉1 are the corresponding variance 

proportion estimated in  equation (10) under 𝐻0 and 𝐻1, respectively, and defined as: 

𝑉0 =
1

�̃�0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
) 𝜙,        (34) 

𝑉1 =
1

𝑢0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
) 𝜙,        (35) 

where �̃�0 and 𝑢0 are the estimated and the true mean read counts under 𝐻0 and under 𝐻1, 

respectively.  

Estimation of variance under 𝑯𝟎: The mean read counts �̃�0 in the control group in 

equation (34) can be estimated through the following approaches that are similar to the 

methods by Zhu et al. [39]. 

Method 1 (M1): Use the true mean read counts 𝑢0 

 Let �̃�0 equal to the true 𝑢0 and �̃�1 equal to the true 𝜌𝑤𝑢0, which is equivalent to 

�̃�0 = 𝛾0 and �̃�1 = 𝛾1 = 𝜌𝛾0 . Then, we have 𝑉0𝑀1 = 𝑉1.  

Thus the sample size formula under 𝑉0𝑀1 = 𝑉1 in equation (33) becomes: 
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𝑛𝑀1 =
(𝑍1−𝛼/2+𝑍1−𝛽)

2
𝑉1

{log (𝜌)}2 ,        (36) 

where 𝑉1 =
1

𝑢0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
) 𝜙 =

1

�̅�0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
) 𝜙. 

These true parameters can be estimated by the unconstrained maximum likelihood 

estimation (MLE) similar to the method by Li et al.[37]. We obtain  �̃�0 = �̅�0 and 

�̃�1 = 𝜌𝑤�̃�0 , where �̃�0 is estimated from the sample mean ( �̅�0) in the control group [23, 

37]. 

Method 2 (M2): Use the MLE under 𝐻0 

 Under 𝐻0:  𝜌 =
𝛾1

𝛾0
= 1, we used a similar approach as that in Zhu et al. to 

estimate �̃�0 and �̃�0.  

Calculating MLEs of true expression parameter (𝜸𝟎 and 𝜸𝟏) under unrestricted and 

restricted scenarios: The log likelihood function (l) with respect to  𝛾0 and 𝛾1 in 

equation (22) can be written as 

𝑙 = ∑ ∑ [log 
𝛤(𝜙−1+𝑦𝑖𝑗)

𝛤(𝜙−1)𝑦𝑖𝑗!
+ 𝑦𝑖𝑗log 𝜙𝑠𝑖𝑗𝛾𝑖 − (𝑦𝑖𝑗 +

1

𝜙
) log(1 + 𝜙𝑠𝑖𝑗𝛾𝑖)]

𝑛𝑖
𝑗=1

1
𝑖=0  .    

Unrestricted scenario: The MLEs of (�̂�0, �̂�1)′ can be estimated by setting the partial 

derivative of l in B1 with the respect to (𝛾0, 𝛾1)′ to zero and then solving. 

𝜕𝑙

𝜕𝛾0
=

1

𝛾0
∑ 𝑦0𝑗

𝑛0
𝑗=1 −

ф𝑠0̅

1+ф𝑠0̅𝛾0
∑ 𝑦0𝑗

𝑛0
𝑗=1 −

𝑛0𝑠0̅

1+ф𝑠0̅𝛾0
,    (37) 

𝜕𝑙

𝜕𝛾1
=

1

𝛾1
∑ 𝑦1𝑗

𝑛1
𝑗=1 −

ф𝑠1̅

1+ф𝑠1̅𝛾1
∑ 𝑦1𝑗

𝑛1
𝑗=1 −

𝑛0𝑠1̅

1+ф𝑠1̅𝛾1
,     (38) 

where setting 𝑠0𝑗 = �̅�0and 𝑠1𝑗 = �̅�1 for simplification. 
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Setting equations 37 and 38 to zero and solving, we get �̂�0 =
�̅�0

𝑠0̿
, �̂�1 =

�̅�1

𝑠1̿
, �̂�0 = �̅�0 and 

�̂�1 = �̅�1.Thus, the MLEs of (�̂�0, �̂�1) are �̂�0 = 𝑙𝑜𝑔(�̂�0) = 𝑙𝑜𝑔 (
�̅�0

𝑠0̿
), and �̂�1 = 𝑙𝑜𝑔 (

�̂�1

�̂�0
) =

𝑙𝑜𝑔 (
�̅�1

𝑤�̅�0
). 

Restriction scenario: Under null hypothesis (𝐻0):  𝛾0 = 𝛾1,  the parameter 𝛾1 for l in 

(37) is replaced by 𝛾0. We take the partial derivative of l with respect to 𝛾0 and get 

𝜕𝑙

𝜕𝛾0
=

1

𝛾0
∑ 𝑦0𝑗

𝑛0
𝑗=1 −

ф𝑠0̅

1+ф𝑠0̅𝛾0
∑ 𝑦0𝑗

𝑛0
𝑗=1 −

𝑛0𝑠0̅

1+ф𝑠0̅𝛾0
+

1

𝛾0
∑ 𝑦1𝑗

𝑛1
𝑗=1 −

ф𝑠1̅

1+ф𝑠1̅𝛾0
∑ 𝑦1𝑗

𝑛1
𝑗=1 −

𝑛0𝑠1̅

1+ф𝑠1̅𝛾0
.     (39) 

For simplification, we set �̅�0 = �̅�1 = �̅�, and �̅� =
𝑠0̅+𝑠1̅

2
=

𝑠0̅(1+𝑤)

2
. Thus, we get �̃�0 and 

�̃�0 by setting equation 39 to zero and solving. Thus, under 𝐻0, the MLEs of  �̃�0 and  �̃�0 

are 

�̃�0 =
𝑛0�̅�0+𝑛1�̅�1

(𝑛0+𝑛1)𝑠̅
=

𝑛0𝑠0̅𝛾0+𝑛1𝑠1̅𝛾1

(𝑛0+𝑛1)
�̿�0(1+𝑤)

2

=
2(1+𝑘𝑤𝜌)𝛾0

(1+𝑘)(1+𝑤)
,    (40) 

�̃�0 = �̅�0�̃�0 =
2(1+𝑘𝑤𝜌)𝑢0

(1+𝑘)(1+𝑤)
,    (41) 

where 𝑢0, the true mean read counts in the control group, can be estimated from the 

sample mean. Thus, we have 𝑉0𝑀2 =
1

�̃�0
(1 +

1

𝑘𝑤𝜌
) + (1 +

1

𝑘
) 𝜙.Thus, the sample size 

formula under 𝑉0 = 𝑉0𝑀2 in (33) becomes: 

𝑛𝑀2 =
(𝑍1−𝛼/2√𝑉0𝑀2+𝑍1−𝛽√𝑉1)

2

{log (𝜌)}2 .       (42) 

2.2 Sample size formulas in the case of testing multiple genes simultaneously 

The sample size formulas for a single gene are defined in equations (36) and (42), 

where 𝜶 is the significance level and (1 − 𝛽) is the power in percentile. In the case of 
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testing multiple genes, replacing α with 𝛼∗ in equations (36, 42), the corresponding 

sample size calculation formulas corrected by FDR at level  𝑓 are, respectively,  

𝑛𝑀1∗ =
(𝑍1−𝛼∗/2+𝑍1−𝛽)

2
𝑉1

{log (𝜌)}2 ,        (43) 

𝑛𝑀2∗ =
(𝑍1−𝛼∗/2√𝑉0𝑀2+𝑍1−𝛽√𝑉1)

2

{log (𝜌)}2 .       (44) 

3. Simulation studies for performance evaluation and results 

Simulations were carried out to evaluate the performance of our sample size 

calculation methods and the published method. It includes two parts: in the first part, 

sample sizes and power are estimated in case of testing a single gene under a balanced 

design; in the second part, sample sizes and power are estimated in the case of testing 

multiple genes under a balanced or imbalanced experimental design with different read 

depth.  

3.1. Sample size and power calculations in the case of testing a single gene 

Simulation study: In this simulation, the mean read counts 𝑢0 in the control 

group are set to be 1, 5, 10 or 50; the fold change ρ= 𝛾1

𝛾0
 is set to be 

0.5, 0.8, 1.2, 1.5, 2 or 3; the ratio of mean size factors  𝑤 =
𝑠1̅

𝑠0̅
 is set to be 1 for equal read 

depth; the constant dispersion parameter ф is set to be 0.1, 0.5 or 1; the ratio of sample 

sizes is set to be 𝑘 =
𝑛1

𝑛0
= 1 or 

3

2
, where 𝑘 = 1 is for the balanced design.  

For each combination of these parameter settings, sample sizes in the case of 

testing a single gene were calculated using our formulas in (36) and (42), and the existing 
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method for an 80% nominal power and a two-sided Wald’s test at the significance level 

of α=0.05, respectively. The corresponding power for the estimated sample size was 

calculated via simulation using the Wald’s test in (34).  

Given the estimated sample size and each designed parameter setting, two sets of 

NB random variables were generated for two treatment groups: the control and the 

experimental group using an R script. For the control group, the random samples were 

generated given the parameters 𝑛0, 𝑢0 and ф.  For the treatment group, the random 

samples are generated given the parameters 𝑛1 = 𝑘𝑛0, 𝑢1 = 𝜌𝑤𝑢0 and ф. The Wald’s 

test in (32) for our methods is used for testing the significance with the coefficient 𝛽1 

estimated from the MLE �̂�1 =
�̅�1

𝑤�̅�0
 and the variance estimated from (34) under the two 

different approaches. The fold change between the two groups is considered significantly 

different when the 2-sided p-value ≤ 0.05.  We repeated the procedure 5000 times, and 

the power was calculated as the percentage of time that the H0 was rejected in the 5000 

simulated data. The results are listed in Table 7 and 8.  
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Table 7: Sample size (𝑛0) and simulated power in parentheses from three methods given 

a balanced design k = 1, an equal read depth w = 1 and an 80% nominal power. 

ρ ф 𝒖𝟎 𝒏𝟎 (Simulated power) 

& 𝛼 = 0.05 

 

𝒏𝟎 (Simulated power) 

& 𝜶∗ = 0.000425 

 

Simulated power 

& 𝜶∗ = 0.000425 

 

M1 M2 M3 M1 M2 M1 M2: 

𝒏𝟎 = 𝒏𝑴𝟏 

M3: 

𝒏𝟎 = 𝒏𝑴𝟏 

0.5 0.1 1 52(.78) 63(.77) 54(.81) 127(.79) 159(.79) 124(.80) .62 .83 
5 13(.79) 15(.79) 14(.82) 32(.79) 38(.79) 32(.82) .66 .82 
10 8(.78) 9(.77) 9(.83) 20(.78) 23(.78) 20(.80) .67 .80 
50 4(.77) 4(.75) 5(.77) 10(.77) 11(.79) 11(.83) .72 .77 

0.5 1 65(.78) 77(.78) 68(.80) 159(.78) 190(.78) 157(.80) .66 .81 
5 26(.79) 28(.78) 27(.81) 63(.78) 70(.78) 64(.80) .72 .79 
10 21(.78) 22(.78) 22(.80) 52(.80) 55(.80) 53(.81) .75 .80 
50 17(.79) 18(.80) 18(.81) 42(.80) 43(.81) 43(.81) .79 .80 

1 1 82(.80) 93(.79) 84(.81) 198(.79) 230(.79) 198(.81) .68 .81 
5 42(.78) 45(.77) 44(.80) 103(.80) 110(.81) 105(.81) .75 .81 
10 38(.81) 39(.80) 39(.81) 91(.79) 94(.79) 93(.80) .77 .79 
50 34(.80) 34(.80) 35(.81) 82(.80) 82(.79) 84(.81) .79 .79 

0.8 0.1 1 386(.80) 414(.79) 396(.81) 938(.79) 1015(.79) 946(.80) .74 .80 
5 102(.80) 108(.79) 105(.81) 249(.79) 264(.79) 251(.80) .75 .80 
10 67(.80) 70(.80) 69(.80) 163(.79) 170(.79) 164(.80) .76 .80 
50 39(.80) 39(.80) 40(.81) 94(.80) 95(.80) 95(.81) .79 .80 

0.5 1 512(.79) 540(.78) 532(.80) 1244(.79) 1321(.80) 1254(.80) .75 .79 
5 229(.80) 234(.79) 232(.80) 555(.79) 570(.80) 559(.80) .78 .79 
10 193(.80) 196(.79) 196(.80) 469(.79) 477(.79) 472(.80) .78 .79 
50 165(.80) 165(.80) 166(.81) 400(.80) 402(.80) 402(.80) .79 .80 

1 1 670(.81) 687(.80) 682(.81) 1627(.79) 1704(.79) 1639(.80) .76 .79 
5 386(.80) 392(.80) 391(.81) 938(.80) 953(.80) 944(.81) .79 .80 
10 351(.79) 353(.79) 354(.80) 852(.79) 859(.79) 857(.79) .78 .79 
50 322(.80) 323(.80) 325(.81) 783(.80) 784(.80) 787(.81) .80 .80 

1.2 0.1 1 480(/81) 452(.81) 491(.80) 1166(.81) 1088(.81) 1175(.80) .85 .79 
5 134(.80) 128(.80) 137(.80) 325(.81) 309(.81) 328(.81) .84 .80 
10 91(.80) 88(.80) 92(.79) 220(.80) 212(.80) 222(.80) .82 .80 
50 56(.79) 55(.79) 57(.80) 136(.81) 134(.80) 137(.81) .82 .81 

0.5 1 669(.81) 641(.81) 681(.81) 1624(.80) 1547(.80) 1636(.80) .83 .79 
5 323(.81) 317(.81) 327(.81) 784(.80) 768(.81) 788(.81) .82 .80 
10 279(.80) 277(.81) 282(.80) 678(.81) 671(.81) 682(.81) .81 .81 
50 245(.81) 244(.81) 247(.81) 594(.81) 593(.81) 598(.82) .81 .81 

1 1 905(.81) 878(.81) 919(.80) 2198(.80) 2120(.80) 2213(.80) .82 .79 
5 559(.80) 553(.80) 564(.81) 1357(.80) 1341(.80) 1364(.80) .81 .79 
10 516(.81) 513(.81) 520(.81) 1252(.80) 1244(.80) 1258(.80) .80 .79 
50 481(.81) 480(.81) 485(.81) 1168(.80) 1166(.80) 1173(.80) .80 .80 

1.5 0.1 1 89(.81) 78(.81) 92(.80) 216(.82) 185(.83) 218(.80) .90 .80 
5 25(.82) 23(.82) 27(.82) 62(.82) 56(.82) 63(.81) .88 .80 
10 18(.82) 16(.80) 18(.81) 43(.82) 39(.80) 43(.80) .86 .80 
50 11(.79) 11(.79) 12(.82) 27(.79) 26(.78) 28(.81) .81 .79 

0.5 1 127(.81) 116(.81) 131(.80) 309(.81) 278(.82) 311(.80) .87 .80 
5 64(.81) 61(.80) 65(.80) 155(.81) 148(.81) 156(.81) .83 .80 
10 56(.81) 55(.81) 57(.81) 135(.80) 132(.80) 137(.81) .82 .80 
50 49(.80) 49(.80) 50(.80) 120(.80) 119(.80) 121(.81) .81 .80 

1 1 175(.81) 164(.81) 180(.80) 425(.80) 394(.81) 429(.80) .85 .79 
5 111(.79) 109(.80) 114(.80) 270(.80) 264(.80) 273(.80) .82 .80 
10 103(.79) 102(.80) 105(.80) 251(.81) 248(.81) 254(.81) .82 .81 
50 97(.80) 97(.81) 99(.81) 236(.81) 235(.81) 238(.81) .81 .80 

2.0 0.1 1 28(.84) 22(.84) 29(.82) 67(.83) 51(.84) 67(.81) .94 .81 
5 8(.82) 7(.82) 9(.82) 20(.84) 17(.84) 20(.82) .92 .82 
10 6(.84) 5(.79) 6(.81) 14(.83) 12(.81) 14(.81) .89 .81 
50 4(.83) 4(.84) 4(.82) 9(.80) 9(.82) 10(.84) .82 .79 

0.5 1 41(.82) 35(.82) 42(.80) 99(.82) 83(.83) 99(.80) .90 .80 
5 21(.81) 20(.81) 22(.81) 52(.82) 48(.81) 53(.82) .85 .81 
10 19(.81) 18(.80) 20(.82) 46(.81) 44(.80) 47(.82) .83 .80 
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50 17(.82) 17(.82) 18(.83) 41(.80) 41(.81) 42(.81) .81 .80 
1 1 57(.81) 51(.81) 59(.80) 139(.81) 123(.81) 140(.80) .87 .79 

5 38(.81) 36(.80) 39(.81) 91(.80) 88(.80) 93(.80) .82 .79 
10 35(.81) 35(.82) 36(.81) 85(.81) 84(.81) 87(.81) .82 .80 
50 33(.80) 33(.80) 34(.80) 81(.81) 80(.80) 82(.81) .81 .80 

3.0 0.1 1 10(.87) 7(.86) 10(.81) 24(.87) 15(.85) 23(.83) .98 .85 
5 3(.84) 2(.77) 4(.89) 7(.80) 6(.86) 8(.87) .93 .78 
10 2(.79) 2(.84) 3(.91) 5(.78) 4(.76) 6(.88) .88 .75 
50 1(.65) 1(.67) 2(.90) 4(.87) 3(.72) 4(.85) .89 .85 

0.5 1 15(.64) 12(.82) 16(.83) 37(.84) 28(.82) 37(.82) .94 .82 
5 8(.78) 8(.82) 9(.82) 20(.82) 18(.80) 21(.83) .86 .79 
10 7(.77) 7(.79) 8(.81) 18(.81) 17(.80) 19(.82) .83 .78 
50 7(.83) 7(.83) 7(.81) 16(.80) 16(.80) 17(.82) .80 .78 

1 1 22(.83) 19(.82) 23(.82) 53(.83) 44(.82) 53(.81) .91 .81 
5 15(.81) 14(.79) 16(.82) 36(.81) 34(.81) 37(.80) .84 .79 
10 14(.81) 14(.82) 15(.81) 34(.81) 33(.81) 35(.81) .82 .79 
50 13(.80) 13(.80) 14(.81) 127(.79) 159(.79) 124(.80) .81 .78 

 

Table 8: Sample size (𝑛0) and simulated power in parentheses from our two methods 

given an imbalanced design k=3/2, an equal read depth w=1, an 80% nominal power and 

significance level of 𝛼 = 0.05 for testing single gene. 

ρ ф 𝒖𝟎  𝒏𝟎 (Simulated power %) 

 

M1 M2 

0.5 0.1 1 41(0.83) 52(.78) 

5 10(.83) 13(.79) 
10 7(.84) 8(.80) 
50 3(.74) 4(.81) 

0.5 1 52(.83) 63(.77) 
5 21(.80) 23(.78) 
10 17(.79) 19(.79) 
50 14(.78) 15(.80) 

1 1 65(.81) 77(.79) 
5 35(.79) 37(.78) 
10 31(.80) 32(.79) 

50 28(.80) 28(.79) 
0.8 0.1 1 315(.84) 343(.78) 

5 84(.83) 90(.79) 
10 55(.82) 58(.79) 
50 32(.80) 33(.80) 

0.5 1 420(.83) 448(.80) 
5 189(.81) 195(.80) 
10 160(.80) 163(.79) 
50 137(.80) 138(.80) 

1 1 552(.83) 579(.79) 

5 321(.81) 326(.81) 
10 292(.79) 294(.79) 
50 268(.79) 269(.79) 

1.2 0.1 1 407(.86) 379(.81) 
5 113(.84) 107(.81) 
10 76(.82) 73(.80) 
50 47(.81) 46(.79) 

0.5 1 564(.84) 536(.81) 
5 270(.82) 265(.81) 
10 233(.81) 231(.81) 
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50 204(.81) 204(.81) 
1 1 761(.84) 733(.80) 

5 467(.82) 461(.80) 
10 430(.81) 428(.81) 
50 401(.81) 400(.81) 

1.5 0.1 1 77(.86) 66(.83) 
5 22(.85) 19(.82) 
10 15(.85) 14(.83) 
50 9(.79) 9(.79) 

0.5 1 109(.85) 97(.81) 
5 54(.83) 51(.81) 
10 47(.81) 46(.81) 
50 41(.80) 41(.80) 

1 1 149(.84) 137(.81) 
5 93(.80) 91(.80) 
10 86(.80) 85(.81) 
50 81(.81) 81(.81) 

2.0 0.1 1 25(.89) 19(.85) 
5 7(.85) 6(.82) 
10 5(.83) 4(.79) 
50 3(.79) 3(.80) 

0.5 1 35(.85) 30(.83) 
5 18(.83) 17(.83) 
10 16(.83) 15(.81) 

50 14(.83) 14(.81) 
1 1 49(.83) 43(.82) 

5 32(.82) 30(.81) 
10 29(.81) 29(.82) 
50 28(.81) 28(.81) 

3.0 0.1 1 9(.90) 6(.87) 
5 3(.90) 2(.84) 
10 2(.87) 2(.90) 
50 1(.71) 1(.72) 

0.5 1 13(.86) 10(.83) 

5 7(.81) 6(.79) 
10 6(.80) 6(.82) 
50 6(.84) 6(.84) 

1 1 19(.84) 16(.83) 
5 12(.79) 12(.81) 
10 12(.83) 11(.79) 
50 11(.81) 11(.81) 

 

Results: Table 7 illustrates the sample size and simulated power in parentheses 

for the above settings with an equal read depth 𝑤 = 1  under a balanced design 𝑘 = 1 in 

the case of testing a single gene. We first examined the changing pattern of the sample 

size with different parameter values of 𝑢0, ϕ and ρ for all three methods. Table 7 shows 

that the sample size n in all the methods decreases as read counts 𝑢0 increases from 1 to 

50 given a fixed ρ and ф or vice versa, which is expected. This pattern suggests that a 

larger sample size for a lowly expressed gene is required in order to achieve an empirical 
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power close to 80% in a DEG analysis. Given fixed 𝑢0 and ρ, the sample size increases as 

ϕ increases. This is also expected due to higher variation of the genes across samples. 

Moreover, given fixed ϕ and 𝑢0, the sample size decreases as ρ increases. The results 

suggest that a smaller n is required for a larger fold change of a gene between two 

conditions. Similarly, Table 8 for testing a single gene illustrates the sample size and 

simulated power (in parentheses) for the above settings in case of an imbalanced design 

with 𝑘 = 3/2 and equal read depth 𝑤 = 1. In this situation, a smaller sample size for the 

control group is required comparing with a balanced design in Table 7. But a larger 

sample size for the treatment group is required in an imbalanced design. 

The performance of these methods is further evaluated by its accuracy, which is 

the absolute difference between the empirical power and nominal power (80%). The 

better sample size method should have the empirical power close to the nominal power 

suggested in the previous study [39]. Overall, samples sizes estimated from our two 

methods and the existing method vary in different parameter settings. The corresponding 

power calculated from the simulation studies is close to the nominal power 80% in most 

cases for all the methods. However, we found that the empirical power estimated by 

method one (M1) and method three (M3, the existing method) appear to be closer to an 

80% nominal power than that achieved by method two (M2). Although M2 trails to the 

other methods in some settings, it appears overestimating the sample size when a fold 

change is less than one, and it underestimates the sample size when a fold change is 

greater than one. A further comparison among these methods will be discussed when we 

test multiple genes. 



52 
 

3.2. Sample size and power estimation in the case of testing multiple genes with FDR-

controlling 

In this simulation, the total number of genes W in RNA-seq data is set to be 

10,000; the true DEG 𝑊1 is set to be 100, and 𝑊0 = 𝑊 − 𝑊1 is the number of genes not 

differentially expressed under 𝐻0. The expected number of true DEGs and the empirical 

power corresponding to the nominal power 80% will be estimated. The rest parameter 

settings including 𝑢0, ρ, w, ρ, ф and k are similar to those for testing a single gene. In 

addition, we set = 1 or 1.2 and  𝑘 =
1

3
, 1 or  

3

2
. With these settings, a significance level 

𝛼∗ in (20) is calculated as 0.000425 given a nominal FDR (𝑓 = 0.05).  

For each combination of these parameter settings, sample sizes were calculated 

using the formulas in (43-44), and the existing method given an 80% nominal power and 

a two-sided test at 𝛼∗ = 0.000425, respectively. The corresponding power from the 

calculated sample size was obtained via a simulation using a two-sided Wald’s test 

statistic in (32).  

Given the estimated sample size and each designed parameter setting, an 

empirical power was calculated from three methods via simulation, using similar 

procedure described for testing a single gene. A fold change between two treatment 

groups for the multiple corrections is considered to be significantly different when a two-

sided p-value is ≤ 𝛼∗ = 0.000425, which is much smaller than the nominal significance 

level 𝜶 = 0.05 for testing a single gene. The empirical power was obtained as the 

percentage of the number of times that the null hypothesis is rejected at the significance 

level 𝛼∗ in the 5000 simulated data.  
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Results for each combination of the desired parameters with different read depth 

w and ratio of sample size k in the case of balanced or imbalanced design will be 

discussed in details. 

Results: The sample size and simulated power in parentheses in the case of a 

balanced design 𝑘 = 1 with equal read depth 𝑤 = 1 when testing multiple genes are also 

listed in Table 7.  We observed that the changing pattern of the sample size varying for 

different parameter values of 𝑢0, ϕ and ρ in the three methods (Table 7) is similar to that 

in the case of  testing a single gene. However, given a similar setting, a much larger 

sample size is required for testing multiple genes compared to a single gene. Since the 

empirical power varies for the corresponding sample sizes from different methods, a 

simulated power for each method is further calculated given a fixed sample size 𝑛𝑀1 

from M1 (Table 7). We observed that M1 and M3 can achieve a higher empirical power 

close to 80% in most settings when the fold change is 0.5 and 0.8. However, M2 can 

achieve a higher power in most settings when the fold change is greater than 1. A further 

comparison of these methods is evaluated by the difference between the simulated power 

and the 80% nominal power. A non-parametric Wilcoxon test and a parametric T-test 

statistic were used for testing the significance, respectively.  The results from both test 

statistics (Table 9) indicate that the estimated power between M1 and M3 is not 

significantly different with a p-value greater than 0.05. However, both of these methods 

are significantly different from M2 with p-values less than 0.01. 

Table 10 represents the sample size and simulated power in parentheses from our 

two methods in the case of an imbalanced design 𝑘 = 3/2 with read depth 𝑤 = 1 and 

𝑤 = 1.2, respectively. Given the same settings and 𝑘 = 2/3, the sample size and 
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simulated power in parentheses are listed in Table 11. We observed that the required 

sample size with unequal size factors given 𝑤 = 1.2 is slightly smaller than that with an 

equal size factors (Tables 10 and 11). 

Table 9: p-values obtained from a paired Wilcox test and t-test given the absolute value 

of difference between simulated power and an 80% nominal power for each method. 

Wilcox 
test 

 M2 M3.exact 

M1 <0.0001 0.280 

M2  <0.0001 

T test    

M1 <0.0001 0.267 

M2  <0.0001 

 

Table 10: Sample sizes and simulated power in parentheses from two methods for testing 

multiple genes given an unequal sample size k = 3/2, an 80% nominal power, a 0.05 FDR 

and the significant level 𝛼∗= 0.000425.  

ρ ф 𝒖𝟎  𝒏𝟎 (Simulated power) 

& 𝑤 = 1 

 

 𝒏𝟎 (Simulated power) 

& 𝑤 = 1.2 

 

M1 M2 M1 M2 

0.5 0.1 1 99(.77) 131(.78) 90(.77) 120(.77) 
5 25(.77) 31(.76) 23(.76) 29(.76) 
10 16(.77) 19(.76) 15(.76) 18(.76) 
50 8(.75) 9(.76) 8(.77) 9(.78) 

0.5 1 126(.77) 157(.77) 117(.78) 147(.78) 
5 52(.78) 58(.78) 50(.79) 56(.78) 
10 42(.78) 45(.77) 41(.78) 44(.78) 
50 35(.79) 36(.80) 35(.80) 35(.79) 

1 1 159(.79) 190(.77) 150(.79) 180(.78) 
5 85(.80) 91(.79) 83(.80) 89(.80) 
10 75(.79) 79(.79) 74(.79) 77(.79) 
50 68(.79) 69(.80) 68(.80) 68(.79) 

0.8 0.1 1 765(.79) 842(.80) 712(.79) 778(.79) 
5 204(.79) 220(.79) 193(.79) 207(.80) 
10 134(.79) 142(.79) 129(.79) 135(.79) 
50 78(.80) 79(.80) 77(.80) 78(.80) 

0.5 1 1021(.79) 1098(.79) 967(.79) 1034(.79) 
5 459(.80) 475(.79) 449(.79) 462(.79) 
10 389(.79) 397(.80) 384(.80) 390(.79) 
50 333(.79) 335(.80) 332(.79) 333(.79) 

1 1 1340(.79) 1417(.79) 1286(.79) 1353(.79) 
5 778(.80) 794(.80) 768(.80) 781(.80) 
10 708(.79) 716(.79) 703(.79) 709(.79) 
50 652(.79) 653(.79) 651(.79) 652(.79) 
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1.2 0.1 1 987(.81) 910(.81) 934(.82) 846(.81) 
5 274(.82) 258(.82) 263(.81) 246(.81) 
10 185(.81) 177(.81) 179(.80) 171(.80) 
50 113(.80) 112(.80) 112(.80) 111(.80) 

0.5 1 1370(.80) 1292(.80) 1316(.80) 1228(.80) 
5 656(.81) 641(.81) 646(.82) 628(.81) 
10 567(.81) 559(.81) 562(.81) 553(.81) 
50 496(.81) 494(.81) 495(.82) 493(.81) 

1 1 1847(.80) 1770(.80) 1794(.80) 1706(.80) 
5 1134(.81) 1118(.80) 1123(.80) 1106(.81) 
10 1045(.81) 1037(.81) 1039(.80) 1031(.81) 
50 973(.80) 972(.80) 972(.80) 971(.80) 

1.5 0.1 1 187(.83) 155(.83) 178(.83) 145(.83) 
5 53(.82) 47(.83) 51(.82) 44(.82) 
10 36(.81) 33(.81) 35(.82) 32(.81) 
50 23(.81) 22(.80) 22(.79) 22(.81) 

0.5 1 264(.82) 233(.82) 255(.82) 222(.82) 
5 130(.81) 124(.81) 128(.81) 122(.81) 
10 113(.81) 110(.81) 112(.81) 109(.81) 
50 100(.80) 99(.80) 100(.80) 99(.80) 

1 1 361(.81) 329(.81) 352(.82) 319(.81) 
5 227(.81) 220(.80) 225(.81) 218(.80) 
10 210(.81) 207(.81) 209(.81) 206(.81) 
50 197(.81) 196(.81) 196(.81) 196(.81) 

2.0 0.1 1 59(.84) 43(.84) 57(.85) 40(.84) 
5 17(.83) 14(.84) 17(.85) 13(.82) 
10 12(.83) 10(.82) 12(.84) 10(.83) 
50 10(.93) 8(.85) 8(.84) 7(.79) 

0.5 1 86(.83) 70(.83) 84(.84) 67(.83) 
5 44(.82) 40(.80) 43(.81) 40(.81) 
10 38(.80) 37(.81) 38(.81) 36(.79) 
50 34(.81) 34(.81) 34(.80) 34(.81) 

1 1 119(.82) 103(.82) 117(.82) 100(.81) 
5 77(.81) 73(.80) 76(.81) 73(.81) 
10 71(.80) 70(.81) 71(.80) 70(.81) 
50 67(.81) 67(.81) 67(.81) 67(.81) 

3.0 0.1 1 22(.87) 13(.87) 21(.89) 12(.85) 
5 6(.80) 5(.86) 6(.81)  5 (.87) 
10 5(.88) 4(.87) 5(.88) 4(.88) 
50 4(.94) 3(.83) 3(.80) 3(.83) 

0.5 1 32(.85) 24(.84) 32(.86) 23(.83) 
5 17(.82) 15(.80) 17(.83) 15(.81) 
10 15(.82) 14(.80) 15(.82) 14(.81) 
50 14(.83) 13(.79) 14(.83) 13(.79) 

1 1 46(.84) 37(.83) 45(.84) 36(.81) 
5 30(.81) 28(.80) 30(.82) 28(.81) 
10 28(.82) 27(.81) 28(.81) 27(.81) 
50 27(.81) 27(.82) 27(.81) 27(.82) 
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Table 11: Sample size (𝑛0) and simulated power in parentheses from our two methods given 

k = 2/3,  an 80% nominal power, the significant level 𝛼∗ of 0.000425 and equal read 

depth or unequal read depth of w. 

ρ ф 𝒖𝟎  𝒏𝟎 (Simulated power) 

& 𝑤 = 1 

 

𝒏𝟎 (Simulated power %) 

& 𝒘 = 1.2 

 

M1 M2 M1 M2 

0.5 0.1 1 169(.80) 200(.79) 149(.79) 183(.79) 
5 42(.80) 48(.79) 38(.80) 45(.80) 
10 26(.79) 29(.78) 24(.79) 27(.79) 
50 13(.79) 14(.81) 13(.81) 13(.78) 

0.5 1 208(.79) 240(.79) 188(.78) 223(.79) 
5 81(.79) 88(.80) 77(.80) 84(.79) 
10 65(.78) 69(.79) 63(.79) 69(.81) 
50 53(.82) 53(.81) 52(.81) 53(.80) 

1 1 258(.79) 290(.79) 238(.79) 272(.79) 
5 131(.80) 137(.80) 127(.80) 134(.80) 
10 115(.80) 118(.80) 113(.80) 117(.80) 
50 102(.79) 103(.81) 102(.81) 103(.80) 

0.8 0.1 1 1196(.80) 1273(.80) 1076(.80) 1169(.79) 
5 316(.79) 331(.80) 292(.80) 310(.79) 
10 206(.78) 213(.79) 194(.80) 203(.79) 
50 118(.80) 119(.80) 115(.81) 117(.80) 

0.5 1 1579(.81) 1656(.80) 1459(.80) 1552(.80) 
5 698(.79) 714(.79) 675(.80) 693(.80) 
10 588(.79) 596(.80) 576(.79) 596(.80) 
50 500(.80) 502(.80) 498(.79) 500(.79) 

1 1 2057(.80) 2134(.80) 1938(.80) 2031(.81) 
5 1177(.80) 1192(.79) 1153(.80) 1172(.80) 
10 1067(.79) 1075(.80) 1055(.80) 1064(.81) 
50 979(.79) 980(.79) 976(.79) 978(.79) 

1.2 0.1 1 1433(.81) 1356(.81) 1314(.81) 1253(.80) 
5 401(.81) 386(.81) 377(.80) 365(.81) 
10 272(.81) 265(.81) 260(.80) 254(.80) 
50 169(.80) 168(.81) 167(.80) 166(.80) 

0.5 1 2007(.80) 1929(.81) 1887(.80) 1826(.80) 
5 975(.79) 959(.80) 951(.80) 939(.80) 
10 846(.81) 838(.81) 834(.80) 838(.81) 
50 742(.80) 741(.80) 740(.80) 739(.80) 

1 1 2723(.80) 2646(.80) 2604(.80) 2543(.80) 
5 1691(.80) 1676(.80) 1667(.79) 1655(.79) 
10 1562(.80) 1555(.80) 1550(.80) 1544(.80) 
50 1459(.79) 1458(.79) 1457(.80) 1455(.80) 

1.5 0.1 1 261(.82) 229(.81) 241(.82) 213(.81) 
5 75(.81) 69(.81) 71(.81) 66(.81) 
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10 52(.80) 49(.81) 50(.82) 47(.80) 
50 34(.80) 33(.79) 33(.79) 33(.80) 

0.5 1 377(.81) 345(.82) 357(.81) 329(.82) 
5 191(.81) 185(.81) 187(.80) 182(.81) 
10 168(.80) 165(.80) 166(.80) 165(.82) 
50 150(.80) 149(.80) 149(.80) 149(.80) 

1 1 522(.80) 490(.80) 502(.80) 474(.80) 
5 336(.79) 330(.79) 332(.80) 327(.80) 
10 313(.80) 310(.80) 311(.80) 308(.80) 
50 294(.80) 294(.80) 294(.80) 293(.80) 

2.0 0.1 1 79(.84) 63(.84) 74(.83) 59(.83) 
5 24(.82) 21(.83) 23(.83) 20(.82) 
10 17(.81) 15(.81) 16(.80) 15(.83) 
50 11(.77) 11(.79) 11(.78) 11(.80) 

0.5 1 119(.83) 103(.82) 114(.82) 99(.82) 
5 63(.80) 60(.81) 62(.80) 59(.80) 
10 57(.81) 55(.80) 56(.80) 55(.81) 
50 51(.79) 51(.80) 51(.79) 51(.80) 

1 1 169(.82) 152(.81) 164(.82) 148(.81) 
5 113(.80) 110(.80) 112(.80) 109(.80) 
10 106(.80) 105(.80) 106(.80) 104(.80) 
50 101(.80) 100(.79) 100(.80) 100(.80) 

3.0 0.1 1 28(.87) 19(.85) 26(.85) 18(.85) 
5 9(.84) 7(.81) 8(.79) 7(.85) 
10 6(.78) 5(.75) 6(.80) 5(.76) 
50 4(.71) 4(.74) 4(.72) 4(.74) 

0.5 1 43(.81) 35(.81) 42(.82) 34(.81) 
5 24(.79) 23(.81) 24(.81) 23(.82) 
10 22(.81) 21(.80) 22(.81) 21(.80) 
50 20(.79) 20(.80) 20(.80) 20(.80) 

1 1 63(.81) 55(.82) 62(.82) 53(.81) 
5 44(.80) 43(.81) 44(.80) 42(.80) 
10 42(.80) 41(.80) 42(.80) 41(.80) 
50 40(.79) 40(.79) 40(.79) 40(.79) 

 

 

4. An example of real RNA-seq dataset 

In this example, we illustrate how to estimate the sample size using formulas (21-

22) for testing multiple genes in a real study. The RNA-seq dataset containing forty-one 

Triple Negative Breast Cancer (TNBC) primary tumors and twenty-one uninvolved 

breast tissue samples that were adjacent to TNBC primary tumors in .fastq format were 
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downloaded from NCBI GEO (series ID GSE58135) [28]. The raw sequencing files were 

mapped to the human hg19 reference genome using tophat2 (v2.0.13) with bowtie 

version (2.2.3.0). The mapped counts for 57,773 genes per sample were then extracted 

using HTSeq-scripts-count (version 2.7). Three of the forty-two TNBC samples failed 

during the process of mapping or extraction of the read counts. Therefore, a total of sixty 

samples (21 normal and 39 TNBC samples) are used in this application. After filtering 

the genes with the mean read counts less than one in two groups, the sixty samples 

containing 36,762 genes were loaded into edgeR for estimating the parameters of 

common dispersion and size factors. We used the “TMM” normalization method to 

estimate the normalization factors called size factors [17]. The mean size factors of �̅�0 in 

the normal group and �̅�1 in the cancer group are 0.936 and 1.065, respectively. Their ratio 

(w) is 1.14. The estimated common dispersion ϕ is 0.49 [22].   

We assumed the top 500 of 36,762 genes (1.4%) are prognostic and have the 

largest fold changes for up-regulated or down-regulated genes. The minimum of average 

read counts among these genes in the control group served as the pilot data and was 

estimated as 𝑢0 ≈ 3 [16]. In addition, the sample sizes were estimated by setting 

𝑢0 = 10, 20 and 50. Suppose we want to set the nominal power to be 80%, which 

indicates we want to identify 400 or more of the prognostic genes. Under the control FDR 

at 𝑓 = 0.05 or 0.01, and 80% power, we can set t = 36,762, 𝑡1 = 500, 𝑡0 = t − 𝑡1 and 

𝑟1 = 400. The parameters  𝜌𝑔 (𝑔 = 1, … , 36,762) were assumed to be unknown. We set 

the mean counts in the control group to be 𝑢0𝑔 = 3, 10, 20 or 50 and FC to be  𝜌𝑔 =

0.5, 1.5, 2 or 3 with common dispersion ф𝑔 = 0.49. With these settings, the new 

𝛼∗ = 5.81 × 10−4 or 1.23 × 10−3 was obtained from equation (14) at a desired 
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FDR (𝑓 = 0.10 or 0.05). Finally, the sample sizes were estimated by substituting  𝛼∗ and 

the power into equations (43-44) for each method (Table 12). 

Table 12: Sample sizes estimated from two methods for a breast cancer RNA-seq data 

given k=1.9, w = 1.14, 𝜙 = 0.49, an 80% nominal power and the significant level 𝛼∗.  

ρ 𝒖𝟎 Sample size(𝒏𝟎) 

FDR = 0.05 & 

 𝜶∗ = 𝟎. 𝟎𝟎𝟎𝟓𝟖𝟏 

Sample size(𝒏𝟎) 

FDR = 0.10 & 

 𝜶∗ = 𝟎. 𝟎𝟎𝟏𝟐𝟐𝟔 

𝒏𝑴𝟏 𝒏𝑴𝟐 𝒏𝑴𝟏 𝒏𝑴𝟐 

0.5 3 53 63 48 57 
10 36 39 32 35 
20 32 34 29 30 
50 30 31 27 28 

0.8 3 469 490 425 443 
10 333 340 302 308 
20 304 308 276 278 
50 287 288 260 261 

1.2 3 667 639 604 579 
10 489 480 443 435 
20 451 447 408 404 
50 428 426 387 386 

1.5 3 132 121 120 110 
10 98 95 89 86 
20 91 89 82 81 
50 86 86 78 78 

2.0 3 44 39 40 35 
10 33 32 30 29 
20 31 30 28 27 
50 29 29 27 28 

3.0 3 17 14 16 13 
10 13 12 12 11 
20 12 12 11 11 
50 12 12 11 10 

 

 

Table 12 reports the sample sizes 𝑛0 in the control group and  𝑛1 = 𝑘𝑛0 in the 

cancer group under different settings for an imbalanced design with 𝑘 = 1.9. We found 
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that the original RNA-seq experiment [28] with a minimum 𝑛0 = 17 and 𝑛1 = 33 from 

method one (M1) can detect more than 80% of the prognostic genes at a two-sided FDR 

(f  = 0.05) and the minimum 𝑢0 = 3 if the desired fold change for up-regulated genes is 3 

or more. For an imbalanced experimental design, a new study needs 53 normal control 

and 101 cancer patient samples from M1 to achieve the detection power at 80% if the 

desired fold change for the down-regulated gene is 2 or more. With the same settings, a 

new study needs 44 normal control and 84 cancer patient samples for the up-regulated 

genes with a desired FC of 2 or more, which is fewer than the down-regulated genes.  As 

the desired FC decreases to 1.5 or 1.2, a new study in each group requires a larger 

number of patients in order to achieve an 80% nominal power at a two-sided test with a 

0.05 FDR. Moreover, Table 12 also shows that a smaller sample size for all settings is 

required if the FDR increases from 0.05 to 0.10.  

5. Discussion and conclusion 

In this study, we used a GLM and a two-sided Wald’s test statistic of the model 

parameter 𝛽1 to derive two novel sample size calculation methods (𝑛𝑀1 and 𝑛𝑀2) for 

RNA-seq data. We incorporated a common dispersion parameter and the size factors via 

a log link function in the GLM with a NB distribution. The variance of the Wald’s test 

was estimated from the variance-covariance matrix with the parameters that are estimated 

from the MLE and CMLE. Since the dispersion parameter has no closed form for the 

MLE, it is difficult to explicitly derive a sample size formula using a Wald’s test statistic. 

Therefore, in this study, we assume that the dispersion parameter is a known constant 

value while deriving the variance from the model parameters.  This alternative choice has 
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been commonly used by previous studies when deriving the sample size from a NB 

distribution [37, 39]. 

 Previous sample size calculations for RNA-seq data focus on a balanced design 

only. In this paper, sample size calculation methods are presented under different settings 

with either a balanced or an imbalanced design at a two-sided test, which is applicable in 

many situations. Comparing with previous studies in identifying DEG, the cutoff value 

for the minimum average read counts per gene is commonly chosen to be one or five, 

while we used a wide range of gene read counts in the control group (1, 5, 10, 20 and 50) 

with a minimum of one read in the case of lowly expressed genes in the simulation. For a 

lowly expressed gene, a larger sample size is needed according to our simulation. 

However, a study requiring a large sample size to achieve a nominal power at 80% or 

higher is not feasible in practice due to the cost. As an alternative, the higher read depth 

sequencing may be chosen to increase the mean read counts in the sample, instead of 

directly increasing the sample size. Moreover, when testing multiple genes in the 

simulation, we arbitrarily chose 10, 000 genes and 10% true DEGs. In reality, the total 

number of detected genes, at least in RNA-seq data, could vary depending upon the read 

depth in each sequencing sample. One of the limitations in this study is that we derived 

sample size formulas for two groups. In future studies, we will consider the case of 

multiple treatment groups and paired samples. 

In summary, sample sizes estimated from our two methods and the existing 

method vary in different parameter settings. The corresponding power calculated from 

the simulation studies is close to the 80% nominal power in most cases. We found that 

our method M1 and the existing method M3 appear to be similar in most settings.  Since 
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our sample size formulas are based on the Wald’s test statistic that utilizes a large sample 

property of the MLE, it may not be an appropriate test for a small sample size. In 

contrast, the M3 from the exact test may be a better choice for an experimental design 

with a small sample size. However, our method can provide an alternative choice for 

researchers to quickly and roughly estimate sample sizes when designing a RNA-seq 

experiment for clinical research studies. 

Finally, this work with all the contents and tables was submitted into Biostatistics 

in Medicine.  
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NORMALIZATION METHODS FOR RNA-SEQ DATA 

 

1. Introduction 

 High-throughput RNA sequencing (RNA-seq) has become the preferred choice 

for gene expression studies, especially as the cost of high-quality sequencing has 

decreased due to  technological improvements. These improvements have enabled 

transcriptome studies with a large range of applications including the identification of 

alternatively spliced isoforms [6, 15, 41], de novo assembly of transcripts to identify 

novel genes and isoforms [4, 42, 43], the detection of single-nucleotide polymorphisms 

(SNPs) [44, 45] and new single nucleotide variants (SNVs) [46], and a characterization of 

mRNA editing [47]. In addition, RNA-seq enables the detection of rare transcripts while 

allowing for high coverage of the genome, which cannot be identified as well by 

microarray technology [48]. However, the most common and popular application for 

RNA-seq experiments is the identification of differentially expressed genes (DEGs) 

between conditions or tissues. DEGs may serve as disease biomarkers that are helpful in 

clinical diagnosis, with possible implications for prevention, prognosis and treatment [49, 

50]. For example, data derived from sequencing can be helpful in predicting clinical 

outcomes and for discovering subtypes of breast cancers [9, 51].  

Currently, there are a plethora of sequencing platforms with new generations 

being developed on a regular basis. All platforms require similar sample pre-processing 

and subsequent analytical steps, which are summarized in RNA-seq workflows described
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by Zeng et al. [52]. Briefly, the mRNA-seq workflow consists of four major steps 

including: 1) RNA-seq library construction; 2) sequencing and mapping; and 3) 

normalization and statistical modeling to identify the DEGs or transcript isoforms; and 4) 

Exploration of biological insights including biological functions and pathways of the 

DEGs or their isoforms. Figure 3 adapted and modified from the reference figure[52]  

illustrates the procedure of step 1 and step 2; and Figure 4 illustrates the procedure of the 

analysis of RNA-seq in step 3 and step 4. 

 

Figure 3: mRNA-seq workflow illustrates the procedures from the library 

preparation to the sequencing mapping. 
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Figure 4: RNA-seq workflow illustrates the procedure of normalization, statistical test for 

identify DEGs and biological functions. 

 Following the second step of the RNA-seq workflow in Figure 3, raw mapped 

reads generated by an aligner such as TopHat2 [53] or STAR [54] for splicing alignment 

or SOAP2 for short read alignment [55] are further normalized by a variety of methods, 

which generally include within and between library normalization. Normalization is a key 



66 
 

step for the identification of DEGs as shown by many gene expression studies for both 

microarray and RNA-seq data [36, 56-58].  

Prior to the advent of next generation sequencing (NGS), high-throughput 

microarray data had been widely used for gene expression studies. Use of this technique 

induced several systematic non-biological variables which obfuscated data analysis. 

These variables included unequal quantities of starting RNA, differences in hybridization 

between chips and differences between manufactured chips. In order to minimize these 

variables to reveal true biological differences, the normalization of one-color array and 

two-color microarrays became essential. This allowed experiments to be standardized so 

that relative gene expression levels could be compared between chips [59]. The basic 

normalization steps in a one-color microarray included data transformation, per chip 

normalization and per gene/spot normalization. Per chip normalization (global 

normalization) is used to correct systematic variation in which the intensities of genes per 

sample are normalized to the median, or an upper quantile, or positive control genes of a 

sample. Per gene normalization method normalizes each gene across conditions to a 

median in order to rescale the gene to a normalized range. In addition, probe intensities in 

microarrays are independent of each other, so the total intensities in each sample were not 

taken into account in the normalization of microarray data. In fact this is one of the 

differences from RNA-seq technologies, in which the reads of each transcript are affected 

by the total reads or read depth per sequencing sample.  

Although the particular technical biases in microarray technologies are not present 

in RNA-seq approaches due to direct sequencing of the mRNA into short reads instead of 

its prospective hybridization to designed probe sets, there are other biological and 
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technical variations where normalization is required. In RNA-seq, the expression level of 

each transcript is measured by the total number of mapped fragmented transcripts, which 

is expected to directly correlate with its abundance level. Therefore, the expected 

expression level of each transcript in its RNA-seq sample is limited by the sequencing 

depth or total number of reads, which is also pre-determined by the experimental design 

and budget before sequencing. For example, genes in the same sample with an average of 

100X read depth will have about 3.3 fold higher read counts than one with an average of 

30X read depth. Furthermore, transcript expression level is also dependent upon other 

transcripts within a sample [60], which means that given the fixed total read count, highly 

expressed transcripts will have a higher proportion of total reads [36, 61]. In addition, it is 

known that long transcripts will have more reads mapping to it than a shorter transcript of 

similar expression level within the same sample [62].  

In the past several years, a number of normalization methods have been proposed 

to correct for library size bias as well as the length and GC-content bias. These methods 

include per-sample Total Counts (TC) [63], per-sample Upper Quartile (UQ) [58], per-

sample Median (Med) [63], DESeq normalization [17], Trimmed Mean of M values 

(TMM) implemented in edgeR [36], Full Quantile (FQ) [64], Reads Per Kilobase per 

Million mapped reads (RPKM) [61], Fragments Per Kilobase per Million mapped 

fragments (FPKM) [65, 66], normalization by control genes [58, 67] and normalization 

by GC-content [68]. Most of these methods including TC, UQ, Med, DESeq and TMM 

use a common scaling factor per sample to normalize genes in order to correct library 

size. Among these, UQ, Med, FQ and control gene normalization were borrowed from 

microarray normalization.  A few studies have reported preliminary results comparing 
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statistical methods for normalization and DEGs in RNA-seq experiments using real or 

simulated data sets [58, 60, 63, 69-71], which show that the normalization methods have 

an important impact  on the downstream analysis of DEGs. In fact, most normalization 

methods mainly address read depth by global normalization in addition to length and GC-

content correction, but the length and GC-content bias associated with each gene is 

assumed to be constant and would be canceled out in the context of a differential 

analysis. 

RNA-seq data are obtained from complex experiments with a variety of technical 

variations across different conditions. There are more variables that need to be adjusted 

for other than read depth [67]. The read counts of genes in each sample range from 0 or 1 

for low abundant genes to high abundant genes with more than one million. In order to 

correct for variations of each gene across samples or conditions, we proposed a 2-step 

normalization procedure: correcting read depth through quantile normalization per 

sample followed by a per gene per 100 reads normalization across samples. This idea is 

adapted from the normalization of one-color cDNA microarray and RPKM in RNA-seq. 

The reads of each gene per sample are further scaled by the median per 100 reads across 

the conditions. Thus, the reads in each gene are put on the same scale which allows for an 

accurate comparison of gene expression across conditions. Since the exact test from 

edgeR [22] was used to test DEGs for comparing different normalization methods, the 

fraction of values after normalization by median of each gene across samples is corrected 

by multiplying 100 reads. This idea is borrowed from RPKM and FPKM normalization, 

which is rescaled by one million reads after scaling by the length of a transcript and total 
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read counts of a sample. Therefore, the expected counts for lower expressed genes are 

increased, but decreased for highly expressed genes.  

In this study, we proposed a new strategy for the normalization and named them 

as Med-pgQ2 and UQ-pgQ2, which are defined in two steps. In the first step, we 

performed quantile normalization per sample. The read counts of a gene in each sample 

were scaled by the medium reads of all genes defined as Med or by the upper quantile-

reads of all genes in a sample defined as UQ. In the second step, we performed per gene 

normalization. The reads of each gene across samples were scaled by the medium reads 

of a gene defined as pgQ2. Then, we evaluated these methods (Med-pgQ2 and UQ-pgQ2) 

and other normalization methods (upper-quartile (UQ), full-quantile (FQ), DESeq2 

DESeq normalization, edgeR TMM (Trimmed Mean of M values) and Cufflinks-

Cuffdiff2-FPKM). We used the exact test with a negative binomial distribution from 

edgeR for these normalization methods except the normalization methods from DESeq2 

and Cufflinks-Cuffdiff2. Our analysis used two public RNA-seq datasets sequenced by 

Illumina technologies, the Microarray Quality Control Project (MAQC) RNA-seq data 

[42] and simulated data based on breast cancer RNA-seq data with 24 normal and 25 

early neoplasia (EN) samples [60, 72]. The results of this study suggest our alternative 2-

step per gene normalization method to detect DEGs in RNA-seq data has higher overall 

power through greatly improving specificity and reducing false positive rates. This 

method may also be useful for combining RNA-seq data from different experiments 

using the same condition to increase the power for detection of DEGs via increasing 

sample size.  

2. Materials and normalization methods 
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Normalization methods 

The normalization methodologies adjust for variability at different levels, 

including within-sample, between-sample and other technical variability. Within-sample 

normalization enables the correction of expression level in each gene associated with 

other genes in the same sample. Since a long gene or transcript will have more reads 

mapping to it compared to a short gene or transcript of similar expression, length 

normalization is taken into consideration in some normalization methods. Currently, the 

most widely used within-sample and between sample normalization methods are Reads 

Per Kilobase of transcript per Million Mapped Reads (RPKM) [61] and Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM) [65]. FPKM is used to count the 

reads of a fragment for paired-end RNA-seq data, which produces two mapped reads. 

Since length normalization is canceled out when identifying the DEGs across samples 

through a log ratio of a treatment versus a control usually called fold change (FC), many 

other normalization methodologies are used after that, which are described as follows. 

As we know that the prominent variation of read counts for a gene between 

samples is due to the library size or the sequencing depth, the within-sample 

normalization of raw read counts is critical for the comparison of these gene expression 

measures across samples or experimental conditions. The simplest normalization method 

is called per-sample Total Counts (TC) normalization, which adjusts the raw read counts 

of each transcript by the total library size of each sample. However, studies in 

comparison of RNA-seq normalization methods show that more sophisticated 

normalization methods such as median, upper-quartile, TMM in edgeR, DESeq and full 

quartile normalization are much better than the TC normalization. One reason is that a 
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small number of highly expressed genes can consume a significant amount of the total 

sequence [58]. To account for this feature, scaling factors are estimated from the data and 

used to achieve an inter-sample normalization [58, 63]. However, these methods have not 

considered between-sample normalization of each gene across conditions. The variation 

between genes within a sample and variation per gene across samples for these genes due 

to the systematical bias needs to be corrected in order to accurately identify the DEGs 

across conditions. In addition, Robinson et al. [22] demonstrated that the exact test for 

RNA-seq data is the best choice in terms of a small sample size achieving 5% nominal 

error rate compared to other test methods such as the Wald test , LR (Likelihood Ratio) 

test and asymptotic normal score test. Our proposed 2-step per gene normalization is able 

to center the reads of genes towards the median and minimize these variations.  

In the following, we further define several statistical notations for characterizing 

different normalization techniques besides using some notations defined in the sample 

size calculations. For simplicity of the normalization methods, we only consider the gene 

𝑔 (𝑔 = 1, … , 𝐺) in sample 𝑗 (𝑗 = 1, … , 𝑛) where G is the total genes and n is the total 

number of samples. Let 𝑋𝑔𝑗 be the number of observed reads mapped to a gene 𝑔 for 

sample j, 𝑁𝑗 be the total number of mapped reads for all genes in sample j, N be the total 

number of mapped reads across all samples, �̅� be the mean of the reads across all 

samples and 𝐿𝑔 be the length of the specific gene 𝑔.The above  𝑁𝑗, N and �̅� can be 

expressed as: 

𝑁𝑗 = ∑ 𝑋𝑔𝑗
𝐺
𝑔=1 ,  𝑁 = ∑ 𝑁𝑗

𝑛
𝑗=1 , and �̅� =

(∑ 𝑁𝑗
𝑛
𝑗=1 )

𝑛
. 
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(1) Reads Per Kilobase of transcript per Million mapped reads (RPKM) [61] 

Since a long gene will have more reads mapping to it compared to a short gene of 

similar expression, the length of the gene was considered in the RPKM normalization. 

Let  𝑋𝑔𝑗
𝑅𝑃𝐾𝑀 be the RPKM-normalized reads of gene 𝑔 for sample j. The observed 𝑋𝑔𝑗 is 

scaled by both the total number of mapped reads (𝑁𝑗) per million reads and the length of 

the transcript (𝐿𝑔) per kilobase. Then 𝑋𝑔𝑗
𝑅𝑃𝐾𝑀 can be expressed as: 

𝑋𝑔𝑗
𝑅𝑃𝐾𝑀= 

𝑋𝑔𝑗

𝑁𝑗 ×𝐿𝑔
× 109 = 

𝑋𝑔𝑗
𝑁𝑗

106×
𝐿𝑔

103

=
𝑅𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑠 

106 × 
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

103

. .                               

  

The RPKM normalization is actually a scaled normalization due to the different 

number of total reads as well as the different lengths of the gene 𝑔 in sample j. 

(2) Fragments Per Kilobase of transcript per Million mapped fragments (FPKM) 

 

FPKM normalization is used for paired-end RNA-seq data and the relative expression 

of a transcript or gene is proportional to the number of cDNA fragments that originate 

from it. Let 𝑋𝑔𝑗
𝐹𝑃 be the FPKM-normalized reads of gene 𝑔 for sample j. The observed 

𝑋𝑔𝑗 is scaled by both the total number of mapped fragments (𝑁𝑗) per million fragments 

and the length of the fragment of the gene or transcript (𝐿𝑓) per kilobase. Then 𝑋𝑔𝑗
𝐹𝑃𝐾𝑀 

can be expressed as: 

𝑋𝑔𝑗
𝐹𝑃𝐾𝑀= 

𝑋𝑔𝑗

𝑁𝑗×𝐿𝑓
× 109 = 

𝑋𝑔𝑗
𝑁𝑗

106×
𝐿𝑓

103

=
𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

𝑇𝑜𝑡𝑎𝑙 # of 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 

106 × 
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

103

 .                   
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The FPKM normalization is actually a scaled normalization due to the different 

number of total fragments as well as the different lengths of the gene 𝑔 in sample j. The 

difference between RPKM and FPKM is that each mapped paired-end cDNA fragments 

will be counted as one in FPKM, but it will be counted as two reads in RPKM. 

(3) Total count (TC) per sample 

 

Let 𝑋𝑔𝑗
𝑇𝐶 be the TC-normalized reads of gene 𝑔 in sample 𝑗. The observed 𝑋𝑔𝑗 is 

scaled by the total number of mapped reads (𝑁𝑗) per average of total reads across all the 

samples of the dataset(�̅�). Then 𝑋𝑔𝑗
𝑇𝐶 can be expressed as: 

𝑋𝑔𝑗
𝑇𝐶 =

𝑋𝑔𝑗

𝑁𝑗
× 𝑁 =

𝑋𝑔𝑗

𝑁𝑗/�̅�
.          

 
(4) Median (Med) 

Let 𝑋𝑔𝑗
𝑀𝑒𝑑 be the median-normalized reads of gene 𝑔 in sample j. The median 

normalization was based on all constitutive gene reads excluding any gene with zero 

counts for all samples. Then for each sample 𝑗, the normalization factor 𝑞𝑗
50  is the 

median (50th percentile or 2nd quartile) of all the gene reads excluding zero-reads genes. 

The observed 𝑋𝑔𝑗 is scaled by 𝑞𝑗
50 per average of median total reads across all the 

samples in the dataset (�̅�𝑚𝑒𝑑). Then, 𝑋𝑔𝑗
𝑀𝑒𝑑 can be expressed as: 

𝑋𝑔𝑗
𝑀𝑒𝑑 =

𝑋𝑔𝑗

𝑞𝑗
50 × 𝑁𝑚𝑒𝑑 =

𝑋𝑔𝑗

𝑞𝑗
50/�̅�𝑚𝑒𝑑

.       (45) 

 
(5) Upper Quartile (UQ)  
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If there are many genes with very low read counts in a RNA-seq experiment, the 

upper-quartile normalization is preferred to the median normalization (50th percentile). 

Let 𝑋𝑔𝑗
𝑈𝑄 be the upper-quartile-normalized reads of gene 𝑔 in sample j. The upper-quartile 

normalization was based on all constitutive gene reads excluding any gene with zero 

reads for all samples.  Then for each sample j, the normalization factor 𝑞𝑗
75  is the upper-

quartile (75th percentile) of all the gene reads excluding zero-reads genes. The observed 

𝑋𝑔𝑗 is scaled by 𝑞𝑗
75 per average of upper-quartile total reads across all samples in the 

dataset (𝑁𝑢𝑞). Then, 𝑋𝑔𝑗
𝑈𝑄 can be expressed as:  

𝑋𝑔𝑗
𝑈𝑄 =

𝑋𝑔𝑗

𝑓𝑗
𝑈𝑄 × 𝑁𝑢𝑞 =

𝑋𝑔𝑗

𝑓𝑗
𝑈𝑄

/�̅�𝑢𝑞 
.       (46) 

A study in evaluation of statistical methods for normalization in RNA-seq 

experiments [58] demonstrated that upper-quartile normalization reduced bias in the 

estimation of DEGs relative to qRT-PCR without noticeably increasing the level of 

variability as compared to total-count (TC) normalization. 

 
(6) Trimmed Mean of M-value (TMM) [36] 

Since we do not know the expression levels and true length of each transcript in 

RNA-seq data, RNA expression cannot be directly estimated from the raw read count. 

However, a relative gene expression level of two samples, i.e., a global fold change can 

be estimated. TMM is implemented in edgeR that assumes that a majority of the genes 

between samples are not differentially expressed. Let 𝑋𝑔𝑗
𝑇𝑀 be the TMM-normalized reads 

of gene 𝑔 in sample j and 𝑆𝑗 be the library size which is the unknown total RNA output of 

sample j. 
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In RNA-seq, a gene-wise log-fold-change of sample j relative to the reference sample 

r can be expressed as: 

𝑀𝑔𝑗 = 𝑙𝑜𝑔2 (
𝑋𝑔𝑗/𝑁𝑗

𝑋𝑔𝑟/𝑁𝑟
),          

and absolute expression levels can be expressed as: 

𝐴𝑔𝑗 =
1

2
𝑙𝑜𝑔2

(𝑋𝑔𝑗/𝑁𝑗× 𝑌𝑔𝑟/𝑁𝑟), where  𝑋𝑔𝑗 ≠ 0.      

 A trimmed mean is the average after removing the upper and lower 𝑥% of the 

data. By default, the TMM procedure is doubly trimmed, where 𝑀𝑔𝑗 values are 

trimmed by 30% and 𝐴𝑔𝑗 values are trimmed by 5%. After trimming, a weighted 

mean of 𝑀𝑔 is calculated and the normalization factor 𝑓𝑗
𝑇𝑀 for sample j using 

reference sample 𝑟 is expressed as: 

𝑓𝑗
𝑇𝑀𝑀 =

∑ 𝑤𝑔𝑗 × 𝑀𝑔𝑗𝑔∈𝐺∗

∑ 𝑤𝑔𝑗𝑔∈𝐺∗
, where 𝑀𝑔𝑗 = 𝑙𝑜𝑔2 (

𝑋𝑔𝑗/𝑁𝑗

𝑋𝑔𝑟/𝑁𝑟
),       

and 𝑤𝑔𝑗 =
𝑁𝑗−𝑌𝑔𝑗

𝑁𝑗×𝑌𝑔𝑗
+

𝑁𝑟−𝑋𝑔𝑟

𝑁𝑟×𝑋𝑔𝑟
 , where  𝑋𝑔𝑗 > 0 and  𝑋𝑔𝑟 > 0. 

𝐺∗ represents the set of genes with valid 𝑀𝑔𝑗 and 𝐴𝑔𝑗 values, which is trimmed in 

advance of the calculation of 𝑀𝑔𝑗 and 𝐴𝑔𝑗 since log-fold-change cannot be calculated 

with zero transcript or gene reads in any selected samples (𝑋𝑔𝑗 = 0 or 𝑋𝑔𝑟 = 0). 

Therefore, 𝐺∗ is not trimmed by the percentage above. Normalization factors across 

several samples can be calculated by selecting one sample as a reference and calculating 

the TMM factor for each non-reference sample. For example, for a two-sample 
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comparison, only one relative scaling factor (𝑓𝑗
𝑇𝑀𝑀) is required. It can be used to adjust 

both observed library sizes such as: 

𝑆𝑗
𝑇𝑀𝑀 = 𝑆𝑗 × √𝑓𝑗

𝑇𝑀𝑀 and  𝑆𝑟
𝑇𝑀𝑀 = 𝑆𝑟/√𝑓𝑗

𝑇𝑀𝑀,    

where  𝑆𝑗 = ∑ 𝑢𝑔𝑗 ×𝐺
𝑔=1 𝐿𝑔  and  𝑆𝑟 = ∑ 𝑢𝑔𝑟 ×𝐺

𝑔=1 𝐿𝑔.                                                   

The calcNormFactors() function in the edgeR Bioconductor package provides these 

scaling factors. The normalization factors are rescaled by the mean of the normalized 

library sizes as: 

𝑆̅𝑇𝑀𝑀 =
∑ 𝑆𝑗

𝑇𝑀𝑀𝑛
𝑗=1

𝑛
 .          

  𝑋𝑔𝑗
𝑇𝑀 is obtained by using a re-scaled normalization factor to scale the raw read counts: 

𝑋𝑔𝑗
𝑇𝑀𝑀 =

𝑋𝑔𝑗

𝑓𝑗
𝑇𝑀𝑀/�̅�𝑇𝑀𝑀 .                                  

One notable difference with TMM normalization for RNA-seq is that the data 

themselves do not need to be modified and the estimated normalization factors are 

directly used in the statistical model to test for differentially expressed genes, while 

preserving the sampling properties of the data. 

(7)  DESeq normalization [17] 

 
Like TMM, DESeq normalization is based on the assumption that most of the genes 

are not DE. Let 𝑋𝑔𝑗
𝐷𝐸𝑆𝑒𝑞  be the DESeq-normalized reads of gene 𝑔 (𝑔 = 1, … , 𝐺)  in 
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sample j. A DESeq size factor 𝑓𝑗
𝐷𝐸𝑆𝑒𝑞

 given a sample 𝑖 is calculated as the median of the 

ratios for the genes in each sample. The 𝑓𝑗
𝐷𝐸𝑆𝑒𝑞 can be expressed as: 

𝑓𝑗
𝐷𝐸𝑆𝑒𝑞

= median𝑔
𝑋𝑔𝑗

(∏ 𝑋𝑗′𝑔
𝑛
𝑗′=1 )

1/𝑛 ,        

where the denominator of this expression can be interpreted as a pseudo-reference sample 

obtained by taking the geometric mean across samples. Then 𝑋𝑔𝑗
𝐷𝐸𝑆𝑒𝑞 is obtained by 

scaling the raw reads 𝑋𝑔𝑗 by 𝑓𝑗
𝐷𝐸𝑆𝑒𝑞  

𝑌𝑔𝑗
𝐷𝐸𝑆𝑒𝑞

=
𝑋𝑔𝑗

𝑓𝑗
𝐷𝐸𝑆𝑒𝑞.           

  
(8)  Full quantile normalization (FQ) [59, 73] 

 
The full quantile normalization was originally used for the normalization of 

Affymetix GeneChip and one-color cDNA microarray [73]. The goal of quantile 

normalization is to make the distribution of probe intensities the same for arrays 𝑗 =

1, … , 𝑛, so that an n-dimensional quantile-quantile plot follows the n-dimensional identity 

line. The quantile normalization method of RNA-seq data consists of matching the 

distributions of gene or transcript reads across samples.  

Let 𝑋𝑔𝑗
𝐹𝑄 be the quantile-normalized reads of gene 𝑔  in sample j. Let 𝑞𝑔 =

(𝑞1𝑔, … , 𝑞𝑛𝑔) be the vector of 𝑔th quantile for 𝑛 arrays and 𝑑 = (
1

√𝑛
, … ,

1

√𝑛
) be the unit 

diagonal. The projection of q onto d is obtained by 

proj𝑑 𝑞𝑔 = (
1

𝑛
∑ 𝑞𝑔𝑗

𝑛
𝑗=1 , … ,

1

𝑛
∑ 𝑞𝑔𝑗

𝑛
𝑗=1  ). This implies that each sample can be given the 

same distribution by taking the mean quantile and substituting it as the value of the data 

item in the original dataset. The algorithm for normalizing a set of data vectors by giving 
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them the same distribution is described as follows. 1) Let 𝑋𝑔𝑗 be the raw reads of genes 

and form a matrix of X with G x n dimension given n samples and G genes; 2) Sort each 

column of X to give 𝑋𝑠𝑜𝑟𝑡; 3) Take the mean across rows of 𝑋𝑠𝑜𝑟𝑡 to obtain the mean 

reads per row and assign the mean to each row across samples to get 𝑋𝑠𝑜𝑟𝑡
′ ; 4) Getting the 

normalized 𝑋𝑄𝑇by rearranging each column of 𝑋𝑠𝑜𝑟𝑡
′  to have the same ordering as 

original X.  

One possible problem with this method is that it forces the values of the quantiles to 

be equal. Therefore, it risks removing some of the signal in the tails. However, in 

practice, since gene expression measures are typically computed using the value of 

multiple transcripts, this may be not a problem for the gene in RNA-seq data.  

(9) Per sample and per gene normalization  

 
We propose a new strategy for normalization called “Per gene normalization after 

Median (Med) or 75% quantile (UQ) per sample normalization” and we name it Med-

pgQ2 and UQ-pgQ2. The normalization procedures include three steps. 

Step 1: Preprocess the raw count data  

At first, genes with average raw counts less than the number of sample replicates 

are filtered out as a process of removing not expressed genes in both conditions. Then, 

the raw read counts are added by a small positive value (0.1 of one read) to generate a 

pseudo-count data that is used for the following normalization as well as the other 

normalization methods. 

Step 2: Global per sample normalization 
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This step is to correct unequal library size using Med or UQ methods in equations 

(45) and (46). 

Step3: Per gene normalization 

This step is to compare each gene expression between conditions with detailed 

mathematical expressions as follows. 

(a) Med-pgQ2: let  𝑋𝑔𝑗
𝑀𝑒𝑑  be the expression value for gene g in sample j and scaled by 

the median (Med) normalization method in equation (45); let 𝑄2𝑔
𝑀𝑒𝑑  be the median of 

gene g across samples after Med normalization per sample. Thus, the new normalized 

counts 𝑋𝑔𝑗
𝑀𝑒𝑑−𝑝𝑔𝑄2 per gene and per 100 reads  can be expressed as: 

𝑋𝑔𝑗
𝑀𝑒𝑑−𝑝𝑔𝑄2

=
𝑋𝑔𝑗

𝑀𝑒𝑑

𝑄2𝑔
𝑀𝑒𝑑  × 100.                                     (47) 

With this method, the sample mean of gene g across samples will be changed by 

dividing  𝑄2𝑔
𝑀𝑒𝑑/100 and the sample variance of gene g will be changed by dividing 

(𝑄2𝑔
𝑀𝑒𝑑/100)

2
. 

(b) UQ-pgQ2: let  𝑋𝑔𝑗
𝑈𝑄 be the expression value for gene g in sample j and normalized by 

UQ (75%) normalization method in equation (46); let 𝑄2𝑔
𝑈𝑄 be the median of gene g 

across samples after UQ normalization. Thus, the new normalized counts 𝑋𝑔𝑗
𝑈𝑄−𝑝𝑔𝑄2  

per gene and per 100 reads can be expressed as: 

𝑋𝑔𝑗
𝑈𝑄−𝑝𝑔𝑄2

=
𝑋𝑔𝑗

𝑈𝑄

𝑄2𝑔
𝑈𝑄  ×100.                                                             (48) 



80 
 

With this method, the sample mean of gene g across samples will be changed by 

dividing  𝑄2𝑔
𝑈𝑄/100 and the sample variance of gene g will be changed by dividing 

(𝑄2𝑔
𝑈𝑄/100)

2
. 

Statistical model and the exact test  

A study by Robinson et al. [22] demonstrated that the exact test is the best method 

when the  sample size is small, and results in achieving the nominal FDR compared to 

other methods such as the Wald test, the Likelihood Ratio test (LRT) and the asymptotic 

normal score test. In order to compare these normalization methods, we chose a negative 

binomial distribution to model and the exact test to identify DEGs for the majority of the 

methods using edgeR.  

The negative binomial (NB) distribution. Briefly,  𝑌~𝑁𝐵(𝑢, ф) is a random 

variable to model the observed read counts in RNA-seq data, where Y has mean u and 

dispersion ф. Its probability mass function (pmf), the expected value and the variance of 

Y are correspondingly:   

𝑓𝑌(𝑦|𝑢, ф) = P(𝑌 = 𝑦) = (
𝑦 + ф−1 − 1

𝑦
) (

1

𝑢ф+1
)

ф−1

(1 −
1

𝑢ф+1
)

𝑦
 , 

𝐸(𝑌) = 𝑢 and  Var(𝑌) = 𝑢 + 𝑢2ф.      (5)  

The above NB model utilizes the conventional parameterization called “NB2” [40]. 

The relationship of the parameters can be expressed as: 

𝑢 = 𝑟
1−𝑝

𝑝
 and ф =

1

𝑟
.                                               



81 
 

Moreover, a negative binomial distribution can be derived from a Poisson-gamma 

mixture and hierarchy as: 

𝑌|𝜆 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 𝑎𝑛𝑑  𝜆 ~ 𝑔𝑎𝑚𝑚𝑎(ф−1, 𝑢ф).  

Then the marginal distribution of Y is a negative binomial and its pmf is expressed as the  

equation (12) [74].  

Conditional dispersion estimation [22]: In this study, edgeR was used to 

evaluate the normalization methods. Since all libraries have the same library size after 

normalization (size factor equal to one), a CML (conditional maximum likelihood) is 

used in edgeR to estimate the dispersion parameter ( ф𝑔) for a single gene g and sample j 

in n samples which is denoted as  𝑍 = ∑ 𝑌𝑔𝑗
𝑛
𝑗 ~𝑁𝐵 (𝑛𝑢,

ф𝑔

𝑛
). It is expressed as:  

𝑙𝑦|𝑍=𝑧(ф𝑔) = [∑ log Γ(𝑦𝑔𝑗 + ф𝑔
−1)𝑛

𝑗 ] + log Γ(𝑛ф𝑔
−1) − log Γ(𝑧 + 𝑛ф𝑔

−1) −

𝑛 log Γ(ф𝑔
−1).   

 
Exact test for a two-condition comparison in RNA-seq: The exact test for DEGs 

between two conditions is the best choice for RNA-seq [22]. Both edgeR [18] and DESeq 

implement similar exact test [17, 74]. Briefly, let 𝑌𝑔𝑖𝑗 be the normalized counts of gene g 

in condition i = A and B, and replicate 𝑗 = 1, … , 𝑛𝑖. Then the assumptions concerning the 

distributions of 𝑌𝑔𝑖𝑗  and ∑ 𝑌𝑔𝑖𝑗
𝑛𝑖
𝑗  are expressed as: 

𝑌𝑔𝑖𝑗~𝑁𝐵(𝑢𝑔𝑖 · 𝑠𝑖𝑗, ф𝑔

𝑠𝑖𝑗
) ≡ 𝑌𝑔𝑖𝑗~𝑁𝐵(𝑢𝑔𝑖, ф𝑔), where size factor 𝑠𝑖𝑗 = 1 for normalized 

counts,  
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∑ 𝑌𝑔𝑖𝑗
𝑛𝑖
𝑗 ~𝑁𝐵(𝑢𝑔𝑖 · ∑ 𝑠𝑖𝑗

𝑛𝑖
𝑗=1 ,  ф𝑔

∑ 𝑠𝑖𝑗
𝑛𝑖
𝑗=1

) ≡ ∑ 𝑌𝑔𝑖𝑗
𝑛𝑖
𝑗 ~𝑁𝐵 (𝑛𝑖 · 𝑢𝑔𝑖,

ф𝑔

𝑛𝑖
) , 𝐸(∑ 𝑌𝑔𝑖𝑗

𝑛𝑖
𝑗 ) = 𝑛𝑖 ·

𝑢𝑔𝑖, and Var(∑ 𝑌𝑔𝑖𝑗
𝑛
𝑗 ) = 𝑛𝑖 · 𝑢𝑔𝑖 + 𝑛𝑖 · 𝑢𝑔𝑖

2 · ф𝑔.       

In order to identify DEGs between conditions A and B, we would like to test the null 

hypothesis 𝐻0: 𝑢𝑔𝐴 = 𝑢𝑔𝐵, where the test statistics are the total normalized counts in each 

condition, 𝑌𝑔𝐴 = ∑ 𝑌𝑔𝐴𝑗
𝑛
𝑗 , 𝑌𝑔𝐵 = ∑ 𝑌𝑔𝐵𝑗

𝑛
𝑗 ,  and total counts of two conditions  𝑌𝑔𝑆 =

𝑌𝑔𝐴 + 𝑌𝑔𝐵. The respective distributions of 𝑌𝑔𝐴 and 𝑌𝑔𝐵 are expressed as: 

𝑌𝑔𝐴~𝑁𝐵 (𝑛𝐴 · 𝑢𝑔𝐴,
ф𝑔

𝑛𝐴
) , and 𝑌𝑔𝐵~𝑁𝐵 (𝑛𝐵 · 𝑢𝑔𝐵,

ф𝑔

𝑛𝐵
).      

Since 𝑌𝑔𝐴 and 𝑌𝑔𝐵 are independent, the joint probability of 𝑃(𝑌𝑔𝐴 = 𝑦𝑔𝐴,  𝑌𝑔𝐵 = 𝑦𝑔𝐵 ) 

under 𝐻0 is  𝑃(𝑌𝑔𝐴 = 𝑦𝑔𝐴) × 𝑃(𝑌𝑔𝐵 = 𝑦𝑔𝐵), In an exact test the p-value [17] is calculated 

by summation of the probability of a pair of P(a, b) that is less than or equal to the 

observed P(𝑦𝑔𝐴,  𝑦𝑔𝐵) given that the overall summation of  P(a, b). The pair of variables 

a and b are defined as 𝑎 = 0, … , 𝑌𝑔𝑆 𝑎𝑛𝑑 𝑏 = 𝑌𝑔𝑆 − 𝑎 . Then the p-value for gene g is  

𝑝. 𝑣𝑎𝑙𝑢𝑒𝑔 = 𝑃1𝑔/𝑃2𝑔,                                                 

where 

𝑃1𝑔 = ∑ 𝑃(𝑌𝑔𝐴 = 𝑎) × 𝑃(𝑌𝑔𝐵 = 𝑏)𝑎+𝑏=𝑌𝑔𝑆

𝑃(𝑎,𝑏)≤𝑃(𝑦𝑔𝐴, 𝑦𝑔𝐵)

,  

 and  

𝑃2𝑔 = ∑ 𝑃(𝑎, 𝑏)𝑎+𝑏=𝑌𝑔𝑆
.          

The p-value is further adjusted by a false discovery rate correction. The dispersion parameter ф 

in equation (49) measures the extra variance of Y that a Poisson (u) distribution fails to 

describe. As ф goes to zero (ф→0), the variance of Y converges to u in probability and 
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the distribution of f(y) converges to the Poisson(u) distribution which was shown by 

Cameron and Trivedi [75].  

Datasets 

1). MAQC2 and MAQC3 datasets. MAQC2 contains two RNA-seq datasets 

from the Microarray Quality Control Project (MAQC) [76] with two types of biological 

samples: human brain reference RNA (hbr) and universal human reference RNA (uhr). 

The first dataset consisted of read length of 36bp and was downloaded from the NCBI 

sequence read archive (SRA) with ID SRX016359 (hbr) and SRX016367 (uhr) [58]. The 

second dataset (GEO series GSE24284) consisted of the 50bp hbr (sample ID: 

GSM597210) and uhr (sample ID: GSM597211) RNA samples [77].  

 GSE49712_HTSeq.txt.gz for MAQC3 raw read counts  with five technical 

replicates in two biological conditions (UHR and HBR) was downloaded from GEO 

(GSE49712) [60]. Four replicate libraries for two conditions were prepared by one person 

and the remaining library was prepared by Illumina. A single HiSeq2000 instrument was 

used for sequencing all the samples. 

2). TaqMan qRT-PCR data. PCR validation of the uhr sample from GSM12638 

to GSM129641 and the hbr sample from GSM129642 to GSM129645 were downloaded 

from GEO (series GSE5350). These MAQC data (uhr and hbr) contain a total of 1044 

genes assayed and validated using TaqMan qRT-PCR with 4 technical replicates [58, 77]. 

Thirty-seven of the 1,044 genes were marked with a Flag Detection “A” in all samples 

and were considered as true negative (TN) genes. These additional genes were not 

filtered out as in recent studies of the MAQC validation datasets [78] and 1028 of the 
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1044 genes have either a unique Ensembl gene Identifier (ID) or Entrez gene ID used  for 

further analysis of the true positive and true negative genes following Bullard et al.’s 

study [58]. Briefly, a POLR2A-normalized cycle number for each gene and each 

condition is called ΔCt. The value 𝑥𝑔𝑖𝑘 of each gene g in replicate i and condition k is 

obtained via 𝑙𝑜𝑔2(ΔCt)/ 𝑙𝑜𝑔2(𝑒). The log2 fold change is defined as the mean difference 

of each gene between the hbr and uhr conditions (�̅�𝑔,ℎ𝑏𝑟 − �̅�𝑔,𝑢ℎ𝑟), where the uhr is 

typically served as a reference. The genes with |log2 𝐹𝐶|≥2 were considered DEGs and 

the genes with |log2 𝐹𝐶|<0.2 were considered as non-DEGs. Among the 1028 genes, 398 

genes with 390 unique gene names fall into the true positive (TP) genes and 178 genes 

with 151 unique gene names fall into the true negative (TN) genes. The remaining set of 

genes lie in a region set to be indeterminate as far as DEG is concerned. 

3). Two human breast cancer RNA-seq datasets. Dataset one is used for 

simulation containing twenty-four normal tissues and 25 early breast neoplasia (EN) on 

formalin-fixed paraffin-embedded tissue were sequenced at 3’-end enriched RNA-seq 

libraries [72].The mapped raw counts of 49 samples with an average of 7 million reads 

per sample were downloaded from NCBI GEO (series GSE47462). The dataset two 

contains 42 human estrogen receptor positive (ER+) and HER2 negative breast cancer 

primary tumors and 30 uninvolved breast tissues samples adjacent to ER+ primary 

tumors. The RNA-seq raw data files with a sequence read archive (SRA) were 

downloaded from NCBI GEO (GSE58135).  

4). Simulated data. Simulated data was based on the human breast cancer RNA-

seq dataset one with two conditions: 24 normal tissues and 25 early neoplasia tissues. The 

simulation model is similar to the one described in Dillies’ study [63]. Let G be the total 



85 
 

number of genes (G = 15,000), n = 20 be the total number of samples in two conditions (k 

= A, B), let 𝑦𝑖𝑔𝑘 be the count for gene g in sample i and condition k with a Poisson 

distribution: 𝑦𝑖𝑔𝑘 ∽ 𝑃𝑜𝑖𝑠(𝜆𝑔𝑘). The parameter 𝜆𝑔𝑘is estimated from the mean reads per 

gene across samples from this human breast cancer RNA-seq dataset. Under this model, 

the null hypothesis 𝐻0 (𝜆𝑔𝐴 = 𝜆𝑔𝐵) means the expression values of gene g between 

conditions A and B are not significantly different, and the alternative hypothesis  𝐻1 

(𝜆𝑔𝐴 ≠ 𝜆𝑔𝐵) means the gene expression values are significantly different between the 

two conditions. Let 𝑝0 and 𝑝1 be the proportion of genes generated under 𝐻0 and  𝐻1 

among the G genes, respectively. The data is simulated with 15,000 genes and  𝑝1 is 10% 

corresponding to 1,500 genes. Under 𝐻0, the parameter 𝜆𝑔𝐴 in the gene g of condition A 

and the parameter 𝜆𝑔𝐵 in the gene g of condition B were estimated from the breast cancer 

raw counts corresponding to the mean raw counts of each gene (𝜆𝑔𝐴 = 𝜆𝑔𝐵); while under 

𝐻1 the parameters 𝜆𝑔𝐴 and  𝜆𝑔𝐵 in the gene g and condition A and B were equal to 

(1 + 𝛼)𝜆𝑔𝐴 for 750 downregulated genes and (1 + 𝛼)𝜆𝑔𝐵 for 750 upregulated genes, 

respectively, where 𝛼 is defined as 0.5 and 1. To assess the impact of non-equivalent 

library sizes, we multiplied 𝑦𝑖𝑔𝑘 by a size factor 𝑆𝑖 per sample of the condition, which is 

equal to |𝜀𝑖 |, where 𝜀𝑖~𝑁(1,1). The number of simulation was chosen as 13 due to the 

small variation of the AUC values from all the normalization methods per simulation. 

Sequence mapping and extraction of gene counts 

The MAQC2 RNA-seq libraries with two technical replicates of each sample (uhr 

and hbr) and the human ER+ breast cancer dataset two were mapped to the human hg19 

reference genome using tophat2 (v2.0.13) with Bowtie version (2.2.3.0) and the 
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parameter: ‘no-coverage-search’ [65, 79]. For the FPKM normalization method, the 

aligned RNA-seq reads were assembled according to the Homo_sapiens.GRCh37.74.gtf 

annotation file and normalized by FPKM using Cufflinks-Cuffnorm (v2.2.1). For the other 

normalization methods, the aligned RNA-seq reads were sorted by samtools (v0.1.19) 

and the read count matrix for each replicate of the condition was generated using HTSeq-

scripts-count (version 2.7) and provided in S1_Datasets. In addition, for the human ER+ 

breast cancer dataset, the read counts from two human ER+ breast cancer samples and 

one control sample failed to be extracted using HTSeq-script-count. Therefore, only 40 

ER+ breast cancer and 29 control samples were used for this study. 

Software packages for detecting DEGs in normalization methods 

The normalization methods and the software packages for detecting DEGs 

between conditions using MAQC datasets and the human ER+ breast cancer dataset are 

summarized in Table 13. Here, we give a brief description of the software packages used 

for the normalization and statistical tests in the present work. edgeR (v3.8.6) [18] was 

used to perform TMM normalization. It uses the empirical Bayes estimation and the exact 

test with a negative binomial distribution. For this study, edgeR was used to detect DEGs 

for all the seven normalization methods including TC, Med, UQ, FQ, TMM, Med-pgQ2 

and UQ-pgQ2. DESeq2 [80], a successor to the DESeq method [17], shows higher 

sensitivity and precision compared to DESeq package due to new features using 

shrinkage estimators for dispersion and fold changes. DESeq2 also offers a scaling size 

factor procedure as DESeq to perform normalization which is based on a median of ratio 

method. Cufflinks-Cuffnorm (v2.2.1) with a default parameter setting was used to perform 

FPKM normalization. Cufflinks-Cuffdiff2 was used to perform DEGs analysis at both the 
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transcript and gene level using a beta negative binomial model and the t-test for the 

fragment counts  [79].  In this study, we used the gene level results for the comparison 

with the other normalization methods. With the aid of edgeR, we set the normalization 

methods to “none” and selected the exact test with a tag-wise dispersion for each gene to 

perform DEGs analysis for the normalization methods: TC, Med, UQ, FQ, Med-pgQ2 

and UQ-pgQ2. Since this study has been recently published, the normalized MAQC2 data 

from Med-pgQ2, UQ-pgQ2, DESeq and TMM-edgeR and DEGs analysis from these 

methods  can be downloaded in Supporting Information S2-S5 Datasets [81]. Moreover, 

these normalization methods are written in R (v3.1.3) with the source codes publically 

available in S1 File (.R) [81]. 

 

 

Table 13: Summary of normalization methods and software packages on different 

datasets for DEGs analysis. 

Normalization 

methods 

Datasets Statistical test 

 

Software packages 

TC MAQC and simulated data Exact test edgeR(v3.8.6) 

Med MAQC and simulated data Exact test edgeR (v3.8.6) 

UQ MAQC and simulated data Exact test edgeR (v3.8.6) 

FQ MAQC and simulated data Exact test edgeR (v3.8.6) 

TMM MAQC and simulated data Exact test edgeR (v3.8.6) 
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Med-pgQ2 MAQC and simulated data Exact test edgeR (v3.8.6) 

UQ-pgQ2 MAQC and simulated data Exact test edgeR (v3.8.6) 

DESeq MAQC and simulated data Wald test DESeq2 (v1.6.3) 

FPKM MAQC t-test Cufflinks-cuffdiff2 (v2.2.1) 

 

The AUC, standard error and z-statistic test for MAQC data  

The area under the ROC curve (AUC) was calculated using Algorithm 2 by 

Fawcett (2006) [82]. The estimated standard error (se) and a two-sample one-sided z-test 

were computed for each AUC value in MAQC data using Hanley J.A. et al. method 

(1982) [83]. Briefly, let A be the area under ROC curve; 𝑠�̂� and sd be the estimated 

standard error and standard deviation, respectively; na and nn be the total number of true 

positive genes and false positive genes, respectively.  Then, 𝑠�̂� = √𝑑1/(𝑛𝑎 × 𝑛𝑛), 

where 𝑑1 = 𝐴 × (1 − 𝐴) + (𝑛𝑎 − 1) × (𝑄1 − 𝐴2) + (𝑛𝑛 − 1)(𝑄2 − 𝐴2),  𝑄1 =

𝐴

2−𝐴
, 𝑄2 = 2 ×

𝐴2

1+𝐴
. The Z statistic was computed as: 𝑧 =

𝐴1−𝐴2

√𝑠�̂�1
2+𝑠�̂�2

2
 and 𝑝. 𝑣𝑎𝑙𝑢𝑒 = 1 −

𝑃𝑟𝑜𝑏(𝑍 < 𝑧).  This p-value was used to compare the AUC values between two 

normalization methods.  

The 95% confidence interval estimation of AUC for the simulated data 

The 95% CI (confidence interval) for the simulated data was computed based on 

the normal approximation, which is defined as CI= �̅� ∓ 1.96 ×
𝑠𝑑

√𝑛
, where n =13 is the 

number of simulations,  �̅� and sd are the mean and standard deviation of AUC from 13 

simulations, respectively. 
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3. Results and Discussion 

In this study, seven different normalization methods were compared to our 

proposed methods (Med-pgQ2 and UQ-pgQ2) via the qualitative characteristics of data 

distributions, intra-condition variation, ROC curve and AUC value as well as PPV, the 

actual FDR, sensitivity and specificity given the nominal FDR (≤ 0.05). 

Qualitative characteristics of data distributions 

In DEGs analysis, one important assumption of null hypothesis about normalized 

RNA-seq data is that the majority of genes are not differentially expressed between 

conditions. Therefore, the overall distributions across genes are expected to be similar. 

Boxplots of non-normalized log2 expression of raw read counts in Figure 5A shows 

larger distributional difference between the replicate libraries for MAQC2 data and 

normalization methods are needed to make the sample distributions more similar. 

Although all the normalization methods stabilized the distributions across two replicates 

for MAQC2 data, only our methods further can shrink the gene expression values 

towards the median per sample (Figure 5A). 

It is important to compare the intra-condition variation among different 

normalization methods to prevent over correction. Figure 5B in MAQC2 data illustrates 

that little difference of the intra-condition variation is observed between our methods and 

others (DESeq, TMM, TC, Med and UQ), which indicates that scaling does not change 

the coefficient of variation. Moreover, we observed that FQ and FPKM methods greatly 

increased the intra-condition variation compared to the un-normalized data and other 
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normalization methods (Figure 5B). This observation was also reported by Dillies’ study 

in 2012.  

 

 

Figure 5: Comparison of nine normalization methods in boxplots. (A) Illustrated are 

boxplots of log2 (counts+1) for MAQC data with two replicates in two conditions (uhr 

and hbr). The samples in hbr and uhr conditions are in green and red, respectively. Med-

pgQ2 and UQ-pgQ2 are our proposed methods. (B) Illustrated are boxplots of the intra-

condition coefficient of variation (uhr and hbr), respectively. 



91 
 

We further analyzed the human ER+ breast cancer RNA-seq dataset with 40 ER+ 

breast cancer samples and 29 controls and MAQC3 with five technical replicates. For the 

human breast cancer datasets, similar patterns for most of the normalization methods 

from the boxplots (Figures 6 and 7) are observed compared to MAQC2 in Figure 5. 

However, the intra-condition variation of the median across replicates for all the methods 

(Figure 7) is close to 0.5, which is much higher than the value below 0.1 for all the 

methods obtained from the MAQC2 data (Figure 5B). This is expected because the breast 

cancer data contain biological replicates. We found that TC normalization failed in 

correcting the raw read counts for some of the replicates with a higher distributional 

difference within conditional replicates (Figure 6). The failed TC normalization was also 

observed by Dillies’ study in 2012 using mouse miRNA-seq data. Furthermore, we also 

discovered that the inability of FQ normalization to minimize the intra-condition 

variation due to the small sample size from MAQC2 was diminished for the human ER+ 

breast cancer datasets with the sample size of 29 in control and 40 in ER+ breast cancer 

samples (Figure 7).  
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Figure 6: Data distribution from seven normalization methods using human ER+ breast 

cancer datasets. 
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Figure 7: The intra-condition coefficient of variation using human ER+ breast cancer 

datasets. 

For MAQC3 data, the boxplots (Figure 8) show that sample distributions 

normalized by all methods are very similar, which is expected due to technical replicates 

with very small variation.  These data with less variation after scaling normalization 

suggest that a further per gene normalization may not show a great advantage other than 

shrinking the data toward the median across samples. 

 

Figure 8: Data distribution from seven normalization methods using MAQC3 

data. 

RMSD between qRT-PCR and RNA-seq 𝒍𝒐𝒈𝟐 fold change computed by each 

method 
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To evaluate the accuracy of normalization methods, we used the MAQC2 and 

qRT-PCR data to calculate RMSD (root-mean-square-deviation) correlation between the 

log2 fold changes generated from statistical tests for each normalization method (Table 

13) and the log2 fold changes from qRT-PCR. Figure 9 illustrates that almost all the 

normalization methods have good concordance to match the qRT-PCR data with RMSD 

accuracy less than 1.6 except Cufflinks-Cuffdiff2 with a slightly higher RMSD value 

(1.77).  

 

Figure 9: RMSD (root-mean-square deviation) between the log2 expression fold changes 

of MAQC2 and qRT-PCR. Illustrated is the RMSD between the log2 fold changes 
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computed from DEGs based on different methods and the values computed from qRT-

PCR. FPKM (yellow) has the least similarity while DESeq normalization (brown) has the 

highest one.  

 

Analysis of differentially expressed genes evaluated by ROC curves and AUC values 

The ROC curve in Figure 10 is depicted by the relationship between the 

sensitivity and specificity rate based on MAQC2 data. The AUC value is calculated in the 

full range of false positive rate (0≤ FPR ≤1). Med-pgQ2 and UQ-pgQ2 achieve slightly 

higher AUC values compared to the others, which reflects the overall performance of 

detection of DEGs by achieving slightly higher sensitivity and specificity.  With a false 

positive rate ≥ 0.10, the ROC cures reveal our methods perform slightly better. However, 

with a higher stringent false positive rate cutoff (< 0.10), the majority of the methods 

perform similarly. The quantile global normalization methods including TC, Med, UQ 

and FQ perform less favorable for this data. The standard error corresponding to the AUC 

value was also calculated using the equation from Hanley et al. in 1982 [83].  
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Figure 10: ROC curve and AUC values from MAQC2 data. The ROC curves and AUC 

values (inset) for evaluating the performance of the nine normalization methods were 

computed using MAQC2 with two conditions (uhr and hbr). Our proposed methods, 

Med-pgQ2 and UQ-pgQ2 (blue and grey, respectively) performed slightly better. 

In addition, we further compared the AUC value from one of our methods (Med-

pgQ2) to the others using a two-sample one-sided z-test. Table 14 lists the results of the 

p-values for each method.  The results demonstrate statistically significant evidence that 

the AUC value in Med-pgQ2 is slightly larger than every other method except UQ-pgQ2. 

Table 14: A one-sided of z-test on AUC values from Figure 10 comparing Med-pgQ2 to 

other methods.  
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 UQ-pgQ2 FPKM TMM DESeq FQ TC 

z-statistics 0.7554 2.0082 2.0096 2.5826 2.6861 2.7517 

p-value* 0.2250 0.0223 0.02224 0.0049 0.0036 0.0030 

 *p-values were computed using a one-sided of z-statistic test on the AUC values 

between Med-pgQ2 and one of the other methods listed in Table 14. 

Analysis of PPV, actual FDR, sensitivity, specificity, and the number of true positive 

and false positive genes 

In order to identify the major difference among all the normalization methods for 

detection of DEGs in MAQC2 and MAQC3 data, we calculated the number of true 

positive (TP) genes and false positive (FP) genes given the nominal FDR ≤ 0.05. We also 

calculated the positive predictive value (PPV), the actual false discovery rate (FDR), 

sensitivity and specificity for both datasets (Table 15). The results from MAQC2 data 

suggest that Med-pgQ2 and UQ-pgQ2 can achieve better specificity rate above 85% than 

other methods. While TMM-edgeR has the highest sensitivity rate (96.7%), its specificity 

rate (35%) is low.  The performance of DESeq normalization with the sensitivity and 

specificity rate at 93.1% and 60.9% correspondingly are between our methods and TMM. 

The two proposed methods also achieve the lower actual FDR (< 0.1) compared to others. 

However, the results from MAQC3 with small variation in Table 3 show that all the 

methods achieve very high sensitivity rate above 98%, but the specificity for all the 

methods is lower than 42% and the actual FDR is higher than 0.15. The two new methods 

for these data perform slightly better in term of sensitivity, specificity and the actual 

FDR. 
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 Table 15: Analysis of DEGs for MAQC2 and MAQC3 given a nominal FDR ≤ 0.05. 

Datasets Methods # of TP  

genes 

# of FP  

genes 

Actual 

 FDR 

PPV SR SPR 

MAQC2 DESeq 363 59 .140 .860 .931 .609 

TMM 377 97 .204 .797 .967 .358 

FQ 377 100 .210 .790 .967 .338 

TC, Med & UQ 376 101 .212 .788 .964 .331 

Med-pgQ2 362 22 .057 .942 .928 .854 

UQ-pgQ2 364 21 .055 .945 .933 .861 

MAQC3 DESeq 385 105 .214 .786 .990 .271 

TMM 385 98 .203 .797 .990 .319 

TC, Med & UQ 384 99 .204 .795 .987 .313 

Med-pgQ2 

& UQ-pgQ2 

387 83 .177 .823 .995 .424 

The number of true positive (TP) and the false positive (FP) genes, the actual false 

discovery rate (FDR), the positive predictive value (PPV), the sensitivity rate (SR) and 

specificity rate (SPR).  

We further analyzed the DEGs detected only by the top performers such as 

DESeq, TMM and our methods using different quartile cutoff of mean expression of raw 

read counts from all genes given the nominal FDR ≤ 0.05. The results for the actual FDR, 

sensitivity and specificity are listed in Table 16. With the quantile cutoff at 75% by 

keeping the bottom reads in the analysis, the DESeq normalization has slightly better 

values in term of the actual FDR and specificity rate than other methods. TMM is least 



99 
 

favorable in this case. With the quantile cutoff at 50%, DESeq outperforms others. With 

the quantile cutoff at 25%, TMM shows better performance than others and DESeq is 

relatively conserved. However, since there are a fewer genes listed as true positive and 

true negative genes at the quantile cutoff  at 25% in MAQC2 data, this conclusion is not 

arbitrary. However, Table 16 suggests that our proposed methods (Med-pgQ2 and UQ-

pgQ2) at the 100% quantile can achieve a sensitivity and specificity rate higher than 92% 

and 85% with the actual FDR less than 0.06, respectively. This study based on the 

MAQC2 data suggests our methods can improve specificity rate and the actual FDR for 

highly expressed genes. Based on the overall performance, it clearly indicates our 

methods might be the better choice for this kind of data. 

 

 

Table 16: The actual FDR, sensitivity and specificity rate from MAQC2 data given a 

nominal FDR ≤ 0.05.  

Expression  

quantile 

cutoff 

DESeq TMM-edgeR Med-pgQ2 UQ-pgQ2 

Actual 

FDR 

SR SPR Actual 

FDR 

SR SPR Actual 

FDR 

SR SPR Actual 

FDR 

SR SPR 

100%(total) 0.140 0.931 0.609 0.205 0.967 0.358 0.057 0.928 0.854 0.055 0.933 0.861 

75% 0.069 0.861 0.806 0.147 0.931 0.516 0.084 0.877 0.758 0.077 0.898 0.774 

50% 0.091 0.476 0.926 0.184 0.738 0.740 0.304 0.762 0.482 0.292 0.810 0.482 

25% 0.000 0.000 1.000 0.333 0.333 0.917 0.667 0.667 0.333 0.692 0.667 0.250 

The sensitivity rate (SR) and specificity rate (SPR) for DEGs analysis by the top methods 

at the different-quartile cutoffs. 
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To address the question of how gene-wise normalization methods (Med-pgQ and 

UQ-pgQ2) improve specificity while maintaining good detection power for highly 

expressed genes, we further analyzed gene-wise dispersion estimated after UQ and UQ-

pgQ2 normalization with the aid of edgeR (Figure 11). Subsequently, gene-wise variance 

was estimated on the basis of the mean and estimated dispersion assuming a negative 

binomial distribution. We examined the coefficient of variation (CV) in two sets of genes 

based on a cutoff value of the mean read count (<100 vs. ≥100) from the UQ method.  

Genes with mean read count < 100 after UQ normalization were considered lowly 

expressed while the other genes were considered highly expressed.  Figure 12 shows that 

the coefficient of variation for highly expressed genes after gene-wise normalization is 

increased via increasing the gene-wise dispersion and decreasing the per-gene mean read 

count compared to UQ normalization. This suggests that per gene normalization is more 

conservative for highly expressed genes, which at least partially explains our observation 

of improved specificity for these genes (Table 16). On the other hand, the coefficient of 

variation in lowly expressed genes after gene-wise normalization is slightly decreased 

compared to UQ normalization (Figure 11, bottom). This suggests that per gene 

normalization is less conservative for lowly expressed genes explaining our observation 

that our gene-wise normalization methods slightly improve sensitivity in this case (Table 

16). 
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Figure 11: Mean vs. Dispersion after UQ and UQ-pgQ2 methods using MAQC2 data. 

Gene-wise dispersion was estimated after UQ and UQ-pgQ2 normalization with the aid 

of edgeR. The top graph displays mean versus gene dispersion for genes with a quantile 

cutoff value of mean read count after UQ normalization of ≤ 90%, while the bottom 

graph displays mean versus gene dispersion for genes with a quantile cutoff value of 

mean read count after UQ.pgQ2 normalization of ≤ 90%. 
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Figure 12: Coefficient of Variation (CV) after UQ and UQ-pgQ2 methods using MAQC2 

data. The calculated coefficient of variation (CV) after UQ normalization and per-gene 

(UQ.pgQ2) normalization, based on the estimated dispersion parameter from edgeR and 

assuming a negative binomial distribution. The top graph displays the CV for genes with 

mean read count after UQ normalization of ≥ 100, while the bottom graph displays the 

CV for genes with mean read count <100.   

Evaluation of normalization methods for detecting DEGs using different fold 

changes 
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The simulated data with 10 replicates and two conditions with different fold 

changes were used to compare our methods (Med-pgQ2 and UQ-pgQ2) based on the 

ROC curves. A total of 1,500 genes with a fold change (FC) of 1.5 and 2 are considered 

as true positive genes and the remaining genes (13,500) are considered as true negative 

genes. Fig 13A shows that the ROC curves for a FC of 1.5 in our methods have an 

average AUC value of 0.945 compared to others with the AUC value less than 0.924. Fig 

13B shows that the ROC curves for a FC of 2 in our methods have the average AUC 

values greater than 0.980 compared to others with AUC values less than 0.969. However, 

the difference in the ROC curve and AUC values between our methods and others 

decreases as the fold change increases.  
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Figure 13: ROC curve and AUC values from the simulated data at a fold-change of 1.5 

and 2. Illustrated are the ROC curves for detecting 1, 500 DEGs (750 up and 750 down-

regulated) using a fold change = 1.5 (A) and a fold change =2 (B) with an unequal library 

size. Calculated AUC values are in the inset. The simulated data, containing a total of 

15,000 genes in two conditions and 10 replicates per condition, was used for evaluating 

the performance of eight normalization methods. Our methods (UQ-pgQ2 and Med-

pgQ2) are in cyan and blue, respectively. 

Evaluation of normalization methods for detecting DEGs with biological replicates 

We investigated the impact of biological replicates on the performance of 

normalization methods. We randomly sampled four and six replicates from each of 13 

simulated datasets with 10 replicates used in Fig 13B, respectively. We sampled twice 

from one of 13 simulated data in Fig 13B yielding a total of 14 simulations. The mean 

AUC and standard deviation (SD) of each normalization method were calculated using 14 

simulations instead of 13 simulations. The results from each simulation were consistent 

with a small standard deviation.  

As expected, increasing the number of biological replicates yields a higher 

statistical power for detection of DEGs (Fig 14). Under the control of a very small false 

positive rate, the performance of all the methods (Med-pgQ2 and UQ-pgQ2) is similar. 

Fig 14 demonstrates that biological replicates are very important for RNA-seq data 

analysis in order to find true biological difference between conditions. Our normalization 

methods would be a good choice for achieving a slightly higher sensitivity rate at the 

false positive rate cutoff greater than 0.1. However, a closer examination for FPR cutoff 
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less than 0.1 indicated that when the number of replicates is smaller (4 instead of 6), the 

other methods actually perform better than our proposed methods at a FPR cutoff less 

than 0.1 (Fig. 14A). This suggests that per gene normalization does not perform well for 

all circumstances. Therefore, caution is needed when choosing an optimal normalization 

method by taking into consideration the number of different replicates and their variation. 

 

 

 

 

Figure 14: ROC curve and AUC values from the simulated data with 4 and 6 replicates in 

each condition. Illustrated are the ROC curves and AUC values (inset) in analyzing the 

impact of biological replicates on the performance of normalization methods. We used 
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the simulated data with four biological replicates (A) and six biological replicates (B), 

which contain 1,500 DEGs with 2 FC difference between two conditions. Our methods 

(UQ-pgQ2 and Med-pgQ2) are in cyan and blue, respectively. 

Evaluation of Med-pgQ2 and UQ-pgQ2 methods for detecting DEGs in different 

multiplication factors (50, 100, 200, 500, 1000 and 1 million) 

  Like RPKM and FPKM, we chose to use the small multiplication factor of 100 for 

our proposed per gene and per 100 normalization for this study. We also chose different 

multiplication factors such as 50, 200, 500, 1000 and 1 million to perform per gene 

normalization. We performed DEGs analysis using Med-pgQ2 and UQ-pgQ2 with these 

multiplication factors.  The comparison results based on DEGs analysis are shown in 

Table 17. We compared the impact of multiplication factors on PPV, the actual FDR, 

sensitivity and specificity. The values of PPV, the actual FDR, a sensitivity and 

specificity rate with multiplication factor ≥ 100 (Table 17) are more than 94%, less than 

0.06, more than 92% and more than 85%, respectively. Little difference among them is 

observed except with the multiplication factor of 50 having a slightly higher sensitivity 

rate with a trade-off of a slightly higher actual FDR and a lower specificity rate.  These 

results suggest that the choice of multiplication factors with a value greater than or equal 

to 100 has no difference on DEG analysis results. 
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Table 17: Evaluation of constant multiplication values for Med-pgQ2 and UQ-pgQ2 

given the nominal FDR≤0.05. The number of true positive (TP) and false positive (FP) 

genes, positive predictive value (PPV), the actual false discovery rate (FDR), sensitivity 

and specificity for Med-pgQ2 and UQ-pgQ2 methods are computed using the MAQC2 

data. These results of evaluation of the constant multiplication values (f=50, 100, 200, 

500, 1000 and 1 million) are reported.  

 Multiplication 
factor 

# of TP 
genes 

# of FP 
genes 

PPV Actual 
FDR 

Sensitivity Specificity 

Med-pgQ2 50 365 23 0.941 0.059 0.936 0.848 
100 362 22 0.943 0.057 0.928 0.850 
200 362 21 0.945 0.055 0.928 0.861 
500 361 20 0.948 0.053 0.926 0.868 
1000 361 20 0.948 0.053 0.926 0.868 
106 360 20 0.947 0.053 0.923 0.868 

UQ-pgQ2 50 364 24 0.938 0.062 0.933 0.841 
100 364 21 0.946 0.055 0.933 0.861 
200 363 21 0.945 0.055 0.931 0.861 
500 362 21 0.945 0.055 0.928 0.861 
1000 362 21 0.945 0.055 0.928 0.861 
106 361 20 0.948 0.053 0.928 0.868 

DESeq - 363 59 0.860 0.140 0.931 0.609 
TMM-edgeR - 377 97 0.796 0.205 0.964 0.358 
 

4. Limitations 

 Our study has some limitations. First, the data normalized by med-pgQ2 and UQ-

pgQ2 is restricted for DEGs analysis between groups and not for other purpose such as 

identifying highly or lowly expressed genes  as well as comparing gene A to gene B 

expression levels within a sample due to the potential change of gene order in a sample 

after normalization. Second, a simulation data using a Poisson distribution based on real 

RNA-seq data with additional variation generated from a normal distribution was used 
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for the DEG analysis. We do acknowledge that the lack of simulated data based on the 

NB distribution is a limitation to the study. However, inclusion of two real data sets 

(MAQC2 and MAQC3) offsets this limitation to an extent, and the combination of the 

simulated and real data provides fairly comprehensive and consistent answers.  Finally, 

on one hand, the exact test was used to identify DEGs implemented by edgeR. Although 

it is recommended for DEG analysis of RNA-seq data in two groups with a small sample 

size, we think that evaluating the effect of normalization on more complicated study 

designs beyond two-group comparisons is a worthwhile and interesting endeavor, and we 

may consider this as potential future work. On the other hand, although a t-test is not 

commonly used for testing hypothesis in RNA-seq data, it is used for testing DEGs with 

small sample size in the cDNA Microarray data. Therefore, we need to mention here that 

a t-test is invariant to linear transformations and thus would be unaffected by the per-gene 

normalization outlined here. 

5. Summary and Conclusion 

Several studies have previously compared normalization methods (TC, Med, UQ, 

FQ, DESeq, TMM, FPKM and RPKM). TC, FPKM, RPKM and FQ are not suggested 

for use in DEG analysis due to multiple issues such as lowly expressed gene issue for TC, 

length correction bias for FPKM and RPKM, and potentially increasing the intra-

condition variation by forcing all the samples to have identical distributions for FQ [58, 

60, 62, 63]. One study has reported that UQ normalization failed to remove excessive 

variation from some of the samples [67]. DESeq and TMM-edgeR are in turn the only 

choices due to better performance compared to other existing methods. Although DESeq 

appears relatively conservative compared to TMM-edgeR method [71, 84], a high false-
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positive rate particularly for  highly expressed genes for both methods has been observed 

by several studies [69, 78].  

In this study, we compared two new normalization methods for RNA-seq data 

analysis (Med-pgQ2 and UQ-pgQ2) to the seven existing methods (DESeq, TMM-edgeR, 

FPKM-CuffDiff, TC, Med, UQ and FQ) based on DEG analysis. The purpose of using 

per-gene normalization approach is to remove technical variations using different chips 

and allow for comparison between conditions based on similar count levels [85, 86]. The 

results from this study demonstrate our proposed methods (Med-pgQ2 and UQ-pgQ2) 

can achieve a slightly higher value of AUC for both MAQC2 data and the simulated data 

at the false positive rate of 0.10, which reflects improving the overall performance with 

the detection power under the control of the low FDR compared to other normalization 

methods. More importantly, the results of DEG analysis from MAQC2 data with the 

different quantile cutoff values given a nominal FDR≤ 0.05, demonstrate our methods 

can decrease the false positive rate for highly expressed genes with high read counts 

giving the result of a specificity rate of greater than 85% without loss of a detection 

power (> 92%), while the other methods (i.e., DESeq and TMM-edgeR) have a 

specificity rate of less than 70%. Our methods may improve the sensitivity and detect 

more DEGs for lowly expressed genes with low read counts. However, given the 

improvement in the sensitivity for low read-count genes, there is a trade-off of a higher 

false positive rate in this case compared to DESeq and TMM-edgeR. Furthermore, the 

overall results from MAQC2 data also show the actual FDR from our methods is less 

than 0.06 while the actual FDR from DESeq, TMM-edgeR and others are larger than 

0.10. This finding is consistent with the report by Kvam et al. in 2012. In their study they 
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compared DESeq, edgeR, baySeq and TSPM (two-stage Poisson model) methods via a 

simulated data and reported the FDR in these methods are not controlled well and the 

actual FDR is larger than the observed FDR [69]. Moreover, we discovered DESeq and 

TMM have better overall performance than TC, Med, UQ and FQ, which is also 

consistent with previous studies. In addition, based on the quantile cutoff analysis of 

DEGs in MAQC2 data, we observed that DESeq is a good choice for moderately 

expressed genes at the quantile cutoff of 75%, but it is too conservative for lowly 

expressed genes at quantile cutoffs below 50%. However, TMM method seems to have 

better control of the false positive rate for the lowly expressed genes. In addition, the 

simulated study with four replicates shows that DESeq and TMM-edgeR methods 

perform better than our methods at the FPR cutoff less than 0.05. These new findings 

may give a better idea for the choice of different normalization methods.  

There are several specific potential applications of our normalization methods 

worth mentioning. First, our methods may be useful for analyzing microRNA sequencing 

(miRNA-seq) data. Since miRNA expression is usually low compared to the mRNA with  

a ratio range  0.1~1.3% of total RNA in rat and mouse species, and 0.5~9.2% of total 

RNA in human samples, the data might be skewed to the low read counts. Therefore, per 

gene normalization may increase the sensitivity with a relative better specificity for 

detection of differentially expressed miRNAs [87, 88]. However, a comparison study of 

the performance for analyzing miRNA-seq between our methods and TMM-edgeR is 

needed to make definitive conclusions. Second, our methods are more universally 

applicable than using control-gene normalization in removing technical variations since it 

is hard to identify control genes such as housekeeping genes that remain at the same 
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expression level regardless of the experimental conditions [63]. Third, given the 

importance of downstream analysis on RNA-seq data with a choice of normalization 

methods, our methods might be useful, particularly in light of emerging single-cell RNA-

seq data and meta-analysis of RNA-seq data which have highly variable properties. 

Finally, the simulated data results show that increasing the number of the 

biological replicates results in higher ROC curves and AUC values corresponding to 

higher detection power and lower false positive rate. However, due to the cost of RNA-

seq data, the sample size of biological replicates was not considered by some of the 

earlier researchers using NGS technologies. One study by Hansen et al. in 2011 

summarized a large number of published RNA-seq studies with a table showing that most 

of them had only one or a few biological replicates [11]. The thousands of DEGs 

identified from these RNA-seq data lack confidence and require further validation. 

Although laboratory qRT-PCR and Western blotting methods can be used to validate 

these identified DEGs, it is very tedious and almost impossible to validate several 

thousand DEGs. Our per gene normalization methods may be useful for combining the 

single or a few replicates of RNA-seq data from different experiments with the same 

conditions to increase the power for DEGs analysis. 

Like many normalization and pre-processing procedures, our methods involve 

several choices of constants which we evaluated empirically. Primarily, in the 2nd step of 

our methods we chose to scale the median across samples to be per 100 reads instead of 

per kilobase or per million reads which was used by RPKM or FPKM.  Our justification 

for this choice of a scaling constant in Table 17 shows little difference of PPV, the actual 

FDR, specificity and sensitivity for multiplication factors ≥ 100 from DEGs analysis, 



112 
 

and we picked the smallest scaling factor possible for which this was true.  Secondly, a 

small positive value (such as 0.1 of one read) is added in all gene counts to avoid 

undefined fold changes in DEGs due to zero counts possible in one condition. This 

ensures no missing value for DEGs analysis and reduces the variability at low count 

values [89]. To study the robustness of results in the analysis of MAQC2 data, we 

considered different additive values (0.05, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5). The results in 

Table 18 suggest that the FDR and sensitivity rate monotonically increased and the 

specificity rate monotonically decreased as increase in the additive values. Small positive 

values such as 0.05, 0.10 and 0.20 are recommended as FDR is reasonably maintained 

(less than 10%) with sensitivity and specificity rates of at least 80%. Furthermore, it is 

worth mentioning that preprocessing RNA-seq data such as prefiltering zero read counts 

across groups or adding a small positive number to all gene read counts is an option in 

RNA-seq data analysis. For example, the procedure to prefilter zero read counts may not 

avoid filtering out the lowly expressed genes which may be of interest by some 

researchers. Therefore, the choice of preprocessing the data will vary according to the 

experimental study.  

Taken together, with the regards to all the discussed limitations, we think our 

proposed gene-wise normalization methods (Med-pgQ2 and UQ-pgQ2) might be a good 

choice for the skewed RNA-seq data with high variation via improving the false positive 

rate and maintaining a good detection power for DEGs analysis of RNA-seq data 

compared to the other normalization methods. 
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Table 18: Evaluation of the small positive values added in read counts for Med-pgQ2 and 

UQ-pgQ2 given the nominal FDR≤0.05. The number of true positive (TP) and false 

positive (FP) genes, positive predictive value (PPV), the actual false discovery rate 

(FDR), sensitivity and specificity for Med-pgQ2 and UQ-pgQ2 methods are computed 

from the MAQC2 data. The results for the choice of the small positive values added the 

read counts (f=0.05, 0.1, 0.15, 0.20, 0.30, 0.40 and 0.50). 

 Added #  # of TP 
genes 

# of FP 
genes 

PPV Actual 
FDR 

Sensitivity Specificity 

Med-pgQ2 0.05 347 17 0.953 0.047 0.890 0.887 
0.10 362 22 0.943 0.057 0.928 0.850 

0.15 366 26 0.934 0.066 0.938 0.828 
0.20 369 30 0.925 0.075 0.946 0.801 
0.30 374 39 0.906 0.094 0.946 0.795 
0.40 377 45 0.893 0.101 0.962 0.722 
0.50 377 48 0.887 0.112 0.967 0.682 

UQ-pgQ2 0.05 344 18 0.950 0.050 0.882 0.881 
0.10 364 21 0.946 0.055 0.933 0.861 

0.15 367 31 0.922 0.078 0.941 0.795 
0.20 372 35 0.914 0.086 0.954 0.768 
0.30 375 42 0.899 0.107 0.962 0.721 
0.40 376 50 0.882 0.117 0.964 0.669 
0.50 376 53 0.877 0.123 0.964 0.649 

DESeq - 363 59 0.860 0.140 0.931 0.609 

TMM-edgeR - 377 97 0.796 0.205 0.964 0.358 
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IDENTIFICATION OF THE OPTIMAL APPROACH FOR THE 

DIFFERENTIAL GENE EXPRESSION ANALYSIS IN HUMAN BREAST 

CANCER 

1. Introduction 

  Breast cancer (BC) is the most commonly diagnosed cancer in women throughout 

the world [90-92], accounting for 23% of all female cancers [93-95]. BC is a growing 

health problem worldwide, increasing both in incidence [92] and resistance to treatment. 

Although significant progress has been made in the clinical treatment of BC, challenges 

persist because of its molecular heterogeneity, resistance to standard endocrine therapy 

and the risk of late recurrence. These challenges are driving intensive research efforts to 

identify new biomarkers of disease progression and signaling pathways amenable for 

potential chemotherapy. 

Since BC is a heterogeneous disease, the identification of molecular pathologic 

markers, gene expression profiles and patterns of genomic alteration has become essential 

for predicting clinical outcomes and selecting appropriate therapy [96]. In particular, the 

presence of estrogen and progesterone receptors (ER and PR), and the human epidermal 

growth factor receptor 2 (HER2) have become standard biomarkers for defining BC 

subtypes which can be targeted by hormone modulation therapy. Approximately 75% of 

all BC are ER+ and of these, only half respond to anti-estrogen therapy [97, 98]. ER+ 

patients ultimately comprise the majority of deaths attributable to BC. Therefore, finding
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new targets for chemotherapy is an urgent need for preventive interventions [99-101]. 

Studies of ER+ BC reported that ER signaling engages in complex cross-talk with 

multiple signaling pathways via genomic and non-genomic regulation [97, 102]. ER+ BC 

has been characterized as having enhanced proliferation either by increasing cell division 

and/or decreasing apoptosis [102, 103]. On the other hand, tumors lacking ER and PR as 

well as HER2 (triple negative breast cancers, TNBC) are not amenable to these targeted 

therapies. Studies report that TNBC is more sensitive to chemotherapy than hormone 

positive BC [96, 104-106]. However, TNBC is associated with poorer survival than non-

TNBC due to frequent relapse, and only about 31% of patients are completely  responsive 

to chemotherapy [104, 105, 107].Therefore, a better understanding of the cell biology and 

molecular pathways underlying BC initiation and progression remains necessary for 

improving therapeutic options and clinical outcomes. 

 Mechanisms of oncogenesis involve the disruption of diverse biological functions 

and cellular pathways including cell cycle, proliferation, survival and apoptosis [94].  

Recently, high throughput RNA sequencing (RNA-seq) has been increasingly used in 

clinical studies for defining gene expression changes [47, 49].  Indeed, RNA-seq-based 

gene expression profiling for the identification of global gene-expression patterns is a 

commonly used approach to integrate the multiple molecular events and mechanisms 

whereby cancer may develop [94, 108]. However, a standard procedure for differentially 

expressed gene (DEG) analysis remains undefined due to the multiple analytical steps 

required for RNA-seq workflow, including experiment design, library preparation and 

sequencing, mapping, normalization and statistical testing. Developing an appropriate 

approach to analyze RNA-seq data is challenging and critical. Studies comparing 
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different normalization methods and statistical testing packages have shown that 

normalization methods and test statistics have a strong impact on DEG analysis [58, 60, 

63, 69-71]. Using simulated data, it was found that the TC, UQ, Med, Quantile and 

RPKM normalization methods failed to control the false positive rate for genes with high 

read counts. In contrast, the DESeq (DESeq2) and TMM (edgeR) methods perform better 

overall than other methods in terms of detection power and control of false positives in 

data at a specified False Discovery Rate (FDR) [63]. However, using simulated data in 

these studies also report that an observed type I error rate is higher than the nominal 

FDR, leading to an inflated type I error rate. More recently, gene-wise normalization 

methods following per sample globally scaled normalization (UQ-pgQ2 and Med-pgQ2) 

were proposed by Li et al.[81]. A comparison of these methods with DESeq from 

DESeq2 and TMM-edgeR normalizations using the benchmark Microarray Quality Control 

Project datasets (MAQC2) reported that Med-pgQ2 or UQ-pgQ2 perform slightly better 

for genes with high read counts via improving the specificity for skewed RNA-seq data 

given a FDR of 0.05. However, these methods also show a slightly higher FP rate for 

genes with a low read counts compared to DESeq2 and edgeR [81]. 

In this study, we use a combinational and a robust approach to perform 

differential gene expression analysis using the ER+ with HER2- breast cancer 

(ER+HER2-BC) and TNBC datasets. First, we used DESeq2 with DESeq normalization, 

edgeR with TMM normalization and UQ-pgQ2 normalization with a statistical test from 

DESeq2. We determined an optimal method via DEG analysis of within group 

comparisons given different absolute log2 Fold Change (|logFC|) cutoff values at a 

FDR ≤ 0.05. The DEGs identified from within group comparisons (e.g., 21 TNBC 
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versus 21 TNBC) by a method are considered as false positive (FP) genes. We observe 

that the UQ-pgQ2 method with the aid of DESeq2 performs best due to a fewer number 

of FP genes identified using the same |logFC| cutoff. DESeq2 can detect slightly more FP 

genes than UQ-pgQ2, but edgeR performed the worst with many more FP genes for each 

within-group comparison. Thus, we selected UQ-pgQ2 and DESeq2 as the optimal 

methods for the DEGs analysis. To further decrease the FP rate in DEG analysis, we 

determined an optimal |logFC| cutoff at which the observed FP rate from within group 

comparisons is smaller than 0.01%. With this approach, the DEGs identified by both 

DESeq2 and UQ-pgQ2 are considered as true DEGs. In addition, the DEGs identified 

either by DESeq2 or UQpgQ2 at higher and more stringent |logFC| cutoff values are also 

considered as true DEGs. These higher |logFC| cutoff values are obtained when no DEGs 

or close to zero DEGs from the within-group comparisons are detected. Finally, three sets 

of DEGs from the combination analysis including two DEG sets uniquely identified in 

either of the TNBC or ER+HER-BC comparison groups and one common DEG set from 

both comparison groups are obtained. These DEGs are further analyzed for biological 

functions and pathways with the aid of the Ingenuity software. 

In summary, our study reveals an important consideration to be made regard to 

the analysis of the BC datasets. One of issues is how to control the type I error rate with a 

small number set of high read counts of genes. Failing to consider this issue has a 

profound effect on the number of genes that are claimed as DEGs resulting in a 

misleading interpretation of biology. With the consideration of this important issue and 

using the knowledge base on the previous studies in a comparison of the existing methods 

for the analysis of DEGs, our analysis approach has identified UQ-pgQ2 normalization 
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with the aid of DESeq2 is the best method for these BC datasets with high read depth 

given an absolute log2 Fold Change (|logFC|).We also found DESeq2 is a good method 

to analyze these BC datasets in terms of the number of DEGs detected with a slightly 

higher false positives. In our analysis scheme, we utilize UQ-pgQ2 and DESeq2 methods 

and robustly identify DEGs in TNBC vs. control and ER+HER2-BC vs. control. These 

DEGs deem to be truly and differentially expressed.  

2. Materials and Methods 

Normalization methods 

In this study, we use three normalization methods including DESeq, TMM and 

UQ-pgQ2, and two software packages including DESeq2 and edgeR for analyzing DEGs 

in human breast cancer datasets. DESeq and TMM normalization methods were 

implemented using DESeq2 and edgeR packages. UQ-pgQ2 normalization was 

implemented using R [17, 18, 81].  

Breast cancer datasets 

The publicly available RNA-seq datasets contain forty-two Triple Negative Breast 

Cancer (TNBC) primary tumors; twenty-one uninvolved breast tissue samples that were 

adjacent to TNBC primary tumors (ctr1); forty-two Estrogen Receptor positive (ER+) 

and HER2 negative (HER2-) breast cancer (ER+HER2-BC) primary tumors  and 30 

uninvolved breast tissue sample that were adjacent to ER+HER2-BC primary tumors (ctr2). 

The RNA-seq raw data files with a sequence read archive (SRA) were downloaded from NCBI 

GEO (series ID GSE58135) [28].  

Sequence mapping and extraction of gene counts  
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The raw SRA sequencing files containing 42 TNBC with 21 control samples 

(ctr1) and ER+HER2-BC with  30 controls samples (ctr2)  were first converted .SRA 

files into .fastq files and then were mapped to the human hg19 reference genome using 

STAR (v2.5.3a). The mapped counts for 57,778 genes per sample were then extracted 

using HTSeq-scripts-count (version 2.7). After filtering the genes with zero counts across 

all the samples with four groups, 35,203 genes per sample were left for downstream 

analysis. Subsequently, the gene Symbol and Entrez gene ID with the type of protein are 

merged via the Ensembl gene ID.  

Software packages used for normalization methods and testing DEGs 

The normalization methods and the software packages with test statistics used for 

analyzing the human breast cancer datasets are summarized in Table 19. Here, we give a 

brief description of the software packages used for the normalization and statistical tests 

in the present work. edgeR (v3.8.6) [18] containing the TMM normalization method  has 

been widely used for DEG analysis for RNA-seq data . DESeq2 [80], a successor to the 

DESeq method [17], was used to implement DESeq normalization and a Wald’s 

statistical test for detection of DEGs. For UQ-pgQ2 normalization, we choose DESeq2 to 

perform a statistical test by setting the size factors of all samples as one and using a 

Wald’s test to identify DEGs. Moreover, we used the gene level results for comparison 

with the other normalization methods.  
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Table 19: Summary of three normalization methods and software packages used for the 

analysis of breast cancer data.  

Normalization 

method 

Description of normalization Distribution 

 

Statistical 

test 

 

Software 

packages 

UQ-pgQ2 Per sample scaled by upper 
quantile and per gene by 
medium across samples 

NB Wald test DESeq2 
(v1.6.3) 

DESeq Per sample scaled by medium of 
ratio 

NB Wald test DESeq2 
(v1.6.3) 

TMM Per sample by Trimmed Mean 
M values 

NB Exact test edgeR 
(v3.8.6) 

 

Identification of an optimal normalization method via within-group comparisons 

For determining an optimal normalization method with a control of false 

positives, we used UQ-pgQ2, DESeq2 and edgeR to perform DEGs analysis of four 

within-group comparisons. The samples in each group were randomly selected and all the 

samples were divided into two groups. Thus, we have four comparisons: 21 TNBC vs. 21 

TNBC, 11 ctr1 vs. 10 ctr1 (control for TNBC), 21 ER+HER-BC vs. 21 ER+HER2-BC, 

and 15 ctr2 vs. 15 ctr2 (control for ER+HER2-BC). We repeated the procedure 10 times 

via randomly selecting the samples into each group without replacement using R script. 

DEGs identified by these comparisons are considered as false positive (FP) genes. 

We considered the method that could identify a much smaller number of FP genes 

using the same |logFC| cutoff value at a FDR ≤ 0.05 while maintaining a good detection 

power (> 10% total genes) as the optimal method. In order to minimize FP genes, a 

|logFC| cutoff for the identification of  DEGs in the BC comparisons is determined when 

zero or fewer genes (less than 0.05%) identified both within BC and its control group. 
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For example, we arbitrarily chose the |logFC| cutoff of 2 for UQ-pgQ2 method when six 

and zero DEGs from a total of 35203 genes were identified in 21 TNBC vs. 21 TNBC 

and 11 ctr1 vs. 10 ctrl comparisons, respectively. Thus, the different optimal |logFC| 

cutoff values were selected for each method when comparing BC versus the control 

groups.  

A robust approach to identify true DEGs for the comparisons of TNBC vs. crt1 and 

ER+HER2-BC vs. ctr2  

1) After identifying UQ-pgQ2 and DESeq2 as the optimal normalization methods, 

we performed the DEGs analysis in two scenarios: TNBC versus ctr1 and ER+HER2-BC 

versus ctr2 with the aid of DESeq2. The DEGs were determined in each comparison 

using an arbitrary |log FC| cutoff, where an observed FPR was ≤ 0.05%. 2) For each 

comparison, we assumed the DEGs identified from both normalizations as true DEGs. In 

addition, genes with a maximum (Max) |logFC| cutoff value identified either by DESeq2 

or UQ-pgQ2 were also assumed as true DEGs. This Max |logFC| cutoff value was 

determined when an actual or observed FPR was close to zero, which was based on the 

within-group analysis for the control group and the BC group 3) The true genes identified 

from TNBC and ER+HER-BC were further divided into three sets: the DEGs common in 

both TNBC and ER+HER2-BC; the DEGs only in TNBC or the DEGs only in 

ER+HER2-BC. These three sets of DEGs were further validated through the property of 

the subtypes of BC.  

Biological function and pathway analysis 
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I used Ingenuity Pathway Analysis (IPA) software to validate the DEGs identified 

using my analysis scheme. On the other hand, I used IPA to identify cancer-related and 

statistically significant biological functions and canonical signaling pathways for DEGs 

identified in the comparison of TNBC and ER+ groups (QIAGEN, version 3355999, 

USA). 

3. Results and discussion 

1). DEGs identified from within-group comparisons to determine the optimal 

normalization method and statistical packages.  

DEGs identified from the within-group comparisons of BC data using UQ-pgQ2, 

DESeq2 and edgeR are listed in Table 20. The results with a different |logFC| cutoff show 

that UQ-pgQ2 is more conserved than other methods in most cases.  

When comparing 21 TNBC versus 21 TNBC, the number of FP genes with a 

|logFC| ≤ 1.5 cutoff detected by UQ-pgQ2, DESeq2 and edgeR was 4 (±4), 43(±34) and 

527(±125), respectively, with a FPR in a total of 35203 genes of 0.01%, 0.12% and 

1.50%. Similarly, given a |logFC| cutoff of 2, the number of FP genes within the TNBC 

comparison using UQ-pgQ2, DESeq2 and edgeR was 0, 10(±9) and 455(±97), 

respectively, with a FPR of 0, 0.03% and 1.29% correspondingly. The number of FP 

genes within the ctr1 comparison using UQ-pgQ2, DESeq2 and edgeR was 0, 0 and 

6(±12), respectively. In this case, UQ-pgQ2 and DESeq2 achieved a FPR below 0.05% 

both within group comparisons from TNBC and control groups. Thus, the |logFC| of 2 

was chosen as an optimum cutoff value for the downstream analysis of DEGs. With a 

|logFC| cutoff of 2.5, the number of FP genes within the TNBC comparison detected by 
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UQ-pgQ2, DESeq2 and edgeR was 0, 1(±1) and 372(±74), respectively, with a FPR of 

0, 0.003% and 1.06%. In this case, UQ-pgQ and DESeq2 achieved a FPR below 0.01%. 

Given a |logFC| ≥ 3, edgeR had an observed FPR of 0.84% within the TNBC 

comparison.  

For the 21 ER+HBR-BC versus 21 ER+HBR-BC comparison, the number of FP 

genes with a |logFC| ≤ 1.5 cutoff using UQ.pgQ2, DESeq2 and edgeR was 1 (±1), 6(±3) 

and 292(±67), respectively, with a FPR in a total of 35203 genes of 0.003%, 0.02% and 

0.83% correspondingly; and the number of FP genes in the within ctr1 comparison from 

UQ-pgQ2, DESeq2 and edgeR was 1(±3), 14(±16) and 771(±184), respectively, with a 

FPR of 0.003%, 0.04% and 2.19%. In this case, UQ-pgQ2 and DESeq2 achieved an 

observed FPR below 0.05% both within the group comparisons (ER+HER2-BC and 

control). Thus, the |logFC| of 1.5 was chosen as an optimum cutoff value for the DEGs 

analysis. Moreover, given a |logFC| cutoff of 2, the number of FP genes within the 

ER+HER2-BC comparison from UQ.pgQ2, DESeq2 and edgeR was 0, 1(±1) and 

259(±54) with an FPR of  0, 0.003% and 0.74% , respectively; and the number of FP 

genes within the ctr1 comparison from UQ.pgQ2, DESeq2 and edgeR was 0, 5(±6) and 

686(±137). In this case, UQ-pgQ2 and DESeq2 achieved a FPR below 0.01% both 

within the ER+HER2-BC and control group comparison. With a higher |logFC| cutoff of 

2.5, the number of FPR genes within the ER+HER2-BC comparison detected by 

UQ.pgQ2, DESeq2 and edgeR was 0, 0 and 216(±39), respectively; and the number of 

FP genes within the ctr1 comparison from UQ-pgQ2, DESeq2 and edgeR was 0, 1(±2) 

and 590(±94), respectively. In this case, UQ-pgQ and DESeq2 achieved the observed 
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FPR below 0.01%, but edgeR has an observed FPR above 0.7% both within the 

ER+HER2-BC and control group comparisons.  

In summary, an approach via the within group analysis to identify FP genes can 

help us to achieve several goals. First, among the choice of three methods, we considered 

UQ-pgQ2 and DESeq2 to be better for DEGs analysis of the BC datasets while UQ-pgQ2 

performs the best in term of controlling false positives. Second, the results (Table 21) 

helped us to choose an optimal |logFC| by taking a consideration of a FPR and a high 

detection power with a reasonable number of DEGs. Finally, the results (Table 20) 

indicate that UQ-pgQ2 was slightly better conserved than DESeq2 while edgeR is too 

liberal. This observation is consistent with the previous studies comparing normalization 

and statistical test methods for the DEGs analysis of RNA-seq data.  

Table 20: DEGs analysis within-group and between groups using UQ-pgQ2, DESeq2 and 

edgeR. The DEGs are determined using a different |log FC| cutoff at a FDR≤0.05. 

 Comparison groups UQ-pgQ2 DESeq2 edgeR 
|Log(FC)|≥1.5 21TNBC vs. 21 TNBC 4±4 43 ±34 527±125 

11ctr1 vs. 10 ctr1 1±2 0 6±14 
21 ER+HER2-BC vs. 21 ER+HER2-BC 1±1 6± 3 292±67 
15 ctr2 vs. 15 ctr2 1±3 14±16 771±184 
42 TNBC vs. 21 ctr1 7,474 8,969 9,585 
42 ER+HER2-BC vs. 30 ctr2 4,999 6,308 7,448 

|Log(FC)| ≥2 21TNBC vs. 21 TNBC 0 10±9 455± 97 
11ctr1 vs. 10 ctr1 0 0 6±12 
21 ER+HER2-BC vs. 21 ER+HER2-BC 0 1±1 259 ±54 
15 ctr2 vs. 15 ctr2 0 5±6 686±137 
42 TNBC vs. 21 ctr1 3,706 5,201 5,854 
42 ER+HER2-BC vs. 30 ctr2 2,169 3,176 4,161 

|Log(FC)| ≥2.5 21TNBC vs. 21 TNBC 0  1±1 372± 74 
11ctr1 vs. 10 ctr1 0 0 5±10 
21 ER+HER2-BC vs. 21 ER+HER2-BC 0 0 216±39 
15 ctr2 vs. 15 ctr2 0 1±2 590±94 
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42 TNBC vs. 21 ctr1 1,701 2,888 3,586 
42 ER+HER2-BC vs. 30 ctr2 869 1,499 2,326 

|Log(FC)| ≥3 21TNBC vs. 21 TNBC 0 0 296± 54 
11ctr1 vs. 10 ctr1 0 0 4±7 
21 ER+HER2-BC vs. 21 ER+HER2-BC 0 0 175±33 
15 ctr2 vs. 15 ctr2 0 0 502±65 
42 TNBC vs. 21 ctr1 767 1815 2,290 
42 ER+HER2-BC vs. 30 ctr2 323 689 1,356 

 

Table 21: The number of DEGs from two methods based on the total of 35,203 genes 

with an observed FPR given a |logFC| cutoff in parenthesis. 

 Normalization DEGs  FPR   

(|logFC|) 

a |logFC| 

 given FPR≈ 𝟎 

TNBC UQpgQ2 3,706 ≈0  
(≥ 2) 

≥ 2 

DESeq2 5,201 ≈0.03% 
(≥  2) 

≥ 2.5 

Common 
DEGs 

3,610 - - 

ER+HER2-BC UQpgQ2 4,999 ≈0.003% 
(≥ 1.5) 

≥ 2 

DESeq2 6,308 ≈0.04% 
 (≥ 1.5) 

≥ 2 

Common 
DEGs 

4,776 - - 

FPR: an observed false positive rate 

2). DEGs identified between-group comparison in human TNBC and ER+HER2BC 

using UQ-pgQ2, DESeq2 and edgeR based on 35203 genes 

Gene expression profiles in two comparisons (42 human TNBC versus 21 ctr1, 

and 42 human ER+HER2-BC versus 30 ctr2) were analyzed using three methods (UQ-

pgQ2, DESeq2 and edgeR), where DESeq2 was used for preforming statistical test for 

UQ-pgQ2 normalization method. 
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DEGs were identified giving a nominal FDR ≤ 0.05 and an optimal |logFC| 

cutoff value (Tables 20-21). The results in Table 20 show that edgeR has a higher 

detection power while having a tradeoff of a higher FPR given the same |logFC| cutoff 

according to the within-group analysis. Although DESeq2 performs better in terms of 

FPR when compared to edgeR, previous studies report the actual type I error in DESeq2 

is higher than the nominal FDR, particularly in high read counts of genes. With the aid of 

DESeq2, UQ-pgQ2 has a much lower FPR while have a tradeoff of a fewer number of 

DEGs detected. In order to maximize the detection power and minimize the type I error, 

we select UQ-pgQ2 and DESeq2 to identify the DEGs given a 0.05 FDR and an optimal 

|logFC| cutoff (Table 21).  

The results in Table 21 show that by using UQ-pgQ2 method, 3706 DEGs in 

TNBC and 4999 DEGs in ER+HER2-BC were detected given an optimal |logFC| cutoff  

with an observed FPR below 0.002%. Similarly, using DESeq2, 5,201 DEGs in TNBC 

and 6308 DEGs in ER+HER2-BC were detected given the same |logFC| cutoff as UQ-

pgQ2 with an observed FPR below 0.03%. 

3). DEGs identified in human TNBC and ER+HER2-BC from UQ-pgQ2 and 

DESeq2 based on 17584 protein coding genes. 

Gene expression profiling is commonly used to identify disease biomarkers and 

biological functions. In RNA-seq data analysis, we noted that the identified DEGs 

contain a mixture of mRNA, miRNA, rRNAs and other non-coding RNAs that are 

present in the total RNA per sample and not completely eliminated during the library 

preparations. These noncoding RNAs, especially about 10% of high abundant rRNAs 
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with high read counts remain in each RNA-seq sample while using the ploy-A depletion 

method in the library preparations. In this study, we focus on the 17,584 protein coding 

genes out of the 35,203 total genes. The results in Table 22 show that using UQ-pgQ2 

method, the number of DEGs detected for TNBC at a |logFC| ≤ 2 and ER+HER2-BC at a 

|logFC|≤ 1.5 was 1,584 and 2,303, respectively; using DESeq2 method with the same 

cutoff values,  the number of DEGs detected for TNBC and ER+HER2-BC was 1,913 

and 2,649, respectively. The number of DEGs common in both analytical methods for 

TNBC and ER+HER2-BC was 1546 and 2212, respectively. In addition, Table 22 also 

shows the number of up and down-regulated DEGs per comparison. 

Table 22: DEGs identified using DESeq2 and UQ-pgQ2 based on 17524 protein coding 

genes with a nominal FDR ≤ 0.05 and an arbitrary |logFC| cutoff. 

Data Normalization DEGs Up Down 

TNBC UQ.pgQ2 1,584 949 635 
DESeq2 1,913 1099 814 

Common DEGs 1,546 915 631 
ER+HER2-BC UQ.pgQ2 2,303 1,161 1,142 

 DESeq2 2,649 1,195 1,454 

Common DEGs 2,212 1,074 1,138 
 

4). A robust method to identify the true DEGs (protein coding genes) based on 

17,854 protein coding genes using UQ.pgQ2 and DESeq2 methods 

Based on the DEG analysis of the 17,584 protein coding genes, we noted that the 

number of DEGs identified by the UQ-pgQ2 and DESeq2 methods varied for the two 

comparisons (42 TNBC versus 21 control and 42 ER+HER2-BC versus 30 control). The 

previous studies observed that DESeq2 and edgeR are less conserved for the high read 
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count genes using MAQC2 data. Therefore, in order to minimize the number of false 

positives, we used a combinational approach to identify the true DEGs. The results are 

listed in Table 21. For the TNBC comparison, we first identified the common DEGs 

using both UQ-pgQ2 and DESeq2 resulting in 1546 DEGs. Similarly, for the ER+HER2-

BC comparison, 2212 DEGs were identified in common. We assumed the DEGs that 

were not in common, but identified by either DESeg2 or UQ-pgQ2 with an observed FPR 

close to zero given a Max |logFC| cutoff (Table 21), were also considered as true DEGs. 

With this approach, in the TNBC comparison, 109 DEGs from DESeq2 at a |logFC| ≥2.5, 

and 38 DEGs from UQ-pgQ2 at a |logFC| ≥2, were considered as true DEGs, and adding 

them to the common DEGs set results in 1,693 true DEGs. For the ER+HER2-BC 

comparison, with a |logFC| ≥2, 84 DEGs from DESeq2 and 3 DEGs from UQ-pgQ2 are 

considered as the true DEGs, and adding them to the common DEG set results in 2299 

true DEGs.  

The heatmaps (Figure 15) based on the DESeq-normalized gene expression levels 

were constructed using a hierarchical clustering from Partek software (Partek Genomics 

Suite 6.6). In this figure, we conventionally chose the up-regulated genes in red and 

down-regulated genes in green. Figure 15A illustrates the gene expression level of the 

1,693 DEGs for the 42 TNBC versus 21 control samples. Figure 15B illustrates the gene 

expression level of the 2,299 DEGs for the 42 ER+HER2-BC versus 30 control samples.  

Finally, we examined the number of common and unique DEGs between 1,693 

DEGs in TNBC and 2,299 DEGs in ER+HER2-BC.We found the 896 DEGs that were 

common in both TNBC and ER+HER2-BC, while the 797 DEGs and the 1403 DEGs 

were uniquely identified in TNBC and ER+HER2-BC, respectively. These common and 
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unique DEGs were further used for the analysis of the cancer-related biological functions 

and pathways with the aid of Ingenuity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Heatmaps based on the DESeq-normalized gene expression levels are 

constructed.  The up-regulated genes are in red and the down-regulated genes are in 

green. A.  The1693 DEGs identified from TNBC. B. The 2299 DEGs identified from 

ER+HER2-BC.  

5). Identification of biomarker genes based on the presence or absence ER, HR and 

HER2 to partially validate the DEGs analysis 

A 

B 
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We identified biomarker genes based upon the presence or absence of the 

molecular receptors. The results are listed in Table 23.  For the TNBC comparison, we 

found that ER (ESR1 and ESR2), PR (PGR) and HER2 (EGFR) were significantly down-

regulated using both UQ.pgQ2 and DESeq2 methods as expected.  For the ER+HER2-BC 

comparison, we found that ER1 (ESR1) was significantly up-regulated with a FC greater 

than 1.8 and ER2 (ESR2) is significantly down-regulated. PR (PGR) expression level in 

ER+HER2-BC was not significantly different from the control groups. However, HER2 

(EGFR) was significantly down-regulated using both methods as expected.  Taken 

together, the expected results via the molecular markers can partially validate the true 

DEGs using an integrated approach. 

Table 23: Biomarker for TNBC and ER+HER2-BC. 

Comparison Symbol LogFC 

(UQ.pgQ2, DESeq2) 

FDR 

(UQ.pgQ2, DESeq2) 

TNBC ERS1 (-2.95,-3.25) ≤ 0.001 
ERS2 (-0.94,-1.01) ≤ 0.002 

PGR (-3.12, -3.56) ≤ 0.001 

EGFR (HER2) (-1.51, -1.65) ≤ 0.01 

ER+HER2-BC ERS1 (0.92,0.84) ≤ 0.005 

ERS2 (-1.84, -2.01) ≤ 0.001 

PGR (0.23, -0.36) ≥ 0.59 

EGFR (HER2) (-3.23, -3.43) ≤ 0.001 

 

6). Top cancer-related biological functions identified via Ingenuity software 

Ingenuity Pathway Analysis (IPA), which uses information obtained from high 

impact journals, is a widely used tool for the partial validation, but mainly used in 

identification of diseases and biological functions. The three sets of DEGs containing the 

797 protein coding genes uniquely identified  in TNBC, the 1403 protein coding genes 
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uniquely identified in ER+HER2-BC and the 896 protein coding genes common in both 

were subjected to IPA. The results are listed in Table 24. 

We particularly focused on the cancer or immuno-related biological functions 

(Figure 16). Figure 16A illustrates the top diseases and biological functions significantly 

identified by the common set of DEGs. These are categorized as Cancer, Organismal 

Injury and Abnormalities, and Cell Cycle. Figure 16B highlights the top biological 

functions from the unique set of DEGs in TNBC. These functions include Tissue 

Morphology, Cell Signaling, Immune Cell Trafficking and Inflammatory Response, 

Humoral Immune Response, Cell-mediated Immune Response, Cellular Movement and 

Development, Cellular Growth and Proliferation, Organismal Development and 

Morphology, and Cell Death and Survival.  Figure16C highlights the top biological 

functions unique in ER+HER2-BC that are associated with Cellular Movement and 

Development, Cellular Growth and Proliferation, Tissue and Organismal Development, 

T-cell Signaling, Immune Cell Trafficking and Inflammatory Response. We noted that 

the functions of Cellular or Tissue Movement, and Cellar Growth and Proliferations 

identified from the unique set of DEGs in ER+HER2-BC were much more significant 

than the functions categorized in Inflammatory Response and Immune Response. This 

observation suggests these functions may play a dominant role during breast cancer cell 

development and growth for ER+HER2-BC. In contrast, the functions categorized as Cell 

Signaling, Immune Cell Trafficking and Inflammatory Response, Humoral Immune 

Response etc. identified from the unique set of DEGs in TNBC were much more 

significant than the functions categorized as Cellar Growth and Proliferations, and Cell 

Death and Survival. This observation suggests Inflammatory Response or Cell-mediated 
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Immune Response may play a dominant role for helping metastasis, which may be as a 

potential mechanism to explain why the TNBC patients has a poor survival rate.   

 We further examined the cancer-related genes in each category. Among the 896 

genes in the common set, we observed 410 genes in Cancer, and 503 genes in Organismal 

Injury and Abnormalities. We found 389 genes in these two categories are associated 

with cancer; 128 genes are associated with BC; and 31 genes are associated with estrogen 

negative BC, 30 genes are associated with HER2- hormone receptor negative BC and 31 

genes are associated with HER2-BC.   

Among the 797 genes uniquely identified in TNBC, 294 and 381 genes are 

categorized in Cancer, and Organismal Injury and Abnormalities, respectively.  We found 

282 of these genes are associated with cancer and 135 genes are associated with breast 

cancer or colorectal cancer.  

Among the 1403 genes uniquely identified by ER+HER2-BC, we found 498 

genes in Cancer, 609 genes in Organismal Injury and Abnormalities, and 278 genes in 

Cellular growth and proliferation. We found 460 genes are associated with cancer; 223 

genes are associated with BC or colorectal cancer, and 172 genes are associated with BC 

or ovarian cancer. More interestingly, we identified additional 26 genes besides 30 genes 

in common set that are also associated with HER2- hormone receptor negative BC.  

These genes could be potential biomarkers for the diagnosis of ER+HER2-BC subtype.  
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Table 24: The number of DEGs are associated with BC or other cancer with the aids of 
IPA. 

 DEGs Cancer  BC BC or the other ER-BC HER2- 
hormone 

negative BC 

HER2-BC 

common in TNBC and 
ER+HER2-BC 

896 389 128 198 (BC or CC) 
159 (BC or OC) 

 

31 (↑9, ↓21) 31(↑9, ↓22) 30(↑9, ↓21) 

Unique in TNBC  797 282 - 135 (BC or OC) 
 

- - - 

Unique in ER+HER2-
BC 

1403 460 - 223 (BC or CC) 
172 (BC or OC) 

 

- 26(↑6, ↓20)  

Note: Breast Cancer (BC), Colorectal Cancer (CC), Ovarian Cancer (OC), ER negative 
(ER-), HER2 negative (HER2-). 

 

 

 

 

 

 

 

 

 

 

Figure 16: Canonical pathways identified from the common and unique DEGs in TNBC 

and ER+HER2-BC. A. 896 DEGs are common in TNBC and ER+HER2-BC. B. 797 

DEGs unique in TNBC. C. 1403 DEGs unique in ER+HER2-BC. 

A
. 

B 
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7. Unique canonical pathways for TNBC and ER+HER2-BC 

We further examined the canonical pathways and biomarkers using the 797 DEGs 

unique in TNBC and the1403 DEGs unique in ER+HER2-BC. For TNBC, we identified 

four cancer-related pathways including Estrogen Mediated S-phase Entry, cAMP-

mediated Signaling, Calcium Signaling and LXR/RXR Activation (Figure 17A). These 

pathways play important roles in the regulation of cell cycle, promoting cell growth and 

proliferation or survival and apoptosis, and cell signaling. For example, cAMP-mediated 

intracellular signaling activates ERK via EPAC1, while Src and Stat3 are activated by Gai 

and Gao. More interestingly, we identified several immuno-related signaling pathways 

including Altered T Cell and B cell Signaling, T helper Cell Differentiation, Complement 

System, B Cell Development, Agranulocyte Adhesion and Diapedesis, Intrinsic 

Prothrombin Activation Pathway and Clathrin-mediated Endocytosis Signaling (Figure 

17B). These pathways play a crucial role in regulating numerous biological processes 

including cell growth, differentiation, survival, proliferation and metabolism via cellular 

immune response. 

For ER+HER2-BC, we have identified many significant cancer-related pathways 

that were not found in TNBC including Notch Signaling, FAK Signaling, ILK Signaling, 

HER-2 Signaling in Breast Cancer, PAK Signaling, Paxillin Signaling, and Wnt/Ca+ 

Signaling, ERK/MAPK Signaling, and PCP Signaling (Figure 17B). These signaling 

pathways are associated with cellular growth, proliferation and organismal development. 

For example, Wnt/Ca+ Signaling is involved in various aspects of cell development like 

cell differentiation, growth and proliferation. Again, we noted that a fewer number of the 

pathways associated with cellular immune response were identified including 
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Granulocyte Adhesion and Diapedesis and Agranulocyte Adhesion and Diapedesis. 

Theses pathways may play a role in helping ER+HER2-BC to grow and penetration via 

an inflammatory response as the report in the recent studies.   

 

 

 

 

 

 

 

 

 

Figure 17: Canonical pathways identified from the unique DEGs in TNBC and 

ER+HER2-BC. 

4. Summary and conclusion 

It is known that a type I error is usually considered to be a more important and /or 

serious error which one would like to avoid [109]. An approach in a hypothesis for 

testing DEGs in the analysis of RNA-seq is to control type I error rate of 𝜶 using a 

nominal FDR at an acceptable level. Although the current existing methods for the DEGs 

A 
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analysis have taken into consideration of using a 0.05 FDR for the correction of the 

multiple genes, the studies in a comparison of all the methods including the commonly 

used DESeq and edegR methods report that they fail to maintain the actual FDR below 

the 0.05 nominal FDR resulting an inflated type I error rate [69, 78]. Most recently, a 

study in a comparison of  normalization methods (DESeq in DESeq2, TMM in edgeR, 

FQ, Med-pgQ2 and UQ-pgQ2) using MAQC2 and MAQC3 observed that overall Med-

pgQ2 and UQ-pgQ2 perform best by achieving a smaller actual FDR and higher 

specificity rate while maintain a sensitivity rate greater than 90% [37]. But this study also 

report that the DESeq normalization in DESeq2 perform best in terms of achieving an 

actual FDR, specificity and sensitivity at a quantile cutoff of the mean read counts less 

than 75% percentile. These studies suggest that Med-pgQ2 or UQ-pgQ2 are relatively 

conservative for high read counts of genes and DESeq in DESeq2 are relatively 

conservative for the gene expression below 75 percentile. 

In this study, we use a combinational and approach to identify true DEGs using 

the public available BC datasets. Since the true DEGs are unknown and a sensitivity rate 

is unable to calculated, the optimal methods for this study will be mainly based on the FP 

genes identified using our approach. Although this is a limitation in this study, the 

previous study has shown the sensitivity rates for the DEGs analysis of MAQC2 and 

MAQC3 from DESeq2, edgeR and Med-pgQ2 or UQ-pgQ2methods were more than 90% 

given a 0.05 nominal FDR [37].  Referred to the previous studies, we first choose 

DESeq2, edgeR and UQ-pgQ2 with the aid of DESeq2 to perform the following DEGs 

analysis.  We demonstrate that UQ-pgQ2 and DESeq2 perform better than edgeR in terms 

of controlling  FP genes identified via four with-group comparisons (two BC and two 



 

137 

control groups).We observe that UQ-pgQ2 performs slightly better than DESeq2 with a 

FPR below 0.01. Furthermore, based on the FPR obtained from within group analysis, an 

optimal |logFC| cutoff is determined, which is used for the gene expression profiling.  

Gene-expression profiling analysis has been used to dissect the heterogeneity of 

BC into six subtypes: Lumina A (ER+, low grade), Lumina B (ER+; high grade), HER2 

positive (HER2-amplification), basa-like (ER−; HR−; HER2 −), normal-like and most 

recent “claudin low” subtypes [110-113]. Our results analyzing the gene expression 

profiles of two subtypes (TNBC and ER+HER2-BC) show their gene signatures are 

significantly different. We have identified 1693 true DEGs (protein coding) with a 

|logFC| ≥ 2 in TNBC versus control and 872 unique genes that are not identified in 

ER+HER2-BC. We have also identified 2299 DEGs (protein coding) with a |logFC| 

≥ 1.5 in ER+HER2-BC versus control and 1042 genes unique in ER+HER2-BC. With 

the aid of IPA, these DEGs are categorized in Cancer, and Organismal Injury and 

Abnormalities among the top diseases and biological functions. For each unique set of 

genes, we further examine the genes associated with cancer or breast cancer. For the 

pathway analysis, we have also identified unique pathways of each set that are associated 

with cancer cell growth, proliferation and development or are involved in cellular 

immune response.  These cancer-related DEGs may serve as potential biomarkers for the 

diagnosis of BC, BC subtype or potential targets for the immunotherapy treatment.
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APPENDIX 

 

Part of this dissertation has been previously published. This includes: 

1) The content, Figures and Tables for the subsection entitled “SAMPLESIZE 

CALCULATION METHODS BASED ON STATISTICAL TESTS IN A NEGATIVE 

BILNOMIAL DISTRIBUTION FOR RNA-SEQ DATA” was published in the Journal of 

Biometrics and Biostatistics, 2017, 8(1) [37]. 

2)  The content, and Figures and Tables for the subsection entitled 

“NORMALIZATION METHODS FOR RNA-SEQ DATA” was published in PLOS 

ONE, 2017, 12(5):e0176185 [81]. 
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