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ABSTRACT 

THE EFFECTS OF POLYCHLORINATED BIPHENYLS EXPOSURE ON NON-

ALCOHOLIC FATTY LIVER DISEASE: ROLE OF ARYL HYDROCARBON 

RECEPTOR 

 

Hongxue Shi 

April 19, 2018  

 

Polychlorinated biphenyls (PCBs) are detectable in serum of 100% of adults in US, 

and has been associated with fatty liver disease in epidemiological studies. PCBs are 

classified as either dioxin-like (DL) or non-dioxin-like (NDL) PCB based on their ability 

to activate the aryl hydrocarbon receptor (AhR). We used exposures that reflect human 

bioaccumulation patterns, which resembles Aroclor 1260 with a low level of the DL-PCB, 

PCB 126. Our aim was to determine if this exposure will activate the human and mouse 

AhR and examine if receptor activation influences these steatotic responses due to PCB 

exposures.  

  DL-PCBs exposure-induced AhR activation in luciferase assays and induction of 

AhR target gene expression demonstrated that the Mouse AhR was much more sensitive 

than human AhR to activation by DL-PCBs. Our PCB mixture reflected this by activating 

the mouse AhR, but not human AhR in vivo. The ability of PCBs to activate the AhR would 

be predicted to be WHO toxicity equivalency = rat >mouse >>human.
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Mice were exposed to either PCB 126 (20 μg/kg), Aroclor 1260 (20 mg/kg) or both, 

for 2 weeks. PCB 126 or Aroclor 1260/PCB 126 significantly activated AhR, but only PCB 

126 exposure alone induced mild hepatic steatosis. AhR activation suppressed the 

induction of   CAR and PXR targets. More complex patterns of attenuation were observed 

with genes involved in lipid metabolism.  

PCB exposures require a hypercaloric diet to transition steatosis to steatohepatitis in 

murine models. Mice were fed high fat diet and received the same treatments as the 2-week 

study for 12 weeks.  Our PCBs mixture exposure did not induce wasting syndrome, and 

failed to exacerbate steatosis. In addition, PCB 126 exposure activated AhR. Aroclor 1260 

exposure drove hepatic steatosis to steatohepatitis. Either PCB 126 or the Aroclor 

1260/PCB 126 mixture protected against high fat diet induced liver injury and liver fibrosis. 

All PCB exposures affected hepatic lipid metabolism. 
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CHAPTER I 

GENERAL INTRODUCTION 

1. Non-alcoholic fatty liver disease 

High calorie intake or a Western diet contributes to non-alcoholic fatty liver disease 

(NAFLD), which is manifested by excessive lipid accumulation in liver, termed hepatic 

steatosis. NAFLD encompasses a spectrum of fatty liver diseases, ranging from hepatic 

steatosis to hepatic steatohepatitis (NASH), fibrosis, cirrhosis, and even hepatocellular 

carcinoma (HCC) (1). Inflammatory cell infiltration drives hepatic steatosis to progress to 

NASH, which is characterized by hepatic injury, inflammation, oxidative stress and 

fibrosis. Hepatic steatosis and steatohepatitis can be reversed after timely intervention. If 

not, steatohepatitis can progress to advanced cirrhosis, which is associated with a high risk 

of HCC (2).  

Liver is one of the important organs in regulation of glucose and lipid metabolism, and 

the dysfunction of glucose and lipid metabolism are fundamental in development and 

progression of NAFLD. The homeostasis of lipid metabolism includes lipid input and 

output in liver (Figure 1.1). On the input side, lipids can be taken up via the blood stream 

in the form of chylomicrons (CM) from dietary fat ingestion and free fatty acids derived 

mainly from lipolysis. Lipids may be synthesized (de novo) from carbohydrates or other 

precursors. The key proteins involved in influx of fatty acid in liver include fatty acid 

transport proteins (FATPs), plasma membrane fatty acid binding protein (FABP) and fatty 

acid translocase (CD36/FAT), which are associated with hepatic steatosis (3-5). The key 
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enzymes involved in de novo lipogenesis are ATP-citrate lyase (Acly), acetyl-CoA 

carboxylase (ACC) and fatty acid synthase (Fasn) (6). Moreover, the transcription factors, 

such as liver X receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), 

and carbohydrate response element binding protein (ChREBP) also control de novo 

lipogenesis (7, 8). Free fatty acids are mainly used to synthesize triglycerides and are stored 

in hepatocytes. On the output side, lipids can be secreted into blood in lipoprotein form, 

such as very-low-density-lipoprotein (VLDL) by interaction with apolipoproteinB-100 

(ApoB-100) (8), and be utilized in mitochondria (fatty acid oxidation) as an energy source 

to produce ATP (9). In the normal physiological status, the liver total lipids input equals 

the total lipids output. However, once the total lipids input rate exceeds output rate, 

excessive lipids would be ectopic deposited, resulting in hepatic steatosis. Therefore, the 

factors that disturb the balance of lipid metabolism will induce NAFLD. 

 

 

Figure 1.1 The homeostasis of liver lipid metabolism. Figure adapted from Jonathan C. 

Cohen et al., Science, 2011; 332:6037 
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The prevalence of NAFLD parallels the incidence of obesity and type 2 diabetes 

(T2DM). With the increasing incidence of obesity and T2DM, NAFLD is the most 

prevalent liver disease with a global prevalence estimate of 24 %, with the highest rates of 

NAFLD in South America (31 %) and the Middle East (32 %), followed by Asia (27 %), 

the USA (24%) and Europe (23 %), and lowest in Africa (14 %) (10, 11). The prevalence 

of NAFLD across geographical locales is shown in Figure 1.2 based on community surveys 

(11). Not all subjects with obesity develop NAFLD; and not all subjects with steatosis 

develop progressive liver disease. Seventy to eighty percent of obese and diabetic 

individuals develop NAFLD, 5-10 % subject with steatosis develop NASH, and 30 % of 

patients with NASH develop cirrhosis. Among patients diagnosed with cirrhosis, only 1-

2 % of patients progress to HCC within 10 years of developing cirrhosis (12). The 

pathogenesis of NAFLD development, and progression to advanced fatty liver disease is 

not completely understood. Generally, the interaction of lifestyle (13), nutrients (14) and 

genetics (15) affect the pathogenesis of NAFLD/NASH. The potential molecular 

mechanisms include insulin resistance, lipotoxicity, mitochondrial oxidative stress, ER 

stress, disrupted adipokines, inflammatory cytokines, autophagy, and changes in gut 

microbiome (16-18). Several susceptibility genes for NAFLD development have been 

identified, such as patatin-like phospholipase domain-containing-3 (PNPLA3). The 

PNPLA3 (rs738409) polymorphism genotype distribution corelated with worldwide 

prevalence of NAFLD (Figure 1.2) (11, 19, 20).  
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Figure 1.2 The global estimated prevalence of NAFLD and PNPLA3 rs738409 genotype 

distribution. Figure adapted from Younossi et al., Nature Reviews Gastroenterology & 

Hepatology, 2017;15:11. 

 

NAFLD is associated with abnormal level of blood lipids that increase mortality from 

liver and cardiovascular disease. Indeed, hypertriglyceridemia is the metabolic 

comorbidity most frequently associated with NAFLD. For patients with end stage liver 

disease, and cirrhosis, liver transplantation is the major strategy to rescue them. Thus, 

NAFLD is a heavy burden on public health globally. In the USA, it is estimated annual 

direct medical costs for NAFLD are about $103 billion (21). To date, there are no FDA-

approved drugs for NAFLD/NASH treatment, and lifestyle improvements, such as body 

weight loss and physical exercise, are the only ways to improve NAFLD/NASH (22). 

However, experimental therapies involve targeting hepatic fat accumulation, anti-oxidants, 

anti-inflammation, anti-apoptosis, gut microbiome and anti-fibrotic (23, 24). Among these 
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developed chemicals, dual peroxisome proliferator-activator receptor α/δ agonist 

(elafibranor) (25, 26), farnesoid X receptor agonist (obeticholic acid) (27, 28), apoptosis 

signaling kinase 1 (ASK1) inhibitor (29, 30), and cysteine–cysteine motif chemokine 

receptor-2/5 antagonist (cenicriviroc) (31, 32), are being evaluated in phase III trial for 

NAFLD/NASH .  

The “two-hit” hypothesis of NAFLD/NASH has been proposed (33), but this view has 

been challenged by “multiple parallel hits” hypothesis based on recent new findings (34). 

In the “two-hit” hypothesis, fat accumulation serves as the first hit, and increases 

susceptibility to subsequent second hits, which are responsible for liver injury, 

inflammatory cell infiltration and hepatic fibrosis. Occupational and environmental 

chemicals are another category of second hit. The terms toxicant-associated fatty liver 

disease (TAFLD) and/or toxicant-associated steatohepatitis (TASH) have been proposed 

to describe this condition(35). The TASH was firstly described in non-obese vinyl chloride 

(VC) workers, which is characterized by the presence of necrotic cell death, as indicated 

by elevated total cytokeratin 18, elevated proinflammatory cytokines, impaired insulin 

sensitivity and antioxidant defenses, but with normal serum transaminases levels. Selected 

pollutants associated with TAFLD/TASH in human and animal studies have been reviewed 

(36, 37). Since the similar histopathology exists among NAFLD/NASH and 

TAFLD/TASH, the distinction between them will not be made in the following text.  

2. Polychlorinated biphenyls  

Polychlorinated biphenyls (PCBs) are thermodynamically stable polyhalogenated 

aromatic hydrocarbons consisting of up to ten chlorine substituents attached to biphenyl 

rings (Figure 1.3). There are 209 different congeners, defined by the number and position 
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of chlorines attached to the biphenyl rings. Due to their thermodynamic stability and 

excellent electrical insulation and heat transfer properties, PCBs were widely used as 

insulating fluids in electrical transformers and capacitors. A total of 1.3 million tons of 

PCB mixtures were produced for a variety of commercial applications before PCBs were 

banned. PCB production was banned by the United States Congress in the later 1970’s and 

globally by the Stockholm Convention in 2001 (38). 

 

                      

 

Figure 1.3 Chemical structure of PCBs. PCBs have the basic chemical formula (C12H10-

nCln), where n means the number of chlorine atoms, and number means the positions 

where a chlorine atom is attached to biphenyl rings.  

 

Although PCBs production was banned for more than 30 years, PCBs still exist in the 

environment due to their higher thermostability, and resistant to degradation by the 

microbes, thus, PCBs belong to a category of “persistent organic pollutants” (POPs), and 

are widely dispersed in the global ecosystem, including water, soil, air, aquatic wildlife and 

mammals (39, 40). Highly chlorinated PCBs have bioaccumulated and are detected in 

human adipose tissues, liver, serum, and milk due to low metabolic degradation rate (41-

43). Currently, inadvertent PCB production still occurs (44) and PCBs exposure occur 
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mainly through inhalation of contaminated indoor air (45) and contaminated food 

consumption (46). 

The chlorination pattern of the PCBs is important for the toxicity of these congeners. 

PCB congeners have been subclassified into two major categories:  coplanar and non-

coplanar PCBs. Coplanar PCB congeners have none or only one chlorine atom attach to 

the ortho-position of biphenyl rings, known as non-ortho and mono-ortho PCBs, 

respectively. There are total 12 coplanar PCBs. Non-ortho PCBs include PCB 77, PCB 81, 

PCB 126, and PCB 169, and the rest of them are mono-ortho PCBs, such as PCB 114 and 

PCB 189, etc (Figure 1.4). Coplanar PCBs exhibit dioxin-like toxicity, and are also known 

as dioxin-like (DL) PCBs. Non-coplanar PCB congeners have two or more chlorine atoms 

at the ortho-position of biphenyl rings, and do not resulted in dioxin-like properties, thus, 

they are known as non-dioxin-like (NDL) PCBs.  

The DL-PCB congeners interact with aryl hydrocarbon receptor (AhR), which may 

mediate their toxic effects. Among 12 DL-PCB congeners, PCB 126 exhibits the highest 

AhR binding affinity, and is the potent congener of DL-PCBs. Therefore, PCB 126 was 

selected for the proposed studies. Animal studies have shown that the toxic effects of PCB 

126 include developmental toxicity (47), hepatic toxicity (48), reproductive toxicity (49), 

and neurological toxicity (50). The unfavorable effects of PCB 126 may be also mediated 

by interaction with other receptors, such as estrogen receptor (ER) (51). On the other hand, 

the toxicologic mode of action of NDL-PCBs, has been attributed to interactions with a 

variety of other cellular receptors, including pregnane X receptor (PXR) and constitutive 

androstane receptor (CAR) (52), as well as, ER, androgen receptor, and thyroid receptor 

(53). However, the DL-PCBs may also interact with these receptors (52, 53).  
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Figure 1.4 Chemical structure of DL-PCB congeners. The DL-PCBs in left column are 

non-ortho PCBs, and the rest of them are mono-ortho PCBs. Figure adapted from website: 

https://en.wikipedia.org/wiki/Polychlorinated_biphenyl 

 

The liver is the major organ for PCB metabolism via phase I (cytochrome P450 

enzymes) and phase II (conjugation pathways) pathways to convert them to water soluble 

metabolites, and remove them from body. The detailed metabolic pathways of PCBs bio-

transformation are well summarized and reviewed (54). The rate and extent of PCB 

metabolism depends on the numbers and position of chlorines in the biphenyl rings. 

Generally, the lower the number of chlorines on the biphenyl rings, the faster the 

metabolism. Therefore, highly chlorinated PCBs tend to be bio-accumulated and detected 

https://en.wikipedia.org/wiki/Polychlorinated_biphenyl
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in human fat tissues or in plasma due to their lipophilic properties (55). In fact, the median 

concentration of the sum of 35 PCB congeners (ΣPCBs) was 528 ng/g lipid in participants 

of the Anniston Community Health Survey (ACHS) (55), and ACHS participants have 

serum concentrations of ΣPCBs two to three times higher than those in comparable age and 

race groups from National Health and Nutrition Examination Survey (NHANES) 2003–

2004 sample of the general United States population (56). 

Commercial PCBs were made and used in mixtures rather than individual congeners. 

In the United States, commercial PCB mixtures were produced by the Monsanto Company 

and marketed under the trade names Aroclor. Manufacturing plants included Anniston, 

Alabama. There are different types of Aroclor mixtures and each of them has a 

distinguishing suffix number that indicates the degree of chlorination. The first two 

numbers usually mean the total number of carbon atoms in biphenyl rings and the last two 

digits refer to the percentage of chlorines by mass in the mixture. Commercial PCB 

mixtures were also made globally, and marketed under different trade names. ACHS study 

demonstrated that higher incidences of hypertension, obesity, diabetes and liver disease 

was positively correlated to PCBs load in residents (57, 58).  

Aroclor 1260, one of the commercial PCB mixtures in North America, contains sixty 

percent chlorine atoms by mass. The PCB congeners of Aroclor 1260 usually are highly 

chlorinated congeners with more than 5 chlorine substituents. As lowly chlorinated PCB 

congeners are easily metabolized and eliminated, only highly chlorinated PCB congeners 

are resistant to metabolism, and have bio-accumulated in humans. Our previous study 

demonstrated that the PCB profiles in Aroclor 1260 best mimic the PCBs present in human 

adipose tissue (52) (Figure 1.5). However, Aroclor 1260 contains lower amounts of DL-
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PCB congeners.  A 20 mg/kg exposure of Aroclor 1260 did not activate AhR in mice (52, 

59). The less chlorinated PCB mixtures were also made by Monsanto Company with 

tradenames Aroclor 1254, Aroclor 1242, and Aroclor 1248, etc, later. 

 

 

 

Figure 1.5 Relative PCB composition in human adipose tissue and Aroclor 1260. Figure 

adapted from Wahlang, et al., Toxicol Sci, 2014,140 (2): 283-297. 

 

Two major human PCB exposure events occurred in Japan (known as “Yusho”) in 

1968 (60) and in Taiwan (known as “Yucheng”) in 1978 (61), both as results of 

contaminated rice oil consumption. In Yusho, maternal exposed women tend to give 

offspring with lower birth weight (62). Follow-up studies of the Yucheng events have 

demonstrated neurocognitive deficits in elderly women patients (63) and increased 

mortality from chronic liver disease and cirrhosis in men (64, 65). Moreover, multiple 

epidemiological studies have reported associations between PCB exposure and suspected 

steatohepatitis (42)  and/or diabetes (57, 66) in NHANES and ACHS studies.  
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As liver is the major site of PCB metabolism, and the lower chlorinated metabolites 

could adduct to DNA, proteins and lipids, and associate with activation of various hepatic 

receptors; thus, liver is the major target organ for the toxic effects of PCBs exposure. The 

nutrient-PCB interaction also affects PCB toxicity in liver. For example, DL-PCBs interact 

with AhR, and induce NAFLD in normal diet, while NDL-PCBs mixture interact with 

nuclear receptors, and exacerbate high fat diet-induced injury, leading to NASH. Therefore, 

PCBs have also been classified as endocrine and metabolism disrupting chemicals 

(EDCs/MDCs). EDCs interfere with any aspect of hormone action, resulting in endocrine 

dysfunction; while MDCs promote metabolic changes, resulting in metabolic disease (66).  

3. Xenobiotic receptors 

The functions of xenobiotic receptors are not only related to chemical detoxification, 

but also contribute to glucose and lipid metabolism, which are associated with metabolic 

disease, including NAFLD/NASH. In the current dissertation, the xenobiotic receptors of 

aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane x 

receptor (PXR) will be discussed.  

 The AhR is a ligand-binding activated transcription factor that belongs to the Per-

Arnt-Sim family. The molecular mechanisms of AhR activation have previously been 

reviewed (67) (Figure 1.6). Unliganded AhR resides in cytoplasm of cells, forming a 

protein complex with a heat shock protein 90 (HSP90) dimer and the co-chaperone protein 

X-associated protein 2 (XAP2), collectively they retard AhR translocation to nucleus. 

Upon binding an agonist, the AhR complex translocates to the nucleus and AhR nuclear 

translocator (ARNT) mediates HSP90 displacement, leading to AhR-ARNT heterodimer 

formation. This dimer is capable of binding to a dioxin-responsive element (DRE), thereby 
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regulating the transcription of many genes, such as the cytochrome P4501A (CYP1A) 

family. Cypa1a1 and Cyp1a2, are the major members of Cyp1a family that metabolize the 

pro-carcinogenic chemicals to their carcinogenic form, which react with DNA to form 

mutagenic adducts, resulting in carcinogenesis. The high-affinity binding agonists for AhR 

are often xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2-

benzo[a]pyrene (BA) and DL-PCBs. Moreover, low-affinity binding agonists for AhR 

have been discovered in diet (flavonoids and indoles), endogenously as bilirubin and 

tryptophan metabolites, and as products of the microflora (67, 68). On the other hand, 

ligand-independent indirect activation of AhR has been reported, such as that seen with 

omeprazole (69).  

Associated with regulation of physiological functions, such as innate and adaptive 

immune responses (68), AhR activation also is involved in the processes of glucose and 

lipid metabolism. Pharmacologic activation of AhR (70) or constitutively activated AhR 

(71) induces hepatic steatosis via upregulation of fatty acid transport genes, such as 

CD36/FAT. Alteration of hepatic fatty acid composition (72) and decreased fatty acid 

oxidation (73) contribute to AhR ligand-induced liver toxicity and steatosis. On the 

contrary, AhR deficiency protects against high fat diet-induced obesity, improves insulin 

sensitivity, and attenuates hepatic steatosis (74, 75). Interestingly, liver-specific AhR 

knockout mice are prone to HFD-induced hepatic steatosis, inflammation and injury (76), 

suggesting AhR activation protects against fatty liver disease. Moreover, a disassociation 

of hepatic steatosis and insulin resistance has been found in constitutively activated AhR 

mice (77) by inducing a novel AhR target gene, fibroblast growth factor 21 (FGF21) (78). 

Moreover, TCDD or PCB 126 exposure-induced AhR activation suppresses hepatic 
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gluconeogenesis by inhibition of gluconeogenic gene expression, such as phosphoenol-

pyruvate carboxykinase (Pck1) (73, 79, 80).  

 

 

 

Figure 1.6 Scheme of AhR activation by agonist binding. Figure are adapted from 

Murray et al., Nat Rev Cancer, 2015, 14 (12): 801-814. 

 

PXR (nuclear receptor subfamily 1, group I, member 2, NR1I2) and CAR (nuclear 

receptor subfamily 1, group I, member 3, NR1I3) are members of the orphan nuclear 

receptor subclass. The major functions of these receptors are regulating transformation and 

elimination of chemicals in liver by regulation of phase I and phase II drug metabolizing 

enzymes and drug transporters (81). The direct and indirect molecular mechanisms of CAR 

and PXR activation have been reviewed (82). A variety of structurally related PXR and 

CAR ligands has been reported, including drugs, environmental pollutants, and endobiotics. 

Moreover, specific ligands diversity and species diversity are well known. For example, 
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the CAR ligands for human and mouse are 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-

5-carbaldehydeO-(3,4dichlorobenzyl)oxime (CITCO) and 1,4-bis[2-(3,5-dichloropyridyl- 

oxy)]benzene (TCPOBOP), respectively. Activation of PXR induces expression of target 

genes of the Cyp3a family, including Cyp3a11 in mice and Cyp3a4 in human, while CAR 

target genes of the Cyp2b family, such as Cyp2b10 in mice and Cyp2b6 in human, are 

induced upon activation. PXR and CAR are sister xenobiotic receptors as they regulate 

many overlapping genes involved in chemical and drug detoxification and transportation.  

 Similar to AhR, PXR and CAR activities also are involved in metabolic disease by 

modulating glucose, fatty acid, and lipid metabolism directly or indirectly (81, 83, 84). 

CAR activation increases insulin sensitivity, improves type 2 diabetes and fatty liver 

disease (85, 86). Moreover, TCPOBOP treatment attenuates methionine choline-deficient 

(MCD) diet- induced NASH (87). The role of PXR activation in obesity is controversial, 

as ligand-induced PXR activation protects against high fat diet-induced obesity (88), while 

PXR ablation alleviates high fat diet-induced or genetic obesity, and improves insulin 

sensitivity (89). Activation of either PXR or CAR suppresses hepatic gluconeogenic gene 

expression by inhibition of transcriptional factors such as forkhead box protein O1 (FoxO1), 

hepatocyte nuclear factor 4 alpha (HNF4a), and peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC1a) (90, 91). Furthermore, PXR activation suppresses 

inflammation and is a promising target for inflammatory diseases (92).  

The detoxification of PCBs is associated with nuclear receptor CAR and PXR 

activation, and in turn, CAR and PXR activation affect PCBs exposure-induced metabolic 

disorders. Our previously published data suggest Aroclor1260, a NDL-PCB congeners 

mixture, activates human PXR and CAR3 variant, and is a mixed agonist/antagonist for 
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the human CAR2 variant based on cell culture model (52). In vivo, Aroclor 1260 treatments 

activate CAR and PXR, as evidenced by induced expression of their target genes, Cyp2b10 

and Cyp3a11 at low doses, Aroclor 1260induced expression of AhR target gene Cyp1a2 

requires much higher doses due to the low amounts of DL-PCBs (59). Moreover, Aroclor 

1260 treatments promote hepatic steatosis progression to steatohepatitis only at low dose, 

but not at high dose, under high fat diet conditions.  PCB congeners apparently do not 

directly bind with the CAR, and the potential indirect mechanism of activation of CAR by 

Aroclor 1260 exposure may be EGFR signaling inhibition (93, 94), this similar to the 

molecular mechanisms that was shown by the CAR indirect activator, phenobarbital (95).   

4. Aims and significance of current study 

Although animal exposure models have typically investigated the toxic effects of only 

single PCB congeners or NDL-PCBs mixture treatments, humans are simultaneously 

exposed to mixtures of DL- and NDL-PCB congeners. Because the DL- and NDL-PCBs 

have different toxicological mechanisms of action, exposures to both types of PCBs might 

be synergistic or not. Therefore, the aims of the current dissertation are to investigate and 

compare DL-PCB congener (PCB 126), NDL-PCBs mixture (Aroclor 1260), and 

DL/NDL-PCBs mixture (Aroclor 1260 plus PCB 126) exposure related NAFLD/NASH 

and metabolic dysfunction. The potential role of AhR in PCB mixtures exposure-induced 

NAFLD/NASH will also be investigated.  

As aforementioned, Aroclor 1260 best mimics PCBs that are seen in human adipose 

tissue (52), and Aroclor 1260 exposure is considered to be a ‘second hit’ in the conversion 

of diet-induced hepatic steatosis to the more advanced steatohepatitis. However, Aroclor 

1260 (20 mg/kg) did not induce hepatic expression of prototypical AhR target genes (52, 
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59), because it did not contain a significant amount of DL-PCBs, such as PCB 126. To best 

mimic the DL/NDL-PCBs bioaccumulation pattern and the highest levels of exposure seen 

in humans (52), we added a small quantity of DL-PCB 126 which represents approximately 

0.02% of human total PCBs exposure based on NHANES data. Because PCB 126 is not 

the only DL-PCB congener extant, and human exposures vary, the PCB 126 dose was 

increased to 0.1% (20 µg/kg).    

The specific aims of my dissertation are shown as follows. 

Specific Aim 1 will address whether DL-PCBs, NDL-PCBs, and DL/NDL-PCBs act 

differently on fatty liver disease. We will use male C57BL/6 mice on control synthetic diet 

to ascertain whether single treatment with Aroclor 1260, PCB 126, or Aroclor 1260/0.1% 

PCB 126 for 2 weeks activate AhR and downstream target genes, and lead to steatosis and 

liver injury (inflammatory markers, steatosis markers, and lipid metabolism markers). Next, 

male wild type C57BL/6 mice fed fat diet received the same PCB treatments for 12 weeks. 

The animals will be sacrificed and the liver mRNA levels of disease markers (receptors 

and their downstream targets, inflammatory markers, markers of fat metabolism), and 

pathological changes will be measured, to ascertain whether AhR is essential for PCBs-

induced liver disease.  

Specific Aim 2 will address whether human and murine AhR display the same 

concentration-dependence for ligand activation in response to PCBs. Initially, we will use 

cultured human (HepG2) and murine (Hepa1c1c7) hepatoma cells transfected with a XRE-

Luc reporter to determine the relative affinity of the mixture Aroclor 1260, Aroclor 1254, 

selected DL-PCB congeners, including PCB 126, PCB 77, PCB 114, and PCB 81, and a 

mixture of DL/NDL-PCBs mixture (Aroclor 1260 plus 0.1% PCB 126, Ar1260/PCB 126). 
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This allows us to ascertain if the murine and human AhR are equally sensitive to PCB 

ligands or if the murine AhR binds ligands with higher affinity than the human receptor. 

We subsequently used murine and human primary hepatocytes to further test this 

hypothesis in an in vitro model. This aim is important for reverse translation studies 

utilizing mouse models of NAFLD. 
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CHAPTER II 

ACUTE POLYCHLORINATED BIPHENYL TREATMENTS REGULATE HEPATIC 

METABOLISM AND PANCREATIC FUNCTION: IMPLICATION FOR NON-

ALCOHOLIC FATTY LIVER DISEASE AND DIABETES 

1. Introduction 

The commercially manufactured PCBs mixture that best mimics human PCB (by mass) 

bioaccumulations patterns in adipose tissue is Aroclor 1260, which is a NDL-PCBs mixture 

(52). Aroclor 1260 is considered a ‘second hit’ in the conversion of diet-induced hepatic 

steatosis, to the more advanced steatohepatitis. It also decreased pancreatic insulin 

production (59). However, low doses of Aroclor 1260 (20 mg/kg) did not induce hepatic 

expression of prototypical AhR target genes (52, 59), because it should not contain a 

significant amount of DL-PCBs, such as PCB 126, as indicated by high doses of Aroclor 

1260 (200 mg/kg) required to observe AhR activation. Therefore, a high dose of PCB 126 

was used to evaluate the toxic effects on fatty liver disease (48, 96, 97). 

While humans are simultaneously exposed to mixtures of DL- and NDL-PCBs, animal 

exposure models have typically investigated the effects of only a single congener or NDL-

PCBs mixture as mentioned before. Because the DL- and NDL-PCBs have different 

toxicological mechanisms of action, DL/NDL-PCBs mixture exposures to both types of 

PCBs might be synergistic. In PCB mixtures and especially among bioaccumulated PCBs, 

DL-PCBs are minor constituents. Using NHANES data, PCB 126 represents 

approximately 0.02 % of the total PCB load in human serum (98).
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The purpose of this subacute exposure study was to perform an integrated analysis of 

liver, pancreas, and serologic endpoints using exposures that better mimic high level 

human exposures to examine if the rodent AhR is activated and if mixtures of DL- and 

NDL-PCBs will behave like DL- or NDL-PCBs alone. My hypothesis is that at the highest 

human levels of exposure observed in literature, the rodent AhR will be activated, but that 

mixtures of DL- and NDL-PCBs will act differently. The mice were fed a control synthetic 

diet and exposed to: a low-dose of a DL-PCB congener (PCB 126, 20 µg/kg), an NDL-

PCB mixture (Aroclor 1260, 20 mg/kg), an environmentally relevant mixture of low-dose 

PCB 126 (20 µg/kg) plus Aroclor 1260 (20 mg/kg); or vehicle. The possible impact of 

PCBs on novel mechanisms of endocrine and metabolic disruption [e.g., novel hepatokines 

(99) and genes regulating pancreatic islet cell identity and function (100)] will be 

investigated. This study could inform the direction of subsequent studies of combined 

exposures to PCB mixtures and hypercaloric diets in the metabolic syndrome.  
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2. Materials and Methods 

Reagents 

Aroclor 1260 and PCB 126 were purchased from AccuStandard, Inc., (New Haven, 

CT). RNA-STAT 60 were ordered from Amsbio., (Austin, TX) and QuantiTect Reverse 

Transcription Kit were obtained from Qiagen, (Valencia, CA). iTaq Universal probes 

Supermix was supplied by Biorad, (Hercules, CA). Taqman probes for real-time 

polymerase chain reaction (RT-PCR) and Infinity TM Triglycerides were obtained from 

Thermo Fisher Scientific, Inc., (Middletown, VA). Free fatty acids test kits were purchased 

from Roche Dignostics, (Indianapolis, IN). Lipid panel plus kits were obtained from 

Abaxis, (Union City, CA). The customized Milliplex® MAP Panel was obtained from 

Millipore Corp, (Billerica, MA). The other reagents were obtained from Sigma-Aldrich, 

(St. Louis, MO). 

Animal exposures 

The animal protocol used was approved by the University of Louisville Institutional 

Animal Care and Use Committee. Male C57BL/6j mice (10 weeks old) were obtained from 

The Jackson Laboratory (Bar Harbor, ME), and divided into 4 groups (n=10) based on the 

different exposures. All the mice were fed a control synthetic diet (20.0 %, 69.8 %, and 

10.2 % of total calories come from protein, carbohydrate, and fat, TekLab TD06416). Mice 

were treated by one-time gavage with either Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), 

Aroclor 1260 (20 mg/kg) with 0.1 % PCB 126 (20 µg/kg) or vehicle control (corn oil) for 

2 weeks. Mice were housed in a temperature- and light controlled-room (12 h light; 12 h 

dark) with food and water ad libitum. The animals were euthanized at the end of week 2 

using ketamine/xylazine (100/20 mg/kg body weight, i.p.) and the blood, liver, pancreas, 
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and fat tissues were collected. Dual energy X-ray absorptiometry (DEXA) scanning (Lunar 

PIXImus densitometer, WI) was performed to analyze body fat composition prior to 

euthanasia. 

Histological staining 

The liver and pancreas tissues were fixed in 10 % neutral buffered formalin for 72 

hours and embedded in paraffin for routine histological examination. Hematoxylin–eosin 

(H&E) staining were performed to observe histopathological changes. Photomicrographic 

images were acquired using a high-resolution Olympus digital scanner on an Olympus 

digital camera (BX41).  

Real-time PCR 

The liver and pancreas tissues were homogenized and total RNA was extracted using 

RNA-STAT 60 according to the manufacture’s protocol. The purity and quantity of total 

RNA were assessed with Nanodrop spectromer (ND-1000, Thermo Fisher Scientific, 

Wilmington, DE) using ND-1000 V3.8.1 software. cDNA was synthesized using the 

QuantiTect Reverse Transcription Kit according to the manufacture’s protocol. RT-PCR 

was performed on the CFX384 TM Real-Time System (Biorad, Hercules, CA) using iTaq 

Universal probes Supermix and Taqman probes. The probes sequence were as follows: 

mouse AhR (Mm00478932_m1); mouse CAR (Nr1i3) (Mm01283978_m1); mouse PXR 

(Nr1i2) (Mm01344139_m1); cytochrome P450s, including Cyp1a2 (Mm00487224_m1), 

Cyp2b10 (Mm01972453_s1), Cyp3a11 (Mm00731567_m1), and Cyp4a10 

(Mm02601690_gH); carnitine palmitoyl transferase 1A (Cpt1α) (Mm01231183_m1); 

peroxisome proliferator-activated receptor alpha (Pparα) (Mm00440939_m1); Cd36 

(Mm01135198_m1); fatty acid-binding protein 1 (Fabp1) (Mm00444340_m1); fatty acid 
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synthase (Fasn) (Mm00662319_m1);  stearoyl coenzyme A desaturase1 (Scd1) 

(Mm00772290_m1); Pnpla3 (Mm00504420_m1); fibroblast growth factor 21 (Fgf21) 

(Mm00840165_g1); insulin-like growth factor 1 (Igf1) (Mm00439560_m1); betatrophin 

(Mm01175863_g1), glucose 6-phosphate (G6P) (Mm00839363_m1); 

phosphoenolpyruvate carboxy kinase (Pck1) (Mm01247058_m1); insulin 

1(Mm01950294_s1); Nkx6-1 (Mm00454961_m1); NR4a1 (Mm01300401_m1); NR4a3 

(Mm00450071_g1); pancreatic polypeptide (Mm00435889_m1); and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (Mm99999915_g1). All reactions were run in 

triplicate. The relative expression of each mRNA was calculated using the comparative 2-

△△Ct method and was normalized against GAPDH mRNA.  

Measurement of hepatic lipid 

The liver tissues were rinsed in neutral 1× phosphate buffered saline (PBS) and 

homogenized in 50 mM NaCl solution. Hepatic lipids were extracted by a mixed solution 

of chloroform and methanol (2:1) according to a published protocol (101). Total lipid 

extracts were dried using nitrogen before they were dissolved in PBS containing 1 % triton 

X-100. Hepatic triglycerides and free fatty acid contents were measured using commercial 

kits and normalized to liver weight. 

Measurement of plasma lipid and cytokine 

Blood samples were collected by syringe with anti-coagulated EDTA. Plasma was 

obtained after centrifugation at 3,000 rpm for 20 min at 4 ℃ . Plasma ALT, AST, 

triglyceride, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDH), 

very low-density lipoprotein (VLDL), and non-HDL cholesterol (nHDLc) levels were 

measured by Piccolo Xpress Chemistry Analyzer using the lipid panel plus kits. Plasma 
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cytokine and adipokine levels were measured on a Luminex® 100 system using a 

customized Milliplex® MAP mouse adipokine Panel.  

Statistical analysis 

Statistical analyses were carried out using SigmaPlot 11.0 software (Systat Software 

Inc., San Jose, CA). Data are presented as mean ± SEM. Statistical evaluation of the data 

was performed using two-way analysis of variance (ANOVA). Fold-changes are fold of 

vehicle control group. For all statistical comparisons, p-values less than 0.05 were 

considered statistically significant. 
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3. Results 

Effects of PCB exposures on body weight and composition 

There were no significant changes in body weight in either group (Fig. 2.1 A). 

Regarding body composition, there were no significant trends towards increased percent 

body fat with Aroclor 1260 (14.0 %) or PCB 126 (7.5 %). The interaction between Aroclor 

1260 and PCB 126 significantly decreased percent body fat in the DL/NDL-PCBs mixture-

treated group compared to either alone exposure (Fig. 2.1 B). No significant changes were 

observed in the liver/body weight ratio (Fig. 2.1 C) or the epididymal fat/body weight ratio 

(Fig. 3.1 D).  
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  A                                                                                   B 

                  

C                                                                                     D 

                                                   

Figure 2.1 Effects of PCB exposures on liver and fat weight. (A) The body weight, (B) 

body fat composition, (C) the ratio of liver weight to body weight, (D) the ratio of 

epididymal fat weight to body weight. Data are presented as mean ± SEM. n=10. p<0.05, 

c= interaction between Aroclor 1260 and PCB 126.  
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Effects of PCB exposures on hepatic expression of AhR, CAR, PXR, and their target genes 

To determine if PCB exposures affected mRNA expression of hepatic xenobiotic 

receptors (AhR, CAR, PXR) and their target genes, hepatic mRNA expression was 

measured by RT-PCR. AhR mRNA expression was significantly decreased by either 

Aroclor 1260 (3.3-fold) or PCB 126 (3.2-fold) exposure, while the Aroclor 1260/ PCB 126 

mixture significantly increased AhR mRNA expression compared to either exposure alone 

(Fig. 2.2 A). PCB 126 alone (8.7-fold) or the Aroclor 1260/PCB 126 mixture (7.9-fold) 

activated AhR, as indicated by increased AhR target gene Cyp1a2 mRNA expression. The 

latter data suggest that the observed changes in the AhR mRNA expression levels did not 

affect its transcriptional activity (Fig. 2.2 B). CAR mRNA expression was slightly 

increased by PCB 126 alone or by the Aroclor 1260/PCB 126 mixture, but was not changed 

by Aroclor 1260 (Fig. 2.2 C). The CAR target gene Cyp2b10 mRNA expression was 

robustly increased by Aroclor 1260 (130,000-fold), while PCB 126 induced Cyp2b10 

mRNA expression to a much lower degree (25.0-fold). An interaction between Aroclor 

1260 and PCB 126 resulted in significantly different Cyp2b10 mRNA levels that were 

intermediate between either exposure alone (50,000-fold) (Fig. 2.2 D). PXR mRNA 

expression was significantly decreased by either Aroclor 1260 or PCB 126 exposures, but 

was increased by the Aroclor 1260/PCB 126 mixture compared to either exposure alone 

(Fig. 2.2 E). PXR-dependent gene Cyp3a11 mRNA expression was increased by Aroclor 

1260 (2.0-fold), and exposure with the Aroclor 1260/PCB 126 mixture attenuated this 

effect (Fig. 2.2 F). These results demonstrate that PCB 126 alone or in the DL/NDL-PCBs 

mixture activated AhR, and Aroclor 1260 potently activated CAR and to a lesser degree 

PXR. The PCB exposures differentially regulated AhR and nuclear receptor expression. 
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Moreover, the results suggested that PCB 126 activated AhR may suppress the activation 

of CAR and PXR by Aroclor 1260. However, the reciprocal effect of activating either CAR 

or PXR did not appear to affect AhR activity. 
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           A                                                                   B 

                  

                   C                                                                   D 

             

                    E                                                                   F 

                     

Figure 2.2 Effects of PCB exposures on levels of hepatic AhR, CAR, PXR, and their target 

genes expression. Hepatic mRNA levels of AhR (A) and target gene Cyp1a2 (B), CAR (C) 

and target gene Cyp2b10 (D), PXR (E) and target gene Cyp3a11 (F) were measured by 

performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 

effects, b= PCB 126 effects; c= interaction between Aroclor 1260 and PCB 126. 
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Effects of PCB exposures on hepatic lipids 

To evaluate for hepatic steatosis, histologic staining (H&E) of liver was performed. 

PCB 126, but not Aroclor 1260 exposure, induced mild small droplet-macrovesicular 

steatosis. PCB 126-induced hepatic steatosis was attenuated in the DL/NDL-PCBs mixture 

(Fig. 2.3 A). These histologic steatosis results were confirmed by biochemical lipid assays. 

The hepatic triglyceride levels (30.7 %) (Fig. 2.3 B) and free fatty acid levels 

(approximately 60.0 %) (Fig. 2.3 C) were increased by PCB 126 exposure, but exposure 

with the mixture of Aroclor 1260 plus PCB 126 abrogated this affect. Aroclor 1260 

exposure had no effect on either hepatic triglycerides or free fatty acids (Fig. 2.3 B&C). 

Significant hepatic necroinflammation was not observed under any exposure in histology 

(Fig. 2.3 A); plasma alanine or aspartate aminotransferase levels (Fig. 2.3 D&E); or serum 

pro-inflammatory cytokines (IL-6, MCP-1, PAI-1) were not significantly altered within 

any exposure group (Fig.  2.3 F-H). 
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                   A 
Control                                                      Aroclor 1260 

 

           PCB 126                                                  Aroclor 1260/PCB 126 
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   F                                          G                                            H     

   

 

Figure 2.3 Effects of PCB exposures on hepatic lipids. (A) H&E staining of liver, (B) 

hepatic triglycerides levels, (C) hepatic free fatty acid levels, plasma levels of (D) ALT, 

(E) AST, (F) IL6, (G) MCP1, and (H) PAI1. n=10. Data are presented as mean ± SEM. 

p<0.05, b= PCB 126 effects; c= interaction between Aroclor 1260 and PCB 126. 
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Effects of PCB exposures on plasma lipids 

The PCB exposures had very different effects on plasma lipids. While PCB 126 

increased hepatic lipids, it significantly decreased plasma triglycerides, total cholesterol, 

HDL, VLDL, and nHDLc cholesterol (Fig. 2.4 A-E). Blood lipids were not affected by 

Aroclor 1260 either alone or in the DL/NDL-PCBs mixture. In summary, these data 

suggested that subacute, low-dose PCB 126 exposure caused toxicant-associated fatty liver 

disease (steatosis) without significant necroinflammation. The fatty liver disease was 

associated with a paradoxical decrease in blood lipids. Aroclor 1260 in the DL/NDL-PCBs 

mixture abrogated PCB 126-induced changes in liver, but not the blood lipid profile.  

     A                                           B                                          C 

 

     D                                           E 

 

Figure 2.4 Effects of PCB exposures on plasma lipid levels. (A) Plasma triglyceride, (B) 

cholesterol, (C) high-density lipoprotein (HDL), (D) very low-density lipoprotein (VLDL), 

and (E) non-HDL cholesterol (nHDLc) levels were measured by Piccolo Xpress chemical 

analyzer (n=8-10). Data are presented as mean ± SEM. p<0.05, b= PCB 126 effects. 
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Effects of PCB exposures on hepatic fatty acid β-oxidation genes expression 

Since PCB 126 exposure impacted liver and blood lipid levels, expression of lipid 

oxidation genes (PPARα and its targets, Cyp4a10 and Cpt1α) were measured. There was a 

trend towards increased Pparα mRNA expression by both PCB 126 and Aroclor 1260, but 

the mixture of both PCB types significantly decreased Pparα mRNA expression compared 

to either alone (Fig. 2.5 A). Both mRNA levels of Cpt1α (1.5-fold, Fig. 2.5 B) and Cyp4a10 

(1.2-fold, Fig. 2.5 C) were significantly increased by PCB 126. Neither Cyp4a10 nor Cpt1α 

mRNA expression was changed by Aroclor 1260 exposure. However, the DL/NDL-PCBs 

mixture increased Cyp4a10 mRNA expression (Fig. 2.5 C), while decreasing Cpt1α mRNA 

expression (Fig. 2.5 B) compared to PCB 126 exposure alone. Thus, PCB 126 exposure 

activated PPARα to induce expression of genes implicated in hepatic fatty acid β-oxidation. 

While this may have contributed to the observed hypolipidemic effects of PCB 126, it 

cannot account for the increased hepatic lipid levels and steatosis observed with this 

exposure. Likewise, the decrease in hepatic PPARα and Cpt1α mRNA expression cannot 

account for the decreased hepatic steatosis observed when Aroclor 1260 was given along 

with PCB 126.  

 

 

 

 

 

 

 



34 
 

     A                                           B                                          C 

 

 

Figure 2.5 Effects of PCB exposures on hepatic fatty acid β-oxidation genes expression. 

Hepatic mRNA levels of Cyp4a10 (A), Cpt1α (B), and Pparα (C) were measured by 

performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, b= PCB 126 

effects; c= interaction between Aroclor 1260 and PCB 126. 
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Effects of PCB exposures on other genes of hepatic lipid metabolism 

Because PCB 126 induced hepatic steatosis that could not be explained by a reduced 

β-oxidation, expression of other hepatic lipid metabolism genes was measured. These 

genes were involved in hepatic fatty acid import (Cd36 and Fabp1), synthesis (Fasn), 

desaturation (Scd1), and also included the lipase implicated in NAFLD, Pnpla3. Cd36 

mRNA levels were significantly induced by either PCB 126 (350.0-fold) or Aroclor 1260 

(300.0-fold) exposures, but surprisingly exposure to the Aroclor 1260/PCB 126 mixture 

attenuated these effects compared to either alone (Fig. 2.6 A). Likewise, either PCB 126 

(1.5-fold) or Aroclor 1260 (1.3-fold) exposures significantly increased the mRNA levels 

of lipid transporter Fabp1, but Aroclor 1260/PCB 126 co-administration reduced Fabp1 

expression compared to either exposure alone (Fig. 2.6 B). Interestingly, there was nearly 

the mirror image observed between Cd36/Fabp1 and Fasn mRNA expression. Fasn 

mRNA expression was significantly decreased by either Aroclor 1260 (3.3-fold) or PCB 

126 (5.0-fold) exposures, but was increased by the mixture of Aroclor 1260 plus PCB 126 

compared to either exposure alone (Fig. 2.6 C). Thus, mono-exposure to either PCB 126 

or Aroclor 1260 increased hepatic lipid uptake while decreasing lipid biosynthesis, but 

these effects were abrogated by exposure to the NDL/DL-PCBs mixture. Thus, the 

increased steatosis observed with PCB 126 exposure was most likely due to increased 

hepatic lipid uptake despite decreased de novo lipid biosynthesis and increased β-oxidation. 

Exposure with either Aroclor 1260 (1.4-fold), PCB 126 (1.7-fold), or Aroclor 1260/PCB 

126 (2.3-fold) resulted in significant down-regulation of Scd1 mRNA levels (Fig. 2.6 D). 

This should increase the relative abundance of saturated fatty acids compared to 

unsaturated fatty acids. A loss of function polymorphism in the hepatic lipase, PNPLA3, 
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results in the accumulation of mutant protein on lipid droplets to increase human NASH 

(102). Pnpla3 mRNA expression was significantly induced by Aroclor 1260 (3.0-fold) 

exposure, but was suppressed by either PCB 126 (2.3-fold) or Aroclor 1260/PCB 126 (7.7-

fold) exposure (Fig. 2.6 E). While the impact of these effects on steatohepatitis in rodents 

expressing wild type Pnpla3 may not impact the degree of steatosis, the induction of mutant 

human PNPLA3 by Aroclor 1260 is predicted to increase NASH, while the suppression of 

the mutant human PNPLA3 by the other exposures is predicted to be protective (102). 

Pnpla3 expression may be regulated by both CAR (103) and the  AhR (104). Our data 

suggested that there may be interaction between Aroclor 1260-activated CAR and PCB 

126-activated AhR effecting the expression of Pnpla3. In summary, while all PCB 

exposures disrupted normal hepatic lipid metabolism, only PCB 126 exposure induced 

steatosis.  
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  A                                              B                                               C 

 

D                                                  E 

    

 

Figure 2.6 Effects of PCB exposures on genes expression of hepatic lipid metabolism. 

Hepatic mRNA levels of Cd36 (A), Fabp1 (B), Fasn (C), Scd1 (D), and Pnpla3 (E) were 

measured by performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, a= 

Aroclor 1260 effects, b= PCB 126 effects; c= interaction between Aroclor 1260 and PCB 

126. 
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Effects of PCB exposures on hepatokine expression 

The liver also functions as an endocrine organ that plays a major role in the 

development of obesity, diabetes, and metabolic syndrome. Hepatic mRNA expression 

levels of several protective hepatokines previously implicated in these processes (e.g., 

Fgf21, Igf1, and betatrophin) were measured. The Fgf21 mRNA expression was 

significantly down-regulated by either Aroclor 1260 (10.0- fold) or PCB 126 (4.0-fold) 

exposure compared to control groups. In contrast, administration of Aroclor 1260/PCB 126 

mixture increased Fgf21 mRNA expression compared to either alone (Fig. 2.7 A). Hepatic 

Igf1 mRNA expression was significantly increased after exposure with either Aroclor 1260 

(1.2-fold) or PCB 126 (1.6-fold) compared to control groups, while Aroclor 1260/PCB 126 

mixture administration resulted in a reduction of Igf1 mRNA expression compared to either 

alone (Fig. 2.7 B). Although it is controversial whether betatrophin promotes islet β cells 

expansion (105, 106), the expression of betatrophin mRNA was affected by PCBs 

exposure. Aroclor 1260 exposure (2.1-fold) significantly induced betatrophin mRNA 

expression, but not by PCB 126 exposure. Mixture of PCB 126 of Aroclor 1260 abolished 

Aroclor 1260-induced betatrophin mRNA expression (Fig. 2.7 C). These results suggested 

that environmental PCBs exposure may disrupt the liver-pancreas axis, leading to the 

development of NAFLD/NASH and diabetes. In summary, Aroclor 1260 increased mRNA 

expression of Igf1 and betatrophin while decreasing mRNA expression of Fgf21. Addition 

of PCB 126 to Aroclor 1260 produced the opposite effects. PCB 126 exposure alone 

increased Igf1 and decreased Fgf21 mRNA expression. These results demonstrated that the 

liver is a causal target organ for PCB-related endocrine disruption.   
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    A                                            B                                            C 

   

 

Figure 2.7 Effects of PCB exposures on hepatokines expression. Hepatic mRNA levels of 

Fgf21 (A), Igf1 (B), and betatrophin (C) were measured by performing RT-PCR. Data are 

presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 effects, b= PCB 126 effects; c= 

interaction between Aroclor 1260 and PCB 126.  
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Effects of PCB exposures on pancreas structure 

Because PCB exposures have been associated with diabetes, the effects of the PCB 

exposures on the pancreatic structure were evaluated. The pancreas weight to body weight 

ratio was unaffected by either Aroclor 1260 or PCB 126 exposures (Fig. 2.8 A). However, 

it was significantly decreased (25.3 %) by Aroclor 1260 / PCB 126 co-exposure (Fig. 2.8 

A). H&E staining demonstrates pancreatic structural changes following exposure with the 

NDL/DL PCB mixture (Fig. 2.8 B). Specifically, this co-exposure was associated with 

pancreatic degeneration with acinar cell steatosis and atrophy occurring in the absence of 

ductal changes or inflammation. These changes did not occur with the other PCB exposures 

(Fig. 2.8 B). To further evaluate the pancreatic pathology associated with Aroclor 

1260/PCB 126 co-exposure, trichrome stain was performed. The co-exposed mice had 

mildly increased pancreatic fibrosis compared to mice treated with vehicle control (Fig. 

2.8 C).  

                                               A 
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B 
           Control                                    Aroclor 1260 

   

                    PCB 126                                                        Aroclor 1260/PCB 126 

 

                      C  
        Control                                  Aroclor 1260/PCB 126 

    

 

Figure 2.8 Effects of PCB exposures on pancreatic structure.  (A) The ratio of pancreas 

weight to body weight, (B) H&E staining of pancreas (20 ×), and (C) trichrome staining 

(40 ×). Blank arrow indicates lipid droplet and blank star means degeneration in pancreas. 

c= interaction between Aroclor 1260 and PCB 126. 
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Effect of PCB exposures on pancreatic function  

The pancreatic insulin 1 mRNA expression was significantly up-regulated by either 

Aroclor 1260 (5.8-fold) or PCB 126 (1.4-fold)  exposure, but was signficantly down-

regulated by the Aroclor 1260/PCB 126 mixture (0.25-fold) (Fig. 2.9 A). A similar pattern 

was seen for the beta cell identity gene,  Nkx6-1 (Fig. 2.9 B), and for the F-cell gene product, 

pancreatic polypeptide (Fig. 2.9 C). The nuclear receptors NR4a1 and NR4a3 are involved 

in Nkx6-1 regulated islet beta cell proliferation (107). As with mRNA expression of Nkx6-

1, the mRNA expression levels of  NR4a1 and NR4a3 were increased by either Aroclor 

1260 (2.0-fold and 3.1-fold, respectively) or PCB 126 (1.8-fold and 3.0-fold, resectively), 

while the Aroclor 1260/PCB 126 exposure reduced NR4a1 and NR4a3 mRNA expression 

compared to either exposure alone (Fig. 2.9 D&E). These findings demonstrate that 

exposure to the NDL/DL-PCB mixture was associated with decreased expression of genes 

regulating pancreatic beta cell identity, and this was associated with decreased expression 

of insulin and pancreatic polypeptide, and pancreatic histopathologic changes.   

 

 

 

 

 

 

 

 

 



43 
 

A                                                 B 

 

C                                                D                                           E 

 

 

Figure 2.9 Effects of PCB exposures on pancreatic gene expression. Pancreatic mRNA 

levels of insulin1(A), Nkx6-1 (B), pancreatic polypeptide (C), NR4a1 (D) and NR4a3 (E) 

were measured by performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, 

a= Aroclor 1260 effects, b= PCB 126 effects; c= interaction between Aroclor 1260 and 

PCB 126. 
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Effects of PCB exposures on hepatic gluconeogenic gene expression 

Hepatic gluconeogenesis, contributes significantly to glycaemia, particularly in the 

fasting state. The hepatic mRNA level of Pck1, a regulator of gluconeogenesis, was 

significantly increased by PCB 126 exposure (1.6-fold), but was down-regulated by the 

Aroclor 1260/PCB 126 mixture (Fig. 2.10 A). The hepatic gluconeogenic gene, G6P 

mRNA, was significantly down-regulated by either Aroclor 1260 (1.7-fold) or PCB 126 

(1.3-fold) exposure compared to vehicle control group; while the Aroclor 1260/PCB 126 

mixture up-regulated G6P mRNA expression compared to either exposure alone (Fig. 2.10 

B). Thus, hepatic carbohydrate metabolism was also affected by PCB exposures. Perhaps 

consistent with decreased hepatic gluconeogenesis, the fasting blood glucose was 

decreased by PCB 126 exposure, either alone or along with Aroclor 1260 (Fig. 2.10 C). 

 

      A                                         B                                           C 

 

Figure 2.10 Effects of PCB on gluconeogenic genes expression. Hepatic mRNA levels of 

gluconeogenic genes G6P (A) and Pck1 (B) were measured by performing RT-PCR. (C) 

Fasting blood glucose. Data are presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 

effects, b= PCB 126 effects; C= interaction between Aroclor 1260 and PCB 126. 
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4. Discussion 

The exposure protocol to Aroclor 1260 used in this study is the same, which we have 

used in previous 12-week studies (59, 108). This exposure was designed to mimic the PCB 

bioaccumulation pattern and the highest levels of exposure seen in humans (52). However, 

Aroclor 1260 has lower levels of DL-PCBs than in human bioaccumulation patterns. To 

compensate for lower levels of DL-PCBs, we added a small quantity of PCB 126 that 

represents approximately 0.02 % of a human’s total PCB exposure based on NHANES data 

(42). Because PCB 126 is not the only DL-PCB and human exposures vary, the PCB 126 

dose was increased to 0.1 % (20 µg/kg).    

This PCB 126 dose is much lower (20 μg/kg) than that used in other studies (1.6 mg/kg) 

in the literature (48), but it was sufficient to activate the prototypical AhR target gene, 

Cyp1a2. The induction of Cyp1a2 mRNA was equal in both the PCB 126 alone group and 

in the Aroclor 1260/PCB 126 mixture-exposed groups. This confirms our previous results 

that Aroclor 1260 at this dose does not activate AhR (59), most likely due to the low levels 

of DL-PCBs in the commercial Aroclor 1260 mixture.  

Activation of CAR can either occur from direct by ligand binding or indirect activation 

via inhibition of EGFR (95). The consequences of the different modes of activation of CAR 

are significant as direct CAR activation may have more limited effects in the cell than 

indirect activation. PCB dependent inhibition of EGFR signaling causes extensive changes 

in the mouse phosphoproteins, which includes PI3K. ERK, STAT3, raf (93). In this study, 

all exposures increased CAR target gene Cyp2b10 mRNA expression. The increases were 

far greater with Aroclor 1260 or the Aroclor 1260/PCB 126 mixture exposure > 1000-fold 

while PCB 126 exposure increased Cyp2b10 mRNA expression a more modest 20-fold. 
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This most likely reflects the large difference in dose (mg vs. µg), but confirms our 

observation that PCB 126 is a good inhibitor of EGFR (94). Interestingly, the induction of 

Cyp2b10 mRNA by Aroclor 1260 alone was greater than the induction by the Aroclor 

1260/PCB 126 mixture, indicating that mixtures do not behave in the same way as either 

PCB preparation alone. These results suggest that activation of AhR affected other PCB-

regulated transcription factors. Similar results were obtained with Cyp3a11, where only 

Aroclor 1260 induced this gene and the effects of the mixture appeared no different than 

that seen in the control animals. Thus, it appears that there is interaction between the AhR 

and the nuclear receptors, CAR and PXR.   

The effects of the various PCB exposures on biomarkers of liver disease are more 

complex. Exposure to PCB 126 alone increased liver triglycerides and free fatty acids, 

while the addition of Aroclor 1260 reduced liver triglycerides and fatty acids to close to 

control levels. This is consistent with previous studies in the literature demonstrating that 

activation of AhR in mice spontaneously induced hepatic steatosis (70, 71) and caused 

mice to be much more sensitive to methionine choline-deficient (MCD)-induced NASH 

(109). Likewise, this is consistent with our previous 12-week study in Aroclor 1260 

exposed animals in which steatosis did not get worse. However, Aroclor 1260 exacerbated 

steatohepatitis in 42 % calories from fat mice but had little effect on 10.2 % calories from 

fat control diet. In contrast, direct activators of CAR, such as TCPOBOP, decrease hepatic 

steatosis in HFD-fed type 2 diabetic models and in the ob/ob mice (85, 86). All of these 

data likely reflect the different modes of activation of CAR as PCBs in murine systems are 

indirect activators.    
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Activation of the AhR is known to be associated with dyslipidemia and a wasting 

syndrome. In our current study we observed reductions in serum cholesterol and both HDL 

and nHDLc form, suggesting both increased hepatic import and decreased secretion. 

Likewise, serum triglycerides and VLDL were also reduced. This is consistent with a 

wasting syndrome in which peripheral fat is being mobilized and steatosis results. 

Interestingly, these affects occur in all groups that received PCB 126 and are independent 

of effects caused by Aroclor 1260 exposure. The hypolipidemia induced by PCB 126 

exposure is clearly different from the steatosis caused by hypercaloric diets where these 

parameters rise in concert with the development of steatosis.     

The effects of each exposure on genes involved in lipid metabolism are also more 

complex. For example, the mixture of PCB 126 and Aroclor 1260 slightly decreased the 

level of PPARα, while PCB 126 slightly induced CPT1a and Cyp4a11, and the mixture 

slightly attenuated the effect with CPT1a. In fact, it augments the effect with Cyp4a11. 

Thus, it is highly unlikely this is a PPARα-dependent process but more likely other 

transcription factors are involved in the promotors of these gene are involved.   

Many other genes involved in fat mobilization are affected by PCB exposure. As 

anticipated from previously published studies exposure to either Aroclor 1260 or PCB 126 

induced mRNA expression of Cd36. Interestingly, the mixture of both of these exposures 

actually reduced the expression of this gene that may in part explain why the steatosis was 

less pronounced in the Aroclor 1260/PCB 126 mixture group. A similar pattern is observed 

in the Fabp1 mRNA expression, suggesting a conservation of mechanism while the 

opposite pattern is observed with Fasn. Other genes in fat metabolism and disposition are 

also affected including Scd1, which is negatively regulated by both Aroclor 1260 and PCB 
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126 in a simple additive fashion suggesting independent mechanisms. Finally, the mutated 

Pnpla3 gene results in accumulated lipids and inhibited VLDL secretion. These mutant 

versions are strongly linked to the development of NASH in the human population. This 

gene is induced by Aroclor 1260, but suppressed by PCB 126 and the combination of both 

suppresses the mRNA expression further. In concert these results clearly demonstrate that 

mixtures of DL/NDL-PCBs mixture do not act like their individual components and that 

considerable crosstalk exists between these signaling mechanisms. 

In our study, NDL/DL-PCB mixtures definitely caused structural alterations in 

pancreas, as indicated by pancreatic fibrosis, acinar atrophy and acinar cell steatosis. 

However, there was no definite evidence of diabetes (normal HOMA-B, and decreased 

fasting glucose). Regarding translation to human disease, acinar cell steatosis has not been 

described in humans. However, PCB mixtures seem to cause a pancreatopathy, similar to 

that seen in diabetes, named diabetic exocrine pancreatopathy (110), and also exposures to 

pancreato-toxins such as smoking and alcohol, neither of which is associated with diabetes. 

We propose the term PCB-induced pancreatopathy to describe this condition. Just as in 

other forms of pancreatopathy, the clinical significance of the findings need further study. 

The unchanged HOMA-B in mice may be due to sufficient beta cell reserve at this 

timepoint in mice that were not stressed by obesity. The histological changes were 

paralleled by decreased mRNA expression of insulin 1, pancreatic polypeptide, and islet 

identity factors (e.g., Nkx6-1, NR4a1, and NR4a3). The combination of molecular and 

histological changes suggest that the Aroclor 1260/PCB 126 mixture exerted pancreatic 

endocrine and exocrine toxicity. However, neither Aroclor 1260 nor PCB 126 alone 

demonstrated this pancreatic toxicity. These results are broadly consistent with those of 
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earlier studies in which long-term PCB 126 exposure caused early β-cell failure (111). Lin 

et al. reported that chronic exposure to Aroclor 1254, caused pancreatic atrophy by 

reducing proliferation (112). Aroclor 1254 altered islet β-cell mass and impaired insulin 

receptor signaling, and ultimately disrupted glucose homeostasis (113). Our findings 

extend these observation by demonstrating that PCB exposure can possibly affect the 

genetic programing responsible for islet differentiation and function (e.g. islet identity 

factors). The islet identity factors are transcription factors involved in pancreatic 

differentiation and beta cell homeostasis in utero and in the adult. In rat islets, Nkx6-1 

regulates the expression of glucagon, and controls glucose-stimulated insulin secretion 

(GSIS) (114). The alteration of Nkx6-1 expression was observed in type 2 diabetes patients 

(115). These results suggest alteration of islet identity factors may be involved in endocrine 

disruption by endocrine and metabolism disrupting chemicals (EDCs/MEDs) exposure. In 

the present study, the observed islet identity factors changes were a novel finding in PCB 

exposed mice, and more work is required to determine mechanisms of action. 

Hepatokines have been proposed as being involved in mechanisms involved in the 

development of diabetes, as well as, NAFLD/NASH. These hepatokines include FGF21, 

IGF1 and betatrophin. FGF21 is a member of fibroblast growth factors (FGF) family, and 

plays a critical role in regulation of obesity, insulin resistance and fatty liver disease (116) 

by increasing brown adipose levels and adiponectin secretion. In the current study, mRNA 

levels of Fgf21 were downregulated in both Aroclor 1260 and PCB 126 treated groups, 

while Aroclor 1260/PCB 126 mixture exposure resulted in increased Fgf21 mRNA levels 

compared to individual exposures. As our mice were fasted, the Fgf21 expression in the 



50 
 

PCB 126-exposed mice is consistent with the concept that AhR induces FGF21 in the fed-

state, but suppresses FGF21 in the fasted-state (117).  

Another hepatokine that has been implicated both in diabetes and the control of serum 

triglycerides and LDL metabolism is betatrophin (ANGPT8) as reviewed (118). 

Betatrophin expression is low in fasted animals and rises in the fed state and regulates 

triglyceride metabolism (119) by inhibiting lipoprotein lipase (LPL), thereby, decreasing 

LDL sand VLDL uptake by adipocytes. The functions of betatrophin in diabetes are 

controversial but studies suggest it promotes pancreatic β cell proliferation, expanding β 

cell mass, and improves glucose tolerance (105). Regardless, in the current study, 

expression of betatrophin mRNA was significantly upregulated by Aroclor 1260 exposure, 

but not by PCB 126 exposure. Adding PCB 126 to Aroclor 1260 abolished Aroclor 1260-

induced betatrophin expression. PCBs exposure-induced dysregulation of hepatokines 

clearly demonstrates that PCBs and potentially other endocrine and metabolism disrupting 

chemicals (EDCs/MDCs) may affect expression of those hepatokines, such as FGF21 and 

betatrophin. 

In conclusion, even an exposure as low as 20 µg/kg of PCB 126 induced AhR-

dependent genes in mouse liver. Mixtures of DL and NDL PCBs exhibited different effects 

on gene expression, fatty liver disease, and diabetes endpoints, likely due to receptor 

interaction with each other. This suggests that studying single congeners in isolation may 

lead to potentially misleading results when modeling the metabolic disease associated with 

human PCB exposures. PCB 126 produced phenotypically were liver disease, while 

exposure to the mixture of PCB 126 plus Aroclor 1260 induced were pancreatic disease. 

Several novel targets for endocrine/metabolic disruption were identified including 
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PNPLA3, islet identity factors, and hepatokines. The latter implied that the liver is both a 

target and effect organ for endocrine disruption. More research is required to better 

understand the molecular mechanisms involved in complex mixtures of EDCs/MEDs, 

including DL/NDL-PCB mixtures.
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CHAPTER III 

THE INTERACTION OF DIET AND POLYCHLORINATED BIPHENYLS IN 

REGULATION OF NON-ALCOHOLIC STEATOHEPATITIS 

1. Introduction 

High calorie intake or a Western diet induces NAFLD, and environmental pollutants 

serve as “second hit” to exacerbate high fat diet-induced liver injury in murine models (37). 

For example, a 20 mg/kg exposure to Aroclor 1260 has no effect on liver injury and hepatic 

pathological changes in control diet fed mice, but a high fat diet fed mice developed 

neutrophil infiltration, liver injury. Thus, Aroclor 1260 drives hepatic steatosis progression 

to steatohepatitis in high fat diet fed mice. Moreover, a high fat diet suppresses CAR 

activation, and decreases its target genes’ expression induced by Aroclor 1260 exposure.  

Our acute exposure results demonstrated either Aroclor 1260 or PCB 126 exposure affected 

hepatic lipid metabolism, while only PCB 126 exposure induced mild hepatic steatosis. 

Co-administration of Aroclor 1260 and PCB 126 reduced the mild steatosis. With the 

increasing incidence of obesity and type 2 diabetes patients worldwide, a higher incidence 

of NAFLD is being observed, and the role of PCB exposures in these require investigation 

(42). The purpose of this chronic exposure study was to perform an analysis of liver and 

serologic endpoints using exposures that better mimic a high level human exposure to 

examine if the murine AhR is preferentially activated and whether or not mixtures of DL- 

and NDL-PCBs will behave like each component alone in high fat diet fed mice will be 

investigated. The animal groups and PCB treatments were the same as the acute exposure 
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study, but the control diet was replaced by high fat diet, and mice were exposed for 12 

weeks. 
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2. Materials and Methods 

Reagents 

Please refer to Chapter 3 section for details. Humulin R (100 U/mL) was obtained from 

Eli Lilly, (Indianapolis, IN). Primary antibody (F4/80, ab6640) and second antibody were 

supplied by Abcam, (Cambridge, MA). CAE, Naphthol AS-D Chloroacetate (Specific 

Esterase) Kit were obtained from Sigma-Aldrich, (St. Louis, MO). 

Animal exposures 

The animal protocol used was approved by the University of Louisville Institutional 

Animal Care and Use Committee. Male C57BL/6j mice (10 weeks old) were obtained from 

The Jackson Laboratory, (Bar Harbor, ME), and divided into 4 groups (n=10).  All the mice 

were fed a high fat diet (15.2 %, 42.7 %, and 42.0 % of total calories come from protein, 

carbohydrate, and fat, TekLab TD88137). Mice were treated by one-time gavage with 

either Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), Aroclor 1260 (20 mg/kg) with 0.1 % 

PCB 126 (20 µg/kg) or vehicle control (corn oil) for 12 weeks. Glucose tolerance test (GTT) 

and insulin tolerance test (ITT) were performed at 8 and 10 weeks, respectively, prior to 

euthanasia. Mice were housed in a temperature- and light controlled-room (12 h light; 12 

h dark) with food and water ad libitum. The animals were euthanized at the end of week 

12 using ketamine/xylazine (100/20 mg/kg body weight, i.p.) and the blood, liver, and fat 

tissues were collected. Dual energy X-ray absorptiometry (DEXA) scanning (Lunar 

PIXImus densitometer, WI) was performed to analyze body fat composition prior to 

euthanasia. 
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Histological staining 

Please refer to Chapter 3 section for detail. Additional chloroacetate esterase activity 

and macrophage accumulation were measured using CAE and immunohistochemistry 

(IHC) staining according to manufacturer’s protocols, respectively. 

Real-time PCR 

Please refer to Chapter 3 section for detail. Additional probes and their sequence were 

as follows: Tgf-β1 (Mm01178820_m1), Acta2 (Mm00725412_s1), Collagen (Col) 1a1 

(Mm00801666_g1), Collagen (Col) 1a2 (Mm00483888_m1), and TIMP1 

(Mm00441818_m1). 

Measurement of hepatic lipid 

Please refer to Chapter 3 section for detail. 

Measurement of plasma lipid and cytokine 

Please refer to Chapter 3 section for detail. 

Glucose and insulin tolerance test 

For the glucose tolerance test, mice were fasted for 16 hours prior to test. The basal 

fasting blood glucose levels were measured using a glucometer (ACCU-CHECK Aviva, 

Roche, Basel, Switzerland) with one drop of tail vein blood. Then sterile glucose was 

administrated via intraperitoneal (i.p.) injection at dose of 1 g/kg body weight within 15 

minutes, and blood glucose levels were measured at 15, 30, 60, and 120 minutes post 

injection.  

For the insulin tolerance test, mice were fasted for 6 hours at the day of test. Following 

a determination of the basal glucose level, sterile insulin was administrated, via 
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intraperitoneal (i.p.) injection, at dose of 0.5 U/kg body weight within 15 minutes, and 

blood glucose levels were measured at 15, 30, 60, and 120 minutes post injection.  

Statistical analysis 

Please refer to Chapter 3 section for detail. 
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3. Results 

Effects of PCB exposures on body weight and composition 

AhR activation induced by a high dose of pollutant agonist exposure, such as TCDD, 

leads to a wasting syndrome, characterized by a loss of body weight associated with a 

decrease in adipose tissue mass (120). To evaluate whether PCB exposures induced a 

wasting syndrome, body weight was monitored weekly. The body weight gradually 

increased in all groups regardless of PCB exposures due to high fat diet used in this 

experiment (Fig. 3.1 A). However, there were no changes in body weight (Fig. 3.1 B) or 

fat composition (Fig. 3.1 C) in PCB exposure groups compared to control group. The 

liver/body weight ratio was not changed after PCB exposures (Fig. 3.1 D); and the 

epididymal fat/body weight ratio was increased only after Aroclor 1260 exposure, but not 

in other PCB exposed groups (Fig. 3.1 E).  
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                            A 

 

  B                                                                                  C 

                

  D                                                                                  E 

                                  

 

Figure 3.1 Effects of PCB exposures on body weight and composition after 12 weeks 

exposure. (A) Body weight changing, (B) body weight, (C) body fat composition, (D) the 

ratio of liver weight to body weight, (E) the ratio of epididymal fat weight to body weight. 

Data are presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 effects. 
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Effects of PCB exposures on AhR, CAR and their target genes 

As shown in chapter 2, different types of PCB exposures are associated with AhR and 

CAR activation in mice fed control synthetic diet. AhR mRNA expression was decreased 

by PCB 126 (0.5-fold) exposure, but not by the other PCB exposed groups (Fig. 3.2 A). 

PCB 126 alone or Aroclor 1260/PCB 126 mixture activated AhR, as indicated by 4.0-fold 

or 2.6-fold induction of the AhR target gene Cyp1a2 mRNA expression, respectively. 

Adding PCB 126 to Aroclor 1260 resulted in a reduction of Cyp1a2 mRNA expression 

compared to PCB 126 alone (Fig. 3.2 B). CAR mRNA expression was significantly 

increased by PCB 126 alone (1.6-fold) or in the Aroclor 1260/PCB 126 mixture (2.3-fold), 

but was not changed by Aroclor 1260 (Fig. 3.2 C). The CAR-dependent gene Cyp2b10 

mRNA was increased by Aroclor 1260 (6.5-fold) or Aroclor 1260/PCB 126 mixture (2.3-

fold) exposure (Fig. 3.2 D).  Addition of PCB 126 reduced the Aroclor 1260-dependent 

induction of Cyp2b10, indicating an interaction between AhR and CAR signaling (Fig. 3.2 

D). However, the extent of AhR or CAR transcriptional activities were affected by diet 

effects, since high fat diet suppressed PCB exposures-induction of the AhR target Cyp1a2 

slightly (≈50%). AS anticipated (37), decreased induction CAR-target Cyp2b10 

dramatically (≈1000-fold) activity when compared with control synthetic diet fed mice 

treated with same dose of PCBs. Moreover, the conclusions made in chapter 2 that the 

reciprocal effects of AhR and nuclear receptor were also found in the current study.   
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Figure 3.2 Effects of PCB exposures on AhR, CAR and their target genes. Hepatic mRNA 

levels of AhR (A) and target gene Cyp1a2 (B), CAR (C) and target gene Cyp2b10 (D) were 

measured by performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, a= 

Aroclor 1260 effects, b= PCB 126 effects, c= interaction between Aroclor 1260 and PCB 

126. 
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Effects of PCB exposures on hepatic steatosis 

H&E staining data demonstrated mice fed on high fat diet developed variable, 

centrilobular, macrovesicular lipidosis (hepatic steatosis), and PCB exposures did not 

exacerbate high fat diet-induced hepatic steatosis (Fig. 3.3 A). Neither hepatic triglyceride 

(Fig. 3.3 B) nor cholesterol (Fig. 3.3 C) levels were significantly affected by either PCB 

exposures, however, hepatic free fat acid levels were significantly increased by PCB 126 

(1.3-fold) alone or Aroclor 1260/PCB 126 mixture (1.5-fold) exposures (Fig. 3.3 D).  
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Figure 3.3 Effects of PCB exposures on hepatic steatosis. (A) H&E staining of liver (10 ×). 

High fat diet induced variable, centrilobular, macrovesicular lipidosis, and PCBs exposure 

did not exacerbate high fat diet-induced steatosis in liver. (B) hepatic triglycerides levels, 

(C) hepatic cholesterol levels, (D) hepatic free fatty acid levels. n=10. Data are presented 

as mean ± SEM. p<0.05, b= PCB 126 effects. 
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Effects of PCB exposures on liver injury 

Previous studies showed that Aroclor 1260 exposure serves as “second hit” to drive 

hepatic steatosis to advanced steatohepatitis, therefore, plasma alanine (ALT) or aspartate 

(AST) aminotransferase levels were measured. Plasma ALT levels were elevated by 

Aroclor 1260 alone exposure (1.9-fold), but not by PCB 126 exposure. The mixture of PCB 

126 and Aroclor 1260 attenuated Aroclor 1260-elevated plasma ALT levels (Fig. 3.4 A), 

suggesting that PCB 126 was protective against liver injury in this model. Likewise, PCB 

126 exposure also showed a suppression of plasma AST levels when either given alone or 

mixed with Aroclor 1260 (Fig. 3.4 B). Hepatic mRNA expression of Tnfα was increased 

by either Aroclor 1260 exposure (1.8-fold) or Aroclor 1260/PCB 126 mixture exposure 

(1.9-fold) compared to vehicle group (Fig. 3.4 C). Likewise, hepatic mRNA expression of 

Ccl8 was significantly induced by Aroclor 1260 exposure (3.3-fold), suppressed by PCB 

126 alone exposure (0.38-fold), and mixture of PCB 126 of Aroclor 1260 abolished Aroclor 

1260 exposure-induced Ccl8 mRNA expression (Fig. 3.4 D). The similar patterns of 

mRNA levels of Ccl3 (Fig. 3.4 E) and Cxcl1 (Fig. 3.4 F) were also observed. In concert, 

these results demonstrated that addition of PCB 126 attenuates liver injury as evidenced by 

reduced ALT and AST, and by reducing hepatic inflammatory cytokines.   
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Figure 3.4 Effects of PCB exposures on liver injury. (A) Plasma ALT and (B) AST levels. 

Hepatic mRNA levels of Tnfα (C), Ccl8 (D), Ccl3 (E), and Cxcl1 (F) were measured by 

performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 

effects, b= PCB 126 effects, c= interaction between Aroclor 1260 and PCB 126. 
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Effects of PCB exposures on hepatic inflammatory response 

Neutrophil and macrophage infiltration lead to liver injury, thus, CAE and 

immunohistochemistry (F4/80, a macrophage marker) staining were performed to evaluate 

neutrophil infiltration and macrophage accumulation in liver, respectively. CAE staining 

showed high fat diet induced neutrophil infiltration, and Aroclor 1260 exposure 

exacerbated this effect. PCB 126 alone or in a Aroclor 1260/PCB 126 mixture did not 

display the elevated neutrophil infiltration (Fig. 3.5 A&B). Likewise, more F4/80 positive 

brown cells were found by Aroclor 1260 exposure compared to vehicle group, while PCB 

126 or Aroclor 1260/PCB 126 mixture were not elevated (Fig. 3.5 C). This result was also 

confirmed by measurement of gene expression of another macrophage maker, CD68. 

Aroclor 1260 exposure increased CD68 mRNA expression by 1.4-fold compared to vehicle 

group, and mixture of PCB 126 of Aroclor 1260 reversed Aroclor 1260-induced CD68 

mRNA expression (Fig. 3.5 D). These results suggested Aroclor 1260 exposure, but not 

PCB 126 exposure, induced inflammatory cell infiltration and led to liver injury, and PCB 

126 displayed anti-inflammation effects which likely accounts for the reduced plasma liver 

enzyme levels.  
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Figure 3.5 Effects of PCB exposures on hepatic inflammatory response. (A) CAE staining 

(40 ×). Red positive cells indicate neutrophil infiltration, (B) CAE positive number per 

field, (C) F4/80 immunohistochemistry staining (20 ×). Brown positive cells indicate 

macrophage accumulation, (D) hepatic CD68 mRNA levels. Data are presented as mean ± 

SEM. n=10. p<0.05, a= Aroclor 1260 effects, c= interaction between Aroclor 1260 and 

PCB 126. 
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Effects of PCB exposures on plasma lipids and adipokines  

PCB 126 exposure led to hypolipidemia in control synthetic diet fed mice in the2-week 

study. In high fat diet fed mice, PCB 126 alone or Aroclor 1260/PCB 126 exposure also 

decreased plasma triglycerides, but Aroclor 1260 exposure did not affect this variable (Fig. 

3.6 A).  Either Aroclor 1260 or PCB 126 exposure did not alter plasma total cholesterol, 

while co-administration of Aroclor 1260 and PCB 126 decreased total cholesterol (Fig. 3.6 

B). The plasma levels of PAI-1, which is implicated in the pathogenesis of fibrosis (121), 

were significantly decreased by PCB 126 exposure (Fig. 3.6 C). Moreover, adipokines, 

including adiponectin (Fig. 3.6 C), leptin (Fig. 3.6 D) and resistin (Fig. 3.6 E) were not 

altered by any PCB exposure, suggesting PCB exposures may not cause adipose tissue 

dysfunction.  
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Figure 3.6 Effects of PCB exposures on plasma lipids and adipokines. Plasma levels of 

triglyceride (A), total cholesterol (B), PAI-1 (C), adiponectin (D), leptin (E), and resistin 

(F). Data are presented as mean ± SEM. n=10. p<0.05, b= PCB 126 effects, c= interaction 

between Aroclor 1260 and PCB 126. 
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Effects of PCB exposures on hepatic fatty acid β-oxidation genes expression 

Unlike the effects of PCB exposures on fatty acid β-oxidation genes expression in the 

2-week study, hepatic mRNA levels of Pparα and target gene Cpt1α were decreased by 

either Aroclor 1260, PCB 126 or Aroclor 1260/PCB 126 mixture exposure (Fig. 3.7 A&B). 

Pparα mRNA expression was decreased by 9.1 %, 11.6 % and 20.1 % by Aroclor 1260, 

PCB 126, and Aroclor 1260/PCB 126, respectively (Fig. 3.7 A). Cpt1α mRNA expression 

was decreased by 5.1 %, 2.8 % and 13.6 % by Aroclor 1260, PCB 126, and Aroclor 

1260/PCB 126, respectively (Fig. 3.7 B). However, the mRNA expression of Cyp4a10 had 

the same pattern as my 2-wwek study. PCB 126 increased Cyp4a10 mRNA expression 1.2-

fold while the Aroclor 1260/PCB 126 mixture increased 1.5-fold (Fig. 3.7 C). These data 

suggested that the interaction of diet and PCB exposures affect reduction of mitochondrial 

fatty acid β-oxidation but increased peroxisomal fatty acid β-oxidation. 

  

 

      A                                          B                                          C 

 

 

Figure 3.7 Effects of PCB exposures on hepatic fatty acid β-oxidation genes expression. 

Hepatic mRNA levels of Pparα (A), Cpt1a (B), and Cyp4a10 (C)were measured by 

performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, a= Aroclor 1260 

effects, b= PCB 126 effects, c= interaction between Aroclor 1260 and PCB 126. 



71 
 

Effects of PCB exposures on other genes of hepatic lipid metabolism 

mRNA levels of Cd36 were significantly increased by either PCB 126 (1.3-fold) or 

Aroclor 1260 (1.3-fold) exposures, and the additive induction by PCB 126 and Aroclor 

1260 on Cd36 mRNA levels were found with the Aroclor 1260/PCB 126 mixture exposure 

(1.5-fold) (Fig. 3.8 A). Either PCB 126 exposure slightly suppressed Fabp1 mRNA 

expression, but Aroclor 1260/PCB 126 mixture exposure induced Fabp1 mRNA 

expression compared to either exposure alone (Fig. 3.8 B). Both Srebp1 (13.9 %) and Fasn 

(25.2 %) mRNA levels were decreased by PCB 126 exposure, but not by the Aroclor 1260 

exposure. However, co-administration of PCB 126 and Aroclor 1260 resulted in slightly 

increased Srebp1 mRNA compared to PCB 126 alone exposure, and suppressed Fasn 

mRNA expression compared to vehicle group (Fig. 3.8 C&D). Likewise, Scd1 mRNA 

expression was decreased by either Aroclor 1260 (9.3 %) or PCB 126 (14.5 %) exposure, 

and in an additive manner by the Aroclor 1260/PCB 126 mixture (23.9 %) exposure (Fig. 

3.8 E). Pnpla3 mRNA expression was significantly upregulated by Aroclor 1260 (1.6-fold) 

exposure, but was suppressed by either PCB 126 (42.2 %) or Aroclor 1260/PCB 126 

(37.5 %) exposure (Fig. 3.8 F). These data suggested that PCB exposures increased hepatic 

lipid levels due to increased lipid uptake, not by increasing de novo lipogenesis. Moreover, 

high fat diet suppressed PCB exposures-induced lipid metabolic gene expression when 

compared to chow diet fed mice in my 2-week study. 
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Figure 3.8 Effects of PCB exposures on other genes of hepatic lipid metabolism. Hepatic 

mRNA levels of Cd36 (A), Fabp1 (B), Srebp1 (C), Fasn (D), Scd1 (E), and Pnpla3 (F) 

were measured by performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, 

a= Aroclor 1260 effects, b= PCB 126 effects, c= interaction between Aroclor 1260 and 

PCB 126. 
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Effects of PCB exposures on glucose metabolism 

PCB exposures are associated with diabetes in human populations. To determine 

whether PCB exposures affect glucose metabolism, glucose and insulin tolerance tests 

were performed. PCB exposures did not impair glucose tolerance and insulin sensitivity, 

as indicated by similar area under curves (AUCs) for all PCB exposures compared to the 

control group (Fig. 3.9 A&B). However, PCB 126 exposure suppressed gluconeogenic 

gene (Pck1) mRNA expression, and decreased fasting blood glucose levels (Fig. 3.9 C&D). 

Our current data are consistent with the published results by Diani-Moore S et al that 

activation of AhR suppressed gluconeogenic genes (Pck1) mRNA expression by TCDD 

via TCDD-inducible poly(ADP-ribose)-polymerase (TiPARP) (122). 
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Figure 3.9 Effects of PCB exposures on glucose metabolism. (A) Glucose tolerance test 

and area under curve (AUC); (B) insulin tolerance test and area under curve (AUC); (C) 

fasting blood glucose levels; hepatic mRNA levels of Pck1 (D) and G6P (E) were measured 

by performing RT-PCR. Data are presented as mean ± SEM. n=10. p<0.05, b= PCB 126 

effects. 
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Effects of PCB exposures on hepatic fibrosis 

Activated HSCs are the major source of extracellular matrix (ECM), including 

collagen, deposition in liver fibrosis. The balance of ECM is regulated by MMPs and 

TIMPs. To evaluate whether PCB exposures induced hepatic fibrosis, mRNA expression 

levels of fibrosis genes (e.g., TGF-β1, Acta2, Col 1a1, Col 1a2, MMPs, TIMP1, and PAI1) 

were measured. Although TGF-β1 mRNA expression was not affect by all PCB exposures 

(Fig. 3.10 A), PCB 126 alone exposure suppressed hepatic stellate cells (HSCs) activation, 

as indicated by decreased Acta2 (48.3 %) mRNA expression (Fig. 3.10 B). Moreover, 

mRNA expression of Col 1a1 (40.5 %) (Fig. 3.10 C), Col 1a2 (55.6 %) (Fig. 3.10 D), 

TIMP1 (64.6 %) (Fig. 3.10 E), and PAI1 (72.5 %) (Figure 3.10 F) were significantly 

decreased by PCB 126 exposure, but not by Aroclor 1260 exposure. The mRNA levels of 

ECM degradation genes, including MMP2 (Fig. 3.10 G), MMP9 (Fig. 3.10 H), and MMP14 

(Fig. 3.10 I), were not significantly changed by all PCB exposures. Co-administration of 

Aroclor 1260 and PCB 126 did not attenuate PCB 126 exposure-induced changes in mRNA 

levels of these genes. Surprisingly, although PCB 126 exposure alone suppressed fibrotic 

genes mRNA levels, histological data showed that the collagen deposition was similar with 

all PCB exposures, as shown by picrosirius red staining (Fig. 3.10 J). However, mRNA 

changes may proceed pathological changes. These data suggested that fibrotic genes were 

altered by PCB exposures, but failed to cause phenotypical changes in fibrosis. Longer 

time and/or higher dose exposure, or the carbon tetrachloride-induced fibrosis model, 

should be considered to evaluate the fibrotic effects of PCB exposures. 
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Figure 3. 10 Effects of PCB exposures on hepatic fibrosis. Hepatic mRNA levels of TGF-

β1 (A), Acta2 (B), Col 1a1 (C), Col 1a2 (D), TIMP1 (E), PAI1 (F), MMP2 (G), MMP9 (H), 

and MMP14 (I) were measured by performing RT-PCR. (J) picrosirius red staining of liver 

(10 ×). Data are presented as mean ± SEM. n=10. p<0.05, b= PCB 126 effects. 
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4. Discussion 

The acute PCB exposure study (chapter 3), mice fed control synthetic diet developed 

hepatic steatosis and activation of AhR with PCB 126 exposure. Aroclor 1260/PCB 126 

exposure also activated AhR, but failed to induce hepatic steatosis. In the current study, 

the interactions of diet and PCB exposures in regulation of NAFLD/NASH were 

investigated. I hypothesize that activation of AhR is involved in the development and 

progression of NAFLD/NASH after PCB exposures in high fat diet fed mice. The results 

demonstrated that high fat diet induced hepatic steatosis regardless of PCB exposure, 

Aroclor 1260 (20 mg/kg) exposure promoted progression of hepatic steatosis to 

steatohepatitis, while PCB 126 (20 µg/kg) exposure appeared to reverse HFD-induced 

hepatic fibrosis. Co-administration of PCB 126 of Aroclor 1260 abrogated Aroclor 1260 

exposure-induced steatohepatitis.  

Aroclor 1260 is a mixture of NDL-PCB congeners. It contains low amounts of DL 

PCB congeners. Aroclor 1260 exposure at this level failed to induce the AhR target gene, 

Cyp1a2 mRNA level in mice on either chow diet in 2-week study or with a high fat diet in 

the current study. These data are consistent with previous results demonstrating that 

Aroclor 1260 (20 mg/kg) did not activate AhR, but a high exposure of Aroclor 1260 (200 

mg/kg) did (59).  In the acute study (chapter 3), either PCB 126 or Aroclor 1260/PCB 126 

mixture activated AhR, and co-administration of Aroclor 1260 with PCB 126 did not affect 

PCB 126-induced AhR activity. In the current study, AhR activity was increased by PCB 

126 alone exposure, but the magnitude of AhR-dependent induction was decreased 

compared to the results seen in the acute study. Co-administration of Aroclor 1260 in the 

Aroclor 1260/PCB 126 mixture attenuated PCB 126 exposure-induced AhR activity. These 
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data suggested that high fat diet affects the magnitude of PCB 126 exposure-induced AhR 

activity. Moreover, high fat diet also impacted Aroclor 1260 exposure-induced CAR and 

PXR target gene expression. For example, CAR target gene Cyp2b10 mRNA was induced 

at least 1000-fold by either Aroclor 1260 or Aroclor 1260/PCB 126 mixture in mice fed on 

control chow diet as shown in chapter 3. However, less than 10-fold induction of Cyp2b10 

mRNA by either Aroclor 1260 or Aroclor 1260/PCB 126 mixture was found. The 

magnitude of induction of Cyp2b10 mRNA by PCB 126 exposure, as shown in chapter 3, 

was also abolished by high fat diet.  

High dose of TCDD (120) or PCB 126 (123) exposure causes a wasting syndrome. 

However, in the current study, neither PCB 126 nor Aroclor 1260/PCB 126 mixture 

exposure resulted in a wasting syndrome, as indicated by no significant body weight or 

epididymal fat tissue weight changes compared to the control group, although activation 

of AhR can be observed at lower doses of PCB 126 exposure (20 µg/kg VS. 4.9 mg/kg). 

Moreover, epididymal fat tissue weight was significantly increased by Aroclor 1260 

exposure, possibly due to NDL-PCB 153 serving as an obesogen (124). Similar results 

were found in control synthetic diet fed mice in chapter 3. In low fat diet fed rats, PCB 126 

exposure induced hepatic steatosis (73, 125), associated with altered hepatic micronutrients 

(96, 126). Our previous acute study results confirm these data that only PCB 126 exposure 

led to hepatic steatosis in control synthetic diet fed mice. However, in the current study, 

histological results showed that high fat diet induced hepatic steatosis alone, and PCB 

exposures did not exacerbate high fat diet-induced hepatic steatosis. These results were 

also confirmed by hepatic lipid levels measurement. As shown above, no PCBs exposure 

had effects on hepatic triglycerides or total cholesterol levels. However, PCB 126 exposure 
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increased hepatic free fatty acid levels compared to control group. These data suggest 

interactions between diet and PCB 126 exposure may affect AhR activation-induced 

hepatic steatosis. This may be due to the lipophilic property of PCBs, which may restrict 

PCBs distribution in high fat diet conditions and metabolic stress.  

As mentioned in the discussion section of chapter 3, activation of CAR can be direct 

by ligand binding or indirect via inhibition of EGFR signaling (95). Direct activation of 

CAR by agonist, TCPOBOP, ameliorates metabolic syndromes, such as obesity, type 2 

diabetes and NAFLD/NASH in mice under pathological conditions (85-87). However, 

mice administered TCPOBOP displayed hepatic lipogenesis and positive regulation of 

Pnpla3 gene expression. These results suggest the consequences of activation of CAR are 

varied under different conditions by direct ligand activation. Although Aroclor 1260 

exposure induced CAR activation under either physiological condition (low fat diet) or 

pathological condition (high fat diet), Aroclor 1260 exposure had no effects on hepatic 

steatosis or glucose or insulin tolerance. However, Aroclor 1260 alone exposure promoted 

hepatic steatosis progression to steatohepatitis in high fat diet fed mice, which conflicts 

with the fact that direct activation of CAR attenuates NAFLD/NASH. These data suggest 

CAR is indirectly activated by Aroclor 1260 exposure. These data have been confirmed by 

our previous study demonstrating that Aroclor 1260 inhibits hepatic EGFR signaling (93). 

Other data to support this conclusion are that hepatic gluconeogenesis regulation occurs by 

direct CAR activation. CAR activation by agonists suppresses gluconeogenic genes (Pck1 

and G6p) mRNA levels, and suppresses hepatic gluconeogenesis via degradation of 

PGC1alpha protein (91), or inhibition of HNF4a and FOXO1 transcriptional activity (127). 

In my study, Aroclor 1260 exposure did not affect hepatic gluconeogenic genes expression 
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and fasting blood glucose levels in either chow diet or high fat diet fed mice. In addition, 

PCB 126 exposure suppressed gluconeogenic genes expression, and decreased fasting 

blood glucose levels, consistent with previous published data (73, 79, 122).  

In chapter 2, not all PCB exposures caused liver injury, as documented by similar 

plasma ALT and ALT levels compared to the mice on control synthetic diet fed mice, even 

though PCB 126 alone exposure induced mild hepatic steatosis. In the current study, 

Aroclor 1260 exposure induced neutrophils infiltration and macrophages accumulation in 

liver, and increased plasma ALT levels, which has been confirmed by our previous study 

(59). Interestingly, it appears that PCB 126 exposure protected against high fat diet-induced 

liver injury, as PCB 126 alone exposure decreased plasma AST levels, and attenuated 

Aroclor 1260 exposure-elevated plasma ALT levels by co-exposure of Aroclor 1260 and 

PCB 126. This may be due to anti-inflammatory due to AhR activation (128). This 

phenomenon was also found in our previous study that high dose of Aroclor 1260 (200 

mg/kg) activates AhR and fails to cause liver injury (59). These results suggested that AhR 

activation regulates lipid metabolism and immune response through different signaling 

pathways. 

Liver injury activates hepatic stellate cells (HSCs), and results in hepatic fibrosis by 

environmental pollutant exposure. TCDD exposure activates AhR, induces HSCs 

activation, and facilitates liver fibrosis (129, 130). However, TCDD exposure fails to 

exacerbate experimental liver fibrosis, although it increases necroinflammation and HSCs 

activation (131). This may be due to enhanced ECM turnover (132). In addition, high dose 

of PCB 126 exposure exacerbates MCD-induced liver fibrosis (123). In the current study, 

all PCB exposures did not increase collagen deposition or cause liver fibrosis, even though 
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Aroclor 1260 exposure increased liver injury. Surprisingly, PCB 126 exposure suppressed 

fibrotic gene mRNA levels, such as col 1a1, col 1a2, and TIMP1. It also decreased plasma 

PAI1 levels. The reasons for this are unknown, and need further investigation.  

The effects of PCBs exposure on genes involved in lipid metabolism are not like the 

data in acute study. For example, the fatty acid β-oxidation genes mRNA levels are 

increased by either Aroclor 1260 or PCB 126 exposure, but inhibited by Aroclor 1260/PCB 

126 exposure compared to either exposure alone. In the current study, all PCBs exposure 

suppressed fatty acid β-oxidation genes mRNA expression. The gene expression of fatty 

acid transporters mRNA was upregulated by either Aroclor 1260 or PCB 126 exposure in 

both diet, but the Aroclor 1260/PCB 126 mixture exposure displayed opposite results. The 

similar pattern also was found in Pnpla3 and fatty acid synthesis (Fasn) gene. These data 

suggest that unlike Aroclor 1260 or PCB 126 exposure, Aroclor 1260/PCB 126 mixture 

exposure exhibits different effects on genes involved in lipid metabolism with diet 

interaction. The DL/NDL-PCBs mixture should be used to evaluate metabolic endpoints 

in animal model, to allow for better prediction of the endocrine and metabolism disruption 

effects in humans.  

In summary, high fat diet affects AhR, and CAR expression, as well as, their 

transcriptional activity. Aroclor 1260 exposure may indirectly activates CAR, and induces 

liver inflammation and injury; while PCB 126 exposure activates AhR and reduces hepatic 

inflammation, and attenuates Aroclor 1260 exposure-induced liver injury, and fibrosis. 

Moreover, both DL- and NDL-PCBs affect genes of lipid metabolism, which are associated 

with fatty liver disease. Mixtures of DL- and NDL-PCBs exhibit different effects on fatty 

liver disease compared to either alone exposure. 
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CHAPTER IV 

COMPARISON OF CONCENTRATION-DEPENDENCE OFHUMAN AND MOUSE 

ARYL HYDROCARBON RECEPTOR ACTIVATION IN RESPONSE TO 

POLYCHLORINATED BIPHENYL EXPOSURES 

1. Introduction 

PCB congeners can be classified into dioxin-like (DL) and non-dioxin-like (NDL) 

classes. DL-PCBs have non-ortho or mono-ortho substitution and are ligands for the AhR 

since their planar structure allows them to fit well in the binding pocket of that receptor. 

The AhR plays an important role in allowing the liver to be a target for PAH metabolic 

action. Furthermore, other studies have shown that PCBs exposure is associated with liver 

disease (42), diabetes (57), and vascular disease (133), association with AhR activation. 

The AhR is a transcription factor that belongs to the Per-Arnt-Sim family (67). 

Unliganded AhR resides in the cytoplasm of cells and upon ligand binding, translocates to 

the nucleus, forming a heterodimer with AHR nuclear translocator protein (ARNT). The 

AhR-ARNT heterodimer binds to the dioxin response element (DRE) on the 5’-flanking 

regions of most dioxin-responsive genes, and regulates expression of target genes, 

prototypically the Cyp1 family.  

To estimate human risk due to AhR activation by these chemical exposure, the World 

Health Organization (WHO) has established toxic equivalency factors (TEFs) for AhR 

ligands (134). TCDD is considered the prototypical ligand for AhR and therefore, is 

assigned a TEF of 1. The TEFs of other chemicals are calculated based on relative effect 
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potency (REP) values relative to that of TCDD. PCB 126, a non-ortho substituted PCB, 

which has highest AhR binding affinity of DL-PCBs, has the TEF 0.1 and is the major 

contributor to the total TEQ from PCBs. The TEFs of 29 AhR ligands have been calculated 

and have much lower TEFs than PCB 126. For example, all the TEFs of all mono-ortho 

substituted PCBs are 0.00003 (135).   

However, TEFs are calculated for each AhR ligand in a species-specific manner, so if 

differences exist between the affinity for TCDD or the PCBs relative to TCDD, then there 

will be differences in the exposure levels required to activate the AhR. Previous Studies 

have compared the potency of DL-PCB congeners and/or TCDD in inducing CYP mRNA 

levels in the human and rodent immortalized cell lines and primary hepatocytes (136, 137). 

These data support the conclusion that the sensitivity of human AhR is lower than that of 

the rat in response to TCDD or some DL-PCB congeners exposure. The differences in 

primary amino acid sequence of AhR in ligand-binding pocket (138) and the different 

ability to recruit coactivators by AhR (139) were thought to be responsible for the different 

AhR sensitivity across species. Relatively, less is known about the murine AhR which was 

the species used in our animal studies (59, 140). 

My hypothesis is that the murine AhR activation will respond to DL/NDL-PCBs 

mixture and DL-PCBs with lower concentration-dependence than the human AhR. To 

evaluate the difference of TEFs across human and mouse AhR in response to DL-PCBs 

exposure, human (HepG2) and mouse (Hepa1c1c7) hepatoma-derived cell line were used 

for AhR-dependent luciferase activity, as well as, primary human and mouse hepatocytes 

were used for native Cyp1a1 gene expression. Our results demonstrated that the maximal 
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response for human AhR in increasing gene expression was higher than that in mouse, but 

concentration-dependence of the human AhR is higher than that of mouse AhR. 
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2. Materials and Methods 

Reagents 

TCDD, Aroclor 1260, Aroclor 1254 (lot # 124-191) and DL-PCB congeners (PCBs 

77, 81, 114, 126, 169) were purchased from AccuStandard (New Haven, CN). 

Lipofectamine, Opti-MEM and Wamouth’s medium, fetal bovine serum (FBS), Hank's 

Balanced Salt Solution (HBSS, 10X), probes for human CYP1a1 (Hs01054797_g1) and 

GAPDH (Hs02786624_g1), mouse Cyp1a1 (Mm00487218_m1) and GAPDH 

(Mm99999915_g1) for Taqman Gene Expression Assays were ordered from Thermo 

Fisher Scientific (Waltham, MA). Dulbecco's Modified Eagle's Medium (DMEM) was 

purchased from VWR (Radnor, PA), whereas antibiotics, 0.25 % trypsin with EDTA, Type 

1 collagen , and ITSTM + Premix Universal Culture Supplement were obtained from 

Corning Inc. (Corning, NY). Cell culture Lysis 5x buffer and Luciferase Assay System 

were obtained from Promega (Madison, WI). Chlorophenol red-β-D-galactopyranoside 

and Collagenase D were from Sigma-Aldrich, (St. Louis, MO). RNA STAT-60 was from 

amsbio (Austin, TX), and QuantiTect Reverse Transcription Kit was obtained from 

QIAGEN (Qiagen, Valencia, CA). iTag Universal Probes Supermix was purchased form 

Bio-Rad (Hercules, CA). 1,2-benz[a]anthracene (BA), dimethyl sulfoxide (DMSO), 

ethanol, 2-propanol, chloroform and all other reagents were obtained from Sigma Aldrich. 

Cell culture 

The human male HepG2 and mouse Hepa1c1c7 cells were purchased from the 

American Type Culture Collection (Manassas, MD). Cells were cultured in DMEM 

complete medium supplemented with 10 % FBS and 1 % antibiotics, and incubated in 5 % 

https://www.thermofisher.com/order/genome-database/details/ge/Hs02786624_g1?CID=&ICID=
https://www.google.com/search?biw=1366&bih=657&q=Waltham+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAAxikqkQAAAA&sa=X&ved=0ahUKEwit8LmH54jUAhUCxoMKHVzCD7IQmxMItAEoATAa
https://www.google.com/search?q=Radnor+Pennsylvania&stick=H4sIAAAAAAAAAOPgE-LUz9U3sMiKT7JU4gIxjQqMk4uytbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAA3oA2VFAAAA&sa=X&ved=0ahUKEwionqqS5ojUAhVK6IMKHeo1CiMQmxMIlQEoATAU
https://www.google.com/search?biw=1366&bih=657&q=Corning+New+York&stick=H4sIAAAAAAAAAOPgE-LUz9U3MKxMMi5RgjBz0y2KtLSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAHxHhBREAAAA&sa=X&sqi=2&ved=0ahUKEwj4hIDz5ojUAhXCx4MKHdV6B-cQmxMIsgEoATAY
https://www.google.com/search?biw=1366&bih=657&q=Madison+Wisconsin&stick=H4sIAAAAAAAAAOPgE-LUz9U3MKswKilR4gAx08qNKrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBvCdizQwAAAA&sa=X&ved=0ahUKEwi9mqbP6IjUAhWHxYMKHeScDDcQmxMIiwEoATAS
https://www.google.com/search?biw=1366&bih=657&q=Hercules+California&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wzDVPUeIAsQsrCwu1tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUALCJywkQAAAA&sa=X&sqi=2&ved=0ahUKEwjR1dm174jUAhVrw4MKHXGLCtMQmxMIiAEoATAT
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CO2 and 95 % humidity at 37 ◦C. HepG2 cells and Hepa1c1c7 cells were sub-cultured 

every 3-4 days.  

Cell transfection 

The HepG2 and Hepa1c1c7 cells were plated into 24-well plates, and transfected at 

40 %-50 % confluence. In brief, DMEM medium was replaced by Opti-MEM medium 30 

min prior to transfection. Cells were transfected with 150 ng of a pGl3-promoter-based 

reporter plasmid pXRE-SV40-Luc that has been described previously (52)  and  150 ng of 

pCMV-β (Stratagene, CA) using lipofectamine (Thermo-Fisher) according to the 

manufacturer’s instructions. Following an overnight recovery period, the chemicals of 

interest were then added and the cells were grown for 24 hours prior to harvest. DMSO 

was used as a solvent control, and the final concentration was less than 0.2 %. Cells were 

harvested using 1x cell culture lysis buffer. Chlorophenol red β-D-galactopyranoside was 

used to determine β-galactosidase activity to normalize transfection efficiency. Following 

incubation, β-galactosidase enzyme activity was determined spectrophotometrically at 595 

nm using the Bio-Tek Synergy HT multi-mode micro plate reader (Bio-Tek USA, 

Winooski, VT). Luciferase reporter assays were performed with a Promega Luciferase 

Assay System on an Orion L micro plate luminometer (Berthold Detection Systems, 

Pforzheim, Germany).  

Primary mouse hepatocytes isolation 

Livers from 10-week-old male C57BL/6 mice were used to prepare hepatocytes by 

digestion with collagenase D on basis of published protocol (141). Hepatocytes were 

resuspended in cold Waymouth’s medium, and cultured for 12 hours in type 1 collagen 

pre-coated 12-well plates.  
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Cell treatment and RT-PCR 

Primary human hepatocytes were obtained from BioreclamationIVT (Baltimore, MD). 

Primary human hepatocytes were plated according to the supplier’s instructions in 12-well 

plates and cultured overnight. Chemicals of interest at indicated concentration were added 

to primary human and mouse hepatocytes for 24 hours. Cells were lysed and mRNA was 

isolated using STAT-60. RNA purity and quantity were assessed with a Nanodrop 

spectrometer (ND-1000, Thermo Scientific, Wilmington, DE) using ND-1000 V3.8.1 

software. cDNA was synthesized using a Qiagen QuantiTect Reverse Transcription Kits.  

PCR reaction was performed using iTag Universal Probes Supermix, with  CYP1a1 and 

GAPDH primers Taqman probe sets on a Bio-Rad CFX384TM Real-Time System 

(Hercules, CA). CYP1a1 expression level was determined using 2-∆∆Ct methods. 

Statistical analysis 

Concentration-response analyses were performed on SigmaPlot 11.0 software (Systat 

Software Inc., San Jose, CA) using a Four Parameter Logistic Curve. Other statistical 

analyses performed using Graphpad Prism software (GraphPad Software Inc., La Jolla, 

CA). All data were normalized to uninduced control group. Data are presented as mean ± 

SEM. Statistical evaluation of the data was performed using one-way analysis of variance 

(ANOVA) followed by the Dunnett’s post hoc test to compare all groups with the control 

sample for multiple groups. For all statistical comparisons, p-values of less than 0.05 were 

considered statistically significant. 

 

 

 

https://www.google.com/search?biw=1366&bih=657&q=Hercules+California&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wzDVPUeIAsQsrCwu1tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUALCJywkQAAAA&sa=X&sqi=2&ved=0ahUKEwjR1dm174jUAhVrw4MKHXGLCtMQmxMIiAEoATAT
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3. Results 

Concentration-response curves for the luciferase assay activated by TCDD 

Based on the concentration-response data, TCDD displayed an EC50 value of 0.4 ± 0.1 

nM in HepG2 cells, whereas the EC50 value in Hepa1c1c7 cells was 0.03 ± 0.01 nM (Fig. 

4.1 A&B). TCDD was much more potent, and induced luciferase activity to a significantly 

greater level in HepG2 cells (maximal response 83-fold compared to uninduced control 

group) compared to Hepa1c1c7 cells (maximal response 2.2-fold compared to uninduced 

control group).  

 

      A                                                              B 

        

                          EC50 = 0.4 ± 0.1 nM                                     EC50 = 0.03 ± 0.01 nM 

 

Figure 4.1 Concentration-response curves for the luciferase assay activated by TCDD. 

AhR-dependent luciferase activity in HepG 2 cells (A) and Hepa1c1c7 cells (B) treated 

with various of concentrations of TCDD. Data are presented as mean ± SEM. 
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Concentration-response curves for the luciferase assay and Cyp1a1 expression activated 

by non-ortho PCB 126  

Because PCB 126 is thought to be the congener with the greatest contribution to the 

overall TEQ provided by PCBs, we examined the concentration dependence in both human 

HepG2 cells and mouse Hep1c1c7 cells. Our results show that PCB 126 had an EC50 value 

of 250 ± 150 nM in HepG2 cells, while EC50 value in Hepa1c1c7 cells was 4.7 ± 3.2 nM 

(Fig. 4.2 A&B).  PCB 126 induced luciferase activity to a significantly greater level in 

HepG2 cells (maximal response 31.6-fold compared to uninduced control group) compared 

to Hepa1c1c7 cells (maximal response 5.9-fold compared to uninduced control group).  

Using primary human and mouse hepatocytes, real-time PCR was used to measure 

CYP1A1 and Cyp1a1 mRNA levels, respectively, when treated with PCB 126. PCB 126 

induced expression of CYP1A1 with an EC50 value of 195 ± 35 nM in primary human 

hepatocytes. The EC50 value for Cyp1a1 in primary mouse hepatocytes was 12.3 ± 7.9 nM 

(Fig. 4.2 C&D). The maximal fold Cyp1a1 mRNA induction did not display a significant 

difference between primary human (45.1-fold compared to uninduced control group) and 

mouse hepatocytes (53.3-fold compared to uninduced control group).  
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     A                                                           B 

   

                          EC50 = 250.0 ± 150.0 nM                             EC50 = 4.7 ± 3.2 nM 

            C                                                                 D 

       

                             EC50 = 194.5 ± 35.2 nM                              EC50 = 12.3 ± 7.9 nM 

 

Figure 4.2 Concentration-response curves for the luciferase assay and Cyp1a1 expression 

activated by non-ortho PCB 126. AhR-dependent luciferase activity in HepG2 cells (A) 

and Hepa1c1c7 cells (B) treated with various of indicated concentration of PCB 126. AhR 

target gene Cyp1a1 induction in primary human (C) and mouse (D) hepatocytes after the 

same treatment with the indicated concentration of PCB 126.  Data are presented as mean 

± SEM. 
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Concentration-response curves for the luciferase assay activated by non-ortho PCB 169  

PCB 169 was tested using the reporter gene assay, in which HepG2 and Hepa1c1c7 

cells were treated with various of concentrations of PCB 169 up to 10 µM (Fig. 4.3 A&B). 

Based on the concentration-response data, the EC50 value was 25.7 ± 4.6 nM in Hepa1c1c7 

cells, whereas the EC50 value in HepG2 cells could not be determined, because of the failure 

to reach the maximum effect. 

 

         A                                                                B 

    
                                  EC50 = None                                                   EC50 = 25.7 ± 4.6 nM                                      

 

Figure 4.3 Concentration-response curves for the luciferase assay activated by non-ortho 

PCB 169. AhR-dependent luciferase activity in HepG2 cells (A) and Hepa1c1c7 cells (B) 

treated with the indicated concentration of PCB 169. Data are presented as mean ± SEM. 
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Concentration-response curves for the luciferase assay activated by non-ortho PCB 81 

Unlike others dioxin-like PCB congeners, PCB 81 had approximately 5-fold higher 

EC50 value in Hepa1c1c7 cells (32.0 ± 17.7 nM), compared to the EC50 value in HepG2 

cells (6.8 ± 2.7 nM) (Fig. 4.4 A&B). 

 

   A                                                                  B 

      

                           EC50 = 6.8 ± 2.7 nM                                             EC50 = 32.0 ± 17.7 nM 

 

Figure 4.4 Concentration-response curves for the luciferase assay activated by non-ortho 

PCB 81. AhR-dependent luciferase activity in HepG2 cells (A) and Hepa1c1c7 cells (B) 

treated with various of concentrations of PCB 81. Data are presented as mean ± SEM. 
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Concentration-response curves for the luciferase assay activated by mono-ortho PCB 114  

PCB 114 induced luciferase activity to a significantly greater level in HepG2 cells, 

compared to Hepa1c1c7 cells. Based on the concentration-response data, the EC50 value of 

PCB 114 was 796 ± 661 nM in Hepa1c1c7 cells, whereas the EC50 value in HepG2 cells 

was not attained because of the inability to reach the maximal effects, like PCB 169 (Fig. 

4.5 A&B). 

 

          A                                                                  B 

     

                               EC50 = None                                                 EC50 = 796.5 ± 660.5 nM 

 

Figure 4.5 Concentration-response curves for the luciferase assay activated by mono-ortho 

PCB 114. AhR-dependent luciferase activity in HepG2 cells (A) and Hepa1c1c7 cells (B) 

treated with the indicated concentration of PCB 114. Data are presented as mean ± SEM. 
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Concentration-response curves for the luciferase assay activated by non-ortho PCB 77 

PCB 77 induced luciferase activity to a higher level in HepG2 cells, compared to 

Hepa1c1c7 cells. The EC50 value for PCB 77 was 108 ± 39 nM in Hepa1c1c7 cells, whereas 

EC50 value in HepG2 cells was again not attained because of failure to reach the maximal 

effect (Fig. 4.6 A&B).  

 

    A                                                                  B 

         

                            EC50 = None                                                EC50 = 108.2 ± 38.8 nM 

 

Figure 4.6 Concentration-response curves for the luciferase assay activated by non-ortho 

PCB 77. AhR-dependent luciferase activity in HepG2 cells (A) and Hepa1c1c7 cells (B) 

treated with various of concentrations of PCB 77. Data are presented as mean ± SEM. 
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DL/NDL-PCBs mixture activates mouse AhR  

HepG2 and Hepa1c1c7 cells were transfected with AhR-dependent (pXRE-SV40-Luc) 

reporter plasmid, then treated with Aroclor 1260 (10 µg/ml), Aroclor 1254 (10 µg/ml), 

PCB 126 (3.26 µg/ml; 10 µM), or the DL/NDL-PCBs mixture (Aroclor 1260 (10 µg/ml) 

plus 0.1 % PCB 126 (10 ng/ml; 0.0306 µM), Aroclor 1260/PCB 126), and positive control 

1,2-benz[a]anthracene (BA, 2.28 µg/ml; or 50 µM). These concentrations have been shown 

not to cause cellular toxicity (52). As anticipated, BA increased luciferase activity 67.4-

fold in HepG2 cells and 5.1-fold in Hepa1c1c7 cells when compared with vehicle group. 

Likewise, PCB 126 induced a 42.2-fold increase in luciferase activity in HepG2 cells and 

a 3.7-fold increase in Hepa1c1c7 cell lines. Neither Aroclor 1260 nor Aroclor 1254 induced 

luciferase activity in either HepG2 or Hepa1c1c7. In contrast, the mixture of Aroclor 

1260/PCB 126 induced luciferase in only the Hepa1c1c7 cell line by 3.0-fold. It is 

important to note that the concentration of PCB 126 (0.0306 µM) is much lower in the 

DL/NDL-PCBs mixture than the 10 µM used as a control (Fig. 4.7 A&B).    

The expression of the prototypical AhR target gene CYP1a1 was measured using RT-

PCR in primary human and mouse hepatocytes treated with chemicals of interest. As 

anticipated, BA increased the expression of CYP1A1 message 616-fold in human primary 

hepatocytes and 398-fold in murine primary hepatocytes. Likewise, addition of 10 µM PCB 

126 induced CYP1A1 message 225-fold in human hepatocytes and 187-fold in murine 

hepatocytes. Neither Aroclor 1260 nor Aroclor 1254 induced mRNA expression of either 

CYP1A1 or Cyp1a1 in human and murine hepatocytes, respectively. Consistent with the 

luciferase assay results, the DL/NDL-PCBs mixture group showed no significant elevation 

of CYP1A1 mRNA expression in primary human hepatocytes, but exhibited markedly 
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increased expression of Cyp1a1 message in primary mouse hepatocytes (112-fold) (Fig. 

4.7 C&D). These data demonstrated that regardless of using isolated hepatocytes or 

immortalized cell lines, the trends are consistently similar among these treatments. The 

results suggested that the maximal response of human AhR was higher than that of mouse 

AhR, but ligands were more potent for the murine AhR. 
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A                                                                     B 

                                                                   

C                                                                      D 

                          

 

Figure 4.7 DL/NDL-PCBs mixture activates mouse AhR. AhR-dependent luciferase 

activity in HepG2 cells (A) and Hepa1c1c7 cells (B) treated with Aroclor 1260 (10 µg/ml), 

Aroclor 1254 (10 µg/ml), PCB 126 (10 µM), DL/NDL-PCBs mixture (Aroclor 1260 (10 

µg/ml) plus 0.1 % PCB 126 (10 ng/ml; 0.0306 µM), Aroclor 1260/PCB 126), and positive 

control 1,2-benz[a]anthracene (BA, 10 µM). AhR target gene CYP1a1 induction in primary 

human (C) and mouse (D) hepatocytes after the same treatment with luciferase activity 

assay. Data are presented as mean ± SEM. **p<0.01, and ***p<0.001 VS vehicle. 
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4. Discussion 

The main objective of the current study was to test the hypothesis that DL-PCBs 

exhibited higher concentration-dependence for the mouse AhR activation than for human 

AhR. Neither, Aroclor 1260 nor 1254 activated AhR or induced AhR-dependent gene 

expression in either cell line, suggesting that the major PCB congeners in this mixture are 

not effective AhR ligands. This was expected for Aroclor 1260 as it contains low levels of 

DL-PCBs and requires exposures over 20 mg/kg to induce Cyp1a2 in murine whole animal 

models (59). In contrast, we expected Aroclor 1254 would activate AhR as it contains more 

penta- and less-highly chlorinated PCBs than the hexa- and hepta-substituted PCBs that 

predominate in Aroclor 1260; therefore, Aroclor 1254 should have higher levels of DL-

PCBs. The amounts of DL-PCBs in Aroclor 1254 varies considerably (142) by lot and we 

used lot 124-191 rather than lots like lot 6024 which contains approximately 10-fold higher 

DL-PCBs. Thus, it is possible that induction may have been observed with Aroclor 1254, 

had we used another lot. 

We designed a DL/NDL-PCBs mixture containing more dioxin-like congeners 

(Aroclor 1260 plus 0.1% PCB 126) to approximate the human PCB exposure profiles seen 

in the general U.S. population (98). We found that this fortified DL/NDL-PCBs mixture 

activated AhR in murine cells, but failed to induce human AhR in transfection experiments 

in immortalized cell lines and in primary human or mouse hepatocytes. This suggests that 

the affinity values for DL-PCBs, i.e., EC50 values, are considerably lower in murine 

systems than in human cells (Table 4.1). 

As anticipated, PCB 126, the most potent DL-PCB ligand for the AhR, increased AhR 

luciferase activity in immortal cells or increased Cyp1a1 mRNA levels in primary 
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hepatocytes regardless of species at 10 µM. The fold induction with either BA or PCB 126 

was significantly lower in the Hepa1c1c7 cell line than in the HepG2 cell line, but similar 

in the primary hepatocytes.  This most likely is a cell line-dependent effect, possibly as a 

result of a rapid decrease in AhR protein after translocation to the nucleus in Hepa1c1c7 

cells (143). The more relevant fold-inductions from primary mouse and human hepatocytes 

were similar. This likely reflects similarities in the activation domains between the two 

receptors and similarities in the number and sequence of the AhR responsive elements of 

either CYP1A1 or Cyp1a1. 

In this study, the EC50 value for TCDD in both cell lines was not similar, 0.4 ± 0.1 nM 

in HepG2 cells and 0.03 ± 0.01 nM in Hepa1c1c7 cells. This was approximately 4-fold 

higher than previously published studies (144-146).   

The EC50-based potencies for DL-PCBs in HepG2 cells in rank order was TCDD > 

PCB 81 > PCB 126, consistent with previous studies (136)  that used CYP 1A1 activity 

assays to determine EC50-based potencies in HepG2 cells (Table 4.2). The EC50-based 

relative potency values (REPs) were calculated (Table 4.2). In HepG2 cells, the REPs of 

PCB 126 and PCB 81were 0.002 and 0.06, respectively within species, consistent with 

previous studies (136).  The EC50 values of various DL-PCB congeners were lower in 

Hepa1c1c7 cells except for PCB 81 that displayed a lower EC50 in HepG2 cells than PCB 

126, but a higher EC50 in Hepa1c1c7 cells. The rank order of EC50-based potencies in 

mouse Hepa1c1c7 cells was TCDD > PCB 126 > PCB 169 > PCB 81 > PCB 77 > PCB 

114 (145).  This is nearly identical to results observed with the rat H4IIE cell line (136). In 

our study with Hepa1c1c7 cells, the REPs in table 4.2 for PCB 126 was 0.006, PCB 81 was 
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0.0009, PCB 77 was 0.0003, PCB 114 was 0.00004, and PCB 169 was 0.001 which are 

much lower than the rat REPs. 

In contrast to the mouse and human REPs, the rat REPs are reported to be much higher 

for DL-PCBs in rat H4IIE cells and rat primary hepatocytes. The WHO 2005 TEF values 

are based on a combination of rodent and human REPs. The species most commonly used 

in PCB studies is the rat, so the WHO 2005 TEF values likely reflect this and may vary 

considerably from that observed in humans. With TEF, the toxicity of a mixture of dioxins 

or dioxin-like chemicals could be defined by the toxic equivalency (TEQ); it can be 

calculated by the sum of the concentrations of individual chemicals (Ci) multiplied by their 

relative toxicity (TEF). Thus, the WHO 2005 TEF for PCB 126 is 0.1, far higher than our 

human REP of 0.002. In contrast to the PCBs, published consensus toxicity factors for 

polychlorinated dibenzo-p-dioxins and dibenzofurans (145) are much more closely aligned 

to WHO 2005 TEFs, suggesting that the human TEQ may represent a result dominated by 

these compounds with PCBs having only a small effect. Of relevance to humans, the PCB 

load we receive from food consumption (147) in which PCBs make up approximately 30 % 

of the TEQ using WHO 2005 TEFs. If this where adjusted using our REPs and that of 

others (145), it would only be a few percent at best.  

Likewise, in our previous animal studies (59), Aroclor 1260 made steatohepatitis 

worse in animals fed a high fat diet at exposures that did not appear to significantly induce 

Cyp1a2 gene expression. In mice, the different AhR ligands activate different subsets of 

genes leading to the concept of selective modulation of the AhR (148) and it is unclear 

whether the human AhR behaves in a similar manner. As the human AhR has higher 

affinity for either dietary indole metabolites or tryptophan metabolites than the mouse AhR 
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(149), it may be important to determine whether PCBs act like the dietary and endogenous 

ligands or like dioxin-like compounds.  

In summary, the results demonstrated the sensitivity of mouse AhR, as indicated by 

lower EC50 value, is higher than human AhR in response to dioxin exposure and even more 

so with DL-PCBs like PCB 126. In addition, the DL/NDL-PCBs mixture designed to 

approximate human exposures and bioaccumulation patterns activated the mouse AhR, but 

not the human AhR. These results suggest that the animal exposure models in chapter 2 

and 3 should be referred to increase human relevance. This could be accomplished by using 

humanized AhR mice.   
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Table 4.1 AhR EC50 values in human and mouse 

Chemical Type a HepG2 

(nM) 

Hepa1c1c7 

(nM) 

Primary human 

hepatocytes (nM) 

Primary mouse 

hepatocytes 

(nM) 

TCDD  0.4±0.1 0.03±0.01 n.d. n.d. 

PCB 77 n n.d.b 108.2 ±38.8 n.d. n.d. 

PCB 81 n 6.8±2.7 32.0±17.7 n.d. n.d. 

PCB 126 n 250±150 4.7±3.2 194.5±35.2 12.3±7.9 

PCB 169 n n.d. 25.7 ±4.6 n.d n.d 

PCB 114 m n.d. 796.5 ±660.5 n.d n.d 

 

Note. EC50 values calculated 24 hours after treatment with TCDD and DL-PCB 

congeners. 

a n means non-ortho; m means mono-ortho. 

b n.d. means not/no detectable.  

 

Table 4.2 Relative Effect Potency Values (REPs) 

Chemical Type a HepG2 Hepa1c1c7 WHO-TEF c 

TCDD  1 1 1 

PCB 77 n n.d.b 0.0003 0.0001 

PCB 81 n 0.06 0.0009 0.0003 

PCB 126 n 0.002 0.006 0.1 

PCB 169 n n.d. 0.001 0.03 

PCB 114 m n.d. 0.00004 0.00003 
 

a n means non-ortho; m means mono-ortho. 

b n.d. means not/no detectable.  

c Van den Berg et al. (2006) 
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CHAPTER V 

CONCLUSIONS 

1. Overall goals and specific aims 

The goals of the current dissertation are to investigate and compare low doses of DL-

PCB congener (PCB 126, 20 µg/kg), NDL-PCBs mixture (Aroclor 1260, 20 mg/kg), and 

DL/NDL-PCBs mixture exposure (mixture of Aroclor 1260 and PCB 126)-induced 

NAFLD/NASH and metabolic dysfunction, as well as, to investigate the role of AhR in 

PCBs exposure-induced NAFLD/NASH. The outcomes of these studies have provided us 

a better understanding of different PCB exposures-induced NAFLD/NASH. The specific 

aims are shown as follows: 

Specific Aim 1 addressed whether DL-PCBs, NDL-PCBs, and DL/NDL-PCBs act 

differently on fatty liver disease. 

1a. Determined the activation of AhR and liver injury stimulated by DL-PCB and 

DL/NDL-PCBs mixture in a two-week treatment in mice on control synthetic diet. 

1b. Determined the effects of DL-PCB and DL/NDL-PCBs mixture in NAFLA/NASH in 

a twelve-week treatment in mice on high fat diet via interaction with AhR. 

Specific Aim 2 addressed whether human and murine AhR display the same concentration-

dependence for ligand activation in response to PCBs.   

2a. Determined the half maximal effective concentration (EC50) for DL-PCB congeners in 

HepG2 cells and Hepa1c1c7 cells transfected with a XRE-luciferase reporter.
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2b. Determined the concentration-dependence of AhR activation in murine and human 

primary hepatocytes treated with DL-PCBs and DL/NDL-PCBs mixture. 

2. Major findings of current dissertation 

In my dissertation, specific aim 1 addressed whether DL-PCBs, NDL-PCBs, and 

DL/NDL-PCBs act differently on fatty liver disease. A new human relevant PCB exposures 

animal model was established to evaluate different outcomes of DL-, NDL-, and DL/NDL-

PCBs mixture exposure in NAFLD/NASH. In the control synthetic diet acute PCB 

exposures model, DL-PCB 126 exposure induced AhR activation, and caused mild hepatic 

steatosis (lean NAFLD), and DL/NDL-PCBs mixture exposure targeted pancreas, and 

caused pancreatic dysfunction, a condition termed PCB exposure-induced pancreatopathy. 

In high fat diet chronic PCB exposures model, Aroclor 1260 promoted steatosis 

progression to steatohepatitis (obese NASH), while DL-PCB 126 attenuated Aroclor 1260 

exposure-induced steatohepatitis. Novel mechanisms of PCB exposures-induced toxicity 

related to NAFLD/NASH, such as liver-pancreas axis, β cell identity, hepatokines, and 

Pnpla3 were observed in the animal models. Please refer to supplemental table 1 &2 for 

detailed information. Specific aim 2 addressed whether human and murine AhR display 

the same concentration-dependence for ligand activation in response to PCBs. The results 

demonstrated that the concentration-dependence of mouse AhR activation by DL-PCBs is 

much lower than human AhR, suggesting species difference for AhR activation, and the 

same difference was also found in REPs in response to PCBs exposure. Difference between 

human and mouse AhR relative ligand affinity indicated that humanized AhR mouse model 

should be used relevant to specific aim 1to better evaluate risks of PCB exposures in 

humans.  
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3. Strengths and limitations of this dissertation 

Strengths 

There are several strengths in this dissertation. First strength is environmentally 

relevant DL/NDL-PCBs mixture exposure induces AhR activation in vivo, and the extent 

of AhR activation by this PCBs mixture is similar to low dose of PCB 126 exposure, and 

the histological changes and molecule level of lipid metabolism gene expression are 

different with this PCBs mixture exposure compared to either exposure alone. This result 

may be due to the interaction of transcription factors, as well as diet effects. In addition, 

DL/NDL-PCBs mixture also induces pancreatic structure changes and dysfunction, termed 

PCBs exposure-induced pancreatopathy. These data suggest to us that DL/NDL-PCBs 

mixture should be used when we evaluate a PCB exposures-induced metabolic disease, 

providing data that more closely reflect in human. Another strength is that our AhR relative 

ligand affinity assay demonstrates activation of mouse AhR is much more sensitive to dose 

than human AhR by dioxin-like PCB congeners exposure. Moreover, DL/NDL-PCBs 

mixture at the concentration tested only activates mouse AhR, not human AhR. These data 

suggest a species difference between human and mouse that should be considered when 

evaluating the risk of PCBs mixture exposure that contain dioxin-like PCB congeners, and 

the data generated could provide us better understanding of PCB exposure-induced disease 

in humans.  

Limitations 

Although the phenotypic changes are significantly different by specific PCB exposures, 

we will not be able to provide a molecular mechanism that is responsible for these changes. 

However, our results suggest nuclear receptor, AhR, hepatokines, and Pnpla3 could be 
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influenced. A proteomic and/or RNA sequencing analysis could be done to identify 

different proteins and/or genes that might provide us an insight for these phenotypical 

changes. PCB exposures-induced AhR, PXR, and CAR activation, were associated with 

phenotypic changes; however, the exact role of these receptors’ activation in PCB 

exposures-induced liver disease is unclear. In addition, potential sex differences were also 

not considered in this dissertation, as PCBs interact with estrogen receptor (51) and AhR 

activation causes loss of liver specific and sexually dimorphic gene expression (150). AhR 

is also expressed in gut, and may impact liver disease through gut-liver axis. Thus, the 

hepatocyte AhR-specific knockout mice, and/or combination with CAR/PXR double 

knockout mice might be used to better understand the potential mechanisms. (151). 

Moreover, PCBs exposure disrupts intestinal integrity (152) and induces dysbiosis of the 

gut microbiota (153, 154). Therefore, investigation of gut microbiota would be performed 

with the varying PCB exposures. These data may distinguish the causative of various of 

changes by different PCB exposures. Lastly, the humanized AhR mouse should be used to 

better evaluate risk of PCBs exposure, due to the different AhR relative ligand affinity 

across species.  

4. Summary  

Taken together, both PCB 126 or the DL/NDL-PCBs mixture activated AhR, while 

Aroclor 1260 exposure activated CAR and PXR in either control synthetic diet or high fat 

diet. However, high fat diet abrogated PCB exposures-induced xenobiotic receptor 

activation. The effects of PCB exposures on liver lipid homeostasis were summarized in 

Figure 5.1. PCB 126 exposure induced mild hepatic steatosis in control synthetic diet 

model (lean NAFLD), while Aroclor 1260 exposure promoted steatosis progression to 
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steatohepatitis (obese NASH) in high fat diet model. Regardless of the diet effects, PCB 

exposures increased lipid influx to liver, and decreased de novo lipogenesis. Moreover, 

PCB 126 exposure decreased fasting blood glucose via inhibition of hepatic gluconeogenic 

gene mRNA expression, and induced hypolipidemia. For fatty acid β-oxidation, PCB 

exposures exhibited different effects on mRNA expression for these genes. Other potential 

mechanisms include hepatokines, Pnpla3 mRNA transcription. The DL/NDL-PCBs 

mixture caused pancreatopathy which warrant future study. Difference in ligand 

concentration-dependence of AhR activation between human and mouse was observed by 

DL-PCB congeners exposure, and DL/NDL-PCBs mixture exposure activated mouse AhR. 

These results suggested that utilizing an environmentally relevant mixture of PCBs 

containing both DL-and NDL-PCB congeners is important in the study of endocrine and 

metabolic disruption because the combined effects may be different than the effects of 

either type of PCB alone. Due to species difference in PCB-ligand activation of AhR, 

humanized AhR mice should be used in the future study.  
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Figure 5.1 PCB exposures affected homeostasis of liver lipid metabolism. 
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Supplemental Table 1 Effects of PCB exposures on liver, pancreas and blood in mice fed 

on control synthetic diet for 2 weeks. 

Targets Effects Aroclor 1260 PCB 126 Aroclor 

1260/PCB 126 

Liver  

Cytochrome 

P450s 

Cyp1a2 

induction 

↔ ↑ ↑ 

Cyp2b10 

induction 

↑ (+/+) ↑ (-/-) ↑ (+/-) * 

Cyp3a11 

induction 

↑ ↔ ↔ * 

Steatosis ↔ ↑ ↔ * 

Injury ↔ ↔ ↔ 

Lipid uptake gene 

 mRNA levels 

↑ ↑ ↔ * 

Fatty acid β-oxidation gene 

mRNA levels 

↔ ↑ ↔ * 

Fatty acid synthesis gene 

mRNA levels 

↓ ↓ ↔ * 

 

Hepatokine 

gene  

mRNA levels 

FGF21 ↓ ↓ ↑ * 

IGF1 ↑ ↑ ↔ * 

Betatrophin ↑ ↔ ↓ * 

Gluconeogenesis gene 

mRNA levels 

↔ ↓ ↔ * 

Pancreas Atrophy ↔ ↔ ↑ 

Acinar cell steatosis ↔ ↔ ↑ 

Fibrosis ↔ ↔ ↑ 

Insulin1 gene mRNA levels ↑ ↑ ↓ * 

Pancreatic polypeptide 

gene mRNA levels 

↑ ↑ ↓ * 

Islet identity gene mRNA 

levels 

↑ ↑ ↓ * 

Blood Fasting glucose ↔ ↓ ↓ 

Lipid ↔ ↓ ↓ 

Insulin ↔ ↔ ↔ 

Systemic inflammation ↔ ↔ ↔ 

 

Notes: 

1. ↔ indicates no change; ↑ indicates increase; ↓ indicates decrease versus vehicle 

control;  

2. + indicates numerical high; - indicates numerical low; 

3. * indicates interaction between Aroclor 1260 and PCB 126.  



111 
 

Supplemental Table 2 Effects of PCB exposures on liver and blood in mice fed on high 

fat diet for 12 weeks. 

Targets Effects Aroclor 

1260 

PCB 126 Aroclor 

1260/PCB 126 

Liver  

Cytochrome 

P450s 

Cyp1a2 

induction 

↔ ↑ ↑ * 

Cyp2b10 

induction 

↑ (+) ↔ ↑(-) * 

Steatosis ↔ ↔ ↔  

Injury ↑ ↓ ↓ 

Inflammation ↑ ↔ ↔* 

Lipid uptake gene mRNA 

levels 

↑ ↑ ↑ 

Fatty acid β-oxidation gene 

mRNA levels 

↓ ↓ ↓ 

Fatty acid synthesis gene 

mRNA levels 

↓ ↓ ↓ 

Fibrosis Fibrotic 

gene mRNA 

levels  

↔ ↓ ↓ 

Phenotype ↔ ↔ ↔ 

Gluconeogenesis gene 

mRNA levels 

↔ ↓ ↔  

Blood Fasting glucose ↔ ↓ ↓ 

Lipid (triglyceride) ↔ ↓ ↓ 

Adipokines ↔ ↔ ↔ 

Tolerance test ↔ ↔ ↔ 

 

Notes: 

1. ↔ indicates no change; ↑ indicates increase; ↓ indicates decrease versus vehicle 

control;  

2. + indicates numerical high; - indicates numerical low; 

3. * indicates interaction between Aroclor 1260 and PCB 126.  

 

 

 



112 
 

REFERENCES 

1. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat 

Rev Gastroenterol Hepatol 2013;10:656-665. 

2. Kim GA, Lee HC, Choe J, Kim MJ, Lee MJ, Chang HS, Bae IY, et al. 

Association between non-alcoholic fatty liver disease and cancer incidence rate. J 

Hepatol 2017. 

3. Bradbury MW. Lipid metabolism and liver inflammation. I. Hepatic fatty acid 

uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 

2006;290:G194-198. 

4. Pohl J, Ring A, Ehehalt R, Herrmann T, Stremmel W. New concepts of cellular 

fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc Nutr Soc 

2004;63:259-262. 

5. Abumrad N, Coburn C, Ibrahimi A. Membrane proteins implicated in long-chain 

fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta 

1999;1441:4-13. 

6. Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: 

More friend than foe? Molecular Metabolism 2015;4:367-377. 

7. Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-

induced obesity. Critical reviews in biochemistry and molecular biology 2010;45:199-

214. 

8. Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and 

insulin resistance. Nature Reviews Endocrinology 2017;13:509. 

9. J D McGarry a, Foster DW. Regulation of Hepatic Fatty Acid Oxidation and 

Ketone Body Production. Annual Review of Biochemistry 1980;49:395-420. 

10. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global 

epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, 

incidence, and outcomes. Hepatology 2016;64:73-84. 

11. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, et 

al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. 

Nature Reviews Gastroenterology &Amp; Hepatology 2017;15:11. 

12. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-

alcoholic fatty liver disease (NAFLD). Metabolism 2016;65:1038-1048. 

13. Nobili V, Alisi A, Raponi M. Pediatric non-alcoholic fatty liver disease: 

Preventive and therapeutic value of lifestyle intervention. World Journal of 

Gastroenterology : WJG 2009;15:6017-6022. 

14. Dongiovanni P, Lanti C, Riso P, Valenti L. Nutritional therapy for nonalcoholic 

fatty liver disease. The Journal of Nutritional Biochemistry 2016;29:1-11. 

15. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: 

Clinical impact. J Hepatol 2018;68:268-279.

 



113 
 

16. Smith BW, Adams LA. Nonalcoholic fatty liver disease and diabetes mellitus: 

pathogenesis and treatment. Nature Reviews Endocrinology 2011;7:456. 

17. Ono M, Okamoto N, Saibara T. The latest idea in NAFLD/NASH pathogenesis. 

Clin J Gastroenterol 2010;3:263-270. 

18. Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of 

Nonalcoholic Fatty Liver Disease. Annual Review of Pathology: Mechanisms of Disease 

2018;13:321-350. 

19. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, 

Boerwinkle E, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic 

fatty liver disease. Nat Genet 2008;40:1461-1465. 

20. BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 Variant Associated 

with Fatty Liver Disease (I148M) Accumulates on Lipid Droplets by Evading 

Ubiquitylation. Hepatology 2017. 

21. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila 

A, et al. The Economic and Clinical Burden of Non-alcoholic Fatty Liver Disease 

(NAFLD) in the United States and Europe. Hepatology 2016. 

22. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-

Oramas B, Gonzalez-Fabian L, Friedman SL, et al. Weight Loss Through Lifestyle 

Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. 

Gastroenterology;149:367-378.e365. 

23. Sumida Y, Yoneda M. Current and future pharmacological therapies for 

NAFLD/NASH. J Gastroenterol 2017. 

24. Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging 

molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016;15:249-274. 

25. Sookoian S, Pirola CJ. Elafibranor for the treatment of NAFLD: One pill, two 

molecular targets and multiple effects in a complex phenotype. Ann Hepatol 

2016;15:604-609. 

26. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-

Gomez M, et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated 

Receptor-alpha and -delta, Induces Resolution of Nonalcoholic Steatohepatitis Without 

Fibrosis Worsening. Gastroenterology 2016;150:1147-1159.e1145. 

27. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, 

Abdelmalek MF, Chalasani N, et al. Farnesoid X nuclear receptor ligand obeticholic acid 

for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, 

placebo-controlled trial. Lancet 2015;385:956-965. 

28. Ray K. NAFLD: obeticholic acid for the treatment of fatty liver disease--NASH 

no more? Nat Rev Gastroenterol Hepatol 2015;12:1. 

29. Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, Diehl 

AM, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A 

randomized, phase 2 trial. Hepatology 2018;67:549-559. 

30. Ray K. NAFLD: Early promise for ASK1 inhibition in NASH. Nat Rev 

Gastroenterol Hepatol 2017;14:631. 

31. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, 

Francque S, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of 

nonalcoholic steatohepatitis with fibrosis. Hepatology 2017. 



114 
 

32. Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver 

fibrosis. Expert Opin Investig Drugs 2018;27:301-311. 

33. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 

1998;114:842-845. 

34. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver 

disease: the multiple parallel hits hypothesis. Hepatology 2010;52:1836-1846. 

35. Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R, Bon Homme M, 

et al. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology 

2010;51:474-481. 

36. Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave 

MC. Toxicant-associated steatohepatitis. Toxicol Pathol 2013;41:343-360. 

37. Al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA, Cave 

M. Identification of Environmental Chemicals Associated with the Development of 

Toxicant-associated Fatty Liver Disease in Rodents. Toxicol Pathol 2015;43:482-497. 

38. Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical 

emission inventory for selected PCB congeners — a mass balance approach: 1. Global 

production and consumption. Science of The Total Environment 2002;290:181-198. 

39. Risebrough RW, Rieche P, Peakall DB, Herman SG, Kirven MN. Polychlorinated 

Biphenyls in the Global Ecosystem. Nature 1968;220:1098. 

40. Oliveira T, Santacroce G, Coleates R, Hale S, Zevin P, Belasco B. Concentrations 

of polychlorinated biphenyls in water from US Lake Ontario tributaries between 2004 

and 2008. Chemosphere 2011;82:1314-1320. 

41. Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullen J, Tingelstad 

J, et al. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in 

human milk: effects of maternal factors and previous lactation. American Journal of 

Public Health 1986;76:172-177. 

42. Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G. Polychlorinated 

biphenyls, lead, and mercury are associated with liver disease in American adults: 

NHANES 2003-2004. Environ Health Perspect 2010;118:1735-1742. 

43. Johnson-Restrepo B, Kannan K, Rapaport DP, Rodan BD. Polybrominated 

Diphenyl Ethers and Polychlorinated Biphenyls in Human Adipose Tissue from New 

York. Environmental Science & Technology 2005;39:5177-5182. 

44. Vorkamp K. An overlooked environmental issue? A review of the inadvertent 

formation of PCB-11 and other PCB congeners and their occurrence in consumer 

products and in the environment. Sci Total Environ 2016;541:1463-1476. 

45. Ampleman MD, Martinez A, DeWall J, Rawn DF, Hornbuckle KC, Thorne PS. 

Inhalation and dietary exposure to PCBs in urban and rural cohorts via congener-specific 

measurements. Environ Sci Technol 2015;49:1156-1164. 

46. Schecter A, Pavuk M, Malisch R, Ryan JJ. Are Vietnamese food exports 

contaminated with dioxin from Agent Orange? J Toxicol Environ Health A 

2003;66:1391-1404. 

47. Liu H, Nie FH, Lin HY, Ma Y, Ju XH, Chen JJ, Gooneratne R. Developmental 

toxicity, oxidative stress, and related gene expression induced by dioxin-like PCB 126 in 

zebrafish (Danio rerio). Environ Toxicol 2014. 



115 
 

48. Klaren WD, Gadupudi GS, Wels B, Simmons DL, Olivier AK, Robertson LW. 

Progression of micronutrient alteration and hepatotoxicity following acute PCB126 

exposure. Toxicology 2015;338:1-7. 

49. Yoshizawa K, Brix AE, Sells DM, Jokinen MP, Wyde M, Orzech DP, Kissling 

GE, et al. Reproductive lesions in female Harlan Sprague-Dawley rats following two-

year oral treatment with dioxin and dioxin-like compounds. Toxicol Pathol 2009;37:921-

937. 

50. Hassoun EA, Periandri-Steinberg S. Assessment of the roles of antioxidant 

enzymes and glutathione in 3,3',4,4',5-Pentachlorobiphenyl (PCB 126)-induced oxidative 

stress in the brain tissues of rats after subchronic exposure. Toxicol Environ Chem 

2010;92:301. 

51. Gjernes MH, Schlenk D, Arukwe A. Estrogen receptor-hijacking by dioxin-like 

3,3'4,4',5-pentachlorobiphenyl (PCB126) in salmon hepatocytes involves both receptor 

activation and receptor protein stability. Aquat Toxicol 2012;124-125:197-208. 

52. Wahlang B, Falkner KC, Clair HB, Al-Eryani L, Prough RA, States JC, Coslo 

DM, et al. Human receptor activation by aroclor 1260, a polychlorinated biphenyl 

mixture. Toxicol Sci 2014;140:283-297. 

53. Luthe G, Jacobus JA, Robertson LW. Receptor interactions by polybrominated 

diphenyl ethers versus polychlorinated biphenyls: A theoretical structure–activity 

assessment. Environmental Toxicology and Pharmacology 2008;25:202-210. 

54. Grimm FA, Hu D, Kania-Korwel I, Lehmler H-J, Ludewig G, Hornbuckle KC, 

Duffel MW, et al. Metabolism and metabolites of polychlorinated biphenyls. Critical 

Reviews in Toxicology 2015;45:245-272. 

55. Pavuk M, Olson JR, Sjödin A, Wolff P, Turner WE, Shelton C, Dutton ND, et al. 

Serum concentrations of polychlorinated biphenyls (PCBs) in participants of the 

Anniston Community Health Survey(,). The Science of the total environment 

2014;0:286-297. 

56. Sjödin A, Wong L-Y, Jones RS, Park A, Zhang Y, Hodge C, DiPietro E, et al. 

Serum Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated 

Biphenyl (PBB) in the United States Population: 2003–2004. Environmental Science & 

Technology 2008;42:1377-1384. 

57. Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton 

C, Pavuk M. Polychlorinated biphenyl (PCB) exposure and diabetes: results from the 

Anniston Community Health Survey. Environ Health Perspect 2012;120:727-732. 

58. Rosenbaum PF, Weinstock RS, Silverstone AE, Sjödin A, Pavuk M. Metabolic 

syndrome is associated with exposure to organochlorine pesticides in Anniston, AL, 

United States. Environment international 2017;108:11-21. 

59. Wahlang B, Song M, Beier JI, Falkner KC, Al-Eryani L, Clair HB, Prough RA, et 

al. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and 

non-alcoholic fatty liver disease. Toxicology and Applied Pharmacology 2014;279:380-

390. 

60. Aoki Y. Polychlorinated Biphenyls, Polychloronated Dibenzo-p-dioxins, and 

Polychlorinated Dibenzofurans as Endocrine Disrupters—What We Have Learned from 

Yusho Disease. Environmental Research 2001;86:2-11. 



116 
 

61. Hsu ST, Ma CI, Hsu SK, Wu SS, Hsu NH, Yeh CC, Wu SB. Discovery and 

epidemiology of PCB poisoning in Taiwan: a four-year followup. Environ Health 

Perspect 1985;59:5-10. 

62. Tsukimori K, Uchi H, Mitoma C, Yasukawa F, Chiba T, Todaka T, Kajiwara J, et 

al. Maternal exposure to high levels of dioxins in relation to birth weight in women 

affected by Yusho disease. Environ Int 2012;38:79-86. 

63. Lin K-C, Guo N-W, Tsai P-C, Yang C-Y, Guo YL. Neurocognitive Changes 

among Elderly Exposed to PCBs/PCDFs in Taiwan. Environmental Health Perspectives 

2008;116:184-189. 

64. Yu M-L, Guo YL, Hsu C-C, Rogan WJ. Increased mortality from chronic liver 

disease and cirrhosis 13 years after the Taiwan “yucheng” (“oil disease”) incident. 

American Journal of Industrial Medicine 1997;31:172-175. 

65. Tsai P-C, Ko Y-C, Huang W, Liu H-S, Guo YL. Increased liver and lupus 

mortalities in 24-year follow-up of the Taiwanese people highly exposed to 

polychlorinated biphenyls and dibenzofurans. Science of The Total Environment 

2007;374:216-222. 

66. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, 

Nadal A, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 

2017;68:3-33. 

67. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in 

cancer: friend and foe. Nat Rev Cancer 2014;14:801-814. 

68. Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, 

immunology, and toxicology. Pharmacol Rev 2015;67:259-279. 

69. Daujat M, Peryt B, Lesca P, Fourtanier G, Domergue J, Maurel P. Omeprazole, an 

inducer of human CYP1A1 and 1A2, is not a ligand for the Ah receptor. Biochem 

Biophys Res Commun 1992;188:820-825. 

70. Kawano Y, Nishiumi S, Tanaka S, Nobutani K, Miki A, Yano Y, Seo Y, et al. 

Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation 

of fatty acid transport. Arch Biochem Biophys 2010;504:221-227. 

71. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, et al. A 

novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. 

Gastroenterology 2010;139:653-663. 

72. Angrish MM, Jones AD, Harkema JR, Zacharewski TR. Aryl hydrocarbon 

receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid 

composition in TCDD-elicited steatosis. Toxicol Sci 2011;124:299-310. 

73. Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-

Induced Disruption in Gluconeogenesis and Fatty Acid Oxidation Precedes Fatty Liver in 

Male Rats. Toxicol Sci 2016;149:98-110. 

74. Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA. Aryl 

hydrocarbon receptor deficiency enhances insulin sensitivity and reduces PPAR-alpha 

pathway activity in mice. Environ Health Perspect 2011;119:1739-1744. 

75. Xu CX, Wang C, Zhang ZM, Jaeger CD, Krager SL, Bottum KM, Liu J, et al. 

Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and 

metabolic disorders through increased energy expenditure. Int J Obes (Lond) 

2015;39:1300-1309. 



117 
 

76. Wada T, Sunaga H, Miyata K, Shirasaki H, Uchiyama Y, Shimba S. Aryl 

Hydrocarbon Receptor Plays Protective Roles against High Fat Diet (HFD)-induced 

Hepatic Steatosis and the Subsequent Lipotoxicity via Direct Transcriptional Regulation 

of Socs3 Gene Expression. J Biol Chem 2016;291:7004-7016. 

77. Lu P, Yan J, Liu K, Garbacz WG, Wang P, Xu M, Ma X, et al. Activation of aryl 

hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast 

growth factor 21. Hepatology 2015;61:1908-1919. 

78. Cheng X, Vispute SG, Liu J, Cheng C, Kharitonenkov A, Klaassen CD. 

Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor 

(AhR). Toxicol Appl Pharmacol 2014;278:65-71. 

79. Zhang W, Sargis RM, Volden PA, Carmean CM, Sun XJ, Brady MJ. PCB 126 

and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl 

hydrocarbon receptor. PLoS One 2012;7:e37103. 

80. Diani-Moore S, Ram P, Li X, Mondal P, Youn DY, Sauve AA, Rifkind AB. 

Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of 

suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of 

nicotinamide as a corrective agent for this effect. J Biol Chem 2010;285:38801-38810. 

81. Wada T, Gao J, Xie W. PXR and CAR in energy metabolism. Trends Endocrinol 

Metab 2009;20:273-279. 

82. Chai SC, Cherian MT, Wang Y-M, Chen T. Small-molecule modulators of PXR 

and CAR. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 

2016;1859:1141-1154. 

83. Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the 

nuclear receptor PXR. Biochimica et Biophysica Acta (BBA) - Gene Regulatory 

Mechanisms 2016;1859:1072-1082. 

84. Yan J, Chen B, Lu J, Xie W. Deciphering the roles of the constitutive androstane 

receptor in energy metabolism. Acta Pharmacol Sin 2015;36:62-70. 

85. Dong B, Saha PK, Huang W, Chen W, Abu-Elheiga LA, Wakil SJ, Stevens RD, 

et al. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. 

Proc Natl Acad Sci U S A 2009;106:18831-18836. 

86. Gao J, He J, Zhai Y, Wada T, Xie W. The constitutive androstane receptor is an 

anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 

2009;284:25984-25992. 

87. Baskin-Bey ES, Anan A, Isomoto H, Bronk SF, Gores GJ. Constitutive 

androstane receptor agonist, TCPOBOP, attenuates steatohepatitis in the methionine 

choline-deficient diet-fed mouse. World J Gastroenterol 2007;13:5635-5641. 

88. Ma Y, Liu D. Activation of pregnane X receptor by pregnenolone 16 alpha-

carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One 

2012;7:e38734. 

89. He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O'Doherty RM, Xie W. PXR 

ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. 

Diabetes 2013;62:1876-1887. 

90. Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic 

diseases. Trends Pharmacol Sci 2012;33:552-558. 



118 
 

91. Gao J, Yan J, Xu M, Ren S, Xie W. CAR Suppresses Hepatic Gluconeogenesis by 

Facilitating the Ubiquitination and Degradation of PGC1alpha. Mol Endocrinol 

2015;29:1558-1570. 

92. Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of 

inflammatory bowel disorders. Trends Pharmacol Sci 2012;33:323-330. 

93. Hardesty JE, Wahlang B, Falkner KC, Clair HB, Clark BJ, Ceresa BP, Prough 

RA, et al. Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor 

signaling. Xenobiotica 2017;47:807-820. 

94. Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace B, et al. 

Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic 

Disrupting Chemicals. Toxicol Sci 2018. 

95. Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, Negishi M. 

Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by 

inhibition of epidermal growth factor receptor signaling. Sci Signal 2013;6:ra31. 

96. Wang B, Klaren WD, Wels BR, Simmons DL, Olivier AK, Wang K, Robertson 

LW, et al. Dietary manganese modulates PCB126 toxicity, metal status and MnSOD in 

the rat. Toxicol Sci 2015. 

97. Wu X, Yang J, Morisseau C, Robertson LW, Hammock B, Lehmler HJ. 

3,3',4,4',5-Pentachlorobiphenyl (PCB 126) decreases hepatic and systemic ratios of 

epoxide to diol metabolites of unsaturated fatty acids in male rats. Toxicol Sci 2016. 

98. Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G. Polychlorinated 

Biphenyls, Lead, and Mercury Are Associated with Liver Disease in American Adults: 

NHANES 2003-2004. Environmental Health Perspectives 2010;118:1735-1742. 

99. Goto T, Hirata M, Aoki Y, Iwase M, Takahashi H, Kim M, Li Y, et al. The 

hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-alpha agonist-

induced amelioration of metabolic disorders in obese mice. J Biol Chem 2017. 

100. Rutter GA. Diabetes: Controlling the identity of the adult pancreatic beta cell. Nat 

Rev Endocrinol 2017;13:129-130. 

101. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can 

J Biochem Physiol 1959;37:911-917. 

102. Smagris E, BasuRay S, Li J, Huang Y, Lai KM, Gromada J, Cohen JC, et al. 

Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic 

steatosis. Hepatology 2015;61:108-118. 

103. Marmugi A, Lukowicz C, Lasserre F, Montagner A, Polizzi A, Ducheix S, Goron 

A, et al. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis 

and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl 

Pharmacol 2016;303:90-100. 

104. Angrish MM, Mets BD, Jones AD, Zacharewski TR. Dietary fat is a lipid source 

in 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 

mice. Toxicol Sci 2012;128:377-386. 

105. Yi P, Park J-S, Melton Douglas A. Betatrophin: A Hormone that Controls 

Pancreatic β Cell Proliferation. Cell 2013;153:747-758. 

106. Gusarova V, Alexa Corey A, Na E, Stevis Panayiotis E, Xin Y, Bonner-Weir S, 

Cohen Jonathan C, et al. ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell 

Expansion. Cell 2014;159:691-696. 



119 
 

107. Tessem JS, Moss LG, Chao LC, Arlotto M, Lu D, Jensen MV, Stephens SB, et al. 

Nkx6.1 regulates islet beta-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proc 

Natl Acad Sci U S A 2014;111:5242-5247. 

108. Wahlang B, Prough RA, Falkner KC, Hardesty JE, Song M, Clair HB, Clark BJ, 

et al. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate 

Energy Metabolism, Behavior, and Inflammation in Nonalcoholic-Steatohepatitis. 

Toxicol Sci 2015. 

109. He J, Hu B, Shi X, Weidert ER, Lu P, Xu M, Huang M, et al. Activation of the 

aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating 

mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol 2013;33:2047-2055. 

110. Mohapatra S, Majumder S, Smyrk TC, Zhang L, Matveyenko A, Kudva YC, 

Chari ST. Diabetes Mellitus Is Associated With an Exocrine Pancreatopathy: 

Conclusions From a Review of Literature. Pancreas 2016;45:1104-1110. 

111. Loiola RA, Dos Anjos FM, Shimada AL, Cruz WS, Drewes CC, Rodrigues SF, 

Cardozo KH, et al. Long-term in vivo polychlorinated biphenyl 126 exposure induces 

oxidative stress and alters proteomic profile on islets of Langerhans. Sci Rep 

2016;6:27882. 

112. Lin M, Wu T, Sun L, Lin JJ, Zuo Z, Wang C. Aroclor 1254 causes atrophy of 

exocrine pancreas in mice and the mechanism involved. Environmental toxicology 

2016;31:671-678. 

113. Zhang S, Wu T, Chen M, Guo Z, Yang Z, Zuo Z, Wang C. Chronic Exposure to 

Aroclor 1254 Disrupts Glucose Homeostasis in Male Mice via Inhibition of the Insulin 

Receptor Signal Pathway. Environ Sci Technol 2015;49:10084-10092. 

114. Schisler JC, Jensen PB, Taylor DG, Becker TC, Knop FK, Takekawa S, German 

M, et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression 

and regulates glucose-stimulated insulin secretion in islet beta cells. Proc Natl Acad Sci 

U S A 2005;102:7297-7302. 

115. Lupi R, Bugliani M, Del Guerra S, Del Prato S, Marchetti P, Boggi U, Filipponi 

F, et al. Transcription factors of beta-cell differentiation and maturation in isolated human 

islets: effects of high glucose, high free fatty acids and type 2 diabetes. Nutr Metab 

Cardiovasc Dis 2006;16:e7-8. 

116. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, 

Badman MK, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic 

fatty liver disease. Gastroenterology 2010;139:456-463. 

117. Girer NG, Murray IA, Omiecinski CJ, Perdew GH. Hepatic Aryl Hydrocarbon 

Receptor Attenuates Fibroblast Growth Factor 21 Expression. J Biol Chem 2016. 

118. Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, et 

al. Visualizing the regulatory role of Angiopoietin-like protein 8 (ANGPTL8) in glucose 

and lipid metabolic pathways. Genomics 2017;109:408-418. 

119. Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, 

Hobbs HH. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride 

metabolism without impaired glucose homeostasis. Proceedings of the National Academy 

of Sciences 2013;110:16109-16114. 

120. Brewster DW, Matsumura F. Reduction of adipose tissue lipoprotein lipase 

activity as a result of in vivo administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the 

guinea pig. Biochem Pharmacol 1988;37:2247-2253. 



120 
 

121. Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol 2012;227:493-

507. 

122. Diani-Moore S, Zhang S, Ram P, Rifkind AB. Aryl hydrocarbon receptor 

activation by dioxin targets phosphoenolpyruvate carboxykinase (PEPCK) for ADP-

ribosylation via 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) 

polymerase (TiPARP). J Biol Chem 2013;288:21514-21525. 

123. Wahlang B, Perkins JT, Petriello MC, Hoffman JB, Stromberg AJ, Hennig B. A 

compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology 

2017;380:11-22. 

124. Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar 

A, et al. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens 

nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 2013;24:1587-

1595. 

125. Chapados NA, Boucher MP. Liver metabolic disruption induced after a single 

exposure to PCB126 in rats. Environ Sci Pollut Res Int 2016. 

126. Klaren WD, Flor S, Gibson-Corley KN, Ludewig G, Robertson LW. 

Metallothionein's role in PCB126 induced hepatotoxicity and hepatic micronutrient 

disruption. Toxicol Rep 2016;3:21-28. 

127. Yarushkin AA, Kachaylo EM, Pustylnyak VO. The constitutive androstane 

receptor activator 4-[(4R,6R)-4,6-diphenyl-1,3-dioxan-2-yl]-N,N-dimethylaniline inhibits 

the gluconeogenic genes PEPCK and G6Pase through the suppression of HNF4alpha and 

FOXO1 transcriptional activity. Br J Pharmacol 2013;168:1923-1932. 

128. Monteleone I, Pallone F, Monteleone G. Aryl hydrocarbon receptor and colitis. 

Semin Immunopathol 2013;35:671-675. 

129. Harvey WA, Jurgensen K, Pu X, Lamb CL, Cornell KA, Clark RJ, Klocke C, et 

al. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic 

stellate cell activation. Toxicology 2016;344-346:26-33. 

130. Han M, Liu X, Liu S, Su G, Fan X, Chen J, Yuan Q, et al. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic stellate cell (HSC) activation and 

liver fibrosis in C57BL6 mouse via activating Akt and NF-κB signaling pathways. 

Toxicology Letters 2017;273:10-19. 

131. Lamb CL, Cholico GN, Pu X, Hagler GD, Cornell KA, Mitchell KA. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate 

cell activation but does not exacerbate experimental liver fibrosis in mice. Toxicology 

and Applied Pharmacology 2016;311:42-51. 

132. Lamb CL, Cholico GN, Perkins DE, Fewkes MT, Oxford JT, Lujan TJ, Morrill 

EE, et al. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of 

Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis. Biomed Res 

Int 2016;2016:5309328. 

133. Kippler M, Larsson SC, Berglund M, Glynn A, Wolk A, Akesson A. Associations 

of dietary polychlorinated biphenyls and long-chain omega-3 fatty acids with stroke risk. 

Environ Int 2016;94:706-711. 

134. Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, 

Giesy JP, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans 

and wildlife. Environ Health Perspect 1998;106:775-792. 



121 
 

135. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, 

Fiedler H, et al. The 2005 World Health Organization reevaluation of human and 

Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol 

Sci 2006;93:223-241. 

136. Zeiger M, Haag R, Hockel J, Schrenk D, Schmitz HJ. Inducing effects of dioxin-

like polychlorinated biphenyls on CYP1A in the human hepatoblastoma cell line HepG2, 

the rat hepatoma cell line H4IIE, and rat primary hepatocytes: comparison of relative 

potencies. Toxicol Sci 2001;63:65-73. 

137. Silkworth JB, Koganti A, Illouz K, Possolo A, Zhao M, Hamilton SB. 

Comparison of TCDD and PCB CYP1A induction sensitivities in fresh hepatocytes from 

human donors, sprague-dawley rats, and rhesus monkeys and HepG2 cells. Toxicol Sci 

2005;87:508-519. 

138. Ramadoss P, Perdew GH. Use of 2-Azido-3-[<sup>125</sup>I]iodo-7,8-

dibromodibenzo-<em>p</em>-dioxin as a Probe to Determine the Relative Ligand 

Affinity of Human versus Mouse Aryl Hydrocarbon Receptor in Cultured Cells. 

Molecular Pharmacology 2004;66:129-136. 

139. Flaveny C, Reen RK, Kusnadi A, Perdew GH. The mouse and human Ah receptor 

differ in recognition of LXXLL motifs. Arch Biochem Biophys 2008;471:215-223. 

140. Wahlang B, Prough RA, Falkner KC, Hardesty JE, Song M, Clair HB, Clark BJ, 

et al. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate 

Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis. 

Toxicol Sci 2016;149:396-410. 

141. Aparicio-Vergara M, Tencerova M, Morgantini C, Barreby E, Aouadi M. 

Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver. Methods Mol 

Biol 2017;1639:161-171. 

142. Burgin DE, Diliberto JJ, Derr-Yellin EC, Kannan N, Kodavanti PR, Birnbaum 

LS. Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid 

hormones, and oxidative stress. Environ Health Perspect 2001;109:1163-1168. 

143. Suzuki T, Nohara K. Regulatory factors involved in species-specific modulation 

of arylhydrocarbon receptor (AhR)-dependent gene expression in humans and mice. J 

Biochem 2007;142:443-452. 

144. Peters AK, Leonards PE, Zhao B, Bergman A, Denison MS, Van den Berg M. 

Determination of in vitro relative potency (REP) values for mono-ortho polychlorinated 

biphenyls after purification with active charcoal. Toxicol Lett 2006;165:230-241. 

145. Larsson M, van den Berg M, Brenerova P, van Duursen MB, van Ede KI, Lohr C, 

Luecke-Johansson S, et al. Consensus toxicity factors for polychlorinated dibenzo-p-

dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro 

screening of AhR-mediated effects in human and rodent cells. Chem Res Toxicol 

2015;28:641-650. 

146. Brennan JC, He G, Tsutsumi T, Zhao J, Wirth E, Fulton MH, Denison MS. 

Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX 

Cell Lines with Enhanced Responsiveness and Improved Detection Limits. Environ Sci 

Technol 2015;49:11903-11912. 

147. Parvez S, Evans AM, Lorber M, Hawkins BS, Swartout JC, Teuschler LK, Rice 

GE. A sensitivity analysis using alternative toxic equivalency factors to estimate U.S. 

dietary exposures to dioxin-like compounds. Regul Toxicol Pharmacol 2013;67:278-284. 



122 
 

148. Nault R, Forgacs AL, Dere E, Zacharewski TR. Comparisons of differential gene 

expression elicited by TCDD, PCB126, betaNF, or ICZ in mouse hepatoma Hepa1c1c7 

cells and C57BL/6 mouse liver. Toxicol Lett 2013;223:52-59. 

149. Flaveny CA, Murray IA, Chiaro CR, Perdew GH. Ligand selectivity and gene 

regulation by the human aryl hydrocarbon receptor in transgenic mice. Mol Pharmacol 

2009;75:1412-1420. 

150. Nault R, Fader KA, Harkema JR, Zacharewski T. Loss of liver-specific and 

sexually dimorphic gene expression by aryl hydrocarbon receptor activation in C57BL/6 

mice. PLoS One 2017;12:e0184842. 

151. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH 

pathogenesis. J Hepatol 2017. 

152. Choi YJ, Seelbach MJ, Pu H, Eum SY, Chen L, Zhang B, Hennig B, et al. 

Polychlorinated biphenyls disrupt intestinal integrity via NADPH oxidase-induced 

alterations of tight junction protein expression. Environ Health Perspect 2010;118:976-

981. 

153. Chen L, Zhang W, Hua J, Hu C, Lok-Shun Lai N, Qian PY, Lam PKS, et al. 

Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the 

Estrogen Receptor and Aryl Hydrocarbon Receptor. Environ Sci Technol 2018;52:2323-

2330. 

154. Matturro B, Ubaldi C, Rossetti S. Microbiome Dynamics of a Polychlorobiphenyl 

(PCB) Historically Contaminated Marine Sediment under Conditions Promoting 

Reductive Dechlorination. Front Microbiol 2016;7:1502. 

 



123 
 

ABBREVIATIONS 

 

AhR Aryl hydrocarbon receptor 

ARNT AhR nuclear translocator 

ALT Alanine aminotransferase 

AST Aspartate aminotransferase 

BA 1,2-benz[a]anthracene 

CAR Constitutive androstane receptor 

CCL8 Chemokine (C-C motif) ligand 8 

Cpt1α Carnitine palmitoyl transferase 1A 

CXCL1 Chemokine (C-X-C motif) ligand 1 

CYP Cytochromes P450 

CITCO 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5- 

carbaldehydeO-(3,4dichlorobenzyl)oxime 

DL Dioxin like 

DMSO Dimethyl sulfoxide 

DRE Dioxin-responsive element 

ECM Extracellular matrix 

EDCs/MDCs Endocrine and metabolism disrupting chemicals 

FABP1 Fatty acid-binding protein 1 
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FASN Fatty acid synthase 

FGF21 Fibroblast growth factor 21 

FoxO1 Forkhead box protein O1 

G6P Glucose 6-phosphate 

GTT Glucose tolerance test 

HCC Hepatocellular carcinoma 

HDL High-density lipoprotein 

HNF4α Hepatocyte nuclear factor 4 alpha 

HFD High fat diet 

IGF1 Insulin-like growth factor 1 

IL6 Interleukin 6 

ITT Insulin tolerance test 

LDL Low-density lipoprotein 

MCP1 Monocyte chemoattractant protein 1 

MCD Methionine choline-deficient 

MMPs Matrix metalloproteases 

NAFLD/NASH Nonalcoholic fatty liver disease /steatohepatitis 

NDL Non-dioxin like 

nHDLc non-HDL cholesterol 

NR Nuclear receptor 

PAI1 Plasminogen activator inhibitor-1 

PCB Polychlorinated biphenyl 

Pck1 Phosphoenolpyruvate carboxy kinase 
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PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha 

PNPLA3 Patatin-like phospholipase domain-containing protein 3 

PPARα Peroxisome proliferator-activated receptor alpha 

PXR Pregnane X receptor 

RT-PCR Reverse transcription-polymerase chain reaction 

SCD1 Stearoyl coenzyme A desaturase1 

TAFLD/TASH Toxicant associated fatty liver disease/steatohepatitis 

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin 

TCPOBOP 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene 

TIMPs Tissue inhibitors of metalloproteinases 

TNFα Tumor necrosis factor-alpha 

VLDL Very low-density lipoprotein 
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