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ABSTRACT 

 

THERAPEUTIC POTENTIAL OF A PLANT-MADE CHOLERA TOXIN B SUBUNIT 

VARIANT FOR THE TREATMENT OF ULCERATIVE COLITIS 

Joshua Mark Royal 

April 4, 2018 

Cholera toxin B subunit (CTB) is a mucosal immunomodulatory protein that 

induces robust mucosal and systemic antibody responses. This well-known biological 

activity has been exploited in cholera prevention (as a component of Dukoral® vaccine) 

and vaccine development for decades. On the other hand, several studies have 

investigated CTB’s immunotherapeutic potential in the treatment of inflammatory 

diseases such as Crohn’s disease and asthma. Furthermore, we recently found that a 

plant-made variant of CTB (CTBp) could induce colon epithelial wound healing in 

mouse colitis models. In this thesis, it is revealed that the wound healing effects are 

unique to the plant-made variant, as it has an ER retention signal KDEL sequence that 

provides the protein with new functions. This was determined by investigating how the 

C-terminal KDEL sequence contributes to the protein’s wound healing activity in vivo, in 

vitro, and ex vivo.  In a mouse model of dextran sodium sulfate (DSS)-induced colitis, 

CTBp, but not CTB, mitigated colitis as characterized by lower disease activity index and 

inflammation scores, colon shrinkage protection, blunted escalation of blood leukocyte 

levels, and observable histological epithelial restitution.  In vitro, a Caco2 cell wound 



vi 
 

healing model revealed CTBp’s epithelial healing activity, intracellular retention, and 

unique signaling pathways that were reliant on the protein’s KDEL sequence. It was 

determined that, upon internalization of CTBp, the KDEL sequence enables ER 

colocalization and retention of the protein, leading to the activation of the inositol-

requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) arm of unfolded protein 

response and subsequent TGFβ signaling.  Lastly, using a ulcerative colitis (UC) patient 

colon explants, CTBp’s therapeutic potential was evaluated, which demonstrated efficacy 

as manifested by the induction of TGFB gene expression, upregulation of wound healing 

pathways and presence of viable crypts in the mucosa. In summary, CTBp exhibits 

unique colon mucosal would healing effects that are mediated by its colocalization to the 

ER and subsequent activation of IRE1/XBP1 signaling in colon epithelial cells. 

Furthermore, the results presented herein provide implications for the unique therapeutic 

potential of CTBp that may address a significant unmet need in UC treatment.
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1. INTRODUCTION 

 

Vibrio cholerae is a gram-negative bacterium that can colonize the gastrointestinal tract 

and cause life-threatening watery diarrhea. The principal virulence factor of V. cholerae 

is cholera toxin (CT), which consists of a catalytic A-subunit and a non-toxic 

homopentameric B-subunit (CTB) [1-3]. CTB binds cells through GM1 ganglioside 

receptors, which then mediates toxin entry into the cell. It has been previously shown that 

CTB can induce strong biological activities that can enhance or suppress immune effects 

under normal and various immunopathological conditions without the toxicity associated 

with the CTA subunit [4]. Consequently, CTB has been widely studied as a mucosal 

immunomodulatory agent.  

 

In its most well-known immunostimulatory effects, CTB is used in the vaccine 

Dukoral®. Dukoral® is a WHO pre-qualified oral cholera vaccine which contains heat-

killed whole cell V. cholerae and recombinant CTB (rCTB; Table 1). Dukoral® stimulates 

the production of both antibacterial and antitoxin antibodies, including secretory 

immunoglobulin A (S-IgA) produced locally in the intestines [5]. CTB itself can induce 

potent mucosal and systemic antibody response upon mucosal administration in humans 

[6-8], which is largely due to the broad distribution of GM1 ganglioside on various cell 

types such as epithelial cells, macrophages, dendritic cells (DCs), B cells, T cells, and 

neurons [9-12]. Furthermore, the presence of GM1 ganglioside on the luminal surface of 
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intestinal epithelial cells and antigen presenting cells (APCs) in the gut seems to be 

essential for CTB’s strong mucosal immunostimulatory effects associated with MHC 

class II expression and local antigen enrichment [13].   Due to CTB’s strong mucosal 

immunomodulatory effects and the use of CTB in the vaccine Dukoral, the production of 

the protein in various recombinant production platforms has been widespread.  These 

include eukaryotes yeast cells to multicellular organisms such as plants and silkworms, as 

well as,  prokaryotic cells such as genetically modified V. cholerae, E. coli, Bacillus and 

Lactobacillus (reviewed in [4]). In cell culture systems recombinant (r)CTB is produced 

in fermenters and bioreactors [4]. Alternatively, in plant expression systems, rCTB is 

expressed in whole plants grown in controlled growth rooms or greenhouses. Previously, 

our lab has produced recombinant CTB in tobacco plants (Nicotiana benthamiana) using 

a plant virus vector overexpression system (CTBp; plant-made CTB; Table 1), with the 

aim to economically mass-produce the vaccine antigen to facilitate global cholera 

vaccination [14-16]. CTBp was generated as a result of this endeavor; we genetically 

modified CTB to add an ER retention signal to the C-terminus, which was critical to 

mitigate ER stress/tissue necrosis upon overexpression and achieve high-level 

accumulation in leaf tissue [14, 15]. Our analyses demonstrated that CTBp is virtually 

identical to original CTB in regard to GM1-ganglioside binding affinity, molecular 

stability and vaccine efficacy to induce anti-toxin IgG and IgA antibodies upon oral 

immunization in mice [14]. Subsequently, we established a facile and scalable CTBp 

production process, which allows us to obtain 400 mg of the purified protein from 1 kg of 

leaf biomass (corresponding to 400 doses of Dukoral vaccine), with quality that can meet 

pharmaceutical standards [17]. 

 



3 
 

 In addition to CTB’s immunostimulatory effects, CTB stimulates specific 

immunosuppressive effects against autoimmune disorders, excess inflammation, and 

allergic reactions [4, 18-22]. We have recently shown that oral administration of CTBp 

mitigates colitis in chemically-induced acute and chronic colitis mouse models [23]. 

Although the underlying mechanisms are not well understood, recent studies have shed 

some light on these immunosuppressive effects induced by CTB. In this chapter, I 

summarize possible mechanisms behind CTB’s anti-inflammatory activity and discuss 

how the protein could impact mucosal inflammatory disease treatment. 

 

1.1. CHOLERA TOXIN STRUCTURE AND MECHANISM IN GUT EPITHELIAL CELLS 

 

To reveal the mechanism of CTB-induced biological activity, we must first understand 

the molecule. CT is classified as an AB5 toxin family, which includes the toxins of 

Shigella dysenteriae and enterohaemorrhagic Escherichia coli. The toxins are usually 

composed of one A subunit and five B subunits (CTA and CTB, respectively, for CT). 

CTA consists of an enzymatically active 11-kDa N-terminal chain (CTA1) and a C-

terminal chain (CTA2) that connects CTA to the central pore of CTB. CTB has the 

capacity to translocate the CTA across the plasma membrane, mediated by the binding of 

GM1 ganglioside, and then escort CTA from the plasma membrane into the endoplasmic 

reticulum (ER) [24, 25]. The following summarizes CT’s retrograde trafficking 

mechanism. 

 

The five B-subunits form a central cylindrical pore lined by five amphipathic α-

helices that help form a highly stable homopentamer. The pentamer contains five GM1 
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binding sites that lie on the outer edge of each B subunit [1, 26]. Due to an avidity effect 

from the pentavalent binding capacity, CTB has a very strong affinity (KD reported to be 

5 pM to 1 nM) to GM1, which is mainly localized in lipid rafts on the plasma membranes 

of many cell types [9-12]. Once CT is bound to GM1 (up to five gangliosides at once), it 

is endocytosed by clathrin-dependent and independent mechanisms and trafficked via 

retrograde transport from the Golgi to the ER [25]. It is also known that CT can undergo 

transcytosis across epithelial cells from the apical to the basolateral surface. However, 

regardless of how the toxin enters the cell, CT travels to the trans-Golgi network via early 

endosomal vesicles, independent of the late endosome pathway. The C-terminus of CTA2 

possesses a KDEL ER-retention signal for retrieval of CT from the cis-Golgi apparatus to 

the ER. Interestingly, the KDEL sequence is not vital for retrograde transport of CT to 

the ER. Mutations that alter the KDEL sequence on CT inhibit KDEL-dependent ER 

retrieval and decreased (albeit not completely) CT’s toxification [27]. Thus, it is thought 

that CT’s KDEL sequence—although not absolutely essential—improves the ER’s 

retrieval of the dissociated CT from the Golgi apparatus and prolongs the time of 

retention within the ER [24, 27, 28]. Once in the ER, the CTA1-chain is dissociated from 

CTA2/CTB complex by protein disulfide isomerase (PDI). Subsequently, CTA1 enters 

the cytosol via the ER-associated degradation pathway and escapes proteasomal 

degradation [1, 24]. On the other hand, the fate (and remaining function, if any) of 

CTA2/CTB after releasing CTA1 in the ER is not well documented. Meanwhile, CTA1 

reaches the inner surface of the plasma membrane and catalyzes the ADP ribosylation of 

Gs, thereby continuously activating adenylate cyclase to produce cAMP. Increased 

intracellular cAMP impairs sodium uptake and increases chloride outflow, leading to 

water secretion and diarrhea [24, 29]. 
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1.2. MODE OF ACTION: CTB DIRECTLY MODULATES IMMUNE AND EPITHELIAL 

CELLS 

 

Although the virulence mechanism and intracellular trafficking of CT has been well 

studied, the anti-inflammatory mechanisms of CTB are much less studied and 

understood. After a comprehensive literature review, it seems that there are at least two 

separate modes of action induced by CTB to modulate inflammatory responses: one that 

is based on immune cell regulation, and another that is epithelial cell-mediated (Figure 

1). 

 

In 1994, the immune suppressive effects of CTB were first reported by Sun et al. 

[30]. This report demonstrated that oral administration of mice with CTB conjugated with 

antigens (sheep red blood cells, horse red blood cells, and human γ-globulin) enhanced 

oral tolerance to the antigens, presumably through efficient presentation of antigens to 

immune cells in the gut-associated lymphoid tissue and the generation of regulatory cells. 

In a Commentary to this article, Weiner suggested that CTB could have enhanced 

tolerance by serving as a “selective mucosal adjuvant” and that this unique activity could 

be exploited to treat autoimmunity [31]. Subsequently, this seminal finding led to a new 

field of studies in which CTB-antigen conjugates were applied to induce tolerogenic 

reactions to the conjugated antigens in various immunopathological conditions (i.e., 

encephalomyelitis, autoimmune diabetes, autoimmune arthritis, uveitis) and IgE-

mediated allergen hypersensitivity [18, 20-22, 32-42]. Through these studies, it became 

apparent there are two unique and distinct mechanisms of CTB responsible for the 

suppression of immunopathological reactions in allergy and autoimmune diseases: (1) to 
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increase antigen uptake and presentation by different APCs through binding to their cell-

surface GM1 ganglioside receptors and (2) to induce anti-inflammatory and 

immunoregulatory activities by directly or indirectly acting on specific immune cells. The 

latter mechanism points to the possibility that CTB by itself may act as an 

immunotherapeutic agent; however, only a handful of groups have actually proven that 

CTB alone—without co-administration or conjugation of antigens—can induce an anti-

inflammatory response. Moreover, studies conducted with non-recombinant CTB 

(nrCTB, prepared by chemically dissociating CTA from CTB; Table 1) can have 

significantly skewed experimental results due to trace amounts of CT and CTA remaining 

in nrCTB samples preparations [4, 43, 44]. For example, we have previously shown that 

picomolar concentrations (<10 ng/mL) of CT significantly inhibited lipopolysaccharide 

(LPS)-induced TNFα production in RAW264.7 cells, while recombinant (r)CTB failed to 

induce such an effect at a concentration as high as 10 µg/mL [4]. Thus, the use of rCTB 

is required to evaluate the effects unique to CTB. 

 

1.2.1. CTB DIRECTLY IMPACTS IMMUNE CELLS 

 

With regards to CTB’s immune cell regulation, Kim et al. demonstrated in murine spleen 

B cells that rCTB dose-dependently increased IgA secretion and inhibited B cell growth 

[45]. In the presence of IL-2, rCTB significantly increased IgA isotype switching in LPS-

activated B cells. These effects were reversed by the addition of an anti-TGFβ or soluble 

TGFβ1 receptor, which markedly inhibited rCTB-stimulated IgA response. Further 

analysis in the same report revealed that rCTB stimulated IgA2 B cells, upregulated 

TGFβ1 mRNA expression, and increased bioactive TGFβ1 levels, which is known to 
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induce IgA isotype switching [45]. Thus, rCTB stimulated a TGFβ-mediated IgA 

response that was dependent on IL-2 as a cofactor. These findings have contributed to our 

understandings of how CTB stimulates B cell IgA production, and potentially oral 

tolerance as well (see below). 

 

It is known that IgA antibodies help maintain mucosal homeostasis and play a 

role in immune protection [46, 47]. Thus, it seems possible that rCTB administration 

could provide therapeutic effects in mucosal autoimmune disorders via IgA induction. 

For example, in an experimental mouse model of asthma, nrCTB suppressed the ability 

of DCs to prime for Th2 responses to inhaled allergen via an IgA-dependent manner [48]. 

In this study, co-administration of ovalbumin (OVA) and nrCTB suppressed classical 

features of asthma, including airway eosinophilia, Th2 cytokine synthesis, and bronchial 

hyperactivity in mice that were pre-sensitized with OVA-stimulated DCs in the lung. 

Furthermore, nrCTB treatment enhanced DCs’ potential to induce Treg cells in vitro; 

however, these Treg cells did not provide protection when transferred into the airways of 

naïve mice that received OVA challenge. In contrast, the transfer of B cells from 

OVA+CTB-DCs-immunized mice to OVA-sensitized naïve mice significantly reduced 

eosinophilia and lymphocytosis. It was also found that nrCTB caused a TGFβ-dependent 

increase in antigen-specific IgA in the airway luminal secretion, and this was attributed to 

nrCTB’s efficacy against the experimental asthma as the therapeutic effects were 

abrogated in mice lacking luminal IgA transporter (polymeric Ig receptor), which is 

necessary for the transport of dimeric IgA across the epithelium into the luminal mucosa 

[49]. 
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Meanwhile, IgA may not be the sole factor contributing to CTB’s ability to 

mitigate inflammatory diseases in the mucosa. For example, in the 2,4,6-trinitrobenzene 

sulfonic acid (TNBS)-induced mouse model of Crohn’s disease, daily oral administration 

over a four-day period of 100 µg rCTB after the onset of TNBS-colitis immediately 

resolved weight loss and reduced inflammation [43]. In this case, the timing of mucosal 

restitution in regard to rCTB administration did not likely result in IgA production. In a 

similar TNBS-colitis study, rCTB administration reduced IL-12 and IFNγ secretion, 

inhibited STAT-4 and STAT-1 activation, and downregulated T-bet expression, 

indicating that rCTB inhibited mucosal Th1 cell signaling [50]. Moreover, these results 

were confirmed in a small multicenter, open-label, and nonrandomized clinical trial in 

which 15 patients with active CD received three oral doses of 5 mg rCTB per-week over 

2 weeks (six doses total) and were examined 2, 4, 6, and 10 weeks after the start of the 

study. Of the 12 patients who finished the study per protocol, seven responded to 

treatment and five were in remission by week six and maintained remission through week 

10 as defined by a CD activity index score ≤150 [51]. Of note, side effects seen in 33% of 

patients administered with CTB were mild (arthralgia, headache, and pruritus), and no 

safety concerns were raised throughout the trial [51]. 

 

Interestingly, rCTB did not reduce disease severity in an oxazolone-induced 

colitis model performed by the same group [43]. Oxazolone-induced colitis is mediated 

by IL-4 driven Th2 cells rather than IL-12/IFNγ-driven Th1 cells [43]. Thus, it appears 

that rCTB administration had a specific effect on specific T cell functions involved in 

TNBS-colitis [43]. Although the detailed mechanism by which rCTB inhibited Th1 cell 

was not elucidated, it is possible that the binding of CTB to GM1 ganglioside on immune 
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cells resulted in a signaling cascade of events that led to Th1 inhibition, because non-

GM1 binding CTB mutants do not modulate lymphocyte function [52]. In agreement 

with these findings, rCTB decreased monocyte-derived DC maturation and IL-12 

production upon LPS stimulation in vitro [53]. Moreover, rCTB-pretreated, LPS-

stimulated DCs induced low proliferating T cells that had enhanced production of IL-10 

and reduced production of IFNγ. Rouquete-Jazdanian et al. additionally showed that the 

binding of rCTB to GM1 ganglioside directly prevented the activation and proliferation 

of CD4+ T cells [54]. This effect was induced by rCTB-mediated sphingomyelinase 

activation that subsequently increased the production of ceramides, which are known cell 

cycle arrest inducers [55]. rCTB also inhibited protein kinase Cα, a pro-growth cellular 

regulator, which was linked to rCTB-induced lipid raft modifications and ceramide-

mediated inactivation [56, 57]. 

Figure 1. Summary of mechanisms involved in cholera toxin homopentameric B-subunit 

(CTB)’s inflammatory disease intervention. 



10 
 

1-2-2. A PLANT-MADE CTB VARIANT (CTBP) DIRECTLY MODULATES 

EPITHELIAL CELLS 

 

Besides serving as a barrier lining the mucosal surface, epithelial cells have multiple 

functions associated with the maintenance of gut homeostasis and mucosal healing, and 

crosstalk between epithelial and immune cells is an important component of those 

complex biological processes [58, 59]. Even though CTB first encounters epithelial cells 

in the gut, the CTB-mediated modulation of epithelial cells and its consequence to the 

mucosal immune system have largely been ignored in comparison to the protein’s direct 

impacts on immune cells. 

 

In one small study, CTB was shown to induce a dose-dependent increase of IL-10 

mRNA levels in the colon epithelial cell-line T84 [60], hinting that CTB could induce 

epithelial cell-mediated immune modulation [61]. We have recently characterized CTB’s 

global impacts on the gut to further our understanding of its unique biological activities. 

Using CTBp [15, 62], we have shown that oral administration of the CTB variant 

significantly altered several immune cell populations in the colon lamina propria [23]. 

Two-weeks after two oral 30 µg CTBp administrations, Th2 and Treg cells increased in 

the colon lamina propria. This is not the first report of CTB-induced increase in these cell 

types [19, 40, 42, 63, 64]. For instance, it has been shown that oral administration of a 

CTB–insulin conjugate in NOD mice induced a shift from Th1 to Th2 profile while 

generating Treg cells [19]. Additionally, intraperitoneal administration of nrCTB to rats 

increased Treg cells in the peripheral blood 24–72 h after ischemia [63]. Besides the 

specific T helper cell subsets, our study has also revealed that innate immune cells—
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including dendritic cells, natural killer cells and macrophages (both M1 and M2)—

populations were increased in the colon lamina propria two weeks after CTBp oral 

administration [23]. Furthermore, a global gene expression analysis revealed that CTBp 

had more pronounced impacts on the colon than the small intestine, with significant 

activation of TGFβ-mediated pathways in the colon mucosa [23]. Given that there is a 

strong link between epithelial-derived TGFβ and innate immune cells in wound healing 

[65-67], the results provided implications for the potential utility of CTBp to promote 

colonic mucosal health. Subsequently, we found that CTBp induced TGFβ-mediated 

wound healing in Caco2 colon epithelial cells. Furthermore, oral administration of CTBp 

in mice protected against colon mucosal damage in acute colitis induced by dextran 

sodium sulfate (DSS). Two oral doses of as low as 1 µg of CTBp mitigated clinical signs 

of disease (body weight loss, decreased histopathological scores, and blunted escalation 

of inflammatory cytokine levels) and upregulated wound healing-related genes [23]. 

Interestingly, CTBp administration prevented fibrosis associated with acute colitis in 

mice; hence, the protein did not appear to overstimulate TGFβ signaling, at least under 

the conditions employed in the study. In fact, TGFβ gene expression levels were high 

during the early inflammatory phase and became lower in the recovery phase of the acute 

colitis model in CTBp-treated mice. 

 

The main driver of intestinal inflammation in the DSS-colitis model is the damage 

to the epithelial barrier lining the colon that allows intestinal microbiota into submucosal 

compartments, in contrast to TNBS-induced colitis [68-72], and meanwhile the 

therapeutic effects were observed immediately upon CTBp administration. Therefore, we 

concluded that CTBp’s protective efficacy in the DSS colitis models were attained by the 
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induction of TGFβ-mediated colonic epithelial wound healing. Given that chronic 

inflammation and injury of the bowel, such as inflammatory bowel disease (IBD), pose 

an increased risk of developing colitis-associated colorectal cancer (CAC) [73-76], 

CTBp’s effects were also examined in the azoxymethane (AOM)/DSS mouse model of 

CAC. Biweekly oral administration of CTBp over 9 weeks significantly reduced 

inflammation and tumorigenesis in this model, highlighting its therapeutic potential in 

intestinal injury and inflammatory bowel disease, such as ulcerative colitis (UC) [23]. 

 

UC is a class of inflammatory bowel diseases (IBD), along with Crohn’s disease 

(CD), that affects 286 per 100,000 persons (0.3% of total population) in the USA alone 

[77]. Although the etiology of UC remains elusive, genetic and environmental factors 

appear to trigger dysregulated mucosal immune responses, leading to the onset and 

progression of chronic inflammation, disrupted intestinal barrier function and epithelial 

damage in the colon [78]. There is no curative therapy available for UC; conventional 

treatment strategies aim to blunt the inflammatory response and establish remission by 

employing corticosteroids, aminosalicylates and immunosuppressive agents. However, 

these agents have limited efficacy or severe adverse reactions, often requiring additional 

treatment or surgical resection of the colon [79]. Studies using anti-inflammatory agents, 

such as anti-TNFα agents, have led to a general consensus that mucosal healing is the 

most important treatment goal in UC [80, 81].  In two randomized, double-blind, 

placebo-controlled studies (ACT1 and 2), there was a ~5-fold higher rate of clinical 

remission at week 30 in patients treated with the anti-TNFα infliximab who exhibited 

mucosal healing at week 8 than those without mucosal healing [16]. Additionally, 

mucosal healing was significantly associated with a lower risk of future colectomy in a 
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study of 513 Norwegian patients diagnosed with UC, [17]. Collectively, it has been 

shown that mucosal healing is closely associated with lower incidence of relapse, 

improved quality of life and fewer surgical operations and cancer incidence [82-87]. 

However, there is no clinically approved drug that can consistently induce mucosal 

healing in patients. Anti-TNFα agents (Infliximab, Adalimumab) can achieve mucosal 

healing in up to half of patients [88, 89], as these drugs are simply anti-inflammatory 

agents that do not directly stimulate mucosal healing. Thus, mere inhibition of 

inflammatory responses does not necessarily facilitate mucosal healing. Mucosal healing 

is a dynamic biological process involving spatial and temporal network of mediators of 

different cell types including epithelial cells, resident and recruited inflammatory cells 

and stromal cells [83, 90].  Development of a new drug specifically targeting mucosal 

healing will fill the gap in the current UC treatment paradigm. 

 

A clear definition of mucosal healing has yet to be determined [83, 90]. It has 

been  inferred that mucosal healing involves the coordination of intestinal epithelial cells, 

goblet cells, and Paneth cells for healing of intestinal barrier function [83]. Additionally, 

intestinal epithelial wound repair is especially critical for mucosal healing in UC patients, 

because UC’s pathology is limited to the mucosa unlike CD that manifest as transmural 

disease [83], epithelial would healing has particularly significant therapeutic implications 

in UC [91]. Wound repair has been extensively studied in non-mucosal tissues such as 

the skin have been extensively studied for their wound repair mechanism, but the same 

mechanism seems to be applicable to mucosae [90]; it involves 3 main overlapping 

phases, inflammation, proliferation and remodeling. Each phase relies on the appropriate 

levels of cytokines and growth factors in the wound environment [92-94]. Among these, 
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TGFβ plays critical roles in the all 3 healing phases. Immediately after injury, a 

provisional wound matrix is formed to fill the tissue gap comprised of thrombocytes, 

platelets, cytokines and growth factors, such as TGFβ.  In the inflammation phase, TGFβ 

induces the recruitment immune cells such as, neutrophils and macrophages, to clean up 

the wound environment and subsequently regulates immune cells to resolve 

inflammation. Before inflammation is completely resolved TGFβ initiates a rapid 

migration response of the epithelial sheet (termed restitution) [95, 96]. The process 

occurs independently of proliferation and results in depolarization of intestinal epithelial 

cells surrounding the wounded area [96]. This depolarization leads to an epithelial-to-

mesenchymal transition (EMT) where cells adopt a migratory phenotype induced by 

increased TGFβ levels [97, 98]. In the proliferation phase, TGFβ promotes angiogenesis, 

fibroblast proliferation and production of extracellular matrix (ECM) components, which 

leads to reepithelialization and restoration of the mechanical strength of the wound. 

Lastly, in the remodeling phase, TGFβ contributes to ECM remodeling by regulating the 

expression of various enzymes including matrix metalloproteinases (MMPs) and tissue 

inhibitors of MMPs (TIMPs) [83, 90, 92, 93, 99]. Importantly, TGFβ can be a double-

edged sword in mucosal remodeling; while TGFβ has beneficial effects during the early 

stage of wound healing, it can promote scar formation and fibrosis at the late stage [92, 

100]. Also, although TGFβ functions as a suppressor of epithelial cell tumorigenesis at an 

early stage of tumor development, its expression is correlated with tumor progression and 

poor prognosis at late stages [100]. Thus, a tight control of TGFβ signaling, when 

targeted to induce mucosal healing in UC, is critical, because UC poses an increased risk 

of developing colitis-associated colorectal cancer (CAC) [73, 74]. Given that mucosal 

inflammation of IBD reflects composite conditions including both nascent and 



15 
 

established inflammations [101]. it is likely that TGFβ-mediated wound repair remains to 

play a significant role at least in some parts of UC colon mucosa. Therefore, the finding 

that CTBp is a topical agent that facilitates TGFβ-based mucosal wound healing in UC 

and CAC mouse, supports a hypothesis that CTBp could help address important issues 

pertinent to therapeutic strategies for mucosal healing in UC. 

 

It is of importance to point out that many of the effects observed in the 

aforementioned studies using CTBp may be unique to the plant-made variant, as it has a 

mutation at amino acid position 4 and an ER retention signal sequence at the C-terminus 

(N4S-CTB-SEKDEL; [62]). The ER-retention sequence was added to CTBp to improve 

production in planta, while Asn4Ser mutation was introduced to avoid N-glycosylation 

[15, 62]. The addition of the KDEL sequence to N4S-CTB significantly reduced ER 

stress that otherwise caused poor production yield. It is thought that the KDEL sequence 

helped prolong CTBp’s residence time in the ER to allow for proper folding and 

assembly. 

 

The protein ER retention mechanism involving the KDEL receptor is highly 

conserved among eukaryotic organisms [102]. Thus, there is a possibility that the 

artificial KDEL sequence of CTBp may prolong the protein’s residence in the epithelial 

cells upon binding to cell-surface GM1 ganglioside and retrograde transport into the ER, 

as has been demonstrated for CT [25, 27].  

 

Regardless of whether the ER retention signal had a significant contribution to the 

mucosal healing activity in the mouse colitis models, the study has provided evidence 
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that CTB can exhibit a therapeutic effect against colitis in an epithelia-dependent manner, 

warranting further investigation of CTB’s impacts on epithelial cells. 

 

 The overall goal of this project is to develop CTBp as a biotherapeutic to facilitate 

mucosal healing in UC patients. To that extent, the objective of this thesis is to 

investigate how CTBp’s C-terminal KDEL sequence contributes to the protein’s mucosal 

healing activity in vivo, in vitro, and ex vivo.  To achieve this goal I formed three specific 

aims. First, I aimed to determine if the CTBp-mediated reduction of colitis we previously 

reported was unique to the KDEL-tagged protein in a mouse model of DSS-colitis [23].  

Second, I investigated if CTBp’s epithelial healing activity, intracellular retention, and 

signaling pathways were affected by the protein’s KDEL sequence using a series of 

CTBp and rCTB analogues. Lastly, I aimed to determine if CTBp’s KDEL sequence 

contributes to the protein’s translational efficacy using a UC patient colon tissue explant.    

  

  Collectively, the research in this thesis characterized CTBp’s colon mucosal 

healing efficacy, mechanisms, and translatability at cellular and molecular levels, 

supporting the development of CTBp as a new topical UC drug. Furthermore, this thesis 

discloses previously undescribed impacts of rCTB and its derivatives on colon epithelial 

cells, providing new information to the fields of mucosal immunology and 

pathophysiology.
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2. MATERIALS AND METHODS 

 

Animals. Eight-week-old C57BL/6J female mice were obtained from Jackson 

Laboratories (Bar Harbor, ME). Animal studies were approved by the University of 

Louisville’s Institutional Animal Care and Use Committee. 

 

Study design. CTBp was produced in N. benthamiana and purified to > 95% 

homogeneity with an endotoxin level of < 1 endotoxin units per mg, as described 

previously[62].  For all animal experiments, 10 mice per group, randomly assigned, were 

used. For the acute DSS recovery model of intestinal injury, DSS exposure was initiated 

on the day mice turned 9 weeks old (day 0), using a modified method[23]. Body weights 

were measured at the initiation of DSS exposure as a baseline and every morning 

thereafter to determine percent change. Animals received 3% DSS (M.W. 36,000 to 

50,000; MP Biomedicals, Santa Ana, CA) in drinking water for 7 days. On the 7th day of 

DSS exposure, animals gavaged with PBS or CTBp after sodium bicarbonate 

administration, as described previously [62], and allowed to recover 7 days during which 

the animals received normal drinking water.  

 

Immunohistochemistry. Colons were removed and washed with PBS. A portion of the 

distal colon was fixed with paraformaldehyde overnight and stored in 70% ethanol until 

paraffin embedding and sectioning. Sections were deparaffinized with Citrisolv and 
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rehydrated through several ethanol washing steps ending with incubation in distilled 

water. Antigen retrieval was performed overnight with a 2100 Retriever (Electron 

Microscopy Sciences) using a pH 6.0 buffer. Tissue sections were blocked for 

endogenous peroxidase, avidin, biotin, and serum from the animal in which the secondary 

antibody was raised. Primary antibody (anti-E cadherin; Abcam) was incubated with the 

tissue sections for 1 h at room temperature. The Vectastain Elite ABC kit (goat anti-

rabbit; Vector Labs, Burlingame, CA) was used to label the primary antibody. E-

cadherin+ cells were visualized with the ImmPACT DAB Substrate Kit (Vector Labs) 

and then dehydrated through an ethanol gradient and finally incubated with Citrisolv. 

Sections were scanned using an Aperio ScanScope CS (Leica Biosystems, Buffalo 

Grove, IL) n = 10 representative sections (40x magnification) from each colon.  

 

RNAisolation. Sections from the distal colon were stored in RNAlater (Qiagen, 

Valencia, CA) at -20 °C until RNA was isolated. Colon tissue (~14 mg) was placed in 

QIAzol lysis reagent and homogenized. An RNeasy Microarray Tissue Kit from Qiagen 

was used to purify the RNA from the tissue homogenate. RNA concentration, quality, 

and purity was confirmed by spectrophotometer then stored at -80°C until use. 

 

qRT-PCR. First strand cDNA was obtained from reverse transcription of 100 ng RNA 

using a SUPERSCRIPT VILO cDNA synthesis kit (Life Technologies, Carlsbad, CA) 

according to the manufacturer’s instructions. Template cDNA were added to a reaction 

mixture containing RT² SYBR Green Master Mix (Qiagen) and loaded in RT² Profiler 

PCR Array Standard 96 well Plates (Qiagen). These plates contain pre-spotted individual 

gene expression probes for the detection of genes of interest as well as the house keeping 
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genes 18S, b-actin (ACTB), and GAPDH. PCR amplification was carried out on a 

7500HT Fast Real-Time PCR System (Applied Biosystems) with the following 

conditions: 95 1C, 20 min; 40 cycles (95 1C, 1 min); 20 min at 60 1C. The 7500 Software 

v2.0.6 (Applied Biosystems) was used to determine the cycle threshold (Ct) for each 

reaction and derive the expression ratios relative to control. Wound healing pathway 

analysis was performed with a RT2 Profiler PCR Mouse Wound Healing Array (Qiagen, 

Manchester, UK) under the same conditions described above. 

 

Flow cytometry. Flow cytometry was used to assess the binding of rCTB and CTBp 

molecules to Caco2 cells, according to a well-established procedure [14]. Briefly, 10 

×105 cells were seeded in EMEM (serum free) in the presence of 1 µM rCTB or CTBp 

and incubated for 15 minutes on ice. Next, cells were washed and blocked with 3% BSA 

(Sigma) on ice. Then cells were exposed to monoclonal antibody 9F9C7, which was 

produced from a rat hybridoma cell line, for 1 h at room temparature and washed before 

incubation with a rabbit Alexa FluorTM 488 anti-rat IgG (H+L) (A21210, Life 

Technologies, Eugen, OR) for 1 h on ice. Finally, cells were washed and analyzed with a 

FACSCalibur (Becton Dickinson), counting 10,000 cells per sample. Data were acquired 

BD FACSCanto II and analyzed with FLOWJO v10 data analysis software, using PBS as 

a negative control (n = 4).  

 

Caco2 wound healing assay. The Caco2 wound healing assay was performed as 

previously described [23].  Briefly, the cells were seeded and grown in complete growth 

medium (EMEM + 20% FBS, 1x penicillin-streptomycin) to confluence in 6 well plates 

(Thermo Scientific Nunc Cell-Culture Treated, Roskilde, Denmark). The culture medium 
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was discarded, two 0.5–1.0mm across linear wounds were made per well with a 200 mL 

sterile beveled pipette tip (USA Scientific, Enfield, CT) and cells were washed with PBS. 

PBS, rCTB, CTBp, CTB-KDE, or eCTBp (0.1-10 µM), TGFb1 (0.2 nM; Abcam, 

Cambridge, MA), and/or 4µ8C (0.5 µM; MilliporeSigma, Burlington, MA) were 

subsequently added in fresh serum-deprived medium. Photomicrographs of the wounds 

were taken 0, 24, and 48 h after the wounding at 4X magnification. Quantification of the 

remaining cell-free area to the initial wound area was measured using the public domain 

software Image J (http://rsbweb.nih.gov), and calculated as a mean percentage (n = 2 

experimental replicates) per well. The culture medium/supernatants were collected from 

each well 24 or 48 h after wounding and stored at -80 °C until analysis. The culture 

supernatants were analyzed by a human Cytokine/Chemokine or TGFb1, 2, 3 Magnetic 

Bead Panel (EMD Millipore, St. Charles, MO). The panel was analyzed with a Milliplex 

MAP Kit on a MagPix with Luminex xMAP technology. Each experiment was 

performed with 4 biological replicates per construct (n = 4). 

 

Caco2 cell immunofluorescence. Cells were seeded 2 x 105 cells/well in Lab-Tek II 

chamber slides (Thermo, Rochester, NY) and grown for 72 hours in complete growth 

medium. The media was subsequently removed and cells were washed with PBS 

followed by PBS, rCTB, or CTBp (1µM) treatment in fresh serum-deprived medium. 

Cells were incubated for 6 or 24 hours at 37°C in a humidified 5% CO2 then fix, 

permeabilized, and stained according to the ER staining kit (ab139482, Abcam) 

manufacturer’s protocol. Briefly, after treatment cells were washed with PBS and 

fixed/permeabilized using cold methanol/acetone (2:1) for 15 minutes. Cells were then 

blocked (3% BSA, Sigma) and treated with a rat anti-CTB mAb (1:1000) for 1 hour at 
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RT. After subsequent washing (PBS), a rabbit Alexa FluorTM 488 anti-rat IgG (H+L) 

(A21210, Life Technologies, Eugen, OR) was applied to cells for 1 hour at RT followed 

by additional washing (PBS). A ER-selective dye (ab139482) was then added (1:1000) 

for 15 minutes at 37°C followed by washing (PBS) and mounting with coverslip using 

mounting medium for fluorescence with DAPI (VECTASHIELD®, Burlingame, CA). 

Slides were analyzed by wide-field fluorescence confocal microscope (60x 

magnification, Z-stacked images). Localization and co-localization statistical analysis 

was performed using Imaris software (Bitplane), values were calculated in voxels 

 

Treatment and culturing of colon explants obtained from ulcerative colitis patients. 

The treatment and culturing of colon explants was performed using an immersion 

culturing system developed from a previously described methods [50, 103, 104]. Rectal 

tissues were obtained from consenting patients at the time of colectomy. Immediately 

after excision, colectomy tissue was placed in complete medium (RPMI 1640 

supplemented with 2 mM L-glutamine, 10 mM HEPES buffer, 10 μg/ml gentamicin, 100 

U/ml each of penicillin and streptomycin, and 10% FBS (Hy-Clone)) on ice and 

transported to the lab. The tissue was immediately divided and placed in organ culture 

dishes at 37°C in a humidified 5% CO2. The tissues were placed luminal side up in 2 ml 

complete growth medium. Cultures were incubated with or without the addition of PBS, 

rCTB, or CTBp (1µM) at 37°C for 24 hours. Thereafter, the supernatant were collected, 

aliquoted and stored at −80°C, tissues were washed in complete medium and 

homogenized for gene expression analysis, formalin-fixed for histopathology, or frozen 

in liquid nitrogen for additional analysis as necessary.  
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Statistics. For all data, outliers were determined by statistical analysis using the Grubb’s 

test (P<0.05) and excluded from further analysis. Graphs were prepared and analyzed 

using Graphpad Prism version 5.0 (Graphpad Software, La Jolla, CA). To compare two 

data sets, an unpaired, two-tailed Student’s t test was used. To compare three or more 

data sets, one-way ANOVA with Bonferroni’s multiple-comparison post-test or Kruskal–

Wallis test with Dunn’s multiple comparison post-test were performed. For body weights 

and DAI results, a two-way ANOVA with Bonferroni’s multiple-comparison post-test 

was employed. A P value of < 0.05 was considered significant.
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3. RESULTS 
 

3.1. CTBP UNIQUELY MITIGATES DSS-INDUCED ACUTE COLONIC INJURY AND 

INFLAMMATION 

 

To the best of our knowledge, no studies have reported rCTB effects in a mouse DSS-

induced colitis model. Thus, to determine if the wound healing effects that we reported 

previously for CTBp are unique to the plant-made variant, we employed a well-

established mouse DSS colitis model [23]. Administration of DSS to mice in their 

drinking water for 5-7 days results in the induction of chronic inflammation in the colon 

and multiple histological changes characterized by erosions/ulcers of the epithelia, loss of 

crypts, and infiltration of leukocytes [105, 106].  In this study, female C57bl/6 mice were 

given one dose of PBS, 3 µg CTBp, or 3 µg rCTB via gavage after a 7-day 3% DSS 

exposure period (Day 7), at which the onset of colonic epithelial damage had taken place 

[70]. As shown in Figure 2A, CTBp-dosed mice showed a significantly more rapid 

recovery from DSS-induced weight loss than PBS and rCTB-dosed groups.  This trend 

was noted as early as 3 days post administration (Day 10) in CTBp-dosed mice. The 

recovery in body weight was accompanied by a significant protection from colon 

shrinkage, as well as significant decrease in disease activity index (DAI) scores (Figure 

2B). Histopathological examination on hematoxylin and eosin (H&E)-stained distal colon 

tissue 7 days post DSS exposure (Day 14) revealed that CTBp treatment protected mice 

from ulceration, inflammation and loss of colonic epithelial surface and crypts as shown 

by an inflammatory score, in contrast to PBS and rCTB treatment (Figure 2B).  These 

data were supported by immunohistochemistry (IHC) staining for an epithelial marker, E-
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cadherin [107, 108], on the same tissues used for histopathological examination. The IHC 

analysis clearly revealed that CTBp-treated mice had an epithelial surface that has 

recovered (or maintained) near-normal morphology and thickness with ongoing crypt 

regeneration noted throughout the tissue (Figure 3). Consistent with these findings, a RT-

qPCR analysis revealed that CTBp administration significantly upregulated multiple 

genes associated with epithelial repair, including Cdh1, Wnt5a, Vegf and Col5a3 (Figure 

2C) [109-112]. Furthermore, a complete blood count analysis of terminal blood samples 

(collected on Day 14) showed that CTBp treatment significantly reduced the DSS-

induced escalation of monocyte, basophil and eosinophil levels compared to PBS-dosed 

mice. Neutrophil levels were significantly higher in PBS and rCTB-dosed mice compared 

to those of the healthy control animals, but not in CTBp-dosed animals (Figure 2D).  

Collectively, these results suggest that the ability to mitigate DSS-colitis and induce 

wound healing in mouse colons is unique to the plant-made variant.   



25 
 

 

Figure 2. Effects of orally administered rCTB or CTBp in an acute DSS-colitis 

model. Mice (female C57BL/6J, 9-week old) were exposed to 3% DSS for seven days 

and orally administered with PBS, rCTB, or CTBp on the 7 seventh day. Colon tissues 

were isolated after a 7-day recovery for analyses. Mean ± s.e.m. is shown for each group. 

N = 10 Animals per group. (a) Percent change of body weights. Animals were weighed 

daily and just prior to the initiation of DSS exposure. Percent change was based on the 

initial body weight. *P < 0.05 between DSS-exposed, CTBp and PBS-administered 

groups, # P < 0.05 between DSS-exposed, CTBp and rCTB-administered groups; two-

way ANOVA with Bonferroni’s multiple comparison tests. (b) Top-left: Disease activity 



26 
 

index (DAI) scores calculated from body weight loss, fecal consistency and occult blood 

scores at the time of sacrifice. Bottom-left: Colon inflammation scoring from paraffin 

embedded tissue sections were scored after staining with Hematoxylin and Eosin (H&E). 

Scoring was based on 0–4 scale. Top-right: Colon length. (c) qRT-PCR analysis of 

cytokine gene expression in mouse colon tissue. Mean ± s.e.m. is shown for each group 

(N = 4). (d) Complete blood count analysis performed at the time of sacrifice. Mean ± 

s.e.m. is shown for each group (N = 5).  Bonferroni’s multiple comparison tests was used 

to compare all pairs of groups (a, b, c, d). Significantly different pairs are highlighted 

with asterisks (*P < 0.05, **P< 0.01, and ***P < 0.001).  

 

To reveal any potential gender specific differences in the aforementioned 

findings, we employed a DSS-induced colitis model using male mice. Since male mice 

are more sensitive to DSS-induced colitis, a lower concentration of DSS (2.5% w/v) was 

used [113].  In this experiment, mice were dosed in the same manner as in figure 1. 

Unlike female mice, CTBp-dosed male mice did not show a drastic effect in recovery 

from DSS-induced weight loss (Figure 4A), likely due to the low 3µg dose not being able 

to overcome a combination severity of colitis and increased size of the male mice.  In this 

study, healthy male mice weighed ~10g more than healthy females and healthy male 

colon lengths were on average 1.28 cm longer than healthy females. Nonetheless, CTBp 

treatment provided a significant protection from colon shrinkage, as well as significant 

decrease in DAI scores (Figure 4) in contrast to PBS and rCTB-dosed groups. Therefore, 

these results suggest that CTBp’s ability to uniquely mitigate DSS-colitis is not limited to 

female mice although the therapeutic window may be different. 
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Figure 3. CTBp and rCTB effects on mouse colon histological alterations induce by 

DSS-colitis. CTBp treatment protected mice from ulceration, inflammation and loss of 

colonic epithelial surface and crypts. (a, b, c, d) Top: representative 4x (left) and 10x 

(right) photomicrographs of H&E stained distal colon tissues from each group from 

treatment groups. Bottom: Immunohistochemistry staining of E-cadherin positive cells in 

distal colon tissue, representative photomicrographs are shown.  
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3.2. CTBP UNIQUELY ENHANCES WOUND CLOSURE AND TGFΒ LEVELS IN 

HUMAN COLONIC EPITHELIAL CELLS. 

 

To contrast the previously described wound healing ability of CTBp with that of rCTB, 

we employed a human colon epithelial cell line Caco2 model of wound healing [23]. As 

shown in Figure 5B, 0.1-10 µM CTBp significantly enhanced wound healing 24 hours 

post-wounding with no apparent dose response relationship, while rCTB had no effect at 

the same concentrations tested. Additionally, wound closure over 48 hours was tested 

using 3 µM of CTBp, rCTB, or PBS. The results revealed that rCTB had no effect 

beyond the natural healing response noted in the PBS-treated group, while CTBp 

treatment significantly enhanced wound closure both at 24 and 48 hours post wounding 

(Figure 5C). To dissect the wound healing response further, TGFβ levels in the culture 

supernatants were measured using a multiplex bead array. In contrast to rCTB, CTBp 

significantly upregulated TGFβ1 and TGFβ2 levels 24 hours post-wounding (Figure 5D). 

To rule out if the difference observed between CTBp and rCTB was the result of 

differential binding to Caco2 cells, we performed a flow cytometry analysis where Caco2 

cells were treated with 1 µM CTBp or rCTB. Cells were treated for 15 minutes on ice 

then fixed and stained with an anti-CTB monoclonal antibody. Both CTBp and rCTB 

showed high and similar binding, with > 75% of Caco2 cells showing positive (Figure 

5E).  Together, these results indicate that CTBp uniquely influences TGFβ regulation in 

colon epithelial cells and subsequently induces epithelial wound healing at the 

concentrations tested.   
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Figure 4. CTBp’s in vivo activity in DSS-induced colitis is not gender specific. Mice 

(male C57BL/6J, 9-week old) were exposed to 3% DSS for seven days and orally 

administered with PBS, rCTB, or CTBp on the 7 seventh day. Colon tissues were isolated 

after a 7-day recovery for analyses. (a) Percent change of body weights. Animals were 

weighed daily and just prior to the initiation of DSS exposure. Percent change was based 

on the initial body weight. No significant difference between groups, two-way 

ANOVAwith Bonferroni’s multiple comparison tests. (b) Disease activity index (DAI) 

scores calculated from body weight loss, fecal consistency and occult blood scores at the 

time of sacrifice. (c) Colon length. Mean ± s.e.m. is shown for each group N = 10. 

Bonferroni’s multiple comparison tests was used to compare all pairs of groups (a, b, c). 

Significantly different pairs are highlighted with asterisks (*P < 0.05, **P < 0.01, and 

***P < 0.001). 
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3.3. THE C-TERMINAL KDEL SEQUENCE IS ESSENTIAL FOR THE COLON 

EPITHELIAL WOUND HEALING OF CTBP 

 

The above results led us to hypothesize that the C-terminal KDEL sequence is essential to 

CTBp’s wound healing ability. First, in order to rule out the possibility that the unique 

activity is not attributed to the Nicotiana benthamiana production system, CTBp was 

produced in E. coli and tested in the Caco2 cell wound healing assay. Indeed, E. coli-

produced CTBp significantly promoted wound healing 24 hours post-wounding in 

contrast to rCTB, which was also produced in E. coli. (Figure 6A) To further delineate 

the importance of the C-terminal KDEL sequence, a variant of CTBp lacking the C-

terminal Leu residue (CTB-KDE; Table 1) was made.  As demonstrated by Caco2 cell 

wound healing assay, CTB-KDE at 0.1 and 1 µM failed to promote wound healing unlike 

CTBp (Figure 6B). 
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Figure 5. CTBp, but not rCTB, enhances wound healing and TGFβ levels in a 

human colon epithelial cell wound healing model. Caco2 cells were grown to 

confluence and scratched with a pipette tip. Cells were then incubated with PBS, rCTB, 
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CTBp, or TGFb1. The in vitro wound closure was recorded over 48 h and 4x 

magnification images were acquired with a EVOSfl (Advanced Microscopy Group) and 

mean percentage closure was determined by Image J software. (a) Photomicrographs of 

wounded Caco2 cells. (b) Analysis of in vitro wound closure after 24 h by wound area 

measurement. (c) Analysis of in vitro wound closure over 48 h by wound area 

measurement. (d) Protein concentrations in Caco2 cell supernatants. (e) Caco2 cell flow 

cytometry analysis. 10.0 x 105 cells were treated with 1 µM PBS, rCTB, or CTBp for 15 

minutes on ice, then fix and stained with anti-CTB mAb.  Means ± s.e.m. (b, c, d, e). 

One-way ANOVA with Bonferroni’s multiple comparison tests was used to compare all 

pairs of groups (b, c, d, e). Significantly different pairs are highlighted with asterisks (*P 

< 0.05, **P < 0.01 and ***P < 0.001). 

 

 We next explored if the KDEL sequence of CTBp has any influence on the 

protein’s residence within epithelial cells. Due to the known function of KDEL receptors 

(KDELR) [114-117], it was hypothesized that CTBp could localize and remain in the ER 

after retrograde transport [27].  To test this hypothesis, we utilized confocal microscopy 

to visualize where CTBp or rCTB reside within Caco2 cells. Cells were treated with 1 

µM CTBp or rCTB for 6 or 24 hours and then fixed and stained for CTB, the ER, and 

nuclei (Figure 7A).  As depicted in Figure 7B, CTBp was detected much more 

prevalently inside Caco2 cells with 171,083 and 190,433 positive voxels calculated to be 

in the imaged cells at 6 and 24 hours, respectively. In sharp contrast, rCTB had 90 and 41 

positive voxels at 6 and 24 hours post treatment, respectively.  Additionally, a 

colocalization analysis using the Z-stacked images demonstrated that 89.6% and 41.6% 

of CTBp at 6 and 24 hours, respectively, colocalized within the ER of the Caco2 cells 
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(Figure 7C). Of the low amount of rCTB within the cells only 0.26% and 0.16% at 6 and 

24 hours post treatment, respectively, colocalized within the ER. Since CTBp and rCTB 

showed similar binding to Caco2 cells (Figure 5E), it is likely that the striking difference 

in their amounts detected within Caco2 cells occurred after internalization. These results 

were confirmed by immunoblot analysis of Caco2 cells treated with CTBp or CTB for 0, 

12, 24 hours. CTBp showed constant existence within Caco2 cells after treatment and as 

expected, whereas rCTB showed decreasing levels over a 24 hour period (Figure 6C). 

Thus, these results suggest that the KDEL sequence on CTBp may have interacted with 

KDELR inside the cell, resulting in prolonged presence in the ER.   

 

Figure 6. Analysis of CTB variants on human colon epithelial cells. Caco2 cells were 

grown to confluence and scratched with a pipette tip. Cells were then incubated with 

PBS, rCTB, CTBp, or E. coli produced CTBp (eCTBp; Table 1)). The in vitro wound 

closure was recorded over 24 h and 4x magnification images were acquired with an 

EVOSfl (Advanced Microscopy Group). Mean percentage closure was determined by 

Image J software. (a, b) Analysis of in vitro wound closure after 24 h by wound area 
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measurement. (c) Representative Western blot analysis of the stability of rCTB and 

CTBp in caco-2 cells. After a 4 hours incubation with 2 µM of rCTB or CTBp, caco-2 

cells were washed with EMEM, then gathered and lysed depending on a various time 

manner (0, 12, 24 hours). rCTB and CTBp were detected by anti-CTB mAb western blot 

analysis and anti-actin antibody was used for actin detection. Means ± s.e.m. n = 4 (a, b). 

One-way ANOVA with Bonferroni’s multiple comparison tests was used to compare all 

pairs of groups (a, b). Significantly different pairs are highlighted with asterisks 

(*Po0.05, **Po0.01 and ***Po0.001). 

 

3.4. CTBP INDUCES AN UNFOLDED PROTEIN RESPONSE AND IRE1-XBP1 

SIGNALING IN CACO2 CELLS. 

 

It is well known that prolonged retention of proteins in the ER can lead to unfolded 

protein response (UPR) and subsequently activate signaling pathways. There are three 

branches of UPR known in mammalian cells, including IRE1 (inositol-requiring enzyme 

1), PERK (Protein Kinase Related-like ER kinase), and ATF6 (Activating transcription 

factor 6; α and β isoforms) [118, 119]. Among these IRE1-XBP1 pathway has been 

linked to wound healing and mitigation of DSS-colitis [120-122]. Therefore, we tested 

whether CTBp induces UPR and IRE1-XBP1 signaling in Caco2 cells. Cells were treated 

with PBS, 1 µM rCTB, or 1 µM CTBp for 6 or 24 hours and UPR signaling was analyzed 

by RT-qPCR.  Six hours post treatment, CTBp-treated cells showed a significant 

upregulation of IRE1 while PBS and rCTB had no effect (Figure 8A).  At 24 hours post 

treatment, all three sensors of the UPR pathway (ATF6, PERK, IRE1), as well as XBP1, 

CANX (calnexin, ER chaperone for unfolded proteins), PDIA6 (protein disulfide 
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isomerase family 6, ER foldase and regulator of IRE1 signaling), and TGFβ1, were 

upregulated in CTBp-treated cells when compared to PBS and/or rCTB (Figure 8B) [123-

126].  We co-treated Caco2 cells with PBS, CTBp, and/or 4µ8C, an inhibitor of IRE1-

mediated XBP1 splicing (and hence inhibits the activation IRE1-XBP1 signaling pathway 

[127, 128], after wounding.  The analysis revealed that 4µ8C treatment completely 

blocked CTBp’s wound healing effects; whereas 1 µM CTBp treatment significantly 

enhanced wound closure, CTBp+4µ8C and 4µ8C treated groups showed no effect 

(Figure 8B).  Furthermore, as shown in Figure 8C, CTBp treatment significantly 

increased TGFβ1 and TGFβ2 levels when compared to PBS, CTBp+4µ8C or 4µ8C 

treatment. These results indicate that CTBp increases TGFβ1 and TGFβ2 levels via the 

IRE1-XBP1 signaling pathway, which leads to enhanced wound closure in Caco2 cells.  
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Figure 7.  Immunofluorescence analysis of CTBp or rCTB intracellular localization 

within the ER. Caco2 Cells were treated with 1µM PBS, rCTB, or CTBp for 6 or 24 
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hours. Cells were fixed/permeabilized and stained with anti-CTB mAb detected by Alexa 

FluorTM 488 (green), ER-selective red dye (red), and DAPI (blue).  Slides were analyzed 

by wide-field fluorescence confocal microscope (60x magnification, Z-stacked images). 

Localization of rCTB or CTBp within the Caco2 cells or co-localization within the ER 

statistical analysis was performed using Imaris software (Bitplane), values were 

calculated in voxels. 
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Figure 8. The affects of the UPR on CTBp’s wound healing activity. CTBp induces 

UPR signaling and its epithelial wound healing activity is mediated through IRE1-XBP1 

signaling. Caco2 cells were grown to confluence and scratched with a pipette tip. Cells 

were then incubated with PBS, rCTB, CTBp, and/or 4µ8C. 4x magnification images were 

acquired to calculate in vitro wound closure over 24 h. Mean percentage closure was 

determined by Image J software. (a) RT-qPCR analysis of UPR gene expression in Caco2 

cells 6 h or 24 h after treatment. One-way ANOVA with Bonferroni’s multiple 

comparison tests was used to compare all pairs of groups between dotting lines. Mean ± 

s.e.m. is shown for each group (N = 4). (b) Analysis of in vitro wound closure after 24 h 

by wound area measurement. (c) TGFβ concentrations in Caco2 cell supernatants from 

wound healing assay. Mean ± s.e.m. is shown for each group (N = 4). A one-way 

ANOVA with Bonferroni’s multiple comparison tests was used to compare all pairs of 

groups (b, c). Significantly different pairs are highlighted with asterisks (*P < 0.05, **P < 

0.01 and ***P < 0.001). 

 

3.5. CTBP INDUCES A WOUND HEALING RESPONSE IN A HUMAN ULCERATIVE 

COLITIS PATIENT COLON TISSUE. 

 

We next explored if the in vitro and in vivo mucosal healing activity of CTBp could 

translate into a therapeutic effect in human tissue ex vivo. A 3x6 cm piece of sigmoid 

colon tissue was received from a 57 year old male UC patient after total colectomy. The 

tissue was sectioned, cultured, and treated with PBS, CTBp, or rCTB for 24 hours and 

then UPR, TGFβ, and wound healing signaling was analyzed by RT-qPCR. Consistent 

with the 6 hour time point in Caco2 cell, the UPR signaling analysis 24 hours post-
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treatment revealed CTBp-treated tissues had a significant upregulation of IRE1 and TGFβ 

while PBS and rCTB had no effect (Figure 9A).  A wound healing pathway-focused RT-

qPCR analysis showed that CTBp significantly enhanced 21 out of 84 wound healing 

associated genes analyzed, while rCTB significantly enhanced only 1 gene (Figure 9C). 

No significant effect was observed with PBS treatment. Of the 21 genes significantly 

increased by CTBp, several noteworthy upregulated genes include CDH1, CTGF, and 

TGFB1 which are all associated with epithelial wound healing, while both CTBp and 

rCTB upregulated MAPK1 (Figure 9B). We also performed a TGFβ signaling pathway-

focused RT-qPCR analysis and found that CTBp treatment enhanced 7 TGFβ signaling-

associated genes, while rCTB had no significant effect in any of the 84 genes analyzed. 

Congruent with the RT-qPCR results, histopathological analysis showed that CTBp-

treated tissues (n=3) showed early stage crypt formations and relatively low neutrophil 

infiltration in the mucosa, while PBS- and rCTB-treated tissue did not have such distinct 

histological features (Figure 10). Since CTBp-treated tissues were cut adjacent from PBS 

or rCTB-treated ones, these observations likely reflect the effects of treatment. Taken 

together, these results strongly suggest CTBp’s wound healing activity is not limited to 

single-cell in vitro and mouse in vivo experimental models of inflammation and injury. 

Thus, highlighting CTBp’s therapeutic potential for the treatment of inflammatory 

diseases of the mucosa, such as UC.  
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Figure 9. Human UC patient colectomy tissue RT-qPCR analysis. CTBp induces 

IRE1, TGFβ, and wound healing signaling in human colon colectomy tissue. Colon tissue 

obtained from a 57 year old male UC patient who underwent colectomy. The colectomy 

tissue was divided into nine adjacent sections and cultured with PBS, CTBp, or rCTB for 

24 hours. (a) RT-qPCR analysis of UPR gene expression 24 h after treatment. One-way 

ANOVA with Bonferroni’s multiple comparison tests was used to compare all pairs of 

groups between dotting lines. Mean ± s.e.m. is shown for each group (N = 3). (b) 
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Representative upregulated genes from wound healing pathway-focused qRT-PCR 

analysis of gene expression in human UC patient colectomy tissue. Mean ± s.e.m. is 

shown for each group (N = 3). A one-way ANOVA with Bonferroni’s multiple 

comparison tests was used to compare all pairs of groups. (c) Wound healing pathway-

focused qRT-PCR analysis of gene expression in human UC patient colectomy tissue. 21 

out of 84 genes analyzed were significantly (P < 0.05) upregulated. The graph shows P 

value vs. fold-change. Dots represent 2-fold upregulation (red), 2-fold down-regulation 

(green), or < 2-foldchange (black). Values were calculated by the data analysis web 

portal at http://www.qiagen.com/geneglobe (N = 3). 
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4. DISCUSSION 

 

In this thesis, I aimed to delineate the mechanism by which CTBp’s C-terminal KDEL 

sequence contributes to colonic epithelial wound healing and whether this effect is unique 

to the plant-made variant. Although CTBp was shown to have similar GM1-ganglioside 

affinity, conformational stability, and oral immunogenicity to those of rCTB [62], the 

plant-made protein’s C-terminal ER retention signal sequence KDEL, added to improve 

the protein’s production in planta, could theoretically alter the protein’s fate upon 

entering cells [129]. The KDELR is highly conserved among eukaryotic organisms. Once 

bound to KDEL-containing proteins, the receptor can mediate retrograde transport or 

harbor proteins in the ER [25, 27, 102].  Moreover, retention of proteins in the ER by the 

KDELR can lead to UPR and subsequent TGFβ activation in skin fibroblasts, cervical 

and lung epithelial cells and shown here in colon epithelial cells [130-134].  

Consequently, it is deemed reasonable that the ER retention signal sequence rendered 

CTB with the new function of mucosal wound healing in Caco2 cells and DSS-induced 

colitis models, while rCTB showed no noticeable effects in these models.  
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Figure 10. Human UC patient colectomy tissue H&E stain. Sigmoid colon tissue 

obtained from a 57 year old male UC patient who underwent colectomy. The colectomy 

tissue was divided into nine adjacent sections and cultured with PBS, CTBp, or rCTB for 

24 hours. Representative 4x (left) and 10x (right) photomicrographs of H&E stained 

sigmoid colon tissues from each group. 

 

In the mouse DSS acute colitis model, CTBp oral administration significantly 

enhanced recovery from colitis as demonstrated in the histopathological, 

immunohistochemical and gene expression analyses, in contrast to rCTB (Figures 2 and 
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3). Boirivant et al. has previously shown that oral administration of rCTB can resolve 

TNBS-colitis (a mouse model of Crohn’s disease), which was attributed to Th1 cell 

inhibition [43, 50]. In contrast, here we have shown that CTBp, but not rCTB, induces 

epithelial restitution, leading to resolution of epithelial injury and inflammation.  

Although a direct comparison cannot be made due to two different animal models, the 

discrepancy in rCTB’s efficacies could be in part explained by the different dose amounts 

and timings employed in those two studies; whereas Boirivant et al. administered 4 daily 

doses of 100 µg rCTB immediately after the administration of TNBS [43, 50], we dosed 

one 3 µg dose of CTBp or rCTB at the end of DSS exposure. This points to the 

possibility that the low dose of rCTB was not sufficient to show a therapeutic effect in the 

DSS model. Conversely, whether CTBp at high dose levels exhibits T cell-inhibitory 

effects like rCTB remains to be determined.   

 

In DSS-induced colitis model, the epithelium receives a barrage of mucosal 

insults, both physical and chemical that result in the loss of the epithelial barrier and 

damage to the mucosa [68].  Thus, the initial step in injury repair occurs through a rapid 

migration response of the epithelial sheet (termed restitution) [95, 96]. The process 

occurs independently of proliferation and results in depolarization of intestinal epithelial 

cells surrounding the wounded area [96]. This depolarization leads to an epithelial-to-

mesenchymal transition (EMT) where cells adopt a migratory phenotype induced by 

increased TGFβ levels [97, 98]. Previously, we showed that CTBp induces multiple 

TGFβ-dependent EMT pathways after treating mice with CTBp [135]. One of the most 

notable findings in the present DSS study is that the histological and gene expression 

analyses revealed evidence of epithelial recovery in CTBp-treated groups. The fact that 
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the TGFβ expression level in the CTBp-dosed animals was not significantly high at the 

time of sacrifice suggests that the cytokine had likely passed its peak expression point. In 

fact, we observed a significant upregulation of Serpine1, an inhibitor of TGFβ, in the 

CTBp-dosed group (Figure 2). Additionally, we detected upregulated Cdh1 gene in 

CTBp-treated mice, which is indicative of a late-phase wound healing involving 

epithelial proliferation and maturation [109, 110, 112, 136, 137]. E-cadherin expression is 

inversely correlated with TGFβ levels due to TGFβ-induced class switching of E-

cadherin to N-cadherin which depolarizes cells and allows them to become of migratory 

phenotype [98, 137, 138].  Thus, the elevated Cdh1 levels and strong E-cadherin positive 

epithelial cell staining that lined the mucosa of CTBp-treated mice indicate the 

repolarization of the epithelial cells, increased tightening of mucosal barrier and 

improved mucosal barrier integrity, which are critical steps during restitution [137].  In 

addition to EMT, TGFβ1 stimulates and increases expression of WNT5a [136].  WNT5a 

has been shown to induce new crypt formation and re-establish epithelial homeostasis 

after injury [136]. The H&E-stained tissue sections clearly revealed the regeneration and 

formation of new crypts in the CTBp-dosed group, corroborating the function of 

upregulated Wnt5a expression in the colon mucosa. Taken together, these data strongly 

support the notion that oral administration of CTBp can facilitate colon epithelial 

restitution and wound healing, at least in the conditions tested in the acute DSS colitis 

model.       

 

Although CTBp induced significantly higher levels of TGFβ1 and TGFβ2 and 

subsequently facilitated wound closure in Caco2 cells, rCTB did not show such effects 

(Figure 4). Three lines of evidence support that these contrasting findings are attributable 
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to the artificial KDEL sequence on the C-terminus of CTBp.  First, CTBp’s efficacy has 

no link to the plant production platform, as E. coli-produced CTBp exhibited the same 

effects as the plant-made (Figure 6). Second, a variant of CTBp that lacks the terminal 

leucine residue (CTB-KDE) failed to induce wound healing. Third, CTBp colocalized 

and remained longer within the ER of epithelial cells, which is likely due to the KDEL-

tagged protein’s ability to interact with the KDELR. Combined with our previous data 

showing that GM1 binding is essential for CTBp’s wound healing effect in Caco2 cells 

[23], these data strongly suggest that the C-terminal KDEL sequence rendered CTBp 

with a unique new wound healing activity in the colon epithelial cells. 

 

Even though we determined that the KDEL sequence and the activation of IRE1 

signaling are essential for CTBp’s efficacy, how the protein activates the IRE1-XBP1 

pathway and subsequently induces TGFβ signaling is yet to be disclosed. Previous 

studies investigating the intracellular trafficking of CT and rCTB have shown that CTB’s 

retrograde transportation is triggered upon binding to cell-surface GM1-ganglioside, 

which allows the proteins to reach deep endomembrane compartments and the ER [27, 

139]. As shown in Figure 7A both rCTB and CTBp were found in the ER, however, the 

latter was more consistently retained and colocalized within the ER, likely due to its 

capacity to interact with the KDEL receptor.  Aberrant accumulation of proteins, such as 

CTBp, and misfolding of proteins in the ER can to induce UPR by displacing B cell 

immunoglobulin protein (BiP) from three main ER transmembrane sensors, IRE1, PERK, 

and ATF6 [118, 140, 141].  IRE1 represents the most evolutionarily conserved branch of 

the UPR that is made up of two isoforms, IRE1α and IRE1β, of which IRE1β is unique to 

the epithelium of the digestive and respiratory tract[142]. Additionally, IRE1-XBP1 
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signaling has been linked to TGFβ activation, wound healing, colon epithelial cell 

prosurvival signaling, and protection from DSS-induced colitis, as mentioned previously 

[120, 122, 132, 133, 143].  In this regard, CTBp significantly increased IRE1α expression 

6 hours after treatment and all 3 arms of UPR sensors (ATF6, PERK, and IREI), as well 

as the IRE1 signal transducer XBP1, 24 hours after treatment (Figure 8). Furthermore, 

inhibition of IRE1 signaling by the chemical inhibitor 4µ8C completely blocked the 

wound healing activity of CTBp as well as CTBp-mediated TGFβ1 and TGFβ2 induction 

(Figure 8)  indicating that CTBp’s wound healing activity is mediated through IRE1 

signal transduction.  Of note, UPR activation is closely linked to ER stress and 

apoptoptotic pathways [142]. However, we did not observe any cytotoxic response to 

CTBp up to 10 µM (0.61 mg/mL) in Caco2 cells (Figure 5), suggesting that the protein 

did not overstimulate UPR beyond the threshold for a cell death response.  It is possible 

that the amount of cell-surface GM1 ganglioside was a limiting factor, whereby the 

receptor became saturated before the concentration of CTBp reached a point that 

overload the ER. Further investigation is necessary to understand CTBp’s impact on 

epithelial cell signaling toward TGFβ expression and EMT, as well as ER stress and 

survival.   

 

Chronic DSS-colitis is pathologically similar to ulcerative colitis due to is toxicity 

to colonic epithelial cells, which results in immune responses that alter mucosal barrier 

function and compromise the colonic epithelium [68]. However, the acute DSS model 

employed here may not translate well to human IBD.  To address this limitation, I have 

employed an explant culture model using UC patient colectomy tissue to test the mucosal 

healing potential of CTBp.  Although a larger number of UC colon tissues need to be 
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tested before a firm conclusion can be justified, the 57 year male patient’s specimen 

showed a remarkable response to CTBp treatment, in contrast to PBS or rCTB. 

Consistent with the findings in the DSS model, CTBp significantly activated wound 

healing and TGFβ signaling pathways, including CDH1, within 24 hours. Additionally, 

new crypt formations were observed in CTBp-treated tissues (Figure 10).  Thus, these 

results strongly support the premise that CTBp could induce mucosal healing in UC 

patients. As there is no cure available for UC, mucosal healing is currently regarded as 

the standard treatment goal in UC therapy [82-87]. Current therapeutic options can 

achieve mucosal healing in only ~50% of patients and their direct effect on epithelial 

repair remains elusive. [88, 89, 144]. Thus, the results presented herein provide 

implications for the unique therapeutic potential of CTBp that may address a significant 

unmet need in UC treatment.
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5. CONCLUSIONS-CHALLENGES FOR THE USE OF CTBP AS AN 

IMMUNOMODULATORY DRUG 

 

As discussed above, development of new drug candidates for mucosal healing represent a 

significant unmet need in UC management. However, currently there is no mucosal 

wound repair product indicated for UC available or in clinical trials (ClinicalTrials.gov, 

as of April 2, 2018). Based on the above promising data, we hypothesize that CTBp can 

be developed as a novel oral biotherapeutic facilitating mucosal healing in UC.  Although 

CTB has been administered in humans in the form of oral cholera vaccines over the past 

two decades, its development as an immunomodulatory drug will need to address unique 

issues associated with therapeutic use besides additional testing of safety and efficacy in 

specific disease indications. CTB can induce potent mucosal and systemic antibody 

response upon mucosal administration in humans [4, 62]. One critical concern is whether 

this strong mucosal immunogenicity alters the therapeutic effect of CTBp. The 

production of anti-drug antibodies (ADA) to IBD therapeutics has strongly been linked to 

reduced clinical efficacy [145]. ADA can block the binding of therapeutics to its target 

molecule, as well as, increase the clearance rate, affecting the protein’s pharmacokinetics.  

Furthermore, ADA have been associated with increased frequency of clinical adverse 

effects [145-148]. Conversely, antibody induction can play an important role in 

mitigation mucosal inflammation, as demonstration IgA-dependent reduction of 

experimental asthma described in section 1-2-1 [48]. The aforementioned small-scale 
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clinical trial of rCTB in CD patients showed a modest efficacy up to 10 weeks after 

repeated CTB administrations over 2 weeks [51]. Although not reported, the treatment 

regimen must have elicited high levels of anti-CTB antibodies in the gut and blood 

circulation. Unfortunately, to date there has been no report on a follow-up study 

investigating the immunogenicity and long-term efficacy following repeated rCTB 

dosing in CD patients. Thus, investigation of the relationship between CTB’s 

immunogenicity and immunotherapeutic efficacy represents a high-priority area for 

future research.     

 

TGFβ seems to be a major denominator of CTB-induced immunomodulatory 

activities. TGFβ is a pleiotropic cytokine playing critical roles in cell differentiation and 

proliferation, as well as dynamic biological processes in wound healing and immune 

responses [100, 149, 150]. The cytokine is also involved in various pathological 

conditions. For example, elevated TGFβ levels have been correlated to the development 

of fibrosis following injury to the skin [151]. TGFβ mediates epithelial-to-mesenchymal 

transition (EMT) [152], and reduction of TGFβ1 levels in a mouse model of pulmonary 

fibrosis blunted fibrosis [153]. TGFβ signaling also has important implications in cancer. 

Although the cytokine functions as a suppressor of tumorigenesis at an early stage of 

tumor development, its expression is correlated with tumor progression and poor 

prognosis at late stages [100, 154]. Collectively, the double-edged sword nature of TGFβ 

points to the importance of careful investigation of possible consequences upon long-

term CTB dosing for the treatment of chronic inflammatory diseases. As mentioned in the 

Introduction section, CTBp treatment significantly mitigated gut inflammation and 
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reduced tumor development in a model of CAC [23], providing a basis for further 

investigations of long-term therapeutic use of CTB for the treatment of IBD. 

 

In conclusion, the data herein reveal that CTBp exhibits unique colon mucosal 

would healing effects that are mediated by its colocalization to the ER and subsequent 

activation of IRE1-XBP1 signaling in colon epithelial cells. The studies presented herein 

strongly suggest CTBp’s potential as an effective mucosal healing agent with the 

potential to replace or supplement currently available therapies for the treatment of 

inflammatory disorders of the mucosa, such as anti-TNFα biologics used in IBD patients 

who are refractory to conventional medications. As anti-TNFα agents are administered 

systemically, these agents have limited efficacy for the induction of mucosal healing [88, 

89] and/or pose severe adverse reactions [155-157]. In contrast, CTBp might cause few, 

if any, adverse effects as a topical agent with little systemic absorption, and can directly 

heal lesions/ulcers and blunt inflammation. Therefore, to aid in developing CTBp-based 

therapeutic strategies against UC, further research that delineates the detailed 

mechanisms by which CTBp induces mucosal healing is warranted. Careful investigation 

of the role of the ER in CTBp’s TGFβ activation in colon epithelial cells may shed light 

on the mechanistic link to epithelial restitution, facilitating the development of a new 

topical agent for the treatment of inflammatory diseases of the mucosa. 
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Protein 
Name 

Abrivation C-terminal 
KDEL 
sequence 

Production 
System 

Cholera Toxin 
A-subunit 
contamination 

Purification 

Recombinant 
CTB 

rCTB No E. coli No Chromatography; 
>95% 

Non-
recombinant 
CTB 

nrCTB No E. coli Yes N/A 

Plant-made 
CTB 

CTBp Yes Nicotiana 
benthamiana 

No Chromatography; 
>95% 

Recombinant 
CTB-KDE 

CTB-KDE KDEL 
sequence is 
lacking Leu 
residue 

E. coli No Chromatography; 
>95% 

E. coli-
produced 
CTBp 

eCTBp Yes E. coli No Chromatography; 
>95% 

 

Table 1. CTB variants
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