
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2018

Cognitive performance application. Cognitive performance application.

Shade EL-Hadik
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Architectural Technology Commons

Recommended Citation Recommended Citation
EL-Hadik, Shade, "Cognitive performance application." (2018). Electronic Theses and Dissertations. Paper
2894.
https://doi.org/10.18297/etd/2894

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1194?utm_source=ir.library.louisville.edu%2Fetd%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2894
mailto:thinkir@louisville.edu

COGNITIVE PERFORMANCE

APPLICATION

By

Shade El-Hadik

B.S., American University in Cairo, 2004

M.S., University of Louisville, 2005

A Dissertation

Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Computer Engineering and Computer Science

University of Louisville

Louisville, Kentucky

clkerr01
Typewritten Text

clkerr01
Typewritten Text
in Computer Science and Engineering

clkerr01
Typewritten Text
May 2018

Copyright 2018 by Shade El-Hadik

All rights reserved

clkerr01
Typewritten Text

ii

COGNITIVE PERFORMANCE APPLICATION

By

Shade El-Hadik

B.S., American University in Cairo, 2004

M.S., University of Louisville, 2005

A Dissertation

Approved on FebÒÕÁÒÙ 23, 2018

By the Following Dissertation Committee:

Dissertation Director

Dr. Ahmed Desoky CECS

Dr. Adel Elmaghraby CECS

Dr. Dar-Jen Chang CECS

Dr. Juw Park CECS

Dr. Michael Losavio

iii

ABSTRACT

COGNITIVE PERFORMANCE APPLICATION

Shade El-Hadik

January 12, 2018

This work shows that combining the techniques of neural networking and predictive analytics with

the fundamental concepts of computing performance optimization is genuine in many ways. It has the

potentials to: (1) reduce infrastructure upgrade costs (2) reduce human interactions, by enabling the system

to learn, analyze, and make decisions on its own, and (3) generalize the solutions to other performance

problems. This paper attempts to tackle a JVM performance optimization from a different dimension and in

a way that can be scaled to other common utilized resources, such as file systems, static contents, search

engines, web services...etc. It shows how to build a framework that monitors the performance metrics to

determine patterns leading to bottleneck incidents and then benchmark these performance metrics. The

framework uses artificial neural network in its core to accomplish this first steps with immediate benefit of

eliminating the need to a domain expert analyzing which of these metrics is more important or has more

weight on constituting the bottleneck condition, and hence enable the system to deal with more ambiguous

situations. The framework uses an analytics engine, to establish predictive patterns between the system

bottleneck and library of factors to establish an early alert system and thus enhancing the weight of the

bottleneck signal. Finally, the framework acts in defense when the deadlock signal is triggered from the

learning and/or the analytics engine through streaming down concurrent transactions into a temporarily

queuing data structure. We put our model into a test and built a simulation to quantify the added benefit of

each component of our framework. The results are proven to demonstrate the immediate benefit of our

framework and open doors for other future work.

iv

TABLE OF CONTENTS

Chapter 1. INTODUCTION ... 1

Chapter 2. CONSTANT LOAD SIMULATION ... 7

2.1. Simulation ... 7

2.2. Populating the database .. 9

2.3. System Specifications and Simulation .. 11

2.4. Demand Simulation Snapshot and CPU Utilization ... 12

2.4.1. Demand Simulation Snapshot Run Summary .. 13

2.5. Demand Simulation Snapshot and Memory Utilization .. 15

2.5.1. Demand Simulation Snapshot Run Summary .. 16

2.6. Simulation of real ecommerce user sessions ... 18

2.6.1. Demand Simulation Snapshot Run Summary .. 21

2.7. Summary ... 23

Chapter 3. LEARNING ENGINE... 24

3.1. Neural Network Type .. 25

3.2. Neural Network Input ... 26

3.3. Learning procedure .. 27

3.4. Sigmoid Activation Function .. 28

3.5. Neural Network Classification Method .. 29

3.6. Neural Network Kernel ... 30

3.7. Mean Squared error ... 31

3.8. Learning Engine Class Diagram ... 32

Chapter 4. ANALYTICS ENGINE ... 33

4.1. Factory Design Pattern ... 35

4.2. Best Fit Model Criteria .. 35

4.3. Predictive Analytics Models .. 37

4.3.1. Linear Regression Model .. 37

4.3.2. Multiple Linear Regression Model ... 39

4.3.3. Polynomial Regression Model .. 42

4.3.4. Models Comparison .. 44

4.4. Run Example ... 45

v

4.5. Analytics Engine Class Diagram .. 47

4.6. Summary ... 48

Chapter 5. QUEUING ENGINE ... 49

Chapter 6. RANDOM LOAD SIMULATION .. 53

6.1. Discrete vs. Continuous .. 53

6.2. Pseudo-random Number Sampling ... 53

6.2.1. Normalization ... 54

6.3. Results of First Run .. 55

6.3.1. CPU Utilization.. 56

6.3.2. Response Time Per Thread ... 57

6.3.3. Heap Ratio .. 58

6.4. Results of Second Run ... 59

6.4.1. CPU Utilization.. 61

6.4.2. Response Time Per Thread ... 62

6.4.3. Heap Ratio Per Thread .. 63

6.5. Results of Third Run .. 64

6.5.1. CPU Utilization.. 65

6.5.2. Response Time Per Threads ... 66

6.5.3. Heap Ratio Per Thread .. 67

Chapter 7. CONCLUSION ... 69

REFERENCES ... 71

Appendix A ... 74

A.1. Estore Schema Create Statement .. 74

A.2. Address Table Create Statement ... 74

A.2.1. Description ... 74

A.2.2. SQL Statement .. 79

A.3. Inventory Table Create Statement ... 80

A.3.1. Description ... 80

A.3.2. SQL Statement .. 81

A.4. Language Table Create Statement .. 81

A.4.1. Description ... 81

A.4.2. SQL Statement .. 84

A.5. Listprice Table Create Statement ... 84

A.5.1. Description ... 84

vi

A.5.2. SQL Statement .. 84

A.6. Member Table Create Statement .. 85

A.6.1. Description ... 85

A.6.2. SQL Statement .. 85

A.7. OrderItems Table Create Statement .. 86

A.7.1. Description ... 86

A.7.2. SQL Statement .. 94

A.8. Order Table Create Statement ... 95

A.8.1. Description ... 95

A.8.2. SQL Statement .. 98

A.9. Product Table Create Statement ... 99

A.9.1. Description ... 99

A.9.2. SQL Statement ... 101

A.10. ProductDesc Table Create Statement .. 102

A.10.1. Description .. 102

A.10.2. SQL Statement ... 103

Appendix B .. 104

B.1. Abbreviation ... 104

CURRICULUM VITA .. 106

vii

LIST OF FIGURES

Figure 1 – CORRELATED COMPONENTS OF THE COGNITIVE PERFORMANCE APPLICATION 4
Figure 2 – COGNITIVE PERFORMANCE APPLICATION DIAGRAM ... 5
Figure 3 – TRANSACTION RESPONSE TIME .. 8
Figure 4 – ONLINE STORE DATABASE SCHEMA ... 9
Figure 5 – CLASS DIAGRAM FOR JAVA OBJECT POPULATING DATABASE .. 10
Figure 6 – JVM HEAP RATIO CHART ... 14
Figure 7 – CPU UTLIZATION AND RESPONSE CHART .. 14
Figure 8 – JVM HEAP RATIO CHART .. 17
Figure 9 – CPU UTLIZATION AND RESPONSE CHARTS ... 17
Figure 10 – HP2B SITE PAGE VIEW STATS .. 20
Figure 11 – JVM HEAP RATIO .. 22
Figure 12 – CPU UTILIZATION AND RESPONSE TIME CHARTS .. 22
Figure 13 – LEARNING ENGINE ... 24
Figure 14 – IMPLEMNTED NEURAL NETWORK .. 25
Figure 15 – NEURAL NETWORK SYSTEMATIC LEARNING ... 27
Figure 16 – MSE PER EPOCH ... 31
Figure 17 – LEARNING ENGINE CLASS DIAGRAM ... 32
Figure 18 – ONE FLAVOR OF THE ANALYTICS ENGINE .. 34
Figure 19 – ANALYTICS ENGINE EXAMPLE RUN .. 46
Figure 20 – ANALYTICS ENGINE UML CLASS DIAGRAM .. 47
Figure 21 – JAVA QUEUING ENGINE .. 50
Figure 22 – SYSTEM CPU UTLILIZATION CHARTS .. 57
Figure 23 – RESPONSE TIME IN SECONDS PER THREAD .. 58
Figure 24 – HEAP RATIO PER THREAD ... 59
Figure 25 – SYSTEM CPU UTLILIZATION CHARTS .. 61
Figure 26 – RESPONSE TIME IN SECONDS PER THREAD .. 62
Figure 27 – HEAP RATIO PER THREAD ... 63
Figure 28 – SYSTEM CPU UTLILIZATION CHARTS .. 65
Figure 29 – RESPONSE TIME IN SECONDS PER THREAD .. 66
Figure 30 – HEAP RATIO PER THREAD ... 67

viii

LIST OF TABLES

Table 1-CPU Utilization demand simulation snapshot Summary ... 13
Table 2-CPU Utilization demand simulation summary.. 13
Table 3-Memory Utilization demand snapshot summary .. 16
Table 4-Memory Utilization demand simulation summary ... 16
Table 5 -HP2B page demands ... 19
Table 6-HP2B page demand percentage per user .. 19
Table 7 -HP2B simulations run summary ... 21
Table 8 -HP2B simulations run summary ... 21
Table 21 –CPU Per User Session .. 45
Table 10 -HP2B daily user load.. 55
Table 11 –First Run Summary .. 56
Table 12 –First Run CPU data Summary .. 57
Table 13 –First run thread response time summary .. 58
Table 14 –First run heap ratio summary ... 59
Table 15 –Second Run Summary... 60
Table 16 –Second run CPU data summary .. 61
Table 17 –Second run thread response time data summary ... 62
Table 18 –Second run heap ratio data summary .. 63
Table 19 –Third run data summary ... 65
Table 20 –Third run CPU utilization data summary ... 65
Table 21 –Third run response time data summary ... 66
Table 22 –Third run heap ratio data summary ... 67

1

CI!t¢9w 1 INTwODUCTION

 Applications running on Java Virtual Machine (JVM) are extensively adopted in

numerous industrial and commercial applications around the world. The main advantage

in Java is the concept of parallel programing or multiple threading and the fact that it can

run in different operating system without the need to change the coding syntax. In the

commercial world, Java is mainly known for its web programing capabilities. While this is

all true and considered redundant info, Java applications running on multiple JVM’s on

single or multiple servers usual end up exploiting common resources such as a database

management system (DBMS). Database management systems are more complex, more

rapidly evolving, and more essential to the conduct of business than those of even a few

years ago. The result is an increasing need for techniques that assist in optimizing the

overall performance of these database driven systems in order to enhance the system

availability and the overall user experience in a world where website up times and mobile

apps are now expected to have 99.99% around the clock availability. The need for new

techniques that help these systems avoid bottleneck situations in a world where technical

glitches translate into a negative user experience and therefor a lost business opportunity.

The challenge is that relational databases were not designed to be scaled in distributed

model, such as the cloud architecture, which leads the entire solution to halt or crash in

many situations. In this paper we will use a customized database known as an e-store to

simulate real-world commercial Java application such as an e-commerce store that rely

heavily on DB integration.

2

There are many theoretical and practical proposed techniques that stopped short

from providing a comprehensive solution to the current challenges stated above. This

document roles off some of these proposals, and builds upon other ones, such as “A

Queuing Model to Achieve Proper Elasticity for Cloud Cluster Jobs,” [1] which focuses on

providing an understanding of the database behavior through the introduction of an

analytical model based on queuing theory to determine at any given time the workload

conditions and the minimum number of computing resources needed for executing query

jobs on a cloud cluster. Another example of academic work that helped shaping the

direction of our solution is the “Performance Modeling and Analysis of a Database Server

with Write-Heavy Workload,” [2] which studies the performance anomalies dynamics that

are difficult to monitor and control, through the development of a queuing based

performance model for database servers with write-heavy workload. In both papers and in

other papers such as “Solving Enterprise Applications Performance Puzzles - Queuing

Models to the Rescue,” [3] the authors use a queuing model to rectify the system

performance which we will prove is necessary and will constitute some portion of our work

as explained in the subsequent sections of this document.

On the other hand, we also examined more conventional or widely adopted

commercial solutions related to the same challenges, and we found that they mainly evolve

around four main concepts listed below:

• Increase Memory

• Caching,

• Query optimization,

• Splitting databases

3

These solutions are not always the optimum from performance or cost prospective. For

example, a caching solution ends up replicating the database into another database, which

runs into technical issues of caching synchronization and validation and invalidation. The

practice of query optimization constitutes another hurdle especially for highly integrated

complicated queries that were evolving over time to serve multiple enterprise agents.

Finally, the option of splitting the system database into two always introduces more

complexities such as keeping the enterprise database systems synchronized.

This document discusses a cognitive or an AI alternative approach to autonomously

enhance the system availability and optimize the performance of a JVM interacting with

common computing resources, such as a database management system. An example of

such a database driven system would a Java implementation of an online store deployed on

a single or multiple servers utilizing highly paralyzed query jobs resulting from multiple

and concurrent user sessions. The proposed solution will rely on machine learning practices

in order to introduce an integrated cognitive framework. As shown in the below figure, the

Cognitive Performance Application solution proposes three correlated phases or engines.

These are

• Learning Engine,

• Analytics Engine,

• Queuing Engine.

4

Figure 1 – CORRELATED COMPONENTS OF THE COGNITIVE PERFORMANCE APPLICATION

The first component would learn how to determine or detect a JVM performance

bottleneck, by monitoring correlated parameters such as CPU utilization and query

response times using neural network technology. [4] Meanwhile, solution package will also

construct an advanced analytics-based alert mechanism to predict, based on historical

performance records, the future bottleneck situations where the demand for the database

and the other system computing resources is trending up. The high demand in a real world

would have positive correlations with external library of factors such weather conditions

or shopping seasonality. Finally, and based on the outcome of the learning and predictive

components of this solution, a signal will be triggered for the system to rectify the

bottleneck situation through building a temp queuing structure to stream down the system

demand. The queuing component is elastic in nature will then dissolve on its own once the

system recovers back to normal operation levels as the performance conditions improve.

The process flow of the system and the different functionalities of the cognitive application

components are demonstrated on the below graph, and are subject to further explanation in

the subsequent segments of this document.

5

Figure 2 – COGNITIVE PERFORMANCE APPLICATION DIAGRAM

The uniqueness of this approach lies in the fact that it can be generalized to other

performance problem dealing with high demand for common resources. Same approach

also can be scaled horizontally to other common resources utilized by Java applications

such file systems, static contents, search engines, web services…etc. Moreover, it widens

the dimension of solving conventional performance challenges of database driven systems

without further exhausting customary solutions, but rather shifting the focus up to the

requestor layer to queue up computing jobs intelligently and only when needed to avoid

bottleneck consequences. In addition, the proposed solution has a high viability for limited

budget implementations, compared to other usual solutions that mandate investing on

scaling the hardware specifications. Meanwhile the proposed solution has another

advantage on areas like maintenance reduction and eliminating partially or totally

6

interruption system admins, who would otherwise consistently monitor the system

performance.

This document is structured on different chapters, the first of which focuses on

building the components of a typical modern ecommerce store database system, based on

a scaled down version of IBM WebSphere e-commerce database schema [5]. The sample

store database records are populated with millions of customers, addresses, shopping

carts…etc. database records. Also in the first chapter we list the system specifications under

study, and then simulate the system demand with constant user load in order to take

snapshots of the different performance parameters enhancing our understanding of the

different correlations among them and when the system reaches a bottleneck. The

document then moves to other chapters describing the three components of the Cognitive

Performance Package and dives into more details regarding architecture decision, logic,

code snippets, integration, statistical calculations …etc. Toward the end of this document

we run different random simulations of the user load to test our solution and compare the

system performance with and without our solution. We finally add another section

concluding our findings and recommendations.

7

CI!t¢9w 2 CONSTANT LOAD SIMULATION

2.1. Simulation

A critical part of this development is to build a Java based framework to simulate a

discrete system demand, as in the number of concurrent threads competing for the CPU

time, which translate to number of active user sessions accommodated by the online

ecommerce store server over a particular time range. To achieve this goal, the simulation

model abstracts a queuing network model of a standalone system that receives and serves

a group of parallel database queries (tasks) in an attempt to distil, from the mass of details

that is the system itself, exactly those aspects that are essential to the system’s behavior.

Modeling provides a framework for congregating, organizing, evaluating, and

understanding information about a current system subject to this study. Once a model has

been defined through this abstraction process, it can be parameterized to reflect any of the

alternatives under study, and then evaluated to determine its performance under this

alternative. [6] The objective using this approach is to quantify a model, which accurately

reflect the performance measures of the online store.

This simulation framework will further rely heavily on the integration between the

online store and the database management system, in order to make it a query driven

simulator system augmenting the likelihood of matching a typical deployment of an online

store. The usage of Java multi-threading feature will make it conceivable to simulate an

independent entity, or a user session browsing the system, while timing between

independent database activity during certain time slots will be randomized using a normal

8

distribution. In the queue-based system, the JVM connected to a DBMS is considered the

service center where the work gets done. To accomplish a given task, it takes the JVM, a

certain amount of time. If a task arrives faster than it can be processed, a queue builds and

the response time grows as shown below.

Figure 3 – TRANSACTION RESPONSE TIME

As the demand on the JVM mountains, the CPU utilization increases and it becomes

more likely that a newly arriving query will have to wait since there are other queries ahead.

In general, the response time degradation is more pronounced the busier the resource is. It

is the responsibility of the Learning Engine to benchmark the performance metrics over a

configurable period of time. In this application a number of threads will be measured

against response times, memory usage, and CPU utilizations. The simulation framework

will utilize different types of SQL transactions, each of which will result in different

response times. The Learning Engine will be a supervised model that detects the bottleneck

based on the previously mentioned system performance parameters. More of these details

are covered in the next subsections.

9

2.2. Populating the database

To start simulating a real ecommerce solution, we will start by building and populating

a similar ecommerce database. Below is the database schema diagram that is build to mimic

a very known industrial ecommerce store, namely IBM WebSphere e-commerce. [5]

Figure 4 – ONLINE STORE DATABASE SCHEMA

10

A detailed description of each database table is covered in Appendix A. Worth

mentioning that part of the efforts to build a simulator was to build Java classes that use

JDBC driver to connect to the DBMS and utilize “insert” SQL statements. These classes

would run for one time in order to initialize or populate hundreds of thousands of database

records. All these classes are included in a Java package named. “edu.louisville.cs.db.” In

this section, we will not go into detail describing each method in these classes, as they are

insignificant to overall goal. However, a class diagram summarizing these classes is

displayed below.

Figure 5 – CLASS DIAGRAM FOR JAVA OBJECT POPULATING DATABASE

11

2.3. System Specifications and Simulation

This section will cover how to simulate a snapshot of the system performance. We

will start first by detailing the platform specification used for this study.

• The system is Windows Server 2008 based.

• Runs on four processors cores

• Has 6144 MB of RAM

• Has 53GB of hard disk

• Has MySQL database V.56

• Has JVM V.1.7

To simulate a demand of single server, we need to consider the application server

topology. In real commerce implantation, the production environment consists of one or

more application server(s). Each of which has single or multiple server nodes, each node

has shared pooled of database connections to be distributed across the different user web

sessions. The ecommerce site requires enough JDBC pool connections in order to insure

that no threads need to wait for an available database connection. For consideration

regarding the user experience, the number of database connections is set to be relative or

equal to the number of allowed concurrent active web sessions. In a typical active web

session, users would login and become authenticated against the database, search products

and retrieve their information from database, and finally proceed to the checkout flow

where the entire order transaction will again be recorded in the database. Through the user

journey, there is only one database connection through which different database

transactions (queries) are executed. In other words, to simulate the demand of an online

store hosted on a singled server, the simulation system would utilize multi-concurrent

12

threads. Each of these Java threads represents an active web session. Each thread will

establish a new JDBC connection and would run number of queries under each connection.

2.4. Demand Simulation Snapshot and CPU Utilization

To study the demand of the system against the response time and the CPU

utilization and in isolation from the heap allocation or the memory utilization, we will start

by running 100-concurrent threads in order to record a snapshot of the system performance.

In order understand the system behavior that could lead to a bottleneck situation in regard

to only the CPU utilization and query response time and in isolation of the memory

allocation, each of these 100 parallel threads will use a simple insert database query, to

avoid substantial returned result, and hence avoid substantial memory allocation of the

JVM heap. Same query will run for certain number under each database connection

initialized in each thread. We will record the following performance metrics: number of

threads in memory competing for the database resources, the system CPU utilization

percentage, response time, start time of each thread, end time of each thread, JVM heap

ratio, allocated heap memory in KB, Max Heap Memory in KB, and finally the number of

threads served. Each of these metrics will be gathered and recorded toward the end of each

thread execution. In addition, data summary will be calculated to include mean, standard

deviation, median, maximum, and minimum data points. The data summary will be used

later on to normalize the input to the neural network as descried in subsequent sections.

The complete result of the snapshot run is shown in the below table.

13

Threads

in the

Memory

CPU

Utilization

Response Time

(MS)
Start Time End Time

JVM Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

Threads

Served

100 55.90% 64.7394 9471.1332 9535.8726 0.00599 1518 253440 1

99 39.60% 98.8712 9471.4200 9570.2912 0.00599 1518 253440 2

98 28.53% 169.4794 9471.6857 9641.1651 0.01052 2667 253440 3

97 23.49% 222.4609 9472.3764 9694.8373 0.01401 3550 253440 4

96 23.83% 230.4046 9471.8583 9702.2629 0.01266 3208 253440 5

95 23.94% 237.8465 9471.2631 9709.1096 0.01250 3167 253440 6

94 22.17% 259.6832 9472.1675 9731.8507 0.01256 3184 253440 7

93 20.75% 289.4151 9472.0572 9761.4723 0.00599 1518 253440 8

92 20.32% 300.1542 9472.0468 9772.2010 0.00164 415 253440 9

91 20.11% 316.4318 9471.7506 9788.1824 0.01297 3288 253440 10

------ ------ ------ ------ ------ ------ ------ ------ ------

------ ------ ------ ------ ------ ------ ------ ------ ------

------ ------ ------ ------ ------ ------ ------ ------ ------

------ ------ ------ ------ ------ ------ ------ ------ ------

8 13.49% 1060.6872 9471.2123 10531.8995 0.01264 3204 253440 93

7 13.47% 1070.3242 9471.4714 10541.7956 0.01215 3079 253440 94

6 13.50% 1079.3157 9471.1389 10550.4546 0.00272 689 253440 95

5 13.45% 1081.9205 9471.2212 10553.1417 0.00738 1871 253440 96

4 13.47% 1086.5877 9471.3841 10557.9718 0.01087 2755 253440 97

3 13.27% 1085.9374 9472.1406 10558.0780 0.00808 2048 253440 98

2 13.41% 1090.0949 9471.7748 10561.8697 0.01283 3251 253440 99

1 13.26% 1094.3487 9472.2388 10566.5875 0.00599 1518 253440 100

Table 1-CPU Utilization demand simulation snapshot Summary

2.4.1. Demand Simulation Snapshot Run Summary

 CPU Utilization Response Time Heap Ratio

Min 13.21% 64.73 0.00164

Max 55.90% 1094.3 0.01742

Stand Dev 5.48% 728.04 0.00486

Average 16.10% 579.544 0.00796

Median 14.49% 579.544 0.00738

Table 2-CPU Utilization demand simulation summary

14

Figure 6 – JVM HEAP RATIO CHART

Figure 7 – CPU UTILIZATION AND RESPONSE CHART

From the previous records, we could easily spot a correlation between the number of

threads, or web session, and the overall system performance. We can conclude with great

degree of confidence that the system performance in terms of CPU utilization improves as

0.00000

0.00500

0.01000

0.01500

0.02000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

JVM Heap Ratio

JVM Heap Ratio

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

CPU Utilization

CPU Utilization

0

200

400

600

800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Response Time (MS) vs Thread

Response Time (MS) vs
Thread

15

the number of threads competing for the system services decreases. In other words, the

system could reach a deadlock as more threads are competing for its resources. This fact,

as apparent as it is, will justify our future work to rectify the system’s bottleneck situation

by including a queue component in order to manage or stream down elastically an

overwhelming system demand once benchmarked and detected.

2.5. Demand Simulation Snapshot and Memory Utilization

To further study the bottleneck of a system and it is relation to a high memory

allocation, or a high JVM heap utilization as in our case, we will run the same 100-

concurrent threads in order to record a snapshot of the system performance. Each of these

threads will use a search database query, where the returned result is big enough to cause

higher object allocation in the heap. Fresh search query will run for certain number under

each database connection included in each thread. We will record the same previous

performance metrics: number of threads in memory competing for the database resources,

CPU utilization, response time, start time of each thread, end time of each thread, JVM

heap ration, allocated heap memory in KB, Max Heap Memory in KB, number of threads

served. A data summary from average to standard deviation will also be included in a

separate table.

Threads

in the

Memory

CPU

Utilization

Response Time

(MS)
Start Time End Time

JVM Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

Threads

Served

100 100.00% 74.10382 1593.50065 1667.60447 0.96275 244 253.44 1

99 100.00% 95.75259 1593.64834 1689.40093 0.96275 244 253.44 2

98 100.00% 116.71327 1593.10269 1709.81596 0.76941 195 253.44 3

97 98.63% 134.75497 1593.06380 1727.81877 0.94697 240 253.44 4

96 93.77% 161.04976 1593.43684 1754.48660 0.80887 205 253.44 5

95 91.87% 176.59385 1593.44190 1770.03575 0.91935 233 253.44 6

16

94 91.02% 203.44151 1593.03835 1796.47986 0.70234 178 253.44 7

93 89.47% 219.6958 1593.60733 1813.30313 0.79309 201 253.44 8

92 88.08% 249.37769 1593.39249 1842.77018 0.78520 199 253.44 9

-------- -------- -------- -------- -------- -------- -------- -------- --------

-------- -------- -------- -------- -------- -------- -------- -------- --------

9 62.13% 1235.13727 1592.82260 2827.95987 0.72601 184 253.44 92

8 62.11% 1243.44796 1593.06401 2836.51197 0.71812 182 253.44 93

7 61.99% 1248.93478 1593.12268 2842.05746 0.79309 201 253.44 94

6 61.85% 1257.3786 1593.75104 2851.12964 0.59580 151 253.44 95

5 62.00% 1277.89931 1593.09050 2870.98981 0.82071 208 253.44 96

4 62.01% 1279.04924 1593.05784 2872.10708 0.61158 155 253.44 97

3 61.97% 1280.00535 1593.45456 2873.45991 0.69839 177 253.44 98

2 61.89% 1283.23441 1593.83750 2877.07191 0.67077 170 253.44 99

1 61.99% 1288.75338 1593.02577 2881.77915 0.69839 177 253.44 100

Table 3-Memory Utilization demand snapshot summary

2.5.1. Demand Simulation Snapshot Run Summary

 CPU Utilization Response Time Heap Ratio

Min 61.85% 74.10 0.58

Max 100.00% 1288.75 0.96

Stand Dev 10.04% 858.88 0.090417725

Average 69.46% 681.43 0.72

Median 65.06% 681.42 0.71

Table 4-Memory Utilization demand simulation summary

17

Figure 8 – JVM HEAP RATIO CHART

Figure 9 – CPU UTILIZATION AND RESPONSE CHARTS

0

0.2

0.4

0.6

0.8

1

1.2
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

JVM Heap Ratio

JVM Heap Ratio

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

CPU Utilization

CPU Utilization

0

100

200

300

400

500

600

700

800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Response Time (MS) vs Thread

Response Time (MS) vs
Thread

18

 From the previous results it shows that the high object allocation in the JVM heap

is not as significant factor for the system to reach a bottleneck situation. This could be

contributed to the fact that the JVM heap under this study only occupy smaller space of the

system RAM or the hard disk storage and hence saturating the heap size is less significant

on causing a system bottleneck. However, it is evident that larger object allocations lead to

higher the CPU utilization. Also in real application a large heap size could lead to an out

of memory outages. The result from this section and the previous section will justify the

use of queuing system to rectify an overwhelming system demand and will also justify the

fact that we monitor the heap utilization as a performance metric and added as a parameter

to the learning engine to detect a bottleneck situation when it reaches more than 90%.

2.6. Simulation of real ecommerce user sessions

To simulate a real-life user web session on an ecommerce store in respect to the

database load, we collected a real production data from a Business-to-Business (B2B)

ecommerce store to understand the type of queries rendered through the user journey on

the online store. We first started by studying the average user requests per day. The below

data table was collected from a newly published “HP2B” online ecommerce store. The

table below is usually collected on daily basis by a monitoring tool for the purpose of

showing the page load time as a mean of collecting daily performance snapshot of the

production system and to understand where the user may face potential issue while

processing HTTP requests. The “Load Time(s)” column is an average of all the requests

targeted the system on that specific day. The “Beacons” column shows the number of user

requesting URL’s for the associated webpages shown in the “Page Group” table.

19

Row Page Group Load Time (s) Beacons

1 Home Page 7.15 4,164

2 Product Detail Page 10.57 2,476

3 Login Page 3.63 1,347

4 Search Page 2.63 765

5 Others 6.08 663

6 Product Listing Page 6.3 480

7 View Cart Page 4.67 372

8 Checkout Page 4.97 127

Table 5 -HP2B page demands

To better understand the above table, another pivot table and chart, shown below,

are derived from the above data table, to plot the relation between the page type and the

user request. From the below derived table we found that during the user journey from the

login page to the checkout page, most users spend the majority of their web session times

on the home page, interacting with their account details, more than they spend time buying

or submitting an order.

Row Page Group Percentage

1 Home Page 40.06%

2 Product Detail Page 23.82%

3 Login Page 12.96%

4 Search Page 7.36%

5 Others 6.38%

6 Product Listing Page 4.62%

7 View Cart Page 3.58%

8 Checkout Page 1.22%

Table 6-HP2B page demand percentage per user

20

Figure 10 – HP2B SITE PAGE VIEW STATS

To map these results to the system under study, we draw a relation between each

page and its association with the database tables. The home page and the login page account

for around 53% of the web session load. And both are associated with the member and

address tables. Product Detail Page (PDP) accounts for 25% of the web session load and is

associated with the product and inventory tables. The search and the product listing page

(PLP) accounts of about 10% of the session load and again are associated with the product

and inventory tables. The view cart and the checkout pages account for 5% of the session

load and is associated with the “order” table and so on. To simulate the database demand

during the user web session, we will query the database, in each Java thread, number of

times relative to the percentages of the user web session load calculated above and we will

run a new snapshot as shown below. We expect the new reading to be in alignment of the

previous readings specially those from the very last section with different variation.

Threads

in the

Memory

CPU

Utilization

Response Time

(MS)
Start Time End Time

JVM Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

Threads

Served

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

H
o

m
e

P
D

P

L
o

gi
n

 P
ag

e

Se
ar

ch

O
th

er
s

P
L

P

V
ie

w
 C

ar
t

C
h

ec
k

o
u

t

1 2 3 4 5 6 7 8

Page view per number of requests

percentage

21

100 100.00% 26.98033 41694.09321 41721.07354 23 60769 253440 1

99 93.33% 42.12236 41694.03538 41736.15774 16 41377 253440 2

98 86.17% 53.40489 41694.05878 41747.46367 23 59594 253440 3

97 83.04% 62.93324 41694.09243 41757.02567 16 41799 253440 4

96 80.77% 73.39834 41694.08217 41767.48051 23 59115 253440 5

95 79.92% 94.86686 41693.8797 41788.74656 17 43377 253440 6

94 79.19% 104.99724 41693.81618 41798.81342 20 50864 253440 7

93 76.78% 125.36705 41694.14626 41819.51331 19 49942 253440 8

92 77.11% 135.34169 41694.13327 41829.47496 25 64049 253440 9

91 76.70% 145.82959 41694.05341 41839.883 19 50449 253440 10

--------- --------- --------- --------- --------- --------- --------- --------- ---------

--------- --------- --------- --------- --------- --------- --------- --------- ---------

8 70.20% 667.73692 41693.9845 42361.72142 25 65244 253440 93

7 70.15% 672.01238 41693.97993 42365.99231 16 41288 253440 94

6 70.29% 678.72642 41694.01868 42372.7451 20 51975 253440 95

5 70.34% 682.65985 41693.89277 42376.55262 22 57195 253440 96

4 70.27% 685.50448 41693.89904 42379.40352 19 50501 253440 97

3 70.19% 689.25683 41693.98959 42383.24642 23 60560 253440 98

2 70.07% 693.91156 41694.00244 42387.914 23 59711 253440 99

1 69.94% 699.2557 41694.06585 42393.32155 25 63494 253440 100

Table 7 -HP2B simulations run summary

2.6.1. Demand Simulation Snapshot Run Summary

 CPU Utilization Response Time Heap Ratio

Min 69.94% 26.98 15.00000

Max 100.00% 699.255 25.00000

Stand Dev 4.42% 475.37 2.96573

Average 72.61% 363.11 20.18000

Median 71.40% 363.11 20.00000

Table 8 -HP2B simulations run summary

22

Figure 11 – JVM HEAP RATIO

Figure 12 – CPU UTILIZATION AND RESPONSE TIME CHARTS

0

5

10

15

20

25

30
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

JVM Heap Ratio

JVM Heap Ratio

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%
CPU Utilization

CPU Utilization

0

100

200

300

400

500

600

700

800

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6

Response Time (MS) vs Thread

Response Time (MS) vs
Thread

23

2.7. Summary

In this chapter, we took three snapshots of the system to understand the correlation

between certain parameters and overall system performance. We also concluded that there

is a direct relation or dependency between the number of active resources competing for

the processer time, the heap utilization or the memory allocation, on one hand, and the

CPU utilization and the response time, on the other hand. The results from these snapshots

will constitute all of our future work in the next chapters.

24

CI!t¢9w 3 LEARNING ENGINE

This engine monitors different system metrics and learns when to benchmark and detect

a system bottleneck. The learning engine monitors the performance metrics of the requestor

system, where the multi-threading Java application is running, and the provider system

where the common resources run, i.e. the DBMS in our case. The Learning Engine will

continuously monitor performance metrics such memory usage and CPU utilizations and

will be able to adapt to any changes in the monitored system (the provider system) to

accurately identify a bottleneck situation. Once this monitoring model is benchmarked, it

will assess and quantify the relation between performance metrics and the occurrences of

a bottleneck.

 Figure 13 – LEARNING ENGINE

To achieve this goal, continuous learning and adaptability, learning engine will use a

lightweight implementation of Artificial Neural Network (ANN). ANN will assign random

25

interconnection weights for the performance metrics. i.e. response time, CPU usage, and

memory utilizations, by applying a set of training or learning samples. The final effects of

a learning process are tuned parameters of a network the will help point to a bottleneck

situation. Moreover, it will be able to figure out the right weights of the performance input

parameters in cases where an ambiguity surround whichever performance metrics has the

most effect on the system performance. The lightweight is also a requirement for the

Cognitive Performance Application not to constitute a performance burden on the host

system.

3.1. Neural Network Type

The neural network implemented in our application is of a type feedforward. Meaning

the flow of the signal is on one direction. The input signals are fed into the input layer and

then forward to the next layer. The network learning is also a supervised because the

objective is to map input data (X’s) to an output (Y) through a learning function f.

F: X Y. where Y data acts as the supervisor. [7]

The below diagram shows the neural network implemented.

 Figure 14 – IMPLEMENTED NEURAL NETWORK

26

In this neural network there is one input layer and one hidden layer following monolayer

network architecture for simplicity and outmost performance.

3.2. Neural Network Input

The input data in our case will be the CPU utilization ranging percentage and the JVM

heap ratio. Both inputs normalized and are ranging from 0 to 1. The output on the other

hand will be either 0 or 1 as a classification of the system bottleneck, where 1 is true and 0

is false. Training data will be provided for the neural network at the time of initialization

as in two-dimension array shown below.

float[][] trainingData = new float[][] {

{0.70f, 0.73f }, {1.0f, 0.81f }, {0.1f, 0.86f },

{0.90f, 0.95f }, {1.0f, 0.45f }, {0.2f, 0.70f },

{0.95f, 0.51f }, {0.6f, 0.89f }, {0.3f, 0.79f },

{0.93f, 0.51f }, {0.5f, 0.89f }, {0.4f, 0.79f },

{0.91f, 0.71f }, {0.89f, 1.0f }, {0.9f, 0.39f },

{0.92f, 0.1f }, {0.93f, 1.0f }, {0.94f, 0.4f },

{0.88f, 0.37f }, {0.87f, 0.87f },{0.86f, 0.76f}, };

The actual results of these learning input will be also provided as one dimensional array

of zero’s and one’s as shown below.

int[] actuals = new int[]{

 0,1,0, 1,1,0,

 1,0,0, 1,0,0,

 1,0,1, 1,1,1, 0,0,0};

Worth mentioning, that the input data in this above form satisfies both the vectorization

and normalization prerequisites of artificial neural network input data. [8] Below code

shows how input and output weights, and bias are randomly initialized.

 private void initWeights(int neurons, int dimension) throws ZeroNeuronsException,

ZeroInputDimensionException {

 if (neurons == 0)

 throw new ZeroNeuronsException();

 if (dimension == 0)

 throw new ZeroInputDimensionException();

 for (int i = 0;i<neurons;i++){

27

 this.bias[i] = Utils.randFloat(-0.5f, 0.5f);

 this.outWeights[i] = Utils.randFloat(-0.5f, 0.5f);

 for (int j = 0;j<dimension;j++) {

 this.inputWeights[j][i] = Utils.randFloat(-0.5f, 0.5f);

 }

 }

 }

3.3. Learning procedure

The below flow diagram summarizes the neural network systematic learning process.

 Figure 15 – NEURAL NETWORK SYSTEMATIC LEARNING

Learning procedure is iterative process and is controlled or stopped when reaching the

maximum number of iterations (private int maxEpochs= 10000;). Another important

parameter is the learning rate (float learningRate = 0.05f;), which dictates how strongly

the neural network would vary in the weights’ hyperspace. [8] ANN will check it is

response or result against the input data and will calculate how far off the results (float

error = actual - fOut;). Then it will use the “Delta rule”, which is an algorithm based on

the gradient descent method to account for nonlinearity, to determine how the input and

28

output weights (W) and biases will be updated. The complete method implementation is

shown below.

private void initLearn(float actual, float fOut, float[] expectedOutput, float[]

outWeights, float[][] inputWeights, float[] bias, float bOut, int neurons, float[]

input, int dimension) {

 float error = actual - fOut;

 float learningRate = 0.05f;

 float dv;

 float[] dw = new float[neurons];

 float[][] dwi = new float[dimension][neurons];

 float[] dbi = new float[neurons];

 float[] db = new float[neurons];

 // Modify out weights

 dv = fOut * (1-fOut) * error;

 for (int i = 0;i<neurons;i++){

 this.outWeights[i] = outWeights[i] + learningRate * dv * expectedOutput[i];

 }

 // Modify out bias out

 float dbOut = learningRate * dv * 1;

 this.bOut = (bOut + dbOut);

 // Modify input weights

 for (int i = 0;i<neurons;i++){

 dw[i] = expectedOutput[i] * (1 - expectedOutput[i]) * outWeights[i] * dv;

 for (int j = 0;j<dimension;j++){

 dwi[j][i] = learningRate * dw[i] * input[j];

 this.inputWeights[j][i] = inputWeights[j][i] + dwi[j][i];

 }

 }

 // Modify input bias

 for (int i = 0;i<neurons;i++){

 dbi[i] = expectedOutput[i] * (1 - expectedOutput[i]) * outWeights[i] * dv;

 db[i] = learningRate * dbi[i] * 1;

 this.bias[i] = bias[i] + db[i];

 }

 }

3.4. Sigmoid Activation Function

The activation function calculates a “weighted sum” of its input, adds a bias as below

 (weight * input) + bias

This is implemented as shown below

private float calculateFOut(float[] x){

 for (int i = 0;i<neurons;i++){

 float sum = 0;

 for (int j=0; j<dimension; j++){

 sum = sum + (x[j] * wWeights[j][i]);

 }

 this.fOutArray[i] = ActivationFunction.activate(sum + bias[i]);

29

 }

 this.fOut = 0;

 for (int i = 0;i<neurons;i++){

 this.fOut += fOutArray[i] * vWeights[i];

 }

 return ActivationFunction.activate(fOut + bOut);

}

And then decides whether it should be “activated” or not using the output of the

following equation:

𝑨 =
𝟏

𝟏 + 𝒆−𝒙

, which is implemented as shown below

public class SigmoidFunction implements ActiviationFunction {

 @Override

 public float activate(float value) {

 return (float)(1/(1+Math.exp(-value)));

 }}

As the outcome of classification problem is binary, we also added “parser” to convert the

output to only 1 if the result is above (0.5) and zero otherwise as shown below.

@Override

 public Integer parseResult(float result) {

 return (result < 0.5) ? 0 : 1;

 }

3.5. Neural Network Classification Method

Once the neural network has learned, or the final values of the weights and bias have

been declared, we surround the method descried earlier “calculateFOut” with another

wrapper to restrict the output to the only zero’s and ones’ as shown below.

@Override

 public Integer parseResult(float result) {

 return (result < 0.5) ? 0 : 1; }

30

For simplicity we also wrap the previous method with another wrapper to restrict the output

to true and false corresponding to the ones and zeros concluded in the previous method.

The true indicates a “deadlock” classification and false otherwise.

public boolean classify(double CPUUlization, double Heap) {

 float[] valueToPredict = new float[] {(float)CPUUlization, (float)Heap};

 if (result.classifyValue(valueToPredict)==1)

 return true;

 else return false;

 }

3.6. Neural Network Kernel

The below code is the heart of the learning engine. It initializes the neural network, set

the number of neuron and the number of the hidden layers, and the activation method. It

also randomly assigns values for its input and output weights and bias. Then loops number

of times relative to the number of epochs parameter and calls both analyzer and the learner

classes. The “analyzer” sums the weights and the input values, and then calculates the

expected output values using the activation method. The “learner” calculates the error by

subtracting the actual output from the expected output and updates the weights and bias

using the delta rule. The code is shown below.

Public class NeuralNetworkThread implements Runnable {

 @Override

 public void run() {

 float quadraticError = 0;

 float MSE = 0;

 float[] f;

 int success = 0;

 for (int i = 0; i<maxEpochs; i++) {

 success = 0;

 for (int z = 0; z<nElements; z++) {

 analyzer = new Analyzer (getRowElements(z), inputWeights, bias,

 outWeights, bOut, neurons, activateFunction, dimension);

 f = analyzer.getFOutArray();

 fOut = analyzer.getFOut();

 learner = new Learner (outputs[z], fOut, f, outWeights,

inputWeights,

 bias, bOut, neurons, getRowElements(z), dimension);

 outWeights = learner.getVWeights();

 inputWeights = learner.getWWeights();

31

 bias = learner.getBias();

 bOut = learner.getBOut();

 success = resultParser.countSuccesses(success, fOut, outputs[z]);

 quadraticError += Math.pow(((outputs[z] - fOut)), 2);

 }

 quadraticError *= 0.5f;

 }

 float successPercentage = (success / (float)nElements) * 100;

 result = new Result(analyzer, resultParser, successPercentage,

quadraticError);

 }}

3.7. Mean Squared error

To show the how accurate the neural network becomes, we plotted the below diagram

using the MSE data over the complete number of iterations. It is easy to note that MSE

decreases as the number of epoch’s increases to almost near a zero value.

Figure 16 – MSE PER EPOCH

0

1

2

3

4

5

6

MSE per Epoch

MSE per Epoch

32

3.8. Learning Engine Class Diagram

The below graph a UML class diagram summarizing the structure of the learning engine.

Figure 17 – LEARNING ENGINE CLASS DIAGRAM

33

CI!t¢9w 4 ANALYTICS ENGINE

The second component of the Cognitive Performance Application (CPA) is the

Analytics engine. The Analytics Engine is a core component of the system that will act

primarily as an early alert mechanism that will predict the situation leading to a system

deadlock. This component will work continuously in the backend and will keep

autonomously correcting its predictions results with the ability to adapt to the different

changes in the system specifications. The system will collect a library of factors, which

feed through the application in order to establish a pattern of behavior pertaining to the

overall performance. At this point, the application usually depends on a human interference

for configuring and integrating the feeds of this library of factors into the applications. To

establish such a pattern, the input of domain experts usually are needed to decide on the

input parameters of the system performance predictive model in regard to forecasting the

online commerce store future demand. In real world the demand of a particular eCommerce

store could be a subject of multiple correlated relations with metrics that can be collected

externally or internally from:

o Current user on the store

o Commerce stores database, such as the trending of daily average of order

transactions number

o Weather company, such as feeds of daily temperatures, or the mark and end

of weather seasons

o Social media buzz, such as twitter

▪ We can also extract other factors such as political stability, social

rest…and other materics to predict global demand.

34

o ...etc.

The previously mentioned feeds can be integrated in many ways such as be

implementing a scheduled service-oriented architecture (SOA) calls, where services are

provided to the other components through a communication protocol over a network, or

alternatively through an Extract, Transform, and Load (ETL) architecture. The architecture

for the CPA will be flexible to be extended to different patterns of feeds i.e. either SOA or

ETL.

Figure 18 – ONE FLAVOR OF THE ANALYTICS ENGINE

In our implementation, we will use the internal user load to predict the future

demand in terms of the CPU utilization. If the future CPU utilization if above certain

threshold the analytics engine will trigger a signal, in combination of the learning engine

signal, to the queue system to take the necessary rectifying methods.

35

4.1. Factory Design Pattern

Learning engine will be based on a Factory design pattern. Factory design pattern is

used to create objects or Class in Java and it provides loose coupling and high cohesion.

Factory pattern encapsulate object creation logic which makes it easy to change it later

when you change how object gets created or you can even introduce new object with just

change in one class. The obvious reason for this architecture decision is that we will have

different analytics models that we will choose among them to initialize our learning engine.

These analytics models are

1- Linear Regression Model

2- Multiple Linear Regression Model

3- Polynomial Linear Regression Model

In our learning engine we will implement a parent interface for the previous sub models

and we use declaration method to initialize the best fit model after processing the input

data as shown in the code below.

PredictingModel forecaster = Predictor.getBestForecast(observedData);

Using the factory pattern will enable the analytic engine to choose among the different

predictive models. Likewise, will make it a “scalable” to add new patterns in the future

4.2. Best Fit Model Criteria

The choice among the predictive models will be based on how a good fit they are

determined by the following calculation criteria

36

• Akaike Information Criteria (AIC)

• Arithmetic mean of the errors (bias)

• Mean Absolute Deviation (MAD)

• Mean Absolute Percentage Error (MAPE)

• Mean square of the errors (MSE)

• Sum of Absolute Errors (SAE)

The calculation and the implementation of earlier analytical criteria are shown below

 /**
 * A method to calculate the various accuracy indicators when

 * applying the given DataSet to the current forecasting model.

 **/
protected void calculateAccuracyIndicators(DataSet dataSet)

 {

 // Note that the model has been initialized
 initialized = true;

 // Reset various helper summations
 double sumErr = 0.0;

 double sumAbsErr = 0.0;

 double sumAbsPercentErr = 0.0;
 double sumErrSquared = 0.0;

 // Obtain the forecast values for this model

 DataSet forecastValues = new DataSet(dataSet);

 predict(forecastValues);

 // Calculate the Sum of the Absolute Errors

 Iterator<DataPoint> it = dataSet.iterator();

 Iterator<DataPoint> itForecast = forecastValues.iterator();
 while (it.hasNext())

 {

 // Get next data point
 DataPoint dp = it.next();

 double x = dp.getDependentValue();

 // Get next forecast value

 DataPoint dpForecast = itForecast.next();

 double forecastValue = dpForecast.getDependentValue();

 // Calculate error in forecast, and update sums appropriately

 double error = forecastValue - x;

 sumErr += error;

 sumAbsErr += Math.abs(error);

 sumAbsPercentErr += Math.abs(error / x);
 sumErrSquared += error*error;

 }

 // Initialize the accuracy indicators

 int n = dataSet.size();
 int p = getNumberOfPredictors();

 accuracyIndicators.setAIC(n*Math.log(2*Math.PI)
 + Math.log(sumErrSquared/n)

 + 2 * (p+2));

 accuracyIndicators.setBias(sumErr / n);

37

 accuracyIndicators.setMAD(sumAbsErr / n);

 accuracyIndicators.setMAPE(sumAbsPercentErr / n);

 accuracyIndicators.setMSE(sumErrSquared / n);

 accuracyIndicators.setSAE(sumAbsErr);
 }

}

4.3. Predictive Analytics Models

Once the feeds and the means of integration are established, the predictive analytic

model needs to be activated to forecast the future demand. Again, there are many

techniques or methods that can be used to establish such model. Many machine learning

techniques can be utilized to establish the system demand predictive model such as

regression, clustering, classifications, decision trees/rules, k-nearest neighbors…etc [9].

This document will focus only on three solid predictive models. These analytics models

are

• Linear Regression Model

• Multiple Linear Regression Model

• Polynomial Linear Regression Model

The detail of each will be discussed in the subsequent sections.

4.3.1. Linear Regression Model

An example of these techniques is a regression predicative model. Linear regression

was developed in the field of statistics and is studied as a model for understanding the

relationship between input and output numerical variables, and later it has been brought on

to be a branch machine learning. The idea of regression model is to find the best-fitting

line among historic data points. [10] This will be done through calculating the slope and

the intercept as in the below equation

38

Y = intercept + slope * X

Where Y in our application would be the CPU utilization, and X is the number of the user

session. X is the independent variable that will be used to predict the value of Y. The

intercept and the slope are calculated as

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =
((∑𝑦)(∑𝑥2) − (∑𝑥)(∑𝑥𝑦))

(𝑛(∑𝑥2) − (∑𝑥)2)

𝑠𝑙𝑜𝑝𝑒 =
(𝑛(∑𝑥𝑦)−(∑𝑥)(∑𝑦))

(𝑛(∑𝑥2)−(∑𝑥)2)

We could use other example of the independent variable such in time unite, such as a day

or an hour, average temperature, competitor price and so on, but we will stick to the earlier

definition for simplicity. The given representation is a linear equation, making predictions

as simple as solving the equation for a specific set of inputs.

The implementation of regression predictive model can be programmed using a Java

program (class) the will be part of the Cognitive Performance Application’s analytics

engine. The calculation of the liner regression is carried out in the init method as shown in

the below code snippet. which is part of the LinearRegressionModel class.

public void init(DataSet dataSet)

 {

 int n = dataSet.size();

 double sumX = 0.0;

 double sumY = 0.0;

 double sumXX = 0.0;

 double sumXY = 0.0;

 Iterator<DataPoint> it = dataSet.iterator();

 while (it.hasNext())

 {

 DataPoint dp = it.next();

 double x = dp.getIndependentValue(independentVariable);

 double y = dp.getDependentValue();

 sumX += x;

 sumY += y;

 sumXX += x*x;

 sumXY += x*y;

39

 }

 double xMean = sumX / n;

 double yMean = sumY / n;

 slope = (n*sumXY - sumX*sumY) / (n*sumXX - sumX*sumX);

 intercept = yMean – slope * xMean;

 }

Once the model has been established, the calculation for the slope and the intercept has

been completed we use the below method to predict the value for CPU utilization of the

next future user session.

public double predict(DataPoint dataPoint)

 {

 double x = dataPoint.getIndependentValue(independentVariable);

 double forecastValue = intercept + slope*x;

 dataPoint.setDependentValue(forecastValue);

 return forecastValue;

 }

4.3.2. Multiple Linear Regression Model

A multiple variable linear regression model essentially attempts to put a hyperplane

through the data points. Mathematically, assuming the independent variables are xi and the

dependent variable is Y. This hyperplane can be represented as in the below equation:

Y = b0 + b1 * x1 + b2 *x2 + b3*x3 + ...bi*xi

• Where the bi are the coefficients of the regression. b0 is called the intercept.

Let each of the i predictor variables, x1, x2, … xi, have n levels. Levels can be expressed in

the following way:

y1 = b0 + b1* x11 + b2 *x12 + b3*x13 + ...bi * x1i

y2 = b0 + b1* x21 + b2 *x22 + b3*x23 + ...bi * x2i

……

yn = b0 + b1* xn1 + b2 *xn2 + b3*xn3 + ...bi * xni

40

The system of (n) equations shown previously can be represented in matrix notation as

follows:

𝑌 = 𝑋𝑏

For the special case of one variable the above matrix can be expressed as below:

[
𝑛 Σ𝑥

Σ𝑥 Σ𝑥2] [
𝑏0

𝑏1
] = [

Σ𝑦
Σ𝑥𝑦

]

For two variables the above matrix can be expressed as below:

[

𝑛 Σ𝑥1 Σ𝑥2

Σ𝑥1 Σ𝑥1
2 Σ𝑥1𝑥2

Σ𝑥2 Σ𝑥1𝑥2 Σ𝑥2
2

] [

𝑏0

𝑏1

𝑏2

] = [

Σ𝑦
Σ𝑥1𝑦
Σ𝑥2𝑦

]

and so on. The previous illustrated calculation for multi regression model is carried out in

the init method as shown in the below code snippet, which is part of the

MultipleLinearRegressionModel class.

public void init(DataSet dataSet){

 String varNames[] = dataSet.getIndependentVariables();

 // If no coefficients have been defined for this model,

 // use all that exist in this data set

 if (coefficient == null)

 setIndependentVariables(varNames);

 int n = varNames.length;

 double a[][] = new double[n+1][n+2];

 // Iterate through dataSet

 Iterator<DataPoint> it = dataSet.iterator();

 while (it.hasNext())

 {

 // Get next data point

 DataPoint dp = it.next();

 // For each row in the matrix, a

 for (int row=0; row<n+1; row++)

 {

 double rowMult = 1.0;

 if (row != 0)

 {

 // Get value of independent variable, row

 String rowVarName = varNames[row-1];

 rowMult = dp.getIndependentValue(rowVarName);

 }

 // For each column in the matrix, a

 for (int col=0; col<n+2; col++)

 {

 double colMult = 1.0;

 if (col == n+1)

41

 {

 // Special case, for last column

 // use value of dependent variable

 colMult = dp.getDependentValue();

 }

 else if (col > 0)

 {

 // Get value of independent variable, col

 String colVarName = varNames[col-1];

 colMult =

dp.getIndependentValue(colVarName);

 }

 a[row][col] += rowMult * colMult;

 }

 }

 }

 // Solve equations to derive coefficients

 double coeff[] = Utils.GaussElimination(a.length(), a);

 // Assign coefficients to independent variables

 intercept = coeff[0];

 for (int i=1; i<n+1; i++)

 coefficient.put(varNames[i-1], new Double(coeff[i]));

 // Calculate the accuracy indicators

 calculateAccuracyIndicators(dataSet);

 }

Once the multi regression problem is expressed in a matrix form we can implement

a Gaussian elimination on the given matrix to find the values of the coefficients b0, b1, b2

… bn, as shown in the code snippet below, which is part of a common utility class.

static double[] GaussElimination(int n, double a[][])

 {

 // Forward elimination

 for (int k=0; k<n-1; k++)

 {

 for (int i=k+1; i<n; i++)

 {

 double qt = a[i][k] / a[k][k];

 for (int j=k+1; j<n+1; j++)

 a[i][j] -= qt * a[k][j];

 a[i][k] = 0.0;

 }

 }

 double x[] = new double[n];

 // Back-substitution

 x[n-1] = a[n-1][n] / a[n-1][n-1];

 for (int k=n-2; k>=0; k--)

 {

 double sum = 0.0;

 for (int j=k+1; j<n; j++)

 sum += a[k][j]*x[j];

 x[k] = (a[k][n] - sum) / a[k][k];

 }

 return x;

 }

42

Once the model has been established, or that the y-intercept and the other

coefficients have been calculated, we can use the below method to predict the value for

CPU utilization, or the independent value, of the next future iteration.

 Public double predict(DataPoint dataPoint)

 {

 double forecastValue = intercept;

 Iterator< Map.Entry<String,Double> > it = coefficient.entrySet().iterator();

 while (it.hasNext())

 {

 Map.Entry<String,Double> entry = it.next();

 // Get value of independent variable

 double x = dataPoint.getIndependentValue((String)entry.getKey());

 // Get coefficient for this variable

 double coeff = ((Double)entry.getValue()).doubleValue();

 forecastValue += coeff * x;

 }

 dataPoint.setDependentValue(forecastValue);

 return forecastValue;

 }

4.3.3. Polynomial Regression Model

When the relation between the independent variable (x) and the dependent variable

(y) is not linear is not linear but rather show as “curve” we can use a single variable

polynomial regression model, which essentially attempts to put a polynomial line through

the data points. Mathematically, assuming the independent variable is x and the dependent

variable is y, then this line can be represented as:

y = b0 + b1*x1 + b2*x2 + b3*x3 + ... + bm*xm

*Where “m” is order of the polynomial equation. [11]

43

Without getting into much details of how to drive the mathematical equation for the

polynomial regression, which is beyond the scope of this document, the problem can

represent itself in a matrix form as shown below.

[

𝑛 Σ𝑥𝑖 … ∑𝑥𝑖
𝑚

Σ𝑥1 ∑𝑥𝑖
2 … ∑𝑥𝑖

𝑚+1

… … … …

∑𝑥𝑖
𝑚 ∑𝑥𝑖

𝑚+1 … ∑𝑥𝑖
2𝑚

] [

𝑏0

𝑏1

…
𝑏𝑚

] = [

Σ𝑦𝑖

Σ𝑥𝑖𝑦𝑖

… .
Σ𝑥𝑖

𝑚𝑦𝑖

]

This matrix presentation is carried out in the init method as shown in the below code

snippet, which is part of the PolynomialRegressionModel class.

public void init(DataSet dataSet)

 {

 double a[][] = new double[order][order+1];

 for (int i=0; i<order; i++) {

 for (int j=0; j<order; j++){

 int k = i + j;

 Iterator<DataPoint> it = dataSet.iterator();

 while (it.hasNext())

 {

 DataPoint dp = it.next();

 double x = dp.getIndependentValue(independentVariable);

 a[i][j] = a[i][j] + Math.pow(x,k);

 }

 }

 Iterator<DataPoint> it = dataSet.iterator();

 while (it.hasNext())

 {

 DataPoint dp = it.next();

 double x = dp.getIndependentValue(independentVariable);

 double y = dp.getDependentValue();

 a[i][order] += y*Math.pow(x,i);

 }

 }

 coefficient = Utils.GaussElimination(order, a);

 // Calculate the accuracy indicators

 calculateAccuracyIndicators(dataSet);

 }

44

Once the single polynomial regression problem is expressed in a matrix form we

can implement a Gaussian elimination on the given matrix to find the values of the

coefficients a0, a1, a2 … an, as shown in the previous section. And once the polynomial

regression model calculation has been completed, we can use the below method to predict

the value for CPU utilization, or the independent value, of the next future iteration.

public double predict(DataPoint dataPoint)

 {

 double x = dataPoint.getIndependentValue(independentVariable);

 double forecastValue = 0.0;

 for (int i=0; i<order; i++)

 forecastValue += coefficient[i] * Math.pow(x,i);

 dataPoint.setDependentValue(forecastValue);

 return forecastValue;

 }

4.3.4. Models Comparison

Once the above models are established and calculated, we use an evaluation criteria

class to specify how to compare the different models based on the values of Akaike

Information Criteria (AIC), Arithmetic mean of the errors (bias), Mean Absolute Deviation

(MAD), Mean Absolute Percentage Error (MAPE), Mean square of the errors (MSE), Sum

of Absolute Errors (SAE.) we can also use them all in our comparison as shown in the code

below which is part of the Predictor class.

 static boolean compare(PredictingModel model1,

 PredictingModel model2,

 EvaluationCriteria evalMethod)

 {

 // Special case. Any model is better than no model!

 if (model2 == null)

 return true;

 double tolerance = 0.00000001;

 // Use evaluation method as requested by user

 if (evalMethod == EvaluationCriteria.BIAS)

 return (model1.getBias() <= model2.getBias());

 else if (evalMethod == EvaluationCriteria.MAD)

 return (model1.getMAD() <= model2.getMAD());

 else if (evalMethod == EvaluationCriteria.MAPE)

 return (model1.getMAPE() <= model2.getMAPE());

45

 else if (evalMethod == EvaluationCriteria.MSE)

 return (model1.getMSE() <= model2.getMSE());

 else if (evalMethod == EvaluationCriteria.SAE)

 return (model1.getSAE() <= model2.getSAE());

 else if (evalMethod == EvaluationCriteria.AIC)

 return (model1.getAIC() <= model2.getAIC());

 // Default evaluation method is a combination

 int score = 0;

 if (model1.getAIC()-model2.getAIC() <= tolerance)

 score++;

 else if (model1.getAIC()-model2.getAIC() >= tolerance)

 score--;

 if (model1.getBias()-model2.getBias() <= tolerance)

 score++;

 else if (model1.getBias()-model2.getBias() >= tolerance)

 score--;

 if (model1.getMAD()-model2.getMAD() <= tolerance)

 score++;

 else if (model1.getMAD()-model2.getMAD() >= tolerance)

 score--;

 if (model1.getMAPE()-model2.getMAPE() <= tolerance)

 score++;

 else if (model1.getMAPE()-model2.getMAPE() >= tolerance)

 score--;

 if (model1.getMSE()-model2.getMSE() <= tolerance)

 score++;

 else if (model1.getMSE()-model2.getMSE() >= tolerance)

 score--;

 if (model1.getSAE()-model2.getSAE() <= tolerance)

 score++;

 else if (model1.getSAE()-model2.getSAE() >= tolerance)

 score--;

 return (score > 0);

 }

}

4.4. Run Example

The below example will show how the analytic system predict the value of the CPU

utilization for the next User session based on the CPU utilization values recorded for the

immediate preceding five user sessions as shown in the below table.

User Session # CPU Utilization

0 51.6504854368932

1 24.271844660194176

2 54.166666666666664

3 92.63657957244655

4 78.33622183708839

5 ?

Table 9 –CPU Per User Session

46

The below graph is a visual presentation of these data point.

Figure 19 – ANALYTICS ENGINE EXAMPLE RUN

The analytical engine decided that the best model is the Analytics Engine is linear

regression model with the following equation:

y=35.86511809212924+12.173620771264279*x

, and the predicted value of the CPU utilization for the next run will be predicted value:

96.73322194845063

 as shown in the system logs captured below.

Data set: (

 (x=0.0,dependentValue=51.6504854368932)

 (x=1.0,dependentValue=24.271844660194176)

 (x=2.0,dependentValue=54.166666666666664)

 (x=3.0,dependentValue=92.63657957244655)

 (x=4.0,dependentValue=78.33622183708839)

)

bestModel: linear regression model with the following equation:

 y=35.86511809212924+12.173620771264279*x

count---5

predicted value: 96.73322194845063

0 1 2 3 4

Actual Values 51.65048544 24.27184466 54.16666667 92.63657957 78.33622184

Predicted Values 35.86511809 48.03873886 60.21235963 72.38598041 84.55960118

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

ti
li

za
ti

o
n

CPU Utilization Per User Session

47

4.5. Analytics Engine Class Diagram

The below graph a UML class diagram summarizing the structure of the learning engine.

Figure 20 – ANALYTICS ENGINE UML CLASS DIAGRAM

48

4.6. Summary

The Analytics Engine is a component of the Cognitive Performance Application that

establishes a pattern between library of factors and the system performance gauges to act

as an early alert system signaling a potential deadlock. In this chapter we explained the

architecture decision of using a factory design pattern to make the model scalable for future

updates. We also have shown the three different models that constitute the core of our

engine, namely

• Linear Regression Model

• Multiple Linear Regression Model

• Polynomial Linear Regression Model

Moreover, we have explained how the system will compare and choose between these

model based on the accuracy of the their calculation using the following criteria

• Akaike Information Criteria (AIC)

• Arithmetic mean of the errors (bias)

• Mean Absolute Deviation (MAD)

• Mean Absolute Percentage Error (MAPE)

• Mean square of the errors (MSE)

• Sum of Absolute Errors (SAE)

49

CI!t¢9w 5 QUEUING ENGINE

The Queuing engine is the last component of the Cognitive Performance Application.

The engine will have two execution modes.

• A pass-through

• Queuing mode.

 The learning engine or the analytics engine will signal the mode of execution for the

queening engine. When the pass-through signal is flagged, all database transactions will go

uninterrupted from the JVM to the DBMS. When the queuing mode is signaled, the

database queries will join a First-Come-First-Serviced (FCFS) queue structure. The

database queries in the queue structure will be concurrently executed after adding a trifling

delay to each in order to stream down the flow and reduce the performance load on the

JVM and DBMS. The queuing engine will iterate between the two execution modes based

on the signal given.

50

Figure 21 – JAVA QUEUING ENGINE

We will use native library called BlockingQueue.Java.util.concurrent.BlockingQueue,

which is a Java Queue that support operations that wait for the queue to become non-empty

when retrieving and removing an element, and wait for space to become available in the

queue when adding an element. Java BlockingQueue doesn’t accept null values and throw

NullPointerException when storing null value in the queue. Java BlockingQueue

implementations are thread-safe. All queuing methods are atomic in nature and use internal

locks or other forms of concurrency control. Java BlockingQueue interface is part of Java

collections framework and it’s primarily used for implementing producer consumer

problem. We don’t need to worry about waiting for the space to be available for producer

or object to be available for consumer in BlockingQueue because it is handled by

implementation classes of BlockingQueue. Java provides several BlockingQueue

implementations such as ArrayBlockingQueue, LinkedBlockingQueue,

PriorityBlockingQueue, SynchronousQueue etc. While implementing producer consumer

problem in BlockingQueue, we will use LinkedBlockingQueue implementation.

51

package cpu.cs.louisville.edu;

import Java.sql.Connection;

import Java.sql.Statement;

import Java.text.NumberFormat;

import Java.util.Random;

import Java.util.concurrent.BlockingQueue;

import Java.util.concurrent.LinkedBlockingDeque;

public class UserSession implements Runnable {

 static Connection connect = null;

 static Statement statement = null;

 private int threadNumber;

 private boolean runTimeMode = true;

 private int counterRunRound;

 public UserSession(int threadNum, boolean runTime, int counterRunNum){

 this.threadNumber = threadNum;

 this.runTimeMode = runTime;

 this.counterRunRound = counterRunNum;

 }

 NumberFormat format = NumberFormat.getInstance();

 static long maxMemory ;

 static long allocatedMemory;

 static long heapRatio;

 private BlockingQueue<SessionQueries> concurrentLinkedQueue = new

LinkedBlockingDeque<SessionQueries>(100);

 public void dequeueItem() {

 if (!concurrentLinkedQueue.isEmpty()) {

 // System.out.println("Queue size: " + concurrentLinkedQueue.size());

 try {

 concurrentLinkedQueue.take().runQueries(connect, statement,

format, maxMemory, allocatedMemory,

 heapRatio, this.threadNumber,

this.counterRunRound);

 } catch (Exception e) {}

 } else {

 System.out.println("Queue Empty ");

 }

 }

 private void enqueueItem(SessionQueries item) throws Exception {

 // System.out.println("Enqueueing item ");

 concurrentLinkedQueue.put(item);

 }

 public int getQueueSize() {

 if (!concurrentLinkedQueue.isEmpty()) {

 return concurrentLinkedQueue.size();

 } else {

 return 0;

 }

 }

 /**

 *

 */

 public void run(){

 SessionQueries session = new SessionQueries();

 int numberOfUserSession = (new Random().nextInt(100)) ;

 System.out.println("number Of User Session "+numberOfUserSession);

 for (int count = 0 ; count < numberOfUserSession ; count++){

52

 // if (this.runTimeMode == true){

 // StaticRecord st = new StaticRecord();

 if (StaticListener.isDeadLock() == false){

 try {

 session.runQueries(connect,

statement, format, maxMemory, allocatedMemory, heapRatio, count, this.counterRunRound);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }else {

 try {

 enqueueItem(session);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 }

}// end of UserSession

This queue structure will be used to rectify the system deadlock situation when the number

of queries overwhelms the system and cause the CPU utilization to reach its peak

53

CI!t¢9w 6 RANDOM LOAD SIMULATION

In this section, a system run is descried for a certain amount of duration, five minutes

to be exact. During the five minutes range, the simulator program triggers a random

number of threads, user sessions, at constant rate, 12 seconds to be exact. Also for this run

the Java heap size is being reduced to help the system reach a bottleneck situation and

hence study the recovery mechanism.

6.1. Discrete vs. Continuous

The simulator only triggers random number of threads, sampling user loads, every

twelfth seconds during a five-minute range and hence, by definition, is classified as a

discrete process. The choice of using a discrete run was to assemble the actual user load on

an online system. Otherwise, the simulator would have triggered the number of the users

in a loop structure such as the Java language “for” or “while” loops continuously for the

same time range, or five minutes as in our case.

6.2. Pseudo-random Number Sampling

The simulator triggers random number of threads, every twelfth seconds during a five-

minute range. The random number of threads is generated using a Java Pseudo-random

generator utility. The Java number sampling or non-uniform pseudo-random variate

generation is the numerical method of generating random numbers distributed according

to a normal distribution of certain mean and standard deviation.

54

6.2.1. Normalization

In order to get to mean and the average we have studied the user load on the hp

ecommerce store for four consecutive working weeks as shown below. We then normalized

the data to make it is values between 0 and 1 using the following equation:

Xnorm =
X − Xmin

Xmax − Xmin

Then we calculated the mean and standard deviation as shown in the table below.

Day # Number of users Normalized

18-Sep 1 231 0.401993355

19-Sep 2 197 0.289036545

20-Sep 3 231 0.401993355

21-Sep 4 131 0.069767442

22-Sep 5 286 0.584717608

25-Sep 6 374 0.877076412

26-Sep 7 110 0

27-Sep 8 282 0.571428571

28-Sep 9 229 0.395348837

2-Oct 10 411 1

3-Oct 11 220 0.365448505

4-Oct 12 411 1

5-Oct 13 333 0.740863787

6-Oct 14 284 0.57807309

8-Oct 15 192 0.272425249

9-Oct 16 218 0.358803987

10-Oct 17 242 0.438538206

11-Oct 18 269 0.528239203

12-Oct 19 188 0.259136213

Mean 254.6842105 0.48067844

Standard deviation 83.15183744 0.276251952

55

Min 110 0

Max 411 1

Table 10 -HP2B daily user load

The Java number sampling or non-uniform pseudo-random variate generation is the

numerical method of generating random numbers distributed according to a normal

distribution of mean 0.48067844 and standard deviation 0.276251952, derived from the

above calculation. The choice of normal distribution is more appropriate because if the

sample size is sufficiently large, as in our case, the sampling distribution of the sample

mean approximates the normal distribution. This holds true despite the distribution of the

population from which the sample were collected according to the central limit theorem.

6.3. Results of First Run

The first run does not entail any performance enhancement mechanism. The first run is

aimed to observe and collect the as-is system performance metrics to be compared later on

after the addition of the learning, analytics, and queue components. The first run resulted

in the execution of a total of 1004 threads or user sessions. The first run is triggered over a

five minutes time range, within which a random number of user sessions is rendered every

12 seconds using Java random number generator and normally distributed. Performance

metrics such as the

• CPU Utilization percentage,

• Thread response time in seconds,

• Allocated memory in KB

• Heap ratio

56

are collected and recorded toward the end of each thread execution. A summary of the run

data is shown in the below table and the further subsequent sections.

CPU Usage Response Time (s) Start Time End Time
Thread

Number

Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

100.00% 6.82298798 2051670.832 2051677.655 1 0.03 6.17 178.176

100.00% 2.10095347 2051677.677 2051679.778 2 0.08 15.473 178.176

100.00% 2.75671768 2051679.779 2051682.536 3 0.11 20.408 178.176

100.00% 3.88481427 2051682.537 2051686.422 4 0.09 16.331 178.176

100.00% 3.52589645 2051691.545 2051695.07 5 0.09 16.496 178.176

100.00% 2.88591846 2051695.072 2051697.958 6 0.10 17.844 178.176

100.00% 2.55195492 2051697.959 2051700.511 7 0.09 16.577 178.176

100.00% 3.08366706 2051700.512 2051703.596 8 0.08 15.64 178.176

100.00% 2.90243103 2051708.703 2051711.605 9 0.07 12.811 178.176

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

100.00% 2.45123124 2054600.353 2054602.804 996 0.64 115.208 178.176

100.00% 14.5856296 2054590.063 2054604.648 997 0.79 141.898 178.176

100.00% 32.38739141 2054591.418 2054623.806 998 0.63 112.641 178.176

100.00% 8.17268885 2054613.735 2054621.908 999 0.48 85.554 178.176

100.00% 12.50983365 2054608.014 2054620.523 1000 0.58 103.689 178.176

100.00% 11.90430417 2054607.993 2054619.898 1001 0.53 95.513 178.176

100.00% 14.20815774 2054605.491 2054619.699 1002 0.52 93.001 178.176

100.00% 11.01713206 2054608.006 2054619.023 1003 0.47 83.931 178.176

54.47% 3.48059529 2054627.697 2054631.178 1004 0.63 112.828 178.176

Table 11 –First Run Summary

6.3.1. CPU Utilization

The below graph and table shows the system CPU utilization recorded toward the

end of the execution of each thread, or a user session, along with a data statics summary

including the average, max, min, and standard deviation.

57

Figure 22 – SYSTEM CPU UTLILIZATION CHARTS

STATS Analysis Value

Average 94.15%

Max 100.00%

Min 3.01%

StdDev 0.158067891

Table 12 –First Run CPU data Summary

6.3.2. Response Time Per Thread

The below graph records each thread response time calculated the difference between

the thread start time and the thread end time. The response time of each query will be

measured using the nanoTime() method to allow for max precision. This method provides

nanosecond precision, but not necessarily nanosecond accuracy. For example, to measure

how long some database transaction takes to execute:

long startTime = System.nanoTime(); // ... the code being measured ...

long estimatedTime = System.nanoTime() - startTime;

The subsequent table displays a data statics summary including the average, max,

min, and standard deviation for all the user sessions involved in the run.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
5

7
1

1
3

1
6

9
2

2
5

2
8

1
3

3
7

3
9

3
4

4
9

5
0

5
5

6
1

6
1

7
6

7
3

7
2

9
7

8
5

8
4

1
8

9
7

9
5

3

C
P

U
 U

ti
li

za
ti

o
n

 %

Thread #

System CPU Utilization

System CPU Utilization

58

Figure 23 – RESPONSE TIME IN SECONDS PER THREAD

STATS Analysis Value

Average 8.09

Max 43.63

Min 1.33

StdDev 6.35

Table 13 –First run thread response time summary

6.3.3. Heap Ratio

The below graph shows the JVM heap ratio recorded toward at the end of the

execution of each thread, or a user session, by retrieving the JVM allocated memory

divided my max memory variable. The subsequent table displays the heap ratio data statics

summary including first Quartile, second Quartile (median), and third Quartile.

0
5

10
15
20
25
30
35
40
45
50

1
5

2
1

0
3

1
5

4
2

0
5

2
5

6
3

0
7

3
5

8
4

0
9

4
6

0
5

1
1

5
6

2
6

1
3

6
6

4
7

1
5

7
6

6
8

1
7

8
6

8
9

1
9

9
7

0

R
e

sp
o

n
se

 T
im

e
 (

s)

Thread #

Response Time/Thread

Response Time/Thread

59

Figure 24 – HEAP RATIO PER THREAD

STATS Analysis Value

First Quartile 43

Second Quartile (median) 55

Third Quartile 63.75

Table 14 –First run heap ratio summary

6.4. Results of Second Run

The second run resulted the execution 940 threads or user session. The second run is

similar to the first one in that it is also triggered over exactly five minutes time range,

within which a random number of user sessions is rendered every 12 seconds using Java

random number generator. The main difference from the first run is that it includes two

extra major components to enhance the performance. These are the learning engine and the

queuing engine. These two components are responsible mainly for defining and detecting

the system bottleneck and introducing a recovering mechanism. The system resorts to the

recovering mechanism if and only a bottleneck is detected and then alters back to normal

execution mode once the bottleneck conditions are void. The details of these two extra

0
10
20
30
40
50
60
70
80
90

100

1
4

9
9

7
1

4
5

1
9

3
2

4
1

2
8

9
3

3
7

3
8

5
4

3
3

4
8

1
5

2
9

5
7

7
6

2
5

6
7

3
7

2
1

7
6

9
8

1
7

8
6

5
9

1
3

9
6

1

H
e

a
p

 R
a

ti
o

Thread #

Heap Ratio

Heap Ratio/Thread

60

components will be covered on different chapters of this document. A summary of the

run data is shown in the below table.

CPU Usage Response Time (s) Start Time End Time
Thread

Number

Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

71.45% 6.36287852 2068323.678 2068330.041 1 4 8.059 178.176

44.42% 3.37606177 2068340.181 2068343.557 2 4 7.989 178.176

37.73% 3.18759926 2068348.452 2068351.64 3 5 9.113 178.176

41.13% 2.90369656 2068362.034 2068364.938 4 6 11.366 178.176

80.76% 4.02605219 2068369.837 2068373.863 5 8 14.83 178.176

42.29% 3.09899373 2068378.888 2068381.987 6 5 10.162 178.176

52.84% 3.21760867 2068386.854 2068390.072 7 11 20.212 178.176

31.19% 2.3927622 2068400.266 2068402.659 8 10 18.542 178.176

71.45% 6.36287852 2068323.678 2068330.041 1 4 8.059 178.176

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

100.00% 9.21452238 2071222.498 2071231.713 931 56 101.22 178.176

100.00% 14.98215555 2071222.504 2071237.486 932 49 88.945 178.176

100.00% 16.79426994 2071222.509 2071239.303 933 63 113.543 178.176

0.00% 5.0810955 2071244.65 2071249.731 934 75 134.55 178.176

100.00% 39.96265167 2071222.531 2071262.494 935 61 109.058 178.176

100.00% 37.2201013 2071222.525 2071259.745 936 61 109.112 178.176

100.00% 34.5797734 2071222.52 2071257.1 937 40 71.511 178.176

100.00% 32.23581489 2071222.515 2071254.75 938 46 82.62 178.176

100.00% 6.77268899 2071244.659 2071251.432 939 88 158.063 178.176

Table 15 –Second Run Summary

The subsequent sections show more detailed analysis on the performance metrics

collected through the run.

61

6.4.1. CPU Utilization

The below graph and table shows the system CPU utilization recorded toward at

the end of the execution of each thread, or a user session, along with a data statics summary

including the average, max, min, and standard deviation.

Figure 25 – SYSTEM CPU UTLILIZATION CHARTS

STATS Analysis Value

Average 87.80%

Max 100.00%

Min 0.00%

StdDev 0.268636399

Table 16 –Second run CPU data summary

The second run shows significant improvement in the overall CPU utilization. Also

it shows that the added components managed to decrease the frequency of which the system

hits the bottleneck. These results are visualized and calculated in the above graph and table.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
5

4
1

0
7

1
6

0
2

1
3

2
6

6
3

1
9

3
7

2
4

2
5

4
7

8
5

3
1

5
8

4
6

3
7

6
9

0
7

4
3

7
9

6
8

4
9

9
0

2

C
P

U
 U

ti
li

za
ti

o
n

 %

Thread #

System CPU Utilization

System CPU Utilization

62

6.4.2. Response Time Per Thread

The below graph records each thread response time calculated by recording the

thread start time and end time then retrieving the difference as the thread response time.

The subsequent table displays a data statics summary including the average, max, min, and

standard deviation for all the user sessions involved in the run.

Figure 26 – RESPONSE TIME IN SECONDS PER THREAD

STATS Analysis Value

Average 9.97

Max 48.09

Min 1.40

StdDev 7.58

Table 17 –Second run thread response time data summary

The second run shows slight change in the overall response time. However, the

threadresponse time is shown to be a little longer due to the introductory of the queuing

component as a recovery mechanism. The stacking of the threads to the queuing engine,

which will be detailed in subsequent sections, during the system peak times, contributed

0

10

20

30

40

50

60

1
4

9
9

7
1

4
5

1
9

3
2

4
1

2
8

9
3

3
7

3
8

5
4

3
3

4
8

1
5

2
9

5
7

7
6

2
5

6
7

3
7

2
1

7
6

9
8

1
7

8
6

5
9

1
3

R
e

sp
o

n
se

 T
im

e
 (

s)

Thread #

Response Time/Thread

Response Time/Thread

63

to the increase of some of the individual thread’s response time, and hence increasing the

overall response times of the user sessions as recorded in the above table.

6.4.3. Heap Ratio Per Thread

The below graph shows the JVM heap ratio recorded toward at the end of the

execution of each thread, or a user session, by retrieving the JVM allocated memory

divided my max memory variable. The subsequent table displays the heap ratio data statics

summary including the first Quartile, second Quartile (median), and third Quartile.

Figure 27 – HEAP RATIO PER THREAD

STATS Analysis Value

First Quartile 45

Second Quartile (median) 58

Third Quartile 68

Table 18 –Second run heap ratio data summary

The heap ratio also shows to be similar to the first run with a slight or insignificant

increase resulted from the addition of the recovery components.

0

20

40

60

80

100

1
4

6
9

1
1

3
6

1
8

1
2

2
6

2
7

1
3

1
6

3
6

1
4

0
6

4
5

1
4

9
6

5
4

1
5

8
6

6
3

1
6

7
6

7
2

1
7

6
6

8
1

1
8

5
6

9
0

1

H
e

a
p

 R
a

ti
o

Thread #

Heap Ratio

Heap Ratio/Thread

64

6.5. Results of Third Run

The third run resulted in the execution of a total of 905 threads, user sessions. The

second run is similar to the first one in that it is also triggered over a five minutes time

range, within which a random number of user sessions is rendered every 12 seconds using

Java random number generator. The main difference from the first and second runs is that

it includes, along with the learning and the queuing components, a third component. This

new component is the analytic engine, which is mainly responsible for predicting the

possibility of the system reaching a bottleneck based on the historic runs. The details of all

these components; learning, queuing and analytics, will be covered in subsequent sections.

A summary of the run data is shown in the below table.

CPU Usage Response Time (s) Start Time End Time
Thread

Number

Heap

Ratio

Allocated

Memory

(KB)

Max

Memory

(KB)

91.64% 5.6798846 2082177.806 2082183.486 1 2 5.301 178.176

40.05% 3.51932159 2082198.698 2082202.217 2 8 14.28 178.176

50.00% 3.64850281 2082212.432 2082216.081 3 9 17.44 178.176

53.82% 3.09170858 2082221.019 2082224.111 4 13 23.777 178.176

39.59% 3.13410433 2082229.13 2082232.265 5 12 21.952 178.176

38.55% 3.14383253 2082237.258 2082240.402 6 8 15.233 178.176

36.50% 3.01136807 2082250.672 2082253.684 7 8 15.481 178.176

61.89% 3.59677626 2082258.63 2082262.227 8 6 11.363 178.176

42.49% 2.19742104 2082267.364 2082269.561 9 14 25.296 178.176

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

…… …… …… …… …… …… …… ……

96.80% 9.71586053 2085075.284 2085085 896 62 111.818 178.176

100.00% 2.90107402 2085089.062 2085091.963 897 76 136.73 178.176

100.00% 7.89125783 2085089.532 2085097.423 898 43 76.935 178.176

100.00% 2.7990394 2085100.152 2085102.951 899 57 101.806 178.176

100.00% 7.5139068 2085091.722 2085099.236 900 56 101.097 178.176

100.00% 17.28572346 2085097.036 2085114.322 901 69 123.635 178.176

100.00% 15.42726171 2085097.027 2085112.455 902 78 140.132 178.176

65

100.00% 10.02460508 2085096.904 2085106.928 903 60 107.945 178.176

100.00% 3.3531615 2085107.334 2085110.687 904 64 114.335 178.176

Table 19 –Third run data summary

The subsequent sections show more detailed analysis on the performance metrics

collected through the run.

6.5.1. CPU Utilization

The below graph and table shows the system CPU utilization recorded toward at

the end of the execution of each thread, or a user session, along with a data statics summary

including the average, max, min, and standard deviation.

Figure 28 – SYSTEM CPU UTLILIZATION CHARTS

STATS Analysis Value

Average 84.60%

Max 100.00%

Min 0.00%

StdDev 0.293183864

Table 20 –Third run CPU utilization data summary

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
5

2
1

0
3

1
5

4
2

0
5

2
5

6
3

0
7

3
5

8
4

0
9

4
6

0
5

1
1

5
6

2
6

1
3

6
6

4
7

1
5

7
6

6
8

1
7

8
6

8

C
P

U
 U

ti
li

za
ti

o
n

 %

Thread #

System CPU Utilization

System CPU Utilization

66

The second run shows meaningful another improvement in the overall CPU

utilization. Also, it shows that the added component managed to further decrease the

frequency of which the system hits the bottleneck. These results can be inspected visually

or mathematically from the above graph and table.

6.5.2. Response Time Per Threads

The below graph records each thread response time calculated by recording the

thread start time and end time then retrieving the difference as the thread response time.

The subsequent table displays a data statics summary including the average, max, min, and

standard deviation for all the user sessions involved in the run

Figure 29 – RESPONSE TIME IN SECONDS PER THREAD

STATS Analysis Value

Average 9.02

Max 49.14

Min 1.38

StdDev 7.22

Table 21 –Third run response time data summary

0

10

20

30

40

50

60

1
4

7
9

3
1

3
9

1
8

5
2

3
1

2
7

7
3

2
3

3
6

9
4

1
5

4
6

1
5

0
7

5
5

3
5

9
9

6
4

5
6

9
1

7
3

7
7

8
3

8
2

9
8

7
5

R
e

sp
o

n
se

 T
im

e
 (

s)

Thread #

Response Time/Thread

Response Time/Thread

67

The third run shows a better overall response time from the second run. However,

the thread response time shows to be little longer than the first run.

6.5.3. Heap Ratio Per Thread

The below graph shows the JVM heap ratio recorded toward at the end of the

execution of each thread, or a user session, by retrieving the JVM allocated memory

divided my max memory variable. The subsequent table displays the heap ratio data statics

summary including the first Quartile, second Quartile (median), and third Quartile.

Figure 30 – HEAP RATIO PER THREAD

STATS Analysis Value

First Quartile 42

Second Quartile (median) 58

Third Quartile 70

Table 22 –Third run heap ratio data summary

0

10

20

30

40

50

60

70

80
90

100

1
4

5
8

9
1

3
3

1
7

7
2

2
1

2
6

5
3

0
9

3
5

3
3

9
7

4
4

1
4

8
5

5
2

9
5

7
3

6
1

7
6

6
1

7
0

5
7

4
9

7
9

3
8

3
7

8
8

1

H
e

a
p

 R
a

ti
o

Thread #

Heap Ratio/Thread

Heap Ratio/Thread

68

 The heap ratio also shows to be more similar to the first run with a slight or

insignificant increase resulted from the addition of the recovery components.

69

CI!t¢9w 7 CONCLUSION

We have built an API that can be attached to a JVM or multiple JVM’s hosting web

applications heavy on the integration with DMBS, such as an ecommerce or an online store

application. The API, Cognitive Performance Application, monitors the JVM performance

and learns to detect its bottleneck. The application also has predictive engine that can

forecast the next bottleneck occurrence. Once a bottleneck is detected or forecasted, the

application uses a temp queue structure to stream down the demand intelligently and only

when needed in order to avoid the system from bottlenecking. The application utilizes feed

forward ANN, to learn from the performance parameters how to detect the bottleneck. The

use of ANN in our case was to emphasize generalization on the design and to demo how

the ANN can weight the most determining factors leading to bottleneck in case of

ambiguity or in case of absence of domain expert. The application also uses regression

models to predict the next bottleneck in order to help the system become a proactive one.

We have run number of test to examine the different components of the performance API.

We ran a test without invoking the different components of the API with certain hardware

specifications managing to bottleneck the system very frequently with an average CPU

utilization of 94.15%. Then we ran a second test on the same conditions, but with the

addition of two components of the API, the learning engine and the queue engine. We

noticed a significant improvement in terms of the system not bottlenecking as frequently

as before and with an overall CPU utilization of 87.80%. We concluded with a third test

running on the same conditions as the first and the seconds tests, and fully deployed the

70

three components of the application; learning, analytics, and queuing engines. The test

shows further improvements with a better average CPU utilization of 84.60%

71

REFERENCES

[1] Khaled Saleh, “A Queueing Model to Achieve Proper Elasticity for Cloud Cluster Jobs”,
Department of Electrical and Computer Engineering, Khalifa University, Sharjah, UAE, 2009

[2] Manfred Dellkrantz, Maria Kihl, and Anders Robertsson,‘ Performance Modeling and Analysis
of a Database Server with Write-Heavy Workload’, Department of Automatic Control, Lund
University 2 Department of Electrical and Information Technology, Lund University, 2012

[3] Leonid Grinshpan, “Solving Enterprise Applications Performance Puzzles - Queuing Models
to the Rescue”, Wiley-IEEE Press, ISBN 978-1-118-06157-2, 2012

[4] Mukarram A. Tahir, “Java Implementation Of Neural Networks”, BookSurge Publishing.
ISBN-10: 1419665359; September 27, 2007

[5] International Business Machines Corporation (IBM), “http://www-
01.ibm.com/support/knowledgecenter/SSZLC2_8.0.0/landing/wc_welcome.html”, WebSphere
Commerce Version 8, 2015

[6] Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik, ‘Quantitative
System Performance’, chapter 1. An Overview of Queueing Network Modelling, 1984by
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

[7] Fabio M Soares, Alan M.F. Souza, “Neural Network Programming with Java,” Packt
Publishing, ISBN: 978-1-78588-090-2, January 2016

[8] Adam Gibson, Josh Patterson (August 2017), “Deep Learning A Practitioner's Approach”
O'Reilly Media

[9] Mehmed Kantardzic, “Data Mining: Concepts, Models, Methods, and Algorithms 2nd edition,”
IEEE Press & John Wiley, ISBN: 978-0-470-89045-5, August 2011.

[10] Yan, Xin, “Linear Regression Analysis: Theory and Computing”, World Scientific Book, pp. 1–
2, ISBN 9789812834119, Jun 2009

[11] Jianqing Fan, Irene Gijbels, “Local Polynomial Modelling and Its Applications: Monographs on
Statistics and Applied Probability 1st Edition” ISBN-13: 978-0412983214, Chapman & Hall
,1997

[12] John Fox & Sanford Weisberg, ‘Time-Series Regression and Generalized Least Squares in
R’, revision: 11, November 2010

[13] Shajulin Benedict, “Performance issues and performance analysis tools for HPC cloud
applications: a survey”, Benedict, S. Computing 95: 89. doi:10.1007/s00607-012-0213-0,
2013

[14] Ken Hygh; Ruth Willenborg; Stacy Joines, “Performance Analysis for Java Web Sites”, SBN-
13: 978-0201844542, 2003

[15] Henry H. Liu, “Java Performance and Scalability: A Quantitative Approach” CreateSpace
Independent Publishing Platform, ISBN-10: 1482348012, February 2, 2013

[16] Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik, ‘Quantitative
System Performance’, chapter 1. An Overview of Queuing Network Modeling, 1984 by
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.

[17] E. Altman; M. Arnold; R. Bordawekar; R. M. Delmonico; N. Mitchell; P. F. Sweeney,
“Observations on tuning a Java enterprise application for performance and scalability”, IBM
Journal of Research and Development, 2010

[18] Kuo-Yi Chen, J. Morris Chang, Ting-Wei Hou, “Multithreading in Java: Performance and
Scalability on Multicore Systems”, IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO.
11, NOVEMBER 2011

[19] R. A. Sciampacone; V. Sundaresan; D. Maier; T. Gray-Donald, “Exploitation of multicore
systems in a Java virtual machine ”, IBM Journal of Research and Development archive.
Volume 54 Issue 5, DOI:10.1147/JRD.2010.2057911, September 2010

[20] Guillermo L. Taboada, Sabela Ramos, Roberto R. Expósito, Juan Touriño, Ramón Doallo,
“Java in the High Performance Computing arena: Research, practice and experience”,
www.elsevier.com/locate/scico, 2012

https://uofl.on.worldcat.org/search?queryString=au:Mukarram%20A.%20Tahir&databaseList=1697,1672,1708,638,1271,1847,1725
https://www.amazon.com/Henry-H.-Liu/e/B001SQ8F2K/ref=sr_ntt_srch_lnk_5?qid=1494229152&sr=1-5
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.%20Altman.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Arnold.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Bordawekar.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20M.%20Delmonico.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.N.%20Mitchell.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20F.%20Sweeney.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/document/5571948/
http://ieeexplore.ieee.org.echo.louisville.edu/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org.echo.louisville.edu/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20A.%20Sciampacone.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Sundaresan.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D.%20Maier.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.T.%20Gray-Donald.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/document/5571944/
http://ieeexplore.ieee.org.echo.louisville.edu/document/5571944/
https://doi.org/10.1147/JRD.2010.2057911
http://www.elsevier.com/locate/scico

72

[21] Viktor Mauch;Marcel Kunze;Marius Hillenbrand, “High performance cloud computing”, Future
Generation Computer Systems Journal, Vol. 29, August 2013

[22] Salah, K,“A Queueing Model to Achieve Proper Elasticity for Cloud Cluster Jobs,” Services
Transactions on Cloud Computing, ISSN 2326-7550, Vol. 1, No. 1, July-September 2013, pp.
53-64

[23] Daniel Jaschob; Michael Riffle, “JobCenter: an open source, cross-platform, and distributed
job queue management system optimized for scalability and versatility,” Source Code for
Biology and Medicine, DOI 10.1186/1751-0473-7-8, July 2012

[24] Ethem Arkin; Bedir Tekinerdogan; Kayhan M. İmre, “Systematic approach for deriving
feasible mappings of parallel algorithms to parallel computing platforms,” Wiley Online
Library, DOI: 10.1002/cpe.3821, 22, March 2016

[25] J. Tai, J. Zhang, J. Li, W. Meleis, and N. Mi, "Ara: Adaptive resource allocation for cloud
computing environments under bursty workloads," in Proc. IEEE Performance Computing
and Communications Conference (IPCCC), pp. 1-8, 2011.

[26] Michele Chambers, Thomas W Dinsmore, “Advanced Analytics Methodologies: Driving
Business Value with Analytics,“ Pearson FT Press. ISBN-10: 0-13-349860-3, Sep 22, 2014

[27] David M. Lane, ‘Introduction to Statistics Online Edition’, chapter 14, An Interactive eBook,
David Lane, 2013

[28] Phillips, Judah, “Building a Digital Analytics Organization: Create Value by Integrating
Analytical Processes, Technology, and People into Business Operations (FT Press Analytics)
1st Edition,” Pearson, ISBN-10: 0133372782, 2013

[29] Cohen, J., Cohen P., West, S.G., & Aiken, L.S, “Applied multiple regression/correlation
analysis for the behavioral sciences. (2nd ed.)”, Hillsdale, NJ: Lawrence Erlbaum Associates.
ISBN-10: 0805822232, 2003

[30] Draper, N.R.; Smith, H., “Applied Regression Analysis (3rd ed.)”, John Wiley. ISBN 0-471-
17082-8, 1998

[31] Osama Abuzeid, Anas Al-Rabadi, Hashem Alkhaldi. “Recent advancements in fractal
geometric-based nonlinear time series solutions to the micro-quasistatic thermoviscoelastic
creep for rough surfaces in contact,” Mathematical Problems in Engineering, Volume 2011,
Article ID 691270, 2011

[32] Priestley, M. B, “Spectral Analysis and Time Series,” Academic Press. ISBN 978-0-12-
564901-8, 1981

[33] Bi Ruixiang, "Research on the standard database of performance evaluation of financial
expenditure," International Conference on Artificial Intelligence and Education (ICAIE),
Hangzhou, pp. 261-265. doi: 10.1109/ICAIE.2010.5641482, 1981

[34] Shuigeng Zhou; Songmao Zhang; George Karypis, “Advanced Data Mining and Applications”
8th International Conference, ADMA 2012, Nanjing, China, December 15-18, 2012

[35] Jason Brownlee, “How to Use Dropout with LSTM Networks for Time Series Forecasting”,
http://machinelearningmastery.com/use-dropout-lstm-networks-time-series-forecasting, Deep
Learning, April 28, 2017

[36] Wanbo Zheng; Mengchu Zhou; Lei Wu; Yunni Xia; Xin Luo; Shanchen Pang; Qingsheng Zhu;
Yanqing Wu, “Percentile Performance Estimation of Unreliable IaaS Clouds and Their Cost-
Optimal Capacity Decision,” IEEE Access v5: 2808-2818, 2017

[37] Luis Miralles-Pechuán; Dafne Rosso; Fernando Jiménez; Jose M. García, “A methodology
based on Deep Learning for advert value calculation in CPM, CPC and CPA networks”, DOI
10.1007/s00500-016-2468-4, Springer-Verlag Berlin Heidelberg, 2016

[38] Peifeng Niu; Yunpeng Ma; Mengning Li; Shanshan Yan; Guoqiang Li,” A Kind of Parameters
Self-adjusting Extreme Learning Machine”, Neural Processing Letters, DOI: 10.1007/s11063-
016-9496-z, December 2016

[39] Zhenyun Zhuang; Cuong Tran; Haricharan Ramachandra; Badri Sridharan, “Ensuring High-
Performance of Mission-Critical Java Applications in Multi-tenant Cloud Platforms”, Cloud
Computing (CLOUD), IEEE 7th International Conference, 2014

[40] Stéphane Guerrier, Roberto Molinari, and Yannick Stebler, “Theoretical Limitations of Allan
Variance-based Regression for Time Series Model Estimation”, IEEE SIGNAL
PROCESSING LETTERS, VOL. 23, NO. 5, MAY 2016

http://www.ftpress.com/authors/bio/1e0d7685-1851-4a6d-95f6-b2efca61bbe3
http://www.ftpress.com/authors/bio/474218f6-994a-46c4-8c80-7b9adb680275
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Shuigeng+Zhou&search-alias=books&field-author=Shuigeng+Zhou&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Songmao+Zhang&search-alias=books&field-author=Songmao+Zhang&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=George+Karypis&search-alias=books&field-author=George+Karypis&sort=relevancerank
http://machinelearningmastery.com/author/jasonb/
http://machinelearningmastery.com/category/deep-learning/
http://machinelearningmastery.com/category/deep-learning/
https://uofl.on.worldcat.org/search?queryString=au:Wanbo%20Zheng&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Mengchu%20Zhou&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Lei%20Wu&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Yunni%20Xia&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Xin%20Luo&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Shanchen%20Pang&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Qingsheng%20Zhu&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Yanqing%20Wu&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/detailed-record/6962848892?databaseList=1271&databaseList=1672&databaseList=1697&databaseList=1708&databaseList=1725&databaseList=1847&databaseList=638&scope=wz:440
https://uofl.on.worldcat.org/detailed-record/6962848892?databaseList=1271&databaseList=1672&databaseList=1697&databaseList=1708&databaseList=1725&databaseList=1847&databaseList=638&scope=wz:440
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhenyun%20Zhuang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuong%20Tran.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Haricharan%20Ramachandra.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Badri%20Sridharan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Badri%20Sridharan.QT.&newsearch=true

73

[41] Yinxiao Huang; Xiaohong Chen; Wei Biao Wu, “Recursive Nonparametric Estimation for Time
Series”, IEEE Transactions on Information Theory, DOI: 10.1109/TIT.2013.2292813, 2014

[42] Vlad Mihalcea, “High-Performance Java Persistence 1st edition”, VLAD MIHALCEA, ISBN-
973022823X, October 12, 2016

[43] N D Lewis, “Neural Networks for Time Series Forecasting with R” CreateSpace Independent
Publishing Platform, ISBN-10: 1544752954, March 27, 2017

[44] Trevor Hastie, Robert Tibshirani, Jerome Friedman, “The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) 2nd
Edition” Springer ISBN-10: 0387848576, 2016

[45] Brendan Gregg, “Systems Performance: Enterprise and the Cloud 1st Edition”, Prentice Hall,
October 26, 2013

[46] G. David Garson, “Generalized Linear Models & Generalized Estimating Equations”,
Statistical Associates Blue Book Series 26, ASIN: B009434OUQ, 2013

[47] Jason W. Osborne, “Regression & Linear Modeling: Best Practices and Modern Methods 1st”
ASIN: B01DWC39GO, SAGE Publications, Inc., April 19, 2016

[48] Judah Phillips, ”Ecommerce Analytics: Analyze and Improve the Impact of Your Digital
Strategy (FT Press Analytics)”, ISBN-13: 978-0134177281, Pearson FT Press; 1 edition, April
14, 2016

[49] Cesar Perez Lopez, “SPSS. Predictive Models”, CreateSpace Independent Publishing
Platform, July 8, 2013

[50] Brady T. West, Kathleen B. Welch, Andrzej T Galecki, “ Linear Mixed Models: A Practical
Guide Using Statistical Software,” hapman and Hall/CRC; 2 edition, July 17, 2014

[51] Naone, Erica, “The New Big Data”, MIT Technology Review. August 22, 2011
[52] Joe Anne Legge, Statistics Canada, “Power from Data! (12-004-X)”,

www.statcan.gc.ca/edu/power-pouvoir/ch9/scatter-nuages/5214827-eng.htm, 2011
[53] Richard Lowry, ‘Concepts and Applications of Inferential Statistics’, Richard Lowry 1998-2017
[54] Li B., Sun X., Zhou Y.,” A hierarchical model for regression test selection and cost analysis of

Java programs”, APSEC 2010 17th Asia Pacific Software , 2010

http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yinxiao%20Huang.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaohong%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wei%20Biao%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org.echo.louisville.edu/document/6675825/
http://ieeexplore.ieee.org.echo.louisville.edu/document/6675825/
http://ieeexplore.ieee.org.echo.louisville.edu/xpl/RecentIssue.jsp?punumber=18
https://doi.org/10.1109/TIT.2013.2292813
https://www.amazon.com/Vlad-Mihalcea/e/B01N8PGJ7E/ref=sr_ntt_srch_lnk_3?qid=1494225153&sr=8-3
https://www.amazon.com/Robert-Tibshirani/e/B00H3VSM7W/ref=dp_byline_cont_book_2
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Jerome+Friedman&search-alias=books&field-author=Jerome+Friedman&sort=relevancerank
https://www.amazon.com/Brendan-Gregg/e/B004GG0SEW/ref=dp_byline_cont_book_1
https://www.amazon.com/G.-David-Garson/e/B001JOYRAA/ref=dp_byline_cont_ebooks_1
https://www.amazon.com/Jason-W.-Osborne/e/B00FCLJQES/ref=dp_byline_cont_ebooks_1
https://www.amazon.com/Judah-Phillips/e/B00DWG7SUY/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Cesar+Perez+Lopez&search-alias=books&field-author=Cesar+Perez+Lopez&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Brady+T.+West&search-alias=books&field-author=Brady+T.+West&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Kathleen+B.+Welch&search-alias=books&field-author=Kathleen+B.+Welch&sort=relevancerank
https://www.amazon.com/Andrzej-T-Galecki/e/B00NGGYCM2/ref=dp_byline_cont_book_3
https://uofl.on.worldcat.org/search?queryString=au:Li%20B.&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Sun%20X.&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/search?queryString=au:Zhou%20Y.&databaseList=1697,1672,1708,638,1271,1847,1725
https://uofl.on.worldcat.org/detailed-record/704402339?databaseList=1271&databaseList=1672&databaseList=1697&databaseList=1708&databaseList=1725&databaseList=1847&databaseList=638
https://uofl.on.worldcat.org/detailed-record/704402339?databaseList=1271&databaseList=1672&databaseList=1697&databaseList=1708&databaseList=1725&databaseList=1847&databaseList=638
https://uofl.on.worldcat.org/search?queryString=au:APSEC%202010%2017th%20Asia%20Pacific%20Software%20Engineering%20Conference:%20Software%20for%20Improving%20Quality%20of%20Life&databaseList=1697,1672,1708,638,1271,1847,1725

74

APPENDIX A

A.1. Estore Schema Create Statement
CREATE DATABASE `estore` /*!40100 DEFAULT CHARACTER SET utf8

*/;

A.2. Address Table Create Statement

A.2.1. Description
This table stores the addresses of users or organizations in the WebSphere Commerce

system. The addresses can be the members' own addresses or for their friends, associates,

or clients, and so on. Some columns here replace columns used in previous versions.

Column Name Column Type Description

ADDRESS_ID
BIGINT NOT

NULL

Unique reference number, internally

generated. This is a primary key,

replacing the SASHNBR column in

the SHADDR table used in previous

versions of WebSphere Commerce or

WebSphere Commerce Suite.

ADDRESSTYPE CHAR(5)

The purpose of the address. Valid

values are: S (shipto), B (billto),

and SB (both shipto and billto).

If this is unspecified when creating a

new address, the business logic will

default to SB.

MEMBER_ID
BIGINT NOT

NULL

Foreign key to the MEMBER table for

the member who owns this address.

ADDRBOOK_ID
BIGINT NOT

NULL

Foreign key to the ADDRBOOK table

for the address book to which this

address belongs, replacing the

SASHNBR column in the SHADDR

table used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

http://www-01.ibm.com/support/knowledgecenter/SSZLC2_6.0.0/com.ibm.commerce.database.doc/database/member.htm?lang=en-us

75

ORGUNITNAME VARCHAR(128)

Name of the organizational unit to

which this address information

applies, if this is a business address.

See comment on

ADDRESS.ORGNAME column.

FIELD3 VARCHAR(64)
Compare with the BCFIELD3 column

in the BUCONT table.

BILLINGCODE VARCHAR(17)
A code to identify the shipping or

billing information.

BILLINGCODETYPE CHAR(2)

The code designating the system or

method of code structure used for

billing.

STATUS CHAR(1)

Specifies the status of the address.

Valid values are P (permanent or

current) and T (temporary or

historical). This column replaces

SAADRFLAG used in previous

versions of WebSphere Commerce or

WebSphere Commerce Suite.

ORGNAME VARCHAR(128)

If this is a business address, the name

of the organization for this address.

This is not the name of the

organization that owns the address

book with this address. This column

replaces SAREPCOM used in previous

versions of WebSphere Commerce or

WebSphere Commerce Suite.

ISPRIMARY INTEGER

A user or organization can have

multiple addresses of each

ADDRESSTYPE and one of them to be

designated as primary. For example,

one of the shipping addresses can be

designated as the primary shipping

address. Valid values are 1 (primary

address) or 0 (non-primary address).

LASTNAME VARCHAR(128)

Last name of the person to which this

address applies, replacing SALNAME

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

http://www-01.ibm.com/support/knowledgecenter/SSZLC2_6.0.0/com.ibm.commerce.database.doc/database/address.htm?lang=en-us

76

PERSONTITLE VARCHAR(50)

Title of the person to which this

address applies, replacing SATITLE

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite. LDAP

uses a length of 50. Valid values are

Dr, Prof, Rev, Mr, Mrs, Ms, and N (not

provided). The default is N.

FIRSTNAME VARCHAR(128)

First name of the person to which

this address applies, replacing

SAFNAME used in previous versions

of WebSphere Commerce or

WebSphere Commerce Suite.

MIDDLENAME VARCHAR(128)

Middle name or initials of the person

to which this address applies,

replacing SAMNAME used in previous

versions of WebSphere Commerce or

WebSphere Commerce Suite.

BUSINESSTITLE VARCHAR(128)

The business title. For example,

Manager or Chief Executive Officer.

LDAP uses a length of 128 characters

for title attribute in ePerson.

Compare with the BUCONT.BCTITLE

column.

PHONE1 VARCHAR(32)

The primary phone number,

replacing SAPHONE1 used in

previous versions of WebSphere

Commerce or WebSphere Commerce

Suite.

FAX1 VARCHAR(32)

The primary fax number 1, replacing

SAFAX used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

PHONE2 VARCHAR(32)

The secondary phone number,

replacing SAPHONE2 used in

previous versions of WebSphere

Commerce or WebSphere Commerce

Suite.

http://www-01.ibm.com/support/knowledgecenter/SSZLC2_6.0.0/com.ibm.commerce.database.doc/database/bucont.htm?lang=en-us

77

ADDRESS1 VARCHAR(100)

Address line 1, replacing SAADDR1

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

FAX2 VARCHAR(32) The secondary fax number.

NICKNAME
VARCHAR(254)

NOT NULL

The nickname or identifier of the

address, replacing SANICK used in

previous versions of WebSphere

Commerce or WebSphere Commerce

Suite. Among all the addresses

owned by a member, their nicknames

must be unique.

ADDRESS2 VARCHAR(50)

Address line 2, replacing SAADDR2

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

ADDRESS3 VARCHAR(50)

Address line 3, replacing SAADDR3

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

CITY VARCHAR(128)

The city, replacing SACITY used in

previous versions of WebSphere

Commerce or WebSphere Commerce

Suite.

STATE VARCHAR(128)

State or province, replacing SASTATE

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

COUNTRY VARCHAR(128)

The country or region, replacing

SACNTRY used in previous versions

of WebSphere Commerce or

WebSphere Commerce Suite.

ZIPCODE VARCHAR(40)

ZIP or postal code, replacing SAZIPC

used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite.

EMAIL1 VARCHAR(256)

The primary e-mail address, replacing

SAEMAIL1 used in previous versions

of WebSphere Commerce or

WebSphere Commerce Suite.

78

EMAIL2 VARCHAR(256) The secondary e-mail address.

PHONE1TYPE CHAR(3)

Phone type for the primary phone

number, such as TTY for a

teletypewriter for people who have a

hearing impairment or PHN for a

standard phone. This column

replaces SADPHTYP.

PHONE2TYPE CHAR(3)

Phone type for the secondary phone

number, such as TTY for a

teletypewriter for people who have a

hearing impairment or PHN for a

standard phone. This column

replaces SAEPHTYP.

PUBLISHPHONE1 INTEGER

Specifies whether or not the primary

phone number is listed. Valid values

are 1 (listed) or 0 (unlisted).

PUBLISHPHONE2 INTEGER

Specifies whether or not the

secondary phone number is listed.

Valid values are 1 (listed) or 0

(unlisted).

BESTCALLINGTIME CHAR(1)

The best time to call, replacing

SABTCALL used in previous versions

of WebSphere Commerce or

WebSphere Commerce Suite. Valid

values are D (daytime) and E

(evening).

PACKAGESUPPRESSION INTEGER

Specifies whether or not to include

package inserts. Valid values are 1

(include) or 0 (do not include).

LASTCREATE TIMESTAMP

The date and time the row was

created, replacing SASTMP used in

previous versions of WebSphere

Commerce or WebSphere Commerce

Suite.

OFFICEADDRESS VARCHAR(128)
Desktop delivery or office address

associated with a shipping address.

79

SELFADDRESS

INTEGER NOT

NULL DEFAULT

0

Specifies whether or not the address

belongs to the member (user or

organization). The address that

belongs to a member is the one that

was entered as part of registration.

Valid values are 1 (the address

belongs to the member) or 0 (the

address does not belong to the user;

it may belong to a friend, associate,

or relative). A member can have only

one permanent self address.

FIELD1 VARCHAR(64)

Customizable. This column replaces

the SAFIELD1 column in the SHADDR

table (used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite) and

accepts up to 3 characters.

FIELD2 VARCHAR(64)

Customizable. This column replaces

the SAFIELD2 column in the SHADDR

table (used in previous versions of

WebSphere Commerce or

WebSphere Commerce Suite) and

accepts up to one character.

TAXGEOCODE VARCHAR(254)

Tax code based on geographical

region, used for integration with

Taxware.

SHIPPINGGEOCODE VARCHAR(254)

Shipping code based on

geographical region. This value is

used for integration with Taxware.
 Address Table

A.2.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`address`;

CREATE TABLE `estore`.`address` (

 `ADDRESS_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `ADDRESSTYPE` varchar(5) NOT NULL,

 `ISPRIMARY` int(1) unsigned NOT NULL,

 `MEMBER_ID` int(10) unsigned NOT NULL,

 `STATUS` char(1) NOT NULL,

 `LASTNAME` varchar(45) NOT NULL,

80

 `PERSONTITLE` varchar(45) NOT NULL,

 `FIRSTNAME` varchar(45) NOT NULL,

 `MIDDLENAME` varchar(45) NOT NULL,

 `BUSINESSTITLE` varchar(45) NOT NULL,

 `PHONE1` varchar(32) NOT NULL,

 `FAX1` varchar(32) NOT NULL,

 `ADDRESS1` varchar(256) NOT NULL,

 `ADDRESS2` varchar(256) NOT NULL,

 `ADDRESS3` varchar(256) NOT NULL,

 `CITY` varchar(128) NOT NULL,

 `STATE` varchar(128) NOT NULL,

 `COUNTRY` varchar(45) NOT NULL,

 `ZIPCODE` varchar(45) NOT NULL,

 `EMAIL1` varchar(256) NOT NULL,

 `EMAIL2` varchar(256) NOT NULL,

 PRIMARY KEY (`ADDRESS_ID`),

 KEY `FK_address_1` (`MEMBER_ID`),

 CONSTRAINT `FK_address_1` FOREIGN KEY (`MEMBER_ID`) REFERENCES `member` (`MEMBER_ID`) ON
DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

A.3. Inventory Table Create Statement

A.3.1. Description
Each row of this table contains a quantity amount representing the inventory for a

particular CatalogEntry. The CatalogEntry is available to be shipped from a

FulfillmentCenter on behalf of a Store. This table cannot be used in conjunction with

Available To Promise (ATP) inventory allocation. It is used only when ATP inventory is

not enabled (refer to the INVENTORYSYSTEM column of the STORE table).

Column Name Column Type Description

CATENTRY_ID
BIGINT NOT

NULL
The CatalogEntry.

81

QUANTITY

DOUBLE NOT

NULL DEFAULT

0

The quantity amount, in units indicated

by QUANTITYMEASURE.

FFMCENTER_ID
INTEGER NOT

NULL
The FulfillmentCenter.

STORE_ID
INTEGER NOT

NULL
The Store.

QUANTITYMEASURE

CHAR(16) NOT

NULL DEFAULT

'C62'

The unit of measurement for QUANTITY.

INVENTORYFLAGS

INTEGER NOT

NULL DEFAULT

0

Bit flags, from low to high order,

indicating how QUANTITY is used:

1 = noUpdate. The default

UpdateInventory task command does

not update QUANTITY.

2 = noCheck. The default

CheckInventory and UpdateInventory

task commands do not check

QUANTITY.

OPTCOUNTER SMALLINT Reserved for IBM internal use.
 Inventory Table

A.3.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`inventory`;

CREATE TABLE `estore`.`inventory` (

 `PRODUCT_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `QUANTITY` double NOT NULL,

 PRIMARY KEY (`PRODUCT_ID`),

 CONSTRAINT `FK_inventory_1` FOREIGN KEY (`PRODUCT_ID`) REFERENCES `product` (`PRODUCT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

A.4. Language Table Create Statement

A.4.1. Description
Each row of this table represents a language. Our Commerce system supports multiple

languages and is translated into ten languages by default. Using the predefined ISO codes

users can add other supported languages.

82

Name Type Description

LANGUAGE_ID
INTEGER

NOT NULL

The language ID (primary key of this table) for

each language. Foreign key to the tables that

contain language-dependent information. The

following is the list of language components

(language ID codes) of the locale:

-1 = English (US)

-2 = French

-3 = German

-4 = Italian

-5 = Spanish

-6 = Brazilian Portuguese

-7 = Simplified Chinese

-8 = Traditional Chinese

-9 = Korean

LOCALENAME
CHAR (16)

NOT NULL

A Java locale used to represent a political,

geographical, or cultural region that has a distinct

language and customs. The following is the list of

locale used for formatting:

en_US = United States

fr_FR = France

de_DE = Germany

it_IT = Italy

es_ES = Spain

pt_BR = Brazil

zh_CN = China

zh_TW = Taiwan

ko_KR = Korea

ja_JP = Japan

ru_RU = Russian

ro_RO = Romanian

pl_PL = Polish

83

LANGUAGE CHAR (5)

Language component of the locale.

NOTE: A value must be entered for this column:

en = English (US)

fr = French

de = German

it = Italian

es = Spanish

pt = Brazilian Portuguese

zh = Simplified Chinese

zh = Traditional Chinese

ko = Korean

ja = Japanese

ru = Russian

ro = Romanian

pl = Polish

To choose another language component, refer to

the existing ISO codes.

COUNTRY CHAR (5)

Country or region component of the locale.

NOTE: A value must be entered for this column:

US = United States

FR = France

DE = Germany

IT = Italy

ES = Spain

BR = Brazil

CN = China

TW = Taiwan

KR = Korea

JP = Japan

RU = Russia

RO = Romania

PL = Poland

To choose another country or region, refer to the

existing ISO codes.

VARIANT CHAR (10)
Variant component of the locale. Used to specify

the locale encoding character set

ENCODING
VARCHAR

(32)

The character encoding value that the browser

uses to display the page in the selected language.

84

MIMECHARSET
VARCHAR

(32)

The MIME character encoding value that the

notification system uses to encode a message for

the selected language.

OPTCOUNTER SMALLINT
The optimistic concurrency control counter for

the table.
Language Table

A.4.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`language`;

CREATE TABLE `estore`.`language` (

 `LANGUAGE_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `LOCALENAME` varchar(45) NOT NULL,

 `LANGUAGE` varchar(45) NOT NULL,

 `COUNTRY` varchar(45) NOT NULL,

 `VARIANT` varchar(45) NOT NULL,

 PRIMARY KEY (`LANGUAGE_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

A.5. Listprice Table Create Statement

A.5.1. Description
Each row of this table represents a ListPrice in a particular currency for each Catalog

Entry

Name Type Description

CATENTRY_ID BIGINT NOT NULL The CatalogEntry.

CURRENCY
CHAR (3) NOT

NULL

The Currency of the ListPrice. This is a

currency code as per ISO 4217 standards.

LISTPRICE
DECIMAL (20,5)

NOT NULL
The amount of the ListPrice.

OID VARCHAR (64) Reserved for IBM internal use.

OPTCOUNTER SMALLINT
The optimistic concurrency control counter

for the table.
 Listprice Table

A.5.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`listprice`;

CREATE TABLE `estore`.`listprice` (

 `PRODUCT_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

85

 `CURRENCY` varchar(45) NOT NULL,

 `LISTPRICE` decimal(20,5) NOT NULL,

 PRIMARY KEY (`PRODUCT_ID`),

 CONSTRAINT `FK_listprice_1` FOREIGN KEY (`PRODUCT_ID`) REFERENCES `product` (`PRODUCT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

A.6. Member Table Create Statement

A.6.1. Description
Stores the list of members (participants) of the WebSphere Commerce system. A

member is either a user, an organizational entity or a member group.

Name Type Description

MEMBER_ID
BIGINT NOT

NULL

ID for the member, a unique primary key for

this table.

TYPE
CHAR (3) NOT

NULL

The type of member as follows:

O = OrgEntity

U = User

G = MemberGroup

STATE INTEGER

The registration approval status as follows:

0 = pending approval

1 = approved

2 = rejected

3 = pending email activation

Null = approval is not applicable (approved)

OPTCOUNTER SMALLINT
The optimistic concurrency control counter

for the table.
 Member Table

A.6.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`member`;

CREATE TABLE `estore`.`member` (

 `MEMBER_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `TYPE` varchar(45) NOT NULL,

 `state` varchar(45) NOT NULL,

 PRIMARY KEY (`MEMBER_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

86

A.7. OrderItems Table Create Statement

A.7.1. Description
Each row of this table represents an order item in an order

Name Type Description

ORDERITEMS_ID
BIGINT NOT

NULL
Generated unique key.

STOREENT_ID
INTEGER

NOT NULL

The store entity the order (this order

item is part of) is part of. This is normally

a store unless STATUS is Q, in which case

it is normally a store group.

ORDERS_ID
BIGINT NOT

NULL
The order of which this order item is part.

TERMCOND_ID BIGINT
The TermAndCondition, if known, that

determined the price for this order item.

TRADING_ID BIGINT

The TradingAgreement, if known, that

determines the TermAndCondition

objects (including how the price is

determined) that apply to this order

item.

ITEMSPC_ID BIGINT

The specified item to be allocated from

available inventory and shipped to the

customer.

CATENTRY_ID BIGINT
The catalog entry, if any, of the product

being purchased.

PARTNUM
VARCHAR

(64)

The part number of the catalog

entry(CATENTRY.PARTNUMBER) for the

product.

SHIPMODE_ID INTEGER The shipping mode, if still known.

FFMCENTER_ID INTEGER
The fulfillment center, if known, from

which the product will ship.

MEMBER_ID
BIGINT NOT

NULL

The customer of the order item (which is

the same as the customer of the order).

ADDRESS_ID BIGINT
The shipping address, if any, for this

order item.

ALLOCADDRESS_ID BIGINT

The shipping address used when

inventory for this order item was

allocated or backordered.

87

PRICE
DECIMAL

(20,5)

The price for the nominal quantity of the

product

(CATENTSHIP.NOMINALQUANTITY).

LINEITEMTYPE CHAR (4)

If specified, indicates the type of the

order item.

ALT = the order item represents an

alternative item (might not be exactly

what the customer requested).

STATUS
CHAR (1)

NOT NULL

The status for the order item. It may not

be the same as the status in the order.

OUTPUTQ_ID BIGINT Reserved for IBM internal use.

INVENTORYSTATUS

CHAR (4)

NOT NULL

DEFAULT

'NALC'

The allocation status of inventory for this

order item:

NALC

Inventory is not allocated nor on

back-order.

BO

Inventory is on back-order.

ALLC

Inventory is allocated.

FUL

Inventory has been released for

fulfillment.

AVL

Inventory is available.

LASTCREATE TIMESTAMP The time this order item was created.

LASTUPDATE TIMESTAMP

The most recent time this order item was

updated. Changing inventory allocation

related information does not cause this

timestamp to be updated (refer to the

LASTALLOCUPDATE column).

FULFILLMENTSTATUS

CHAR (4)

NOT NULL

DEFAULT

'INT'

The fulfillment status of the order item:

INT = not yet released for fulfillment.

OUT = released for fulfillment.

SHIP = shipment confirmed.

HOLD = a temporary status between INT

and OUT status.

88

LASTALLOCUPDATE TIMESTAMP

The most recent time inventory was

checked (for unallocated order items),

allocated, or backordered, for this order

item.

OFFER_ID BIGINT
The offer, if any, and if it still exists, from

which PRICE was obtained.

TIMERELEASED TIMESTAMP
The time this order item was released for

fulfillment.

TIMESHIPPED TIMESTAMP
The time this order item was manifested

for shipment.

CURRENCY CHAR (10)

The currency of order item monetary

amounts other than BASEPRICE. This is

the same as the currency of the order,

ORDERS.CURRENCY. This is a currency

code according to ISO 4217 standards.

COMMENTS
VARCHAR

(254)

Comments from the customer, such as a

greeting for a gift.

TOTALPRODUCT

DECIMAL

(20,5)

DEFAULT 0

PRICE times QUANTITY.

QUANTITY
DOUBLE

NOT NULL

The result of multiplying QUANTITY by

CATENTSHIP.NOMINALQUANTITY must

be a multiple of

CATENTSHIP.QUANTITYMULTIPLE. And it

represents the actual quantity being

purchased, in the unit of measurement

specified by

CATENTSHIP.QUANTITYMEASURE.

TAXAMOUNT
DECIMAL

(20,5)

The total sales taxes associated with this

order item, in the currency specified by

CURRENCY.

TOTALADJUSTMENT

DECIMAL

(20,5)

DEFAULT 0

The total of the monetary amounts of

the order item adjustments for this order

item, in the currency specified by

CURRENCY. This column also includes all

kinds of shipping charge adjustments

like discount, coupon, shipping

adjustment and surcharge.

89

SHIPTAXAMOUNT
DECIMAL

(20,5)

The total shipping taxes associated with

this order item, in the currency specified

by CURRENCY.

ESTAVAILTIME TIMESTAMP

An estimate of when sufficient inventory

will be available to fulfill this order item.

This estimate does not include the

shipping offset.

FIELD1 INTEGER Customizable.

DESCRIPTION
VARCHAR

(254)

A mnemonic description of the order

Item, suitable for display to the

customer. This field is usually NULL when

CATENTRY_ID is not NULL, since in that

case the CatalogEntry description can be

displayed.

FIELD2
VARCHAR

(254)
Customizable.

ALLOCATIONGROUP BIGINT Reserved for IBM internal use.

SHIPCHARGE
DECIMAL

(20,5)

The base shipping charge associated

with the order item, in the currency

specified by CURRENCY, it is the shipping

charge before any adjustments. The

shipping charge adjustment will be

persisted in the
ORDERITEMS.TOTALADJUSTMENT

column with other adjustments including

discount and surcharge. The total

shipping charge is the sum of base

shipping charge in

ORDERITEMS.SHIPCHARGE column and

the shipping charge adjustment in
ORDERITEMS.TOTALADJUSTMENT

column.

BASEPRICE
DECIMAL

(20,5)

If PRICE was converted from a currency

different from the order item currency,

BASEPRICE is the price that was

converted to determine the PRICE.

BASECURRENCY CHAR (3) The currency of BASEPRICE.

TRACKNUMBER
VARCHAR

(64)
Reserved for IBM internal use.

TRACKDATE TIMESTAMP Reserved for IBM internal use.

90

PREPAREFLAGS

INTEGER

NOT NULL

DEFAULT 0

Contains the following bit flags

indicating special processing associated

with this order item:

1

generated

The order item was generated

during a previous execution of the

OrderPrepare command. The next

time the OrderPrepare command

is run, it first removes all

generated order items so that

they can be re-generated if and as

appddcable.

2

priceOverride

The price of the order item has

been manually entered and will

not be changed by customer

commands.

4

fulfillmentCenterOverride

The fulfillment center has been

manually specified and will not be

changed by customer commands.

8

directCalculationCodeAttachment

CalculationCodes may be directly

attached to the order item. The

default

CalculationCodeCombineMethod

will not look for direct

attachments unless this flag is

true.

91

16

shippingChargeByCarrier

The contract for this order item

indicates that no shipping charge

will be calculated by WebSphere

Commerce. It may be calculated

and charged by the carrier on

fulfillment.

32

quotation

The order item was obtained from

a quotation. The price will not be

automatically refreshed by

customer commands.

64

notConfigured

Price lookup and inventory

allocation for this order item is not

done using the component items

found in the OICOMPddST table.

This flag does not need to be set

for order items whose

CONFIGURATIONID column value

is null.

128

autoAdd

This order item, such as a free gift,

was automatically added to the

order by the OrderCalculate

command. This flag is for

information-display purposes only

and does not affect price

calculations.

92

256

hasPersonalizationAttributes

The order item contains

personalization attributes.

512

skipRepricing

The order item was marked as not

to be repriced. For example, it is

set as skipRepricing when a quote

is generated into an order if the

quote has not expired.

1024

shippingAdjusted

The order items shipping charge is

manually adjusted.

2048

priceRefreshed

The order items price has already

been refreshed.

CORRELATIONGROUP BIGINT

Normally this is the same as

ORDERITEMS_ID, except:

1. When an order item is split by the

AllocateInventory task command,

the newly created OrderItem inherits

the CORRELATIONGROUP value from the

original order item.

2. when the PREPAREFLAGS column

indicates "quotation", the OrderItem

inherits the CORRELATIONGROUP value

from the corresponding OrderItem in the

parent order.

93

PROMISEDAVAILTIME TIMESTAMP

When an order is placed (using the

OrderProcess command), this would be

set to EstAvailTime. After that it would

normally not be updated, although a CSR

could manually update this to reflect a

verbal commitment made to the

customer.

SHIPPINGOFFSET

INTEGER

NOT NULL

DEFAULT 0

An estimate of how many seconds it will

take to ship this item once the order is

placed and inventory has been allocated.

NEEDEDQUANTITY

INTEGER

NOT NULL

DEFAULT 0

Quantity needed for fulfillment. If

CATENTRY is not NULL, this is QUANTITY

times CATENTSHIP.NOMINALQUANTITY,

converted from

CATENTSHIP.QUANTITYMEASURE to

BASEITEM.QUANTITYMEASURE, divided

by BASEITEM.QUANTITYMULTIPLE and

rounded to the nearest integer.

ALLOCQUANTITY

INTEGER

NOT NULL

DEFAULT 0

Quantity allocated or backordered for

this order item. The quantity in

BASEITEM.QUANTITYMEASURE units can

be calculated by multiplying this value by

BASEITEM.QUANTITYMULTIPLE, for the

base item of the specified item indicated

by ITEMSPC_ID.

ALLOCFFMC_ID INTEGER

The fulfillment center from which

inventory for this order item is allocated

or backordered.

ORDRELEASENUM INTEGER The associated order release, if any.

CONFIGURATIONID
VARCHAR

(128)

The identifier that is provided by an

external product configurator. This

identifier represents a list of order item

components that are stored in the

OICOMPLIST table.

94

SUPPLIERDATA
VARCHAR

(254)

This column is not populated or used by

WebSphere Commerce. The value for this

column can be generated and used by

the external system that originates an

order. This value can be returned with a

quotation, and sent when an order is

placed on an external system. For

example, this column can be used to

contain a supplier distribution center ID.

This field is not supported within the

Order Noun for component services.

SUPPLIERPARTNUMBER
VARCHAR

(254)

The supplier part number, if known.

Suitable for display to the customer. This

field is not supported within the Order

Noun for component services.

AVAILQUANTITY INTEGER
If specified, indicates the quantity

available for purchase.

ISEXPEDITED

CHAR (1)

NOT NULL

DEFAULT

'N'

Indicates that the item should receive

expedited handling in fulfillment. Y

indicates that it should receive expedited

handling. N indicates that it should not

(this is the default).

OPTCOUNTER SMALLINT
The optimistic concurrency control

counter for the table.

REQUESTEDSHIPDATE TIMESTAMP

The ship date that has been requested

for the order item. When no date (null) is

specified, the ship date will be whenever

the item is available to be shipped. When

a date is specified, the ship date will be

no sooner than the requested date. This

is because a backorder could delay the

ship date beyond the requested date.

See the definition of

ALLOCATIONOFFSET and

MAXFOOFFSET in the STORE table.

TIECODE SMALLINT
TieCode used for items that are shipping

at the same time (Ship Together).
OrderItem Table

A.7.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`orderitems`;

95

CREATE TABLE `estore`.`orderitems` (

 `ORDERITEMS_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `ORDERS_ID` int(10) unsigned NOT NULL,

 `PRODUCT_ID` int(10) unsigned NOT NULL,

 `MEMBER_ID` int(10) unsigned NOT NULL,

 `ADDRESS_ID` int(10) unsigned NOT NULL,

 `PRICE` decimal(20,5) NOT NULL,

 `QUANTITY` double NOT NULL,

 `TOTALPRODUCT` decimal(20,5) NOT NULL,

 `DESCRIPTION` varchar(45) NOT NULL,

 PRIMARY KEY (`ORDERITEMS_ID`),

 KEY `FK_ORDERITEMS_1` (`ORDERS_ID`),

 KEY `FK_orderitems_2` (`PRODUCT_ID`),

 KEY `FK_orderitems_3` (`MEMBER_ID`),

 KEY `FK_orderitems_4` (`ADDRESS_ID`),

 CONSTRAINT `FK_ORDERITEMS_1` FOREIGN KEY (`ORDERS_ID`) REFERENCES `orders` (`ORDERS_ID`),

 CONSTRAINT `FK_orderitems_2` FOREIGN KEY (`PRODUCT_ID`) REFERENCES `product`
(`PRODUCT_ID`),

 CONSTRAINT `FK_orderitems_3` FOREIGN KEY (`MEMBER_ID`) REFERENCES `member` (`MEMBER_ID`),

 CONSTRAINT `FK_orderitems_4` FOREIGN KEY (`ADDRESS_ID`) REFERENCES `address` (`ADDRESS_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

A.8. Order Table Create Statement

A.8.1. Description
Each row in this table represents an order in a store

Name Type Description

ORDERS_ID
BIGINT NOT

NULL
Generated unique key.

ORMORDER CHAR (30)
A merchant-assigned order reference

number, if any.

ORGENTITY_ID BIGINT
The immediate parent organization ID of

the creator.

TOTALPRODUCT

DECIMAL

(20,5)

DEFAULT 0

The sum of

ORDERITEMS.TOTALPRODUCT for the

OrderItems in the Order.

96

TOTALTAX

DECIMAL

(20,5)

DEFAULT 0

The sum of ORDERITEMS.TAXAMOUNT

for the OrderItems in the Order.

TOTALSHIPPING

DECIMAL

(20,5)

DEFAULT 0

The sum of ORDERITEMS.SHIPCHARGE

for the OrderItems in the Order.

TOTALTAXSHIPPING

DECIMAL

(20,5)

DEFAULT 0

The sum of

ORDERITEMS.SHIPTAXAMOUNT for the

OrderItems in the Order.

DESCRIPTION
VARCHAR

(254)

A mnemonic description of the order,

entered by the customer, suitable for

display to the customer.

STOREENT_ID
INTEGER

NOT NULL

The store entity the order is part of. This

is normally a store unless STATUS is Q, in

which case it is normally a store group.

CURRENCY CHAR (10)

The currency for monetary amounts

associated with this order. This is the

currency code according to ISO 4217

standards.

LOCKED CHAR (1) Reserved for IBM internal use.

TIMEPLACED TIMESTAMP
The time this order was processed by the

OrderProcess command.

LASTUPDATE TIMESTAMP
The time this order was most recently

updated.

SEQUENCE

DOUBLE

NOT NULL

DEFAULT 0

Can be used by a user interface to control

the sequence of orders in a list.

STATUS
VARCHAR

(3)

The status of the order. This is similar to

order states. For specific values of status

and their descriptions, refer to the order

states page, but omit states 'Y' and 'Z'.

MEMBER_ID
BIGINT NOT

NULL
The customer that placed the order.

FIELD1 INTEGER Customizable.

ADDRESS_ID BIGINT

This column is deprecated. In versions

WC 5.6.1 and earlier, this column

contained the billing address. In version

WC 6.0 and later, the billing address is

part of payment data and is stored in

PPCEXTDATA table as encrypted data.

97

FIELD2
DECIMAL

(20,5)
Customizable.

PROVIDERORDERNUM INTEGER Reserved for IBM internal use.

SHIPASCOMPLETE

CHAR (1)

NOT NULL

DEFAULT 'Y'

Reserved for IBM internal use.

FIELD3
VARCHAR

(254)
Customizable.

TOTALADJUSTMENT

DECIMAL

(20,5)

DEFAULT 0

The sum of

ORDERITEMS.TOTALADJUSTMENT for the

order items in the order. This column also

includes all kinds of shipping charge

adjustments like discount, coupon,

shipping adjustment and surcharge.

ORDCHNLTYP_ID BIGINT Reserved for IBM internal use.

COMMENTS
VARCHAR

(254)
Comments from the customer.

NOTIFICATIONID BIGINT

Notification identifier referring to the

rows in the NOTIFY table that store

notification attributes. These attributes

override the defaults for notifications

related to this order.

TYPE CHAR (3)

For an order, TYPE indicates whether it is

a regular order (ORD), private requisition

list order (PRL), shareable requisition list

order (SRL), standing order (STD),

quotation order (QUT), quote (QOT),

profile order (QUK), recurring order (REC),

or subscription (SUB).

OPTCOUNTER SMALLINT
The optimistic concurrency control

counter for the table.

EDITOR_ID BIGINT
Stores the ID of the person editing the

order.

BUSCHN_ID INTEGER The Business Channel ID of the order.

SOURCEID BIGINT

This field indicates the sources from

which this order came, if any. This field is

relevant for orders that were generated

from a previously saved quote, for

example. In that situation, the QuoteId

would be saved here.

98

EXPIREDATE TIMESTAMP

This entry is only relevant when the row

refers to a quote, type "QOT". This field

then indicates the expiration date for that

quote.

BLOCKED
SMALLINT

DEFAULT 0

Indicates if this order has a block placed

against it or not.

OPSYSTEM_ID INTEGER
This field indicates the Order Processing

system for the order.

TRANSFERSTATUS SMALLINT

Order transferring status: 0, it is in the

initial status. 1, it is in the transferring

status. 2, it is in the transferred status.

null, the same as 0.

BUYERPO_ID BIGINT
The Buyer PO Number Id related to an

order
Order Table

A.8.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`orders`;

CREATE TABLE `estore`.`orders` (

 `ORDERS_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `TOTALPRODUCT` decimal(20,5) NOT NULL,

 `TOTALTAX` decimal(20,5) NOT NULL,

 `TOTALSHIPPING` decimal(20,5) NOT NULL,

 `DESCRIPTION` varchar(45) NOT NULL,

 `CURRENCY` char(10) NOT NULL,

 `TIMEPLACED` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 `STATUS` char(3) NOT NULL,

 `BILLING_ADDRESS_ID` int(10) unsigned NOT NULL,

 `TOTALADJUSTMENT` decimal(20,5) NOT NULL,

 `MEMBER_ID` int(10) unsigned NOT NULL,

 PRIMARY KEY (`ORDERS_ID`),

 KEY `FK_ORDERS_1` (`MEMBER_ID`),

 KEY `FK_orders_2` (`BILLING_ADDRESS_ID`),

 CONSTRAINT `FK_ORDERS_1` FOREIGN KEY (`MEMBER_ID`) REFERENCES `member` (`MEMBER_ID`),

 CONSTRAINT `FK_orders_2` FOREIGN KEY (`BILLING_ADDRESS_ID`) REFERENCES `address`
(`ADDRESS_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

99

A.9. Product Table Create Statement

A.9.1. Description
This table holds the information related to a catalog entry. Examples of catalog entries

include products, items, packages, and bundles.

Name Type Description

CATENTRY_ID
BIGINT NOT

NULL

The internal reference number of the

catalog entry.

MEMBER_ID
BIGINT NOT

NULL

The reference number that identifies the

owner of the catalog entry. Along with the

PARTNUMBER, these columns are a

unique index.

ITEMSPC_ID BIGINT

The specified item that this catalog entry

relates to. This column should only be

populated for catalog entries that are of

type "ItemBean", "PackageBean", or

"DynamicKitBean". Specified items are

used for fulfillment.

CATENTTYPE_ID
CHAR (16)

NOT NULL

Identifies the type of catalog entry.

Foreign key to the CATENTTYPE table. The

supported default types are: ProductBean,

ItemBean, PackageBean, BundleBean and

DynamicKitBean.

PARTNUMBER

VARCHAR

(64) NOT

NULL

The reference number that identifies the

part number of the catalog entry. Along

with the MEMBER_ID, these columns are a

unique index.

MFPARTNUMBER
VARCHAR

(64)

The part number used by the

manufacturer to identify this catalog entry.

MFNAME
VARCHAR

(64)

The name of the manufacturer of this

catalog entry.

MARKFORDELETE
INTEGER

NOT NULL

Indicates if this catalog entry has been

marked for deletion:

0 = No.

1 = Yes.

URL
VARCHAR

(254)

The URL to this catalog entry, which can

be used as a download URL for soft goods.

FIELD1 INTEGER Customizable.

100

FIELD2 INTEGER Customizable.

LASTUPDATE TIMESTAMP
Indicates the last time the catalog entry

was updated.

FIELD3
DECIMAL

(20,5)
Customizable.

ONSPECIAL INTEGER
This flag identifies if this catalog entry is

on special.

ONAUCTION INTEGER
This flag identifies if this catalog entry is

on auction.

FIELD4
VARCHAR

(254)
Customizable.

FIELD5
VARCHAR

(254)
Customizable.

BUYABLE INTEGER
Indicates whether this catalog entry can be

purchased individually: 1=yes and 0=no.

OID
VARCHAR

(64)
Reserved for IBM internal use.

BASEITEM_ID BIGINT

The base item to which this catalog entry

relates. This column should only be

populated for catalog entries that are of

type ProductBean, PackageBean or

DynamicKitBean. Base items are used for

fulfillment.

STATE
CHAR (1)

DEFAULT '1'
Reserved for IBM internal use.

STARTDATE TIMESTAMP

The date when this catalog entry is

introduced. This column is for your

interpretation and information only.

ENDDATE TIMESTAMP

The date when this catalog entry is

withdrawn. This column is for your

interpretation and information only.

RANK DOUBLE Reserved for IBM internal use.

OPTCOUNTER SMALLINT
The optimistic concurrency control

counter for the table.

AVAILABILITYDATE TIMESTAMP

The date that the product is available to

customers for purchase. This column is for

your interpretation and information only.

101

LASTORDERDATE TIMESTAMP

The final date that the product is available

for order. This is the latest date a customer

can order the product. This column is for

your interpretation and information only.

ENDOFSERVICEDATE TIMESTAMP

The date when the product is no longer in

service. For example, this date can be the

date that a software manufacturer stops

providing upgrades for a version of their

product. This column is for your

interpretation and information only.

DISCONTINUEDATE TIMESTAMP

The date when the product is

discontinued. For example, this date can

be the date the manufacturer stops

producing the product, or the date your

store stops selling the product. It is

recommended that this column be used

consistently to avoid confusion. This

column is for your interpretation and

information only.

UP_MFNAME
VARCHAR

(64)

The equivalent value of the MFNAME

column in upper case characters. This

column is used only for DB2 (LUW)

database-types to enhance performance

of text-based searches issued from

Management Center.

UP_MFPARTNUMBER
VARCHAR

(64)

The equivalent value of the

MFPARTNUMBER column in upper case

characters. This column is used only for

DB2 (LUW) database-types to enhance

performance of text-based searches issued

from Management Center.

UP_PARTNUMBER
VARCHAR

(64)

The equivalent value of the PARTNUMBER

column in upper case characters. This

column is used only for DB2 (LUW)

database-types to enhance performance

of text-based searches issued from

Management Center.
 Product Table

A.9.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`product`;

102

CREATE TABLE `estore`.`product` (

 `PRODUCT_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `PARTNUMBER` varchar(45) NOT NULL,

 `MFNAME` varchar(45) NOT NULL,

 `URL` varchar(45) NOT NULL,

 `BUYABLE` int(1) unsigned NOT NULL,

 `AVAILABILITYDATE` datetime NOT NULL,

 `ENDOFSERVICEDATE` datetime NOT NULL,

 PRIMARY KEY (`PRODUCT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

A.10. ProductDesc Table Create Statement

A.10.1. Description
This table holds language-dependent information related to a catalog entry

Name Type Description

CATENTRY_ID
BIGINT NOT

NULL

The internal reference number that

indicates to which catalog entry this

language-specific information relates.

LANGUAGE_ID
INTEGER

NOT NULL

The identifier of the language. For a list of

language components, see the LANGUAGE

table.

NAME CHAR (128)
The language-dependent name of this

catalog entry.

SHORTDESCRIPTION
VARCHAR

(254)
A short description of this catalog entry.

LONGDESCRIPTION
CLOB

(1000000)
A long description of this catalog entry.

THUMBNAIL
VARCHAR

(254)

The thumbnail image path of this catalog

entry.

AUXDESCRIPTION1
VARCHAR

(4000)

Additional description for this catalog

entry.

FULLIMAGE
VARCHAR

(254)
The full image path of this catalog entry.

AUXDESCRIPTION2
VARCHAR

(4000)

Additional description for this catalog

entry.

XMLDETAIL
CLOB

(1000000)
Reserved for IBM internal use.

103

AVAILABLE
INTEGER

NOT NULL

Indicates the length of time to availability

of this catalog entry. Do not use this

column to indicate inventory levels.

PUBLISHED
INTEGER

NOT NULL

Indicates whether this catalog entry should

be displayed for the language indicated by

LANGUAGE_ID:

0

Catalog entry should not be

displayed

1

catalog entry should be displayed

AVAILABILITYDATE TIMESTAMP Date this catalog entry becomes available.

KEYWORD
VARCHAR

(254)
A keyword used for searching.

OPTCOUNTER SMALLINT
The optimistic concurrency control counter

for the table.

UP_NAME CHAR (128)

The equivalent value of the NAME column

in upper case characters. This column is

used only for DB2 (LUW) database-types to

enhance performance of text-based

searches issued from Management Center.
 ProductDesc Table

A.10.2. SQL Statement
DROP TABLE IF EXISTS `estore`.`productdesc`;

CREATE TABLE `estore`.`productdesc` (

 `PRODUCT_ID` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `LANGUAGE_ID` varchar(45) NOT NULL,

 `NAME` varchar(128) NOT NULL,

 `SHORTDESCRIPTION` varchar(254) NOT NULL,

 `LONGDESCRIPTION` varchar(400) NOT NULL,

 `THUMBNAIL` varchar(254) NOT NULL,

 `FULLIMAGE` varchar(254) NOT NULL,

 `KEYWORD` varchar(254) NOT NULL,

 PRIMARY KEY (`PRODUCT_ID`),

 CONSTRAINT `FK_productdesc_1` FOREIGN KEY (`PRODUCT_ID`) REFERENCES `product`
(`PRODUCT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

104

APPENDIX B

B.1. Abbreviation

Abbreviation Definition

JVM
A Java virtual machine (JVM) is an abstract computing machine that

enables a computer to run a Java program

DBMS

A database-management system (DBMS) is a computer-software

application that interacts with end-users, other applications, and

the database itself to capture and analyze data. A general-purpose

DBMS allows the definition, creation, querying, update, and

administration of databases.

CPU

is the abbreviation for central processing unit. Sometimes referred

to simply as the central processor, but more commonly called

processor, the CPU is the brains of the computer where most

calculations take place.

AI

Artificial intelligence (AI, also machine intelligence, MI) is intelligent

behavior by machines, rather than the natural intelligence (NI) of

humans and other animals.

FCFS

First-come, first-served (FCFS), this principle states that customers

are served one at a time and that the customer that has been

waiting the longest is served first.

ANN

An artificial neural network is an interconnected group of nodes,

akin to the vast network of neurons in a brain. Here, each circular

node represents an artificial neuron and an arrow represents a

connection from the output of one neuron to the input of another.

CPA Cognitive Performance Application

JDBC

Java Database Connectivity (JDBC) is an application-programming

interface (API) for the programming language Java, which defines

how a client may access a database. It is Java based data access

technology and used for Java database connectivity. It is part of the

Java Standard Edition platform, from Oracle Corporation.

105

SQL
a standard language for storing, manipulating and retrieving data

in databases

UML

The Unified Modeling Language (UML) is a general-purpose,

developmental, modeling language in the field of software

engineering, that is intended to provide a standard way to visualize

the design of a system

106

CURRICULUM VITA

Name: Shade El-Hadik

Address:

• 1618 Grayson Lakes Blvd.

 Katy, TX. 77494

Education:

• B.S. Computer Science

American University in Cairo

1999-2003

• M.S. Computer Engineering and Computer Science

University of Louisville

2004-2004

Work Experience:

• Accenture

o IBM Watson eCommerce Architect 2017-Present

• IBM

o IBM eCommerce Architect 2015-2017

• Accenture

o IBM eCommerce Architect 2012-2015

• Academy Outdoors & Sports

o IBM eCommerce Architect 2011-2012

• IBM

o IT Architect 2007-2011

	Cognitive performance application.
	Recommended Citation

	tmp.1525811613.pdf.WFT9z

