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ABSTRACT 
 

THE INVOLVEMENT OF EPITHELIAL IN ARENAVIRUS-INDUCED 
PATHOGENESIS 

 

Nikole Leslie Margaret Warner  

April 16, 2018 

Mammalian Arenaviruses are a geographically and genetically diverse 

family of viruses, which is separated into two sub-groups; the Old World (OW) 

and New World (NW) groups.  Of the OW viruses, Lassa virus (LASV), found 

endemically in Western Africa, is an important human pathogen, causing 

hundreds of thousands of infections, and several thousand deaths annually. 

Interestingly, some villages in endemic regions, up to 45% of the population 

show seropositivity for the virus.  It is hypothesized that seropositivity is a result 

of natural infection through inhalation or ingestion of infectious particles.  

However, the exact mechanism is still unknown.   

 LASV’s natural reservoir is Mastomys natalensis, a common rat found in 

sub-Saharan Africa. Epidemiological studies have identified the inhalation, and/or 

ingestion of infectious rodent excreta as the primary route of transmission from 

rodent reservoir to human hosts.  Additionally, controlled experiments 

investigating intragastric (i.g.) versus intravenous (i.v.) routes of inoculation of 

non-human primates (NHPs) have continued transmission through these routes.  
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These studies utilized Lymphocytic Choriomeningitis Virus (LCMV)-WE, a strain 

of LCMV that results in Lassa Fever (LF)-like disease in NHPs, and LCMV-

Armstrong (ARM), a strain of LCMV that mimics subclinical infection.  When 

administered i.v., LCMV-WE-infected NHPs became systemically infected, 

showing clinical signs much like that of LF, and died.  However, when orally 

infected with this virus through i.g. inoculation, some of these animals recovered, 

and later, were protected from lethal doses of i.v. WE challenge. 

 Due to the nature of natural transmission from rodent to humans, epithelial 

cells are amongst the first cells to come in contact with the virus.  However, the 

role(s) of the epithelial barrier during these infections have yet to be investigated.  

In order to investigate the role of these cells during arenaviral infection, here, a 

cell culture model was developed to investigate the interaction of OW 

mammalian arenaviruses at the site of intragastric inoculation.  An important 

finding of this works is that the patterns of entry and release are viral dependent, 

and attachment to epithelial surfaces may play a role in these phenomena.  

Furthermore, regardless of their pathogenic potential in NHPs, both strains of 

LCMV, as well as LASV’s close relative, MOPV, showed similar patterns of entry 

and release when exposed to the apical and basolateral surfaces of polarized 

intestinal epithelia. Additionally, the replication patters of vaccine candidate ML-

29; a reassortant virus that contains the L segment of MOPV, and S segment of 

LASV, providing the exact same GP1 of LASV, were characterized.  Interestingly, 

ML-29 virus entered and released in a different pattern than was observed with 

LCMV and MOPV.   
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 To determine if patterns of viral entry and release were driven by 

attachment differences, LCMV, MOPV, and ML-29 viral attachment to the surface 

of polarized epithelia was analyzed.  LCMV an MOPV attaches to the apical and 

basolateral surfaces of the cells with similar efficiency.  However, ML-29 showed 

decreased attachment to the basolateral surface of these cells as compared to 

the apical surface.   

 Due to differences in pathogenicity seen in NHPs infected i.v. with LCMV-

WE and ARM, we hypothesized that these viruses would show differences in 

entry and release patterns in the polarized Caco-2 cells.  However, these viruses 

replicated in much the same way.  From these observations, we sought to further 

investigate differences in viral replication that may explain pathogenic differences 

between these closely related viruses.  To do so, we investigated intracellular 

trafficking under the hypothesis that it may be responsible for these differences. 

 Through the use of chemical inhibitors and immunofluorescence with 

confocal microscopy, a number of differences through the intracellular trafficking 

of LCMV-ARM and WE.  The data indicates that LCMV-WE bypasses the TLR-2 

receptor interaction in early endosome, and does not produce an IL-6 response 

in infected macrophages, opposed to LCMV-ARM-infected cells.  Additionally, 

co-staining with LCMV and late endosome marker RAB7, showed more co-

localization with LCMV-ARM than that of LCMV-WE.  Furthermore, when 

blocking acidification of late endosome/lysosome with bafilomycin treatments, 

LCMV-ARM was more sensitive to pH change in the late endosome, indicating 
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that fusion occurs at less acidic conditions.  These less acidic conditions promote 

earlier release at viral RNA in the case of LCMV-ARM versus that of WE. 

 Together, these results signify differences in viral replication are tissue 

and viral specific.  Furthermore, this research provides a platform to continue 

investigating key differences in viral replication between viruses of close genetic 

relatedness.     
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INTRODUCTION 
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OVERVIEW OF ARENAVIRIDAE 

Arenaviridae is a family of viruses that are known to cause asymptomatic, 

chronic infections of rodents, and human disease ranging from asymptomatic 

infection to deadly hemorrhagic fever. These viruses have been identified world-

wide, utilizing rodents as the host reservoir.  Arenaviridae gets its name from the 

term arenosus which is Latin for “sandy” due to their appearance in electron 

microscope sections, caused by ribosomes obtained from their infected host cells 

[1]. When these viruses are transmitted to humans, they can cause minor to 

severe infection that may lead to hemorrhagic fevers.  Others seem to be non-

pathogenic for humans, or rarely found in human hosts.   

Initially, arenaviruses were thought to only infect mammals, but recently, 

arenaviruses have been identified as the causative agent of inclusion body 

disease in the boid family of snakes [2]. These findings spurred a change in 

arenaviral taxonomy, leading to a new genus of arenaviruses; mammarenavirus, 

which utilize a mammalian host (Figure 1), and of genus reptarenavirus which 

target reptilian hosts [3].  Among the mammarenavirus genus, there is further 

division into the Old World (OW) or LCMV-Lassa virus complex, and the New 

World (NW), or Tacaribe virus (TCRV) complex [3, 4].  The mammarenaviruses 

are separated into the OW and NW complexes based on geographical location 

and genetic relatedness. The OW complex has a single lineage containing five 

species; Lassa virus (LASV), Mopeia virus (MOPV), Ippy virus,  
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Figure 1. Taxonomy of Mammarenaviruses. 

 Multiple sequence alignment of the complete GPC from different arenaviruses 

were analyzed via CLUSTALW analysis.  A phylogenetic tree was generated 

using MacVector 12.6.0.  Hoizontal distances represent protein differences. 

Viruses highlighted in blue represent viruses used in studies presented here. 

Image adapted from McLay et. al 2014 [5].   

  

Latino

Oliveros

Flexal

Pichinde

Pirital

Whitewater Arroyo

Tamiami

Bear Canyon

Tacaribe

Machupo

Junin

Sabia

Chapare

Cupixi

Guanarito

Amapari

Lujo

Lymphocytic Choriomeningitis

Dandenon

Ippy

Lassa

Mopeia

Mobala

New World

Old World



4 
 

Mobala virus, and Lymphocytic Choriomeningitis virus (LCMV), as well as some 

newly discovered viruses including Lujo, Morogoro, Dandenong, and Kodoko 

virus [6-8].  The NW complex has several lineages; clade A, B, C, and A/Rec.  

Clade A of the NW complex contains 5 species; Flexal mammarenavirus, Parana 

mammarenavirus, Pichinde mammarenavirus, Pirital mammarenavirus, and 

Allpahuayo mammarenavirus. Most of the NW viruses are not known to be 

pathogenic for humans, and are located in South America.  Arenaviruses of 

Clade B also reside in South America where viruses of Clade A are found.  This 

clade contains eight viruses including four in which are known to be significant 

human pathogens; Sabia virus, Guanarito, Junin, and Machupo virus.  Other 

viruses of this clade include Tacaribe, Chapare, Cupixi, and Amapari virus.  

Clade C is comprised of only two arenaviruses, Latino virus and Oliveros virus; 

both of which exist in South America and are not known to be pathogenic to 

humans.  Finally, Clade A/Rec is comprised of the virus species that are found in 

North America and are either pathogenic (Whitewater Arroyo virus) or non-

pathogenic (Tamiami virus, and Bear Canyon virus) for humans. 

THE ARENAVIRUS LIFE CYCLE 
 

During viral infection, binding with host receptors has been shown to be 

the signal that facilitates entry into the host cells [9].  The most common, and first 

to be discovered, cellular receptor used by OW arenaviruses, and clade C of the 

NW group, is alpha-dystroglycan (α-DG) [10, 11].  Dystroglycan is a cellular 

component found in most mammalian tissues, and is used as a linkage between 

the extracellular matrix (ECM) and the actin cytoskeleton of cells.  Αlpha-DG 
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normally binds a component of the extracellular matrix, laminin, while β-DG is the 

membrane portion of the receptor that anchors the receptor with its binding to 

dystrophin in the cytoplasm. Dystroglycan undergoes processing of the core 

protein that results in extracellular component, α-DG, and transmembrane protein 

β-DG.  During processing of DG, α-DG goes through a complex O-glycosylation 

process [12].  This process is essential for α-DG function as both a cellular 

component and receptor for arenaviruses [13, 14].  It has been shown that viral 

attachment is dependent upon modification of like-acetylglucosaminyltransferase 

(LARGE) of DG [15], and binding affinity is influenced by the length of these 

LARGE-derived glycans [13].  A genome-wide study of residents in Western 

Africa showed that there is a positive selection for specific LARGE alleles in 

these populations [16-18], indicating that DG modification may play a potential 

role in viral-host evolution.  However, it is still unclear whether or not these 

selections of LARGE alleles play any role in susceptibility or transmission of 

these viruses.  Rojek and colleagues have hypothesized that α-DG binding by 

LASV destabilizes the membrane due to its lack of binding to laminin, thus 

creating a disturbance in the membrane and intracellular signaling, contributing 

to LF disease pathogenesis [19].   

Not all arenaviruses bind α-DG with equal affinity.  Differences in receptor 

binding are also related to infection seen with LCMV; LCMV-WE 54 and LASV 

strains have a high affinity for α-DG, and cause persistent infection.  However, 

those with lower affinity, are readily cleared (e.g. LCMV WE HPI, WE2.2, and 

ARM) [10, 20-24].  Serine at position 153, and Leucine at position 260, have 
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been associated with high-affinity binding of α-DG [24-26]; however, LCMV-WE 

HPI encodes S153 and L260, but binds α-DG poorly, suggesting that additional 

residues may play a role in α-DG binding.  Hastie et al. identified that Y155 was 

also required for high-affinity binding to α-DG, as well as H136 and R190 [27].  

Additionally, this group investigated the role of full-length LCMV GPC or the GP1 

subunit.  Previous research has reported that LASV required full-length GPC to 

pull down α-DG and not GP1 alone [28, 29], and indeed, LCMV showed similar 

results [27].  

Along with α-DG, there have been reports of a number of alternative 

receptors that OW arenaviruses may utilize to attach to and enter into host cells.  

These receptors include cell surface receptor Axl and Tyro3/Dtk, both of which 

are Tyro3/Axl/Mer (TAM) tyrosine kinases; as well as C-type lectins DC-specific 

ICAM-3-grabbing nonintegrin (DC-SIGN) and LSECtin [30, 31].  Tyro3 and Axl 

are broadly expressed in a number of different mammalian tissues and are 

involved in the removal of apoptotic cells [32, 33].  Given the co-expression of 

viral receptors DG and TAM, this supports the idea that LASV and other OW 

arenaviruses appear to have an incredibly complex receptor usage, which is still 

not entirely understood.    

Once bound to α-DG, LCMV and LASV enters cells via a unique form of 

endocytosis that is clathrin, caveolin, dynamin, and actin-independent [34-38].  It 

has recently been discovered that when LASV binds, β-DG is phosphorylated, 

which results in dissociation of β-DG from the cytoskeleton and may be used in 

facilitating endocytosis [39].    Additionally, it has been recently been identified 
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that LASV and LCMV utilize sodium hydrogen exchangers (NHEs), indicating 

that viral entry is associated with micropinocytosis giving additional support for a 

micropinocytosis-like pathway [40].  The path of viral entry through 

micropinocytosis is not new to virology.  A number of other viruses including 

human papilloma virus (HPV-16), adeno-associated virus 2 (AAV2), and 

Influenza A virus (IAV) utilize a form of micropinocytosis during viral entry [41].  

Other factors associated with LASV entry include the need for GTPase Cdc23 

and the downstream effectors PAK1 and N-Wasp, however factors including 

Rac1, RhoA, the Arp2/3 complex, myosinII, and myosin light chain kinase are not 

essential during LASV entry [40].    

Many factors of LASV entry support the concept that LASV entry uses a 

unique form of micropinocytosis.  Macropinosomes, like those of early 

endosomes, must go through a maturation process [42].  However, the 

maturation process is not completely understood for LASV.  What is known, is 

that LASV passes through the late endosome on its path to replication [43], but 

the point in which LASV moves from a micropinocytosis pathway into the 

classical late endosome pathway is still unknown.  What has been identified is 

that delivery of the multivesicular body to the late endosome is dependent upon 

microtubular transport [35, 44].  The virus-receptor complexes are sorted into 

intraluminal vesicles with the help of ESCRT (endosomal sorting complexes 

required for transport) proteins to be transported to the late endosome [43].  This 

method of trafficking results in a bypassing of the early endosome, the 

compartment that contains TLRs responsible for recognizing viral RNA.  The 
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utilization of this trafficking system may provide pathogenic OW arenaviruses the 

ability to avoid triggering immune responses within host cells [45].  Once LASV 

has reached the late endosome, acidification causes LASV to switch from α-DG 

to an intracellular receptor, LAMP1 [28].   

Lysosome-associated membrane protein (LAMP) 1, is a protein that is 

partially responsible for the maintenance of lysosomal integrity at very low pH 

[46, 47].  Binding of LAMP1 is driven by a triad of histidines on the GP1 and that 

binding of LAMP1 triggers the LASV spike to catalyze membrane fusion by 

potentiating its response to pH [29, 48].  While this histidine triad is conserved 

among other OW arenaviruses, LAMP-1 utilization has been shown to be specific 

for LASV, and LAMP1 is not utilized by LCMV or other OW arenaviruses, 

regardless of α-DG affinity [27, 49].  Additionally, recent research has identified 

that LAMP 1 increases LASV efficiency during entry, and increases the pH of the 

late endosomes/lysosomes to promote replication [50].  While LAMP1, even in 

low amounts, supports robust entry of LASV, LAMP1 is not necessary for viral 

entry, although attenuation is seen without LAMP1 present [50].    

While there is not a complete understanding of viral assembly and 

budding of arenaviruses, the Z protein, or matrix protein, has been shown to be 

essential for budding progeny, as it is capable of forming virus like particles 

(VLPs) when expressed alone [51].  During the budding process, Z forms an 

inner layer under the viral envelope where it is able to recruit NP and GPC to the 

viral particles, and has been shown to require ESCRT pathway to be successful 

[52-55].  It does seem that one or more proline rich domains in the C-terminus, 
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and/or the YxxL motif in the RING domain need to be present in order for 

productive assembly to occur, however the number and combinations of these 

domains vary among OW arenaviruses.   

 

THE ARENAVIRUS GENOME 
 

 Arenaviruses are enveloped viruses, decorated with glycoprotein spikes 

on the outside, that have a single-stranded, negative-sense, bi-segmented RNA 

genome.  Arenaviral particles can range from 40 to 200 nanometers in diameter 

[6, 56].  One segment, the large (L) segment, encodes the small RING finger 

protein that serves as the matrix protein (Z), and the RNA dependent RNA 

polymerase [57]. The other segment, the small (S) segment, encodes 

nucleoproteins (NPs) and glycoproteins (GP) [57].  The viral genome uses an 

ambisense coding strategy, synthesizing two polypeptides in opposite 

orientation, which is separated by a noncoding intergenic region (IGR), with a 

hairpin structure which contains 2 segments (Figure 2 and 3).  The term 

ambisense was coined to describe the one region on both the S and L segments 

that were negative sense, and in a nonoverlapping region, the segments are 

pseudo-positive sense. Arenaviral RNA acts as the template for transcription and 

replication to occur.   

Due to the nature of the ambisense genome, the NP and L genes are 

transcribed into genomic complementary mRNA.  However, the GP and Z RNA  
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Figure 2: Arenavirus virion structure. 

The Glycoprotein (GP) 1, responsible for attachment to cellular receptors, and 

GP2, responsible for fusion of host membranes, are depicted in dark and light 

purple, respectively. Beneath the viral envelope (dark blue) the matrix (Z) protein 

is depicted in green. Inside the virion are host ribosomes, that give arenaviruses 

their “sandy” appearance in electron micrographs, are depicted in gray.  

Additionally, ribonucleoprotein complexes are composed of nucleoprotein (NP- in 

red) that encapsidate viral RNA.  The ribonucleoprotein complexes are 

associated with RNA-dependent RNA polymerase (L) depicted in blue. Image 

adapted from Wolff et al. 2013 [52].   
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Figure 3. Arenavirus Genome. 

The genes of the small (S) segment encode the glycogroptein complex (GPC-

purple) and Nucleoprotein (NP- red). The Matrix protein (Z), and RNA-Dependent 

RNA Polymerase (L-blue) are encoded on the Large (L) segment.  These genes 

on two segments that are arranged in ambisense orientation. Image adapted 

from Wolff et al. 2013 [52].      
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must go through genomic RNA replication, and only then these genes are 

transcribed into mRNAs being translated into GPC and Z proteins.  Highly 

conserved regions at the 3’ end of both the L and S segments, suggests these 

are the site of viral polymerase initiation [58, 59].  Through the use of electron 

microscopy, scientists have observed that both the 5’ and 3’ ends of the L and S 

genome segments form panhandle structures thought to have a role in controlling 

RNA synthesis, and these arenavirus genomes and antigenomes show a high 

degree of complementarity between their 5’ and 3’ termini [60-63]  

Due to the inconsistency in the location of S-derived NP and GP 

transcription termination, it has been predicted that the structural motif, rather 

than the sequence of the IGR, is what promotes the release of viral polymerase 

from the template RNA [59, 61].  There are significant differences between the 

location of S and L IGR sequences in regards to RNA folding, however, among 

isolates and strains of the same species, S and L IGR sequences are highly 

conserved.  Viruses such as LASV and LCMV contain a single stem loop, 

whereas MOPV and TACV are predicted to have two [59, 64].  

The glycoprotein complex (GPC) is translated as a precursor polyprotein, 

which is translocated into the ER where a stable signal peptide (SSP) is cleaved 

from its N-terminus.  Further posttranslational modifications result in two 

subunits; the peripheral GP1 responsible for receptor attachment, and the 

transmembrane protein responsible for membrane fusion, GP2 [58].  The SSP 

remains associated with the GP1 and GP2 virion and serves several important 

functions.  One function is that the SSP is required for cleavage and maturation 
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of the GPC.  Additionally, the SSP associates with the transmembrane domain of 

the GP2, and potentially may play a role in pH-dependent fusion of the GP [27, 

65-73].  After arenaviruses enter the cell via a micropinocytosis-like pathway, the 

GPC is exposed to an acidic environment in the late endosome.  This pH change 

triggers irreversible conformational changes that the virus utilizes for fusion to 

host membranes.       

Previous work has determined that the GP1 from JUNV, LCMV, and 

MACV all have a similar core of a six-stranded β-sheet, and most of the helices 

on the helix-loop face are maintained between the three viruses [27].  The N- and 

C- termini of LCMV, MACV, and JUNV GP1 are oriented towards the GP1-GP2 

surface, LASV GP1 termini are oriented in the opposite directions [27].  

Additionally, these major helixes of LASV GP1 is nearly perpendicular to the 

orientation of these helices in LCMV, JUNV, and MACV GP1 [27]. 

The GP2 subunit contains both heptad repeats and fusion regions.  

Crystallization of GP2 subunits of arenaviruses show six-helix bundles structures 

that typically are found in the class I viral glycoproteins [74-76]. Research shows 

that LASV employs both an N-terminal fusion peptide (termed F1), like that of 

class I viral glycoproteins, and a fusion loop (termed F2), as seen in Ebola virus 

[77].  Interestingly, the amino acid sequences of these F1 and F2 are well 

conserved and nearly identical between the arenavirus family [27].  Additionally, 

there have been extreme differences between the post-fusion form of LCMV GP2 

and the pre-fusion form.  In post-fusion conformation, HR1 and HR2 form a 

single helix with a ‘T loop’ between them, and three copies of each HR1 and HR2 
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form an antiparallel 6-helix bundle.  In the pre-fusion GP2, HR1 is broken into 4 

different segments, HR1a, HR1b, HR1c, and HR1d.  HR1a, c, and d form 

discrete helices, while b forms an extended loop structure.  Additionally, the T 

loop forms two anti-parallel β strands, rather than an α-helix observed in post-

fusion structures [27].  These conformational differences suggest that GP2 

conformational rearrangements occur in the T loop and in the heptad repeat 

regions during entry.            

 

INDIVIDUAL VIRUSES OF MEDICAL CONCERN 

LASSA VIRUS 
 

Though Arenaviridae is a highly diverse group of viruses, the most 

significant of the OW group is Lassa virus (LASV).  LASV is the most pathogenic 

of the OW arenaviruses, and is responsible for several hundred thousand 

infections, and thousands of deaths annually in Western Africa [45, 78-80].  

Although most individuals exposed to LASV mount an immune response to 

defend against disease, LASV causes a significant number of deaths annually.  

Interestingly, over 45% of the populations in some villages of endemic regions is 

seropositive for LASV, but it is not well understood why some of the population 

succumb to disease and others do not [81].  LASV is carried by its natural host 

Mastomys natalensis. While transmission to human is not completely 

understood, it is widely accepted that it likely occurs via ingestion of 

contaminated food-stuffs, or by the inhalation of infectious particles [45].  The 
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rodent reservoir for LASV and other OW arenaviruses has been shown to 

maintain low viral titers without presence of disease onset [82].   

LASV is designated by the Centers for Disease Control and Prevention as 

a category A agent due to its high lethality and transmissibility via aerosols.  

Currently, ribavirin is the only treatment available for LASV, but caveats to this 

antiviral strategy include severe side effects, and a requirement for early 

administration in order to have positive effects on LASV disease [83].  Currently, 

there are no clinically approved vaccines for Lassa virus. Among several vaccine 

candidates, a MOPV/LASV reassortant (clone ML-29) has demonstrated safety 

and high efficacy in all available animal models including immunocompromised 

NHPs [84-90].  ML-29 is a reassortant virus between two unrelated arenaviruses 

created in vitro after co-infection of cells with both LASV and Mopeia virus 

(MOPV).  Specifically, ML-29 is composed of the L segment of MOPV and the S 

segment of LASV [91].    

Diagnosing LASV in the early stages of infection is difficult as LASV 

disease can often be misdiagnosed for other co-endemic infections such as 

malaria or influenza [92].  Disease manifestation of LASV can range from non-

symptomatic subclinical illness, to organ failure and even death.  A number of 

signs and symptoms may be observed from LASV-infected patients including 

fever, malaise, nausea, petechial hemorrhage, vomiting, diarrhea [93, 94]. 

Interestingly, sensorineural hearing loss has been observed in up to one-third of 

patients [95].  Infections with fatal outcomes often exhibit encephalopathy, 

mucosal bleeding, shock, and coma [93, 96, 97].   
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While LASV results in the most infections and deaths of the OW 

arenaviruses, the underlying pathogenic mechanisms and virulence factors are 

still poorly understood.  One predictor of disease survival is the level of viremia.  

Patients that have a higher load of LASV often have poor prognosis and show 

exacerbated signs and symptoms of disease [98].  Viremia higher than 3.5 log 10 

TCID 50, typically result in death [21, 96].  Alternatively, patients that display a 

low level of viremia tend to survive [98].  While LASV can cause hemorrhagic 

manifestations, the death related to LASV is far from typical hemorrhaging due to 

tissue damage.  LASV replicates to high titers in vital organs including the liver, 

lung, and spleen, however, any histological damage in these organs is not 

severe enough to cause death.  The most common and consistent infection-

associated lesions are seen on the liver of infected patients, and consist of 

hepatocellular necrosis, mononuclear phagocytic reaction, and focal 

hepatocellular cytoplasmic degeneration, with a very small amount of immune 

infiltration [99].  Nonetheless, even these pathological lesions are insufficient to 

cause death in these Lassa Fever (LF) patients [99]. 

LASV, unlike other hemorrhagic fevers, does not cause severe 

hemorrhaging in infected individuals.  In the minority of patients that exhibit 

hemorrhaging, it is mostly present at mucosal surfaces [45].  Thus the amount of 

blood loss and tissue damage is not sufficient to result in shock and death 

observed in lethal cases [99].  When significant bleeding does occur, usually 

thrombocytopenia and platelet dysfunction are co-observed [100, 101].   
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LASV has a non-lytic life cycle, and has been shown to not induce cell 

death in infected macrophages, endothelial cells, and monocytes [102].  Vascular 

endothelium has been shown to be permissive to LASV, resulting in high titer 

production of virus, and death of these cells was not observed [102].  

Experimentally infected NHPs, as well as human patients, have shown signs of 

vascular distress and permeability, followed by shock and death [99, 103].  

Although human and NHPs infected with LASV do not show lesions in vascular 

tissue, vascular permeability is present during infection.  The mechanism leading 

to vascular permeability has yet to be identified, but is hypothesized to be caused 

by LASV manipulating normal cellular functions of the endothelial tissue, which 

results in increased fluid leakiness from these tissues.  Immune regulators are 

likely the culprit of this increased permeability of tissue, as such is observed with 

hemorrhagic fever viruses Ebola (EBOV) and dengue (DENV) [104].  However, 

LASV does not share the same cytopathic profile, but rather has low levels of IL-

8 and interferon (IFN)-inducible protein (IP)-10 [105].  In vitro macrophages and 

dendritic cells (DCs) are not able to be activated when infected with LASV and 

pro-inflammatory markers are not released [106, 107], and pro-inflammatory 

cytokines are not detected in the sera of fatally infected LASV patients [105].  

Interestingly, human umbilical vein endothelial cells (HUVECs) exposed to LASV 

responded with no change in IL-8 production, a feature commonly seen in LASV 

patients.  However, when apathogenic MOPV, a close relative to LASV, infected 

these cells, IL-8 was produced in significant amounts [102], indicating LASV’s 

ability to downregulate innate immune responses.      
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LYMPHOCYTIC CHORIOMENINGITIS VIRUS 
 

Due to LASV’s status as a Category A biothreat, LCMV is the prototypic 

arenavirus utilized to study many aspects of arenaviral pathogenicity. LCMV was 

originally discovered in 1933 when it was the first arenavirus to be isolated during 

an encephalitis epidemic in St. Louis [108].  After its isolation, it soon was 

associated as the agent that was chronically infecting mouse colonies [109] as 

well as causing aseptic meningitis in humans [110].  LCMV is an OW mammalian 

arenavirus that can be found worldwide, partly due to its reservoir, the house 

mouse.  This virus can be transmitted vertically in mouse populations via 

intrauterine infection.  These mice that are infected in utero are unable to mount 

an immune response to LCMV, which leads to development chronic, 

asymptomatic, life-long infection, and the ability to shed virus in large quantities 

through bodily secretions [111].    

LCMV’s natural reservoir is the house mouse, mus musculus, and LCMV 

can infect humans who come in contact with rodent secretions.  While direct 

human-to-human transmission has not been observed, LCMV infection may be 

transmitted through solid-organ transplantation, and from an infected mother to 

her fetus [8, 112-114].    While the house mouse is the natural reservoir for 

LCMV, other rodent species are capable of being infected with the virus.  For 

instance, the largest outbreak of LCMV occurred in the US where 181 humans in 

12 different states came in contact with hamsters from a single distributor that 

were infected with LCMV [115, 116].  LCMV has infected approximately 5% of 

the human population in the US [117-120], and higher seropositivity rates in other 
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areas of the world, including over 36% in Croatia and Bratslavia in Slovakia [121, 

122].  Additional countries and regions have been assayed for LCMV 

seropositivity including Nova Scotia [123] and North and South Germany [124].  

Additionally, countries including Argentina [125], Spain [126], and Italy [127] have 

measured seropositive human populations (1%-2.5%) and rodent populations 

(5.6-12.9%).   

When humans become infected with LCMV, the infections are often 

asymptomatic or mild, resulting in fever, chills, nausea, vomiting, myalgia, and 

headache. Typically,  1-3 weeks after infection, it resolves itself without treatment 

[58].  Due to most LCMV cases being minor or having no symptoms associated 

with them, the true incidence of LCMV infections is not known, but based off of 

the seropositivity data available, it is presumably low [128].  However, in a 

minority of the population, progress into aseptic meningitis or 

meningoencephalitis, with potential for additional neurological complications 

including transverse myelitis, Guillain-Barre-type syndrome, hydrocephalus and 

sensorineural hearing loss [129]. While neurological symptoms are most 

common, non-neurological symptoms including pancreatitis, orchitis, arthritis, 

parotitis, and pericarditis, have been reported [130].  While these symptoms have 

been reported, most adults infected with LCMV fully recover, and fatality is 

exceptionally rare [131].   

 LCMV infections in healthy individuals are usually not dangerous; 

however, in immune compromised individuals, LCMV can produce a disease that 

closely resembles LF [58].  There have been 17 cases of reported LCMV 
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infections in transplant recipients, 14 of which were fatal [8, 113, 114, 131].  

Infection from transplantation has been associated with multisystem organ failure 

and hepatitis.    

While the mortality rate of LCMV is less than 1% [131], some LCMV 

infections can be serious, resulting in spontaneous abortion if pregnant women 

are infected during the first trimester [132, 133].  Infection in the second and third 

trimester has been linked to congenital neurological dysfunction including 

hydrocephalus, macro- or microcephaly, gyral dysplasia, focal cerebral 

destruction, loss of vision, and chorioretinitis [130, 132-136]. True prevalence of 

congenital LCMV infection is unknown, due to the similarity to cytomegalovirus 

infection and congenital toxoplasmosis, but it is estimated that 35% of infants die 

from complications of congenital LCMV. 

 

TRANSMISSION OF RODENT-BORN ARENAVIRUSES TO HUMANS 
 

Transmission of arenaviruses from their natural rodent reservoirs to 

human hosts has been identified to occur via routes of ingestion of contaminated 

food stuff or inhalation of infectious particles [45, 137]. An epidemiological study 

in the Republic of Guinea showed a link between the consumption of 

contaminated food as a risk factor for rodent-to-human transmission [137].  There 

have been some in vitro studies investigating arenavirus interactions in culture 

models of kidney and bronchial epithelia [138, 139].  However, there has yet to 
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be in vitro investigation using cell types representative of the sight of intragastric 

infection.    

During rodent-to-human transmission, epithelial cells of the 

gastrointestinal system and upper respiratory tract are among the first host cells 

to come into contact with the viral pathogen.  Transmission via aerosolized viral 

particles is generally considered to be initiated by the interaction of the virus with 

the apical side of the epithelia, whereas viruses that are transmitted via scratch 

or bite from an infected host is interacting directly with circulating blood cells or 

the basolateral sides of epithelial cells [139-141].  The route exposure can alter 

infection due to receptor location, resulting in difference entry and adherence to 

cells. In addition, epithelial polarization has been shown to impact the location of 

viral receptors [138, 142-144].  Interestingly, infection of different organ tissues 

has resulted in differences in entry and exit patterns, as seen with infection of 

thyroid and colon cell lines with Semliki forest and Sindbis viruses [145].   

Additionally, members of the same virus family have shown opposing results in 

replication within the same tissue [146], making transmission of viruses even 

more unclear. 

 

IMMUNE RESPONSE TO OW ARENAVIRAL 
 

When humans do become infected with LASV, a T-cell mediated response 

to LASV seems to be critical in survival [147-150].  In NHP studies, animals that 

survived LASV infection showed T-cell activation to be one key to survival, as 
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monkeys that showed a delay in T-cell activation (as well as a high viral load), did 

not survive [151].  Clinical observations indicated that the antibody response 

does not seem to be effective in controlling LASV infection, indicating that 

antibodies produced against LASV, are non-functional and not neutralizing 

antibodies.  This inability to control viral infection may be a result of NK cells or 

downregulation of cytotoxic T-cell populations, both of which have yet to be 

investigated in patients with LF. The levels of antibodies in sera did not correlate 

with recovery or progression, signifying that these antibodies are not functional or 

capable of neutralizing viral activity  [98]. 

Macrophages and antigen presenting cells (APCs) are the first cells to 

come in contact with the virus after the virus crosses the epithelial barrier.  

Notably, in an in vitro study, LASV was seen to readily infect human dendritic 

cells (DCs) and macrophages, but was unable to activate these cells [106].  This 

was signified by lack of increase in several immune mediators including tumor 

necrosis factor alpha (TNFα) and interleukins such as IL-1β, IL-6, or IL-19, as 

well as the absence of costimulatory molecules such as CD40, CD54, CD80, 

CD86, or HLAs; all of which signify a lack of DC phagocytic activity [106].  A 

recent study however, has compared levels of pro- and anti-inflammatory 

cytokines and chemokines from the serum of LASV-infected patients [105].  

These samples included serum from LASV-infected humans fatally-infected and 

non-fatally-infected, as well as uninfected control samples.  Interestingly, pro-

inflammatory markers IL-8 and interferon-inducible IP10 protein, were 

significantly higher in patients with non-fatal LASV infections than in control 
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samples.  However, patients with fatal LASV infections, had little or undetectable 

levels of IL-8 and IP10.  Also notable, that although TNFα concentrations were 

not elevated in any of the LASV-infected patients, those patients did show an 

increase in TNFα receptors compared to uninfected individuals.  Additionally, IL-6 

has been noted as an important factor for determining the outcome of patients 

infected with LASV [98].  IL-6 has been seen to be abundant in fatally infected 

NHPs as well as humans, and along with elevated liver enzymes, aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT); all potential 

biomarkers for progressed LASV infection [90, 98, 151-156].   

Mopeia virus (MOPV) is genetically a close relative to LASV; however, 

MOPV lacks pathogenic potential in humans and non-human primates, and 

induced protective immune responses against LASV challenge in NHPs [149].  

MOPV, like LASV, lacks the ability to activate DCs in vitro, however, MOPV is 

able to activate macrophages, as signified by increases in the transcription of 

several immunoregulatory genes for interferon alpha (INFα), IFNβ, TNF and IL-6 

[157].   

An effective innate response to viral infection, that results in an adaptive 

response, is essential for the control and prevention of disease manifestation.  

Additionally, strong activation of these responses is typical of non-pathogenic 

arenaviruses [102, 158-162]. However, LASV is known for its suppression of 

immune systems in infected patients.  One mechanism in which OW 

arenaviruses do this is by preventing type I IFN production.  Several studies have 

shown that LASV NP may be responsible for inhibiting type I IFNs, related to the 
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establishment or maintenance of persistent infections in natural rodent 

reservoirs.  These NPs result in silencing of innate and adaptive-immune 

responses by degrading double-stranded RNAs (dsRNAs) [163, 164].   dsRNAs 

act as pathogen-associated molecular patterns (PAMPs) and have been shown 

to trigger several different proteins such as RIG-I and MDA5, both of which 

trigger an antiviral signaling cascade [165, 166]. Notably, NP of tacaribe virus 

(TCRV), a virus isolated from ticks with no identified mammalian host, does not 

inhibit IFN type I response [54].  

Additionally, LCMV-WE and LASV have been shown to down-regulate 

innate pro-inflammatory responses in vitro, and in vivo, compared to non-

pathogenic LCMV-ARM and MOPV [90, 102, 153, 156, 167].  LCMV-WE and 

LASV-infected cells inhibited Toll-like receptor 2 (TLR2)/MyD88 adaptor-like 

(Mal)-dependent cytokines.  In contrast, LCMV-ARM and MOPV induced NF-κB-

mediated proinflammatory responses in monocytes, macrophages, and in 

epithelial cells [167].  Interestingly, previous research has shown that 

internalization and viral replication is required for the TLR2/Mal-dependent 

signaling.  When cells were exposed to UV- or heat-inactivated LCMV-ARM, the 

cells did not induce TLR2/Mal-dependent pro-inflammatory cytokines [167], 

indicating that successful viral infection needs to occur, and not just interaction 

with viral receptors and the host.  
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ANIMAL MODELS MIMICKING NATURAL TRANSMISSION 
 

 

Natural transmission from rodents to human hosts occurs through 

ingestion or inhalation of contaminated food stuffs or aerosolized infectious 

particles.  Studies in mice and NHPs, using inhalation and ingestion routes of 

infection provide insights to arenaviral transmission [155, 168, 169].  Mice that 

were treated intravenously (i.v.) had viral dissemination of LCMV within 72 hours 

post infection.  When infected intragastrically (i.g.), mice showed a delay of 

dissemination, but by 96 hours post infection, all tissues that showed positive 

infection via i.v. were positive in the i.g. infected mice as well [170].    NHPs 

infected either via i.g. or i.v. with LCMV-Armstrong (ARM) or LCMV-WE had 

differential infections.   LCMV-ARM produces a sub-clinical infection when 

administered to NHPs intravenously, as compared to LCMV-WE in which animals 

succumb to fatal infection with LF-like hepatitis and hemorrhage manifestations.  

Interestingly, when infected i.g. with a lethal dose of LCMV-WE, some monkeys 

recovered from manifested infection [171].  Interestingly, when these NHPs were 

challenged with a lethal dose of LCMV-WE after being intragastrically infected 

with LCMV-ARM or -WE, these animals did not succumb to LF-like disease as 

seen with PBS pre-treated animals [171].  Therefore, intragastric infection of 

NHPs with LCMV resulted in limited viral dissemination, that led to protective 

immunity. While animal models have been deployed to further characterize 

arenavirus pathogenicity several questions remain, and there is a need for an in 
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vitro model for studying interaction of mammalian arenaviruses with epithelial 

cells derived from major gates of virus entry. 

 

POLARIZED EPITHELIAL MODELS 
 

While there have been in vivo studies mimicking natural routes of 

infection, an in vitro system has yet to be developed to investigate the interaction 

of virus with intestinal epithelia at the site of intragastric inoculation.  Caco-2 cells 

have been an established model of intestinal epithelial cells for some time.  The 

cells were isolated from a gastrointestinal tumor by Jorgen Fogh in the 1970s 

[172].  Although many cell types had been isolated from tumors, these cells were 

different due to their ability to spontaneously differentiate upon reaching 

confluence. Upon further investigation in these cells, Caco-2 cells were found to 

mimic, quite closely, enterocytes of humans.  These cells started to polarize once 

confluency was reached, and developed characteristics that other cell lines did 

not provide.  Caco-2 cells are commonly grown on permeable filter inserts.  

These inserts allow the cells to obtain morphological and function characteristics 

of enterocytes [173]. Over time, Caco-2 cells change in dimension, growing taller 

and width of these cells decreased, moving to a more enterocyte-like cell [173].  

Additionally, via electron microscopy, after three days occluding junctional 

complexes were formed; and by day 6, desmosomes were formed and the lateral 

membranes of neighboring cells were interlocking.  Additionally, the formation of 

the brush border and microvilli were becoming more organized and numerous.  
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By day 16, these Caco-2 cells had formed a monolayer with a morphology similar 

to that of simple columnar epithelium of the small intestine.  Additionally, an 

increase in the amount and location of alkaline phosphatase, sucrase, and 

aminopeptidase was observed as the monolayers polarized [173, 174].      

In addition to morphological studies, functional studies have also been 

investigated, such as transepithelial electrical resistance (TEER) being 

measured.  TEER is a way to test the integrity of the Caco-2 monolayers by 

measuring the resistance across the membranes.  TEER measurements 

increased over time as these cells polarized on inserts, suggesting a confluent 

monolayer had been formed [173].  Furthermore, transport studies can also be 

done to test the permeability of this monolayer.  Several studies have 

investigated the permeability coefficients and absorption data in humans 

compared to Caco-2 cell lines and found high correlation between the two [175-

178].  Not surprisingly, the transport of molecules slowed as time of polarization 

of these cells increased, signifying that monolayer formation and integrity 

increased over time.  

While Caco-2 cell characteristics closely mimicked that of enterocytes, 

these cells did possess some characteristics of colonocytes [179].  Interestingly, 

while these cells were found as a tumor in the colon, it has yet to be explored as 

to why their morphology and physiology tend to be more like enterocytes than 

colonocytes.  
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OBJECTIVE OF DISSERTATION 
 

LASV is the most pathogenic of the OW arenaviruses infecting thousands 

of people annually through ingestion of contaminated food stuffs or inhalation of 

infectious particles.  However, the role of the intestinal epithelial cells at the site 

of intragastric infection has yet to be explored.  Furthermore, factors determining 

differences in viral pathogenesis between close genetic relatedness has yet to be 

determined.  Collectively, the current studies show support that viral 

dissemination and interaction with epithelia may be host, tissue, and viral 

specific.  We explored these topics with the following aims: 

1) To investigate the interaction of LCMV-ARM, LCMV-WE, Mopeia virus 

(MOPV), and a reassortant virus simulating LASV, ML-29, with 

polarized intestinal epithelial cells mimick the role of barrier systems in 

arenaviral infection.   

2) To characterize differences between pathogenic and non-pathogenic 

strains of LCMV, Armstrong and WE respectively, during intracellular 

trafficking in epithelial and macrophage cell lines.  
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CHAPTER 2: 

THE INTERACTION OF MAMMALIAN ARENAVIRUSES WITH POLARIZED 

EPITHELIAL CELLS 
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OVERVIEW 
 

Mammarenaviruses are single-stranded RNA viruses with a bisegmented 

ambisense genome. Ingestion has been shown as a natural route of transmission 

for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). 

Due to the mechanism of transmission, epithelial tissues are among the first host 

cells to come in contact with the viruses, and as such they potentially play a role 

in spread of virus to naïve hosts. The role of the intestinal epithelia during 

arenavirus infection remains to be uncharacterized. We have utilized a well-

established cell culture model, Caco-2, to investigate the role of intestinal 

epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-

WE, and Mopeia (MOPV) release infectious progeny via similar patterns. 

However, the reassortant virus, ML-29, containing the L segment of MOPV and S 

segment of LASV, exhibits a unique pattern of viral release relative to LCMV and 

MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is 

potentially responsible for observed replication kinetics of these viruses in a 

polarized Caco-2 cell model. Collectively, our data shows that viral dissemination 

and interaction with intestinal epithelia may be host, tissue, and viral specific. 

INTRODUCTION 
 

Arenaviruses are enveloped viruses that have a single-stranded, 

bisegmented, ambisense RNA genome. The Large (L) segment, encodes the 

matrix protein (Z), and the RNA dependent RNA polymerase [57]. The Small (S) 

segment, encodes the nucleoproteins (NPs) and glycoproteins (GP) [57].  
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Initially, arenaviruses were thought to only infect mammals; however, recently 

arenaviruses have been identified as the causative agent of inclusion body 

disease in the boid family of snakes [2]. Hence, Arenaviruses have been 

separated into two genera on the basis of their natural reservoir hosts; 

mammarenavirus, which infect mammalian hosts, and reptarenavirus which 

infect reptilian host species [3]. Among the mammarenavirus genera, there is 

further subdivision into the Old World (OW) LCMV-Lassa virus complex and New 

World (NW), Tacaribe virus complex [3, 4]. 

Lassa virus (LASV), the causative agent of Lassa fever (LF), is recognized 

as the most prevalent and most pathogenic of the OW arenaviruses. Annually in 

Western Africa, there are several hundred thousand clinical LASV infections, and 

thousands of deaths due to LF [45, 78-80]. Although LASV causes a significant 

number of deaths, the majority of infections are apparently subclinical, or not 

severe enough to warrant emergency medical intervention, as over 45% of the 

population in endemic regions is seropositive for LASV; however, why some of 

the population develop disease and others do not it is not well understood [81]. 

Most recently, a study of almost 200 LASV sequences has shown that reservoir-

to-human transmission is a primary driving force of LASV epidemics in Western 

Africa [17]. LASV is carried by its natural host Mastomys natalensis, and it is 

widely accepted that transmission of LASV to humans likely occurs via the 

ingestion of contaminated food-stuffs, or by the inhalation of infectious particles 

[45]. Indeed, an epidemiological study in the Republic of Guinea showed a link 
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between the consumption of contaminated food as a risk for rodent-to-human 

transmission [137]. 

Due to its high lethality and transmissibility via aerosols, LASV is 

categorized by the Center for Disease Control and Prevention as a category A 

select agent. Currently, there are no clinically approved vaccines for LASV; and 

the antiviral drug ribavirin is the only treatment available for LASV infection. 

Nonetheless, caveats to this antiviral strategy/treatment regimen include severe 

side effects, and the requirement for early administration in order to have positive 

therapeutic effects [83]. Among limited vaccine candidates, only a LASV/Mopeia 

(MOPV) reassortant virus, ML-29, has been demonstrated to induce protective 

immunity against LASV strains from clade IV (Sierra-Leone, Liberia, Republic of 

Guinea) and clade II (Nigeria) [84-90]. Specifically, ML-29 is composed of the 

MOPV L segment, a non-pathogenic relative of LASV, and the S segment of 

LASV [91]. MOPV and ML-29 share the L RNA encoding L protein (RNA 

polymerase), and Z protein (matrix). Previous studies have determined that the L 

RNA segment of MOPV is the major factor of ML29 attenuation in vivo. 

Comparison of the ML-29 L segment with the parental MOPV L segment 

revealed the presence of numerous point mutations that may contribute to the 

attenuated phenotype associated with ML-29 [85]. While this reassortant has ML-

29 specific mutations in the NP and GP2 proteins encoding by LASV S RNA, the 

attachment glycoprotein, GP1, is genetically identical to LASV. 

Similar to LASV, the prototypic arenavirus Lymphocytic Choriomeningitis 

virus (LCMV), is genetically and biologically diverse. Transmission of this virus 
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has been shown to share a similar mechanism to LASV, with transmission from 

rodents-to-non-human primates (NHP) and humans. Like the epidemiological 

study from the Republic of Guinea, a natural route of infection was observed 

within zoo kept tamarin populations, as animals that consumed LCMV-infected 

mice succumbed to LF-like illness and disease [180, 181]. Importantly, these 

results have been recapitulated experimentally via the intragastric inoculation of 

NHPs with LCMV [155, 182]. 

As mentioned earlier, LCMV strains are genetically and biologically 

diverse. LCMV-Armstrong (LCMV-ARM), a neurotropic strain, is highly adapted 

for infection in murine models. As such, exposure of NHPs to LCMV-ARM 

through either intravenously (i.v.) or intragastrically (i.g.) routes produced deeply 

attenuated sub-clinical infection [155, 182]. In contrast, LCMV-WE has limited 

passage history in mice and tissue culture models of infection, and induced fatal 

LF-like disease in i.g. and i.v. infected NHPs, providing a surrogate model of LF 

at biosafety level (BSL)-3 containment [155, 182]. Notably, infections via mucosal 

(i.g.) inoculation were attenuated during interaction with, and/or crossing the 

mucosal barrier of the gastrointestinal tract. Therefore, the intestinal epithelial are 

likely one of the natural gates of rodent-to-human transmission. Interestingly, 

when the LCMV-ARM or -WE i.g. infected NHPs were challenged with lethal 

doses of LCMV-WE intravenously, the animals did not succumb to LF-like 

disease as observed with PBS pretreated animals [182]. 

Due to the mechanism of transmission of arenaviruses from rodents to 

humans, epithelial tissue are among the first host cells to come in contact with 
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the viruses, and as such they potentially play a decisive role in the spread of 

virus to naïve hosts [183]. The role of epithelial barriers on infection has been 

investigated extensively with a number of other viruses; however, the specific 

role of the intestinal epithelia on arenavirus infection remains to be exhaustively 

characterized [138, 142-144]. Natural transmission via the intragastric route is 

generally considered to initiate with the interaction and infection of the epithelial 

cells from the apical side, whereas basolateral exposure of viruses requires 

damage, layer such as from a scratch or bite from an infected host, to the 

epithelial cell layer [139-141]. Here, we investigated the interaction of LCMV-

Arm, LCMV-WE, Mopeia virus (MOPV), and the LASV/MOPV reassortant ML-29 

with polarized Caco-2 intestinal epithelial cells, to investigate the role of barrier 

systems in viral dissemination, and to further elucidate the interactions of OW 

mammarenaviruses with the gastrointestinal epithelial. Collectively, our current 

studies support the model that viral dissemination and interaction with epithelia 

may be host, tissue, and viral specific. 

METHODS 
 

Viruses and Titration Assays.  VeroE6 (C1008) cells, Caco-2 (HTB-37) cells, 

purchased from American Type Culture Collection (ATCC), 16HBE140 cells (a 

gift from Jonsson Lab, The University of Tennessee Health Science Center), and 

Madin-Darby Canine Kidney (MDCK- a gift from Chung Lab, University of 

Louisville) were grown in minimal essential media using Dulbecco’s modified 

eagle medium (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine 

serum (Fisher Scientific, Hampton, NH, USA) and 1% antibiotic-antimycotic (Life 
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Technologies, Carlsbad, CA, USA) in a humidified chamber at 37 °C under 5% 

CO2. HBE cells were seeded on plates and flasks coated in a collagen, 

fibronectin solution containing the following concentrations in a 100mL solution: 

88mL of LHC basal medium (Invitrogen), 10mL bovine serum albumin 

(1mgBSA/mL LHC media), 1mL of Vitrogen 100 (BD Biosciences), 1mL Human 

Fibronectin (BD Laboratories).   

Cells were infected with LCMV-Armstrong (strain 53b), LCMV-WE (strain 

54), Mopeia virus (MOPV, strain AN20410), or the Mopeia/Lassa reassortant 

virus, clone ML-29 [184, 185]. All viral stocks were generated using low 

multiplicity of infection (MOI) and stocks with titers ranging from 1 × 107 PFU/mL 

to 1 × 108 PFU/mL were stored at −80 °C until needed [88]. 

Viral titers were determined using a standard plaque assay with minor 

modifications [167]. Briefly, VeroE6 cells were seeded in the wells of a 12-well 

cell culture plate, and incubated until 80–90% confluent. Virus samples were 

serially diluted, and used to infect the Vero cells. Infection was carried out for 1 h 

in 37 °C. After this period, the cells were washed with DMEM without phenol red, 

and a semi-solid overlay containing 1X MEM, 5% FBS, and 0.5% Avicel (FMC 

BioPolymer, Philadelphia, PA, USA) (LCMV and ML-29) or 0.5% Agarose 

(MOPV). Cells were then incubated in a 37 °C humidified chamber with 5% CO2 

for 5 days. The plaque assay cells infected with LCMV and ML-29 had the 

overlay media removed, were fixed with 4% paraformaldehyde solution for 15 

min and cells were stained with 1% Crystal Violet solution to identify virus-

infected cell foci. For titration of MOPV, virus-infected cells were covered with 
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semisolid overlay of 0.5% agarose/5% FBS overlay. A 0.04% neutral red, 0.5% 

agarose, 5%FBS solution was added to wells after 4 days incubation. Both 

plaque assays have a limit of detection of approximately 80 PFU/mL. 

Polarization of Caco-2 Cells and Infection of Polarized Cells.  Caco-2 cells 

were seeded on 24-well plate Transwell inserts (Corning, New York, NY, USA) 

with a 0.45 micron filter as previously described [173, 186]. Briefly, 160,000 cells 

in 0.5 mL were plated on “apical” side of insert, and 1 mL of nutrient media was 

added to each well. For basolateral seeding of the Caco-2 cells, the Transwell 

inserts were flipped upside down in a sterile container, and 0.5 × 106 cells in a 

volume of 100 µL was placed on each Transwell surface. The cells were 

incubated for 1 h at 37 °C to allow for adherence to the membrane. Cells were 

then put back into the 24-well plate and 0.5 mL of nutrient media was added to 

each insert. Cells were maintained at 37 °C in 5% CO2 for 21 days until 

polarization was completed. Media was changed every 2–3 days with fresh 

media for the entirety of the polarization process. To determine if polarization of 

epithelial monolayers was complete, Transepithelial Electrical Resistance 

(TEER) was measured with an EVOM2 Epithelial Voltohmmeter (World Precision 

Instruments, Sarasota, FL, USA) as previously described [187]. In experiments 

with non-polarized Caco-2, cells confluent monolayers on day 3 after seeding 

were used. Tight junction proteins were analyzed with western blot (WB) and 

qRT-PCR. Antibodies for WB were obtained from the following: ZO-1 (61-7300), 

Claudin-1 (Thermo Scientific 51-9000, Waltham, MA, USA), Occludin (Thermo 
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Scientific 71-1500). Pre-made primers/probe sets against human ZO-1 

(Hs01551861) and Occludin (Hs00170162) were purchased from ThermoFisher. 

Polarized Caco-2 cells were infected either apically, or basolaterally, with 

an MOI of 0.3 PFU/cell of the corresponding viruses: LCMV-Arm, LCMV-WE, 

MOPV, or ML-29. Wells and inserts were washed two times with DMEM without 

phenol red. To each insert, virus was added, and 1 mL of DMEM without phenol 

red was to each well. Infection was carried out for 1 h at 37 °C in 5% CO2. After 

this period, the inserts and wells were washed two times with 1x DPBS 

(Invitrogen), and 1 mL of nutrient media was added to each well and 0.5 mL was 

added to each insert chamber. Cells were maintained at 37 °C in 5% CO2. TEER 

was measured daily for 5 days, and the tissue culture supernatants from the 

Transwell inserts and wells were harvested daily and the media was replaced. 

 

Confocal Microscopy.  Caco-2 cells were grown apically on 12-well, 0.45 µM 

Transwell inserts (Corning) for 21 Days until a polarized monolayer was formed. 

Cells were then fixed with ice-cold methanol for 10 min at −20 °C, washed and 

stained on both the apical and basolateral sides of the inserts with antibodies 

against ZO-3 using monoclonal antibody against zonal occludin-3 (Cell Signaling, 

cat. # 3704, Danvers, MA, USA) at a 1:1600 dilution. Alpha-dystroglycan (α-DG) 

antibody clone 11H6C4, recognizing fully glycosylated α-DG, was used at a 

1:100 dilution (Milipore, cat. # 05-593, Billerica, MA, USA). Hoescht 33342 

(Thermo Fisher Scientific) was used for nucleus staining at 1:10,000 dilution was 

added for 10 min. Transwell filters were cut out and placed on microscope slides, 
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followed by 10 uL of ProLong Gold (Life Technologies), and a cover slip placed 

on top. Slides were analyzed using an Olympus FV1000 laser scanning confocal 

microscope and analysis was done using IMARIS software (Bitplane, Version 

7.7.1, Zurich, Switzerland). 

 

Attachment Assay.  Caco-2 cells were seeded and polarized for 21 days. Cells 

were infected with an MOI of 0.3 PFU/cell on either the apical, or basolateral, 

surface of polarized cells for all viruses. The cells were infected at 4 °C for 1 h to 

allow cells to attach to the cell surface, but not penetrate the cell. After the 

attachment period, the Input samples consisting of the cells and inoculum were 

directly harvested, and the experimental cells were washed several times with 

1xPBS to remove unbound virus particles. Trizol-LS (Invitrogen) was used to 

harvest all of the aforementioned cells. RNA was isolated according to the 

manufacturer’s directions. Quantitative Real-Time Polymerase Chain Reaction 

(qRT-PCR) was used to quantitate attached viral particle. Primers and probe for 

ML-29/MOPV targeting the L segment: Forward (5′ 

TCCTCAATTAGGCGTGTGAA), Reverse (5′ TACACATCCTTGGGTCCTGA) 

and probe (5′ CCCTGTTCCCTCCAACTTGTTCTTTG). Primer and probe 

targeting LCMV-Armstrong L segment: Forward (5′ CCT TAA AGA GGT GAG 

AGC ATG A), reverse (5′ TTTCATTGATATTCTTGGTTAGGTG) and probe (5′ 

CAGCCACACCTGGATTCTGTAATTGG). Primer and Probe targeting LCMV-WE 

L segment: Forward (5′ CCT GGA CTC TGT AAT TGG CA), Reverse (5′ TTA 
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CAT GCT CAG CAG CAC AG), and probe (5′ TCA CAG TGG ATT TCA CAC 

ACA ACC AGA). 

The attachment of viral particles was assessed quantitatively via the ΔΔCt 

method [60]. Briefly, Ct values corresponding to the viral targets were normalized 

internally via the subtraction of the 18S rRNA levels detected within each sample. 

The resulting ΔCt values of the washed tissue culture cells were then compared 

relative to the bound unwashed Input controls. The resulting ΔΔCt values were 

used to determine the relative quantities of viral nucleic acids in the Bound 

(washed) and Input (unwashed) samples; these values were then plotted, and 

attachment was reported as further calculated via the ratio of Basolateral/Apical 

attachment. 

 

Statistical Analyses.  Statistical significance was analyzed using 3 biological 

replicates per experimental time point, using a Standard Student t-Test. All 

statistical values of p ≤ 0.05 were deemed as statistically significant. 

RESULTS 
 

Identification of appropriate models to study the interaction of mammalian 

arenaviruses with epithelial tissue.  Mammalian arenaviruses have been 

shown to be transmitted to human hosts via inhalation and ingestion of 

contaminated particles [45, 137].  However, cell culture models have not been 

well established to investigate the exact nature of interaction and cellular 

mechanisms during arenaviral infection, as well as a model to investigate 

potential differences in pathogenicity between these viruses.  There have been 



40
 

several studies investigating in vitro models mimicking the bronchial tissue in 

mice [139] as well as a model investigating excretion of these viruses by utilizing 

Madin-Darby canine kidney (MDCK) epithelial cells [138].  To investigate 

potential differences in host-viral interactions between different arenaviruses and 

strains of different pathogenic potential, we sought to explore different cell culture 

models to identify and classify viral-host patterns with cell lines that were capable 

of polarizing, in order to mimic interactions in vivo.  Our goal was to identify one 

or more in vitro models suitable of characterizing differences between our viruses 

of interest.  

 Inhalation of viral particles has been shown to be one way in which 

humans may become infected with mammalian arenaviruses.  In addition to 

natural infection, multiple studies have been conducted to investigate this route 

of infection both in vivo and in vitro [139, 188, 189].  Here, our goal was to utilize 

a human bronchial epithelial (HBE) cell line that closely mimicked an in vivo 

model.  In order to determine whether these cells would be a beneficial model to 

use, viral growth kinetics were assessed by standard plaque assay in both 

polarized and non-polarized HBE cells (Fig. 4).  LCMV-Arm showed poor 

replication in polarized and non-polarized HBE cells, reaching only 1-1.5 logs 

increased replication by 5 days post infection.  The poor replication seen in both 

polarized and non-polarized HBE cells indicates that they are a poor model to 

utilize in determining the role of epithelial barriers during arenaviral infection and 

studies were not further pursued. 
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Figure 4 LCMV-Armstrong does not replicate well in polarized human 
bronchial epithelial cells 

Human bronchial epithelial cells were grown on 12-well tissue culture 

plates and infected with LCMV-ARM at an MOI of 0.3PFU/cell.  Supernatants 

were collected every 24 hours for 3 days.  Supernatants were tested using a 

standard plaque assay.   
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Due to arenaviral transmission being involved in aerosolized viral 

particles, most likely due to the excreta of infected rodents hosts, the next 

approach was to investigate a cell line that mimicked the excretion of viral 

particles from the host.  Previous studies have utilized the well-established 

Madin-Darby Canine Kidney (MDCK) epithelial cell line to investigate cellular  

factors associated with LASV entry and release [138].  Here, we investigated 

viral replication to determine if MDCK cells were a suitable model to determine 

viral-host interactions at the epithelial layer, as well as to determine if polarization 

of these cells played any role on replication (Fig. 5).  LCMV-ARM (Fig. 5 A) and 

LCMV-WE (Fig. 2 B) both replicated well in both polarized and non-polarized 

MDCK cells.  LCMV-ARM reached peak titers of around 1X107 in non-polarized 

epithelia, and 1x106 PFU/mL in polarized MDCK cells (Fig. 5 A).     

Interestingly, LCMV-Arm replicated about 2 logs lower in polarized MDCK 

cells as compared to non-polarized MDCK cells.  However, LCMV-WE replicated 

to similar titers, 1x107, in both polarized and non-polarized cells, showing no 

significant difference based on polarity of these cells (Fig. 5 B).  Due to LCMV 

being a close relative, but not entirely indicative of LASV behavior, ML-29 was 

utilized to determine how LASV-GP interacted with MDCK cells (Fig. 5 C).  

Interestingly, ML-29 had very poor replication kinetics in both polarized and non-

polarized MDCK cells, reaching only peak titers of about 5x10^4 in non-polarized 

cells and 5x103 in polarized epithelia.     

 Due to the importance of mimicking LASV infection, we sought to identify 

an epithelial cell line that resulted in successful replication of both LCMV and  
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Figure 5. LCMV-ARM, but not WE is impacted by polarization of MDCK cells 

 MDCK cells were non-polarized (black) or polarized (red) in 96-well plates.  Cells 

were infected at an MOI of 0.3 PFU/cell with LCMV-ARM (A), LCMV-WE (B), or 

ML-29 (C).  Supernatants were collected every 12 hours for 72 hours and tested 

using a standard plaque assay.  Values shown are the means of 3 biological 

replicates with the error bar representing the standard deviation of the mean.  
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Figure 6. MDCK cells are not permissive to LCMV-Armstrong 

 MDCK cells, VeroE6 cells, and Caco-2 cells were infected with an MOI of 0.1 

PFU/mL of LCMV-Armstrong.  Supernatants were collected over a course of 3 

days and tested using a standard plaque assay 
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ML-29.  VeroE6 cells, MDCK cells, and intestinal adenocarcinoma cell 

line, Caco-2, were infected with an MOI of 0.1 PFU/cell of ML-29 (Fig. 6). Here, 

ML-29 shows poor growth kinetics in MDCK cells, reaching peak titers of only 

1X102, barely above the limit of detection for plaque assays.  However, ML-29 

replicates exceedingly well in VeroE6 cells, reaching titers of 1X106.  Additionally, 

replication of ML-29 was successful in Caco-2 cells as well, reaching titers close 

to 1X105.  Due to the replication kinetics of ML-29 in these three cell types, we 

pursued Caco-2 cells as a model for mimicking the interaction of arenaviruses at 

the level of epithelial tissue.  

        

Infection of Polarized Caco-2 Cells with OW Arenaviruses Does Not Affect 

the Monolayer Integrity.  Since the gastrointestinal tract likely plays an essential 

role in the arenavirus rodent-to-human transmission, we used the human  

adenocarcinoma Caco-2 cell line to establish an in vitro model of the intestinal 

epithelia lining of the gut (Figure 7 A) [167]. The formation of a polarized 

monolayer was assessed by TEER and by detection of the tight junction protein 

Zonal-Occludin-3 (ZO-3), a partition marker of the apical and basolateral sides of 

the cells, was readily detected in between sister cells (Figure 7 B). Furthermore, 

polarized Caco-2 were stained with antibody against α-DG, a principal cell 

receptor for OW arenaviruses (Figure 7 B).  

In general, the arenavirus species used in this study are not associated 

with cytopathic effects. Nonetheless, it was essential to the utility of our model to 

confirm that the apical and basolateral separations were intact during infection. In  
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Figure 7. Old World (OW) mammarenaviruses do not alter integrity of model 
intestinal epithelia during infection. 

(A) Diagram of Caco-2 cell seeding for apical infection (left) or basolateral 

infection (right) during polarization; (B) After 21-day polarization period, Caco-2 

cells form confluent monolayers with markers of polarization such as apical tight 

junction protein ZO-3 (green), and a-DG (red) on the basolateral side of cells; (C) 

Caco-2 cells were seeded for apical infection (top) or basolateral infection 

(below) and polarized for 21 days. After which the cells were either Mock infected 

with PBS, or lymphocytic choriomeningitis virus (LCMV)-Armstrong, LCMV-WE, 

ML-29, Mopeia (MOPV), or Venezuelan Equine Encephalitis (VEE) virus (vaccine 

strain TC-83) at an MOI of 0.3 PFU/cell. TEER measurements were taken daily 

for 5 days. Values shown are the means of 3 replicates, with the error bar 

representing the standard deviation of the means.  
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line with their non-cytopathic nature, the OW arenaviruses used in this study did 

not negatively affect electric resistance of epithelial monolayers during the 5-day 

observation period, suggesting that integrity of monolayers was preserved during 

infection (Figure 7 C). In contrast, the alphavirus Venezuelan equine encephalitis 

(VEEV) strain TC-83, which is known to be highly cytopathic, readily disrupted 

the integrity of polarized Caco-2 cells. Analysis of the mRNA and protein levels of 

tight junction proteins was tested and no significant change in quantity of tight 

junction proteins was observed in infected cells as compared to mock infected. 

To determine if cellular polarization unexpectedly perturbed the replication 

of OW arenaviruses, polarized and non-polarized Caco-2 cells were infected with 

both strains of LCMV, MOPV, as well as reassortant virus ML-29. The replication 

kinetics were monitored in both polarized and non-polarized cells by plaque  

assay. LCMV-Arm (Figure 8 A) and LCMV-WE (Figure 8 B) exhibited similar 

replication kinetics regardless of the polarization state of the Caco-2 cells. It 

should be noted that at 24 h post infection LCMV-WE did show a slight difference 

in titer between the polarized and non-polarized Caco-2 cells, but these 

differences were not observed in further time points. As such, neither LCMV-Arm, 

nor LCMV-WE, infections were significantly impacted by the polarization of Caco-

2 cells during apical infection (Figure 8). In addition, similar to LCMV, ML-29 was 

not significantly impacted by polarization of these cells (Figure 8 C); however, 

peak viral titers were approximately 2-log lower than those for LCMV or MOPV 

(Figure 8 D). Taken together these results indicate that polarization of Caco-2  
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Figure 8 Polarization of Caco-2 cells does not significantly impact OW 
arenaviral replication 

Caco-2 cells were seeded in 96-well plates and polarized for 2 weeks, or plated 

for 3 days (non-polarized) and infected with either LCMV-Arm (A); LCMV-WE (B); 

ML-29 (C); or MOPV (D) at an multiplicity of infection (MOI) of 0.3 PFU/cell. 

Supernatants were collected every 24 h for a 72 h period, and virus production 

was determined via standard plaque assay. Values shown are the means of 3 

biological replicates with the error bar representing the standard deviation of the 

mean. 
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has minimal, if any, inadvertent effect on replication kinetics of the OW 

arenaviruses. 

LASV/MOPV Reassortant ML-29 Exhibits Different Viral Entry and Exit 

Patterns Compared to Either LCMV or MOPV.  As described earlier, the  

gastrointestinal tract is one of the major gates of arenavirus entry during rodent-

to-human transmission [17, 45, 137]. During transmission, epithelial barriers may 

affect pathogenicity of the OW arenaviruses [155, 169]. To assess the role of the 

intestinal epithelial barrier during infections of LCMV strains with different 

pathogenic potential for NHPs, the polarized Caco-2 cells were exposed either 

apically or basolaterally to the aforementioned OW arenaviruses. To verify the 

integrity of the polarized monolayer during the experiment, TEER was measured 

regularly, and the apical and basolateral supernatants were collected every 24 h 

for a period of 5 days. 

Apical exposure of polarized Caco-2 cells to both strains of LCMV resulted 

in robust infection and virus release from primarily the apical cell surface. 

Nonetheless, basolateral release of infectious virus particles was observed at 

later times post infection. Therefore, while infectious particles were released from 

both surfaces, the release was more efficient from the apical surface, with a ~2-

log difference between the two supernatants (Figure 9 A). In contrast, when 

polarized Caco-2 cells were exposed to LCMV-Arm and LCMV-WE via the 

basolateral side, infection resulted in roughly the equivalent release of infectious 

particles from both cell surfaces (Figure 9 B). 
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Figure 9 LCMV-Armstrong and LCMV-WE show similar patterns of entry 
and release in polarized Caco-2 cells regardless of pathogenic differences. 

Caco-2 cells were polarized on 0.4 µm Transwell inserts in apical or basolateral 

orientation, for 21 days. After integrity of the monolayer was verified using TEER, 

the cells were infected with either LCMV-Arm, LCMV-WE, at an MOI of 0.3 

PFU/cell on either the apical (A); or basolateral (B) side of polarized Caco-2 cells. 

Supernatants were collected from both the insert, and well of the Transwells, to 

determine viral release from the apical or basolateral surfaces independent from 

one another. Viral titer was measured using standard plaque assay. Release 

from the Apical surface (black) and the Basolateral surface (red) is plotted with 

respect to time, with initial viral load subtracted. Values shown are the means of 
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3 biological replicates with the error bar representing the standard deviation of 

the mean. If viral plaque forming units (PFUs) were not observed, data received 

a place-holder value to signify samples were tested, but no data (ND) was 

collected. # indicates that one or more biological replicates was below limit of 

detection. * p-value ≤ 0.05. 
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Figure 10. ML-29 replication in polarized Caco-2 cells differ from the 
replication patterns of LCMV. 

Caco-2 cells were polarized on 0.4 µm Transwell inserts as stated for Figure 9. 

Cells were then infected on the apical (A) or the basolateral (B) surface of the 

cells with an MOI of 0.3 PFU/cell of reassortant vaccine candidate ML-29. 

Supernatants were collected from transwells and inserts to determine viral 

release from the apical or basolateral surfaces independent of one another, on 

every day for 5 days. Release from the Apical surface (black) and the Basolateral 

surface (red) is plotted with respect to time, with initial viral load subtracted. 

Values shown are the means of 3 biological replicates with the error bar 

representing the standard deviation of the mean. If viral PFUs were not 

observed, data received a place-holder value to signify samples were tested, but 

no data (ND) was collected. # indicates that one or more biological replicates 

was below limit of detection. * p-value ≤ 0.05. 
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In addition to the two strains of LCMV described above, the patterns of viral entry 

and release of ML-29 was assessed in the polarized Caco-2 model. As shown in 

(Figure 10 A) Caco-2 cells apically infected with ML-29 failed to produce 

detectable virus particles from the basolateral surface, despite the apparent 

release of infectious viral particles from the apical side. Comparative  

analysis indicates a 2-3-fold difference between viral apical and basolateral 

release during apical ML-29 infections of polarized Caco-2 cells. Curiously, 

infection of the polarized Caco-2 cells via the basolateral side resulted in only 

apical release (Figure 10 B). Notably, the release of infectious ML-29 progeny 

were temporally delayed during basolateral infections, and resulted in the 

formation of low viral titers.    

Parallel analysis of MOPV infection reveals a pattern of viral release 

similar to that observed for LCMV. As shown in (Figure 11 A), the apical infection 

of polarized Caco-2 cells primarily resulted in the release of infectious viral 

particles from the apical surface; however, basolateral release was observed. 

Similar to LCMV, and different from ML-29, basolateral infection of polarized 

Caco-2 cells resulted in the more-or-less equivalent release of viral progeny 

apically and basolaterally. A summary of entry and exit kinetics can be seen in 

Figure 12. 

 

Attachment and Binding of OW Arenaviruses to Polarized Caco-2 Cells.   

To assess if the aforementioned OW arenaviruses differed in their 

capacity to attach/bind to intestinal epithelia, polarized Caco-2 cells were infected  
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Figure 11. Mopeia virus replication in polarized Caco-2 cells follows a 
similar pattern as LCMV replication. 

Caco-2 cells were polarized on 0.4 µm Transwell inserts in apical or basolateral 

orientation, for 21 days. After integrity of the monolayer was verified using TEER, 

the cells were infected with MOPV, at an MOI of 0.3 PFU/cell on either the apical 

(A) or basolateral (B) side of polarized Caco-2 cells. Supernatants were collected 

from both the insert, and well of the Transwells, to determine viral release from 

the apical or basolateral surfaces independent from one another. Viral titer was 

measured using standard plaque assay. Release from the Apical surface (black) 

and the Basolateral surface (red) is plotted with respect to time, with initial viral 

load subtracted. Values shown are the means of 3 biological replicates with the 

error bar representing the standard deviation of the mean. If viral PFUs were not 

observed, data received a place-holder value to signify samples were tested, but 

no data (ND) was collected. # indicates that one or more biological replicates 

was below limit of detection. 
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Figure 12. Summary of entry and exit patterns of OW arenaviruses in 
polarized Caco-2 cells 

LCMV-ARM, LCMV-WE, and MOPV entered (Blue arrow) on the apical surface 

of Caco-2 cells and released primarily to the apical surface (Black arrow) with 

slight release from the basolateral surface (Red arrow). When exposed to the 

basolateral surface, LCMV and MOPV released from both the apical (Black 

arrow) and basolateral (Red arrow) surfaces of the cells.  ML-29, when exposed 

to either the apical or basolateral surface of polarized Caco-2 cells released from 

the apical (Black arrow) surface of the epithelia.    
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at an equal MOI (0.3 PFU/Cell), via the apical or basolateral surfaces. Cells were 

incubated at 4 °C for 1 h to allow virus to attach, but not penetrate the host cell. 

To determine the relative attachment rates of the viral particles, the total RNA 

was extracted from unwashed and washed tissue culture cells of at least three 

biological replicates derived from at least two independently generated viral 

stocks. The relative abundance of viral RNA was detected by qRT-PCR using 

virus-specific primers to determine the percent of input of virus particles that 

bound to the polarized Caco-2 cells. 

Analysis of LCMV attachment indicated that for both LCMV-ARM and 

LCMV-WE ~5% of the input virus adsorbed to the polarized Caco-2 cells (Figure 

13 A, B). Comparisons of apical- and basolateral-bound viral levels indicated that 

LCMV-ARM exhibited preferential binding to the basolateral surface of the 

polarized Caco-2 cells (Figure 13 A). LCMV-WE, in contrast, did not exhibit 

preferential binding to either surface (Figure 13 B). Collectively, these data 

indicate a potential difference between the two LCMV strains in regards to cell 

attachment. Assessment of ML-29 binding indicated a strong attachment 

preference to the apical surface of the cells. As shown in (Figure 13 C), 

approximately 4-fold more virus attached to the apical surface relative to the 

basolateral surface of polarized Caco-2 cells. These data are in apparent 

congruence with the observations reported in Figure 4, where basolateral 

infection were less efficient as compared to parallel apical infections. Quantitative 

analysis of MOPV attachment reveals similar observations to LCMV-WE.  
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Figure 13 Attachment of ML-29 on the basolateral surface of polarized 
Caco-2 cells is significantly lower than apical attachment 

Caco-2 cells were polarized on 0.4 µm Transwell inserts for 21 days in either 

apical or basolateral orientation. Cells were then infected with an MOI of 0.3 

PFU/cell of LCMV-Arm (A); LCMV-WE (B); ML-29 (C); or MOPV (D) at 4 °C for 1 

h to allow virus to attach to the epithelial cell surfaces, but not enter the cells. 

After 1 h, cells were either unwashed (input) or washed and cellular RNA and 

supernatants were collected for quantitative real-time polymerase chain reaction 

analysis. Ratio of basolateral to apical attachment was taken by dividing 

basolateral ΔΔCT values of washed cells by the apical ΔΔCT values of washed 

cells (E). * p-value ≤ 0.05, ** p-value ≤ 0.01.   
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Specifically, as shown in (Figure 13 D) the attachment of MOPV virus was 

equivalent amongst the apical and basolateral surfaces. 

Since we cannot directly compare the absolute levels of attachment for 

each surface between the individual virus species, we must compare the ratios of 

apically and basolaterally bound viruses to identify statistical differences between 

the four OW arenaviruses used in this study. Overall, these comparisons indicate 

that LCMV-ARM and ML-29 differ from the other viruses, and each other, in  

regards to their binding proclivities. LCMV-Arm has a ratio of apical and 

basolateral attachment of approximately 1.5, indicating that attachment has a 

slight preference to the basolateral surface of the polarized Caco-2 cells (Figure 

13 E). The ratio of basolateral and apical attachment of LCMV-WE and MOPV of 

approximately 1, indicates that LCMV-WE and MOPV attachment is more or less 

equivalent in its binding to the apical and the basolateral surfaces of Caco-2 cells 

(Figure 13 E). While LCMV-ARM is unique in its binding preference as compared 

to the other viruses, this indicates that LCMV-ARM, LCMV-WE, and MOPV all 

attach to some degree on the apical and basolateral surface of the cells. 

However, the ratio of basolateral and apical attachment of ML-29 indicates that 

there is a large difference between viral attachment between the two surfaces, 

with a significant preference for the apical side of the polarized Caco-2 cells 

(Figure 13 E). ML-29’s preference for the apical surface with comparatively little 

to no binding on the basolateral surface, is significantly different than that of 

LCMV and MOPV. Collectively, these data indicate that LASV-GP has a 
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significantly different binding efficacy to the basolateral side of Caco-2 

monolayers as compared to LCMV and MOPV. 

 

DISCUSSION 
 

Epidemiological observations in West Africa indicate that the ingestion of 

food contaminated with excreta of infected M. natalensis is one of the natural 

mechanisms of LASV transmission to humans [17]. Up to 45% of individuals 

living in some LASV endemic regions in Western Africa can be seropositive to 

the virus; and if re-infection occurs, seropositive individuals can protect 

themselves from disease onset. However, seronegative individuals may also be 

protected from disease, due to protection associated with cell-mediated immunity 

[147]. This implies high prevalence into endemic populations; however, the 

precise mechanisms behind this phenomenon are unknown. In NHP studies of 

arenavirus disease, LCMV-WE causes LF-like disease via intravenous (i.v.)-

infection, whereas LCMV-ARM shows chronic infection, with no disease onset 

[155]. Furthermore, high titer i.v. infections of NHPs with LCMV-WE resulted in 

uniform mortality [155]. Nevertheless, i.g. infection with identical titers showed a 

variable outcome, ranging from no signs and symptoms to fatal, LF-like disease 

with elevated aspartate and alanine aminotransferases (ALT/AST) levels [155, 

182]. Elevated ALT and AST levels are symptomatic of hepatic tissue damage, 

and highly elevated levels are associated with lethal LF disease of humans in 

endemic regions [96]. In addition, some of the surviving animals survived i.v. 

challenge, indicating that LCMV infection did occur as a competent humoral 
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response was induced [182]. Due to probable infection via the ingestion of 

contaminated food stuffs, and the variable outcomes of intragastric infection in 

vivo, we sought to investigate whether or not the patterns of entry and exit when 

polarized Caco-2 cells were exposed to OW mammarenaviruses apically 

(intragastric route) or basolaterally (intravenous route). Due to the unsuccessful 

infections of LCMV and ML-29 in HBE and MDCK cells, we did not further pursue 

these cell lines, resulting in our focused studies of the interaction of Caco-2 cells 

and OW mammalian arenaviruses.   

As previously described, LASV and LCMV entry into MDCK cells and HBE 

cells occurs primarily via the basolateral side, and release of viral particles was 

predominantly from the basolateral surface. These in vivo and in vitro studies led 

us to investigate the role of the intestinal epithelial barrier during OW arenavirus 

infection. In this study, we characterized an in vitro model of intragastric infection 

to assess the interaction of OW mammarenaviruses with the intestinal epithelia in 

an amenable tissue culture system. This system utilized polarized Caco-2 cells 

grown on transwells, which is a well-established cell type and cell culture system 

used for in vitro studies of the intestinal barrier [173, 187]. This system enables 

the independent examination of the role of the apical and basolateral epithelia 

surfaces during viral infection. Therefore, this model recapitulates the infection of 

intestinal epithelial cells from the luminal and laminal sides of the epithelial 

monolayer via the apical and basolateral surfaces, respectively. 

Using this model system, we evaluated infections of LCMV strains of 

different pathogenic potentials. We also used a MOPV/LASV reassortant, ML-29, 
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a validated BSL2 surrogate model that is capable of mimicking the interaction of 

LASV with susceptible cells. ML-29 expresses GP1 attachment glycoprotein 

identical to LASV GP1, and MOPV, attenuated genetic relative of LASV. Since 

ML-29 is a reassortant virus of LASV/MOPV, it represents a better system in 

which arenaviral biology can be determined compared to VSV or retrovirus-

based pseudotypes expressing LASV GPC as the viruses contain genuine 

arenaviral replication machinery. 

From the in vivo studies in NHPs, it was expected for virus to release 

infectious particles from primarily the apical side, since viral particles were not 

detected in any tissues after intragastric infection with LCMV [155]. However, 

when exposed on the apical side of epithelial cells, LCMV and MOPV primarily 

released on the apical side of the cells, but release basolaterally was observed. 

This observation indicates that the epithelial barrier is not the sole determinant of 

viral dissemination. Interesting to note as well, was that patterns of replication 

were similar regardless of the in vivo pathogenicity of the LCMV strains. 

Therefore, the infectious capacity of these viruses in vitro, in regards to Caco-2 

cells, does not correlate with pathogenic properties for LCMV. Therefore, further 

investigation as to the driving forces of pathogenic differences needs to be 

investigated. However, in contrast to LCMV, the ML-29 expressing LASV GP1, 

predominantly released viral particles apically regardless of the route of entry. 

Furthermore, these results demonstrate that MOPV entry-release pattern in 

polarized Caco-2 cells resembled those in cells infected with LCMV, and was 

clearly different from ML29-driving entry-release. Due to ML-29 replication 
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patterns being different than that of MOPV replication, these patterns of entry 

and release are not due to MOPV replication machinery, and may be attributed to 

the gene products of the S segment of LASV, namely the glycoproteins and 

nucleoprotein. This poor replication and egress to the basolateral sides of the 

cells is an interesting observation. While ML-29 is not WT-LASV, using WT-LASV 

in similar studies could lead to an explanation as to why almost half of the 

population of endemic regions are seropositive for LASV, but never 

demonstrated clinical signs of disseminated illness. In addition, the data 

presented here indicates that the capacity to infect via the apical surface of 

intestinal epithelial cells is not a primary determinant of arenavirus pathogenesis. 

ML-29 was developed as a potential vaccine for the prevention of LASV 

infection. As seen here, ML-29 had a much greater binding rate leading to 

successful infection when exposed to the apical side of polarized intestinal 

epithelia. If after successful attachment following the ingestion of viral particles 

fails to release viral particles basolaterally, this may be an exceptionally potent 

tool for the development of successful immunity against LASV in at-risk 

populations. These results provide additional evidence for attenuation of ML-29 

as a vaccine strain for LASV. From these in vitro studies, and the dire need for a 

LASV vaccine, studies examining the importance of the route of exposure to ML-

29 in an in vivo model should be investigated as a potential therapy to LASV 

infection and prevention. 

A recent publication from Oppliger et al. identified entry of a recombinant 

LCMV expressing LASV-GP (rLCMV-LASVGP) in polarized Caco-2 cells [190]. 
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Here, rLCMV-LASGP showed preferential entry into polarized Caco-2 cells on 

the basolateral surface of these cells. Opposingly, we identified via qRT-PCR 

that viral attachment of ML-29, a reassortant containing the GP1 of LASV, 

preferred the apical surface of polarized Caco-2 cells. Interestingly, we did see 

LCMV preferentially attaching to the basolateral surface of polarized cells, as 

seen with rLCMV-LASVGP. However, the rLCMV-LASGP studies did not 

elucidate the viral release patterns of rLCMV-LASVGP in polarized Caco-2 cells, 

nor the initial attachment of viruses to these cell surfaces. Furthermore, due to 

ML-29’s genetic differences to the LCMV-backbone of rLCMV-LASVGP, our 

results and those of Oppliger et al. cannot be directly compared. Taken together, 

our observations, are a useful addition to the field to further investigate precise 

differences between rLCMV-LASVGP and ML-29 in order to evaluate genetic 

variations of these viruses to more accurately identify potential targets for LASV 

therapeutics and further understand the replication cycle of LASV. 

Some questions still lie as to the reason that ML-29 bound so inefficiently 

on the basolateral side of Caco-2 cells. Although primary receptor (α-DG) is 

located on the basolateral surface of the polarized Caco-2 cells, this data, along 

with the data of others, provides further support that LASV has complex receptor 

usage. Additional receptors for LASV should be investigated in the Caco-2 

system, including Axl, DC-SIGN and Tyro3. Along with additional receptors and 

their role in our system, the interaction with α-DG should also be investigated. An 

excellent review by Torriani et al. describes a number of studies that explain the 

complex viral-receptor interaction of LASV [191]. Although fully functional α-DG 
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was detected basolaterally in polarized Caco-2 cells, ML-29’s binding efficiency 

was low. This may be due to a multitude of reasons including the use of other 

cellular factors and receptors used in addition to α-DG to attach to these 

polarized cells, or differences and mutations that ML-29 may contain as 

compared to WT LASV, especially those present in the GP2 protein. Previous 

research has identified that LASV infection was dependent upon sodium 

hydrogen exchangers (NHEs), as well as actin cytoskeleton to have successful 

viral entry into host cells [40]. Investigations into these factors during infection of 

polarized Caco-2 cells should be analyzed to determine a reason for inefficient 

and poor binding of ML-29 on the basolateral side of these cells. Although ML-29 

contains the S segment of LASV, the L segment of MOPV may interfere with 

complete and successful viral replication that WT LASV may have, 

comparatively. However, we believe the latter to be a minimal or insignificant 

inhibition of viral attachment and replication due to MOPV replicating similarly to 

LCMV in polarized Caco-2 cells when exposed to the basolateral side of the 

cells, as compared to little or no viral replication by ML-29 after basolateral 

exposure. Thus, investigation into precisely how WT LASV attaches, enters, and 

releases from polarized Caco-2 cells would be a valuable addition to the field. 

 

CONCLUSIONS 
 

To conclude, our data above demonstrates that the polarized Caco-2 

system is a viable model to investigate the interaction of intestinal epithelial cells 

during viral infection with OW mammarenaviruses. These polarized epithelia 
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closely mimic intestinal epithelial of human hosts and allow further investigation 

of mammarenaviral infection at the epithelial barrier. These data with LCMV 

show that intestinal epithelial cells may not be the sole determinant of viral 

pathogenesis and dissemination. Furthermore, differences between prototypic 

arenavirus LCMV and the surrogate model of LASV interaction, ML-29, were 

observed in both attachment efficiency and viral entry and egress from polarized 

intestinal epithelia. These results may potentially explain the high penetrance 

without disease observed for LASV. In addition, ML-29’s diminished binding 

efficiency to the basolateral side of polarized Caco-2 cells supports the 

expanding complexity of arenavirus receptor interactions. Collectively, these 

studies show that arenaviral infection of polarized cells is not only viral specific, 

but ultimately may be tissue and host-specific as well; and that arenavirus 

infection and pathogenesis may be dependent on asymmetric distribution of viral 

and cellular factors required for virus entry and budding.



66 
 

CHAPTER 3 
 

STRAIN-SPECIFIC INTRACELLULAR TRAFFICKING OF LCMV, A 

PROTOTYPIC MAMMALIAN ARENAVIRUS 

 

 

 

 

 

 

 

 

 

 

 

Wang, M#, Warner NL#, Jokinen, JD, Lukashevich, IS. Strain-specific intracellular trafficking of 
LCMV, a prototypic mammalian arenavirus.  Viruses 2018. Under Review. 

# denotes co-first authorship 



67
 

OVERVIEW 
 

Lymphocytic choriomeningitis virus (LCMV), prototype of rodent-borne 

arenaviruses, and Lassa virus (LASV), causative agent of the most prevalent 

hemorrhagic fever in West Africa Lassa Fever (LF), share many genetic and 

biological features.  Both species comprise of a collection of highly diverse, 

genetically and biologically, virus isolates from rodent hosts and humans. 

Pantropic LCMV-WE causes fatal LF-like hepatitis in non-human primates 

(NHPs); while heavily adapted in mice, LCMV-ARM strain, is deeply attenuated 

in NHPs and can protect animals against fatal WE challenge. Similarly, Mopeia 

virus (MOPV), a genetic relative of LASV, causes asymptomatic infection in 

NHPs, and protects them against fatal LF. Previously we demonstrated that non-

pathogenic MOPV and LCMV-ARM (but not LASV and LCMV-WE) induced 

robust Toll-like receptor 2 (TLR2)/Mal (MyD88 adaptor-like)-dependent and NF-

κB-mediated cytokine responses. These responses correlated with virus 

replication. In this study, we demonstrate that LCMV strains with different 

pathogenic potential had distinct intracellular trafficking patterns in macrophages. 

After internalization, LCMV-ARM strongly interacted with TLR-2, and markers of 

early and late endosomes where nucleic acid-sensing TLR-7 and-9 are located. 

In contrast, LCMV-WE bypassed the early endosomal compartment, and had 

less extensive interaction with late endosomes/lysosomes markers as assessed 

by co-staining experiments by confocal microscopy. LCMV-WE NP antigen was 

strongly co-localized with IRAK-1 and can affect NF-κB-mediated signaling. 

Internalization of LCMV-WE in Vero and Caco-2 cells was more sensitive to 



68
 

depletion of membrane cholesterol and disruption of microtubules in polarized 

epithelial cells than LCMV-ARM infection. These findings suggest that non-

pathogenic LCMV-ARM infection is more efficient in terms of activation of TLRs- 

and RIG-I-mediated signaling driving effective innate and adaptive immune 

responses. 

INTRODUCTION 
 

 Lymphocytic choriomeningitis virus (LCMV) is a prototypic virus of the 

Arenaviridae family, which was dramatically reshaped after the discovery of 

snake-borne viruses.  Until recently, all arenaviruses have been placed into one 

genus, Arenavirus, and were divided into two groups based on geographical 

locations and serological relationships; Old World (OW) arenaviruses (or LCMV-

LASV sero-complex) and New World (NW) arenaviruses (or Tacaribe, TCRV, 

sero-complex). Lassa virus (LASV) is the most prevalent human pathogen 

among OW arenaviruses, infecting hundreds of thousands of individuals annually 

in West Africa, some of them resulting in fatal Lassa fever (LF). Junin virus 

(JUNV), causative agent of Argentine hemorrhagic fever (AHF), is the most 

significant human pathogen among NW arenaviruses. All arenaviruses share 

common features as enveloped RNA viruses, with a two-segmented, single-

stranded, ambisense genome. The large (L) RNA, encodes L protein (RNA 

polymerase) and matrix Z protein. The small (S) RNA encodes the most 

abundant protein, nucleocapsid protein (NP), which is tightly associated with 

RNA in virions and in infected cells.  Additionally, S encodes the enveloped 

glycoprotein precursor (GPC) protein, which is processed in infected cells into 
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stable signal protein (SSP), GP1 (attachment), and GP2 (fusion) glycoproteins 

[192]. Intergenic region with extensive secondary structure separate the genes in 

both RNA segments, and is required for transcription and replication. 

In 2014, rodent-borne arenaviruses, comprising a single Arenavirus 

genus, were placed in the renamed genus Mammarenavirus. A new genus, 

Reptarenavirus, was established for newly discovered arenavirus-like viruses 

isolated from alethinophidian snakes [3]. Recently, eight novel species were 

included in the genus Mammarenavirus for murid viruses isolated in Africa and 

Asia. The genus Hartmanivirus was created to accommodate a novel arenavirus 

isolated from a captive snake in Finland [3]. In addition, the Arenaviridae family 

was placed into the newly established order Bunyavirales for related viruses with 

single-stranded negative-sense (or ambisense) RNA genomes [193].     

 LCMV and LASV share biological features including their interaction with 

major cellular receptor α-dystroglycan (α-DG) [10], and pathogenicity in guinea 

pigs and non-human primates (NHPs) [194, 195]. Both species, Lymphocytic 

choriomeningitis mammarenavirus and Lassa mammarenavirus, comprise a 

collection of highly diverse (genetically and biologically) virus isolates from rodent 

and humans, phylogenetically placed into 4-6 lineages [196-201]. The unbiased 

pairwise sequence comparison (PASC) analysis split LASV and LCMV strains 

into 6 and 5 distinct species, respectively. A conservative PASC cut-off (>80% 

and >76% nucleotide sequence identity in the S and L segments, respectively, to 

belong to the same species) was proposed to leave the current taxonomy of 

mammalian arenaviruses intact [3].   
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LASV causes infection with broad clinical manifestations, from sub-clinical 

or flu-like disease, to fatal LF disease and is found in endemic areas of West 

Africa.  In contrast, LCMV is widely spread across continents and causes 

asymptomatic or mild infections, which rarely progress to aseptic meningitis or 

meningo-encephalitis [128, 202]. However, during the third trimester of 

pregnancy, a relatively immune-suppressed state, both viruses, LASV and 

LCMV, can cause infection with disastrous consequences for the fetus [128, 

203]. Furthermore, in immunocompromised recipients that received LCMV-

infected organs, the virus can cause fatal LF-like infection [113, 114].   

 LASV and genetically related non-pathogenic Mopeia virus (MOPV), are 

hosted by the same rodent species, Mastomys natalensis, and can produce 

interspecies reassortants in vitro after co-infection cells with both viruses. One of 

these reassortants, clone ML29, carrying the L RNA from MOPV and S RNA 

from LASV, is a promising LF vaccine candidate [85]. Similarly, pantropic LCMV-

WE strain, causing LF-like fatal hepatitis in non-human primates (NHPs) [153, 

156], can produce reassortants in vitro with neurotropic strain LCMV-ARM [204], 

which is highly adapted in murine cells and fully attenuated in NHPs. For both 

types of reassortants, interspecies MOPV/LASV and intertypic WE/ARM, the 

pathogenic potential for humans and NHPs was linked to the L RNA encoding 

RNA polymerase [204, 205]. Furthermore, LCMV-WE is highly pathogenic for 

outbred guinea pigs (LD50 <~1 PFU), while mouse-adapted LCMV-ARM is fully 

attenuated in these animals (>6 log10 PFU failed to kill) [194]. 
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 The immunosuppressive phenotype of LASV infection contributes to fatal 

outcomes in progressed cases of human LF disease, and in experimentally 

infected NHPs [206, 207]. We previously documented that LASV and LCMV-WE, 

but not MOPV and LCMV-ARM, down-regulated innate pro-inflammatory 

responses in vitro and in vivo [87, 102, 153, 156, 167]. Particularly, cells infected 

with LASV and LCMV-WE, inhibited Toll-like receptor 2 (TLR2)/Mal (MyD88 

adaptor-like)-dependent cytokines [167]. In contrast, MOPV and LCMV-ARM, 

induced robust NF-κB-mediated, Mal-dependent pro-inflammatory responses in 

human epithelial cells, monocytes, and in murine bone marrow-derived 

macrophages [167]. These responses were TLR2/Mal-dependent, required virus 

replication, and were enhanced by CD14 [167].  Virus internalization and virus 

replication was required for activation of TLR2/Mal-dependent signaling [167]. 

Strong activation of monocyte-macrophages seems to be a general 

feature of non-pathogenic mammalian arenaviruses [102, 158-162].  In addition 

to LCMV-ARM and MOPV,  TCRV, but not pathogenic JUNV, induced cytokines 

release from these cells [158]. With these similarities, TLR2/Mal/MyD88-

dependent signaling has some differences between the OW and NW mammalian 

arenaviruses. In the case of Candid 1 (attenuated JUNV vaccine), engagement 

of TLR2/6 heterodimers on the cell surface, with viral glycoprotein, was sufficient 

to trigger cytokine response via RIG-I/MDA5, NF-κB, and Erk1/2 pathways and 

did not require internalization and viral replication [55]. 

In the virus overlay protein-binding assay (VOPRA), LASV and LCMV-WE 

bound to its major cellular receptor, α-DG, with higher affinity and efficiency than 



72
 

non-pathogenic Mobala virus (MOBV) (which is genetically closely related to 

MOPV), and LCMV-ARM [10, 13]. However, while both LCMV strains, WE and 

ARM, replicated with the similar kinetics in human monocyte derived cells, only 

the replication of LCMV-ARM resulted in robust TLR2/Mal-dependent pro-

inflammatory cytokine responses [167]. Interestingly, attachment efficacy of 

infectious particles of both strains of LCMV, as well as patterns of entry and exit, 

were similar in polarized epithelial Caco-2 cells [208].  In line with these 

observations, LCMV strains with high and low bidding affinity to α-DG, infect 

BHK-21 cells with equal efficiency [209]. Additional entry factors recently 

discovered in vitro for LASV and LCMV (DC-SIGN, LSECtin, Axl, and Tyro3) 

seem play a role in virus entry [30, 31, 210, 211]. At least one of these factors, 

Axl, was strongly upregulated in maturated hepatocytes lacking functional α-DG 

(O-mannosyl glycosylated) in mice infected with LCMV-WE (but not in LCMV-

ARM) [212].  

Taken together, these facts indicate that the engagement of receptors, 

and/or attachment cofactors, on the cell surface by viral glycoproteins cannot be 

solely responsible for trigger (or suppression) of virus-induced pro-inflammatory 

responses. All consequential steps (internalization, intracellular trafficking and 

cross talk with cellular factors, fusion in late endosomes/lysosomes, and 

triggering of RIG-I-dependent signaling), can differently contribute to innate and 

adaptive immune responses driving pathogenicity. In this study we have 

compared intracellular trafficking of LCMV-WE and LCMV-ARM using co-staining 

with markers of early and late endosomal compartments and treatment of cells 
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with drugs targeting different steps of virus replication.  In LCMV-ARM-infected 

macrophages viral NP antigen was extensively co-localized with TLR-2 in early 

endosomes, and was co-stained with markers of late endosomes where nucleic 

acid sensing TLR-7 and TLR-9 are located. In contrast, LCMV-WE bypassed the 

early endosomal compartment, and had less extensive interaction with late 

endosomes/lysosomes markers as assessed by co-staining experiments and by 

confocal microscopy. LCMV-WE infection of murine macrophages resulted in 

strong co-localization of viral NP with IRAK-1 in line with of NF-κB suppression in 

infected cells [167], 

Furthermore, LCMV-ARM infection was more sensitive to pH changes of 

late endosome, tested with bafilomycin A1, in comparison to LCMV-WE. These 

findings are in line with previous observations, documenting high sensitivity of 

MOPV to NH4Cl in comparison to LASV [213]. Taken together, these data 

suggest that fusion events in late endosomes drives viral RNA release kinetics 

resulting in the differential triggering of the cellular RIG-I machinery and innate 

responses.   

MATERIALS AND METHODS 
 

Cells and Viruses. Vero E6 (C1008) , Caco-2 (HTB-37), and RAW264.7 (TIB-

71™) cells were purchased from American Type Culture Collection (ATCC). 

Caco-2 cells were grown and polarized as previously described [208].  Cells were 

infected with LCMV-Armstrong (strain 53b) or LCMV-WE (strain 54).  All viral 

stocks were generated using low multiplicity of infection (MOI) and stocks were 
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generated ranging from 1 x 107 to 1 x 108 PFU/mL and stored at -80°C until 

further use [88].  Infectious virus titration was performed in Vero E6 cells using a 

standard plaque assay with minor modifications that have been previously 

described [167, 208].  Briefly, VeroE6 cells were plated in 12 well plates.  When 

Vero Cells reached 80-90% confluent, viral samples were serially diluted and 

used to infect.  Infection was carried out for 1 hour in 37°C.  Cells were then 

washed with PBS, and a semi-solid overlay containing 1X MEM, 5% FBS, and 

0.5% Avicel (FMC BioPolymer, Philadelphia, PA, USA) was added to the cells.  

Cells were incubated for 5 days in a humidified chamber at 37°C and 5% CO2.  

After a 5-day incubation, the semi-solid overlay was removed, cells were washed 

with PBS, and fixed with 4% paraformaldehyde (PFA).  After a 15-minute fixation, 

cells were stained with a 1% Crystal Violet solution to identify virus-infected foci, 

with a limit of detection of approximately 80 PFU/mL.    

TLR-2 silencing.  RAW264.7 cells were pretreated with TLR2 Silencer® select 

pre-designed siRNA (Ambion, P/N 4390771). Transfection was performed with 

Lipofectamine (Lipofectamine RNAi Max Reagent, Invitrogen) for 48 hours. 

Control cells were transfected with Silencer® Negative Control siRNA (Ambion). 

Transfection of mock-infected cells with TLR2 siRNA resulted in moderate 

suppression of TLR-2 mRNA (46%), and TLR-2 expression on the cell surface as 

assessed by staining transfected cells with anti-TLR-2 antibody and flow-

cytometry (36.5%). Transfected cells were infected with LCMV stains at MOI > 1 

and incubated for 24 hrs. The mRNA levels of IL-6 were determined by real-time 
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PCR using commercial primers/probe as previously described [167]. Expression 

of IL-6 at protein level was analyzed by ELISA kit (eBiosciencecat, P/N 88-7064). 

Immunofluorescence co-staining, confocal microscopy. RAW264.7 cells 

were grown in chamber slides (Lab-Tek), and infected with LCMV strains at MOI 

>1. After virus internalization, intracellular trafficking of LCMV infection was 

monitored in co-staining experiments using monoclonal antibody against a 

conserved NP epitope (M104, Abcam, 1:100 dilution), TLR-2 (monoclonal 

CD282, eBioscience, 1:200), EEA1 (monoclonal F.43.1, Thermo scientific, 

1:100), RAB-7 (rabbit monoclonal EPR7589, Abcam, 1:100), LAMP1 (polyclone 

C-20, Santa Cruz, 1:100), IRAK-1 (D51G7, Cell Signaling, 1:250). Infected cells 

were incubated in CO2 incubator for 0.5 – 2 hrs (see legends to Fig. 15,16,18, 

and 19 for more details), fixed with PFA and permeabilized. After blocking of non-

specific binding with 1% BSA, cells were co-stained with primary antibodies (2-4 

hrs, RT) and treated with the secondary IgG-TR or IgG-FITC antibodies (anti-

mouse or anti-rabbit, 1:200 dilution for 30 min at RT). To stain nuclei, DAPI Flu –

G (Southern Biotech) was used mount coverslips on slides. Co-staining patterns 

were examined by confocal microscopy (LSM 710, Zeiss) as previously 

described, and co-localized staining was quantitated (see Supplemental 

Materials).  

Confocal Microscopy. The analysis was performed as recently described for 

LCMV infected cells using ZEN software [214] with slight modifications. Up-to 

eight LCMV NP-positive (green cells) cells were marked and compared pixel by 

pixel with intensity signals from each channel. Background for green and red 
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channels was determined based on mock-infected cells staining. Total (green-

and red-positive) signals were divided by the sum of green positive pixels and 

expressed as co-localization efficiency, (%). The calculation was repeated for 

individual cells 

Treatment with Chemical Inhibitors.  Treatment with methyl-β-cyclodextrin 

(Mβ-CD) was modified from previous work [36, 215, 216].  Briefly, VeroE6 or 

Caco-2 cells were seeded in 12-well tissue culture plates.  Cells were then pre-

treated in the presence, or absence (control cells), of 5mM Mβ-CD (Sigma-

Aldrich, St. Louis, MO, USA) for 1 hr at 37°C.  Cells were infected with an MOI of 

0.3 PFU/cell, and incubated for 24 hrs in the presence of Mβ-CD. Percent 

replication after inhibition was determined by normalizing viral titer after treatment 

with the drug, compared to infections titer without membrane cholesterol 

depletion.  Treatment with nocodazole was slightly modified from previous 

studies [35, 43, 217].  Briefly, VeroE6 or Caco-2 cells were pre-treated with 10μM 

nocodazole for 1 hr at 37°C.  Cells were then washed 2 times with cold PBS, 

infected with a MOI of 0.3 PFU/cell for 1 hr and then incubated in the presence of 

nocodazole for 24 hrs at 37°C.  Bafilomycin treatment was also slightly modified 

[28, 218].  VeroE6 cells were pre-treated with bafilomycin A1 (Sigma-Aldrich, St. 

Louise, MO, USA) with concentrations ranging from 10 to 200 nM.  Cells were 

infected at an MOI of 1.0 PFU/cell, at 4°C for 1 hr, in the presence of bafilomycin 

and incubated with the drug for 24 hrs at 37°C.  Supernatants were collected for 

standard plaque assays and cells were collected in RNA-STAT-60 (Tel-Test 

Inc.,) further RNA isolation according to the manufacturer’s instructions.  
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Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to 

quantitate viral RNA in treated and untreated cells using LCMV strain-specific 

primers/probe as previously described [208].   

Statistical Analyses.  Statistical significance was analyzed using 3 biological 

replicates per experimental time point and treatment concentration, using a 

Standard Student t-Test.  All statistical values of p≤ 0.05 were deemed 

statistically significant. 

RESULTS 
 

TLR-2 knockdown results in down-regulation of IL-6 expression in LCMV-

ARM-infected murine macrophages. In previous experiments, LCMV-ARM 

(but not LCMV-WE) infection of cells human derived from murine or human 

monocytes/macrophages induced strong production of IL-6 [167]. This induction 

was TLR2/Mal-dependent since murine macrophages generated from TLR-2 or 

Mal knockout mice failed to induce cytokine responses.  In current experiments, 

we have used the transformed murine macrophage cell line RAW264.7. To prove 

TLR-2 dependency of IL-6 stimulation in LCMV-ARM-infected cells, RAW264.7 

cells were transfected with pre-designed TLR-2 siRNAs, and infected with LCMV 

strains at MOI > 1 PFU/cell. Induction of IL-6 was assessed at mRNA and protein 

levels, by RT/PCR and ELISA, respectively.   

 Consistent with previous study, both LCMV virus strains had similar 

replication kinetics in RAW cells [167]. However, only LCMV-ARM infection 

strongly stimulated IL-6 (Fig. 14). Transfection of mock-infected cells with TLR-2  
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Figure 14. TLR2 siRNA transfection down regulates IL-6 in LCMV-ARM-
infected murine macrophages. 

Murine-specific TLR-2 siRNA, and Negative Control siRNAs (Ambion) were 

transfected into RAW264.7 cells using Lipofectamine (Lipofectamine RNAi Max 

Reagent, Invitrogen) for 48 hours. Transfected cells were infected either with 

LCMV-ARM or with LCMV-WE at MOI >1 PFU/cell incubated for 24 hours. A. IL-

6 mRNA expression was determined by real-time PCR. B.  Protein expression of 

IL-6 was measured with a mouse IL-6 ELISA kit. Data (triplicate/group) 

represented as mean ± SEM,  *p < 0.05, **p < 0.01, *** p < 0.001.  All 

experiments done by Min Wang, Ph.D. 
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siRNA resulted in moderate suppression of TLR-2. However, the TLR-2 silencing 

dramatically down-regulated IL-6 mRNA expression, and production of IL-6 

protein in LCMV-ARM-infected cells. As expected, the effect of TLR-2 silencing 

on IL-6 in LCMV-WE-infected cells was minimal if any (Fig. 14). 

Co-staining experiments revealed an LCMV strain-specific pattern of 

interactions between viral antigen and endosomal markers.  TLRs sense the 

foreign invasion of microbes/viruses by recognizing their structural components 

and activate intracellular signaling pathways [219]. The TLR family includes 

receptors residing both on the cell surface, and in intracellular compartments. 

Early and late endosomes have unique TLR profile, and signaling properties 

[220, 221]. After internalization, virions are sorted into endocytic vesicles and 

delivered to endosomal/lysosomal compartments via the endocytic, and/or 

micropinocytosis pathways. LCMV and LASV enter cells through an unusual 

clathrin-, caveolin-, and dynamin-independent endocytic pathway [34, 35, 43, 44, 

190, 218].  To assess the interaction between virus-loaded vesicles, and 

trafficking through the intracellular TLR-containing compartments, mock- and 

LCMV-infected cells were stained with monoclonal against the conserved LCMV 

NP epitope, and with markers of early and late endosomes. Intracellular co-

localization of LCMV antigen and endosomal markers was visualized using 

immunofluorescence assay and confocal microscopy. 

 In the case of early endosomes, strong evidence of co-staining between 

the virus (NP antigen, green), early endosome antigen 1 (EEA1, red) and TLR-2 

(light blue) was documented in LCMV-ARM-infected cells. Co-localized signals  
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Figure 15. LCMV-ARM has strong co-localization patterns of LCMV NP with 
EEA-1 and TLR-2 markers. 

RAW cells were infected with LCMV at MOI 2 PFU/cell and incubated for 30 min. 

Mock- and LCMV-infected cells were fixed, permeabilized and co-stained with 

monoclonal M104 (Abcam) against conservative NP epitope (green), EEA1 

(monoclonal F.43.1,Thermo scientific, red), and TLR2 (monoclonal CD282, 

eBioscience, light blue). Upper panels, LCMV-ARM-infected cells, right panel 

indicate a cell co-stained with all three antibodies. Extensive white area of co-

localized antigens indicated by arrow. Middle panels, LCMV-WE-infected cells, 

right panel, arrow indicates distinct staining pattern for individual antigens, no co-

localization. Low panels, mock-infected cells. All experiments done by Min 

Wang, Ph.D. 
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were seen as extensive white areas in the cytoplasm (Fig. 15). In contrast, all 

three colored markers had distinct staining patterns in LCMV-WE-infected cells 

with no evidence of co-staining. The small molecular weight G-protein, RAB-7, 

regulates late endocytic trafficking. Co-staining of LCMV-infected cells with anti-

NP and RAB-7 antibodies provided evidence of co-localization of target antigens 

in cells infected with both strains of LCMV, ARM and WE. Nevertheless, the co-

staining patterns were different between the two strains of virus, with evidence of 

more extensive bright-yellow areas of co-localized signals in LCMV-ARM-

infected cells (about 80%) in comparison with WE-infected cells (about 50%; 

p<0.05) (Fig.16).  

 Fusion of LASV and LCMV glycoproteins with the cell membrane is 

triggered at very low pH (3.0-4.5) suggesting that these viruses can fuse not only 

in late endosomes, but also in the lysosomal compartment [218]. A unique 

feature of LASV infection is the usage of the second receptor, lysosome-

associated membrane protein-1 (LAMP-1, CD107), to trigger low-pH- and GPC-

mediated fusion with the late endosome membrane [28, 29]. Using co-staining 

with anti-LAMP1 antibody, we have found colocalization between LCMV NP and 

LAMP-1 and; in line with previous observations, this assessment was LCMV-

strain specific (Fig. 17). Co-localization of both signals, LCMV NP antigen (green) 

and LAMP-1 (red), was clearly seen as strong yellow spots in about 80% of 

LCMV-ARM-infected cells (Fig. 17, upper right panel). While small yellow areas 

can be found in about 50% of LCMV-WE-infected cells as well, the co-staining 

pattern was statistically less prominent (p<0.001, Fig. 17). 
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Figure 16. LCMV-ARM shows more co-localization with RAB-7 marker, 
compared to LCMV-WE. 

Cells were infected with LCMV as described in legend to Fig. 11, incubated for 2 

hrs, and co-stained with M104 and RAB-7 antibodies. Upper panels, ARM-

infected cells, white arrows indicate bright yellow co-localized spots. Low 

panels, WE-infected cells, white arrows indicate diffuse light-yellow areas of co-

localization. See also Fig. 14. The analysis was performed as recently described 

for LCMV infected cells using ZEN software [214] with slight modifications. Up-to 
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eight LCMV NP-positive (green cells) cells were marked and compared pixel by 

pixel with intensity signals from each channel. Background for green and red 

channels was determined based on mock-infected cells staining. Total (green-

and red-positive) signals were divided by the sum of green positive pixels and 

expressed as co-localization efficiency, (%). The calculation was repeated for 

individual cells. All experiments done by Min Wang, Ph.D. 
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Figure 17. LCMV-ARM has a stronger co-staining pattern with LAMP-1 than 
LCMV-WE. 

Cells were infected and treated as indicated in legend to Fig. 12. Upper panels, 

ARM-infected cells. Lower panels, WE-infected cells. Co-staining areas are 

indicated by white arrows. See also Fig.14. The analysis was performed as 

recently described for LCMV infected cells using ZEN software  with slight 

modifications [214]. Up-to eight LCMV NP-positive (green cells) cells were 

marked and compared pixel by pixel with intensity signals from each channel. 
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Background for green and red channels was determined based on mock-infected 

cells staining. Total (green-and red-positive) signals were divided by the sum of 

green positive pixels and expressed as co-localization efficiency, (%). The 

calculation was repeated for individual cells. All experiments done by Dr. Min 

Wang. 
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Interaction with IRAK-1, mediator of TLR-induced signaling, is different in 

LCMV-ARM- versus LCMV-WE-infected cells.  TLR signaling is dependent on 

the recruitment of several key adaptor molecules. Upon ligand recognition, 

MyD88 (and/or Mal) recruits and activates IL-1-associated kinases (IRAK), such 

as IRAK-1, triggering a down-stream activation cascade leading to NF-kB 

translocation and transcription initiation  [222].  Notably, in cells transfected with 

an NF-κB–luciferase reporter, infection with LCMV-ARM resulted in the induction 

of NF-κB, but cells infected with LCMV-WE and immunosuppressive LCMV 

Clone 13 did not [167].  

In the next experiments, co-staining with anti-IRAK-1 antibody was 

performed in LCMV-infected murine macrophages.  As seen in Fig. 18 and Fig. 

19, little evidence of interaction between LCMV NP and IRAK-1 was found in 

LCMV-ARM-infected cells, with only 15% of the cells co-staining for LCMV NP 

and IRAK-1. In contrast, co-localized signals, identified as extensive yellow 

areas, reached about 87% in LCMV-WE-infected cells.  

In response to stimulation, IRAK-1 is subjected to ubiquitination and 

degradation, and IRAK-1 protein level remained suppressed up to 8h after 

stimulation [223]. To track LCMV strain-specific differences in IRAK-1 expression 

in infected cells, Western blot analysis was performed to detect IRAK-1 in 

infected cells (Fig. 19). While there was no difference between expressions of 

IRAK-1 at 24h after infection in LCMV-ARM and WE-infected cells, the IRAK-1 

expression levels were higher at later time points in LCMV-WE-infected cells in 

comparison with mock- and ARM-infected cells (Fig. 19).  
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Figure 178. LCMV-WE has significant co-staining patterns with IRAK-1 
compared to LCMV-ARM. 

Cells were infected with LCMV strains and incubated for 1 hr. Upper panels, 

ARM-infected cells. Low panels, WE-infected cells. Extensive yellow areas of 

co-localized staining in WE-infected cells are shown by arrows. The analysis was 

performed as recently described for LCMV infected cells using ZEN software with 

slight modifications. Up-to eight LCMV NP-positive (green cells) cells were 

marked and compared pixel by pixel with intensity signals from each channel 
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[214]. Background for green and red channels was determined based on mock-

infected cells staining. Total (green-and red-positive) signals were divided by the 

sum of green positive pixels and expressed as co-localization efficiency, (%). The 

calculation was repeated for individual cells. All experiments done by Min Wang, 

Ph.D. 
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Figure 19. Expression of IRAK-1 in LCMV-infected cells. 

RAW267.7 cells were grown in T25 flasks and infected with LCMV viruses an 

MOI 0.1. At different time post infection, protein extracts were prepared and 

subjected to SDS-PAGE analysis as previously described [224]. In brief, protein 

samples were combined with 4X Laemmli sample buffer and loaded onto SDS-

polyacrylamide gels of 10% and 15% (w/v) acrylamide followed by 

electrophoresis and Western blotting onto PVDF membranes. Primary antibodies 

against IRAK-1 (D51G7, Cell Signaling) and GAPDH (sc-25778, Santa Cruz 

Biotechnology) were used at dilutions 1:1000 and 1:2000, respectively. Bands 

were visualized using horseradish peroxidase-coupled secondary antibodies, an 
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ECL kit (Pierce, Rockford, IL) and Hyperfilm (GE Healthcare, Piscataway, NJ). A. 

IRAK-1 was identified as a 80 kDa band.  B. Densitometric analysis was 

performed using UN-SCAN-IT gel (Silk Scientific Inc., Orem, UT) software. All 

experiments done by Dr. Min Wang, Ph.D. 
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Probing LCMV-ARM versus LCMV-WE infection with inhibitor drugs.  

Antivirals with known mechanisms of action are a useful tool to study virus-cell 

interaction and cell factors involvement in virus replication. In this study, 

representatives of three groups of drugs targeting host factors at the cell surface, 

microtubules, and cell membrane fusion in late endosomes, were used to 

validate results presented in the previous sub-sections.  

It was documented that entry of LCMV (Clone 13) was dependent upon 

membrane cholesterol [36]. To address LCMV-strain specific sensitivity to 

cholesterol depletion, Vero cells were initially used to reproduce previously 

published results [35]. The cells were pretreated with 5mM of Mβ-CD, infected 

with LCMV at an MOI of 0.3 PFU/cell, and incubated with or without drug during 

24h after infection, as described in Materials and Methods. As expected, 

replication of both strains of LCMV was affected by depletion of cholesterol on 

the cell surface (Fig. 20 A). However, when the LCMV infectious yields were 

normalized to untreated cells and compared to each other, LCMV-WE infection 

was more sensitive to the cholesterol depletion (at least 2-fold differences, Fig. 

20 C), to Mβ-CD in comparison with LCMV-ARM infection. The LCMV-strain 

specific sensitivity to cholesterol depletion was consistently observed Caco-2 

cells, independent of polarization status of these cells (Fig. 21 and Fig. 22).  

A previously published study documented that disruption of microtubules 

with nocodazole inhibited replication of LCMV-ARM [35]. In line with these 

results, replication of both strains of LCMV demonstrated almost equal sensitivity 
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Figure 20. Depletion of membrane cholesterol and microtubules inhibits 
LCMV-Armstrong and LCMV-WE replication in VeroE6 cells. 

Vero E6 were treated for 1 hour prior to infection with 5mM Mβ-CD (A and C) or 

10μM nocodazole (B and D), then infected with LCMV as described in Materials 

and Methods. Supernatants were collected 24 hrs after infection and virus 

production was determined by plaque assay (A and B).  Values are shown as the 

mean of 3 biological replicates with the error bar representing the standard 

deviation.  Percent replication after inhibition was normalized to untreated 

PFU/mL (C and D).  Standard T-test was used to analyze differences in titer and 

percentages. * p≤0.05 
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Figure 21. Depletion of membrane cholesterol and microtubules inhibits 
LCMV-Armstrong and LCMV-WE replication in polarized Caco-2 cells. 

Caco-2 cells were seeded in 12-well plates and allowed to polarize for 3 weeks. 

Cells were treated for 1 hour prior to infection with 5mM Mβ-CD (A and C) or 

10μM nocodazole (B and D), then infected with LCMV-ARM (black) or LCMV-WE 

(grey) at a multiplicity of infection (MOI) of 0.3 PFU/cell for 1 hour on ice.  After 

infection, maintenance media was added to cells in the absence (solid) or 

presence (striped) of 5mM Mβ-CD (A) or 10μM nocodazole (C).  Supernatants 

were collected 24hours after infection and virus production was determined via 

standard plaque assay (A and C).  Values are shown as the mean of 3 biological 

replicates with the error bar representing the standard deviation.  Percent 
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replication after inhibition was normalized to untreated PFU/mL (B and D).  

Standard T-test was used to analyze differences in titer and percentages.  

*p≤0.05 
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Figure 182. LCMV-ARM and LCMV-WE replication is inhibited by depletion 

of membrane cholesterol, but not by microtubule disruption in non-

polarized Caco-2 cells. 

Caco-2 cells were seeded in 12-well plates. Cells were treated for 1 hour prior to 

infection with 5mM Mβ-CD (A and B) or 10μM nocodazole (C and D), then 

infected with LCMV-ARM (black) or LCMV-WE (grey) at a multiplicity of infection 

(MOI) of 0.3 PFU/cell for 1 hour on ice.  After infection, maintenance media was 

added to cells in the absence (solid) or presence (striped) of 5mM Mβ-CD (A) or 

10μM nocodazole (B).  Supernatants were collected 24hours after infection and 

virus production was determined via standard plaque assay (A and C).  Values 
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are shown as the mean of 3 biological replicates with the error bar representing 

the standard deviation.  Percent replication after inhibition was normalized to 

untreated PFU/mL (B and D).  Standard T-test was used to analyze differences 

in titer and percentages. * p≤0.05 
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to the drug (Fig. 20 B and D). Treatment of infected Caco-2 cells with nocodazole 

generated controversial results. In polarized cells, replication of both strains of 

LCMV was sensitive to disruption of microtubules, with LCMV-WE infection being 

more sensitive to the treatment (Fig. 21 B and D). Surprisingly, LCMV infection in 

non-polarized Caco-2 cells was not sensitive to nocodazole treatment (Fig. 22 B 

and D).   The fusion of arenavirus proteins with cell-derived membranes is the 

last step of intracellular trafficking of the virus-containing vesicles.  The low pH-

mediated fusion occurs in late endosomes/lysosomes and can be blocked by 

drugs raising pH in this sub-cellular compartment [225]. To assess LCMV strain-

specific sensitivity to inhibitors blocking fusion with cell membrane, an 

established protocol was used to treat Vero cells with bafilomycin A1 to prevent 

acidification of the late endosomes [218].  

As expected, bafilomycin treatment inhibited replication of both strains of 

LCMV in a dose-dependent manner as assessed by plaque assay and 

quantitation of viral RNA load by PCR (Fig. 24). When compared with mock-

treated cells, the differences ranging from 1-2 and 2-3 logs PFU/ml were 

observed in LCMV-WE- and ARM-infected cells, respectively (Fig. 23 A). When 

normalized to viral input, a significant difference of about 8% was observed 

between LCMV-ARM- and –WE-infected cells treated with 100 nM of bafilomycin 

(Fig. 24).  Similarly, when viral RNA was measured and normalized to mock-

treated cells, a 2-fold difference was observed between LCMV-ARM- and –WE-

infected cells, confirming higher sensitivity of LCMV-ARM infection to pH 

changes in late endosomes in comparison with LCMV-WE (Fig. 23 B).   
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Figure 23. LCMV strain-specific replication sensitivity to pH increases in 

late endosomes. 

 VeroE6 cells were treated with bafilomycin A1 and infected with LCMV as 

described in Materials and Methods. Supernatants and cells were collected 24 

hrs after infection and virus production was determined via standard plaque 

assay (A) and viral mRNA was determined using qRT-PCR and normalized to 

untreated cells (B).  Standard T-test was used to analyze differences in titer and 

percentages. * p≤0.05 
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Figure 194. Blocking of late endosome acidification results in a decrease in 

the percentage of viral infection in both LCMV-ARM and LCMV-WE in a 

strain-specific manner. 

VeroE6 cells were seeded in 12-well plates. Cells were treated for 1 hour prior to 

infection with varying concentrations of bafilomycin.  Cells were then then 

infected with LCMV-ARM (black) or LCMV-WE (grey) at a multiplicity of infection 

(MOI) of 1.0 PFU/cell for 1 hour on ice.  After infection, maintenance media was 

added to cells in the absence (0mM) or presence (50-200nM) of bafilomycin.  

Supernatants were collected 24 hours after infection and virus production was 

determined via standard plaque assay.  Percent infection was determined 

dividing PFU/mL by 0mM PFU values.  Data are shown as the mean of 3 

biological replicates with the error bar representing the standard deviation.  

Percent replication after inhibition was normalized to untreated PFU/mL (B and 

D).  Standard T-test was used to analyze differences in titer and percentages. * 

p≤0.05 
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DISCUSSION 
 

 With a high genetic and biological diversity among LCMV strains, the 

behavior of WE and ARM strains of LCMV resembles phenotypic features of 

LASV and MOPV in animal models. Indeed, similar to LASV, LCMV-WE induces 

fatal disease in guinea pigs and fatal LF-like hepatitis in Rhesus macaques [194, 

195]. In both animal models, reassortant analysis revealed that the L RNA 

segment of LASV and LCMV-WE is the major genetic factor responsible for fatal 

outcome [204, 205]. Similarly, in LCMV-induced hepatitis in mice, the L 

polymerase of WE strain was primarily responsible for liver pathogenicity, with 

minimal contribution of the GPC gene [226]. Notably, a single-point K1079Q 

mutation in the L polymerase of LCMV-ARM was necessary and sufficient, in 

part, to transform LCMV-ARM into immunosuppressive Clone 13. The F260L 

mutation in GP1, which was associated with increased affinity to α-DG and 

targeting dendritic cells, played an accessory role in driving the duration of 

persistence and generalization of immunosuppression in mice [227].  Taken 

together, these results provide strong justification to consider LCMV-WE as a 

surrogate model of LASV, causing fatal hepatitis in NHPs [195].  

 Dendritic cells and macrophages are primary targets for LASV and LCMV-

WE. Dysregulation of myeloid cells, immunosuppressive features of LASV 

infection, and failure to induce sustainable innate and adaptive immunity, 

resulted in fatal LF outcome [206, 207]. In contrast, DCs and macrophages are 

strongly activated by MOPV, and the infection upregulates co-stimulatory 

molecules, IFN type I, and pro-inflammatory cytokines [106]. 
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 Strong activation of monocyte-macrophages seems to be a general 

feature of non-pathogenic mammalian arenaviruses [102, 106, 158-162]. We 

have previously demonstrated that MOPV and LCMV-ARM induced pro-

inflammatory cytokines, and this induction required virus replication and was 

dependent on TLR2/CD14/Mal/NF-κB signaling [167].  In addition to LCMV-ARM 

and MOPV, TCRV (but not pathogenic JUNV) induced cytokines release from 

macrophages as well [158]. With these similarities, TLR2/Mal/MyD88-dependent 

signaling has some differences between the OW and NW mammalian 

arenaviruses. In the case of Candid 1 (attenuated JUNV vaccine), engagement 

of TLR2/6 heterodimers on cell surface by viral glycoprotein was sufficient to 

trigger cytokine response via RIG-I/MDA5, NF-κB, and Erk1/2 pathways and did 

not require internalization and viral replication. 

 In this study, we provide additional evidence of TLR-2 involvement in the 

induction of pro-inflammatory cytokines by LCMV-ARM (not LCMV-WE), since 

TLR-2 silencing resulted in abrogation of the response to LCMV-ARM. 

Accumulated evidence demonstrates a role for TLR-2 in sensing mammalian 

arenaviruses with different pathogenic potential [159-161, 167, 228, 229]. Viral 

glycoprotein are recognized as a TLR-2 ligand for JUNV (wild type and vaccine 

strain) [229], however, a TLR-2 ligand has not been identified for the OW 

arenaviruses. Viral glycoproteins of the OW mammalian arenaviruses can be 

considered as TLR-2 ligands similar to JUNV. However, in contrast to JUNV, 

TLR2/CD14/Mal-dependent signaling induced by MOPV and LCMV-ARM 
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required virus replication [167], indicating a more complex nature of virus-

induced innate responses.    

 In addition to TLR-2, LCMV and LASV induce TLR-7 and TLR-9 

responses and activate RIG-I [230]. These major machineries initiate intracellular 

signaling via common cytoplasmic adapters (e,g., MyD88/Mal, TRIF, IPS-1) to 

induce IFN type I and NF-κB-dependent pro-inflammatory cytokines. It seems 

intracellular TLRs involved in arenavirus recognition have different intracellular 

localization [220, 221]; TLR-2 has been mostly associated with early endosomes 

(Fig. 2), while  TLR-7 and TLR-9 have been sitting predominantly in late 

endosomal compartment since treatment with bafilomycin A1 and chloroquine 

inhibits the activation of nucleic acid sensing TLRs [221].   

Pathogenic viruses have developed tricky mechanisms to subvert 

endocytic and pathogen-sensing functions of DCs and macrophages to avoid 

effective recognition and immune control [231].  As seen in Fig. 15-17, ARM and 

WE strains of LCMV had different patterns of intracellular trafficking and 

interaction with endosomal compartments. Non-pathogenic (for NHPs) LCMV-

ARM was tightly interacted with early and late endosomes, as it was revealed by 

co-staining with EEA-1, RAB-7 and LAMP-1 markers.  Alternatively, LCMV-WE, 

causing fatal LF-like hepatitis in NHPs, effectively avoid early endosome 

recognition. Consistent with this, penetration kinetics study documented that 

LCMV-WE reached late endosomes by bypassing RBA5/EEA1-positive 

compartment [44]. Notably, in late endosomal/lysosomes, LCMV-WE infection 

demonstrated less extensive interaction with RAB-7 and LAMP-1 markers. 
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 After interaction with cell surface receptors, LASV switches to a second 

receptor, LAMP-1, to fuse with cell membrane in late endosomes/lysosomes [28].  

While recent studies provided evidence that LAMP-1 is not absolutely required 

for LASV infection [50], LAMP-1 increases efficiency of infection by promoting 

fusion in less acidic endosomal environment. Interestingly, LAMP-1 binding site 

interaction with LASV GP1 has not been shown to be shared by other OW 

arenaviruses, and was not found in MOPV and LCMV [49]. It seems the LAMP-1 

positive co-staining pattern observed in LCMV-infected cells (Fig. 4) does not 

relate to LCMV GP1 and is probably linked to glycoprotein responsible for fusion, 

GP2. 

 To elicit MyD88/Mal-dependent pro-inflammatory responses, IRAK-4 is 

recruited to phosphorylate IRAK-1 and IRAK-2, to further activate down-stream 

cascade via the E3 ubiquitin ligase TRAF-6 and TAK-1 phosphorylation of  IKKβ,  

resulting in IκB degradation and release of NF-κB [220]. Interestingly enough, 

LCMV-WE infection of murine macrophages resulted in strong co-localization of 

viral NP with IRAK-1 (Fig. 5). Taking into consideration suppression of NF-κB in 

LCMV-WE-infected cells [167], this co-staining pattern seems to contribute to the 

immunosuppressive phenotype of LCMV-WE, but preventing transcription of NF-

κB factors. 

 Epithelial cells of the gastrointestinal tract and upper-respiratory system 

are major gates of entry for LASV and LCMV. An epidemiological study in LASV 

endemic areas identified the hunting of peridomestic rodents and consumption of 

LASV-contaminated food, as risk factors for rodent-to-human transmission [137]. 
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Similar to LASV, LCMV was resistant to low pH after oral (lavage) application. 

Notably, experiments in mice [169, 170, 232], and NHPs [155, 156, 182], suggest 

that crossing the gastric/intestinal mucosa resulted in virus attenuation and 

protection of animals against subsequent fatal challenge. Experiments in NHPs 

revealed clear differences in pathogenic potential between LCMV-ARM, causing 

deeply attenuated asymptomatic infection, and LCMV-WE, inducing LF-like fatal 

disease in all animals after systemic application. Notably, while in some animals, 

oral inoculation of LCMV-WE resulted in viremic manifested disease, animals 

recovered and became protected against fatal intravenous challenge [182]. 

The possible LCMV strain-specific interaction with gastrointestinal 

epithelia was tested in polarized Caco-2 cells, and both strains of LCMV, 

demonstrated similar attachment/binding profile in these cells [208]. In this study, 

Caco-2 cells were used to test well-characterized drugs affecting membrane 

cholesterol and disrupting microtubular transport. Previous studies documented 

that attachment of OW mammalian arenaviruses to cellular receptors occurs 

independently on cholesterol, while cholesterol depletion affected internalization 

and reduced replication indicating that efficient virus infection required membrane 

cholesterol [35, 138]. In line with these results, treatment of Vero and Caco-2 

cells (non-polarized and polarized) consistently demonstrated high sensitivity of 

LCMV-WE infection (vs. LCMV-ARM) to cholesterol depletion (Fig. 20, 21, and 

22, A and C).  

While the actin cytoskeleton is not required for LCMV pseudotypes and 

LCMV-ARM replication, disruption of microtubules with nocodazole affected 
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replication of these viruses in CV1 cells [35]. Consistently, the drug had similar 

inhibitory effect on replication of both strains of LCMV in Vero cells. Interestingly 

enough, polarization status of Caco-2 also had effect on strain-specific sensitivity 

of LCMV to nocodazole. In polarized cells, LCMV-WE infection was more 

sensitive to disruption of microtubules (Fig. 21 B and D). In contrast, replication 

of both strains of LCMV in non-polarized cells was not affected by nocodazole 

(Fig. 22, B and D). It suggests that polarization itself promotes contribution of 

microtubules to virus replication and results in LCMV strain-specific sensitivity to 

the drug (Fig. 22 C and D).  

 The final step of the endocytic pathway is pH-dependent fusion with cell 

membranes at late endosomes/lysosomes, and the release of viral RNA to 

initiate productive infection. Using lysosomotropic agents (NH4Cl, chloroquine, 

monensin) we [225], and others [213] documented that LASV infection was more 

resistant to pH increase in comparison to non-pathogenic MOPV. This is in line 

with findings that demonstrated a very low pH requirement for LASV fusion [218].  

Similar to lysosomotropic compounds, bafilomycin A1, an inhibitor of proton 

pumps, prevents acidification of late endosomes. Consistently, bafilomycin A1 

also inhibited LASV and LASV pseudoparticles entry in dose-dependent manner 

[218]. Bafilomycin treatment of LCMV-infected cells resulted in inhibition of LCMV 

replication as well (Fig. 7, S5). Importantly, we have found that LCMV-WE 

infection was more resistant to bafilomycin A1 than LCMV-ARM infection, in good 

collaboration with LASV vs. MOPV sensitivity to lysosomotropic compounds [213, 

225]. Different sensitivity of pathogenic vs. non-pathogenic OW arenaviruses to 
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pH increase in late endosomes/lysosomes can affect viral RNA release kinetics. 

Additionally, change in pH can affect activation pattern of nucleic acid sensing 

TLR-7, TLR-9 and RIG-I driving expression of IFNs and pro-inflammatory 

cytokines. These factors are crucially involved in activation of antigen presenting 

cells and T cells stimulation resulting in efficient adaptive responses to control 

viral infection in case on infection with non-pathogenic viruses. In contrast, the 

immunosuppressive phenotype of LASV and LCMV-WE in addition with 

intracellular trafficking avoiding exposure with TLRs and delayed TLR-7, TLR-9 

and RIG-I activation contributed to adaptive immune failure.  Strong interaction 

between LASV NP and IRAK-1 in LCMV-infected cells is consistent with ability of 

this infection down-regulate NF-κB activity in infected cells [167]. 

CONCLUSIONS 
 

In summary, in this study we demonstrated clear differences in terms of 

intracellular trafficking and sensitivity to pharmacological drugs between two 

strains of LCMV with different pathogenic potential for NHPs, WE and ARM. 

Consistent with previous results, LCMV-ARM co-staining pattern and interaction 

with endosomal compartments hosting TLRs, promotes induction of strong innate 

responses via TLR2/CD14/Mal-dependent signaling pathways. In addition, higher 

sensitivity of LCMV-ARM infection to bafilomycin A1 treatment suggests efficient 

release of viral RNA to activate nucleic acid sensing TLRs and RIG-I, contributing 

to development of robust adaptive immune response.  
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 
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CONCLUSIONS 
 

The overall objective of this research was to identify an intestinal epithelial 

cell culture model that could further lead us to understand how OW arenaviruses 

were interacting at the sight of intragastric infection, as well as investigate 

potential factors that drive pathogenic differences between viruses sharing 

similar genetic phenotypes. In order to study these differences, we utilized a well-

developed intestinal epithelial model, polarized Caco-2 cells, to identify 

characteristics of infection with different OW arenaviruses.  In addition, we used 

chemical inhibitors to identify differences in intracellular pathways of these 

closely related viruses.   

In some villages in LASV endemic regions in West Africa up to 45% of the 

populations is seropositive for the virus, allowing for clearance of the disease 

without manifestation upon reinfection [81].  However, what defines why some 

individuals are seropositive and can protect themselves from disease onset, 

while others show clinical manifestation of LF, has yet to be defined.  Our first 

goal was to develop and characterize a cell culture system as an in vitro model to 

investigate the interaction of OW mammalian arenaviruses at the sight of 

intragastric inoculation.  

Caco-2 cell polarization results in development of tight junction proteins, 

monolayers of connected cells, and organizational patterns that differ from non-

polarized cell types [173].  The first step was characterizing how different OW 

arenaviruses interact at the site of intragastric inoculation.  Due to the difference 
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in phenotypes of polarized and non-polarized cells, we analyzed this in the 

context of viral replication in Caco-2 cells.  We found that the polarity of this cell 

line did not impact the replication kinetics of LCMV, MOPV, or ML-29.   

In vivo experimentation with LCMV in non-human primates showed a 

significant difference between intravenous and intragastric routes of inoculation 

[155, 182].  Additionally, access to cellular receptors differs with exposure to 

different surfaces of the epithelia [138, 139]. Furthermore, in vitro studies have 

shown that entry and release from polarized epithelia is viral specific, and 

location of viral receptor was indication for direction of viral entry [138, 139].     

Here, we investigated the patterns of entry and release when these viruses were 

exposed to the apical or the basolateral surface of polarized Caco-2 cells.  

Interestingly, we discovered that LCMV-Armstrong and WE, despite having 

different pathogenic potential in Non-human primates (NHPs), entered and 

released via a similar pattern in Caco-2 cells.  When LCMV-ARM and LCMV-WE 

were exposed to the apical side of the intestinal epithelia, mimicking an 

intragastric infection, we observed high replication and release from the apical 

surface of these cells, and almost equal release from the basolateral surface.  

Additionally, when exposed to the basolateral surface of polarized Caco-2 cells, 

LCMV and MOPV entered apically and released primarily from the apical side, 

with very little release observed from the basolateral side.  Furthermore, we 

found that ML-29, a LASV surrogate mimicking LASV interaction with susceptible 

cells, had a different pattern of replication from its parent MOPV strain. When 

exposed to the apical side of these polarized cells, ML-29 released primarily from 
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the apical surface with little to no egress on the basolateral side.  Interestingly, 

when exposed basolaterally, ML-29 showed a delay in viral replication, and did 

not release infectious progeny until day 5 post infection. The release was 

observed primarily on the apical surface.  Successful entry and release of viral 

progeny was seen with LCMV and MOPV on both the apical and basolateral 

side, and only on the apical surface of these cells, indicating that alternative 

cellular receptors may be associated with entry into polarized intestinal epithelia. 

Therefore, further investigation into the usage of alternative receptors Axl, DC-

SIGN, and TYRO-3, should be completed.  Our immunofluorescence staining 

showed location of α-DG to be primarily located on the basolateral side; but fixed 

cells represent only a snapshot of the cellular environment, thus the 

characterization of cellular receptors in real-time may be a useful addition toward 

fully understanding the interaction of these viral-receptor interactions    

To further characterize attachment efficiency of the viruses to the apical 

and basolateral sides of Caco-2 cells, attachment efficacy was measured by 

qRT/PCR.  Interestingly, a lower attachment of ML-29 to the basolateral surface 

of these cells (the surface of the polarized epithelia in which ML-29 failed to 

produce progeny), was observed, as opposed to the apical side of cells.  

Comparatively, LCMV and MOPV attached similarly, with almost equal ratios to 

the apical and basolateral surfaces of these cells.  The MOPV backbone used in 

ML-29, is genetically very similar to that of LASV, compared to other psudotype 

particles with VSV- or retro-based particles.  Additionally, ML-29 has GP1, the 

attachment protein, that is identical to LASV, making ML-29 the best model to 
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mimic LASV-cell interaction.  However, differences in intracellular trafficking 

between ML-29 and LASV has yet to be shown.  This is most likely due to the 

K272E substitution, and the mutation located between two peptides at the N-

terminal of the GP2 [77, 85, 184, 185, 205]. This mutation may impact the fusion, 

and/or post fusion events of ML-29, resulting in different patterns of replication in 

polarized Caco-2 cells infected with LASV. Interestingly, GP2 mutation in the 

JUNV vaccine strain Candid #1 appears to be involved in the destabilization of 

the metastable GP conformation, contributing to attenuation [233]. The Candid 

#1 GP2 was significantly less affected by NH4Cl (to block the endosomal 

acidification) than wild type GP2 [233]. The key role of Candid #1 GP2 mutant 

was recently confirmed by reverse genetics [234] and this mutation was 

proposed to be a molecular signature of JUNV attenuation [233].  Additionally, 

the dynamic interactions of GP1 with cellular receptors, should be investigated.  

Previous research has determined the crystal structure of LCMV-ARM and 

LCMV-WE, finding that there is no significant differences between the structure 

of these two GP1 proteins [209].  However, other studies suggest that LCMV-

ARM does not maintain as strong an affinity to α-DG, as LCMV-WE [25].     

 In the in vitro Caco-2 model of intestinal epithelia, the strains of LCMV, 

Armstrong and WE, were compared to mimic intravenous versus intragastric 

inoculation of these virsuses.  These two strains of virus, though genetically very 

similar, have different pathogenic potentials in animal models, including non-

human primates.  While LCMV-ARM-infected non-human primates develop sub-

clinical infection, LCMV-WE-infected monkeys develop severe LF-like fatal 
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hepatitis. The LCMV-WE infection results in elevated AST and ALT levels, 

severe liver pathology, and high viremia [153, 155].  However, when 

intragastrically infected with these two strains of LCMV, animals responded in a 

dose dependent manner. With a low dose of LCMV-WE, most animals did not 

show signs of disease manifestation compared to intravenous inoculation [155].  

However, animals that were infected intragastrically with a very high dose of WE, 

resulted in manifested disease or died [155, 182].  Nevertheless, when 

challenged with lethal levels of WE intravenously, animals were protected against 

fatal challenge [182].  To further characterize the differences between these two 

strains of LCMV, we utilized Caco-2 cells to identify how these viruses differed in 

polarized intestinal epithelia.  Interestingly, these strains showed similar 

phenotypes in their replication in our polarized Caco-2 model.  Additionally, we 

found that viral attachment to the apical and basolateral surfaces of the Caco-2 

cells was very similar between the two viruses, although LCMV-ARM did seem to 

prefer the apical surface.  However, the question still lies as to why these two 

strains cause such different phenotypes in NHPs.  Since the attachment 

efficiency to polarized cells, and the phenotype of replication was not different 

between the two viruses, then investigation into the intracellular trafficking 

needed to be completed.   

In order investigate these trafficking patterns, we utilized several chemical 

inhibitors, as well as confocal microscopy staining, to identify potential 

differences between LCMV-ARM and WE during intracellular trafficking in 

epithelial and macrophage cell lines.  Macrophages are among the first cells to 
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come in contact with the virus after crossing of the epithelial barrier.  However, it 

has been shown that LASV prevents activation of macrophages and dendritic 

cells (DCs) in culture [106, 107], signified by lack of immune mediators and 

costimulatory molecules such as TNF-α, IL-1β, IL-6, IL-19, CD 40, CD 54, CD 80, 

and CD86 [106].  Additionally, LCMV-WE and LASV have been shown to down-

regulate innate pro-inflammatory responses in vitro and in vivo, and are able to 

inhibit Toll-like receptor 2 (TLR2)/MyD88 adaptor-like (Mal)-dependent cytokines, 

as compared to LCMV-ARM and MOPV [90, 102, 153, 156, 167]. Here, when 

RAW264.7 cells were infected, LCMV-ARM induced IL-6, compared to no 

response in LCMV-WE-infected cells. Additionally, when TLR-2 was silenced in 

RAW264.7 cells, LCMV-ARM-infected macrophages were unable to produce IL-

6, much like that of WE-infected macrophages.  Furthermore, LCMV-ARM co-

localization with TLR-2 and EEA1, as opposed to LCMV-WE, indicating that 

LCMV-WE does not utilize early endosomes during infection of macrophages.  

Furthermore, we investigated the presence of LCMV-ARM and WE colocalizing 

with late endosome/lysosomal markers as well.  Interestingly, we found 

colocalization patterns in both LCMV-ARM- and LCMV-WE-infected cells, 

although a stronger colocalization pattern was seen for ARM infected cells, 

signifying that both LCMV-ARM and WE utilize the late endosome during entry.              

Furthermore, we identified that LCMV-WE was more dependent on 

membrane cholesterol utilization in VeroE6 and polarized/non-polarized Caco-2 

cells, as compared to LCMV-ARM.  This signifies that there may be potential 

differences between how these two viruses utilize and interact with their 
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receptors and cell membranes during viral attachment and entry.  However, 

when microtubules were disrupted through the use of Nocodazole, LCMV-ARM 

and WE were both impacted by the drug, however, the difference of inhibition 

between the two viruses was not significant, indicating that these two viruses 

utilize microtubules in a similar manner.   

The most interesting finding during these experiments was the effect of 

bafilomycin treatment.  Bafilomycin, an inhibitor of late endosome acidification, 

was present prior to, during, and after infection, in a number of concentrations.  

Interestingly, we saw significant differences between how LCMV-ARM and 

LCMV-WE were impacted by late endosome acidification.  LCMV-Armstrong was 

more highly sensitive to blocking the acidification of the late endosome, than 

LCMV-WE. A similar observation was observed between LASV and MOPV [225].  

Non-pathogenic MOPV was very sensitive to ammonium chloride treatments as 

compared to LASV, signifying the ability of LASV to release viral RNA faster than 

that of MOPV [225]. These results indicate that LCMV-WE is capable of allowing 

the virus to fuse and continue with replication faster than that of LCMV-ARM.  

This ability to fuse during more basic environments signifies that LCMV-WE may 

not need to proceed to the late endosome or lysosome before releasing viral 

RNA into the cytoplasm, resulting in a potential to release infectious progeny 

sooner, and manipulate or bypass innate immune regulation, as seen with our 

TLR-2 interactions in macrophages.   
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FUTURE DIRECTIONS 
 

ML-29 is a desirable candidate as a LASV vaccine.  Several studies have 

been used to identify the protective capacity of this reassortant virus on LASV 

challenges [84, 85, 87, 91].  ML-29 is capable of protecting against several 

strains of LASV, and shows potential to have some cross-protective tendencies 

for LCMV-WE [87].  A large percentage of the population in LASV-endemic 

regions are seropositive for the virus and do not show clinical signs and 

symptoms of the disease.  Further studies into how WT LASV enters, releases, 

and attaches to polarized Caco-2 cells would provide valuable knowledge for the 

field to better understand potential factors resulting in seropositivity and 

protection against LASV infection and disease in endemic regions.  Additionally, 

due to the results that we have observed with ML-29 in vitro, along with the in 

vivo challenge studies, it would be interesting to investigate how the route of 

vaccination influences the protective abilities of ML-29.  Intravenous and 

subcutaneous methods of vaccination have been investigated, however, 

intragastric inoculation has yet to be explored.  Additionally, intragastric routes of 

inoculation in a mouse, guinea pig, and/or a NHP model has yet to be 

investigated with LASV-infected animals.  Similar studies have been done with 

the prototypic arenavirus, LCMV, utilizing different strains to determine 

differences in pathogenicity [155, 182], however, LASV has yet to be 

investigated.  

Caco-2 cells, as an intestinal epithelial model, are useful in determining 

the cellular interactions of these mammalian arenaviruses.  However, these cells 
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to not mimic a complete model of the intestinal environment.  Although Caco-2 

cells polarize and develop into enterocyte-like cells, this model only depicts one 

aspect of the in vivo environment.  The intestinal environment is a highly 

immune-active site of the body and through our cell culture model, we are unable 

to determine the role of immune regulators such as Dendritic cells (DCs), 

macrophages, M cells, and Peyers patches.  The Caco-2 cell culture model 

mimics only the intestinal epithelia, not allowing us to investigate other key 

players that may have an impact on how these viruses are interacting with the 

intestine during intragastric infection.   We did discover, that LCMV and MOPV 

primarily release to the intestinal lumen; however, there was a slight release of 

infectious progeny to the basolateral side.  However, when tested in vivo, 

intragastric inoculation resulted in no detectible virus in any tissues collected 

from the experiments [155], bringing to question, the role of immune cells present 

at the site of inoculation. A potential experimental setup to study these 

interactions may be to utilize a co-culture model.  While Caco-2 cells are grown 

on transwell inserts, macrophages would be cultured in the bottom transwells, 

and the intestinal epithelia would be infected with different strains of LCMV.  

Moreover, investigating the infection of macrophages and determining how these 

infections may impact epithelial barrier integrity.  Furthermore, LASV has been 

known to downregulate and inhibit INF responses and prevent macrophages and 

DCs from activating.  It would be of interest to determine how LASV interacts with 

these immune regulators of the digestive system in order to further and more 
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clearly understand the seropositive-phenotype that is observed in LASV-endemic 

populations.   

 While LASV does indeed infect a large number of the population, only a 

small subset of this population results in clinical manifestations of disease, and 

an even smaller population dies annually from these infections.  However, what 

has yet to be identified is what differentiates populations that are seropositive 

with subclinical infections, from those that succumb to infection that results in 

severe illness and even death.  Western Africa is not just home to LASV; several 

other viruses including Ebola, Marburg virus, Rift Valley Fever, Crimean-Congo 

hemorrhagic fever, flaviviruses, and alphaviruses reside in this region [235].  In 

addition, influenza, cholera, and malaria have been identified as human 

pathogens in West Africa.  Recent studies investigating concurrent infection of 

malaria and dengue viral infection have been investigated, and co-infection of 

these two pathogens is higher than initially thought, and clinical symptoms are 

likely be more severe than single infection [236].  Additionally, a preliminary sero-

epidemiology study of LASV and HIV shows that there is potential for connection 

between these two viruses.  However, there has yet to be controlled 

experimentation as to how these other diseases could potentially play a role in 

LASV pathogenicity.  One potential factor that should be considered is the role of 

the intestinal and bronchial barriers during LASV infection.  For example, if a 

patient has been infected with an agent that causes intestinal barrier disruption, 

this may play a potential role in the viral entry and its ability to develop systemic 

infection.  In the case of LCMV-ARM and WE in rhesus macaques, LCMV-WE 
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induced systemic infection with fatal outcome, however when intragastrically 

infected, this virus was not capable of systemic disease, but rather a localized 

infection.  It would be of interest to investigate how this barrier system plays a 

role in keeping a localized infection in NHPs or other animal models during 

LCMV and LASV infection.  Additionally, these experiments may provide insight 

as to why such a high seroprevalence of LASV is present in Western Africa and 

why not all patients succumb to disease.   

 While in our hands, ML-29 did not have successful replication in Madin-

Darby Canine Kidney (MDCK) epithelial cells, however, previous studies have 

shown LASV’s ability to replicate sufficiently in these cells [138].  Additionally, 

bronchial epithelia have been used to study LCMV [139], however, in our Human 

bronchial epithelial (HBE) model, we had insufficient replication of LCMV-ARM 

and did not further characterize other viruses in this model.  It would be of 

interest however, to utilize a number of different polarized epithelial types to 

determine how LCMV-ARM, LCMV-WE, MOPV, and ML-29 replicate in these 

other cell types.  This would provide further support for our hypothesis that 

arenavirus replication is host, virus, and tissue specific.  By investigating how 

these viruses interact with different tissues, this may further explain the 

seropositivity seen with small populations in West African villages.  Additionally, 

these phenotypes would provide further support for ML-29 as a vaccine 

candidate.  For example, while we did not see sufficient release to the 

basolateral surface of the Caco-2 cells with ML-29, we saw release only from the 

apical surface of these cells.  In return, this may be a beneficial aspect of ML-29 
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as a vaccine candidate, providing only localized intestinal infection, resulting in 

the immune system having exposure to and time to mount sufficient and 

producing neutralizing immune responses.            

 Additionally, New World (NW) mammalian arenaviruses, though related to 

the OW group, have differences in pathogenic phenotypes, receptor usage, and 

global location.  However, these NW viruses are transmitted through their rodent 

reservoirs in the same way as their OW relatives.  It would be of interest to utilize 

the Caco-2 model developed her for OW arenaviral infection, to investigate the 

patterns of replication with NW viruses.  Due to the differences in receptor usage, 

there may be interesting findings in how these viruses replicate and utilize 

intestinal epithelia in vitro.  Furthermore, while there is a successful vaccine for 

Junin virus, Candid # 1, there has yet to be a vaccine created for Machupo, 

another highly pathogenic NW arenavirus.  By investigating these interactions 

with the intestinal epithelia, there may be interesting findings that may benefit the 

development of a new Machupo vaccine. 

 We have identified several differences in the intracellular trafficking 

between LCMV-ARM and WE.  However, we have not exhausted the viral 

replication of these two viruses.  It would be of interest to determine intracellular 

trafficking with additional inhibitors.  Manipulation of the multivesicular bodies of 

host cells during arenaviral infection has been identified as part of the arenaviral 

life cycle.  Multivesicular bodies are able to be disrupted using the PI3KI inhibitor 

wortmannin.  Additionally, it would be of interest to knockdown late endosome 
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fusion of LAMP1 and determine its effect of viral replication between ARM and 

WE to provide additional support for our confocal microscopy images.    
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