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     Abstract 

 

Iron is an essential element required for plants to carry out metabolic functions such as 

photosynthesis, heme biosynthesis, and chlorophyll biosynthesis. Within Arabidopsis thaliana, 

eight ferric reduction oxidase (FRO) genes function in iron uptake and homeostasis with tissue 

specific expression. However, little else is known regarding the biological role of FROs. Recent 

studies identify the FRO gene family as particularly responsive to the green leaf plant derived 

volatile (GLV) cis-3-hexenyl acetate (z3HAC). Since z3HAC acts as a wound signal and cues 

unaffected parts of the plant to prime defenses prior to herbivory, an increase in FRO activity in 

response to volatile perception may suggest that these metalloreductases play a role in plant anti-

herbivore defense. The objective of this study was to measure transcriptional responses of FROs 

to herbivore oral secretions (OS) and plant-derived volatile cues. Results of this study show 

FROs differentially increase expression levels in response to herbivory and volatile exposure. 

Specifically, z3HAC alone induced expression of FRO3, FRO4, and FRO6. In addition, a 

number of FROs were primed by the combination of z3HAC and Spodoptera exigua OS 

including FRO4 and FRO7, suggesting iron homeostasis in leaves may be important in plant 

anti-herbivore defense. Future work needs to identify a mechanism linking FROs and herbivory.  
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Background 

 

Iron (Fe) is a required element for plants to carry out essential metabolic processes 

including chlorophyll biosynthesis, photosynthesis, and nucleotide synthesis (Guerinot et al. 

2007). In addition, iron in the form of heme or iron-sulfur is an essential component of numerous 

proteins and enzymes (Marschnew 1995). While highly abundant in soil, iron’s low solubility in 

aerobic environments at biological pH restricts cellular accumulation thus limiting plant growth 

and development. Identified by chlorotic or yellowed leaves, iron deficiency can cause yield 

reduction and sometimes total crop failure (Guerinot et al 1994). Higher level plants such as 

dicots, nongraminaceous monocots, and yeast have evolved mechanisms to increase the 

availability of iron for absorption via acidification of the rhizosphere, reduction of Fe(III) to 

Fe(II), and then transport of Fe(II) across the cell membrane (Dancis et al. 1992). This reduction 

of Fe(III) to Fe(II) requires an inducible ferric reduction oxidase (FRO) on the plasma membrane 

of root epidermal cells. The reduction takes place on the root-rhizosphere surface and a ferrous 

iron transporter, IRT1, subsequently transports the reduced ferrous iron across the plasma 

membrane (Jain et al. 1992) 

In Arabidopsis thaliana, eight genes have been classified in the FRO metalloreductase 

family due to conserved motifs based on FRO2 found in the roots of A. thaliana (Figure 1a; 

TAIR 2013). These metalloreductases function in iron acquisition and homeostasis of A. thaliana 

with tissue-specific expression (Wu et al. 2005). Expression profiles indicate FRO2 and FRO3 as 

major iron reductases expressed in the roots of A. thaliana (Jain et al. 2014). Expression of both 

FRO2 and FRO3 increase under iron deficient conditions. Expression of FRO8 has also been 

identified in roots under iron-deficient conditions, however FRO8 is expressed constitutively at 

relatively high levels in shoots and leaf veins (Jain et al. 2014; Wu et al. 2005).  
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FRO4 has also been found expressed in roots and shoots of A.thaliana, although in 

relatively low levels. Expression of FRO5 and FRO6 is transcribed constitutively in shoots and 

flowers regardless of iron levels, while FRO7 is expressed mainly in trichrome and cotyledons 

(Wu et al. 2005). Regulation of FRO6 expression has also been suggested as specifically light 

dependent (Feng et al. 2006). These tissue-specific expressions suggest FRO2 and FRO3 

function as the main reductases involved in root iron acquisition, while shoot tissues utilize 

FRO4, FRO5, FRO6, FRO7, and FRO8 for iron homeostasis (Wu et al. 2005). More recent 

studies further elucidate specific FROs as important to subcellular compartmentalization of iron 

where FRO7 contributes to the delivery of iron to chloroplasts (Jain et. al 2014). Localized to the 

chloroplasts of young seedlings, FRO7 is required for their efficient photosynthesis and survival 

under iron-limiting conditions (Jeong et al. 2008). Similarly, FRO8 is localized to and maintains 

iron homeostasis in the mitochondria (Jain et al. 2014). The tissue specific expression of FROs 

indicates an evolution of functional diversification within the gene family resulting in systemic 

iron acquisition and homeostasis benefits in A. Thaliana.  

Fig 1a. FRO Phylogeny with locus details corresponding to each FRO’s transcribed region in A. Thaliana genome, 

and a Map Detail Image showing the Protein Coding Gene Model for each FRO. This information was generated from 

consensus sequence alignment found in the genetic and molecular database The Arabidopsis Information Resource 

(TAIR).  
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Sequence homology performed online through TAIR identifies respiratory burst oxidase 

homologs (RBOH), also known as NADPH oxidases (NOXs), as the closest relatives of FROs 

(Figure 1b; TAIR 2013). Based on domain composition obtained through Gene Structure Display 

Server, FROs originated from a single common ancestor that contained only a ferric reduction 

domain. Subsequent gene fusion and duplication events led to FAD and NAD binding domains 

and the ultimate expansion of the FRO family into Rhodophyta, green algae, and land plants. 

This ancestral FRO also gave rise to plant NOX genes through fusion and duplication in red or 

green algae (Chang 2016).  Further analysis of intron gains or loss of FROs and NOXs show 

highly conserved introns and intron phases within subfamilies but vary between them, indicating 

that a single intron loss or gain could have resulted in the functional diversification and 

divergence of FRO and NOX gene families (Li et. al 2009: Chang 2016).  

Whereas FROs known responsibility 

lies in iron uptake and homeostasis, NOXs are 

key producers of reactive oxygen species 

under stress conditions. Being mainly 

responsible for stress tolerance, NOXs have 

recently been suggested as required for a rapid 

defense propagation in A. thaliana (Dubiella 

et. al 2013). Due to the close relationship 

FROs have to these oxidases involved in stress 

tolerance, FROs ability to acquire and 

maintain iron homeostasis could also be 

essential to a plant’s ability to propagate a 

Fig 1b. Phylogenetic tree showing RBOHs as closest relative 

of FROs. The numbers at each joint represent bootstrap 

confidence levels. FROs highlighted in blue are FROs 

expressed in leaf-tissues that will be analyzed in this study.   
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rapid defense. For example, the nutritional status of plant’s iron can control the outcome of a 

pathogenic infection with lower pathogenic resistance in iron deficient plants (Kieu et al. 2012). 

Furthermore, studies involving A. thaliana colonization by Trichoderma fungi suggest that iron 

is a critical element in a plant’s induced systemic response to a biotic stress resulting in primed 

chemical defenses in unaffected parts of the plant (Martinez-Medina et al. 2017).  

While iron homeostasis has been identified as a critical element in a plant’s ability to 

respond to direct biotic stress, nothing is known regarding FROs activity in response to 

herbivory and thus the biological role FROs may play in plants anti-herbivore defense. Released 

upon herbivory, the green leaf plant-derived volatile (GLV) cis-3-hexenyl acetate (z3HAC) acts 

as a wound signal by communicating the presence of a biotic stressor to and within a plant (Frost 

et al. 2008). Plants recognize and respond to the emission of this herbivore induced plant volatile 

(HIPV) by priming herbivore defenses prior to herbivory (Frost et al. 2008; War et al. 2011). 

Defensively, priming is a physiological process by which a plant prepares quicker and more 

aggressive responses to future stessors such as herbivory (Frost et al. 2008). Previous RNA 

sequencing work in the Frost Lab at the University of Louisville identifies the FRO gene family 

as particularly responsive to z3HAC, indicating that FRO activity may be directly responsive to 

herbivory or the perception thereof. Increased FRO expression in response to herbivory or 

primed expression in response to HIPV perception suggests a biological role of FROs in plant 

anti-herbivore defense. Further exploration of the biological functions of FROs in response to 

herbivory and particularly HIPV perception has the potential to help generate iron efficient crops 

while controlling the spread of disease or pests.  
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Research Goals 

 

Initial RNA sequencing shows activation of particular FROs (FRO3, FRO4, FRO6, FRO7, 

FRO8) at a single time point following GLV exposure. The objective of this study was to further 

establish FRO involvement in the biological response to herbivory and HIPV perception by 

measuring transcriptional responses of FROs to a combination of herbivore oral secretions (OS) 

and volatile exposure. Specifically, this study aims to determine and validate primers for 

measuring FRO genes and to determine expression patterns for specific FRO family members in 

Arabidopsis thaliana following exposure to z3HAC, herbivore OS, and z3HAC+herbivore OS. 

Measuring transcriptional activity of FROs in response to OS and plant-derived volatile cues will 

begin to elucidate FRO response to herbivory and possible involvement in plant anti-herbivore 

defense.  

Materials and Methodology 

A. thaliana plants were grown in a growth chamber with a 12:12 light: dark cycle.  Plants in the 

rosette stage were exposed to z3HAC at low concentrations (10 ng/hr) for 24 hours.  

Subsequently, OS from Spodoptera exigua, and Trichoplusia ni caterpillars were added to 

undamaged rosette leaves using a factorial design (control, z3HAC, S. exigua OS, z3HAC+ S. 

exigua OS, T. ni OS, and z3HAC+ T. ni OS). At 1, 6, and 24 hours after OS application rosette 

leaves were harvested directly into liquid nitrogen and stored at -80˚ C. Individual plants were 

used as the unit of replication with four plants per treatment per time point, representing 48 

individual plants.  

 Leaf tissue were ground under cryogenic conditions and total RNA was extracted using a 

modified cetyl trimethylammonium bromide (CTAB) method. This CTAB method took 

approximately 24 hours and required maintaining RNAse-free conditions at all times (Chang et  
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al., 1993). Rosette leaves for each sample were removed from -80˚C storage, ground with 

mortar/pestle, and approximately 200mg of each ground tissue dispensed into pre-chilled 2µl 

tubes. Under a chemical hood, 1ml of CTAB extraction buffer was added to the samples and  

samples were subsequently vortexed to integrate buffer and placed in 65° C bath. A 25 ml stock 

of CTAB buffer was prepared previous to RNA extraction (Table 1). After sitting for 10 min  

in a 65° C bath, 100 µl of chloroform was added to each sample and samples were again 

vortexed for 10-20 seconds. Lime green in color, the solutions were then spun for 10 min at 

20,000 × g at 4° C. Subsequently, the aqueous layer of each sample was transferred to a new tube 

already containing 600 µl of chloroform and vortexed. Solutions were then spun again for 10 

min at 20,000 × g at 4° C. After being spun, the aqueous layer of each sample was again 

transferred to a tube containing 200 ul of 10M lithium chloride. Samples were gently inverted 

and precipitated overnight (Chang et al., 1993).  

 For best extraction results, samples were not left on ice longer than 15 hrs (Frost et al., 

2012). Following LiCl precipitation, samples were spun at 20,000 × g at 4° C to pellet the RNA. 

The supernatant waste was decanted into waste container and remaining liquid was removed 

from the pellet. The pellet was then dissolved in 500 µl RNAse free water, vortexed, and placed 

Table 1. Solutions included to make 25 ml stock of CTAB extraction buffer. CTAB buffer was brought to final 

volume with the addition of RNAse free water.  
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in 65° C bath. Once completely dissolved, 500 µl of chloroform was added to the sample 

followed by a quick vortex and spin for 3 min at 5000 rpm, room temperature. Subsequently, the 

aqueous layer was transferred to a new tube containing 0.1vol (50 µl) 3M NaOAc and 2vol (1 

ml) of ice-cold EtOH. Samples were gently inverted and precipitated for 20 min at -80˚C. Each 

sample was again spun for 30 minutes at 20,000 × g at 4° C and the supernatant discarded. After 

air drying the now opaque pellet, the RNA sample was re-suspended in 50 µl of RNAse free 

water and 1 µl of each sample was run on a nanodrop and gel electrophoresis for quality 

assessment (Figure 2). Tubulin beta 8 (TUB8), a gene widely expressed in vascular tissues of A. 

thaliana leaves, stems, and flowers was used as a reference gene during gel electrophoresis.  

 After quality assessment with a ThermoScientific NanoDrop and gel electrophoresis, 

total RNA was subjected to cDNA synthesis by reverse transcription using Applied Biosystems 

cDNA Synthesis Kit. cDNA was amplified using quantitative PCR (qPCR) on an Applied 

Biosystems QuantStudio3. A 25 µl working stock for the qPCR included 9.5 µl of double 

distilled water, 2 µl of cDNA, .5 µl of forward and reverse RNA primers, and 12.5. µl of a 

master mix. The master mix includes MgCl2, 

a buffer, dNTPs, and tag DNA Polymerase. 

10 µl of each sample was loaded onto tray 

with three biological replicates per sample. 

Each sample was run for three different time 

points (1hr, 6hr, and 24hr). Including two 

housekeeping genes TUB8 and Elongation 

Factor 1 (EF1), 7 samples were run on the 

qPCR machine each with 35 cycle times  

Figure 2. Results of amplifications of fragments of FRO genes 

expressed in leaf tissue. FRO genes amplified include FRO3 

(Lane 1), FRO4 (Lane 2), FRO6 (Lane 3), FRO7 (Lane 4), 

FRO8 (Lane 5), and reference gene TUB8 (Lane 6). Using 

Ladder DNA (Lane L) amplicon sizes of all FROs were 

confirmed at 220 base pairs (bp).  



 

 12 

 

(1.5hrs/sample), culminating in a total of 63 samples run on qPCR. Supplementary Figures I-V 

show amplification plots and melting curves for each 6-hour FRO sample run on qPCR.  

 Gene specific primers were designed either from literature or using the Primer3 Software 

Suite through NCBI to amplify in the 3’ UTR of each gene (Table 2). Confirmed with gel 

electrophoresis, each primer pair generated a single amplicon based on a single band PCR 

product. After sequencing these amplicons to confirm gene specific identification, qPCR analysis 

was used to determine transcript levels. The relative transcript abundance gene interest equation 

(=2−ΔCt) was used to determine target transcript levels normalized to the geometric mean of 

housekeeping genes Tubulin and EF1. 

 

Results 

FRO3 was activated after 24 hours of herbivory and z3HAC+herbivory.  

FRO3 did not experience significant upregulation of expression after 1 or 6 hours under any 

treatment (Figure 3). After 24 hours, the expression level of FRO3 increased under z3HAC+S. 

exigua OS, z3HAC+T. ni OS, and z3HAC treatments relative to control expression levels 

Table 2. A list of FRO Primer sequences. AGI code, expected amplicon size, and reference.  
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(Figure 3). 24 hours post z3HAC+S. exigua OS application, FRO3 experienced a 1.37-fold 

change in regulation with higher expression levels relative to control (P=0.005; Figure 3). 24 

hours following z3HAC+T. ni OS application, FRO3 saw increased expression relative to control 

(P=0.03; Figure 3). FRO3 had a 1-fold upregulation after 24 hours of z3HAC exposure compared 

to control levels (P=0.04; Figure 3). No significant priming of FRO3 by z3HAC took place under 

any treatments at any time points.   

FRO4 was activated after 24 hours of z3HAC exposure and z3HAC+S. exigua OS. FRO4 

was primed by the combination of z3HAC+S. exigua OS 24 hours post treatment 

application. 

FRO4 did not experience any increase in expression 1 or 6 hours following any treatment 

application when compared to control levels (Figure 4). After 24 hours of z3HAC+S. exigua OS 

Figure 3. Ferric Reduction Oxidase 3 (FRO3) relative expression levels following 

exposure to cis-3-hexenyl acetate (z3HAC), Trichoplusia ni oral secretions (T.ni), 

Spodoptera exigua oral secretions (Spod), cis-3-hexenyl acetate with subsequent 

Spodoptera exigua oral secretions (z+Spod), and cis-3-hexenyl acetate with 

subsequent Trichoplusia ni oral secretions (z+T.ni) relative to control with no oral 

secretion application or z3HAC exposure. Expression levels were recorded for each 

treatment at 1-hour (blue) 6-hour (red) and 24-hour (green) time points post treatment 

application. An asterisk (*) indicates that expression levels were significantly different 

than that of control at that time point, as determined by paired t-tests. A number sign 

(#) indicates significantly increased expression with cis-3-hexenyl acetate prior to oral 

secretions relative to expression under oral secretions alone, as determined by paired 

t-tests.    
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exposure, FRO4 had higher expression levels relative to that of the control with a 1.4-fold 

increase in expression (P=0.02; Figure 4). FRO4 also upregulated when exposed to 24 hours of 

z3HAC alone with a 1.3-fold increase compared to control expression levels (P=0.04: Figure 4). 

Furthermore, expression levels 24 hours after z3HAC+S.exigua OS application were high 

relative to levels 24 hours after S. exigua OS application alone (P=0.02: Figure 4), indicating a 

priming effect from the combination of volatile exposure and OS resulting in the increase FRO4 

expression. Expression levels dropped overall after 6 hours for each treatment when compared to 

those after 1 and 24 hours, possibly due to the diurnal cycle of plants (Figure 4).  

 

 

Figure 4. Ferric Reduction Oxidase 4 (FRO4) relative expression levels following exposure to 

cis-3-hexenyl acetate (z3HAC), Trichoplusia ni oral secretions (T.ni), Spodoptera exigua oral 

secretions (Spod), cis-3-hexenyl acetate with subsequent Spodoptera exigua oral secretions 

(z+Spod), and cis-3-hexenyl acetate with subsequent Trichoplusia ni oral secretions (z+T.ni) 

relative to control with no oral secretion application or z3HAC exposure. Expression levels were 

recorded for each treatment at 1-hour (blue) 6-hour (red) and 24-hour (green) time points post 

treatment application. An asterisk (*) indicates that expression levels were significantly different 

than that of control at that time point, as determined by paired t-tests. A number sign (#) indicates 

significantly increased expression with cis-3-hexenyl acetate prior to oral secretions relative to 

expression under oral secretions alone, as determined by paired t-tests.    
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FRO6 was activated after 24 hours of z3HAC exposure. FRO6 was primed by the 

combination of z3HAC+S. exigua OS  24 hours post treatment application.  

FRO6 did not experience increased expression under any treatment at the 1 or 6-hour time point 

(Figure 5). Expression of FRO6 dropped to almost non-existent levels after 6 hours of each 

treatment and rose again after 24 hours, again possibly due to the diurnal cycle of plants (Figure 

5). Rising after 24 hours, FRO6 expression significantly increased under z3HAC exposure 

relative to control levels (P=0.03; Figure 5). Furthermore, expression levels 24 hours after 

z3HAC+S. exigua OS application were high relative to levels 24 hours after S. exigua OS 

application alone (P=0.04), indicating a priming effect from the combination of z3HAC exposure 

and OS application resulting in the increased expression of FRO6 (Figure 5).  

 

Figure 5. Ferric Reduction Oxidase 6 (FRO6) relative expression levels following 

exposure to cis-3-hexenyl acetate (z3HAC), Trichoplusia ni oral secretions (T.ni), 

Spodoptera exigua oral secretions (Spod), cis-3-hexenyl acetate with subsequent 

Spodoptera exigua oral secretions (z+Spod), and cis-3-hexenyl acetate with subsequent 

Trichoplusia ni oral secretions (z+T.ni) relative to control with no oral secretion 

application or z3HAC exposure. Expression levels were recorded for each treatment at 1-

hour (blue) 6-hour (red) and 24-hour (green) time points post treatment application. An 

asterisk (*) indicates that expression levels were significantly different than that of control 

at that time point, as determined by paired t-tests. A number sign (#) indicates 

significantly increased expression due to with cis-3-hexenyl acetate prior to oral 

secretions relative to expression under oral secretions alone, as determined by paired t-
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FRO7 was activated after 1 hour of z3HAC+S. exigua exposure. 

Out of all of the ferric reduction oxidase genes, FRO7 had the highest relative expression levels 

overall (Figure 6). FRO7 under z3HAC (x̅=2.80) at the 24-hour time point had the highest 

relative expression of all of the FROs in this study (Figure 6). Even though expression levels 

were high overall for FRO7 at all time-points, expression of FRO7 only significantly increased 1 

hour after z3HAC+S. exigua OS application with a 2-fold upregulation (P=0.03; Figure 6). 

Similar to FRO6, expression dropped to nearly non-existent levels after 6 hours of each 

treatment and rose again after 24 hours, possibly due to the diurnal cycle of plants. No significant 

priming of FRO7 by z3HAC took place under any treatments at any time points.   

Figure 6. Ferric Reduction Oxidase 7 (FRO7) relative expression levels following exposure to 

cis-3-hexenyl acetate (z3HAC), Trichoplusia ni oral secretions (T.ni), Spodoptera exigua oral 

secretions (Spod), cis-3-hexenyl acetate with subsequent Spodoptera exigua oral secretions 

(z+Spod), and cis-3-hexenyl acetate with subsequent Trichoplusia ni oral secretions (z+T.ni) 

relative to control with no oral secretion application or z3HAC exposure. Expression levels were 

recorded for each treatment at 1-hour (blue) 6-hour (red) and 24-hour (green) time points post 

treatment application. An asterisk (*) indicates that expression levels were significantly different 

than that of control at that time point, as determined by paired t-tests. A number sign (#) indicates 

significantly increased expression with cis-3-hexenyl acetate prior to oral secretions relative to 

expression under oral secretions alone, as determined by paired t-tests.    
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FRO8 is not activated under any treatment at any time point.  

Expression levels of the Ferric Reduction Oxidase 8 gene were high overall relative to FRO4, 

FRO5, and FRO6 with overall exression falling just short of that of FRO7 (Figure 8). However, 

expression levels of FRO8 were not significantly upregulated under any treatments at any time 

point and FRO8 did not experience any significant priming effect.  

 

 

 

 

Figure 7. Ferric Reduction Oxidase 8 (FRO8) relative expression levels following exposure to cis-3-

hexenyl acetate (z3HAC), Trichoplusia ni oral secretions (T.ni), Spodoptera exigua oral secretions 

(Spod), cis-3-hexenyl acetate with subsequent Spodoptera exigua oral secretions (z+Spod), and cis-

3-hexenyl acetate with subsequent Trichoplusia ni oral secretions (z+T.ni) relative to control with no 

oral secretion application or z3HAC exposure. Expression levels were recorded for each treatment at 

1-hour (blue) 6-hour (red) and 24-hour (green) time points post treatment application. An asterisk (*) 

indicates that expression levels were significantly different than that of control at that time point, as 

determined by paired t-tests. A number sign (#) indicates significantly increased expression with cis-

3-hexenyl acetate prior to oral secretions relative to expression under oral secretions alone, as 

determined by paired t-tests.    
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Discussion 

The specific objective of this study was to measure transcriptional responses of FROs to 

herbivore oral secretions (OS) and plant-derived volatile cues. Results from this study show that 

FROs do differentially increase expression levels in response to herbivory and volatile exposure. 

Specifically, the exposure to GLV z3HAC alone induced increased expression of FRO3, FRO4, 

and FRO6. The exposure to z3HAC plus subsequent application of S. exigua OS induced 

increased expression of FRO3, FRO4, and FRO7. Increased expression of FRO3 was also 

induced by z3HAC exposure plus subsequent Trichoplusia OS. In addition, expression of FRO4 

and FRO6 was primed by the combination of z3HAC and Spodoptera exigua OS after 24 hours 

of exposure.  

 According to these results, FRO7 and FRO8 have the highest relative expression in the 

leaves of A. thaliana. These findings are consistent with other recent work showing FRO7 

localized to chloroplasts and FRO8 localized to leaf veins (Wu et al. 2005; Jain et al. 2008). The 

chloroplast is a major iron sink within a leaf and significantly increased expression levels of 

FRO7 following z3HAC+S. exigua OS indicates FRO7 responds directly to herbivory, possibly 

to maintain iron homeostasis in the face of herbivory (Guerinot and Yi 1994). The overall high 

relative expression with insignificant upregulation of FRO8 is consistent with expression profiles 

of FRO8 showing FRO8 as expressed at constitutively high levels in leaf veins (Wu et al. 2005).  

 Expression profiling carried out by Wu et al. in 2005 indicates FRO4 has the lowest 

expression levels in the metalloreductase gene family. This study’s findings are congruent with 

this profile because FRO4 showed the lowest relative expression levels overall. However, FRO4 

did significantly increase expression activity 24 hours following z3HAC exposure, suggesting 

perception of HIPV by FRO4. While at a relatively low level, FRO4’s significant response to 
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z3HAC exposure suggests a direct response to herbivory. FRO4 also experienced a priming 

effect by the combination of z3HAC and Spodoptera exigua OS, suggesting iron uptake and 

homeostasis in leaves may be important in plant anti-herbivore defense (Frost et al. 2008). 

Similar to FRO4, FRO6 increased expression induced by z3HAC exposure as well as priming 

from the combination of z3HAzC and Spodoptera exigua OS further reinforces the possibility 

that FROs respond to herbivory and play a biological role in plant anti-herbivore response (Frost 

et al. 2008). Due to a plant diurnal cycle and this study’s 12:12 light: dark cycle, the down 

regulation of FRO6 expression at the 6-hour time point is congruent with results of previous 

studies that indicate FRO6 as light-dependent (Feng et al. 2006).   

 FRO3 increases expression levels to maintain iron homeostasis under iron-deficient 

conditions in the roots of A. thaliana (Jain et al. 2014). However, FRO3 has also been identified 

as localized in mitochondrial membranes with non-overlapping expression patterns as FRO8 

(Wu et al. 2005; Jain and Connolly 2013). Similar with results of Jain and Connolly, this study 

does indicate FRO3 is expressed in A. thaliana leaves with a significant increase 24 hours after 

exposure alone. This induced expression in response to a combination of herbivory and volatile 

exposure shows FRO3 as directly responsive to herbivory or the perception thereof.  

 With the objective of measuring transcriptional activation of FROs in response to a 

combination of herbivory and GLV z3HAC exposure, this study shows that FROs do respond to 

herbivory and HIPV perception with differentially increased expression. Induced expression in 

response to herbivory and HIPV exposure suggests that FROs may play a biological role in plant 

anti-herbivore response. Whereas a recent study indicates activation of below ground FROs in 

response to below ground volatiles released from root colonization of Trichoderma fungi 

(Martinez-Medina et al. 2017), this study shows activation of above ground FROs in response to 
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above ground volatiles released upon herbivory. Because this is the first study to link ferric 

reduction oxidases and herbivory, future work should seek to identify a mechanistic link between 

iron homeostasis and plant defense. With iron as a necessary element for plants to carry out 

essential metabolic functions, the role of FROs may be essential to stabilizing a plant during 

herbivore response. Further investigation could also include looking at promoter regions for 

activation sites as well as considering the possibility of FRO activation triggered by metabolites 

known to regulate plant defenses such as jasmonic acid (Creelman 1995).   
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Supplementary Figure I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure I. Real-time qPCR results of FRO3 for all 6-hour FRO3 samples. 

Amplification plot (A) shows accumulation of PCR product (FRO3) from cycle to cycle with the 

cycle threshold (Ct) values ranging from 26.01 and 29.7. All samples were in exponential growth 

at 0.251 dRn(Log). The melting curve (B) indicates a pure, single amplicon from FRO3 qPCR. 

Both amplification plot and melting curve were generated on ThermoFisher Scientific.  
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Supplementary Figure II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure II. Real-time qPCR results of FRO4 for all 6-hour FRO4 samples. 

Amplification plot (A) shows accumulation of PCR product (FRO4) from cycle to cycle with the 

cycle threshold (Ct) values ranging from 28.59 and 32.92. All samples were in exponential 

growth at 0.311 dRn(Log). The melting curve (B) indicates a pure, single amplicon from FRO3 

qPCR. Both amplification plot and melting curve were generated on ThermoFisher Scientific.  
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 Supplementary Figure III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure III. Real-time qPCR results of FRO6 for all 6-hour FRO6 samples. 

Amplification plot (a) shows accumulation of PCR product (FRO6) from cycle to cycle with the 

cycle threshold (Ct) values ranging from 25.09 and 36.32. All samples were in exponential 

growth at 0.311 dRn(Log). The melting curve (b) indicates a pure, single amplicon from FRO6 

qPCR. Both amplification plot and melting curve were generated on ThermoFisher Scientific. 
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Supplementary Figure IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure IV. Real-time qPCR results of FRO7 for all 6-hour FRO7 samples. 

Amplification plot (a) shows accumulation of PCR product (FRO7) from cycle to cycle with the 

cycle threshold (Ct) values ranging from 22.21 and 30.02. All samples were in exponential 

growth at 0.311 dRn(Log). The melting curve (b) indicates a pure, single amplicon from FRO6 

qPCR. Both amplification plot and melting curve were generated on ThermoFisher Scientific.  
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Supplemental Figure V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure V. Real-time qPCR results of FRO8 for all 6-hour FRO8 samples. 

Amplification plot (a) shows accumulation of PCR product (FRO8) from cycle to cycle with the 

cycle threshold (Ct) values ranging from 27.67 and 32.62. All samples were in exponential 

growth at 0.311 dRn(Log). The melting curve (b) indicates a pure, single amplicon from FRO6 

qPCR. Both amplification plot and melting curve were generated on ThermoFisher Scientific. 
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