
University of Minnesota Law School
Scholarship Repository

Minnesota Law Review

1986

Software and Semiconductors: Why Are We
Confused
John A. Kidwell

Follow this and additional works at: https://scholarship.law.umn.edu/mlr

Part of the Law Commons

This Article is brought to you for free and open access by the University of Minnesota Law School. It has been accepted for inclusion in Minnesota Law
Review collection by an authorized administrator of the Scholarship Repository. For more information, please contact lenzx009@umn.edu.

Recommended Citation
Kidwell, John A., "Software and Semiconductors: Why Are We Confused" (1986). Minnesota Law Review. 1651.
https://scholarship.law.umn.edu/mlr/1651

https://scholarship.law.umn.edu?utm_source=scholarship.law.umn.edu%2Fmlr%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.umn.edu/mlr?utm_source=scholarship.law.umn.edu%2Fmlr%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.umn.edu/mlr?utm_source=scholarship.law.umn.edu%2Fmlr%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=scholarship.law.umn.edu%2Fmlr%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.umn.edu/mlr/1651?utm_source=scholarship.law.umn.edu%2Fmlr%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lenzx009@umn.edu

Software and Semiconductors:
Why Are We Confused?

John A. Kidwell*

INTRODUCTION

During the last several years, commentators frequently
have addressed the legal problems posed by the computer
revolution.1 Much of their discourse focuses on the forms of
legal protection available to those who invest capital in com-
puter technology and the special problems created by techno-
logical advances that are expensive to achieve but inexpensive
to duplicate, characteristics shared by both software and semi-
conductor chips.2

The outpouring of articles on legal protection for computer
technology requires some explanation. Although the subject
has economic significance, this is an unsatisfactory explanation;
other important issues with significant economic ramifications

* Professor of Law, University of Wisconsin-Madison. I wish to thank

Elizabeth Seager, Heidi Johnston, and Jill Ramsfield, who helped with the re-
search, and Carl Hill, Bill Whitford, Leo Raskind, Dirk Hartog, and Richard
Stern, who made valuable suggestions.

1. At least one loose-leaf service and several journals are devoted to this
topic. See, e.g., COMPUTER L. SERV. (CALLAGHAN); COMPUTER L.J.; RUTGERS J.
COMPUTERS, TECH. & L. On the question of software protection, see, e.g.,
Chandler, Proprietary Protection for Computer Software, 11 U. BALT. L. REV.
195 (1982); Davidson, Protecting Computer Software: A Comprehensive Analy-
sis, 1983 ARIz. ST. L.J. 611; Nimtz, Development of the Law of Computer
Software Protection, 61 J. PAT. OFF. SOC'Y 3 (1979) (including an extensive bib-
liography); Note, Copyright Infringement of Computer Programs: A Modifica-
tion of the Substantial Similarity Test 68 MINN. L. REv. 1264 (1984)
[hereinafter cited as MINNESOTA NOTE]; Note, The Current State of Computer
Software Protection: A Survey and Bibliography of Coypright, Trade Secret
and Patent Alternatives, 8 NOVA L.J. 107 (1983).

2. Semiconductor chips, also known as integrated circuits, are collections
of transistors formed on a "chip" of silicon that work together to perform a
specific electronic function. See The Semiconductor Chip Protection Act of
1983: Hearings on S. 1201 Before the Subcomm. on Patents, Copyrights, and
Trademarks of the Senate Comm. on the Judiciary, 98th Cong., 1st Sess. 68-69
(1983) (statement of F. Thomas Dunlap, Jr., Corporate Counsel and Secretary,
Intel Corp.) [hereinafter cited as 1983 Senate Hearings].

MINNESOTA LAW REVIEW

have not attracted as much interest. Similarly, although ideal-
istic fascination may have contributed to the spate of articles,
that explanation seems insufficient as well.

This Article hypothesizes that so much is written about the
problem of legal protection for software simply because the
problem is peculiarly difficult, and because the nature of this
difficulty has not been analyzed cogently. With respect to semi-
conductors, the situation has been different. Not nearly as
much attention has been focused on legal protection for semi-
conductor chips. In addition, it appears that the legislative so-
lution, the Semiconductor Chip Protection Act of 1984,3 is beset
with fewer conceptual difficulties than the law of software pro-
tection. This new law may substantially reduce the confusion
surrounding protection for semiconductor chips. Therefore,
many of the difficulties with respect to software can be illumi-
nated by comparing the software protection problem with that
posed by the semiconductor chip. The purpose of this Article is
not to add to the already substantial number of recapitulations
of the state of the legal doctrine, and perhaps not even to re-
duce the underlying difficulty, but rather to try to explain why
it is that the questions raised by legal protection for software
and semiconductor chips are especially difficult, and why, with
respect to software, none of the writing to date has been able,
authoritatively, to lay those questions to rest.4

The Article first develops a taxonomy of legal uncertainty
premised on a balief that most legal uncertainties involve ques-
tions about either the facts of a dispute, the values that rele-
vant rules embody, the capacity of legal institutions to
implement the rules embodying given values, or, finally, the ad-
equacy of the language in which applicable rules and principles
are framed. After a discussion of the relationships between
computers, chips, and software and a brief recapitulation of the
law of software and semiconductor chips, the taxonomy is then
explored in the context of software protection law, referring to

3. The Semiconductor Chip Protection Act of 1984, Pub. L. No. 98-620,
tit. III, 98 Stat. 3347 (codified at 17 U.S.C. §§ 901-914 (Supp. II 1984)) (amend-
ing U.S.C. Title 17 to protect semiconductor mask works against unauthorized
duplication).

4. The difficulties surrounding legal protection for computer technology
cannot merely be analyzed away. One cannot always approach a legal prob-
lem, including the protection of computer technology, as if it were a verbal
Rubik's cube, and by linguistic manipulations transform a jumbled patchwork
of decisions into the legal equivalent of a one-colored square. Sometimes the
difficulty is either outside the law, or a fundamental part of it.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

the law of semiconductor chip protection for purposes of com-
parison. Legal questions concerning software protection are as-
serted to be peculiarly difficult because nearly all of the
enumerated kinds of uncertanties exist and interact in the case
of software, and this interaction multiplies the difficulty associ-
ated with any one. The Article concludes with the suggestion
that changes in software law must be made with an under-
standing of the nature of the underlying difficulties, and that
patience may be necessary in order to avoid multiplying the
confusion.

I. PROBLEMS IN FORMULATING AND APPLYING
LEGAL NORMS: A PARTIAL TAXONOMY OF

UNCERTAINTY

This Article posits that the outpouring of writing concern-
ing legal protection for software cannot be explained merely in
terms of an intrinsic interest in the subject or market-gener-
ated demand5 and is instead attributable to the particularly dif-
ficult questions software poses for the intellectual property law
system. To explain and develop this premise, this Article first
creates a partial taxonomy of legal difficulty. Simply put, a
legal problem is regarded as difficult if the solution is uncer-
tain. The types of uncertainty include both the uncertainty
that decisionmakers face when considering a new law or the re-
form of existing law and the uncertainty that lawyers and
judges confront in the course of adjudicating the application of
what, on its face, seems a clear formulation of a legal standard.6

Many questions involving the creation or application of law
are difficult, but an examination of cases in which the formula-
tion or application of law is difficult or uncertain reveals that
the difficulties themselves can be categorized. First, one often
does not know what actually happened, in a relatively narrow
sense. That is, one does not know whether or not Joe Smith
was in Topeka, Kansas, on the night in question or whether or
not Acme Computer borrowed the secret of slicing silicon from
a competitor. Uncertainty concerning that question makes a
decision about whether or not to convict Joe for armed robbery
or Acme of trade secret theft difficult. This is a factual uncer-

5. See supra note 1 and authorities cited therein.
6. This is not an exhaustive taxonomy because it does not include situa-

tions where the difficulty is in ascertaining the applicable standard or cases in-
volving conflicting formulations of a single standard.

1985]

MINNESOTA LAW REVIEW

tainty problem 7 and will be designated microfactual uncertainty
to distinguish it from a different, but no less difficult, kind of
factual problem, namely macrofactual uncertainty.

Macrofactual uncertainty is the name for ignorance about
how the world works. The formulation of legal rules, and the
application of those rules, is predicated on the belief that we
understand causal linkages in the world. In determining
whether to prohibit certain conduct, we must either believe
that we know the consequences of that prohibition on behavior
or be willing to act on our suspicions. Is increasing the penalty
for drunk driving going to make people less likely to drive
while drunk? Or is any such effect eliminated by an increased
reluctance of police to arrest, prosecutors to charge, and juries
to convict? Similarly, one may not know whether granting pro-
tection to integrated circuits encourages or discourages research
and development. The list of macrofactual uncertainties is end-
less. Both microfactual and macrofactual uncertainties are
present in software and semiconductor chip protection cases, as
later sections of this Article demonstrate.

Assuming minimal confidence in the answers to the fact
questions, one then confronts uncertainties about values. As-
suming that we know what happened, or how the world works,
what should we do? How important is it to convict the perpe-
trator of the robbery Joe might have committed? How certain
must one be that it was Joe? Is it better, in a close case, to let
the guilty go free or to convict the innocent? If one believes
that theft of software raises the price of legitimate software
purchases, would it still be appropriate to ignore software theft
because problems of proof might lead to punishment of an
unacceptably high number of nonculpable persons? Society
may be unwilling to bear the social costs of effective enforce-
ment. Sometimes it is suggested that these sorts of questions
are best answered by the legislature because these questions
are not properly questions of law at all, but rather questions of
policy.8 Although courts often defer to legislatures when con-
fronted with difficult value choices, they cannot always do so

7. Some legal realists have noted that factual uncertainty has serious im-
plications for the judicial system. See, e.g., J. FRANK, COURTS ON TRIAL 14-36
(1949). "Most legal rights turn on the facts as 'proved' in a future lawsuit, and
proof of those facts, in 'contested' cases, is at the mercy of such matters as mis-
taken witnesses, perjured witnesses, missing or dead witnesses, mistaken
judges, inattentive judges, biased judges, inattentive juries, biased juries. In
short, a legal right is usually a bet, a wager, on [a] chancey outcome." I& at 27.

8. See R. DwORKIN, TAKING RIGHTS SERIOUSLY 22-28 (1977) (discussing

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

and certainly do not do so at the margin of interpretation and
construction. Because this discussion intends to include both
legislative and judicial lawmaking, the issue of where value
questions are most ubiquitous can be left unanswered.

Even if one has a grasp of the facts, and knows what one's
values, and hence goals, are, one may face uncertainty as to the
capacity of existing institutions to accomplish those ends. If so-
ciety decides that it is very important to convict the robber, is
willing to expend substantial resources to obtain a conviction,
and will convict if the certainty of being correct is seventy-five
percent, the system may nevertheless lack the capacity to con-
sistently implement that standard. The resources available to
the system may be inadequate to generate the necessary infor-
mation, or the people who judge may be incapable of reliably
deciding just when it is that the certainty of proof has reached
the seventy-five percent threshold. Society may decide that it
wants to punish those who steal trade secrets, and pass a rule
to that effect, but the administrators of the system may be inca-
pable of deciding when trade secrets have been taken, either
because of their own limited understanding of the technology
or because the resources available to them are inadequate to
make meaningful comparisons of the technologies of plaintiff
and defendant. A particular standard may fail not because it is
unclear (although it may fail for that reason) and not because it
does not reflect our values (although it may fail for that rea-
son) but rather because the institution, as it is constituted and
acting within the constraints that define it, cannot do what it
tries to do. Just as a watchmaker cannot repair a watch with
hammer and chisel, so an overburdened court, in a case involv-
ing low stakes tried before unsophisticated jurors by mediocre
lawyers making their presentations within the limits permitted
by the rules of evidence, may not be capable of satisfactory ad-
judication. The movement from one subtle legal standard to
another "improved" standard may be meaningless if the system
is unable to function at the assumed level of subtlety. This in-
ability of the judicial system to function at a prescribed level of
sophistication is the problem of capability.9

Finally, problems may result from language itself, the in-
dispensable tool used not only to justify a decision once made,

the difference between rules, principles, and policies and urging that rules and
principles are law, while policies are not).

9. See generally R. DANZIG, THE CAPABILITY PROBLEM IN CONTRACT
LAW (1978) (elaborating on the capability problem).

1985]

MINNESOTA LAW REVIEW

but also employed in the analysis itself. The creation of law in-
evitably involves the creation of categories and the utilization
of those categories in making decisions. The categories them-
selves are usually specified by criteria; sometimes those criteria
prove confusing because they are vague, misdescriptive, jargon-
istic, or technical. Uncertainty may be especially common
when criteria developed in dealing with the familiar must be
applied to that which is new and unfamiliar. Assuming a tariff
on oranges and another on grapefruit, what is to be done with
the first shipment of lemons, if a duty must be paid?10 Simi-
larly, how does one decide whether a computer program em-
bodied in a chip is a copy of the program?

Another problem related to language is quite different and
probably less common. As suggested above, law implies catego-
rization and the capacity to specify the features that define the
categories. If, for example, it is important to divide boards into
heartwood and sapwood, it is awkward, if not impossible, to
make such a distinction without a word-a name-for the fea-
ture that distinguishes between the two. It is especially awk-
ward if the distinguishing is to be done by different people, at
different locations, and at different times. In such situations,
the description of the sorting process in words may be crucial.
If the essential vocabulary is not available, then the likelihood
of reliable differentiation is necessarily reduced. One may be
unable to frame rules if one's vocabulary is unable to capture
the relevant distinctions. To return to the earlier example, a
society that has used wood only in fireplaces is unlikely to have
words to distinguish heartwood from sapwood. Similarly, a sys-
tem that has always differentiated the machine from a picture
of the machine may be confounded by a picture of a circuit that
is a circuit.

To recapitulate, imagine an unusual watch in need of re-
pair. The owner takes it to a watchmaker. The watchmaker,
after commenting on the novelty of the timepiece, remarks that
he needs some time to determine how it works. The watch-
maker has a fact problem. After careful examination, the
watchmaker decides that he at least believes he understands

10. Arguably, this is not a problem of language but, rather a problem re-
sulting from a legislature's failure to fully specify criteria. It is not that the
word "orange" is vague. Rather, for reasons peculiar to law, the problem is
that we must interpret a rule speaking only of oranges in a case involving lem-
ons. Nevertheless, the sentence is ambiguous because the words orange and
grapefruit imply unstated criteria, and the court must engage in the problem
of interpretation implicit in language.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

the workings of the watch. The watchmaker then asks what
the owner means by "repair," and what degree of accuracy is
required. This inquiry is necessary because, even after the
watchmaker understands how the watch works, making it accu-
rate to within one minute a month is a very different task from
making it accurate to within one minute a day. The watch-
maker and the owner have a value problem. They will need to
discuss the advantages of more, as opposed to less, accuracy,
and to balance the degree of accuracy against the cost of the
corresponding repairs. Once the owner and the watchmaker
agree on a desired degree of accuracy of, for example, one min-
ute a month, the watchmaker may confront a capability prob-
lem. The watchmaker may know how the watch works, and he
may understand what would need to be done in order to make
it accurate to within one minute a month, but he might lack
either the required tools or the manual dexterity necessary to
use them.

The use of the watch repair metaphor to illustrate the lan-
guage problem is more difficult, although the very presence of
difficulty is quite revealing. Imagine, then, that the watch-
maker, after having understood the problem and decided what
the repair's objective should be, and having acquired the appro-
priate tools, explained to his apprentice what to do. "Now as
you know, this is a new kind of timepiece. Most watches have a
mainspring and a balance wheel. This one, though, does not
have a mainspring. Instead it appears to have a magnetic gizmo
that moves the hands by nudging up against this thingamabob.
In a regular watch, we would adjust the tension on the main-
spring. Here, I have discovered that if you just jigger with the
gizmo, it appears to nudge against the thingamabob a little
more slowly-rather the same effect as tightening the main-
spring-and the timepiece goes a little faster. Understood?"
Two days later the owner picked up the watch, repaired. On
the repair slip the watchmaker had written, "Adjust tension on
the mainspring-$25."

The temptation, which must be overcome if one is to pro-
ceed to the law of chips and software, is to begin to explore the
nooks and crannies of this metaphor. For instance, the repair
may not quite work, in the long run, because gizmos and thin-
gamabobs are not completely like mainsprings and balance
wheels. If a part in a new timepiece seems to have no analog to
any part in an old watch, some watchmakers may begin to call
one part a blodget, and the other a wedge, while others call the

1985]

MINNESOTA LAW REVIEW

same parts widgets and wedges. Similarly, the law may be un-
able to deal with a contract that specifies mainsprings but en-
tered into by parties who really mean gizmos. The question
here is whether watches are like computer programs, or judges
like watchmakers.

II. THE FORMS OF LEGAL PROTECTION: A SUMMARY

There are several forms of legal protection available to
those desiring to protect their investment in software or semi-
conductor chips. These include patent law, trade secret law,
copyright law, and the new Semiconductor Chip Protection
Act. Essential to an understanding of these forms of protection,
however, is the following explanation of the interrelationship
between computers, semiconductor chips, and computer
software.

A. COMPUTERS, CHIPS, AND PROGRAMs: WHERE DOES ONE
END AND THE OTHER BEGIN?

A computer is often considered to be a machine that
processes information. Strictly speaking, however, the com-
puter manipulates physical, chemical, or electrical impulses or
structures that symbolize information." The computer can be
conceptualized as a mass of circuitry that is organized in a
meaningful way but not capable of doing anything useful until
programmed. This circuitry is computer hardware. Computer
software is the set of instructions that controls the operation of
the computer and that transform it from a powerful, but in a
sense useless, combination of circuits into a device capable of
performing particular tasks.12 A semiconductor chip is a finger-
nail-sized bit of silicon on which an extraordinary number of
transistors have been constructed and connected, so that a chip
may contain a million or more electronic elements.' 3 Most

11. There is a great deal of debate about whether machines may be capa-
ble of "thought." Many researchers of artificial intelligence argue that, at
some level, human and artificial intelligence are the same. See D. HOF-
STADTER, GODEL, ESCHER, BACH: AN ETERNAL GOLDEN BRAID 594-680 (1979);
see also J. WEIZENBAUM, COMPUTER POWER AND HUMAN REASON 158 (1976)
(quoting G.A. Miller, Language, Learning, and Models of the Mind (unpub-
lished manuscript)) (suggesting that humans and machines can usefully be
seen as "information processing systems"). For a discussion of artificial intelli-
gence and neurological engineering, see Stevens, Reverse Engineering the
Brain, 10 BYTE MAG. 286 (1985).

12. Gemignani, Legal Protection for Computer Software: The View From
'79, 7 RUTGERS J. COMPUTERS, TECH. & L. 269, 278-79 (1980).

13. Boraiko, The Chip, 162 NAT'L GEOGRAPHIC 421, 421, 425 (1982). This

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

modern computers are comprised of semiconductor chips,
among other elements. 14 Although for most purposes, it may
be possible to treat the chip as existing on the hardware side of
the equation, merely a part of the machine, one can argue justi-
fiably that it occupies the conceptual space between the
machine and the software.' 5 A microprocessor chip, for exam-
ple, has an architecture-a logic-that may constitute the em-
bodiment of a particular set of instructions. It thus has the
character of a programmed computer, embodying both hard-
ware and software. 16

The creation of software often begins with a flowchart,
which is a general description of the program and is not unlike
a large scale map; it gives an impression of the shape of the pro-
gram, but lacks detail.17 After the creation of the program's
structure, by flowchart or otherwise, the programmer writes
the program itself, usually in a high level programming lan-
guage called "source code."' 8 This source code is then trans-

article was submitted by Representative Donald Edwards during the Copyright
Protection for Semiconductor Chips: Hearings on H.R. 1028 Before the Sub-
comm on Courts, Civil Liberties, and the Administration of Justice of the
House Comm. on the Judiciary, 98th Cong., 1st Sess., 355 (1983) [hereinafter
cited as 1983 House Hearings].

14. Boraiko, supra note 13, at 429, 438-49.
15. The distinction between hardware and software itself may prove to be

illusory. See Sprowl, Proprietary Rights in Programmed Computers: Looking
Beyond the Hardware/Software Distinction for More Meaningful Ways of
Characterizing Proprietary Interests in Digital Logic Systems, 1983 ARmZ. ST.
L.J. 785, 786.

16. One author has termed the microprocessor a "computer on a chip."
Boraiko, supra note 13, at 421.

17. See Gemignani, supra note 12, at 272. The structure plays the role in
programming that the outline plays in other kinds of writing. In fact, the pro-
cess of creating software begins long before the creation of a flowchart, and
people familiar with the creation of sophisticated software regard flowcharting
and coding of the program to be only two of perhaps a dozen or more steps
that also include evaluations of the needs of users, consideration of input and
output formats, assessments of compatibility with other programs, computers,
data formats, and so forth. This is important because a judicial focus on the
coding aspect of software creation may be misdirected if it implies that coding
absorbs the bulk of software creators' capital investment. Conversations with
Carl Hill, Systems Analyst for Verex Corporation. See also Sprowl, supra note
15, at 786 (Organizations spend millions of dollars developing computer lan-
guages at levels ranging from the language of the ultimate user of the applica-
tion to the language used by designers to build the circuit chips. These
organizations have no legal protection for their operating languages; competi-
tors are free to use other hardware and software to implement the same
language.).

18. Gemignani, supra note 12, at 272. There are any number of such high
level languages-COBOL, FORTRAN, Pascal, BASIC and so forth--and they

1985]

MINNESOTA LAW REVIEW

formed, often with an intermediate step, into "object code."19

Object code is largely unintelligible to the human programmer
but is needed to actually operate the computer. Object code is
usually represented as a series of 1's and O's. These l's and O's
are analogous to the "on" and "off' settings of the computer's
switches.

20

If one conceives of a computer as an extraordinarily com-
plicated set of electrical switches and relays, the computer pro-
gram is nothing more than the list of instructions for the
setting of those switches to facilitate some particular electrical
manipulation. The entry of the program into the computer is
nothing more than the translation of the description of the
switch settings into the setting of the switches themselves.
Thus, as noted earlier,2 1 the instructions have been trans-
formed into the thing itself. That is, the instructions as to
switch settings have at a certain point become the switch set-
tings. The relative ease with which this transformation is
accomplished undermines the distinction between the "hard-
ware" (the machine) and the "software" (the instructions). As
a result, the distinctions become less clear and meaningful than
the terms, probably chosen to imply a dichotomy, suggest.2

The semiconductor chip underscores the fragility of the
boundaries between categories. 23 Chips are usually manufac-
tured by a photographic process known as photolithography. 24

are usually designed to facilitate the human aspect of the human-computer in-
teraction. Tesler, Programming Languages, Sci. AM., Sept. 1984, at 70, 73.

19. Davidson, supra note 1, at 620; Sprowl, supra note 15, at 793-95.
Sprowl notes that in a modern application program like an accounting spread-
sheet, for example, there are seven layers of languages, ranging from "chip
language" to the customized user language of the particular application pro-
gram. Id.

20. Sprowl, supra note 15, at 788-89.
21. See text accompanying supra notes 15-16.
22. "[Technologically 'hardware' and 'software' are equivalent." Brief for

Amicus Curiae the Association of Data Processing Service Organizations,
Software Industry Association at 5, Parker v. Flook, 437 U.S. 584 (1978). Simi-
larly, "[s]oftware can always be converted into functionally equivalent hard-
ware, and while a minimum amount of hardware is always essential, much of
what used to be pure hardware in computers is now pure software." Sprowl,
supra note 15, at 786.

23. See Boraiko, supra note 13, at 429.
24. Photolithography is not the only technique used. H.R. REP. No. 781,

98th Cong., 2d Sess. 20, reprinted in 1984 U.S. CODE CONG. & AD. NEws 5750,
5769 [hereinafter cited as HOUSE REPORT] (All citations to the House Report
are to the star print. United States Code Congressional and Administrative
News contains the initial version of the House Report. The star print cor-
rected typographical errors and contains three additional pages.). The process

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

"Masks" are used to project patterns onto a treated silicon wa-
fer which is "developed" and becomes not the picture of the cir-
cuit, but the circuit itself.25 It is possible to design a chip, or a
part of it, which will perform a specific function, and this chip
or part is for all practical purposes the same as a specially
designed computer or a general purpose computer with a pro-
gram embodied in it.26 Returning to the metaphor of switches,
some of the switches on the chip are pre-set and those settings
transform that portion of the chip into the functional
equivalent of the programmed computer. The semiconductor
chip thus illustrates that a fine line separates the plan for the
thing from the thing itself.

The diagram of the circuit transformed by the manufactur-
ing process creates the circuit. In some cases, it might be diffi-
cult to tell whether an image was the diagram of the end
product, or the end product itself. A projection of the image of
the circuit can itself create the circuit. This point was made,
somewhat poetically, by Frederick Turner:

Consider the process by which a modern integrated circuit is made
.... The technical term for this process is "photographic." An inte-
grated circuit is essentially a very complex silicon photograph
We normally think of a photographic process as one that makes pic-
tures of things rather than things themselves. A photograph is signif-
icant only as a record; as an object it's just a bit of sticky paper. But
our silicon photograph doesn't merely represent something;, it does
what it is a photograph of. In a sense it is a miraculous picture, like
that of Our Lady of Guadalupe: it not only depicts, but does; it is not
just a representation, but reality; it is not just a piece of knowledge,
but a piece of being; it is not just epistemology, but ontology.27

The complexity of both the physical structure and the in-
structions should not be underestimated. A complex program
might be composed of 10,000,000 lines of code, which might ex-
ceed the logical complexity of the circuitry of some computers,
and be responsible for the manipulation of as many as
1,000,000,000,000 bits of data.28 Even these numbers may under-
estimate the complexity of the program, as compared to the
computer. Thousands of the memory locations in a computer's
memory chip are virtually identical, and exist in a highly or-

of chip manufacturing sometimes involves the use of electron beam technology
to "write" the circuit on the silicon wafer. Boraiko, supra note 13, at 429.

25. A more detailed description and illustration of the manufacture and
capability of semiconductor chips can be found in Boraiko, supra note 13, at
426-27, 432-34.

26. Id at 430-31; see also supra note 16 and accompanying text.
27. Turner, Escape From Modernism, HARPER'S MAG., Nov. 1984, at 47.
28. Bacon, Software, 215 SCi. 775, 775 (1982).

19851

MINNESOTA LAW REVIEW

dered and systematic layout-much of which resembles a city
laid out on a grid system. The lines of the program, however,
tend to be relatively different from one another and are less
patterned. As a result, the investment of human capital in the
design of machines as complex as computers is enormous. The
development of a single semiconductor chip might take three or
four years, and cost $4 million, and a "family" of chips might
cost as much as $80 million.29 The investment of labor and cap-
ital in the programs may be equally substantial.

Developers of computer software and semiconductor chips
are understandably eager to minimize the extent to which
others can exploit that investment. Although, in some circum-
stances, the law of contracts or trademarks may be useful, most
of the analysis of legal protection has focused on patent law,
copyright law, and the law of trade secrets. Others have use-
fully explored the applications of those bodies of law to
software 30 and semiconductor chips. 31 What follows is only a
summary of doctrine necessary to provide the background for
the argument that will follow. This summary is largely for the
benefit of those unfamiliar with the broad outlines of intellec-
tual property law.32

B. PATENT LAW: STRONG PROTECTION, BUT DIFFICULT
TO OBTAIN

The most thorough protection for technological develop-
ment is provided by patent law.33 For seventeen years from the
issuance of the patent, the inventor is protected against compe-
tition not only from those who copy the inventor's work, but
even from those who might independently recreate the ad-
vance.34 The scope of the patent is delineated in a detailed
claim,35 and the best mode of practicing the invention known to
the inventor must be disclosed. A patent is issued only after a

29. 1983 House Hearings, supra note 13, at 34 (statement of F. Thomas
Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.).

30. See supra note 1.
31. See 1983 House Hearings, supra note 13, at 82 (statement of Dorothy

Scbrader, Associate Register of Copyrights); Oxman, Intellectual Property Pro-
tection and Integrated Circuit Masks, 20 JURIMETRICS J. 415-60 (1980).

32. It is important to note that the law has been developing quite rapidly
in this area, and one must be careful of the relatively rapid obsolescence of
summaries.

33. Davidson, supra note 1, at 230. The federal patent statutes are codified
at 35 U.S.C. §§ 1-376 (1982).

34. See 35 U.S.C. § 271 (1982).
35. See 35 U.S.C. § 112 (1982).

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

sophisticated substantive review of the application.36 The pro-
cess is expensive, and the standards-novelty, nonobviousness,
and utility-are high.3 7 From the outset of the computer
revolution, some have sought the protection of the patent sys-
tem for software developments.38 That early interest, however,
was matched by doubts about the availability of patent
protection. 39

The patent statute provides that to be patentable a claim
must be directed to a "process, machine, manufacture, or com-
position of matter, or . . .improvement thereof."40 Although
early Patent and Trademark Office (PTO) regulations declar-
ing software unpatentable 4 1 were subsequently withdrawn,42
the PTO has continued to interpret the rules, whenever possi-
ble, to exclude or narrow the protection of software under the
patent laws.43 In contrast, the Court of Customs and Patent
Appeals (CCPA), in reviewing the PTO's decisions, has consist-
ently taken a position more favorable to those seeking patent
protection."4 The Supreme Court seems to have moved from a
position suggesting rejection, or at least skepticism, about pat-
entability45 to a position that supports patentability in some cir-
cumstances.46 This story has been well documented by others
in a degree of detail that would not be appropriate here.47 Nev-

36. See 35 U.S.C. § 131 (1982).
37. See 35 U.S.C. §§ 101 (novelty and utility), 102 (no prior use or patents),

103 (nonobviousness) (1982).
38. See, e.g., Ex parte King, 146 U.S.P.Q. (BNA) 590 (Pat. Off. Bd. App.

1964) (rejecting a claim to a digital computer arranged to mathematically pro-
cess data stored in the computer).

39. In 1966, a Presidential Commission recommended that software be un-
protectable, President's Comm'n on the Patent System, Report to Promote the
Progress of the Useful Arts, S. Doc. No. 5, 90th Cong., 1st Seass. 20-21 (1967),
and proposed legislation to that effect. See S. 1042, 90th Cong., 1st Sess., 113
CONG. REc. 4038 (1967), H.R. 5924, 90th Cong., 1st Seass., 113 CONG. REc. 4197
(1967).

40. 35 U.S.C. § 101 (1982).
41. 33 Fed. Reg. 15,609-10 (1968).
42. 34 Fed. Reg. 15,724 (1969).
43. For a well written history of this period, see Chandler, supra note 1,

at 234-53; see also Nimtz, supra note 1, at 4-21 (tracing the general develop-
ment of the law involving protection of computer software). For a particularly
instructive recent article, see Anthony & Colwell, Litigating the Validity and
Ikfringement of Software Patents, 41 WASH. & LEE L. REv. 1307, 1315-17
(1984).

44. Chandler, supra note 1, at 234-53.
45. See Gottschalk v. Benson, 409 U.S. 63, 71-73 (1972).
46. See Diamond v. Diehr, 450 U.S. 175, 185-88 (1981).
47. See Chandler, supra note 1, at 240-55.

1985]

MINNESOTA LAW REVIEW

ertheless, a brief recapitulation of the decisions on the issue,
emphasizing those of the Supreme Court, may be useful.

Within patent law, one can encounter more than one form
of claim. Hopeful claimants for patents on software or software
dependent inventions have historically sought to frame their
applications in ways they believed would prove acceptable to
those supervising the grant of patents. One possibility in the
case of computer software was to claim a particular program as
a process, or part of a process, for accomplishing some end. In
other words, one would claim the exclusive right to perform
certain operations in a certain order. Although process claims
most commonly have been used in cases involving the physical
transformation of material substances, often by chemical
means,48 some of the claims to patents for software or software
dependent inventions were cast in the same form. The appli-
cant might have couched his claim in these terms. "I claim the
process of performing X transformation by means of a com-
puter which has been programmed in the following way." As
discussed below, claims cast in such form faced substantial diffi-
culty from the outset.49

Another route to patent protection might be for the claim-
ant to claim a particular structure.-s Applicants claimed pat-
ents on computers given a particular electro-mechanical
"shape" by causing certain electrical "instructions" to be read
into it. An applicant, in effect, claimed a patent on a complex
electronic circuit having a structure consisting partly of the
preconfigured computer and partly of circuits that were altered
by the program. Initially, it appeared that this conceptualiza-
tion was going to meet with greater success than the process
claim form, at least insofar as patentability was concerned.51

48. J. LANDIS, MECHANICS OF PATENT CLAIM DRAFTING 71-72 (1974).
49. See infra text accompanying notes 52-62.
50. J. LANDIS, supra note 48, at 17. This is commonly the form in which a

mechanical invention or a composition of matter would be claimed; for exam-
ple, "I claim an alloy of bronze having as its constituent parts 10% of X metal,
and 15% of Y metal, etc." Id. or, "I claim a mechanism for closing a container
which consists of a thin circular plate, the edges of which have been bent at
eighty degrees to the plane of the plate, and crimped so as to grip a protruding
edge of a container." Id. A computer program could conceivably be described
in a similar form.

51. See In re Johnston, 502 F.2d 765, 770 (C.C.P.A.), rev'd on other
grounds sub nom. Dann v. Johnston, 425 U.S. 219 (1976); In re Prater, 415 F.2d
1393, 1403 (C.C.P.A. 1969); see also Dann v. Johnston, 425 U.S. 219, 225 (1976).
One problem, of course, was that the choice seemed to be largely a matter of
form, and judges objected to allowing major decisions to turn on the choice of
a claim drafting technique. See, e.g., In re Johnston, 502 F.2d 765, 773

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

The Supreme Court first explicitly addressed the question
of patentability in Gottschalk v. Benson.52 In Gottschalk, the
Court refused t6 decide whether programs generally were pat-
entable, but held that the particular program being proposed
was unpatentable subject matter because the patent, if issued,
would preempt a mathematical algorithm and would effectively
be a patent on the algorithm itself.53 One commentator be-
lieved the decision revealed a general hostility toward patenta-
bility of programs. 4 In 1976, the Court held that a particular
computer program was unpatentable because it was an "obvi-
ous" advance 55 and therefore avoided addressing the broader
question of whether computer programs are patentable subject
matter.5 In the interim, the CCPA, seemingly eager to limit
the reach of Gottschalk, decided several cases that suggested
that the combination of a program with an end use that in-
volved a physical transformation would avoid the Gottschalk
objection.5 7 In 1978, however, the Supreme Court in Parker v.
MFook 58 reversed the CCPA's approval of an application based
on just this rationale,59 and held that the patent claim was de-

(C.C.P.A. 1976) (Rich, J., dissenting) (arguing that certain claims should not be
made patentable merely because they were drafted in machine system form),
rev'd on other grounds sub nom. Dann v. Johnston, 425 U.S. 219 (1976). It is
true that a similar problem may confront an applicant wishing to patent a par-
ticular compound. One might seek to claim an invention comprising a chemi-
cal having two hydrogen atoms, six oxygen atoms, and two sodium atoms, or
one might claim as an invention the process by which such a chemical could be
produced. Although it might often be the case that these are two separate in-
ventions, there are other cases in which the inventor might claim one or the
other. There might be advantages associated with one approach or the other
and often both claims might be made. It seems, however, that the essential
patentability of a chemical advance should not turn on which claim drafting
form one chooses, and this is what seems to be happening in the case of
software.

52. 409 U.S. 63 (1972).
53. Id. at 71-72. Some of my acquaintances with a knowledge of comput-

ing expressed amazement that the claim was not rejected out of hand, given
the relative triviality of the subject matter. The fact that the claim was not
rejected on the merits may suggest the Court's inclination to rest its decision
on procedural grounds when confronted with unfamiliar technology.

54. See Note, Protection of Computer Programs: Resurrection of the Stan-
dard, 50 NOTRE DAME LAw. 333, 339-40 (1974).

55. Dann v. Johnston, 425 U.S. 219, 228-30 (1976).
56. See id. at 220.
57. See, e.g., In re Flook, 559 F.2d 21, 22-23 (C.C.P.A. 1977), rev'd sub nom.

Parker v. Flook, 437 U.S. 584 (1978); In re Deutsch, 553 F.2d 689, 692-93
(C.C.P.A. 1977); In re Noll, 545 F.2d 141, 148-49 (C.C.P.A. 1976); In re Chat-
field, 545 F.2d 152, 158-59 (C.C.P.A. 1976), cert. denied, 434 U.S. 875 (1977).

58. 437 U.S. 584 (1978).
59. See id. at 590.

1985]

MINNESOTA LAW REVIEW

fective because the addition of post-solution activity to a mathe-
matical formula is not sufficient to transform an unpatentable
principle into a patentable process.60 Proponents of program
patentability were glum.

In 1981, however, the Court decided Diamond v. Diehr,61

the decision that, it seemed, the proponents of patent protec-
tion for software had been awaiting. The patience of the CCPA
in continuing to narrowly construe Supreme Court statements
forbidding patentability of software claims had finally won the
day. On facts extraordinarily similar to those in Parker, the
Court found that a process consisting of the utilization of com-
puter software to control a rubber molding process constituted
patentable subject matter.62

Few infringement cases involving software dominated pat-
ents have been litigated, nor does the Patent Office possess a
large body of experience in the processing of software depen-
dent claims. The PTO has issued guidelines for applying the
subject matter standard, which appear quite restrictive, and
which arguably reflect a continuation of the PTO's attitude op-
posing such claims.63

The applicability of patent law to semiconductor chips is,
by comparison, well settled. Unquestionably, patent protection

60. See id- at 590 (reasoning that otherwise unpatentable process or mech-
anism cannot be rendered patentable by the claimant's inclusion of a specified
application of his intention).

61. 450 U.S. 175 (1981).
62. See id- at 184. In the same year the Supreme Court split 4-4 in the

case of Diamond v. Bradley, 450 U.S. 381 (1981). This had the effect of af-
firming the CCPA's decision in a case involving a "data structure" for use in a
multiprogrammed computer. Id at 381.

The optimism this turnabout engendered in patent lawyers concerning the
patentability of software was born out in Paine, Webber, Jackson & Curtis,
Inc. v. Merrill Lynch, Pierce, Fenner & Smith, Inc., 564 F. Supp. 1358 (D. Del.
1983). Merrill Lynch's patent on the data processing methodology and appara-
tus for implementing its Cash Management Account survived a challenge by
Paine, Webber based on an argument that the patent gave protection to a busi-
ness system, and was nothing more than a patent on an accounting algorithm,
while Merrill, Lynch countered by successfully arguing that the claim incorpo-
rated the "means", or apparatus, for implementing the process, and that the
algorithm was not of the sort denied protection in Gottschalk. Id- at 1365-68.
The District Court found that the patent claims were statutory subject matter
because the claims allegedly taught "a method of operation on a computer to
effectuate a business activity" while simultaneously acknowledging that the
method would not be patentable if done by hand. I&. at 1369.

63. PATENT AND TRADEMARK OFFICE, MANUAL OF PATENT EXAMINING
PROCEDURES § 2110 (5th ed. 1983). For an excellent account of the current sit-
uation regarding software patentability, see Anthony & Colwell, supra note 43,
at 1317-34.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

is available for some of the basic technology of the semiconduc-
tor chip. One may obtain a patent on an advance in the art of
manufacturing the chip, or for a discovery of new materials
from which to fabricate chips, or even for a new kind of cir-
cuit.64 The expensive process of forming existing circuits into
effective combinations, however, is assumed to be "obvious"
within the meaning of patent law, and is thus unpatentable65
Although some still question whether chips are patentable sub-
ject matter,66 patent law requirements of novelty and nonobvi-
ousness impose perhaps insurmountable hurdles for the great
majority of chips.67 Greater doubt exists with respect to the
patentability of the masks used to create the chips.68 In short,
patent protection is regarded as inadequate to protect the capi-
tal investment of chip producers, because so much of that in-
vestment is in developments that fail to meet the substantive
standards of patentability.

C. TRADE SECRET LAW: THE NEED FOR A SECRET

State trade secret law has been widely used to protect the
proprietary interest of developers of both computer software
and semiconductor chips.6 9 Although litigation and scholarship
in the patent and copyright areas has focused to date largely on
the conceptual problems of whether those laws are available to

64. Patent law can protect the basic electronic circuitry for new
microprocessors or other new such products. But patent law does not
protect the particular layouts and design work performed by the dif-
ferent chip manufacturers in adapting those electronic circuits for a
particular industrial purpose, because the creativity involved does not
rise to the inventive level required by the patent laws.

HOUSE REPORT, supra note 24, at 3, 1984 U.S. CODE CONG. & AD. NEWS at
5752.

65. See 1983 House Hearings, supra note 13, at 3 (statement of Sen.
Charles McC. Mathias, Jr.).

66. See Oxman, supra note 31, at 421-25 (suggesting that semiconductor
chips may not fall within the statutory purview of patent law).

67. "It is almost inconceivable that the layout will be nonobvious to a per-
son with skill in the art." Id. at 426; see also 1983 House Hearings, supra note
13, at 65-66 (statement of Gerald Mossinghoff, Assistant Secretary of Com-
merce and Commissioner of Patents and Trademarks) ("While a patent on the
circuit could protect against the manufacture, use or sale of the circuit, the cir-
cuits in chips are usually well-known and unpatentable.").

68. See Oxman, supra note 31, at 421-25 (citing 35 U.S.C. § 101 (1982) in
suggesting that masks fail to satisfy the statutory requirement of being a "new
or useful process, machine, manufacture, or composition of matter, or any new
or useful improvement thereof").

69. R. MILGRIM, TRADE SECRETS app. A-i, at 2-3 (1982); Davidson, supra
note 1, at 717-19.

1985]

MINNESOTA LAW REVIEW

proprietors, these issues have not arisen in the trade secret con-
text. It has always been clear that the law of trade secrets was
appropriate to preserve a proprietor's right to exploit software
or circuit designs.70 This is not to say that serious and difficult
issues do not arise in the context of the utilization of trade se-
cret protection, but rather that those issues have not involved
the threshold question of whether software or chip designs are
protectable subject matter.7'

Owners of trade secrets are entitled to protection against
those who discover their secrets by improper means, which
might include acts as bold as burglary, but usually involve vio-
lation by an employee of an express or implied obligation to
preserve the secrets of the employer. The most difficult issues
in trade secrets litigation involve such questions as whether the
information has in fact been kept sufficiently secure within the
company or industry to qualify as a secret,72 or whether a for-
mer employee has actually used a trade secret as opposed to
utilizing the skills and training which were acquired in the
course of the employment and which the employee is entitled
to carry to a subsequent job.73

70. R. MILGRIM, supra note 69, app. A-i, at 2 (1982); Davidson, supra note
1, at 701-13.

71. The most widely used definition of "trade secret" is found in the RE-
STATEMENT OF TORTS § 757 comment b (1934). It states:

A trade secret may consist of any formula, pattern, device or compila-
tion of information which is used in one's business, and which gives
him an opportunity to obtain an advantage over competitors who do
not know or use it. It may be a formula for a chemical compound, a
process for manufacturing, treating or preserving materials, a pattern
for a machine or other device, or a list of customers.

Id Software would seem to fit comfortably within the definition.
72. See Jostens, Inc. v. National Computer Sys., 318 N.W.2d 691, 700

(Minn. 1982) (holding that plaintiff failed to show that it had intended to keep
its computer systems used for the design and manufacture of class ring molds,
a trade secret); Computer Print Sys. v. Lewis, 422 A.2d 148, 153-54 (Pa. Super.
Ct. 1980) (holding that specific computer programs designed to expedite direct
mail advertising had remained protectable trade secrets).

73. See Structural Dynamics Research Corp. v. Engineering Mechanics
Research Corp., 401 F. Supp. 1102, 1116 (E.D. Mich. 1975) (holding that there
was a violation of a trade secret when two former employees of plaintiff corpo-
ration who had signed a "Confidential Information Agreement" later joined
defendant corporation and gave it information concerning an isoparametric el-
ement computer system developed by plaintiff corporation); cf. Sperry Rand
Corp. v. Rothlein, 241 F. Supp. 549, 564 (D. Conn. 1964) (holding that though
defendants were entitled to take with them the skills acquired as employees of
plaintiff company, knowledge of the final results of the end product of their
work, including the manufacture of a silicon alloy junction transistor, consti-
tuted a trade secret which was violated when defendants conveyed it to one of
plaintiff's competitors).

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

Although trade secret protection may prove useful to any
number of developers of software or semiconductors, it offers
neither protection against independent innovation nor protec-
tion against duplication of a rightfully acquired copy. The
formula for Coca-Cola is proprietary information only as long
as no one can independently recreate the flavor, and only as
long as Coca-Cola can maintain the secrecy of its formula.
Thus, although trade secret law may protect software used only
by the developer or licensed to a limited number of persons and
designers of integrated circuits during the time that the chip is
in the design and development stages, trade secret law offers
little comfort to those who market software more widely or to
chip manufacturers once the chip is in production and distribu-
tion. Even though trade secret protection might prove quite ac-
ceptable to developers of software who retain complete control
over their product, it is less helpful to sellers of software used
for computer games, or in connection with mini or microcom-
puters. Few chip manufacturers would ever expect to keep
their chip designs within the mantle of trade secret protection,
because few chips are customized for internal use by either the
developers themselves or their customers.7 4

D. COPYRIGHT LAw: A HOST OF PROBLEMS

Copyright law provides protection to the "writings" of au-
thors. The term "writings" has been expansively defined to in-
clude not only books, but paintings, motion pictures, sculpture,
maps, speeches, and computer programs.7 5 To qualify for pro-
tection a work must possess a minimal degree of originality and
be fixed in a tangible form.76 The degree of originality required
is modest; telephone books and art reproductions are suffi-
ciently original to qualify for copyright protection.77

The formalities associated with obtaining copyright protec-
tion are minimal. Copyright arises upon "fixation" of the
work.78 If the work is published, a simple notice is affixed.7 9

74. This is not to say that chips are not customized. They are, but such
customization is normally for ultimate mass distribution as control devices for
items such as consumer products. Oxman, supra note 31, at 418.

75. 17 U.S.C. §§ 102, 117 (1982).
76. 17 U.S.C. § 102 (1982).
77. See, e.g., Hutchinson Telephone Co. v. Fronteer Directory Co., 770 F.2d

128, 132 (8th Cir. 1985) (telephone directory held copyrightable); Alva Studios
v. Winninger, 177 F. Supp. 265, 267 (S.D.N.Y. 1959) (art reproductions copy-
rightable when skill and originality were required to produce the replica).

78. 17 U.S.C. § 102 (1982).

1985]

MINNESOTA LAW REVIEW

Registration of the copyright must precede enforcement.8 0

Copyright owners are granted, by the statute, certain exclusive
rights including the right to reproduce, distribute, perform, and
display the work, as well as the right to prepare derivative
works.8 1 These rights are subject to enumerated limitations
that are designed to promote public objectives.8 2 One who uses
a copyrighted work is not guilty of infringement unless that use
violates one of the exclusive rights; the exclusive rights are not
exhaustive of all uses.8 3 Like trade secret law, and unlike pat-
ent law, copyright provides no protection against independent
creation of a similar, or even identical, work.84

When copyright law encounters computer technology, diffi-
cult issues arise. Questions such as whether a computer pro-
gram is a "writing" of an author or whether, even if
copyrightable, the program is subject to protection in its object
code form, or what degree of similarity is required to prove in-
fringement, present complex queries for analysis under the
copyright laws. The current copyright law, enacted in 1976 and
amended in 1980,85 makes it clear that copyright protection may
extend to computer programs.86 Just what that means, how-
ever, is not so clear.

Copyright protection is denied to ideas, processes, and the
like8 7 and extends only as far as the expression of the idea or

79. 17 U.S.C. § 401 (1982).
80. 17 U.S.C. § 411 (1982).
81. 17 U.S.C. § 106 (1982).
82. 17 U.S.C. §§ 108-118 (1982).
83. 2 M. NIMMER, NIMMER ON COPYRIGHT § 8.01 (1985).
84. Even if the defendant is guilty of a prima facie violation of an enumer-

ated exclusive right, the defendant may claim the benefit of the "fair use"
privilege of § 107, 17 U.S.C. § 107 (1982). Section 107 is clearly intended to per-
mit at least de minimus violations. Although the meaning of the "fair use"
provision is still being grappled with, see 3 M. NIMMER, supra note 83, at
§ 13.05, it is likely that the fair use privilege will eventually be construed to
permit, in addition to de minimus borrowings, those uses that are in the public
interest but that will not be legitimatized by license from the copyright propri-
etor either because the author wishes to be free from criticism or parody, or
because the transaction costs associated with seeking permission are so high
that the user would prefer to forego use rather than undergd the costs of ob-
taining a license. See Sony Corp. of Am. v. Universal City Studios, 457 U.S.
417, 433 (1984) ("All reproductions of the work, however, are not in the exclu-
sive domain of the copyright owner; some are in the public domain.").

85. Act of Oct. 19, 1976, Pub. L. No. 94-553, 90 Stat. 2541 (1976), amended
by Act of Dec. 12, 1980, Pub. L. No. 96-517, 94 Stat. 3015 (1980) (codified as
amended at 17 U.S.C. § 101-810 (1982)).

86. 17 U.S.C. §§ 101, 117 (1982).
87. 17 U.S.C. § 102 (1982).

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

the description of the process.8 8 This has been construed to
mean that the idea must remain available for public use. 9

Therefore, if only a very limited number of possible expres-
sions of an idea are possible, copyright cannot be extended to
those expressions.90 Without this requirement, it would be pos-
sible to substantially restrict access to the idea by claiming a
copyright in one or more of the few possible variations in ex-
pression of the idea.9 1 Furthermore copyright is not available
for utilitarian creations like car bodies, shoes, or lamps-or
more precisely, it is available only for the separable, decorative
features of utilitarian creations like the hood ornament, or bull-
dog image on the belt buckle, or statuette serving as a lamp
base.9 2 As a result, it could be argued that programs, at least as
embodied in read only memory (ROM)93 or random access
memory (RAM)94 chips, are not copyrightable because their
"literary" aspects are inseparable from their functional, utilita-
rian features.9 5 Third, there has been much discussion of
whether programs in object code were "copies" within the
meaning of the statute.96 Finally, the degree of similarity nec-
essary to constitute infringement is likely to prove problematic
in cases involving software.97 Even literal copying could argua-
bly be permitted in some situations.98

88. See 2 M. NIMMER, supra note 83, § 2.03[D].
89. See 3 M. NIMMER, supra note 83, § 13.03[A].
90. See 3 M. NIMMER, supra note 83, § 13.03[A].
91. See Morrissey v. Proctor & Gamble Co., 379 F.2d 675, 678-79 (1st Cir.

1967).
92. See 17 U.S.C. §§ 101, 113 (1982).
93. A read only memory (ROM) chip is one from which the computer can

only read stored information; it cannot change or "write" new information
onto the chip.

94. A random access memory (RAM) chip is capable of receiving and tem-
porarily storing data, and allows changes to be made on what is stored on the
chip.

95. See Davidson, supra note 1, at 671-72; Samuelson, CONTU Revisited-
The Case Against Copy-right Protection for Computer Programs in Machine
Readable Form, 1984 DuKE L.J. 663, 739-41.

96. See Data Cash Sys. v. JS&A Group, Inc., 480 F. Supp. 1063, 1067-69
.(N.D. Ill. 1979), affd on other grounds, 628 F.2d 1038 (7th Cir. 1980). Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert
denied, 464 U.S. 1033 (1984), may have laid this argument to rest, if only be-
cause it seems a "practical" result. See id. at 12A8-49. The court held that a
computer program in object code embedded in a semiconductor chip is an ap-
propriate subject for copyright. Id. at 1249.

97. See SAS Inst., Inc. v. S&H Computer Sys., 605 F. Supp. 816, 829 (M.D.
Tenn. 1985) (finding infringement in case of nonliteral similarity); Chandler,
supra note 1, at 228; Davidson, supra note 1, at 693.

98. Morrissey v. Proctor & Gamble Co., 379 F.2d 675, 678-79 (1st Cir. 1967)

1985]

MINNESOTA LAW REVIEW

These difficulties led to the conclusion that copyright was
not available to protect circuit designs embodied in semiconduc-
tor chips. The Copyright Office had refused to register chips as
copyrightable works,99 on the ground that they were primarily
utilitarian objects with no separable nonutilitarian features.'0 °

Litigation based on copyright claims in chip designs embodied
in drawings proved inconclusive. 1 1 Concerns about protection
for chips, of course, led to the enactment of the Semiconductor
Chip Protection Act.

E. SEMICONDUCTOR CHIP PROTECTION ACT OF 1984
The most recent addition to the forms of legal protection

for intellectual property is the Semiconductor Chip Protection
Act of 1984.102 Congress passed the Act in response to a need
for chip protection and findings that existing forms of protec-
tion were inadequate. 0 3 The Act grew out of efforts to amend
the copyright statute to extend copyright protection to semicon-
ductor chips, but the new form of protection is sufficiently dif-
ferent from copyright protection to be designated a sui generis
form of protection.' °4

The Act extends protection to the original105 configuration

(finding that contest rules were so straightforward and simple that they were
an uncopyrightable form of expression).

99. In 1977, Intel Corp. brought a suit to compel the registration of a de-
sign of a chip. The case was dismissed without prejudice and without disposing
of the option of registrability. Intel Corp. v. Ringer, No. C77-2848-RHS (N.D.
Cal. 1978); see Wilson & LaBarre, The Semiconductor Chip Protection Act of
1984: A Preliminary Analysis, 67 J. PAT. OFF. SOC'y 57, 63 (1985) (discussing
Intel Corp. v. Ringer).

100. With some misgivings, the Copyright Office began accepting mylar
sheets and photolithographic masks for semiconductor chips as technical draw-
ings. See Copyright Protection for Imprinted Design Patterns on Semiconduc-
tor Chips: Hearings Before the Subcomm. on Courts, Civil Liberties, and the
Administration of Justice of the House Comm. on the Judiciary, 96th Cong.,
1st Sess. 6 (1979) (statement of Jon Baumgarten, General Counsel, U.S. Copy-
right Office) [hereinafter cited as 1979 House Hearings].

101. See Wilson and LaBarre, supra note 99, at 64 n.29 (citing Zilog v. Nip-
pon Elec. Corp., C-83-1241-WHO (N.D. Cal. 1983); Intersil, Inc. v. Teledyne
Corp., No. C-82-4187-WHO (N.D. Cal. 1982); U.S. Int'l Trade Comm'n, Inv. No.
337-TA-153 (1983)). All the cases were settled prior to decision. See Wilson &
LaBarre, supra note 99, at 64.

102. For a summary of the background of the Semiconductor Chip Protec-
tion Act of 1984, 17 U.S.C. §§ 901-914 (Supp. II 1984), see Wilson & LaBarre,
supra note 99, at 59-69.

103. HOUSE REPORT, supra note 24, at 3-4, 1984 U.S. CODE CONG. & AD.
NEWS at 5752-53.

104. See id. at 5, 1984 U.S. CODE CONG. & AD. NEws at 5754.
105. The originality requirement under the Act appears more demanding

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

of the chips themselves, called "mask works" in the Act.l°6

The chips themselves are also protected, rather than just the
"masks" conventionally used to create them using photolitho-
graphic techniques, because chips can currently be created
without the use of a mask by electron beam etching; other tech-
niques may be used in the future.10 7 Mask work owners have
exclusive rights to reproduce the mask work, to import or dis-
tribute semiconductor products embodying the mask work, and
to induce others to reproduce, import or distribute the chip
products.108 The protection endures from ten years from the
date of registration or exploitation, whichever comes first. 0 9

The rights granted to the chip's creator are subject to a privi-
lege in others to use reverse engineering to replicate the cir-
cuitry for purposes of study or incorporation in another original
mask work, 10 as well as to a compulsory licensing scheme to
protect innocent infringers."'

III. THE TAXONOMY OF UNCERTAINTY APPLIED

As has already been suggested, the law of intellectual prop-
erty as applied to software, as well as to integrated circuits, is
confusing because both subject matters suffer from nearly all of
the kinds of uncertainties previously identified." 2 This portion
of the Article applies the taxonomy of uncertainty to issues of
software and integrated circuit protection. It concludes that
many distinctions in the law of intellectual property dissolve
under analysis when applied to software and chips.

A. FACT PROBLEMS: UNFAMILIARITY WITH SOFTWARE AND
CHIP TECHNOLOGY AND PROOF OF VIOLATIONS OF THE
SEMICONDUCTOR CHIP PROTECTION ACT

Questions of protection for software and semiconductor
chips raise problems of the kind earlier identified as microfac-
tual." 3 First, as to software, in any given case, the complexity

than that under copyright law, since it does not protect designs that are staple,
commonplace, or familiar. See 17 U.S.C. § 902(b) (Supp. II 1984); Wilson &
LaBarre, supra note 99, at 79-80 nn. 111-15.

106. 17 U.S.C. §§ 901(a)(2), 902 (Supp. II 1984).
107. Wilson & LaBarre, supra note 99, at 70 n.66.
108. 17 U.S.C. § 905 (Supp. II 1984).
109. 17 U.S.C. § 904 (Supp. II 1984).
110. 17 U.S.C. § 906 (Supp. II 1984).
111. 17 U.S.C. § 907 (Supp. II 1984).
112. See supra text accompanying notes 5-10.
113. See supra text accompanying note 7.

19851

MINNESOTA LAW REVIEW

of and unfamiliarity with either the idea of software itself, or
with some particular software, may increase the likelihood of
judicial confusion; this alone may be sufficient to make the case
difficult. It is often noted that lawyers and judges do not pres-
ently possess a sound understanding of computers.1 4 In fact, as
suggested later, this complexity and unfamiliarity may be so
pervasive that the factual difficulties in a given case become
emblematic of a general capability limitation of the judicial
system."

5

Some of the factual uncertainties that arise in disputes
about software are no different than the factual questions that
are nearly always present in litigation. Witnesses lie or become
confused, documents are lost or destroyed, memories fade.
Other factual difficulties, however, are a function of the com-
plexity and unfamiliarity of this particular subject matter.
Computer chips and software systems are hard to understand;
this complexity itself may make fact-finding more difficult. In
cases involving large systems, which will have been the work
product of many people working over time, establishing the
genealogy of a program or circuit may be very difficult. In ad-
dition, comparisons of one program to another may prove tax-
ing to the memory, attention span, and cognitive capacity of a
judge or a jury. Both kinds of factual problems--genealogy and

114. Sometimes this point is made diplomatically: "Today, most legislators,
judges, and government officials have little personal knowledge of computer
systems and software and, therefore, have at best an inadequate, and at worst
a wrong understanding." Bosworth, Hardware and Software-What Are
They?, in UNIVERSITY OF SOUTHERN CALIFORNIA LAw CENTER, FOURTH AN-
NUAL COMPUTER LAw INSTITUTE 1, 26 (1983). Others are less kind: "Now it
could be that the ineffable pleasure of working with nincompoops whose tech-
nological grasp of their cases has ranged from inaccurate to nil has been mine
alone." Lecht, DP Lawyers: Hessians of U.S. Tech Revolution, COM-
PUTERWORLD, May 16, 1983, at 784. Professor Pamela Samuelson's article is
one of the best expositions of the thesis that the inability of lawyers and
judges to understand software has had substantial effects on the development
of software law. See Samuelson, Creating a New Kind of Intellectual Property:
Applying the Lessons of the Chip Law to Computer Programs, 70 MINN. L.
REV. 471, 504-06 (1985).

115. See infra text accompanying notes 156-184. There is certainly a rela-
tionship between fact problems and capability problems. The relationship,
however, is not an identity. A particular case may be complex and present dif-
ficulties because of quarrels about the facts. It may not be the case, however,
that the pattern of factual difficulties is so general as to reflect on the capabil-
ity of the system to deal effectively with such cases. With respect to computer
software cases, after the judiciary has eliminated the pervasive unfamiliarity
that may presently constitute a capability problem, individual disputes will
continue to pose factual difficulties.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

similarity-are present in patent, copyright, and trade secret
cases, because all require some degree of similarity1i 6 and some
determination of the genealogy of the program. Both copyright
and trade secret cases involve questions of whether access ex-
isted and copying occurred.1 7 Even though trade secret protec-
tion might pose fewer conceptual problems than the other
forms of protection, it is true in the software trade secret case,
as in nearly any other trade secret case, that there may be sub-
stantial uncertainties as to whether any borrowing occurred, or
whether the borrowing led to illegitimate exploitation. No one
could testify that they saw the defendant walk out of a factory
with the idea in his head. Although some borrowings may in-
volve physical misappropriations, as many may consist of thefts
using the vehicle of the mind, the transmission of software over
phone lines, or physical removal on ubiquitous magnetic media
that may subsequently be erased.

Troublesome questions of fact also have arisen, and will
continue to arise, in cases involving integrated circuits, but
these are arguably less difficult than those arising in software
cases. The Semiconductor Chip Protection Act seems to forbid
only copying-consequently the problems of genealogy, access,
and similarity will be present, just as under conventional copy-
right and trade secret law." 8 One of the questions that arose in
the debate about the Act was how one could establish copying,
and how it could be distinguished from legitimate "reverse
engineering.""' 9

There are several possible methods available to establish
copying. One might sometimes rely on an imperfection in one

116. See supra notes 33-101 and accompanying text. The particular stan-
dards of similarity differ, of course.

117. The development of a critical system for an IBM compatible computer
by Phoenix Software Systems, Inc. is a fascinating tale of the efforts of a com-
pany to avoid the uncertainties of copying and access. A designer, who was un-
familiar with the IBM system, designed a functionally equivalent system that
was not a duplicate of the IBM system. He was denied access to information
about the IBM system deliberately and was instead given only certain critical
constraints within which to work. The system that resulted is "guaranteed"
not to infringe any IBM coyrights. PC Compatibility: Out of the Closet,
MICROCOMPUTING MAG., Aug. 1984, at 66.

118. Interestingly, the language of the Act does not mention copying. In-
stead, it makes reference to reproduction. See 17 U.S.C. §§ 901(a), 905, 906
(Supp. II 1984). Richard Stern's article in this issue, Stern, Determining Lia-
bility for Infringment of Mask Work Rights Under the Semiconductor Chip
Protection Act 70 MINN. L. REv. 271, 307-13 (1985) addresses this question.

119. 1983 House Hearings, supra note 13, at 36-37.

1985]

MINNESOTA LAW REVIEW

chip that appeared in a competitor's chip. 2 0 This, however,
would establish copying but not necessarily infringement.12 ' In
other cases, one might draw inferences from a degree of simi-
larity that could not plausibly be coincidental. In most of the
cases, however, proving copying might actually be accomplished
with relative ease because literal identity would ordinarily be
expected in a comparison of the original and copied chips. Fur-
thermore, the cost advantages of "piracy" are most substantial
in the case of the replication of the entire pattern. To make a
partial copy, it would be necessary to deconstruct the first chip
in order to determine the function of the copied, or omitted,
portion; this deconstruction would be much more expensive
than duplication of the entire pattern, even if it were not a
form of permissible reverse engineering122 Thus, the most
common form of illegitimate copying, duplication of the entire
pattern, would not likely prove very difficult to establish.

The House subcommittee received testimony concerning
the ability to distinguish between unlawful copying and lawful
reverse engineering s23 In cases involving identical patterns,
some inquiry into the process which led to the similarity would
be required to establish either improper copying or legitimate
reverse engineering.124 It was not clear whether this was a
purely hypothetical concern, or whether it would on some occa-
sions be commercially practicable for a competitor to undertake
the expense of reverse engineering the chip and then creating a

120. See 1983 House Hearings, supra note 13, at 36-37 (testimony of F.
Thomas Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.) (describing
such a situation).

121. The competitor might argue that the error was necessary in order to
duplicate accurately the functional characteristics of the chip. If the error was
deliberately reproduced after the first chip had been subjected to "reverse en-
gineering," there would be no violation of the Act. Officials from Nippon
Electric Corp. (NEC) offered just such a justification for copying the error on
the Intel chip: "If you're not 100 percent identical, you're dead. If you take
the fatal flaw out, it wouldn't be compatible." Morgan, Battling to Innovate
and Emulate: Intel v. Nippon Electric, Wash. Post, May 2, 1983, at A10, col. 1.
Whether or not that justification makes sense in the NEC case, it may in other
situations. See generally the discussion in R. STERN, SEMICONDUCTOR CHIP
PROTECTION § 1.2(B) (1986).

122. See, e.g., 1983 House Hearings, supra note 13, at 28 (testimony of F.
Thomas Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.) (pointing
out that the cost of reverse engineering a chip that cost $4,000,000 to develop
would be approximately $1,000,000 while the cost of a photographic reproduc-
tion would be only $100,000).

123. See 1983 House Hearings, supra note 13, at 35-38 (testimony of F.
Thomas Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.).

124. Id,

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

substantially similar chip. F. Thomas Dunlap, Jr., Corporate
Counsel and Secretary of Intel Corporation, suggested that in
all cases of legitimate reverse engineering there would be a
"paper trail"-a great deal of documentation which could be re-
lied upon to establish that lawful means had been used to pro-
duce what was assumed to be a substantially similar circuit.12-

Moments later, Dunlap stated, "the short answer in terms of
the majority of the cases of copying, it is going to be something
like obscenity. You will know when you see it."'126 To this
Representative Barney Frank responded, "That would make
me very nervous I like the long answer better."'' Dun-
lap thereafter decided he liked the longer answer better as
well.128 Evidence of a "paper trail" thus became the answer to
the question of how legitimate reverse engineering is distin-
guished from unlawful piracy.m Just how this will work in
practice remains uncertain.

What is the significance of the likelihood that litigation
concerning software and integrated circuits may involve a de-
gree, and perhaps a relatively high degree, of microfactual un-
certainty? At the outset, it may be appropriate for lawyers
preparing cases to be sensitive to the special demands of com-
plex cases, both in terms of preparing evidence and preparing
their clients to deal with the realization that the court is having
difficulty understanding the factual presentations. In addition,
courts and legislatures should take the likelihood of factual
complexity into account in their articulation of standards so as
to avoid creating capability problems. It is important to avoid
creating standards that require, for their meaningful applica-
tion, an order of precision of fact finding that exceeds the capa-
bility of the system.

Macrofactual uncertainties may be of even greater interest
and importance when considering the adequacy of present laws
and the prospect of shaping them for the future-whether that
shaping is to be accomplished by judicial decision or legislative
enactment. For example, proponents of vigorous protection for
software have asserted that such protection is critical if an ap-
propriate amount of capital is to be invested in software crea-

125. I. at 36.
126. Id- at 37.
127. I& at 37.
128. Id-
129. HOUSE REPORT, supra note 24, at 21, 1984 U.S. CODE CONG. & AD.

NEws at 5770.

1985]

MINNESOTA LAW REVIEW

tion and dissemination. 130 They argued that a high degree of
misappropriation was having, and would have, a negative effect
on software innovation.' 3 ' This is certainly the argument made
to justify the Semiconductor Chip Protection Act.132 The valid-
ity of this argument, however, is uncertain. Although borrow-
ing that yields increased competition may change the
profitability of a particular investment and the willingness to
continue such investments in the future, it is equally certain
that borrowing in some situations stimulates innovation and
reduces the associated costs.

Imagine, for example, software developers A and B who
comprise a well-defined fragment of the industry. Which case
will produce greater innovation? One in which A must tolerate
a substantial amount of borrowing by B, but A is free to borrow
reciprocally from B and will not face the uncertainty that
would accompany attempts to comply with strict anti-borrow-
ing rules? Or, in contrast, a case in which A and B could each
be assured of the exclusive opportunity to exploit their respec-
tive developments but could not engage in mutual borrowing?
It is important to remember that innovators and borrowers are
not mutually exclusive classes. Most innovators borrow; if bor-
rowing were not permissible, to at least some degree, it would
substantially retard the rate of innovation and increase its cost.
It is, of course, true that some who borrow do not innovate-
the pirates! 33 Even pirates, however, are a disparate lot. At
one extreme, commercial pirates engage in massive copying and
no innovation in the hope of realizing large sums of money
before being stopped. At the other extreme, hobbyists make
copies only to back up legitimately purchased copies. In be-
tween are people who copy programs for the challenge, people

130. See, e.g., Brief for Amicus Curiae the Association of Data Processing
Service Organizations, Software Industry Organization at 8-10, Dann v. John-
ston, 425 U.S. 219 (1976) (asserting that pioneering, independent software pro-
ducers would gain access to capital markets only where protection for products
is available); Brief of Amicus Curiae Whitlow Computer Systems, Inc. at 9-12,
Gottschalk v. Benson, 409 U.S. 63 (1972) (lack of patent protection would jeop-
ardize continued orderly growth of the computer programming industry).

131. See, e.g., Brief for Amicus Curiae Whitlow Computer Systems, Inc., at
14-15, Gottschalk v. Benson, 409 U.S. 63 (1972) (patent protection necessary to
insure crucial incentives for industry development).

132. See, e.g., 1983 House Hearings, supra note 13, at 3 (statement of Sen.
Charles McC. Mathias, Jr.); id at 177-78 (Letter from Warren Davis, Director,
Government Relations, Semiconductor Industry Association).

133. See Software Rentals: Piracy is the Hot New Issue, Bus. WK., Aug. 1,
1983, at 90-91 (copying of programs by people who rent or borrow programs
seen as a form of piracy).

[Vol. 7/0:533

SOFTWARE AND SEMICONDUCTORS

who copy programs because they do not have the money to buy
them, and user groups that assist one another in making copies
they could buy, but would prefer to take for free. Computer
magazines are filled with letters from software authors and
copyists, rationalizing their respective positions and often en-
gaging in name-calling, finger-pointing, and self-justification in
the process. These colloquies usually fail to make any mean-
ingful distinctions between pirates and pirates.

The Semiconductor Chip Protection Act provides a useful
example of the factual debate over the relationship between
protection and innovation. Representative Robert Kas-
tenmeier, and others, more than once asked witnesses how it
was possible to explain the pressing need for protective legisla-
tion when the semiconductor industry had grown so dramati-
cally without it in the last fifteen years. The replies suggested,
without much elaboration, that circumstances had changed.134

This response contrasts with earlier differences of opinion
within the semiconductor industry that led to the failure of a
previous attempt to create protection for chip innovators.1 3 5

Some in the industry believed that protection would defeat
healthy and necessary borrowing, while others claimed that it
would not. 36 The volatility of either the facts or the chip-pro-
ducers' perceptions of the facts is, of course, a matter of con-
cern when one is attempting to draft legislation that cannot
easily be changed to adjust to changing circumstances.

It is clear that a great deal of the evidence about the
amount of copying taking place, the reasons for that copying,
and its economic effects, is impressionistic and speculative. 37

134. See 1983 House Hearings, supra note 13, at 44 (testimony of F. Thomas
Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.).

135. See id. at 43; see also supra note 130.
136. See, e.g., 1979 House Hearings, supra note 100, at 52 (statement of Na-

tional Semiconductor Corp.) (ease of copying important to health and vitality
of industry); id. at 74 (statement of General Instrument Corp.) (patent protec-
tion would give innovator far more protection than necessary and would stul-
tify the rapid diffusion of innovative technology necessary to health of the
industry).

137. See, e.g., Note, Semiconductor Chip Protection: Changing Roles for
Copyright and Competition, 71 VA. L. REV. 249, 258 (1985) [hereinafter cited as
VIRGINIA NOTE] (noting that copying and reverse engineering-using the
terms interchangeably-are "almost universal in the industry because techno-
logical change is so rapid."); Note, The Policy Implications of Granting Patent
Protection to Computer Software: An Economic Analysis, 37 VAND. L. REV.
147, 180 (1984) [hereinafter cited as VANDERBILT NOTE] (providing a model of
the tradeoffs and concluding that protection is appropriate, but offering little
in the way of empirical basis for the conclusions). But see 1983 House Hear-

1985]

MINNESOTA LAW REVIEW

Well-established commercial innovators can be expected to
urge tough anti-copying laws, with an eye toward maximizing
the extent to which they can exploit their creations. Con-
versely, borrowers can be expected to argue that the prior inno-
vators are excessively greedy. All the participants in the debate
seem to rely on different versions of the facts; it is no wonder
that policy makers may be perplexed.

Even if one has the facts about software borrowing and a
thorough understanding of the factual relationships between
various possible standards and the costs and rates of innovation,
one would still be faced with value questions. In order to frame
appropriate rules one needs to understand not just what the
rules will do, but what one wants them to do. Even if one
knows how to get to Oshkosh, the question remains, do you
want to go there?

B. THE VALUE PROBLEM: WHAT ARE OUR OBJECTIVES AND
WHO CAN BEST IMPLEMENT THEM?

Making the rather strong assumption that one knows how
the world works when it comes to computer software and semi-
conductor chips, the formulation of standards must await an
identification of objectives. Choices must be made between al-
lowing relatively more freedom of borrowing, substantial utili-
zation of secrecy as a means of protection, and relatively more
price competition, or permitting somewhat less borrowing, less
secrecy, marginally higher investment in development, and
higher prices. Nearly every software protection or chip protec-
tion decision will have some marginal effects of this kind. To
some the choice is not difficult, but an in-depth examination of
the record of opinion reveals the expected uncertainty.138

Some articles have identified the trade-offs between rules
giving more or less protection to software developers.139 The

ings, supra note 13, at 179 (statement submitted by the Semiconductor Indus-
try Association entitled "The Economic Effects of Chip Piracy on the U.S.
Semiconductor Industry") (offering an insightful, concrete, and factually-based
analysis of the extent of chip piracy and its deleterious effects on innovation in
the semiconductor industry).

138. See infra note 139 and authorities cited therein. The costs and bene-
fits of the various forms of protection-patent, copyright, trade secret law, and
the Semiconductor Chip Protection Act-need to be evaluated separately be-
cause there is at least some difference of opinion as to the need for more ex-
tensive protection.

139. See, e.g., Gemignani, supra note 12, at 311 (patent protection would
cause few additional administrative problems for courts and Copyright Office,
but would stifle competition); Keefe & Mahn, Protecting Software: Is It

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

National Commission on New Technological Uses of Copy-
righted Works (CONTU) addressed the economic effects of as-
suring copyright protection for computer software in its
report 140 and concluded copyright protection was desirable.141

As previously noted,142 there was once a split within the semi-
conductor industry as to the value of more thorough protection
for semiconductor chips; the industry apparently united only
when market conditions changed.143 In addition, some have ar-
gued that the burdens of the chip law may exceed its
benefits. 144

Finally, briefs filed in Supreme Court cases addressing the
software issue in the context of patentability have reflected the
diversity of opinion within the computer industry. 45 For ex-
ample, some on the hardware side of the industry were, at one
time, concerned that more rigorous protection for software
might not be in their interests, and they argued that develop-
ment might be hindered if the free flow of information were

Worth All the Trouble?, 62 A.B.A. J. 906, 907 (1976) (trade secret laws might
afford sufficient protection for the industry without unnecessarily restricting
ideas, but such laws can be costly and cumbersome); Nycum, Legal Protection
for Computer Programs, 1 CoMPUTER L.J. 1, 55-57 (1978) (program patents
might aid the establishment of orderly software markets, but could also stifle
program development); Scaffetta, Computer Software Protection: the Copy-
right Revision Bills and Alternatives, 8 J. MAR. J. PRACT. & PRoc. 381, 393-95
(1975) (patentability will present practical impediments to all users of com-
puters, while lack of patent protection will diminish the staying power of mi-
nority groups in the industry); VANDERBILT NOTE, supra note 137, at 175-76
(patent protection would cause increase in technological knowledge in
software industry but could give patent holders power to charge monopoly
prices).

140. NATIONAL COMM'N ON NEw TECHNOLOGICAL USES OF COPYRIGHTED
WORKS, FINAL REPORT 23-27 (1979). Congress established the National Com-
mission on New Technological Uses of Copyrighted Works (CONTU) in 1975
to study the problems of photocopying and computer programs as they relate
to copyright protection. Id at 5-6.

141. Id at 9-14. But see id. at 27-30 (dissenting opinion of Comm'r John
Hersey) (arguing that existing laws accorded satisfactory protection for com-
puter programs).

142. See supra note 135.
143. 1983 House Hearings, supra note 13, at 44 (testimony of F. Thomas

Dunlap, Jr., Corporate Counsel and Secretary, Intel Corp.).
144. See, e.g., VIRGINA NOTE, supra note 137, at 292-95.
145. Compare Brief for Amicus Curiae the Computer Business Equipment

Manfuacturer's Association at 20-22, Dann v. Johnston, 425 U.S. 219 (1976)
(computer industry has developed in an atmosphere of free exchange of pro-
grams and nature of programs makes them ineligible for patentability) with
Brief for Amicus Curiae the Association of Data Processing Service Organiza-
tions and Software Industry Associations at 8-9, Dann v. Johnston, 425 U.S. 219
(1976) (patents on software create incentives for innovation and investment).

1985]

MINNESOTA LAW REVIEW

impaired.14 Others, at the same time, quarreled with the rosy
picture of the growth of the computer industry painted by the
dominant manufacturers.147

A related and substantial question involving conflicting
values concerns which of the legal institutions with the poten-
tial power to make decisions that are pro or anti-borrowing
should exercise that power. The preservation of the balance of
decision-making authority mandated in the Constitution sug-
gests that courts should be reluctant to make decisions involv-
ing fundamental extensions of property rights to software
developers. The Supreme Court has, in fact, referred to the
separation of powers argument in justifying judicial reluctance
to move decisively in the area.148

Finally, it is possible to argue that some value questions
have been overlooked due to basic misunderstandings of the na-
ture of computer technology. Professor Pamela Samuelson ar-
gues that the developing practice of extending copyright to the
machine-readable form of computer software sacrifices the
value of public disclosure of copyrighted works because the dis-
closure of programs in machine-readable form is not suffi-
ciently instructive. 149 That is, copyright is granted even though
meaningful disclosure has not taken place and such meaningful
disclosure has historically been the quid pro quo of copyright
protection. Samuelson sees this as a new problem because prior

146. See Brief for Computer Business Equipment Manufacturers Associa-
tion at 20-22, Dann v. Johnston, 425 U.S. 219 (1976) (opposing patentability of
software as harmful to innovation and rapid change); Brief for Amicus Curiae
the Computer Business Equipment Manufacturers Association at 16-20, Gott-
schalk v. Benson, 409 U.S. 63 (1972) (patents will adversely affect future of in-
dustry); Brief for Amicus Curiae Burroughs Corp. at 9, Gottschalk v. Benson,
409 U.S. 63 (1972) (algorithms not patentable material); Brief for Amicus Cu-
riae International Business Mach. Corp. at 19, Gottschalk v. Benson, 409 U.S.
63 (1972) (programs should not be patented).

147. "In this case the Government remains silent while the Computer
Business Equipment Manufacturers Association distorts the history of the
computer industry to assert that the 'computer industry has developed in an
atmosphere of free interchange of computer programs.'" Brief for Amicus
Curiae the Association of Data Processing Service Organizations and Software
Industry Association at 3, Dann v. Johnston, 425 U.S. 219 (1976) (quoting Brief
for Amicus Curiae the Computer Business Equipment Manufacturers Associa-
tion at 10, Dann v. Johnston, 425 U.S. 219 (1976)).

148. See Gottschalk v. Benson, 409 U.S. 63, 73 (1972) (question of patenta-
bility raises considerable problems that only committees of Congress can
manage).

149. See Samuelson, supra note 95, at 705-27. Professor Samuelson success-
fully explains that the "code book" cases are consistent with her thesis. I& at
713-14.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

to the advent of computer software in object code, it was diffi-
cult to imagine how a copyrightable work could be widely dis-
tributed in a useful form without disclosure.1 5 0 Nevertheless, it
is a problem which cries out for solution.

C. THE CAPABILITY PROBLEM: ABILITY OF LEGAL
INSTITUTIONS TO APPLY SOFTWARE

PROTECTION STANDARDS

Even assuming that the facts are understood, and that one
has a clear conception of values, and hence goals, difficulties
arise that reflect the limited capability of existing institutions
to administer defined norms.'51 Capability problems exist in
virtually all branches of the law of intellectual property, and
these problems have significant ramifications for software
protection.

Turning initially to patent law, the ability of the Patent Of-
fice to process applications on software has long been ques-
tioned. The Supreme Court in Gottschalk v. Benson 5 2 noted
that the President's Commission on the Patent System had op-
posed extending patent protection to software, partly because it
believed that the Patent Office lacked the resources and classi-
fication techniques necessary to process patent claims on
software. 5 3 As the history of litigation on the question of pat-
entability shows, the Patent Office has consistently opposed al-
lowing claims on software dominated inventions.M4 One
wonders whether this position has had more to do with the Of-
fice's concerns about practical limitations on its capacity to pro-
cess claims than with the question of whether the claims fall
within the bounds of patentable processes or devices. Some are

150. See iti at 710.
151. Some of the limitations on the capacity of the legal institutions are

language related. Although the division of language-related problems into two
portions (this section on capability and the next section on language) is an un-
easy one, it is justifiable because the capability problems are arguably perma-
nent while the language problems are capable of solution. The legal standard
of unobviousness in patent law has proven to be difficult because it functions
at an uncommonly high level of abstraction and experience will not likely lend
much definition to its intrinsic vagueness. On the other hand, some language-
related uncertainty may be relatively short-lived. Experience may eliminate
language-bound problems like the problem mentioned in the watch hypotheti-
cal, see supra text at 538-40, because, as soon as the community of watchmak-
ers adopts one language convention or another, their problem will disappear.

152. 409 U.S. 63 (1972).
153. I& at 72 (citing President's Comm'n on the Patent System, supra note

39, at 13).
154. Chandler, supra note 1, at 230-53.

1985]

MINNESOTA LAW REVIEW

skeptical of the Patent Office's fears and believe that the Office
could relatively easily meet the challenge of processing patent
claims on software.'-5

The norms of patent law generally create problems in their
administration because patent law is notorious for asking
judges to apply criteria that are almost metaphysical in charac-
ter. For example, no patent may issue in any field if the ad-
vance would be "obvious" in light of prior art.'s Someone
unfamiliar with patent law doctrine might note that, although a
bit vague and perhaps subjective, this criteria seems no more
metaphysical than "reasonableness"-a standard frequently en-
countered in many areas of law. But it turns out that what
"nonobvious" means is more subtle than one might first imag-
ine. First, imagine a person with ordinary skill in the art in
question. If the invention is in the mechanical arts, for exam-
ple, hypothesize a person with no special or extraordinary skills
in those arts.157 Then vest this ordinary mechanic with com-
plete familiarity with all of the art in the field without, some-
how, rendering the hypothetical mechanic extraordinary. Only
then ask whether this hypothetical person would have found
the advance to be obvious. This standard is so difficult to apply
reliably that its use impairs the objectivity of standards in the
patent field.

Furthermore, when patent law confronts claims involving
software, the capability problems are magnified. Fact-finders
will initially be quite unfamiliar with the art, making it diffi-
cult to construct the necessary hypothesis. Moreover, software
may be so complex that the consideration of it in its totality
may be, as a practical matter, impossible. As one author asked,
"Can any court reasonably be asked to cope with an 'invention'
two miles long?"' 58 It is one thing to tell someone to consider
something "as a whole," and quite another to actually do it. In
one sense a program is like a machine, in that it is comprised of
constituent parts, each of which functions in a predictable way,

155. "One computer science expert has stated that reviewing software pat-
ent applications for novelty, usefulness, and nonobviousness w6uld not be dif-
ficult for most computer science experts." VANDERBILT NOTE, supra note 137,
at 179 (citing Interview with Patrick C. Fisher, Chairman of the Computer Sci-
ence Department, Vanderbilt University).

156. 35 U.S.C. § 103 (1982).
157. Note that this hypothesis is being formed in the mind of one who may

be generally unfamiliar with the mechanical arts to begin with.
158. Gemignani, supra note 12, at 303. The author was referring to the SA-

BRE flight reservations system used by American Airlines. IM. at 276 & n.36.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

to contribute to the function of the whole. In another sense,
however, a program is not at all like a machine, and it may be
asking too much to suggest that one can visualize a program as
one can a machine. The interactions between the parts may be
more complex than the interaction of machine parts, and econ-
omy of code in software can sometimes create a complexity that
even other skilled programmers may find difficult to follow.

Patent law's requirement of nonobviousness is not the only
difficult task faced during the application of patent law to
software dominated invention. Another is the utilization of a
purported distinction between mathematical and non-
mathematical algorithms. 159 The distinction arose in order to
avoid the Supreme Court's holding in Gottschalk that a patent
which would preempt a mathematical formula could not is-
sue.160 There has been some debate about whether the distinc-
tion is meaningful. 161 Some have suggested that the distinction
is confusing and unnecessary 16 2 while others have characterized
it as "absurd."'1 63 It may be based on an arguably naive and
confounding distinction between formal symbol systems that
use numbers and other formal symbol systems. Therefore, to
the extent that a distinction lacks meaning in the eyes of those
who will be required to implement it, any standard that relies
on such a distinction will test, if not overcome, the capacity of
judges, lawyers, and expert witnesses.

A non-software example from patent law may prove sug-
gestive, and to some patent lawyers, I suspect, painful. In 1969,
in Anderson's-Black Rock, Inc. v. Pavement Salvage Co.,164 the
Supreme Court ruled that a patent was invalid because it was
based on an advance that was obvious. In the course of its opin-
ion, the Court noted that there was no "synergistic effect" ex-
hibited by the combination of elements.165 In 1976, the Court in

159. See Paine, Webber, Jackson & Curtis, Inc. v. Merill Lynch, Pierce,
Fenner & Smith, Inc., 564 F. Supp. 1358, 1366-68 (D. Del. 1983) (discussion and
application of the distinction).

160. See Gottschalk, 409 U.S. at 72.
161. See e.g., Davidson, supra note 1, at 641; Novick & Wallenstein, The Al-

gorithm and Computer Software Patentability: A Scientific View of A Legal
Problem, 7 RUTGERS J. COMPUTERS, TECH. & L. 313, 333-41 (1980); VANDERBILT

NOTE, supra note 137, at 172.

162. See Gemignani, Should Algorithms be Patentable, 22 JURIMETRICS J.
326, 334 (1982).

163. See Samuelson, supra note 95, at 759 n.446.
164. 396 U.S. 57 (1969).
165. Id. at 61.

1985]

MINNESOTA LAW REVIEW

Sakraida v. Ag Pro Inc.16 6 again alluded to the absence of syn-
ergistic effect in holding a patent invalid.167 The combination
of elements, according to the Court, did not "result in an effect
greater than the sum of the several effects taken separately."' 6

Since that time, a number of courts and scholars have struggled
with the standard of synergism and many have expressly re-
jected it. 169 Some suggested that the reason for the difficulty is
that synergism simply is a word that makes no sense when ap-
plied to an application for a patent on a mechanical device.'70

Others purport to find some meaning in it.171 Whatever one be-
lieves, "synergism" has been a failure as a judicial standard. It
has certainly caused a great deal of confusion; moreover, even
if one makes the strong assumption that it is an appropriate
standard by which to measure patentability, it appears to be a
standard that courts are incapable of applying in a predictable
and understandable manner. The distinction between mathe-
matical and nonmathematical algorithms is arguably subject to
the same infirmity.

Similar kinds of capability problems exist within the pres-
ent copyright law as applied to software. The unfamiliarity of
software posed, from the very outset, problems of capability.
For example, CONTU had no computer scientists, representa-
tives of the software or hardware industries, or users of sophis-
ticated systems as members. 172 The commissioners struggled
with the application of copyright principles, and arguably failed
to reach an appropriate recommendation because, collectively,
they never really understood the nature of software, especially
as embodied in machine-readable form.173 One of the funda-

166. 425 U.S. 273 (1976).
167. Id at 282.
168. Id. at 282 (citing Anderson's-Black Rock Inc. v. Pavement Salvage Co.,

396 U.S. 57, 61 (1969)).
169. For a judicial critique and rejection of synergism as a special standard

of patentability for combination patents, see Rengo Co., Ltd. v. Molins Mach.
Co., 657 F.2d 535, 543 (3d Cir. 1981), cer denied, 454 U.S. 1055 (1982), and the
cases cited therein. For a scholarly discussion and rejection of synergism,
Crossan, see Patent Law: Synergism Rejected, 56 CH. KENT L. REv. 339, 341-
48 (1980).

170. See Republic Indus., Inc. v. Schlage Lock Co., 592 F.2d 963, 968-70 (7th
Cir. 1979) ("[S]ynergism is only a figure of speech, for in its literal sense [it]
never has existed and never can exist in mechanical or hydraulic inventions.");
Crossan, supra note 169, at 341-48.

171. See Note, Patentability of Mechanical Combinations: A Definition of
Synergism, 57 TEx. L. REv. 1043 (1979).

172. Samuelson, supra note 95, at 699 n.137.
173. Id at 703-05.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

mental distinctions serving to distinguish between the protect-
able and nonprotectable in copyright law is the distinction
between idea and expression.174 This distinction, difficult
enough in cases of books and pictures, may be even more awk-
ward as applied to software. In most cases in which copying is
verbatim and complete, there is no necessity to draw a line be-
tween the protectable and the nonprotectable because some
protectable interest must have been invaded. In a case, how-
ever, in which the language of a computer program, translated
into electrical impulses, has functional characteristics, even lit-
eral copying may not free the court from the task of deciding
whether the expression was coextensive with the idea.

The Third Circuit was forced to grapple with this problem
in Apple Computer, Inc. v. Franklin Computer Corp.175 The de-
fendants had duplicated the operating system used on the Ap-
ple II computer. 76 When sued for infringement, they defended
on the ground that because there were so few choices of
software that would perform the necessary function of control-
ling disk drives even verbatim copying was privileged.177 The
defendants argued that the case was analogous to Morrissey v.
Proctor & Gamble,178 in which the First Circuit held that, be-
cause there is a privilege to borrow the idea, if there are very
few possible expressions of that idea then an otherwise imper-
missibly similar expression will be immune from the charge
that it was a copyright infringement. 179 In Apple Computer,
however, the court decided only that, in that specific instance,
other possible programs could have performed the same func-
tion, and therefore ruled for the plaintiffs. 80 If this limited
choice theory can be a credible claim of privilege in a case of
literal copying, one can only imagine how difficult it will be to
obtain reliable and objective decisions in cases in which some
changes have been introduced by copyists, and the borrowing is
not a literal, line by line, recreation.

The idea-expression distinction can be seen from one per-
spective as a question of the copyrightability of the subject mat-
ter. From another perspective, it is a question of whether or
not there was an infringement. Conceding that the plaintiff

174. See 1 M. NIMMER, supra note 83, § 2.03[D].
175. 714 F.2d 1240 (3d Cir. 1983), cert denied, 464 U.S. 1033 (1984).
176. Id at 1245.
177. I at 1253.
178. 379 F.2d 675 (1st Cir. 1967).
179. Id. at 678.
180. Apple Computer, 714 F.2d at 1252-54.

1985]

MINNESOTA LAW REVIEW

had a copyright, did defendant's borrowing violate the plain-
tiff's exclusive right? In cases of nonliteral copying that ques-
tion will almost certainly be extraordinarily difficult. The
question becomes whether the copied software is "substantially
similar" to the original. 81 Even the process of comparison will
be very difficult due to the length of many programs, the need
for comparisons between object codes in different computer
languages, and the relative unfamiliarity of judges and juries
with even simple computer programs. 8 2

Once again, the capability problems associated with semi-
conductor chips may prove, in comparison those associated with
software, more manageable. Judgments concerning literal simi-
larity at the final level of specificity of expression, the semicon-
ductor chip, might be easier to make than those involving
comparisons between software at higher levels of generality of
expression. However, some capability problems remain. Many
disputes concerning chips are likely to involve literal similar-
ity, 8 3 and one of the more difficult questions that will likely
arise under the Semiconductor Chip Protection Act in literal
similarity cases is whether the chip is sufficiently "original" to
meet the standard embodied in section 902(b). This originality
standard is higher than that of the Copyright Act, and the judi-
cial system therefore lacks experience in applying the
standard. 84

D. THE LANGUAGE PROBLEM: LEGAL TERMINOLOGY MEETS
THE COMPUTER REVOLUTION

Perhaps the most intriguing of the problems contributing
to uncertainty of the law of software protection is the problem

181. See also MINNESOTA NOTE supra note 1, at 1285-94 (arguing that the
substantial similarity test involving an application of the ordinary observer
stnadard is inappropriate and may stifle innovation if applied in the area of
computer software).

182. See Whelan Assocs., Inc. v. Jaslow Dental Laboratory, Inc., 609 F.
Supp. 1307, 1321 (E.D. Pa. 1985) (expression of idea embodied in a computer
program entitled to copyright protection even though program must be altered
and refined to be adaptable to different types of computers with different
source codes). This decision is criticized in a column by Richard Stern. See
Stern, Opinion, 5 EUROPEAN INTELL. PROP. REV. 123 (1985).

183. HOUSE REPORT, supra note 24, at 26, 1984 U.S. CODE CONG. & AD.
NEWS at 5775; Wilson & LaBarre, supra note 99, at 91. It has been suggested
that the determination of similarity may be more difficult because a purely
visual standard will not be available. In the event that this is not true, the
standard of similarity may be inordinately difficult to apply.

184. See supra note 105.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

of language. The vocabulary of existing law is frequently inad-
equate to the challenge posed by software, and, if that were not
enough, the language of software itself is not mature enough to
provide the vocabulary for legal norms. Both kinds of problems
promote uncertainty. Legal vocabulary often fails when em-
ployed in cases involving software, and the language of the
software technician is flawed when used as the reference point
for legal rules.

One example of the inadequacy of legal norms as applied to
software is drawn from patent law and is the application of the
so-called "mental steps" doctrine, i.e., no patentable process
may include "mental steps."'18 Whether or not the standard is
a wise one, in most cases in which it was utilized, it was applied
within tolerable limits of uncertainty because only human
brains were conceived as being capable of mental steps.'18

Early in the development of the argument over the patentabil-
ity of software, it was observed that the computer does some-
thing remarkably like thinking and it was therefore argued
that a process containing a computer therefore contained
mental steps. 187 It appears now that the doctrine will not be
applied to software, even though what a computer does is in
some respects analogous to thinking.188 In fact, some artificial
intelligence researchers would probably argue it is fundamen-
tally the same, 89 but that discussion is beyond the scope of this
Article. The mental steps debate, however, is fairly typical of
the kind of problem that arises when a new phenomenon sur-
faces which cannot comfortably be accommodated within the
pre-existing vocabulary.

We have seen, for example, the difficulty in characterizing
computer software as a process or a device.L9° The difficulty
arises because of the extraordinary capacity of software to
bridge the gap that normally exists between the description of
the thing and the thing itself. On one hand most computer

185. See, e.g., In re Abrams, 188 F.2d 165, 166 (C.C.P.A. 1951) (Counsel for
appellant suggested a rule of law stating that "If all the steps of a method
claim are purely mental in character, the subject matter thereof is not patent-
able within the meaning of the patent statutes.").

186. Abrams, 188 F.2d at 169-70.
187. The Patent Office in In re Prater, 415 F.2d 1393 (C.C.P.A. 1968) had

taken the position that a digital computer contained mental steps; the CCPA
reversed holding that there was no issue concerning "mental steps" with re-
gard to the item sought to be patented. I& at 1406.

188. In re Musgrave, 431 F.2d 882, 888-89 (C.C.P.A. 1970).
189. See D. HOFsTTADER, supra note 11, at 594-680.
190. See supra notes 45-60.

19851

MINNESOTA LAW REVIEW

software in its written, source code, form seems to describe a
process for manipulating information or symbols. 191 A
programmer can, in the course of reading from the printed pro-
gram, step through the process of manipulation; this is in fact a
very common way to find errors in programs.192 On the other
hand, a programmer sometimes begins to work with the pro-
gram in its entered form, in the state in which it is more nearly
analogous to a set of switches. 93 A programmer may "peek" at
a location in the computer's memory registers, and in that way
determine the state of the operation at that moment and
whether some manipulation is required.194 It must be
remembered that much of the time the entire program "re-
sides" in the computer's memory, like a machine, and at any
particular moment only some parts of it are "working." The
program may also modify itself as it operates, changing values
of variables, and reshaping itself in other ways. The program
may have, on one hand, a static aspect and yet, on a command,
become a dynamic, changing thing. A particular program may,
in some applications, be "burned in" so that it has a perma-
nence that makes it more useful and usually faster. In fact, it
would be theoretically possible to build a hard-wired version of
virtually any program, or at least of substantial portions of
most programs. 195 It is therefore open to question whether the
program is more like a wiring diagram, and so a machine, or
more like a description of a process, implemented on a
machine. It appears that, because of the uncertainty about the
balance between hardware and software in any given case, it
has become useful for computer scientists to speak of the hard-
ware plus the software in their interactive state as the "virtual
machine" or the "virtual computer."'196

The pre-existing distinction between machine and process
did not need to be sharp before the software challenge arose.
Language is shaped by the functions it serves, and it is there-
fore not surprising that no pre-existing distinction was ready to

191. See supra notes 17-19 and accompanying text.
192. Although more complex programs generally rely on error trapping

routines, stepping through the program remains an important way to find and
correct problems in the program.

193. See supra notes 20-22 and accompanying text.
194. See, e.g., L. POOLE, THE APPLE IHC USER'S GUIDE 133, 393-94, 427-33

(1985).
195. See supra note 22.
196. Samuelson, supra note 95, at 680 n.61.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

be taken from the shelf, to be used in light of the new
phenomenon.

Another possibility exists, namely that a computer pro-
gram is a computer program and is neither process nor
machine. Efforts to capture the essence of a program within
the dichotomy of process or machine may be ill-conceived. It
has been argued that computer programs in machine-readable
form should be protected, if at all, by a new law specifically
designed to deal with the special problems of such creations. 197

Once again the comparison with semiconductor chips is instruc-
tive. The Semiconductor Chip Protection Act constitutes a rec-
ognition, in part at least, that pre-existing categories simply
were inadequate to deal with a new technology. Because the
"fit" of the old rule to an utterly new phenomenon was so im-
perfect, it was necessary to create a new form of protection that
was designed with the new technology in mind.198 Although it
might be tempting to believe a similar solution would be appro-
priate for software, such a solution might be more difficult to
achieve because the diversity of software itself, as compared to
semiconductor chips, poses a different kind of problem. That is,
semiconductor chips are, it seems, a more narrowly defined
class of creations and thus better suited to a special form of
protection.

In a 1908 copyright case, which may have been the first
software case, the Supreme Court was confronted with the
question of whether a piano roll was a copy of a musical
work.199 The Court, perhaps due to a conceptual blind spot,
ruled that the piano roll was not a copy, a decision that created
headaches for copyright lawyers, songwriters, record compa-
nies, and software proprietors for more than six decades. The
Court could not accept the proposition that the embodiment of
information in a form not directly perceptible by humans could
be a copy. The pre-existing formulation of the standard proved
inadequate in the face of a new kind of embodiment of an intel-
lectual creation. Similarly, in 1979, in one of the last cases de-
cided under the 1909 copyright statute, a federal court ruled
that a computer program stored on a ROM chip could lawfully
be copied because in that form it was not a copy of the writing
that was the program, just as the information stored on the pi-

197. See Samuelson, supra note 95, at 663, 671.
198. See Samuelson, supra note 114, at 486-501.
199. White-Smith Music Co. v. Apollo Co., 209 U.S. 1, 18 (1908).

1985]

MINNESOTA LAW REVIEW

ano roll was not a copy of the song.2°° Some might argue that
in these cases the problem was really not a problem of vocabu-
lary, for one does not need to violate the boundaries of a sensi-
ble definition of "copy" in order to include a device that stores
information in a format not immediately accessible to humans,
but rather a problem of imagination and conceptualization
when faced with a new technology. Others might find that the
utilitarian nature of the piano roll, which plays an active role in
the mechanical operation of the piano, is enough to distinguish
it from other, passive, information storage devices.

Another example drawn from copyright law relates to the
copyright truism that copyright does not entitle one to control
the art that is the subject of a copyrighted explanation, even in
a case in which the art described is the original creation of the
author.20 1 Even though one may copyright a set of building
plans, that copyright does not prevent another from construct-
ing the building revealed in those plans.20 2 One may copyright
a book describing a bookkeeping system, but that confers no
control over the use or exploitation of the system itself.20 3 It

could be asserted that this principle should be applied to
software, and that the source code version of a computer pro-
gram is to the object code version as the architect's plans are to
the building.20 4 Some commentators, however, have expressly
rejected what they call the "fallacy" of this analogy.20 5 The ac-
ceptance of the analogy would certainly render copyright pro-
tection for programs incomplete because, by copying the object
code version of the program, a pirate could escape the purview
of copyright protection. The pirate would not, of course, be en-
titled to recreate the source code, though that would likely be
unnecessary once the pirate had copied the object code version.
Once again, the meaning of a legal standard is uncertain in the
context of an entirely new phenomenon.

The second of the language related dilemmas is the reverse
aspect of this problem. Existing legal standards may be ex-
pressed in language that is of uncertain value when used to ar-

200. Data Cash Sys. v. JS&A Group, Inc., 480 F. Supp. 1063, 1068 (N.D. Ill.
1979), affd on other grounds, 628 F.2d 1038 (7th Cir. 1980).

201. Baker v. Selden, 101 U.S. 99, 102 (1879).
202. Scholz Homes, Inc. v. Maddox, 379 F.2d 84, 86-87 (6th Cir. 1967).
203. Baker v. Selden, 101 U.S. at 102.
204. This is, essentially, the action the district court took in Apple Com-

puter, Inc. v. Franklin Computer Corp., 545 F. Supp. 812, 823 (E.D. Pa. 1982),
rev'd, 714 F.2d 1240 (3d Cir. 1983), cert denied, 464 U.S. 1033 (1984).

205. See Davidson, supra note 1, at 630.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

ticulate that standard for application to a new technology.
Moreover, because legal standards rely on the existence of
meaningful categorization of the phenomenon subject to regula-
tion, it is necessary to find a way to define the boundaries of
those categories. Usually there is an adequate existing vocabu-
lary, whether it is comprised of words of ordinary meaning or a
specialized language utilized by those in the trade. This vocab-
ulary can be used to capture the distinctions that the law uses
to mark the in and the out, the permitted and the forbidden.
Computer technology, however, has been advancing so quickly
that there may be no stable body of distinctions and associated
terms that can be adopted for the purposes of standard set-
ting.2° 6 Technicians develop a language, as they feel the need,
in order to serve their own objectives. In a fast moving field,
there may be no term which adequately captures the distinction
that legal policy demands. Even if, for a time, there seems to
be such a term, it may undergo its own kind of technological
obsolescence and come to mean something else, or in fact be-
come meaningless.

20 7

Perhaps the most dramatic example of the instability of
language in the interaction of software and the law of intellec-
tual property is the dissolution of the distinction between hard-
ware and software. Early legal argument seemed to make

206. [T]he function provided by software .. .does not even have, at this
point, a useful taxonomy." Bacon, supra note 28, at 775. The author later
notes that, "[s]ince the work that computers do will be driven by the virtually
uncountable numbers of tasks that humans may want to undertake, one begins
to see why it is so difficult to develop a taxonomy of computer software at any
but the most primitive logical levels." I&L at 777.

207. A vivid example of this outside the software field can be found in the
criminal law. The medical specialty dealing with mental disorders has devel-
oped a vocabulary designed to capture medically significant distinctions. Some
of those concepts and the related vocabulary were borrowed from psychiatry
and proved influential in the development of the concept of responsibility in
the criminal law. Psychiatrists were, and remain, frequent participants in tri-
als in which the issue is the responsibility of an accused, and the language of
the rapidly changing medical field is often employed in the application of the
legal norms. Only recently have doctors and others suggested that the termi-
nology within which the medical opinions were given is a terminology reflect-
ing an underlying set of criteria relevant to the medical question of treatment,
but not necessarily relevant to the legal or moral question of responsibility.
That is, the question of whether a person was in need of treatment differs
from the question of whether it is appropriate to incarcerate that same person
in order to serve the purposes of the criminal law. See M. FOUCAULT, Disc:-
PLINE AND PUNISH: THE BIRTH OF THE PRISON 19-22 (1977); M. FOUCAULT,
MADNESS AND CIVILIZATION: A HISTORY OF INSANITY IN THE AGE OF REASON
221-40 (1965).

1985]

MINNESOTA LAW REVIEW

much of this distinction, and seems to continue to make much
of it at a time when it is becoming increasingly less significant
within computer technology. The concept of "firmware" has
been introduced, and those familiar with the field have begun
to realize that, to some extent, the hardware-software distinc-
tion is not a categorical distinction, but rather names two ends
of a continuum that refers to the form of storage of a digital
logic system.208 It seems that in many cases the question of
whether a particular advance will be embodied in hardware or
software is a matter of choice, a choice driven by the function
to be played by the programmed unit, rather than some inher-
ent difference between hardware and software. 20 9 Not only
may doctrinal language be meaningless when applied to new
phenomena, and words fail to make some legal, as opposed to
technical distinctions, but errors can creep into the analysis
through the use of words to which we do not attach technical
significance. It seems that CONTU made just such an error in
the use of the word "read" in its report.210 The word "read", as
most of us use it, has to do with the process of human interpre-
tation of printed language. We all know what it means to read
something. Computer scientists also use the word "read", but
they mean something quite different. "Read," when used by
computer scientists, describes a process of retrieving or loading
signals electronically and is only in some respects analogous to
our use of "read" in everyday speech. It is critical to realize
that a great deal of the language of computers is language by
analogy. Available words are used as metaphors and can easily
be misunderstood if interpreted literally.

CONCLUSION

What does all of the preceding mean? It has not been my
intention to confuse, though I may on occasion have appeared
to transform simplicity into complexity. My purpose has been

208. See Sprowl, sup-ra note 15, at 785-98.
209. The forces which affect this choice are usefully explored in Stern,

MicroLAW, IEEE MicRo, Feb. 1983, at 74-75. The author speculates that one
possible factor influencing the decision whether to embody an advance in
software instead of in hardware is the perceived legal bias against hardware.
"The law seemed to be more willing to protect the earlier software... against
copying by competitors than the later, more efficient hardware." He concludes
that passage of the Semiconductor Chip Protection Act may have "counter-
acted the artificial bias that the legal system was imposing on product engi-
neering." Id

210. Samuelson, supra note 95, at 724.

[Vol. 70:533

SOFTWARE AND SEMICONDUCTORS

simply to explain what I believe to be the sources of some of
the uncertainty and confusion that has surrounded efforts to
grapple with legal protection for computer software and semi-
conductor chips and to suggest that, in the absence of sui
generis protection legislation for software much like that di-
rected to semiconductor chips,21 1 only patience may be appro-
priate. To the extent that the meaningful application of rules
requires understanding of the facts, it may be some time before
the legal profession, including the judiciary, and other organs of
government can develop that mastery. To the extent that there
is no consensus as to the objectives that the rules are intended
to serve, it is not surprising that the rules themselves are un-
certain. To the extent that the rules are to be sensible, they
must embody administrable distinctions, and the agencies asked
to apply the rules must have resources adequate to the task.
Finally, the law can scarcely be expected to provide clear rules
until it has the language tools which are prerequisites to draw-
ing the distinctions all rules require. Those distinctions must
make sense as a matter of legal policy, but they also must be
based on distinctions that are meaningful within the technology
itself. To the extent that the technological language is new, or
changing, or inadequate, the law will necessarily mirror those
inadequacies. It is important to avoid doing, in the short run,
anything that will prevent us from doing, in the long run, what
is sensible.

211. Professor Samuelson argues for just such a development, to be initi-
ated by another commission, much like CONTU, but dominated by computer
scientists who are more likely to understand the technology than were the
members of CONTU. Samuelson, supra note 95, at 762-69.

Richard Stern has offered a provocative suggestion for sui generis
software protection. See Stern, MicroLAW, IEEE MICRo, Apr. 1984, at 69-70;
Oct. 1983, at 49-52; Aug. 1983, at 88-91; June 1983, at 62-64.

1985]

	University of Minnesota Law School
	Scholarship Repository
	1986

	Software and Semiconductors: Why Are We Confused
	John A. Kidwell
	Recommended Citation

	Software and Semiconductors: Why Are We Confused

