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Abstract

Variational data assimilation technique applied to identification of optimal approximations
of derivatives near boundary is discussed in frames of one-dimensional wave equation.
Simplicity of the equation and of its numerical scheme allows us to discuss in detail as
the development of the adjoint model and assimilation results. It is shown what kind of
errors can be corrected by this control and how these errors are corrected. This study is
carried out in view of using this control to identify optimal numerical schemes in coastal
regions of ocean models.
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1. Introduction.

It is now well known, even the best model is not sufficient to make a good forecast.
Any model depends on a number of parameters, requires initial and boundary conditions
and other data that must be collected and used in the model. However, interpolating or
smoothing observed data is not the best way to incorporate these data in a model. Lorenz,
in his pioneer work [1] has shown that a geophysical fluid is extremely sensitive to initial
conditions. This fact requires to bring the model and its initial data together, in order to
work with the couple ”model-data” and to identify the optimal initial data for the model
taking into account simultaneously the information contained in the observational data
and in the equations of the model.

Optimal control methods [2] and perturbations theory [3] applied to the data assimi-
lation technique ([4], [5]) show the way to do it. They allow to retrieve an optimal initial
point for a given model from heterogeneous observation fields. Since the early 1990’s,
many mathematical and geophysical teams have been involved in the development of the
data assimilation strategy. One can cite many papers devoted to this problem, as in the
domain of development of different techniques for the data assimilation and in the domain
of its applications to the atmosphere and oceans.

However, overwhelming majority of data assimilation methods are now intended to
identify and reconstruct an optimal initial point for the model. Since Lorenz [1], who
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has pointed out the importance of precise knowledge of the starting point of the model,
essentially the starting point is considered as the control parameter and the target of the
data assimilation.

Of course, the model’s flow is extremely sensitive to its initial point. But, it is rea-
sonable to suppose that a geophysical model is also sensitive to many other parameters
like bottom topography, boundary conditions on rigid and open boundaries, forcing fields
and friction coefficients. All these parameters and values are also extracted in some way
from observational data, interpolated to the model’s grid and can neither be considered as
exact, nor as optimal to the model. On the other hand, due to non-linearity and intrinsic
instability of model’s trajectory, its sensitivity to all these external parameters may also
be exponential.

Numerous studies show strong dependence of the model’s flow on the boundary data
([6], [7]), on the representation of the bottom topography ([8], [9], [10]), on the wind
stress ([11], [12]), on diffusivity coefficients ([13]) and on fundamental parametrization
like Boussinesq and hydrostatic hypotheses [14]. But few papers are devoted to the
development of data assimilation techniques intended to identify and to control these
model’s parameters. One can cite several attempts to use data assimilation in order to
identify the bottom topography of simple models ([15], [16]) and in order to control open
boundary conditions in coastal and regional models ([17], [18], [19]). Boundary conditions
on rigid boundaries have been controlled by data assimilaton for heat equation (see for
example [20], [21]), but this control concerns the diffusion operator rather than transport
and advection type operators used in geophysical models.

This paper presents a preliminary study of using variational data assimilation in order
to identify an optimal parametrization of boundary flows and boundary conditions on
rigid boundaries. Despite the boundary configuration of the ocean is steady and can
be measured with much better accuracy than the model’s initial state, it is not obvious
how to represent it on the model’s grid because of limited resolution. The coastal line of
continents possesses a very fine structure and can only be roughly approximated by the
model’s grid. Consequently, boundary conditions are defined at the model grid’s points
which are different from the coast. Even the most evident impermeability condition being
placed at a wrong point may lead to some error in the model’s solution. From physical
point of view, we should accept the flux can cross the boundary in places where the
boundary is in water, prescribing some integral properties on the flux.

Even in a fine resolution model when boundary currents are explicitly resolved, it is
not clear what kind of boundary conditions to prescribe for tangential velocities. However,
prescribing slip or no-slip conditions may result in a drastic change of the global circulation
(see [6]).

Consequently, it may be reasonable to use variational data assimilation in order to
determine what boundary conditions are optimal for the model’s variables. However,
instead of controlling boundary conditions themself, it may be more useful to identify
optimal discretization of differential operators in points adjacent to boundaries because
this is more general case. Indeed, boundary conditions participate in discretized operators,
but considering the discretization itself, we take into account additional parameters like
the position of the boundary, lack of resolution of the grid, etc.

In this paper we use data assimilation to control the discretization of derivatives in
adjacent to boundary grid points. The development of the data assimilation is illustrated
on the example of the simplest one-dimensional wave equation. On one hand, the sim-
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plicity of the equation allows us to clearly see technical points of the development (like
the algorithm of differentiation and development of the adjoint equation) without being
overwhelmed by complexity of operators and grids. On the other hand, the knowledge
of the exact solution and of the errors of numerical discretization of the wave equation
allow us to clearly see how these errors are corrected by data assimilation. The purpose
of the paper is to study the possibility to control boundary numerical scheme by data
assimilation and the particularities of this type of control in view to develop and use the
data assimilation to identify optimal numerical scheme in coastal regions of ocean models.

The paper is organized as follows. The second section describes the model, its ad-
joint and the data assimilation procedure. The third section is devoted to numerical
experiments and discussion.

2. One-dimensional wave equation

As it has been noted in the introduction, we consider one-dimensional wave equation
written for u = u(x, t) and p = p(x, t) in the following way:

∂u

∂t
− ∂p

∂x
= 0

∂p

∂t
− ∂u

∂x
= 0 (1)

This equation is defined on the interval 0 < x < 1 with boundary conditions prescribed
for u only:

u(0, t) = u(1, t) = 0 (2)

Initial conditions are prescribed for both u and p

u(x, 0) = ū, p(x, 0) = p̄ (3)

The equation is discretized on a regular grid that is somewhat similar to Arakawa’s C
grid in two dimensions:

ui = u(ih) for i = 0, . . .N

pi−1/2 = p(ih − h/2) for i = 1, . . .N (4)

with h = 1
N . This grid is well adapted to the prescribed boundary conditions because

the boundary points x = 0 and x = 1 belong to the grid for u discretization, but do not
belong to p-grid.

u0 u1 u2 u3 uNuN−1uN−2uN−3

p1/2 p3/2 p5/2 pN−1/2pN−3/2pN−5/2

Discrete derivatives of u and p are defined as follows

(
∂p

∂x

)

i
=

1

h

2∑

j=−1

ajpi+j−1/2

(
∂u

∂x

)

i+1/2
=

1

h

2∑

j=−1

ajui+j (5)
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at all internal points in the interval, i.e. 2 ≤ i ≤ N − 2 for
(

∂p
∂x

)

i
and 1 ≤ i ≤ N − 2

for
(

∂u
∂x

)

i+1/2
. Coefficients aj are supposed to be known because we intend to control

approximations near the boundary only. In this paper, we use either the sequence aj =

(0,−1, 1, 0) or the sequence aj = 1
24(1,−27, 27,−1) for j = (−1, 0, 1, 2). One can easily

see that corresponding approximations are of second and of fourth order approximation

pi+1/2 − pi−1/2

h
=

(
∂p

∂x

)

i
+

h2

24

(
∂3p

∂x3

)

i
+ O(h3)

pi−3/2 − 27pi−1/2 + 27pi+1/2 − pi+3/2

24h
=

(
∂p

∂x

)

i
− 3h4

640

(
∂5p

∂x5

)

i
+ O(h5) (6)

To be able to solve numerically the equation (1), we need also to approximate deriva-
tives of u and p near boundaries at points i = 1/2, N − 1/2 and i = 1, N − 1 respectively.
These approximations are supposed to be different from (5) and include the control vari-
ables in this study. Moreover, expressions (5) can not be used at all for the fourth order
approximation because they require function’s values beyond the boundary: u−1 and
p−1/2. We can, of course, extrapolate u and p beyond the domain with the necessary
order and substitute extrapolated values in (5), but it is not obvious what extrapolation
formula is the best for this purpose, especially for p. So, in order to obtain an optimal
boundary approximation assimilating external data, we suppose nothing about derivatives
near the boundary points and write them in a general form

(
∂p

∂x

)

1
=

1

h

J∑

j=0

αp
jpj+1/2

(
∂u

∂x

)

1/2
=

1

h

J∑

j=0

αu
j uj (7)

We do not fix the value of J in these formula intentionally because we shall see further
its influence.

Here we can emphasize the choice to control the numerical scheme in the boundary
region rather than boundary conditions. The general form of boundary conditions that
may be prescribed for u variable of the one dimensional wave equation writes

u(0, t) − A
∂u

∂x
(0, t) = B.

We can not impose more complex boundary conditions (with second derivatives, for ex-
ample) because we obtain a system with no solution at all. Consequently, we can control
only two parameters, A and B. It may be sufficient in particular cases, but, as we shall see
further, is not sufficient in general. However, controlling all coefficients of the numerical
scheme (7), we are free to choose as many αj as we need defining appropriate value of the
parameter J .

We distinguish αp and αu allowing different derivatives approximations for p and for
u because of the different nature of these two functions and different boundary conditions
prescribed for them. Derivatives at the opposite side are calculated by

(
∂p

∂x

)

N−1
= −1

h

J∑

j=0

α̃p
jpN−j−1/2
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(
∂u

∂x

)

N−1/2
= −1

h

J∑

j=0

α̃u
j uN−j (8)

and coefficients α̃p and α̃u are also considered as unknown control parameters different
from αp and αu. All together, we have 4(J + 1) control parameters.

Time stepping is performed by leap-frog scheme

un+1
i − un−1

i

2τ
−
(

∂p

∂x

)n

i
= 0,

pn+1
i−1/2 − pn−1

i−1/2

2τ
−
(

∂u

∂x

)n

i−1/2
= 0 (9)

The first time step is splitted into two stages in order to ensure second order approximation
in time and to avoid typical leap-frog splitting between odd and even timesteps.

u
1/2
i − u0

i

τ/2
−
(

∂p

∂x

)0

i
= 0,

u1
i − u0

i

τ
−
(

∂p

∂x

)1/2

i
= 0,

p
1/2
i−1/2 − p0

i−1/2

τ/2
−
(

∂u

∂x

)0

i−1/2
= 0,

p1
i−1/2 − p0

i−1/2

τ
−
(

∂u

∂x

)1/2

i−1/2
= 0. (10)

Approximation of the derivative introduced by (5) and (7) depends on control variables
α. The operator is not completely defined as in usual schemes, but it is allowed to change
its properties near boundaries in order to find the best fit with requirements of the model
and data. To assign variables αp and αu we shall perform data assimilation procedure
and find their optimal values.

2.1. Tangent and adjoint equations

First of all, we calculate the Gateaux derivative of the operator with respect to control
parameters. Control variables are supposed to have small variations and we determine
how these variations will perturb the solution of the model. Thus, we suppose that all α
are replaced by some α + δα such that ‖δα‖ << ‖α‖. Let the model with α + δα have a
new solution u + δu, p + δp. In this case, variables δu, δp must satisfy

∂δu

∂t
− D(p)δp − δD(p)p − δD(p)δp = 0

∂δp

∂t
− D(u)δu − δD(u)u − δD(u)δu = 0 (11)

where operators D(p)(αp) and D(u)(αu) are approximations of derivatives defined by (5),
(7), and (8), i.e. for the p derivative

D(p)(αp) =
1

h





αp
0 αp

1 αp
2 αp

3 · · · 0 0 0 0
a−1 a0 a1 a2 · · · 0 0 0 0
0 a−1 a0 a1 · · · 0 0 0 0
· · · · · · · · ·
0 0 0 0 · · · a0 a1 a2 0
0 0 0 0 · · · a−1 a0 a1 a2

0 0 0 0 · · · −α̃p
3 −α̃p

2 −α̃p
1 −α̃p

0





(12)
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Operators δD(p) and δD(u) are the differences

δD(p) = D(p)(αp + δαp) − D(p)(αp) =
1

h





δαp
0 δαp

1 · · · 0 0
0 0 · · · 0 0
· · · · · · · · ·
0 0 · · · 0 0
0 0 · · · −δα̃p

1 −δα̃p
0




(13)

and similarly for operators δD(u) and D(u).
However, expressions δD(p)p and δD(u)u in (11) are not convenient to make further

development. Writing an adjoint operator, we would better have a constant operator,
which does not depend on δα, multiplied by a variable vector which depends on δα. This
is the case in products D(p)δp where δp depends on δα, but it is not the case in products
like δD(p)p where p is solution of original equation and has no relation with δα. It would
be more convenient to rewrite these products:

δD(p)p =
1

h





J∑
j=0

δαp
jpj+1/2

0
...
0

−
J∑

j=0
δα̃p

jpN−j−1/2





= P̂ ~δαp δD(u)u =
1

h





J∑
j=0

δαu
j uj

0
...
0

−
J∑

j=0
δα̃u

j uN−j





= Û ~δαu

(14)
where operators P̂ and Û are constructed from the solution p and u of the original
equation. Their matrices have non-zero elements in the first and in the last lines only:

P̂1 = (p1/2, p3/2, · · · , pJ+1/2, 0, · · · , 0︸ ︷︷ ︸
J+1 times

), P̂N = ( 0, · · · , 0︸ ︷︷ ︸
J+1 times

, pN−J−1/2, · · · , pN−1/2)

Û1 = (u0, u1, · · · , uJ , 0, · · · , 0︸ ︷︷ ︸
J+1 times

), ÛN−1 = ( 0, · · · , 0︸ ︷︷ ︸
J+1 times

, uN−J , uN−J+1, · · · , uN) (15)

Vectors ~δαp and ~δαu are extracted from matrices δD(p), δD(u):

~δαp = (δαp
0, δα

p
1, δα

p
2, . . . , δα

p
J , δα̃p

J , δα̃p
J−1, . . . , δα̃

p
0)

t

~δαu = (δαu
0 , δα

u
1 , δα

u
2 , . . . , δα

u
J , δα̃u

J , δα̃u
J−1, . . . , δα̃

u
0)

t (16)

It has to be noted, that operators P̂ and Û act from the space of the control variable α
to the space of the model’s solution u or p. Their matrices, consequently, are rectangular.
Their dimensions are N × 2(J + 1) and (N − 1) × 2(J + 1) respectively.

So far, both δα and (δu, δp) are supposed to be small, we neglect their products in
(11) and get

∂δu

∂t
= D(p)δp + P̂ ~δαp

∂δp

∂t
= D(u)δu + Û ~δαu (17)

6



with the same boundary conditions (2) for (δu, δp). At initial time both δu and δp are
taken to be zero because our study is confined at evolution of a pure perturbation due to
boundary scheme.

The same time stepping as in (9) is applied to (17):

δun+1 − δun−1

2τ
= D(p)δpn + P̂ n ~δαp,

δpn+1 − δpn−1

2τ
= D(u)δun + Ûn ~δαu (18)

The first step of the tangent linear model (17) is written according to the scheme (10).
Taking into account the zero initial condition δu(x, 0) = 0, δp(x, 0) = 0 we write

δu1/2 =
τ

2
P̂ 0 ~δαp, δp1/2 =

τ

2
Û0 ~δαu

δu1 = τ(D(p)δp1/2 + P̂ 1/2 ~δαp), δp1 = τ(D(u)δu1/2 + Û1/2 ~δαu) (19)

Equation (18) can be rewritten in a matricial form:





δun+1

δun

δαu

δpn+1

δpn

δαp





=





0 I 0 2τD(p) 0 2τP̂ n

I 0 0 0 0 0
0 0 I 0 0 0

2τD(u) 0 2τÛn 0 I 0
0 0 0 I 0 0
0 0 0 0 0 I









δun

δun−1

δαu

δpn

δpn−1

δαp





(20)

with the first step (19)





δu1

δu0

δαu

δp1

δp0

δαp





=





τ 2

2 D(p)Û0 τP̂ 1/2

0 0
I 0

−τÛ1/2 τ 2

2 D(u)P̂ 0

0 0
0 I





(
δαu

δαp

)

(21)

To obtain the adjoint model for euclidean scalar product, we introduce adjoint variables

(φn
u, φ

n+1
u , ξn

u , φn
p , φ

n+1
p , ξn

p )t (22)

and write backward evolution with transpose matrices (20)





φn−1
u

φn
u

ξn−1
u

φn−1
p

φn
p

ξn−1
p





=





0 I 0 2τ(D(u))∗ 0 0
I 0 0 0 0 0

0 0 I 2τ(Ûn)∗ 0 0
2τ(D(p))∗ 0 0 0 I 0

0 0 0 I 0 0

2τ(P̂ n)∗ 0 0 0 0 I









φn
u

φn+1
u

ξn
u

φn
p

φn+1
p

ξn
p





(23)
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The last step of the adjoint model is the adjoint of the first step of the tangent model:

(
ξ0
u

ξ0
p

)

=




τ 2

2 (Û0)∗(D(p))∗ 0 I τ(Û1/2)∗ 0 0

τ(P̂ 1/2)∗ 0 0 τ 2

2 (P̂ 0)∗(D(u))∗ 0 I









φ1
u

φ2
u

ξ1
u

φ1
p

φ2
p

ξ1
p





(24)

where operators (Ûn)∗, (D(p))∗, (P̂ n)∗, (D(u))∗ are adjoints to (12) and (15).
We can see that the right hand side of the tangent linear model (17) is composed by

two terms: D(p)δp, or D(u)δu and P̂ ~δαp, or Û ~δαu. The first one, (12), is responsible for
the evolution of a small perturbation by the model’s dynamics, while the second one,
(15), determines the way how the uncertainty is introduced into the model. The first
term is similar for any data assimilation, while the second one is specific to the particular
variable under identification. This term is absent when the goal is to identify the initial
point because the uncertainty is introduced only once, at the beginning of the model
integration. But, when the uncertainty is presented in the approximation of derivatives
near the boundary, or some other internal parameter of the model or of its numerical
scheme, the perturbation is introduced at each time step.

2.2. Cost function

To perform variational data assimilation we introduce the following cost function:

I(α) =

T∫

0

1∫

0

u(α, x, t) − uobs(x, t))2 + (p(α, x, t) − pobs(x, t))2dxdt =

=

T∫

0

‖
(

u(α, x, t) − uobs(x, t)
p(α, x, t) − pobs(x, t)

)

‖2dt (25)

where the norm corresponds to Euclidean scalar product

‖
(

u(x, t)
p(x, t)

)

‖2 =<<

(
u(x, t)
p(x, t)

)

,

(
u(x, t)
p(x, t)

)

>>=

1∫

0

u2(x, t) + p2(x, t)dx (26)

We suppose we have observations for all variables at any time. For numerical experiments
in this paper we shall use the exact solution of the equation (1) as observations. This will
help us to see the assimilation procedure and its results in the simplest and clear form.
When this technique is applied to more complex model for which the exact solution is not
available, we can use either real observations or the model’s solution on a finer grid.

To calculate the gradient of the cost function, we calculate first its variation

δI = I(α + δα) − I(α) =

= 2

T∫

0

<<

(
u(α, x, t) − uobs(x, t)
p(α, x, t) − pobs(x, t)

)

,

(
δu(x, t)
δp(x, t)

)

>> dt =

= 2

T∫

0

<<

(
u(α, x, t) − uobs(x, t)
p(α, x, t) − pobs(x, t)

)

, T (t)

(
δαu

δαp

)

>> dt =

8



= 2

T∫

0

<<A(t)

(
u(α, x, t) − uobs(x, t)
p(α, x, t) − pobs(x, t)

)

,

(
δαu

δαp

)

>> dt (27)

where T (t)

(
δαu

δαp

)

is the tangent model (21),(20) integrated from t = 0 to t and A(t) is

the adjoint model integrated from t to 0.
Thus, the gradient of the cost function

∇I = 2

T∫

0

A(t)

(
u(α, x, t) − uobs(x, t)
p(α, x, t) − pobs(x, t)

)

dt (28)

is obtained as the sum of the adjoint model integrations. Each integration of the adjoint
model starts from multiplication of the matrix (23) by the vector





u(α, x, t) − uobs(x, t)
0
0

p(α, x, t) − pobs(x, t)
0
0





and followed by subsequent multiplications by matrices (23) taken at corresponding time.

This product is finally multiplied by the matrix (24) to get the vector

(
ξ0
u

ξ0
p

)

which

represents the gradient of the cost function.
This gradient is used in the minimization procedure that is implemented in order to

find the minimum
I(ᾱ) = min

α
I(α) (29)

Coefficients ᾱ are considered as coefficients realizing optimal discretization of the model’s
operators in the boundary regions.

The minimization procedure used here was developed by Jean Charles Gilbert and
Claude Lemarechal, INRIA [22]. The procedure uses the limited memory quasi-Newton
method.

3. Results of assimilation

Exact solution of the equation (1) can easily be found by the method of variables
separation. We look for solutions in a special form u(t, x) = a(t)b(x). A consequence is
that

a”

a
=

b”

b
= −λ.

The value of λ is determined so that there exists a non-trivial solution of the boundary-
value problem

b” + λb = 0, b(0) = b(1) = 0

Values of λ are all positive, and the solutions are trigonometric functions. A solution
that satisfies square-integrable initial conditions (3) for u and p can be obtained from
expansion of these functions in the appropriate trigonometric series.
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3.1. One trigonometric mode

We shall analyze first the behavior of one trigonometric mode of the solution and
further proceed with the analysis of more complex functions.

Let us define the initial point for u and p in (1) as

u(x, 0) = sin(kπx) p(x, 0) = cos(kπx) (30)

The solution of (1) determined by λ = k2π2 is

uexact(x, t) = −
√

2 sin(kπt − π/4) sin(kπx), pexact(x, t) =
√

2 cos(kπt − π/4) cos(kπx)
(31)

The solution (31) will be used as artificial “observations” to be assimilated into the dis-
cretized wave equation. The use of these data allows us to work with errors of numerical
schemes only, avoiding all additional errors that may be present due to inexact data.

Two numerical approximations are used for discretization of spatial derivatives in all
internal points of the interval. Both discretizations are performed by formula (5), but one
of them is of second order of accuracy with coefficients aj = (0,−1, 1, 0) for j = (−1, 0, 1, 2)

and the other one is of fourth order with aj = 1
24(1,−27, 27,−1). The simplest second

order scheme on the boundary was used in both cases. That means both αu
j and αp

j in
(7) were chosen to provide classical approximation of derivatives in points adjacent to
boundary: (

∂p

∂x

)

1
=

p3/2 − p1/2

h
,
(

∂u

∂x

)

1/2
=

u1 − u0

h
(32)

In order to see precisions of these schemes we calculate the difference between the
numerical solution u(x, t), p(x, t) and the exact one uexact(x, t), pexact(x, t) and plot its
norm

ξ(t) =

1∫

0

(
(u(x, t) − uexact(x, t))2 + (p(x, t) − pexact(x, t))2

)
dx. (33)

Numerical solutions are obtained with k = 3, h = 1
30 and τ = 1

120.
It is well known that the principal error of classical (with approximations of derivatives

near the boundary realized by (32)) solutions for both second and fourth order schemes
consists in the wrong wave speed. Numerical solution of (1) is also composed of trigono-
metric functions of the same amplitude but they oscillate with wrong frequency. The
second order solution oscillates a little slower than the exact one, and the fourth order
oscillates a little faster.

In fig.1A and fig.1B we see that the difference between exact and numerical solutions
oscillates with the frequency 3π but have a growing amplitude. The velocity error is lower
when the fourth order approximation is used, that’s why the amplitude of the difference
in fig.1B is lower than in fig.1A.
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Figure 1A. x−t diagram of the error of the
classical second order scheme. Contours from -
0.2 to 0.2 with interval 0.05.

Figure 1B. x−t diagram of the error of the
classical fourth order scheme. Contours from -
0.04 to 0.04 with interval 0.01.

If we look at figures fig.2A and 2B, we see the same phenomenon. The solid line
in fig.2A, that represents the norm of the difference between the exact solution and its
second order numerical approximation, grows first up to value of 120 at time t = 108.3
time units. After that, the norm decreases to 0 at time t = 215.9 and restarts to grow.
The fourth order approximation exhibits a similar behavior, the norm also grows up to
value 120, but it reaches its maximum and the following zero at t = 491.1 and t = 982.2
time units respectively. These moments of time, being beyond the picture window, are not
shown. The speed error in the second order approximation results that at time t = 215.9
numerical solution is exactly one wave period later than the exact one, and the difference
between them vanishes. So far, the speed error is lower for the fourth order approximation,
moments of the maximal and vanishing norm in fig.2B are reached later.

Initial Guess

Assimilated

Difference with the exact solution

Model Time1e-06
3

1e-05
3

1e-04
3

1e-03
3

1e-02
3

1e-01
3

1e+00
3

1e+01
3

1e+02

0 50 100 150 200 250 300

Figure 2A. Error ξ(t) of the second order
scheme: Classical – solid line, with assimilated
boundary – dashed line.

Initial guess

Assimilated

Difference with the exact solution

Model Time
3

1e-06
3

1e-05
3

1e-04
3

1e-03
3

1e-02
3

1e-01
3

1e+00
3

1e+01
3

1e+02

0 50 100 150 200 250 300

Figure 2B. Error ξ(t) of the fourth order
scheme: Classical – solid line, with assimilated
boundary – dashed line.

Thus, it was illustrated that the principal error of numerical approximation consists
in the wrong wave speed. Indeed, if we apply numerical approximations to trigonometric

11



functions, we can calculate the error in the wave velocities. We substitute trigonometric
solutions for u and p in the second order scheme,

u(x, t) = sin(kx) sin(kt) = sin(ikh) sin(nkτ)

p(x, t) = − cos(kx) cos(kt) = − cos(ikh) cos(nkτ)

we get

(
∂p

∂x

)n

i
=

pn
i+1/2 − pn

i−1/2

h
= cos(nkτ)

cos((i + 1/2)kh) − cos((i − 1/2)kh)

h
=

=
2 sin(kh

2 ) sin(ikh) cos(ikτ)

h
(

∂u

∂t

)n

i
=

un+1
i − un−1

i

2τ
= sin(ikh)

sin((n + 1)kτ) − sin((n − 1)kτ)

2τ
=

=
sin(kτ) sin(ikh) cos(ikτ)

τ

Thus, the first equation in (1) is approximated by

(
∂u

∂t

)n

i
−
(

∂p

∂x

)n

i
=

(
sin(kτ)

τ
− 2 sin(kh/2)

h

)
sin(ikh) cos(ikτ) =

=
h sin(kτ) − 2τ sin(kh/2)

2τ sin(kh/2)

(
∂p

∂x

)n

i
(34)

Similar substitutions for u and p in the second equation give us the approximation of the
system

(
∂u

∂t

)n

i
− β2

(
∂p

∂x

)n

i
= 0

(
∂p

∂t

)n

i
− β2

(
∂u

∂x

)n

i
= 0 (35)

with

β2 =
h sin(kτ)

2τ sin(kh/2)
(36)

Thus, we see that numerical wave velocity is equal to β2 rather than to one.
If we perform similar manipulations with the fourth order spatial discretization, i.e.

approximation of all spatial derivatives by (5) with stencil aj = 1
24(1,−27, 27,−1), we

get the velocity error

β4 =
12h sin(kτ)

27τ sin(kh/2) − τ sin(3kh/2)
(37)

In fig.3 we can see the form of speed errors β2 − 1 and β4 − 1 for three values of k.
Horizontal axis is marked in values of τ

h .
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2nd order
k= 1
k= 3
k= 5

4th order
k= 1
k= 3
k= 5

Beta x 10-3
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Figure 3. Wave speed error (β − 1) for second and fourth order
schemes as functions of τ/h.

We see that using second order scheme, we can simulate the exact solution. Indeed,
when h = 2τ the velocity of numerically approximated wave is exactly equal to the velocity
of the theoretical solution for any wave-number k. Using any lower τ we must assume the
error in the waves velocity.

On the other hand, it is impossible to calculate an exact solution with a fourth order
scheme. The value of β4 − 1 vanishes in different points τ/h for different k. The only
conclusion we can make is the ratio τ/h must either be small for this scheme, or some
higher order time stepping should be used.

For the given parameters (k = 3, h = 1
30 and τ = 1

120) errors in the wave velocity
can be calculated by (36) and (37):

β2 = 3.09 × 10−3 β4 = −9.82 × 10−4

These velocity errors determine the time when the numerical wave will be one period

shifted with respect to the exact wave: T =
wave period

β = 2
kβ . For the second order

scheme with k = 3 this time T is equal to 215.6 time units that corresponds well to
numerically obtained 215.9.

So, knowing errors produced by numerical schemes with chosen parameters, we shall
perform the assimilation of the exact solution in order to see how these errors can be
corrected by the optimal boundary discretization.

We perform the data assimilation minimizing the cost function (25) assuming that the
approximation of boundary derivatives is composed by two terms only (J in (7) is equal

13



to 1) and we get a numerical solution with no error in wave velocity. The norm (33) of
the difference between the exact solution and its optimal numerical approximation (lower
lines in fig.2A and B) oscillate around 3×10−3 and 3×10−4 respectively. X−t plots of the
difference u(x, t) − uexact(x, t) presented in fig.4A and fig.4B show very similar behavior
of the error. The difference is composed of small moving waves that propagate back and
forth between the boundary and the middle of the interval for both the second and the
fourth order schemes. The amplitude of these waves is small comparing to errors of the
classical scheme and, that is more important, remain small during any integration time.
This fact can be seen in fig.2. Despite the data were assimilated during 6 time units only
(T in (25) is equal to 6), boundary approximation of derivatives has been sufficiently well
identified to satisfy the model during any long integration, 300 time units and more.

Figure 4A. x−t diagram of the error of the
modified second order scheme. Contours from
-0.03 to 0.03 with interval 0.01.

Figure 4B. x− t diagram of the error of the
modified fourth order scheme. Contours from
-0.01 to 0.01 with interval 0.003.

The choice of an optimal assimilation window (the time interval T during which the
assimilation is performed) is obvious for this simple problem. Of course, T must not
be too small. It must cover at least several wave periods in order to provide necessary
information about errors in wave velocities. On the other hand, too long T is not optimal,
because the assimilation over a longer interval is less efficient. First, we do not need too
much data to assimilate because of the simplicity of the model. And second, too long T
reduces computational efficiency of the method because of the necessity to run the model
for a longer time in each iteration.

Thus, assimilating the exact solution of the equation, we can construct an optimal
approximation of boundary derivatives and obtain a rather accurate model which error is
sufficiently small. However, boundary derivatives obtained in this procedure are strange
from the point of view of approximation.

When the second order approximation is used for derivatives in all internal points of
the interval, the optimal discretization near the boundary obtainded by data assimilation
has a form

(
∂u

∂x

)

1/2
= 1.048

u1 − u0

h
,

(
∂p

∂x

)

1
=

3.014p3/2 − 2.828p1/2

h
(38)

First of all, these formulas do not approximate a derivative. The first one approximates
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the derivative multiplied by 1.048, the Taylor expansion of the second one has a form

0.18
p1

h
+ 2.92

(
∂p

∂x

)

1
+ 0.023h

(
∂2p

∂x2

)

1
+ 0.12h2

(
∂3p

∂x3

)

1
+ O(h3)

Neither expression for ∂u
∂x , nor for ∂p

∂x has any reasonable order of approximation.
The first one is of 0 order, the second is of -1 order. Moreover, while we get always the

same formula for ∂u
∂x

, approximation of the derivative of p varies in different assimilation
experiments. Assimilations performed with different assimilation windows, for example,

result in different coefficients for ∂p
∂x . In fact, any combination αp

0 , αp
1 in (7) may be found

as the result of assimilation under condition

αp
1 = −1.104αp

0 − 0.107. (39)

This linear relationship has been obtained experimentally performing assimilations
with all assimilation windows in range from 600 to 2400 time steps (with the time step
equal to 1/120 of the time unit). Resulting couples αp

0 , αp
1 presented in fig.5 are positioned

on a straight line with values αp
0 varying from -1.5 to -5.

alpha_1

alpha_01.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4
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3.8

4.0

4.2

4.4

4.6

4.8

5.0

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0

Figure 5. Scatter diagram of αp

0
, αp

1
obtained with different assimi-

lation windows T in range from 5 to 20 time units.

To explain these unusual approximations of the derivatives, we address first the u

derivative, that is always approximated by 1.048u1 − u0
h

. We know, the principal error of
the classical scheme consists in wrong wave velocity. The data assimilation and control
of the boundary derivatives can not modify numerical wave velocity. The only way for
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this control to get a better solution consists in modifying the length of the interval. A
numerical wave with wrong velocity will propagate on the interval with wrong length.
But the length of the interval is adapted by data assimilation in order to ensure the wave
with numerical velocity propagates the modified interval in the same time that the exact
wave propagates the exact interval. So far, the control can not correct the error in the
wave velocity, it commits another error in length in order to compensate the first one.

As we have seen, the coefficient 1 in front of spatial derivatives in (1) has been replaced
by β in (35). Theoretical wave speed cexact = 1 has, consequently, been replaced by
numerical speed cnum = β. The length of the interval Lexact = 1 should also be modified
to satisfy

Lexact

cnum
=

Lmodified

cexact
=⇒ Lmodified = Lexact

cexact

cnum
=

Lexact

β
(40)

However, the control can not modify all grid cells of the interval uniformly. It can act
near boundaries only and can modify the length of cells just adjacent to boundary points.
Hence, only two grid cells, one on the left and one on the right of the interval, can be

modified. The modified interval, hence, becomes composed by N−2 cells of length h = 1
N

and two boundary cells of length

2hmodified + (N − 2)h =
hN

β
=⇒ hmodified

h
= 1 − N

2

β − 1

β
(41)

For given parameters (N=30) β2 = 1+3.09×10−3 the boundary cells must be reduced to

hmodified = (1 − 0.046)h. Consequently, the derivative
(

∂u
∂x

)

1/2
must be calculated over

modified cell
(

∂u

∂x

)

1/2
=

u1 − u0

hmodified
=

1

1 − 0.046

u1 − u0

h
= 1.048

u1 − u0

h

This is exactly the coefficient obtained in the data assimilation for the derivative of u
(38).

So, we can state that it is reasonable to obtain wrong approximation of derivatives
near boundaries as a result of data assimilation. This error compensates the error of the
wave speed.

As for derivatives of p, they must also be modified. The only difference with u consists

in fact that
(

∂p
∂x

)

1
is calculated over two half of cells: one half of the first cell (adjacent

to boundary point), and one half of the second one, next to the first. Hence, only one
half of the modified cell participates in the derivative of p and its modification is

(
∂p

∂x

)

1
=

p3/2 − p1/2

hmodified/2 + h/2
=

p3/2 − p1/2

h

2h

hmodified + h
(42)

In this experiment we should have obtained
(

∂p
∂x

)

1
= 1.023

p3/2 − p1/2

h .

And indeed, the couple αp
0 = −1.023 , αp

1 = 1.023 belongs to the set (39). This is the
only point on this line where αp

1 + αp
0 = 0 and the derivative is approximated with zero

order rather than minus first order.
Non uniqueness of optimal αp

1 and αp
0 can be explained if we take into account that p

has also a form of cosine of 3πx. Hence, at any time p1/2 = A(t) cos(3πh/2) and p3/2 =
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A(t) cos(9πh/2) with some A depending on time. Their linear combination αp
1p1/2+αp

0p3/2

can vanish if

αp
1 = − αp

0

4 cos2(kπh/2) − 3
. (43)

Consequently, all couples αp
1 , αp

0 belonging to the line that passes by the point αp
0 =

−1.023 , αp
1 = 1.023 with tangent − 1

4 cos2(3πh/2) − 3
= −1.108 produce the same deriva-

tive. This line coincides withing accuracy of computation with the set (39) obtained
numerically. Any point on this line gives coefficients αp that theoretically provide the
same value of the derivative and the same value of the cost function. This line forms the
kernel of the Hessian of the cost function.

Numerical approximation of the solution is slightly different from cosine and numerical
approximations of the derivative obtained with different coefficients αp from the kernel
are not exactly the same. The assimilation chooses the best fitting point in the kernel for
particular experiment that provides slightly lower value of the cost function. The choice
of this point depends on particular parameters of the experiment such as assimilation
window. That’s why we get different pairs αp

0, α
p
1 in different experiments. All these

pairs are in the kernel of the Hessian, they provide almost the same cost function values,
but each of them corresponds better to one particular window. If we are interested in
optimal boundary scheme for the whole model rather than in the best fitting point for
a given assimilation window, we may define another criterium of choice and impose this
criterium in the cost function. One choice, usually assumed in data assimilation, requires
that optimal point must be situated not far from the initial guess. However, adding this
requirement would not allow us to choose one point in the kernel. The requirement of
low distance from the start would draw the optimal point out of the kernel because, as
we have seen above, the initial guess point is not situated in the kernel.

Instead of imposing low distance from the starting point of minimization, we prefer to
require the term in the Taylor expansion with the order minus one to be equal to zero.

This implies the sum
J∑

j=0
αj = 0 must vanish. For this purpose we add the term

R = η(
J∑

j=0

αj)
2 (44)

to the cost function (25) and appropriately modify its gradient (28) adding the term

∇R = 2η
J∑

j=0

αj. (45)

Imposing sufficiently large weight η we get the only approximation of p derivative for any
assimilation window. The derivative is approximated by αp

0 = −1.023 , αp
1 = 1.023 that

ensures vanishing first term in the Taylor development.
Modification of the cost function by (44) has a very small influence on the final value

of the cost function because this modification determines the choice of the particular point
in the kernel of the Hessian.

Finally, we note that there is no significant difference in the final value of the cost
function in experiments with different J in (7). Several experiments have been carried out
with 2, 3 and 5 controlled coefficients α, but the minimization procedure has converged
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always to the same value. Obviously, two control coefficients are already sufficient in
this simplest case. Adding supplementary α just increases the kernel dimension with no
influence on the cost function.

3.2. Two trigonometric modes

When initial conditions of the model (1) are more complex than one trigonometric
mode, the exact solution of the wave equation is a linear superposition of exact solutions
corresponding to each trigonometric mode of the Fourier development of initial conditions.
Each mode has it’s own frequency and propagates with it’s own velocity.

Numerical solution for each Fourier mode commits an error in the wave velocity. But,
as it has been discussed above, this error is different for different modes because it depends
explicitly on the wavenumber k (36), (37). Consequently, in presence of multiple Fourier
modes, the interval length must be modified in order to correct different errors in wave’s
velocities simultaneously.

We consider first a superposition of just two waves with k = 2 and k = 5. We see from
the equation (41) that to compensate the error in the wave velocity for the wave with

k = 2π, the control must modify the length of the boundary cell by
hmodified

h
= 1− 0.020

and the coefficient in front of the approximation of the derivative of u at point 1/2 must
be 1.021. In the same time, the velocity error for the wave with k = 5π is compensated

when
hmodified

h = 1 − 0.128 and the coefficient in front of the derivative 1.142.
Performing experiments with both wavenumbers k = 2 and k = 5 separately and

with their superposition, we see in fig.6A that the data assimilation procedure is able
to compensate the error in wave velocity in all three cases. The cost function of the
model with original coefficients shows wrong velocities of numerical waves in all three
experiments, but the model’s solution with optimal coefficients is much closer to the
exact one. We see the cost function values as low as 3 × 10−4 for the wave with k = 2
and 10−1 for the wave with k = 5. The line that corresponds to the cost function in the
experiment with two waves superposed is indistinguishable from the line corresponding
to the experiment with k = 5. They oscillate both around I = 10−1. That means the
residual error of assimilation of the superposition of two waves is close to the biggest error
of assimilation of each particular wave.

In order to analyze the expression that is used to calculate the derivative of u near
boundaries in fig.6B, we perform a set of assimilations with all assimilation windows in
range from 600 to 2400 time steps (with the time step equal to 1/120 of the time unit)
for all three types of initial conditions of the model, i.e. one wave with either k = 2π
or k = 5π and both of them. When k = 2π we get always the same resulting couples
αu

0 = −1.021 , αu
1 = 1.021 as expected. Coefficients αu

0 , αu
1 in the experiment with k = 5π

are also all positioned near the theoretical value ±1.142, but not as concentrated as in the
experiment with k = 2π. Values in this experiment are distributed in the interval from
1.138 to 1.144. Obviously, the wave length of the wave with k = 5π is too short to be well
reproduced by a 30 points resolution grid. This coarse resolution adds numerical noise in
the solution and leads to the dependence of the assimilation result on the window.

Optimal coefficients αu
0 , αu

1 in the experiment with two waves are situated in the
middle of the figure fig.6B. We can note two particularities. First, their distribution is
even more dispersive than with k = 5π: they occupy the interval from 1.07 to 1.09. And
second, expressions for u derivative near the left and near the right boundary are no
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longer the same. One can see in fig.6B the set of coefficients αu
0 , αu

1 in this experiment is
splitted into two subsets with a gap between them.
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Figure 6A. Cost function of numerical so-
lutions for modes with k = 2π, k = 5π and
their superposition. Solutions with the original
boundary scheme are plotted with solid lines,
with identified schemes – by dashed lines.
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Figure 6B. Optimal coefficients for ∂u
∂x

ap-

proximation for modes with k = 2π (lower right
corner), k = 5π (upper left corner) and their
superposition (center).

Coefficients of expressions for p derivative in the experiments with two waves (not
shown) possess also a kernel that form the line situated between lines obtained in exper-
iments with single waves.

3.3. Other functions

If we consider an arbitrary functions as initial conditions of the wave equation, we
have all admissible Fourier modes in the solution. In order to see the action of the control
in this situation we perform the data assimilation for the model with initial conditions
prescribed as

u(x, 0) = 20x2(1 − x)e−5x, p(x, 0) = (x − 0.5)e2x (46)

Combining polynomials and exponents we ensure that different trigonometric modes are
present in the spectrum of initial data that leads to a rich spectrum in time.

First of all, the control of just two coefficients in expressions for derivatives is no
longer able to ensure non growing cost function beyond the assimilation window. We see
in fig.7A that the cost function of the model with optimal coefficients α0 , α1 grows after
the assimilation end in the same way as the cost function of the original model. Solid and
upper dashed (that corresponds to J = 1) lines are parallel to each other. In fact, the
data assimilation reduces the model’s error approximately 20 times, but the behavior of
the error remains the same. Consequently, we can not state that the model’s error with
optimal boundary approximation will always be small. Increasing with time, the error
will later reach the same values as the error of the original model.
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Figure 7A. Cost function of numerical so-
lutions with J = 1 and J = 4. Solutions with
the original boundary scheme are plotted with
solid lines, with optimal scheme – with dashed
lines.
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Figure 7B. First two optimal coefficients

for ∂u
∂x

with J = 4 in experiments with different
assimilation windows.

This fact can be explained by the analysis of the expression (41) for the second order
scheme

hmodified = h − Nh

2

β − 1

β
= h − β − 1

2β
= h +

(
1

2
− τ sin(kh/2)

h sin(kτ)

)
. (47)

The coefficient in the expression for the derivative of u becomes

c =
h

hmodified

=
h2 sin(kτ)

(h2 − h/2) sin(kτ) + τ sin(kh/2)
(48)

For the given parameters (h = 1/30, τ = 1/120) we get c = 1
15 cos(k/120) − 14

. The

denominator of this expression vanishes and changes sign when k = 120 arccos(14
15) ∼

14.026π. Consequently, optimal expression for ∂u
∂x at the first point for the wave with

k = 15π must have an opposite sign with respect to the classical approximation, namely:
∂u
∂x

∣∣∣∣
1/2

= −7.05u1 − u0
h . The wave with k = 15π is present in the spectrum of initial

conditions (its wavelength is equal to 2π
k = 4h) but corresponding optimal expression for

the derivative can not be obtained in the assimilation procedure because the scheme is
instable with negative c. Hence, the minimum is unreachable and we can not obtain the
optimal approximations of derivatives near the boundary. Data assimilation allows us to
compensate the error in wave velocities for first 14 trigonometric modes, but all other
modes continue to propagate with wrong velocities. That’s why the cost function in the
experiment with assimilated data is smaller than the original cost function, but the long
time behavior is similar in both experiments.

In order to obtain the cost function that does not increase after the end of assimilation,
we may try to control more coefficients α in (7) in order to be able to identify optimal
coefficients in the domain where the scheme is stable. Increasing the number of controlled
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parameters, we increase the number of degrees of freedom and the dimension of the kernel
of Hessian. The intersection of the kernel and the region where the scheme is stable may
become non null and allow the assimilation to reach the minimum.

Indeed, if we perform assimilation with J = 4, i.e. 5 coefficients α in (7), we get
smaller non increasing cost function (lower dashed line in fig.7A).

Coefficients αu in the experiment with J = 4 are distributed in a wide area, showing
larger multidimensional kernel of the Hessian. An example of such a distribution is shown
in fig.7B. To obtain this figure, we perform a set of experiments with different assimilation
windows in range from 800 to 5000 time steps of the model. In each assimilation we get
different sets of coefficients α but almost the same final cost function showing all obtained
α are in the kernel of the Hessian. Only the first two coefficients are plotted in fig.7B. One
can see, they occupy much wider area than in experiments with one or two trigonometric
waves and J = 1 shown in fig.6B.

4. Conclusion

The purpose of this paper is to study the variational data assimilation procedure ap-
plied for identification of the optimal parametrization of the derivatives near the boundary
on the example of a simple wave equation in view to use this kind of data assimilation in
ocean models. Consequently, conclusions are formulated from this point of view.

Comparing this procedure with now well developed data assimilation intended to iden-
tify optimal initial data, we can say there are both common points and differences as well.

Tangent (17) and adjoint (23) models are composed by two terms, presented by (12)
and (15). The first one, D(u) (12), governs the evolution of a small perturbation by the
model’s dynamics. This term is common for any data assimilation no matter what pa-
rameter we want to identify. The second one, Û or P̂ , (15), determines the way how the
uncertainty is introduced into the model. So, if we intend to identify an optimal bound-
ary parametrization for a model with an existing adjoint developed for data assimilation
and identification of initial point, we can use this adjoint as (12) part because this part is
common for any data assimilation. However, the part decribed by (15) must be developed
from the beginning because it is specific to the particular control parameter. This develop-
ment may be technically difficult for complex models, especially on grids with distributed
variables like Arakawa’s ”C”-grid. Numerous interpolation and differentiation operators
are frequently applied successively to a model’s variable on these grids resulting in non-
linear dependence of the model’s state on control coefficients. Development of the adjoint
model and, particularly, it’s (15) part, is complicated by working with nonlinearities of
higher degree.

Another difference consists in the number of control parameters and their dimensions.
The dimension of initial point of the model is usually equal to the dimension of the
model’s state variable. Contrary to this, when we control boundary parametrization, the
dimension of control variables is very different from the dimension of the model’s variable.
Moreover, the dimension of the control might be lower than the dimension of the model
state because the dimension of the control is proportional to the length of the boundary
of the domain, while the dimension of the model’s state relates to the area of the domain.
That means the quantity of controlled parameters and the dimension of the gradient
of cost function may be much lower than the quantity of variables in the models state.
Taking into account mentioned technical difficulties in development of the adjoint, it may
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be reasonable to try to calculate the gradient by some other method beginning with the
simplest finite difference method. Of course, this will be more expensive computationally,
but the gain in the development procedure may compensate this excessive computational
cost.

Concerning the data assimilation results, we see the data assimilation can correct
errors of numerical scheme by controlling approximations near boundaries. This fact
may be very useful in applications of this method to the ocean models. In addition to
natural corrections of the position of the rigid boundary and prescribed physical boundary
conditions, we may hope to be also able to improve the quality of the scheme that is used
in internal points.

We can see in these assimilation experiments the presence of a kernel of the Hessian.
Consequently, the choice of optimal boundary parametrization is not unique. However,
all sets of coefficients α from the kernel are equivalent: they provide the same (or almost
the same) cost function’s value and almost the same evolution of the model’s solution
after the end of assimilation. In the same time, we can note that optimal parametrization
of derivatives near the boundary may approximate nothing in classical sense, i.e. it may

not be valid for an arbitrary function. We have seen here that obtained expression for ∂p
∂x

is valid for the cosine-type functions with appropriate wavelength only. Hence, we must
take into account that coefficients found by data assimilation are valid for given model’s
parameters only.

In the last experiment in this paper, with the wave composed by multiple trigonometric
modes, we have encountered the necessity to increase the number of control parameters.
In the case when the optimum is unreachable, increasing the kernel dimension allows to
obtain better results. Combining the number of controlled coefficients (that increases the
kernel dimension) and the possibility to dump the first term of the Taylor development
of the resulting expression by (44) (that decreases the kernel dimension) may help us to
get a reasonable result.
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