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ABSTRACT
OPTIMIZING ADVANCED LIGO’S SCIENTIFIC OUTPUT WITH FAST,

ACCURATE, CLEAN CALIBRATION

by

Aaron D. Viets

The University of Wisconsin–Milwaukee, May 2019

Under the Supervision of Professor Jolien Creighton

Since 2015, the direct observation of gravitational waves has opened a new window

to observe the universe and made strong-field tests of Einstein’s general theory of rela-

tivity possible for the first time. During the first two observing runs of the Advanced

gravitational-wave detector network, the Laser Interferometer Gravitational-wave Ob-

servatory (LIGO) and the Virgo detector have made 10 detections of binary black hole

mergers and one detection of a binary neutron star merger with a coincident gamma-ray

burst [1]. This dissertation discusses methods used in low and high latency to produce

Advanced LIGO’s calibrated strain data, highlighting improvements to accuracy, latency,

and noise reduction that have been made since the beginning of the second observing

run (O2). Systematic errors in the calibration during O2 varied by frequency, but were

generally no greater that 5% in amplitude and 3◦ in phase from 20 Hz to 1 kHz [2]. Due

in part to this work, it is now possible to achieve calibration accuracy at the level of

∼1% in amplitude and ∼1◦ in phase, offering improvements to downstream astrophys-

ical analyses. Since the beginning of O2, latency intrinsic to the calibration procedure

has decreased from ∼12 s to ∼3 s. As latency in data distribution and the sending of

automated alerts to astronomers is minimized, reduction in calibration latency will be-

come important for follow-up of events like the binary neutron star merger GW170817.

A method of removing spectral lines and broadband noise in the calibration procedure

has been developed since O2, offering increases in total detectable volume during future

observing runs. High-latency subtraction of lines and broadband noise had a large im-

pact on astrophysical analyses during O2 [3]. A similar data product can now be made

available in low latency for the first time.
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CONVENTIONS

• Greek letters (α, β, γ, ...) indicate spacetime indices 0, 1, 2, 3, and Latin letters (a, b, c, ...)

indicate spatial indices 1, 2, 3.

• In the context of differential geometry (i.e., in Chapter 1), the Einstein summa-

tion convention is used, where there is an implied sum over repeated indices. For

example, ηµνdx
µdxν =

∑3
µ=0

∑3
ν=0 ηµνdx

µdxν .

• Fourier transforms are indicated using tildes above functions, e.g. Ã(f).

• The Fourier transform and inverse Fourier transform conventions used are

x̃(f) =

∫ ∞

−∞
x(t)e−2πiftdt

x(t) =

∫ ∞

−∞
x̃(f)e2πiftdf .

• Variables in bold font indicate vectors or matrices, such as M.
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Chapter 1

Introduction

1.1 Newtonian gravity

Models describing the behavior of gravity have existed since ancient times. Aristotle

believed that all terrestrial matter sought to be in what he called its “natural place.”

The heavier elements earth and water found their natural place at the center of the

universe, causing the Earth to form a sphere with a concentric shell of water surrounding

it. Celestial bodies, he believed, were embedded in concentric crystal spheres rotating

eternally at fixed rates and made of a weightless substance called “aether.” Centuries

later, after the formulation of Copernicus’ heliocentric model of the solar system and

Kepler’s laws of planetary motion, Sir Isaac Newton had the profound insight that the

motions of terrestrial and celestial bodies were influenced by the very same gravitational

force. Newton’s universal law of gravitation was induced empirically to model planetary

motion, and is described in his Principia [4] as an attractive force between two bodies

with a magnitude that is directly proportional to the product of their masses and inversely

proportional to the distance between their centers. In mathematical form,

F = G
m1m2

r2
, (1.1.1)

where m1 and m2 are the masses of the bodies, r is the distance between their centers,

and G = 6.67 × 10−11 m3/(kg · s2) is the gravitational constant. This was not only the

first mathematical description of gravity, it also for the first time provided a unified
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description of celestial and terrestrial motion, previously viewed as two distinct types

of motion. Newton’s theory of gravity provides very accurate predictions in the limit

of small masses and large separation distances but implies the notion of instantaneous

action at a distance, which made Newton himself uncomfortable.

1.2 Special relativity and Einstein’s problem with Newton’s

gravity

In 1905, Albert Einstein published his theory of special relativity [5], which would again

drastically change the way we think about gravity. Interestingly, Einstein’s develop-

ment of special relativity was motivated by the mathematical descriptions of electric and

magnetic fields in Maxwell’s equations. Special relativity is summarized by just two

postulates:

1. The laws of physics are the same in every inertial frame of reference.

2. The speed of light in a vacuum is the same for all observers (as measured relative

to themselves), regardless of both the motion of the observer and the motion of the

light source.

The first of these postulates is called the principle of relativity. These simple postulates

have profound consequences for the way we think about space and time. To see this,

consider an experiment done in a spaceship traveling at speed v in the x-direction. Inside

the ship, a laser pulse is sent through a beamsplitter down two perpendicular paths of

equal length L, as measured inside the spaceship (see Fig. 1). One path is parallel to the

motion of the ship, and the other is perpendicular. The beamsplitter records the time

from when the light pulse enters the arms (the first event) to when it exits (the second

event). In the reference frame of the spaceship, this round trip takes a time ∆t = 2L/c,

where c = 299792458 m/s is the speed of light in a vacuum. Let us now consider the

trip inside the vertical arm from an external reference frame, in which the spaceship

moves horizontally with speed v. A nonrelativistic approach might lead us to believe

2



v

Spaceship frame

Laser

L

L

External observer frame

x

y

z

x′

y′

z′

Positions when light pulse:
hits beamsplitter
hits top mirror
returns to beamsplitter

Laser

L

L′v△t′

Figure 1 : A spaceship traveling with speed v in the x-direction, as viewed in the reference frame of the

ship (t, x, y, z) and from an external reference frame (t′, x′, y′, z′). Inside the ship, a laser sends pulses

of light through a beamsplitter into two perpendicular arms with mirrors at the ends. The time of flight

is measured at the beamsplitter.

that the velocity of the light and the velocity of ship add to produce a total pulse speed

of
√
c2 + v2. However, this is inconsistent with special relativity, which holds that the

speed of light as measured from the external reference frame must remain equal to c.

This seeming paradox is resolved by allowing the spacial and temporal separation of two

events to be dependent on one’s reference frame. Let us therefore find the time of flight

∆t′ as measured from the external reference frame, assuming a pulse speed c, by solving

∆t′ =
2
√
L2 + (v∆t′/2)2

c
. (1.2.1)

We find that the times between the two events as measured in the two reference frames

are related by

∆t′ = γ∆t , (1.2.2)

where the Lorentz factor γ is

γ =
1√

1− v2/c2
. (1.2.3)

This result, called time dilation, means that, as viewed from the external reference frame,

clocks inside the ship are running more slowly than stationary clocks. The time recorded

in the ship is called the proper time τ , distinguished by the fact that the two events occur

at the same location in space. It is important to note that this does not imply that time in

the ship is “slower” than time in the external reference frame. From the ship’s reference

3



frame, clocks in the external reference frame, moving in the negative x-direction at speed

v, also appear to be running at a slower rate than the “stationary” clocks inside the ship.

Since the two events occur in the same location in the ship’s frame (∆x = 0), the spacial

separation of the events in the external reference frame depends only on the ship’s speed

v and the time ∆t′:

∆x′ = v∆t′ = γv∆t . (1.2.4)

We have just considered a special case of a transformation between two reference

frames where the two events considered were not spacially separated in one of the frames.

In order to generalize this, let us first consider the trip inside the horizontal arm from

the external reference frame. Since the light recombines at the same location and the

same time in the ship’s reference frame, the same is true in the external reference frame.

We therefore know that the time of flight is ∆t′ in the external reference frame, and the

speed is still c. From the external reference frame, the light appears to be moving at a

speed c− v relative to the arm on the way to the mirror, and at a speed c+ v on the way

back. We therefore argue that

∆t′ =
L′

c− v +
L′

c+ v
(1.2.5)

Again, our nonrelativistic intuition that the length of the arm is independent of reference

frame will fail us. The only way for the speed of light to be independent of reference

frame is to allow the length of the arm to depend on reference frame. The solution for L′

in terms of L is

L′ = L/γ . (1.2.6)

This effect is called length contraction. The length as measured in the ship, where the

object being measured is stationary, is called the proper length L0. Now we are ready

to find how spacial separations between events in the ship’s frame transform into the

external reference frame. Let us consider two events on the horizontal arm that, in the

ship’s frame, occur at the same time but in different locations. In the ship’s frame,

imagine that the beamsplitter at x = 0 and the mirror at x = L simultaneously collide

with particles moving at speed v in the negative x-direction (i.e., they are at rest in

4



the external reference frame). Note that the separation between the particles must be

contracted in the ship’s frame relative to their separation in the external frame. In the

external frame, the separation between the particles is γL, while the separation between

the beamsplitter and the mirror is L/γ. This means that, in the external reference frame,

the two events (the collisions) are not simultaneous! Instead, the collsion with the mirror

occurs later, and the temporal separation between the events is

∆t′ =
γL− L/γ

v
= γ

v∆x

c2
, (1.2.7)

where ∆x = L is the spacial separation of the events in the ship’s frame. The spacial

separation between these events in the external reference frame, due to the aforementioned

length contraction, is

∆x′ = γL = γ∆x . (1.2.8)

A general coordinate transformation from a reference frame with coordintes (t, x, y, z) to

one with coordinates (t′, x′, y′, z′) moving in the x-direction with speed v relative to the

first reference frame can be found by combining Eq. 1.2.2 with Eq. 1.2.7 and Eq. 1.2.4 with

Eq. 1.2.8. The result is a set of transformations known as the Lorentz transformations,

given in differential form by

dt′ = γ

(
dt− v dx

c2

)
(1.2.9a)

dx′ = γ (dx− v dt) (1.2.9b)

dy′ = dy (1.2.9c)

dz′ = dz (1.2.9d)

The “mixing” of spacial and temporal coordinates implies that distances between points

in space and time intervals cannot be considered separately, as they depend on one’s

frame of reference. Instead, as previously implied, we must consider events, i.e., locations

in spacetime specified by both a time and a location in space. Similar to the notion that

the distance between two points in a 3-dimensional space (∆s)2 = (∆x)2 + (∆y)2 + (∆z)2

is the same regardless of the orientation of the coordinate system used, we define an
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invariant interval between two events in spacetime that has no dependence on one’s

choice of coordinates:

(∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 . (1.2.10)

This can be demonstrated by again considering the path of the light pulse in the vertical

direction in the spaceship experiment. In both reference frames, the invariant interval is

(∆s)2 = (2L)2. The invariant interval can be rewritten as

ds2 = ηµνdx
µdxν , (1.2.11)

where the greek indices can take the values {0, 1, 2, 3}, x0 = t, x1 = x, x2 = y, x3 = z,

and the Minkowski metric η is defined by

η =




−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



. (1.2.12)

Repeated indices indicate an implied summation over the values those indices can take.

Special relativity gained widespread acceptance, partly due the the results of the

Michelson-Morley experiment, an attempt in 1887 to measure the relative velocity of

the luminiferous aether, a postulated medium through which electromagnetic waves (i.e.,

light) propagated. Laser light was sent through a beamsplitter down two perpendicular

arms with several mirrors at the ends so that the light took several trips down the arms

before being sent to a telescope to produce a fringe pattern. The instrument described

here, similar to what was used in the thought experiment above (Fig. 1), is called a

Michelson interferometer. The goal of the experiment was to measure differences in the

speed of light in perpendicular directions in order to infer the relative velocity of the

aether. The interferometer was rotated in a pool of mercury to observe the effect of

changing its orientation relative to the aether’s velocity. If Earth was moving relative to

the aether, the fringe pattern was predicted to undergo two cycles of periodic change per

rotation of the interferometer. This was done at different times of day and year to ensure
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that the experiment was not always stationary relative to the aether. The experiment,

however, produced a null result, as the measured velocity of the aether was consistent with

zero, and clearly inconsistent with the aether theories at the time. Although perplexing at

the time, this result was seen to be consistent with special relativity almost two decades

later. Ironically, similar experiments today using Michelson interferometers to detect

gravitational waves are again confirming the predictions of relativity, this time by yielding

the opposite result, namely, changes in the the output of the interferometers.

The far-reaching implications of special relativity included a complete rethinking of

the description of gravity. The concept of action at a distance in Newton’s universal law

of gravitation is incompatible with special relativity since it describes a force between

two distant masses that depends on their relative positions in space at each instant in

time. According to special relativity, the relative positions of the masses depends on

frame of reference, leading to inconsistent results for the Newtonian gravitational force

between them. Einstein therefore faced the problem of generalizing his theory to include

non-inertial (i.e. accelerating) reference frames and gravitational fields.

1.3 A brief description of general relativity

Einstein’s theory of general relativity, published in 1915 [6], describes gravity not as a

force, but as the result of the curvature of spacetime. In the development of general

relativity, Einstein was guided by the equivalence principle, which flows from the indis-

tinguishability of gravitational and inertial mass. The equivalence principle states that in

a sufficiently small region of spacetime, any experiment done by a freely falling observer

in a gravitational field will produce results identical to those of an experiment done in an

inertial (that is, non-accelerating) reference frame in the absence of a gravitational field.

In other words, the perceived “force” of gravity is locally indistinguishable from a pseudo

force felt by an observer in an accelerated reference frame such as a rocket at takeoff.

Additionally, Einstein extended the principle of relativity to a new principle called the

principle of general covariance, which states that the laws of physics must have the same
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form in any coordinate system, including non-inertial frames of reference. This required

the introduction of a general spacetime metric tensor gµν , which can deviate from the

flat-spacetime Minkowski metric of special relativity ηµν to describe curved spacetimes.

The discussion in the following four sections relies heavily on the discussion in Chapter

2 of [7]. More comprehensive texts on general relativity can be found in [8] and [9].

1.3.1 Differential geometry

Distances

Spacetime in general relativity is described as a four-dimensional manifold whose structure

can be quite complicated in principle. The distance between two points separated by an

infinitesimal coordinate distance dxα is found using

ds2 = gµν(x
α)dxµdxν . (1.3.1)

where the spacetime metric tensor gµν(x
α) is a function of the spacetime coordinates xα.

Under a coordinate transformation xµ → x′α, the metric transforms according to

g′αβ = gµν
∂xµ

∂x′α
∂xν

∂x′β
. (1.3.2)

Vectors

In general manifolds, vectors are not properly thought of as stretching from one point

in spacetime to another, but are instead described as directional derivatives. Consider

a parameterized curve in spacetime described by the coordinates xα(t), where t is the

curve parameter. Letting F (xα) be a function of the spacetime coordinates, we define

the function f(t) = F (xα(t)), a function of the curve parameter. Then

df

dt
=
dxµ

dt

∂F

∂xµ
= uµ

∂F

∂xµ
, (1.3.3)

where uµ are the components of the tangent vector to the curve, u = d/dt. An inner

product between two vectors can be defined using the metric:

u · v ≡ gµνu
µvν = uνv

ν , (1.3.4)
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where we have used the metric to lower an index: gµνu
µ = uν . The norm of a vector is

therefore ‖u‖ = gµνu
µuν = uνu

ν .

Covariant derivitives

Using our definition of vectors, let us now define a derivative operator ∇µ such that the

operation uµ∇µv
α along a vector u on an arbitrary vector field v produces a result that

is invariant under general coordinate transformations. This is a covariant derivative, so

called because it transforms covariantly under general coordinate transformations. The

covariant derivative is not always equal to the ordinary derivative operator ∂/∂xα, though

it is always possible to find coordinates in which, locally, it is. Let xα be an arbitrary

set of coordinates and x′µ be a set of coordinates in which the covariant derivative is

equal to the ordinary derivative. Then, the covariant derivative is related to the ordinary

derivative by

∇αv
γ =

∂vγ

∂xα
+ Γ γ

αβv
β , (1.3.5)

where

Γ γ
αβ ≡

∂xγ

∂x′µ
∂2x′µ

∂xα∂xβ
(1.3.6)

are called the connection coefficients.

At this point, let us consider the shifting of a vector from one location to another by

means of a process called parallel transport. In flat spacetime, this simply means that

the direction of the vector is unchanged at each point as it is moved from the starting

point to the ending point. In curved spacetime, this process can be described by requiring

that the vector is unchanged during each infinitesimal displacement. For a vector v being

transported along a curve parameterized by the parameter t with tangent vector u = d/dt,

the requirement enforced by parallel transport is

0 =
dvα

dt
= uµ∇µv

α . (1.3.7)

Due to curvature, a vector arrived at by parallel transport over a distace that is not

infinitesimal depends on the path taken. To see this, imagine parallel transporting a

vector that points north from the equator to the north pole through the 2-dimensional
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curved space defined by Earth’s surface. Consider the direction of the vector once it

arrives at the north pole if it is taken straight north, by the shortest route possible. Then

imagine its final direction if it is first transported along the equator a distance equal to

1/4 of the Earth’s circumference. Its final orientation would differ by 90◦, due to the

curvature of the Earth’s surface.

Geodesics

According to Newton’s first law of motion [4], “Every body perseveres in its state of rest,

or of uniform motion in a straight line, unless it is compelled to change that state by

forces impressed on it.” In an inertial frame of reference, the straight-line or stationary

path of such a body through spacetime describes what is called a geodesic. According to

the equivalence principle, a freely falling particle with no external force acting must also

follow a geodesic. In curved spacetime, a curve is a geodesic if and only if the tangent

vector to that curve is parallel transported along itself. That is, a curve xα(t) with tangent

vector u = d/dt is a geodesic if

uµ∇µu
α = 0 . (1.3.8)

Using the definition uα = dxα/dt, we can rewrite this to show that a geodesic satisfies

d2xα

dt2
= −Γα

µν

dxµ

dt

dxν

dt
. (1.3.9)

A geodesic describes the straightest possible curve in curved spacetime, and the geodesic

equation (Eq. 1.3.8) describes the path of a free particle through spacetime.

Curvature

To describe the curvature of spacetime, we will consider the effect of parallel transporting

vectors from one point to another along different paths. Consider two commuting vector

fields u = d/dt and v = d/ds used to construct a quadrilateral PQRS. Two vector fields

are said to commute if the point reached by traveling a path of fixed distance along each

vector field is independent of the order in which those paths are traveled, that is,

uµ∇µv
α = vµ∇µu

α . (1.3.10)
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Point Q is reached by traveling a distance ∆t from point P along the integral curve of u.

Point S is reached by traveling a distance ∆s from point P along the integral curve of v.

Point R can be reached by traveling a distance ∆s from point Q along the integral curve

of v or by traveling distance ∆t from point S along the integral curve of u. Consider a

smooth vector field w whose value at point P is w(P) = wP . We will measure curvature

by parallel transporting wP from point P to point R along two different paths, one

via point Q and one via point S, and determine the difference in the resulting vectors.

We begin by finding the difference between the vector w(R) and the vector wP→Q→R,

resulting from the parallel transport of vector wP to point R via point Q:

(
δwδ
)
P→Q→R = wδ(R)− wδP→Q→R = (∆s∆t)vβ∇β

(
uα∇αw

δ
)
. (1.3.11)

Via point S, the difference is

(
δwδ
)
P→S→R = wδ(R)− wδP→S→R = (∆s∆t)uα∇α

(
vβ∇βw

δ
)
. (1.3.12)

Then the difference in the two parallel transported vectors is

wδP→S→R − wδP→Q→R =
(
δwδ
)
P→Q→R −

(
δwδ
)
P→S→R

= (∆s∆t)
[
vβ∇β

(
uα∇αw

δ
)
− uα∇α

(
vβ∇βw

δ
)]

= (∆s∆t)
[(
vβ∇βu

α
)
∇αw

δ −
(
uα∇αv

β
)
∇βw

δ + uαvβ (∇β∇α −∇α∇β)wδ
]

= −(∆s∆t)uαvβ (∇α∇β −∇β∇α)wδ

= (∆s∆t)Rαβγ
δuαvβwγ , (1.3.13)

where Rαβγ
δ is the Riemann curvature tensor, defined by

Rαβγ
δwγ ≡ − (∇α∇β −∇β∇α)wδ . (1.3.14)

The Riemann curvature tensor provides a measure of the intrinsic curvature at each point

in a manifold by measuring the failure of a vector parallel transported around a loop to

point in its original direction.

1.3.2 The Einstein field equations

We have already seen how the motion of free particles following geodesics is dictated

by the curvature of spacetime. We now wish to use tools from differential geometry to
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describe how matter and energy affect the curvature of spacetime. First, we must define

a few useful tensors that can be constructed from the Riemann curvature tensor. The

Ricci tensor is found by contracting two indices of the Riemann curvature tensor:

Rαβ ≡ Rαµβ
µ . (1.3.15)

The Ricci scalar is defined by contracting two more indices using the metric:

R ≡ gµνRµν . (1.3.16)

The divergenceless Einstein tensor is defined by

Gαβ ≡ Rαβ −
1

2
gαβR . (1.3.17)

The Einstein field equations, which describe the generation of gravitational fields due to

matter and energy, are

Gαβ =
8πG

c4
Tαβ , (1.3.18)

where Tαβ are the components of the stress-energy tensor, defined by

T ≡




(
mass density

ρ

) (
momentum density

j

)

(
momentum density

j

) (
stress tensor

S

)



. (1.3.19)

The component T00 = ρ is mass density as a function over spacetime, the most familiar

source of gravitational fields. The 6 components T0i and Ti0 are the momentum density

j. The remaining 9 components Tij are the components of the classical stress tensor S.

1.3.3 Linearized gravity and the wave solution

Now let us consider the Einstein field equations in the limit of weak gravitational fields.

We write the metric tensor as the sum of the Minkowski metric of flat spacetime and a

small perturbation: gαβ = ηαβ + hαβ. In this limit, we will use the Minkowski metric ηαβ

to raise and lower indices, except for those of the metric itself:

gαβ = (gαβ)−1 = ηαβ − hαβ +O(h2) . (1.3.20)
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Under this approximation, called the linearized gravity approximation, the Riemann ten-

sor takes the form

Rαβγδ =
1

2

(
− ∂2hβδ
∂xα∂xγ

+
∂2hβγ
∂xα∂xδ

+
∂2hαδ
∂xβ∂xγ

− ∂2hαγ
∂xβ∂xδ

)
+O(h2) . (1.3.21)

The linearized Ricci tensor therefore takes the form

Rαβ = Rαµβ
µ =

1

2

(
− ∂2h

∂xα∂xβ
+

∂2hµβ
∂xα∂xµ

+
∂2hα

µ

∂xµ∂xβ
− ηµν ∂

2hαβ
∂xµ∂xν

)
+O(h2) , (1.3.22)

where h = hµ
µ is the trace of hµ

ν , and the linearized Ricci scalar is

R = ηαβRαβ +O(h2) =
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν
+O(h2) . (1.3.23)

The form of the Einstein tensor in the Einstein field equations can be simplified by writing

it in terms of the trace-reversed metric perturbation h̄αβ, given by

h̄αβ ≡ hαβ −
1

2
ηαβh . (1.3.24)

Then, the linearized field equations can be expressed as

− ηµν ∂
2h̄αβ

∂xµ∂xν
− ηαβ

∂2h̄µν

∂xµ∂xν
+

∂2h̄µβ
∂xα∂xµ

+
∂2h̄µα
∂xµ∂xβ

+O(h2) =
16πG

c4
Tαβ . (1.3.25)

The first term on the left is −�h̄αβ, where � is the d’Alembertian operator, that is,

the wave operator in flat spacetime. The remaining terms are all computed from the

divergence of the trace-reversed metric perturbation h̄αβ. It turns out that it is possible,

in general, to find coordinates in which h̄αβ is divergenceless, that is, ∂hµα/∂xµ = 0.

This choice of coordinates is called the Lorenz gauge. In the Lorenz gauge, the linearized

Einstein field equations take the form of an inhomogeneous wave equation with wave

speed c and the stress-energy tensor acting as a source:

−�h̄αβ =
16πG

c4
Tαβ . (1.3.26)

The wave solution of the linearized field equations led Einstein to predict the existence

of gravitational waves (GWs) in 1916 [10], a prediction that was confirmed by the direct

detection of GWs almost a ceutury later [11]. It is worth noting that there is gauge

freedom remaining in the Lorenz gauge, meaning that there still exist redundant degrees
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of freedom in our coordinates, allowing further coordinate choices to be made without

affecting anything physical. In particular, a solution of the homogeneous wave equation

�ξβ = 0 can always be added.

1.3.4 The transverse traceless gauge

Let us now consider a particular solution of the Einstein field equations in the Lorenz

gauge, in the absence of matter—that of a purely spatial plane wave traveling in the

z = x3 direction. This solution must satisfy the vacuum Einstein field equations in the

Lorenz gauge

�h̄αβ = 0 (1.3.27)

as well as the Lorenz gauge condition

∂h̄µα

∂xµ
= 0 . (1.3.28)

The choice of a plane-wave solution in the z-direction adds the simplifying requirement

that all components of the metric perturbation are functions of only the retarded time

t − z/c. Given this choice, the Lorenz gauge condition requires that ∂h̄0α/∂t = 0 and

∂h̄3α/∂z = 0. The condition h̄0α = 0 is also necessary, a gauge choice which makes the

wave purely spatial. h̄3α is also a constant which we choose to set to zero. The only non-

vanishing components of the trace-reversed metric perturbation are therefore h̄11(t−z/c),
h̄22(t − z/c), and h̄12(t − z/c) = h̄21(t − z/c), where the equality of h̄12 and h̄21 follows

from the symmetry of the metric tensor. The non-vanishing components of the metric

perturbation hαβ = h̄αβ − 1
2
ηαβh̄ are therefore

h00 = −c2h33 =
1

2
c2
(
h̄11 + h̄22

)
(1.3.29a)

h11 = −h22 =
1

2

(
h̄11 − h̄22

)
(1.3.29b)

h12 = h21 = h̄12 . (1.3.29c)

Let us now use any remaining gauge freedom to simplify this result and determine

which, if any, of the above terms are physical, and which, if any, are artifacts of our

current gauge choice. The linearized Riemann tensor of Eq. 1.3.21 is gauge invariant,
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Plus polarization Cross polarization

Figure 2 : The effect of gravitational waves traveling in a direction perpendicular to the page on a ring

of free particles. In the transverse traceless gauge, each particle undergoes oscillatory motion of equal

amplitude in a different direction as it follows a geodesic through spacetime. The “plus” and “cross”

polarizations are shown. Any polarization allowed by general relativity can be produced as a linear

combination of these two polarizations.

meaning that its non-vanishing components as computed from the metric perturbation

hαβ correspond to real physical effects. Since the components hαβ are functions of only

the retarded time t − z/c, it is necessary to consider only derivatives with respect to t

to find the independent non-vanishing components of Rαβγδ. The only two independent

non-vanishing components are

R0101 = −1

2

∂2

∂t2
h11 (1.3.30a)

R0102 = −1

2

∂2

∂t2
h12 (1.3.30b)

We can therefore conclude that the metric perturbation components h11, h22, h12, and

h21 correspond to true physical effects, and that GWs are physical as well. Metric per-

turbations caused by GWs therefore have two independent degrees of freedom called h+

(“h-plus”) and h× (“h-cross”), where h+ = h11 = −h22 and h× = h12 = h21. The physical

effect of GWs on a ring of free particles is shown in Fig. 2 for the two independent polar-

izations h+ and h×. The components h00 and h33 are non-physical and can be removed by

making an additional gauge choice. Doing so makes the perturbation purely spatial, and

since h11 = −h22, it also makes the metric perturbation traceless. This gauge is therefore

called the transverse traceless gauge, or the TT gauge. GWs are transverse not only in

the TT gauge, but in any Lorenz gauge. To see this, consider a monochromatic plane
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wave given in terms of the trace-reversed metric perturbation by

h̄αβ = Aαβ cos (kµx
µ) , (1.3.31)

where Aαβ is a constant symmetric tensor and kα is a constant wave vector. The Lorenz

gauge condition requires that

0 =
∂h̄µα

∂xµ
= −kµAµα sin (kνx

ν) . (1.3.32)

This is satisfied only if the wave is transverse, that is, if kµA
µα = 0. From any Lorenz

gauge, it is possible to compute the TT-gauge metric perturbation using

hTT
αβ = h̄αβ −

∂ξβ
∂xα
− ∂ξα
∂xβ

+ ηαβη
µν ∂ξµ
∂xν

, (1.3.33)

where ξα is an appropriate solution of �ξα = 0 that makes hTT
αβ traceless.

1.4 The Advanced LIGO detectors

Decades before the direct detection of GWs in 2015, a study of the Hulse-Taylor binary

provided compelling evidence of their existance [12]. The Hulse-Taylor binary is a neutron

star binary system, in which one of the neutron stars is a known pulsar. The measured

orbital decay of the Hulse-Taylor binary was shown to be consistent with that predicted

due to the loss of energy and angular momentum due to gravitational radiation predicted

by general relativity. In its first two observing runs (O1 and O2), the US-based Laser

Interferometer Gravitational-wave Observatory (LIGO), along with the Virgo detector

in Italy, has directly detected GW signals emitted by the inspirals and mergers of 10

binary black hole systems and one binary neutron star system [1], ushering in a new era

of GW astronomy. The third observing run, O3, is now beginning, and due to significant

increases to sensitivity, a significant increase in the rate of detections is expected. There

are two LIGO detectors, one in Hanford, WA (H1), and one in Livingston, LA (L1).

The Advanced LIGO detectors are dual-recycled Michelson interferometers with two

orthogonal arms that are approximately 4 km in length. A simplified diagram of an Ad-

vanced LIGO detector is shown in Fig. 3. Near-infrared (1064-nm) laser light is passed
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Figure 3 : A simplified diagram of an Advanced LIGO detector. Laser light enters from the left, passes

through a power recycling mirror (PRM), and is sent down two orthogonal arms by a beamsplitter (BS).

It then passes through the input test masses ITMX and ITMY to enter a pair of resonant Fabry-Perot

cavities. Light reflects off of the end test masses ETMX and ETMY and the input test masses numerous

times to increase the laser power stored in the 4-km arms by a factor of a few hundred. As light exits

the Fabry-Perot cavities, most of it continues left toward the PRM to be reflected back into the detector.

A faint signal is sent toward the signal recycling mirror (SRM), a portion of which escapes the detector

to be measured by a photodetector (PD). A four-stage suspension system used to prevent excessive test

mass motion is also shown, with an actuation system that actively supresses low-frequency noise. The

lowest three stages of the actuation system are used to control differential arm motion: the test mass

(T) stage, the penultimate (P) stage, and the upper inermediate (U) stage.

through a beamsplitter into a pair of resonant Fabry-Perot cavities in each arm, before

being reflected back to the beamsplitter by mirrors on the end test masses. In an un-

perturbed state, the length of each arm is held such that almost-completely destructive

interference allows only a dim light to exit the detector at the GW readout port, where a

photodiode measures the output light. Changes to the differential arm (DARM) degree
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of freedom in the motion of the four test masses due to both GWs and noise cause fluctu-

ations in the light exiting the detector at the GW readout port. Active seismic isolation

is used to reduce motion in the four test masses caused by environmental noise sources.

Additionally, each test mass is suspended as the bottom stage of a quadrupole suspension

system, also shown in Fig. 3. Despite these efforts to reduce unwanted test-mass motion,

achieving a stable low-noise configuration requires additional mitigation of low-frequency

(below ∼100 Hz) noise. This is accomplished by feedback control, using the detector’s

digital error signal, produced using the dim light recorded at the GW readout port, to

inform an actuation system. The actuation systems operate using additional quadrupole

suspension systems hung parallel to those of the test masses. At the test-mass stage, an

electrostatic actuator is used to control motion in the test masses. At the penultimate

and upper intermediate stages just above the test mass, electromagnetic actuators are

used. An important distinguishing feature of the actuation, as compared to other meth-

ods of attenuating noise, is that the actuation also removes GW signals from the DARM

readout. It is therefore necessary when reconstructing the strain signal to include the

portion that was removed by the actuation.

The following sections describe the causal relationship between GWs incident on the

detectors and the optical output of the detectors, as well as Advanced LIGO’s sensitivity

to DARM motion.

1.4.1 DARM response to gravitational waves

The strain signal in the detectors, h, is related to DARM motion by

h =
∆Lx −∆Ly

L
, (1.4.1)

where ∆Lx and ∆Ly are changes in the length of the X-arm and Y-arm, respectively, and

L is the average arm length. The strain signal h is therefore not the entire spacial metric

perturbation hij, but a projection of hij onto the detectors. The response of DARM

motion to incident GWs therefore depends on the sky location of the source and the

polarization of the GWs. In general, GWs are elliptically polarized. Two special cases
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are linear polarization and circular polarization. To see when these occur, consider a

compact binary system with negligible eccentricity and spins. Linearly polarized GWs

are emitted by such a system in all directions in the orbital plane, and circularly polarized

GWs are emitted in the directions normal to the orbital plane. In the general case, it is

always possible to write the spacial metric perturbation as a linear combination of the

plus and cross polarizations:

h = h+ê+ + h×ê× , (1.4.2)

where ê+ and ê× are orthogonal unit tensors in the transverse plane. As given in Appendix

A of [7], the general form of the antenna response pattern for a LIGO detector, defined

by h = Dijhij, is

D(n̂, f) =
1

2
(p̂⊗ p̂)D(p̂ · n̂, fL/c)− 1

2
(q̂⊗ q̂)D(q̂ · n̂, fL/c) , (1.4.3)

where n̂ is a unit vector in the direction of propagation of the GW, p̂ and q̂ are unit

vectors in the directions of the X-arm and Y-arm, respectively, L is the average arm

length, and f is the GW frequency. The function D is defined by

D(µ, x) =
1

2
e2πix

[
eiπx(1−µ) sinc[x(1 + µ)] + e−iπx(1+µ) sinc[x(1− µ)]

]
, (1.4.4)

where sinc(x) = sin(πx)/(πx). In the long wavelength limit fL/c � 1, which is a good

approximation throughout LIGO’s most sensitive frequency band of 20 Hz to 1 kHz,

D → 1 and the antenna response pattern simplifies to

D(n̂, f) =
1

2
(p̂⊗ p̂− q̂⊗ q̂) . (1.4.5)

The strain signal in the detectors can also be written in terms of the polarization com-

ponents h+ and h× as

h = G+h+ +G×h× , (1.4.6)

where

G+ ≡ Dij ê+
ij (1.4.7a)

G× ≡ Dij ê×ij . (1.4.7b)
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Figure 4 : Magnitude of the antenna response pattern of a LIGO detector, D, defined by h = Dijhij ,

as a function of the direction of travel of incident GWs, in the low-frequency limit. The compenents G+

and G×, defined by h = G+h+ +G×h×, are shown separately. The z-axis here points vertically upward

from the location of the detector, and the x and y axes point along the X-arm and Y-arm, respectively.

θ is the polar angle, and φ is the azimuthal angle. For simplicity, we define the polarization unit tensors

relative to the detector as well: ê+ = êθ ⊗ êθ − êφ⊗ êφ, and ê× = êθ ⊗ êφ + êφ⊗ êθ. The radial distance

represents the sensitivity. The dependence on θ and φ for each polarization are shown separately in the

lower plots. The product of these two at each value of θ and φ produces the upper plots.
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To show the dependence of G+ and G× on sky position, let us choose a coordinate

system defined relative to the detector, with the z-axis pointing vertically upward from

the detector, and the x and y axes pointing along the X-arm and Y-arm of the detector,

respectively. Then, for simplicity, we define the unit tensors ê+ and ê× relative to the

detector as well:

ê+ = êθ ⊗ êθ − êφ ⊗ êφ (1.4.8a)

ê× = êθ ⊗ êφ + êφ ⊗ êθ , (1.4.8b)

where êθ is the unit vector corresponding to the polar angle θ, and êφ is the unit vector

corresponding to the azimuthal angle φ. Then, in the long-wavelength limit, the antenna

response patterns of the detectors take the simple form

G+(θ, φ) =
[
1 + cos2(θ)

]
cos(2φ) (1.4.9a)

G×(θ, φ) = cos(θ) sin(2φ) . (1.4.9b)

These antenna response patterns are shown in Fig. 4.

More general descriptions of detector antenna patterns can be found in [7] and [13].

1.4.2 The detectors’ optical response to DARM motion

Having seen how the spacial metric perturbation due to GWs incident on the detector

is related to changes in DARM, let us now consider how LIGO’s primary observable,

the light incident on the photodiode at the GW readout port, is related to physical

DARM motion. In a low-noise configuration, this relationship is linear to a very good

approximation, due to the positions at which the test masses are held and the small

amplitude of their motion. Additionally, the optical response of the detectors is well

modeled in the frequency domain by a single pole approximation. Let us now show that

this is the case for a Fabry-Perot Michelson interferometer. To begin, first consider the

optical response of a single Fabry-Perot cavity in the X-arm with a time-dependent length

Lx(t). We represent light incident on the X-end input test mass (ITM) outside the cavity

by the constant electric field amplitude EIX, and EFP. and EFP/ are the time-dependent
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electric field amplitudes inside the cavity leaving and returning to the ITM, respectively.

Then

EFP.(t) = tITMEIX − rITMEFP/(t) = tITMEIX − rITMe
−2ikLxEFP.(t− 2Lx/c) , (1.4.10)

where rITM and tITM are the reflectivity and transmissivity of the ITM, respectively, and

k = ω/c is the wavenumber of the light. Letting

EFP.(t− 2Lx/c) = EFP.(t)−
2Lx

c

dEFP.

dt
(1.4.11)

and solving for dEFP./dt, we find that

dEFP.

dt
=

c

2Lx

[(
1 +

e2ikLx

rITM

)
EFP.(t)−

tITM

rITM

e2ikLxEI

]
. (1.4.12)

Defining the equilibrium field

EFP.,eq =
tITM

1 + rITMie−2ikLx
EIX , (1.4.13)

this can be rewritten as

dEFP.

dt
=

1

τ
(EFP.,eq − EFP.(t)) , (1.4.14)

where the time constant τ is defined by

1

τ
= − c

2Lx

(
1 +

e2ikLx

rITM

)
. (1.4.15)

When the Fabry-Perot cavity is at resonance, Lx = Lres where e−2ikLres = −1, we see that

τ > 0, indicating that this is a stable equilibrium. The reflected field exiting the cavity

at the X-end ITM is

ERX(t) = rITMEIX + tITMe
−2ikLxEFP.(t) , (1.4.16)

and therefore

dERX

dt
=

1

τ
(ERX,eq − ERX(t)) , (1.4.17)

where the equilibrium field ERX,eq is

ERX,eq =

(
rITM + e−2ikLx

1 + rITMe−2ikLx

)
EIX . (1.4.18)
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When the cavity is at resonance, this simplifies to ERX,eq = −EIX. For small deviations

from resonance,

ERX,eq ≈ − exp

(
−2ik

1 + rITM

1− rITM

∆Lx

)
EIX . (1.4.19)

Let us now consider the optical response of a Fabry-Perot Michelson interferometer, with

the input test masses ITMX and ITMY located at distances `x and `y from the beam-

splitter, respectively. In terms of the mean arm length ¯̀= (`x + `y)/2 and the difference

in arm lengths δ = `x − `y,

EGW(t) = e−ik
¯̀[
ERY(t)eikδ/2 − ERX(t)e−ikδ/2

]
, (1.4.20)

where EGW is the electric field amplitude exiting the detector at the GW readout port,

and the behavior of the fields ERX and ERY near resonance is described by Eqs. 1.4.19

and 1.4.17. The fields incident on the input test masses are related to the field inci-

dent on the beamsplitter from the input laser EIN by EIX = EINe
−ik(¯̀+δ/2) and EIY =

EINe
−ik(¯̀−δ/2). The lengths `x and `y are set so that eik

¯̀
= 1 and eikδ = 1. Therefore,

using Eq. 1.4.17, we find that

dEGW

dt
=

1

τ
(EGW,eq − EGW(t)) , (1.4.21)

where

EGW,eq = ERY,eq − ERX,eq

≈
[
exp

(
−2ik

1 + rITM

1− rITM

∆Lx

)
− exp

(
−2ik

1 + rITM

1− rITM

∆Ly

)]
EIN . (1.4.22)

Expressing this in terms of DARM motion ∆L = ∆Lx−∆Ly and common arm (CARM)

motion ∆LCARM = ∆Lx + ∆Ly, we find

EGW,eq ≈ −2i exp

(
−ik 1 + rITM

1− rITM

∆LCARM

)
sin

(
k

1 + rITM

1− rITM

∆L

)
EIN . (1.4.23)

Note that, for small deviations from resonance, only changes in DARM affect the am-

plitude of the result. The current generated in the photodiode is proportional to the

intensity of the light at the GW readout port, so what we wish to measure is

|EGW,eq|2 ≈ 4 sin2

(
k

1 + rITM

1− rITM

∆L

)
|EIN|2 . (1.4.24)
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When the detector is exactly at resonance, the change in photocurrent is quadratic in

small changes in ∆L, resulting in a nonlinear detector response. This is problematic for

several reasons, most notably the fact that the sign of ∆L cannot be inferred from such a

photocurrent. Additionally, feedback control of the detector, as well as calibration models,

assume linear transfer functions for the detector’s response. To enforce linearity in the

detector’s response to small changes in DARM, a small offset ∆L0, called the DARM

offset, is added so that the detector is near, but not exactly at, resonance. Making the

replacement ∆L→ ∆L0 + ∆L in Eq. 1.4.24, we can approximate that Eq. 1.4.24 is linear

in small changes in ∆L. We therefore argue that, for small displacements,

IGW,eq(t) ≈ HC∆L(t) + I0 , (1.4.25)

where I ∝ |E|2 is intensity, HC is the DC gain of the system, and I0 is a constant offset

related to the DARM offset. From Eq. 1.4.21, we find that

d

dt
|EGW|2 = 2<

[
1

τ

(
EGW,eqE

∗
GW − |EGW|2

)]
. (1.4.26)

For small departures from equilibrium EGW = EGW,eq + ε, this can be simplified to

d

dt
IGW ≈

1

τ
(IGW,eq(t)− IGW(t)) . (1.4.27)

Let us now use Eqs. 1.4.27 and 1.4.25 to find IGW as a function of ∆L and t. Rearranging,

we have

dIGW

dt
+
IGW

τ
=

1

τ
[HC∆L(t) + I0] . (1.4.28)

After multiplying by the integrating factor et/τ , this can be rewritten as

d

dt

[
IGWe

t/τ
]

=
1

τ
[HC∆L(t) + I0] et/τ . (1.4.29)

The general solution is

IGW(t) = I0 +
HC

τ
e−t/τ

∫ t

−∞
∆L(t′)et

′/τdt′ . (1.4.30)

It is instructive to consider the form of this solution for a sinusoidal input such as ∆L(t) =

cos(ωt). Then Eq. 1.4.30 becomes

IGW(t) = I0 +
HC

τ
e−t/τ

∫ t

−∞
cos(ωt′)et

′/τdt′ . (1.4.31)
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An integration by parts leads to the result

IGW(t) = I0 +HC
cosωt+ τω sinωt

1 + τ 2ω2
. (1.4.32)

This result shows the frequency dependence of the response of the system, and is con-

sistent with the result we shall derive next. Now, let us take the Fourier transform of

Eq. 1.4.30 to represent it in the frequency domain. Since the constant offset is trivial (it

just adds a constant DC component to the result), it is omitted.

ĨGW(ω) =
HC

τ

∫ ∞

−∞
e−t/τe−iωt

(∫ t

−∞
∆L(t′)et

′/τdt′
)
dt . (1.4.33)

Integration by parts leads to the result

ĨGW(ω) =
HC

τ

[∫ t

−∞
∆L(t′)et

′/τdt′
(−e−t/τe−iωt

1/τ + iω

)]∣∣∣∣∣

t=∞

t=−∞

(1.4.34)

+
HC

τ

(
1

1/τ + iω

)∫ ∞

−∞
e−t/τe−iωt∆L(t)et/τdt .

The first term can be shown to vanish by L’Hospital’s rule, and the second term leads to

the simple result

ĨGW(ω) =
HC

1 + iωτ
∆̃L(ω) . (1.4.35)

Writing this in terms of frequency f = ω/(2π) and defining the pole frequency fc =

1/(2πτ), we can rewrite this as

ĨGW(f) =
HC

1 + if/fc

∆̃L(f) . (1.4.36)

The parameter fc in the sensing function of the detectors is called the cavity pole frequency,

and it is discussed in detail in the following chapters. The addition of the power recycling

mirror couples the Fabry-Perot cavities, but the single-pole behavior persists. We will

not prove this here for the sake of brevity.

Note that the optical response derived here is not the full model of the sensing func-

tion, which additionally includes the response of various electronics, a time delay, and

dependence at low frequencies on the response of the signal recycling cavity (the cavity

between the beamsplitter and the signal recycling mirror, shown in Fig. 3). By design, the
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signal recycling cavity has no frequency-dependent effect on the optical response; its pur-

pose is to increase the detector’s broadband sensitivity. In practice, the signal recycling

cavity can be slightly detuned, leading to the frequency-dependent response described in

Section 2.3. A thorough analysis of the response of the signal recycling cavity can be

found in [14].

1.4.3 Sensitivity of the detectors to DARM motion

The goal of the Advanced LIGO detectors is to detect GW signals in the frequency band

from 10 Hz to 5 kHz. Thus far, Advanced LIGO has detected GW signals from the

coalescence of compact binaries. Besides compact binary coalescences, other promising

sources of GW signals in Advanced LIGO’s detection band include rotating neutron stars

emitting continuous waves, nearby supernovae, and the stochastic background of more

distant GW events that are not individually resolvable. In order to make detections

probable over the timescale of an observing run, Advanced LIGO needs a sensitivity and

duty cycle sufficient to observe a volume of spacetime large enough to make GW events

probable. Roughly speaking, this requires a sensitivity sufficient to measure strain signals

with amplitude of the order |h| ∼ 10−21 or smaller. To see how this level of sensitivity is

achieved, consider first the case of a simple Michelson interferometer without Fabry-Perot

cavities or power or signal recycling mirrors. Let the length of both arms be L ∼ 1 km and

the wavelength of the input laser light be λlaser ∼ 10−6 m. Let the detector’s arms be held

so that, in an unperturbed state, no light exits at the GW readout port. Changing the

total path length of the laser beam in one arm by half of a wavelength requires changing

the length of that arm by 1/4 of a wavelength, and will result in constructive interference:

|h| ∼ λlaser

L
∼ 10−6 m

103 m
= 10−9 . (1.4.37)

This is not even close to the sensitivity needed to make detections. However, several

significant improvements can be made. First, the addition of the input test masses to

create resonant Fabry-Perot cavities in each arm can increase the effective arm length

by causing the laser light to circulate in the arms. The associated benefit is maximized
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when the effective length is comparable to the wavelength of the GW signals we wish to

detect, since further increase of light storage time means that the metric perturbation

will change significantly during the time the light is in the cavities. The wavelength of

GWs in Advanced LIGO’s most sensitive band is λGW ∼ c/300 Hz = 106 m. With this

improvement, sensitivity improves to

|h| ∼ λlaser

`eff

∼ 10−6 m

106 m
= 10−12 . (1.4.38)

The next significant improvement is in the measurement of the optical fringes. It is not

necessary to move from a dark fringe to a bright fringe to make a measurement; much

smaller changes in intensity can be measured. In fact, the dominant source of noise in

the measurement of intensity of light at the GW readout port is photon shot noise, the

quantum fluctuation in the number of photons arriving in a sampling period. The arrival

of photons at the GW readout port is a Poisson process, meaning that, for an average

value of N photons arriving in the time interval τ , the uncertainty in the number of

photons is
√
N . Therefore, the minimum detectable change in optical path is of order

∆` ∼
√
N

N
λlaser . (1.4.39)

Photons are collected over a time of the order of the period of the GW τ ∼ 1/fGW. The

number of photons collected also depends on the power of the laser Plaser and the energy

per photon hc/λlaser:

N =
Plaser

hc/λlaser

τ ∼ Plaser

hc/λlaser

1

fGW

. (1.4.40)

The laser power currently used is ∼40 W, so for a GW of frequency fGW ∼ 300 Hz and

a laser wavelength of λlaser ∼ 10−6 m, the number of photons is N ∼ 1018 photons. Then

we find

|h| = ∆`

`eff

∼ N−1/2λlaser

λGW

∼ 10−9 × 10−6 m

106 m
= 10−21 . (1.4.41)

An additional improvement is achieved by increasing the laser power stored in the de-

tector using a power recycling mirror at the symmetric output, as shown in Fig. 3. This

increases power by a couple orders of magnitude, leading to about one order of magnitude

of improvement in sensitivity. As laser power stored in the detector’s arms increases, ra-

diation pressure noise can become a competing source of noise at low frequency. Heavier
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test masses can be used to reduce this effect. Advanced LIGO’s test masses are 40 kg. A

signal recycling mirror placed before the GW readout port further improves sensitivity

in particular frequency bands. Lastly, quantum squeezing of input laser light is used to

reduce shot noise and radiation pressure noise.

At the beginning of O3, as shown in Fig. 13, the sensitivity of the Advanced LIGO

detectors in the most sensitive frequency band is a bit below 10−23 Hz−1/2.
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Chapter 2

Advanced LIGO calibration overview

The goal of Advanced LIGO’s detectors is to measure GW signals and record them as

a time series. However, the raw output of the detectors is not the GW strain; it a

digitized double-precision error signal called derr sampled at 16384 Hz, in arbitrary units

called counts, that represents the intensity of the laser light at the GW readout port as

measured by a photodiode. Moreover, the relationship of the error signal to the GW

strain is nontrivial, with dependence on both frequency and time.

Calibration of Advanced LIGO data entails reconstructing the strain signal in the

detectors. GWs induce changes in the differential arm (DARM) length of the detectors:

∆Lfree(t) = ∆Lx(t)−∆Ly(t) , (2.0.1)

where ∆Lx and ∆Ly are changes in the length of the X-arm and the Y-arm, respectively.

Despite the use of active seismic isolation and a quadrupole pendulum system to supress

low-frequency seismic noise, the detectors require additional mitigation of noise to achieve

a stable low-noise state. This is achieved using feedback control through an actuation

system which removes a controlled DARM length ∆Lctrl from ∆Lfree, to produce a residual

DARM length:

∆Lres = ∆Lfree −∆Lctrl . (2.0.2)

The final calibration product is the dimensionless strain signal, defined as

h(t) =
∆Lfree(t)

L
, (2.0.3)
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Figure 5 : A block diagram of the Advanced LIGO differential arm (DARM) feedback control loop. Noise

and GW signals enter at the upper left as ∆Lfree. The sensing function C represents the conversion from

meters of residual DARM displacement ∆Lres to counts in the error signal derr. The digital filter D is

used to produce the control signal dctrl, which is sent to the actuation function A. The actuation function

converts the control signal to a controlled DARM displacement ∆Lctrl, which is removed from ∆Lfree to

produce ∆Lres. The actuation function is split into three stages Aj (j ∈ {T, P, U}), corresponding to the

three stages of the suspensions system used to control DARM motion. The filter functions Fj include

all filters (e.g., lock filters) that occur before injections in each stage, and the functions Ai,0 are the

remaining portions of the Aj . The injections xpc, made using the photon calibrator (Pcal), and xi, made

in each stage of the actuation, are used to measure the calibration at select frequencies. The injection

xctrl was used during O2 instead of xP and xU.

where L = (Lx + Ly)/2 is the average length of the arms.

2.1 Black box models of the detector’s response to gravitational

waves

Changes in DARM cause fluctuations in the intensity of the laser light measured by the

photodiode at the GW readout port, which is converted to the digital error signal derr.

The transfer function relating the error signal to residual DARM length changes is called

the sensing function C and is defined by

d̃err(f) = C̃(f)∆̃Lres(f) , (2.1.1)
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where the tilde denotes a Fourier transform. The error signal is digitally filtered to

produce a control signal dctrl:

d̃ctrl(f) = D̃(f)d̃err(f) , (2.1.2)

where the digital filter D̃ acts primarily as a low-pass filter, but may also contain notches

to remove resonant frequencies of the actuation such as violin modes. The control signal

is then sent to the actuation system to remove excess low-frequency noise:

∆̃Lctrl(f) = Ã(f)d̃ctrl(f) . (2.1.3)

This describes a feedback control loop called the DARM loop that is used to mitigate

low-frequency noise, depicted in Fig. 5. The DARM loop can be used to solve for ∆Lfree

in terms of the error signal, the result being

∆̃Lfree(f) = R̃(f)d̃err(f) , (2.1.4)

where R is the response function1 given by

R̃(f) =
1 + Ã(f)D̃(f)C̃(f)

C̃(f)
. (2.1.5)

However, this is not the method used by Advanced LIGO’s calibration pipelines to com-

pute h(t). The solution used to compute h(t) uses both the error and control signals:

∆̃Lfree(f) = C̃−1(f)d̃err(f) + Ã(f)d̃ctrl(f) . (2.1.6)

The motivation behind using this method is to avoid using a calibration model that

depends on the digital filter D, due to the fact that D can be changed for detector

commissioning purposes and is not continuously measured in the calibration process.

The methods discussed later in Chapter 5 to continuously track temporal variations in

the calibration models do, however, have dependence on D, nullifying the benefit. This

is an area of current development.

1Note that R is not the response function of the detector, but the inverse, that is, the intended

response function of the calibration.
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Note that the sensing function C is a linear transfer function, and can therefore

accurately model the relationship between ∆Lres and derr only if that relationship is in

fact linear. However, that relationship cannot be linear if the unperturbed state of the

detector allows no light to exit at the GW readout port. Moreover, if this were the case,

one could not determine the sign of ∆Lres. In order to ensure linearity, a small offset is

digitally added into the DARM loop, so that in an unperturbed state, a small amount of

light escapes to the GW readout port.

2.2 Time-domain calibration

Although calibration models are best represented analytically in the frequency domain,

calibration of Advanced LIGO data is done in the time domain. This has been the

case since Initial LIGO’s second science run, and the development of the original time-

domain calibration is described in [15]. An update of the methods used for time-domain

calibration in Advanced LIGO is given in [16]. The primary benefit of applying the

calibration model in the time domain, as opposed the frequency domain, is that the

filtering of time-domain data can be done with very low latency, whereas taking Fourier

transforms of consecutive segments of input data to apply a frequency-domain model

adds latency.

Time-domain calibration requires the construction of digital filters using the frequency-

domain models for Ã and C̃−1. Finite impulse response (FIR) filters representing the

models are then convolved with input data to apply the models:

h(t) = C−1 ∗ derr(t) + A ∗ dctrl(t) . (2.2.1)

The operation

F ∗ g(t) =

∫ ∞

−∞
F (τ)g(t− τ)dτ (2.2.2)

denotes convolution of the filter F with the signal g(t), equivalent to a point-by-point

multiplication in the frequency domain.
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2.3 Sensing function
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Figure 6 : A Bode plot of the sensing function model for the L1 detector before O3. Measurements used

to produce this model were taken on 2019-01-17.

The full sensing function model used by the calibration pipelines is given by

C̃(f ; t) = κC(t)

(
HC

1 + if/fcc(t)

) (
f 2

f 2 + f 2
s (t)− iffs(t)/Q(t)

)
CR(f) exp[−2πifτC] .

(2.3.1)

The gain HC represents the conversion from meters of DARM displacement to counts.

The dimensionless scalar κC(t) encodes the time-dependence of the gain HC, observed

to fluctuate by ∼10%. The coupled cavity pole frequency fcc(t) is the characteristic fre-

quency at which the detector response is significantly attenuated due to finite average

photon storage time in the Fabry Pérot cavities. During O3, the coupled cavity pole

frequency is expected to have a value of ∼400 Hz. τC is a constant time delay due to
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light-travel time across the length of each arm and an additional time delay in acquiring

the digital signal. The factor CR(f) encodes the remaining frequency dependence above

∼1 kHz due to photodiode electronics and signal-processing filters. The second term in

parenthesis represents the impact of the signal recycling cavity (SRC) on the detector

response. fs(t) and Q(t) are the resonant frequency and quality factor of the optical

anti-spring of the SRC, respectively. An optical spring (or anti-spring) exists in an op-

tomechanical cavity if there is a linear relationship between the length of the cavity and

the photon pressure on the mirrors. The value of fs is generally expected to remain below

∼10 Hz.

A Bode plot showing the sensing function model for the L1 detector before O3 is

shown in Fig. 6. The same model is used in Fig. 14, showing how well the calibration

filters implement the application of the response function R to the raw data.

2.4 Actuation function

As depicted in Fig. 3, the actuation system utilizes a quadrupole pendulum systems hung

parallel to the test-mass suspension system. The lowest three stages are used to control

DARM motion in one of the arms (typically the X-arm). At the lowest stage, called

the test mass (T) stage, an electrostatic actuator is used to control DARM motion. At

the penultimate (P) and upper intermediate (U) stages, electromagnetic actuators are

used. Digital filters are applied in each stage of the actuation to direct the low-frequency

content to the higher stages and the high-frequency content to the lower stages. The full

actuation model is given by

Ã(f ; t) =
[
κU(t)e2πifτU(t)F̃T(f)F̃P(f)F̃U(f)ÃU,0(f) (2.4.1)

+ κP(t)e2πifτP(t)F̃T(f)F̃P(f)ÃP,0(f)

+ κT(t)e2πifτT(t)F̃T(f)ÃT,0(f)
]

exp[−2πifτA] ,

where Ãj,0(f) represents the frequency response of the j-stage actuator for j ∈ {T,P,U}.
κj(t) encodes the time-dependence of the strength of the j-stage actuator, and τj(t)

represents the variable computational time advance associated with the j-stage actuator,
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Figure 7 : A Bode plot of the actuation function model for the L1 detector before O3. Measurements

used to produce this model were taken on 2019-01-17.

generally expected to be close to zero [17]. The digital filter functions Fj(f) are used

before each actuator to distribute the frequency content of dctrl to each stage. τA is a

constant computational time delay. Fig. 7 shows a Bode plot of the actuation function

for the L1 detector shortly before O3, with each stage of actuation shown individually.

The same model is used in Fig. 14.

2.5 Measurements

Calibration of Advanced LIGO data requires a fundamental reference for absolute dis-

placement calibration in order to take measurements of the detectors. This is provided
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by a radiation pressure actuator located at each end station known as a photon cal-

ibrator (Pcal). The Pcal is an auxiliary laser system that induces fiducial test mass

displacements via radiation pressure with force coefficients derived from laser power mea-

surements traceable to SI units. The powers of these laser beams that reflect from the

the test mass surfaces are measured using calibrated sensors, thus providing continuous

absolute calibration when the interferometers are operating in their nominal configura-

tions. The overall 1-σ uncertainty in the displacements induced by photon calibrators

was 0.75% during O2 [18] with the long-term stability of the calibrated length variations

verified during year-long observing runs [19]. Further reduction of the 1-σ uncertainty in

the displacements induced by the Pcals is possible and expected to occur during O3. The

Pcal signals are injected at the same location in the DARM feedback loop as free DARM

motion ∆Lfree, as shown in Fig. 5.

Full measurements of the sensing and actuation functions are achieved using swept

sine injections made using the Pcal and each stage of the actuation system [20]. The

parameters of the analytical models for A and C are then fit to these measurements

to inform a static reference model, denoted by Amodel and Cmodel. All time-dependent

parameters are set to their nominal values in the static reference model, i.e., κC → 1, fcc →
fmodel

cc , fs → fmodel
s , Q → Qmodel, κT → 1, τT → 0, κP → 1, τP → 0, κU → 1, τU → 0,

reducing the models for C and A to

C̃model(f) =

(
HC

1 + if/fmodel
cc

) (
f 2

f 2 + (fmodel
s )2 − iffmodel

s /Qmodel

)
CR(f) exp[−2πifτC]

(2.5.1)

Ãmodel(f) =
[
F̃T(f)F̃P(f)F̃U(f)ÃU,0(f) + F̃T(f)F̃P(f)ÃP,0(f)

+ F̃T(f)ÃT,0(f)
]

exp[−2πifτA] . (2.5.2)

Full measurements are made prior to observing runs and periodically throughout ob-

serving runs in order to produce filters for calibration purposes and inform a calibration

uncertainty budget, described in [2].
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2.6 Temporal variations in the response of the detectors

As implied by Eqs. 2.3.1 and 2.4.1, the calibration models for A and C are known

to show small temporal variations [21], captured in the model by the time-dependent

correction factors (TDCFs) κT, τT, κP, τP, κU, τU, κC, fcc, fs, and Q. In order to track

and compensate for these temporal variations, sinusoidal excitations are continuously

injected using a Pcal and each stage of the actuation system. These injections add loud

spectral lines to the h(t) spectrum, called calibration lines. The Pcals thus also provide

stable references for continuously monitoring temporal variations in the responses of the

interferometers. If not compensated for, temporal variations can lead to systematic errors

in the calibrated strain data as large as ∼20% at some frequencies. The largest variations

are observed in the optical gain and the strength of the elecrostatic actuator at the test

mass stage of the actuation, tracked by the parameters κC and κT, respectively. Changes

in the optical gain can be caused by drifts in the alignment of the mirrors or intentional

changes to the input laser power, and can occur on timescales of several minutes. The

strength of the electrostatic actuator gradually increases during normal detector operation

on timescales of days to weeks due to the slow accumulation of charge on the test mass.

The methods used to track and compensate for slow changes in the TDCFs are described

in detail in Chapter 5.

2.7 Calibration pipelines

Low-latency calibration of Advanced LIGO data is done in two stages. The first, called

the front-end calibration pipeline, is performed on the same computers that operate

the detector’s feedback control system. The front-end calibration pipeline uses infinite

impulse response (IIR) filters and is run using real-time code in the front-end system

where all operations are done on 61 µs digital sampling intervals. An advantage of the

front-end calibration pipeline is being directly hooked into all of the other front-end

computer systems, allowing seamless access to all of the appropriate detector models

and parameters. This enables the calibration model to remain up-to-date and in-sync
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with the detector. For this reason, it is a long-term goal to perform the low-latency

calibration procedure entirely in the front end. However, several limitations to calibration

accuracy in the current front-end calibration pipeline necessitate the second stage of the

low-latency calibration procedure. First, due to the real-time nature of the front-end

computing system, a phase advance cannot be applied to the output, leading to several

cycles of delay in the output. Second, it is difficult using IIR filters to model arbitrary

transfer functions, as is needed to apply the models of A and C−1 to the raw data. This

is especially true at high frequencies, due to poles in the calibration models above the

Nyquist frequency used to model the response of analog electronics. Finally, although it is

now possible to compensate for time dependence in the front-end calibration pipeline, the

TDCFs computed in the front end are subject to large noisy fluctuations. Compensation

for time dependence is expected to improve front-end calibration accuracy during O3, but

due to these large fluctuations, the second stage of the low-latency calibration procedure

performs its own calculation of the TDCFs to compensate for time dependence.

Due to the systematic errors currently present in the front-end calibration, its cal-

ibrated output is sent to another pipeline called the gstlal calibration pipeline. The

low-latency gstlal calibration pipeline receives as inputs the front-end outputs ∆Lres,

∆LT, ∆LP, and ∆LU and applies finite impulse response (FIR) filters to correct the

known systematic errors present due to the limitations of the front end’s IIR filters. It is

much easier using FIR filters to model an arbitrary transfer function, making the task of

applying corrections to the front-end models for A and C−1 almost trivial. Additionally,

the FIR filters of the gstlal calibration pipeline are used to high-pass filter the h(t) data

for the benefit of downstream analysis. The TDCFs computed in the gstlal calibra-

tion pipeline are accepted or rejected based on the coherence of the calibration lines and

passed through a running median to avoid the large noisy fluctuations seen in the front

end’s values. Although a similar method has recently been implemented in the front end,

not all of these noisy fluctuations have been removed.

In high latency, the entire calibration procedure is done using the gstlal calibration

pipeline, using as inputs derr and dctrl. A high latency calibration is generally necessary
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due to mistakes made in the low latency calibration, and errors in or improvements to the

calibration models and input data discovered after the low-latency calibration is produced.

The methods and improvements to the calibration procedure discussed in the following

chapters were developed in the gstlal calibration pipeline.

39



Chapter 3

The gstlal calibration pipeline

The gstlal calibration pipeline forms the second stage of the low-latency calibration

procedure, correcting known systematic errors remaining in the front-end calibration. It

is also used in high latency for the entire calibration procedure. Unlike the front-end

calibration pipeline, the gstlal calibration pipeline is run on separate machines outside

of the front end, and it uses FIR filters instead of IIR filters to apply the calibration

model to the input data. The primary advantage of using FIR filters is that an FIR filter

can be designed to implement virtually any frequency-domain model. Additionally, FIR

filters make it possible to fulfill the requirement that all output must be independent

of the start time of the pipeline. The output of an FIR filter depends on a fixed finite

number of input samples, while the impact of an input sample to an IIR filter typically

decays over time, but does not disappear completely.

3.1 Use of GStreamer and gstlal in calibration

Advanced LIGO strain data is processed and stored as double-precision floating-point

numbers sampled at 16384 Hz and contains potentially useful information from 10 Hz

to 8192 Hz. This range of frequency overlaps significantly with the human hearing

range of 20 Hz to 20 kHz. Because of this similarity, it is possible to take advantage

of software that is developed for the purpose of processing audio signals. The gstlal

calibration pipeline uses the open-source audio and video streaming software package
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GStreamer [22], provided under the GNU license [23]. GStreamer is a pipeline-based mul-

timedia framework written in C, and uses a type system based on GObject [24] and GLib

[25]. GStreamer provides bindings for Python, allowing pipelines such as the gstlal

calibration pipeline to be constructed in Python. The GStreamer package used for cal-

ibration is called gstlal-calibration [26], and is a part of the GstLAL project [27],

which wraps LIGO Algorithm Library (LAL) software [28] with GStreamer. The obvious

advantages of using GStreamer are the many built-in features for low-latency streaming

of audio-like data. A disadvantage is that, since GStreamer is not primarily designed to

process LIGO data, some software package updates cause problems in the gstlal cali-

bration pipeline that can require urgent bug fixes. The development of many customized

GStreamer elements written for the purpose of calibration has improved the gstlal cal-

ibration pipeline’s immunity to such problems.

3.2 Operation procedures in the gstlal calibration pipeline

Although significant differences between low-latency and high-latency calibration proce-

dures are noted in Sections 3.3 and 3.4, similarities in the procedures allow for a general

description, given below.

3.2.1 Filling in missing raw data

For various reasons, and especially in low latency, raw data is occasionally missing as

input to the gstlal calibration pipeline. The frequency of raw data dropouts and the

amount of missing data varies greatly, but most of the time these dropouts occur at

a frequency of a few times per week and last only a few seconds. On rare occasions

however, hours of raw data can be dropped. These are generally much less common when

the detector is in a nominal low-noise configuration, but occasionally occur then as well.

Since downstream data analyses rely on a continuous h(t) data stream, it is essential

that the gstlal calibration pipeline fills in this missing data. In most channels, these

are filled in with zeros. The only exceptions are the channels that report uncertainty
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in the calibration lines described in Section 5.2.7, which are filled in with ones.1 The

impact of these dropouts on calibration latency can be seen in Fig. 11, where a ∼20-

minute stretch of low-noise data is impacted by frequent short dropouts. It is a priority

to address this latency during O3, especially since, after a long stretch of missing raw

data, it can take the gstlal calibration pipeline a considerable time to “catch up” to

normal latency levels as it furiously calibrates worthless fake data. One possible method

to prevent these occasional large increases in latency would be to track the time since

raw data has arrived in the gstlal calibration pipeline. Anytime the pipeline has waited

longer than some chosen threshold, it could begin filling in the missing data. This would

prevent the pipeline from falling behind, providing a more consistent h(t) time series for

downstream analysis and saving the time currently needed to catch up after a long data

dropout.

3.2.2 Computing the time-dependent correction factors

Despite the fact that the front-end calibration pipeline computes the TDCFs, the gstlal

calibration pipeline computes and utilizes the TDCFs independently. This is due in

part to the fact that the noise attenuation process described in Section 5.2.7 has not

yet been fully developed and tested in the front-end calibration pipeline, and to the fact

that the gstlal calibration pipeline also needs to compute the TDCFs in high latency.

It additionally allows results to be compared between the front end and the gstlal

calibration pipeline. The calculation of the TDCFs in the gstlal calibration pipeline

begins with measurement of the calibration lines, accomplished using demodulation as

described in Section 5.2.1. The data is downsampled to 16 Hz in this process before the

TDCFs are computed, preventing unmanageable computational cost. The subsequent

calculation of the TDCFs is described in detail in Section 5.2.

1These channels are used to determine when to gate the calculation of the TDCFs, and a value of

zero during a data dropout would falsly indicate that the calculation of the TDCFs is reliable.
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3.2.3 Applying FIR filters to compute h(t)

The gstlal calibration pipeline applies time-domain FIR filters modeling the actuation

function Ã at each stage, described by Eq. 2.4.1, and the inverse sensing function C̃−1,

described by Eq. 2.3.1, to the actuation and inverse sensing paths separately, before

adding the components to produce ∆Lfree(t). During O2, the scalar correction factors κT

and κC, as well as the factor κPU (estimate of the combined impact of κP and κU) were

applied as multiplicative factors to the components of ∆Lfree after the static model filters

were applied:

h(t) =
1

L

(
1

κC(t)
C−1,model ∗ derr(t) + κT(t)Amodel

T ∗ dctrl(t) (3.2.1)

+ κPU(t)Amodel
PU ∗ dctrl(t)

)
.

During O3, it will be possible to use adaptive filtering techniques to apply time-dependent

filters accounting for all parameterized time dependence in the gstlal calibration pipeline,

as described in detail in Section 5.3.2, the result being

h(t) =
1

L

(
C−1(t) ∗ derr(t) + AT(t) ∗ dctrl(t) + AP(t) ∗ dctrl(t) + AU(t) ∗ dctrl(t)

)
. (3.2.2)

3.2.4 The calibration state vector

The gstlal calibration pipeline computes a bitwise state vector using 32-bit unsigned

integers sampled at 16 Hz. The calibration state vector contains information about

the integrity of the h(t) data product at each moment of time, as well as additional

information about the state of the calibration. Definitions of each bit in the O3 calibration

state vector are shown in Table 1. Bit 0 indicates that the h(t) data currently produced

is accurate and suitable for analysis. It is computed as the logical AND of bits 2, 3,

and 4, plus any of bits 9 through 15 corresponding to a time-dependent correction that

is being compensated for in h(t). Bits 1 and 2 are read in from the Guardian, a front-

end platform consisting of distributed, independent, state machine automation nodes

organized hierarchically for full detector control [29]. Bit 1 tells whether the operator in

the control room has determined that there are no ongoing commissioning activities and
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Table 1 : A summary of the meaning of each bit in the calibration state vector during O3.

bit Short descriptor Long descriptor

0 HOFT OK h(t) was successfully computed

1 OBS INTENT interferometer is in “observation intent” mode

2 OBS READY interferometer is in “observation ready” mode

3 FILTERS OK calibration filters settled in

4 NO GAP Input data is present and no underflows or overflows

5 NO STOCH HW INJ No stochastic hardware injections present

6 NO CBC HW INJ No compact binary coalescence hardware injections present

7 NO BURST HW INJ No burst hardware injections present

8 NO DETCHAR HW INJ No detector characterization hardware injections present

9 KAPPA T SMOOTH OK κT output is in expected range

10 KAPPA P SMOOTH OK κP output is in expected range

11 KAPPA U SMOOTH OK κU output is in expected range

12 KAPPA C SMOOTH OK κC output is in expected range

13 F CC SMOOTH OK fcc output is in expected range

14 F S SMOOTH OK fs output is in expected range

15 Q INV SMOOTH OK Q−1 of SRC output is in expected range

16 SUS LINE3 COH OK Coherence of test actuator line is acceptable

17 SUS LINE2 COH OK Coherence of penultimate actuator line is acceptable

18 SUS LINE1 COH OK Coherence of upper intermediate actuator line is acceptable

19 PCALY LINE1 COH OK Coherence for first Pcal line is acceptable

20 PCALY LINE2 COH OK Coherence for second Pcal line is acceptable

21 PCALY LINE4 COH OK Coherence for lowest Pcal line is acceptable

22 D EPICS MATCH TDCF reference factors for digital filter D agree

23 A EPICS MATCH TDCF reference factors for actuation function A agree

24 C EPICS MATCH TDCF reference factors for sensing function C agree

25 MISC EPICS MATCH Miscellaneous TDCF reference factors match

26 LINE SUBTRACTION OK Subtraction of calibration lines is working

27 NOISE SUBTRACTION OK Subtraction of broadband noise is working

28 NOISE SUBTRACTION GATE Transfer function calculation is not being gated

the data being produced is science-quality. Bit 2 indicates that the detector is in a nominal

low-noise configuration. Bit 3 indicates that the calibration filters have settled, that is,
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all of the input data filtered to produce the current output samples is low-noise data that

does not include any data dropouts. Bit 4 indicates that there are no raw data dropouts

or arithmetic underflow or overflow inputs to the pipeline. Bits 5 through 8 indicate

that there are no hardware injections present in the current h(t) data. Bits 9 through

15 indicate that the computed TDCFs are within an expected range. Bits 16 through

21 indicate that the coherence of the calibration lines between the injection channels

and the error signal are acceptable based on a predetermined threshold, as described in

Section 5.2.7. Bits 22 through 25 indicate that the two sets of reference model values

used to compute the TDCFs agree, one in the front end and the other in the filters file

read in by the gstlal calibration pipeline. The front-end reference model values are used

in low latency, while the values stored in the filters file are used in high latency. Bits

26 and 27 indicate that subtraction of spectral lines and noise is successfully reducing

the RMS of the strain signal in the frequency bands where the impact is expected to be

significant. Bit 28 indicates that the calculation of transfer functions used for broadband

noise subtraction is running, and not being halted due to increased levels of detector

noise. The spectral line and noise subtraction is described in detail in Chapter 6.

3.3 The low-latency gstlal calibration pipeline

The low-latency gstlal calibration pipeline, also called the GDS (global diagnostic sys-

tem) calibration pipeline, is run on a machine at the detector sites called a data monitoring

tool (DMT). The DMTs receive raw data in very low latency from a frame broadcaster.

The raw data is written to a shared memory partition where it is read in by the gstlal

calibration pipeline. Calibrated GW frames are then written to another shared memory

partition to be sent to downstream processes and distributed.

The primary purpose of the low-latency gstlal calibration pipeline is to correct sys-

tematic errors remaining after the IIR filtering done in the front end. This is especially

impactful at high frequencies, due to the presence of poles above the Nyquist rate that are

difficult to model using IIR filters, and the current inability to apply a phase advance in
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Figure 8 : A simplified block diagram showing the workflow of the low-latency gstlal calibration pipeline.

It receives as inputs the calibrated components of ∆Lfree computed by the front-end calibration pipeline

and applies the FIR filters Acorr and C−1corr to correct known systematic errors. Solid lines represent the

continuous flow of digital time-series data, while the dashed lines represent the periodic passing of new

FIR filters from elements that compute them to elements that use them to filter input data. Details of the

calculation of the TDCFs and the calibration state vector are not shown. Fig. 23 shows the broadband

noise subtraction in the gstlal calibration pipeline.

the real-time code of the front-end computing system. Additionally, the gstlal calibra-

tion pipeline computes and compensates for the TDCFs, improving calibration accuracy

by up to 20% in the detection band. The front-end calibration pipeline is also capable

of tracking and compensating for the TDCFs, but the gstlal calibration pipeline does

not currently read in the TDCF-compensated channels from the front end, mainly due

to the fact that more development and testing is needed in the attenuation of noise in

the front-end TDCFs. Fig. 8 is a block diagram showing the workflow of the low-latency

gstlal calibration pipeline.

Due to the front-end calibration pipeline’s easy access to detector state information

and the ability to make changes to calibration parameters quickly, it is a long-term goal

to move more of the low-latency calibration procedure into the front end. However, as of

46



the beginning of O3, there is still much to be done in the gstlal calibration pipeline in

low latency.

3.4 The high-latency gstlal calibration pipeline
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Figure 9 : A simplified block diagram showing the workflow of the high-latency gstlal calibration

pipeline. It applies FIR filters to the error signal derr and control signal dctrl to produce calibrated strain

data. Solid lines represent the continuous flow of digital time-series data, while the dashed lines represent

the periodic passing of new FIR filters from elements that compute them to elements that use them to

filter input data. Details of the calculation of the TDCFs and the calibration state vector are not shown.

Fig. 23 shows the broadband noise subtraction in the gstlal calibration pipeline.

The high-latency calibration pipeline, also called the DCS (data and computing sys-

tems) calibration pipeline, is run using many 4096-second jobs in parallel on the LIGO

Data Grid computing cluster at the California Institute of Technology [30]. The raw data

is read from raw GW frame files, each containing 64 s of raw data, and calibrated data is

then written to another set of GW frame files, each with 4096 s of calibrated data. In high

latency, the entire calibration procedure is done in the gstlal calibration pipeline, using

as inputs the error and control signals, derr and dctrl. The full time-dependent inverse

sensing and actuation functions are applied as FIR filters to derr and dctrl to produce
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the calibrated strain product. Fig. 9 is a block diagram showing the workflow of the

high-latency gstlal calibration pipeline.
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Chapter 4

Designing digital filters for

calibration

4.1 Principles of making FIR filters

In order to understand the design of the digital FIR filters produced and used to calibrate

Advanced LIGO data and the recent improvements that have been made to the design

methods, a basic working knowledge of the principles of FIR filters is necessary. A digital

FIR filter is an array of numbers, called filter coefficients, that is applied to inputs using

convolution, according to Eq. 2.2.2

4.1.1 The ideal low- and high-pass filters

We begin by considering the low-pass filter, a filter designed to remove the content of

a signal below a chosen cutoff frequency while leaving the higher-frequency content un-

changed. We define the ideal low-pass filter as the solution for Flp(fcut; τ) in the equation

∫ ∞

−∞
Flp(fcut; τ) cos [2πf(t− τ)− φ] dτ =





cos(2πft− φ), f < fcut

1
2

cos(2πft− φ), f = fcut

0, f > fcut

(4.1.1)
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The solution, called a sinc function, is

Flp(fcut; τ) = fcutsinc(fcutτ) (4.1.2)

where

sinc(x) =





sin(πx)
πx

, x 6= 0

1, x = 0

(4.1.3)

The filter Flp(fcut; τ) is a perfect low-pass filter of infinite length with cutoff frequency

fcut, defined for continuous input data. In order to use this solution as a digital FIR filter,

the length must be made finite using a point-by-point multiplication with some chosen

window function. Then, a new normalization must be applied to the filter by dividing

the filter coefficients by the digital sample rate of the input data.

A low-pass filter can be used to produce a high-pass filter whose quality depends on

the quality of the original low-pass filter, using a technique called spectral inversion. To

see this, imagine that we wish to simulate the effect of a high-pass filter by applying a low-

ass filter to a data set, and then subtracting the low-pass filtered data from the original

data set. This would remove only low frequencies, leaving frequencies above the cutoff

frequency of the low-pass filter unperturbed. The same can by accomplished by negating

each coefficient of a low-pass filter and adding one to the “central” filter coefficient (i.e.,

the coefficient which multiplies input samples that have timestamps equal to the current

output sample).

Construction of band-pass or band-stop filters can also be accomplished through con-

volution of any desired combination of low-pass and high-pass filters. The length of the

resulting filter in taps is the sum of the lengths of the original filters minus the number

of convolutions.

4.1.2 Applying time-domain window functions to filters

A pivotal choice that must often be made in the construction of a digital FIR filter is

how to window the filter in the time domain. It is tempting to assume that a window

function should alter the shape of the FIR filter as little as possible while avoiding edge
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effects. However, choices made under this assumption often lead to spectral leakage

and an ineffective attenuation beyond cutoff frequencies. Since we wish to control the

frequency response of the filter, it is useful to consider the effect of window functions

in the frequency domain. Applying a window to a filter in the time domain entails a

point-by-point multiplication, which is a convolution when represented in the frequency

domain. The goal then is to determine what type of function should be convolved with

the filter in the frequency domain. Before the application of the window, the filter can

be thought of as infinite in length and ideal in its frequency response. Ideally, we would

like to choose a window with a Fourier transform that looks like a Dirac delta function.

However, windows are finite in length and so cannot exactly replicate a Dirac delta

function. Appropriate choices must therefore be made based on the input data and the

priorities for the frequency response of the filter being designed.

4.1.3 Resampling of time-series data

As shown in Figs. 8, 9, and 23, time series data is frequently resampled in the gstlal

calibration pipeline. This is a necessity for the actuation path, since the FIR filters applied

there are longer and need more agressive high-pass filtering, and filtering at the full h(t)

sample rate of 16384 Hz would lead to unmanageable computational cost. Resampling is

also important when demodulating the error signal and the injection channels needed to

compute the TDCFs. In order to accomplish these tasks with manageable computational

cost, acceptable calibration accuracy, and minimal noise in the TDCFs, a very efficient

resampling algorithm with effective anti-aliasing and anti-imaging is crucial.

The resampling algorithm in the gstlal calibration pipeline has a quality setting

that can be adjusted based on the unique needs of each process. For the simplest cases,

data is downsampled by choosing every nth sample or upsampled by copying each sample

n times, where n is the ratio of sample rates. For processes that need slightly higher

quality, data can be downsampled by averaging n samples or upsampled using linear

extrapolation or a cubic spline. For processes that demand high quality, a windowed sinc

table is used to filter inputs. When downsampling, the sinc table acts as an anti-aliasing
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filter that needs to be applied only once for every n inputs, and is shifted by n inputs

after the production of each consecutive output sample. When upsampling, the same sinc

table acts as an anti-imaging filter sampled at the output sample rate. When applied to

inputs to produce an output sample, only every nth tap is used on an input sample. To

compute the next sample, the sinc table is shifted relative the the inputs by one tap. This

combination of anti-aliasing and anti-imaging with the resampling process is essential to

achieve the desired quality of calibrated data with manageable computational cost.

The anti-aliasing filter used in the downsampling to 16 Hz done during demodulation

of the calibration lines is ∼12 s in length. Prior to the development of the current

resampling algorithm, this contributed 6 s of calibration latency. Additionally, the TDCFs

were upsampled to 16384 Hz using an anti-imaging filter that was also ∼12 s in length.

For this reason, the intrinsic latency of the gstlal calibration pipeline was ∼12 s during

the early portion of O2. Since temporal variations in the TDCFs are slow compared to

this timescale, this latency was removed by the addition of an option in the resampling

algorithm that allows the timestamps of output samples to be shifted so as to achieve a

zero-latency filter. This shift in timestamps is small compared to the shift in timestamps

associated with the causal 20-second low-pass demodulation filter, the 128-second running

median, and the 10-second running mean applied to the TDCFs. With this latency

removed, the highest latency process in the gstlal calibration pipeline is the application

of the actuation filter. The resulting improvement in latency is shown in Fig. 11.

4.2 Designing FIR filters to model the inverse sensing and ac-

tuation functions

The calibration models for A and C−1 that the FIR filters are designed to implement

are constructed in the frequency domain as described in Sections 2.3 and 2.4. The steps

currently used to produce FIR filters based on the models of A and C−1 are similar to

those described in [16], but are detailed here due to recent minor modifactions and for

completeness:
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1. High-pass filter. Seismic noise in the raw data channels is too high at low frequencies

to measure any GW signals, and the digital system has finite dynamic range. Low

frequencies are therefore rolled off by multiplying the frequency components from

4.5 Hz to 9 Hz by half of a Hann window raised to the fourth power.

2. Low-pass filter in the sensing path. Since the inverse sensing function tends toward

infinity at high frequencies, a low-pass filter is applied to the inverse sensing function

to roll off high frequencies (f ' 6 kHz) smoothly, in addition to the the anti-aliasing

in the front end. This is done by multiplying the high frequency components by

half of a Hann window.

3. Artificial delay. An artificial delay is added to the FIR filter that is equal to half of

the length of the filter. This delay is undone within the gstlal calibration pipeline

by advancing the filter output by the same number of samples. The reason for the

delay is to center the FIR filter in time, avoiding edge effects while filtering and

making the filter non-causal, with output depending on both past and future inputs.

The non-causal nature of the filters is necessary for physical reasons as well. The

response of the detector to GWs is causal since the detector is a physical system.

Therefore, when this response is inverted in the calibration to compute the GW

signal from data in the error signal, the resulting filter is necessarily non-causal.

4. Inverse Fourier transform. The inverse Fourier transform is computed to obtain

the time-domain FIR filter.

5. Time-domain window function. A window function is applied to the resulting time-

domain FIR filter to ensure that the model and high-pass filter are well-represented

by the filter. Small systematic errors can be induced by the application of the

window. If necessary, these can be corrected by measuring the deviation of the

filter’s response from the frequency-domain model and compensating for this in the

frequency-domain model before the above steps. During O3, this is being done in

the actuation filters in the high-latency calibration to correct ∼1% systematic errors

below ∼20 Hz, which are likely caused by the steep increase in the magnitude of the
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Figure 10 : A comparison of a 3.5-s Tukey window with α = 0.9 to a 3.5-s Kaiser window with β =

28. The plot on the left shows the windows in the time domain, while the center plot shows the Fourier

transform. The plot on the right is a zoomed-in view, showing the difference in the Fourier transform.

The much steeper drop in the Kaiser window from the main lobe leads to a dramatic improvement in

the high-pass filtering in the calibration filters.

actuation function at low frequencies and the width of the main lobe in the Fourier

transform of the Kaiser window that is used (see Fig. 10).

4.2.1 Attenuating low-frequency noise with minimal latency

A frequent request from downstream data analysts during O2 was to improve the quality

of the high-pass filtering done in the gstlal calibration pipeline. Increasing the length

of the FIR filters is one way to improve the attenuation of low frequency noise, but it

also adds unwanted latency to the low-latency h(t) data and increases the computational

cost of running the pipeline. Moreover, a high-priority goal of O3 calibration is to reduce

the calibration latency, which originates primarily from length of the actuation filters. It

is a challenging task to improve the high-pass filtering without increasing latency, or to

reduce the latency without degrading the quality of the high-pass filtering. One recent

improvement in both high-pass filtering and calibration latency was accomplished with a

more careful choice of window function to apply to the time-domain FIR filters. During

O2, a Tukey window was used with α = 0.9 for the last step in the procedure above for
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Figure 11 : Time series of calibration latencies at L1, showing two significant improvements made since

the beginning of O2. Each point was computed by measuring the difference in the times when output

data files exit the gstlal calibration pipeline and when input data files with the same timestamp enter

the pipeline. The time shown inclueds times when the detector is in low-noise state (green) and times

when it is not (red), as indicated by the bar at the bottom. The median latencies µ1/2 and standard

deviations σ are shown for each data set.

making filters. For a window with N samples, this is defined by

WTukey(n) =





sin2
(

πn
α(N−1)

)
, 0 ≤ n < αN−1

2

1, αN−1
2
≤ n ≤ (2− α)N−1

2

cos2
(

πn
α(N−1)

− π
α

+ π
2

)
, (2− α)N−1

2
< n ≤ N − 1

(4.2.1)

This window has recently been replaced with a Kaiser window, which approximates a

window function that maximizes the energy concentration in the main lobe of the Fourier

transform. The Kaiser window is defined by

WKaiser(n) =

I0

(
β
√

1−
(

2n
N−1
− 1
)2
)

I0(β)
, (4.2.2)
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Figure 12 : A block diagram showing a method by which to high-pass filter the inverse sensing path

below the full h(t) sample rate without losing any high-frequency information.

where I0 is the zeroth order modified Bessel function of the first kind. Use of the Kaiser

window has dramatically improved the high-pass filtering due to the fact that the magni-

tude of the Fourier transform quickly drops many orders of magnitude as one moves away

from the main lobe. The roll-off of the digital calibration filters below 9 Hz is therefore

much steeper using a Kaiser window. The actution filter has been reduced in length from

6 s to 3.5 s, using β = 28. The 1-second inverse sensing filter is also windowed with

a Kaiser window with β = 10. Time- and frequency-domain comparisons of the Tukey

window to the Kaiser window are shown in Fig. 10. The O2-style filters and the new O3

filters were used to calibrate 8 hours of L1 data prior to O3. The resulting improvement

in intrinsic calibration pipeline latency is shown in Fig. 11. This plot was generated using

the L1 computing cluster rather than the DMT. The improvement in calibration latency

due the the shorter actuation filters is slightly less significant than expected (latency is

expected to be less than 3 s), possibly due in part to the fact that numerous other jobs

were running at the time of this test. The dramatic increase in latency just before 4 hours

is due to raw data drop-outs described in 3.2.1. This is unrelated to the latency caused

by the lengths of the filters, but it needs to be addressed. Another plot of calibration

latency for H1 data using similar configurations can be seen in Fig. 26.

Although the low-frequency noise in the actuation path is louder than that in the

sensing path, attenuating this noise in the sensing path has the additional challenge that

the data is filtered at the full h(t) sample rate of 16384 Hz. This is necessary because

the error signal derr contains significant signal content up to the Nyquist frequency. The

challenge of attenuating this noise therefore arises not due to the need to reduce latency,

but due to the computational cost of filtering a 16384-Hz time series with a long FIR
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Figure 13 : A comparison of 3 amplitude spectral densities, showing improvements in the high-pass filters

used in the gstlal calibration pipeline. The improvements are due to the use of a Kaiser window instead

of a Tukey window in the filters, as well as the use of an additional high-pass filter in the sensing path.

filter. At times, low-frequency noise in the sensing path dominates the final signal content

in h(t) below 10 Hz due to the fact that the actuation filter is 3.5 s in length and the

inverse sensing filter is only 1.0 s in length. To attenuate this noise without dramatically

increasing computational cost, a method is used to apply a separate high-pass filter to

the inverse sensing path at a lower sample rate while still preserving the content of the

signal up to the Nyquist rate. The method, depicted in Fig. 12, is to tee the sensing

path, downsample one copy to apply a low-pass filter, upsample the low-passed data, and

subtract it from the original data before applying the inverse sensing filter. The additional

high-pass filter currently has a length of 2.5 s so that the total filtering latency of the

sensing path is equal to that of the actuation path, and it is windowed using a Kaiser

window with β = 20. The improvements in low-frequency noise attenuation due to the

use of a 3.5-second Kaiser window instead of a 6-second Tukey window in the actuation

filter, as well as the inclusion of the additional high-pass filter in the sensing path, are
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shown in Fig. 13. Amplitude spectral densities computed from 4096 s of low-noise L1

data taken prior to O3 are plotted, showing an improvement in the stop band of about 6

orders of magnitude over the O2-style filters.

4.2.2 Accuracy of the filters’ representation of the response function
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Figure 14 : A comparison of the response of the calibration filters to the frequency-domain modeled

response function R̃model(f). The transfer function ∆̃Lfree(f)/d̃err(f) was taken using ∼4500 s of L1 data

on March 5, 2019, shortly prior to O3. The front-end calibration filters at this time show more systematic

error than is typical. The low-latency gstlal calibration data product (GDS) and the high-latency

gstlal calibration data product (DCS) are shown as well, each showing the expected improvements.

The noise in the plots on the right from 15 - 20 Hz is most likely due to the 4 calibration lines in that

band.

A useful test to evaluate the accuracy of the filters’ application of the time-independent
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response function R̃model(f) is done by empirically evaulating the transfer function be-

tween the error signal derr(t) and the time series ∆Lfree(t) reconstructed by the calibration

pipelines, and comparing this to the frequency-domain model R̃model(f). Note that such

tests of the accuracy of the filters necessarily do not compensate for any time dependence.

Fig. 14 shows such a comparison, using three different calibration products: the front-end

calibration data product produced using IIR filters, the low-latency strain data product

produced by the combined action of the front end (IIR filters) and the gstlal calibration

pipeline (FIR filters), and the high-latency strain data product produced entirely using

FIR filters in the gstlal calibration pipeline. The data was taken at L1 from March 5,

2019, prior to O3. Note the ∼1% discrepancy below 1 kHz in the low-latency gstlal

calibration. This is due to high-frequency poles applied in the actuation in the front-

end calibration pipeline but not corrected by the FIR filters in the gstlal calibration

pipeline. This discrepancy is not present in high-latency calibrated data. The low-latency

h(t) data at H1 also does not show this discrepancy because these poles are not applied in

the front-end calibration pipeline at H1. It is a priority to begin correcting this systematic

error in the gstlal calibration pipeline during O3.
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Chapter 5

Temporal variations in

calibration-model parameters

The calibration models for A and C are known to vary slowly in time, having a signifi-

cant impact on calibration accuracy [21]. While in Initial LIGO the only time-dependent

correction applied to the calibration was the gain of the sensing function [15], compen-

sation for temporal variations is more complex in Advanced LIGO. This is due to both

the actuation system, which consists of an electrostatic actuator at the test stage and

electromagnetic actuators at the next two higher stages, as well as the addition of the

SRC. The strength of the electrostatic actuator is of particular interest, as the gradual

buildup of charge can cause variations of ∼10%. During O1 and O2, the strength of the

electrostatic actuator was tracked as κT, the two upper stages of actuation were tracked

with the combined factor κPU, the gain of the sensing function was tracked with κC, and

the coupled cavity pole frequency fcc was tracked [16]. During O2, the optical antispring

frequency fs and quality factor Q of the SRC were additionally tracked at H1. It is

straightforward to apply corrections for κT, κPU, and κC by simply multiplying the ap-

propriate calibrated component of ∆Lfree. Compensating for the time dependence of the

remaining TDCFs requires updating FIR filters while the calibration pipeline is running,

due to the fact that each of the remaining TDCFs has a frequency-dependent impact on

the components of ∆Lfree. During the second offline calibration after O2, such a method
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was used to compensate for the time dependence of fcc. For O3, infrastructure is in

place to track and compensate for all parameterized time dependence in the calibration

models in both low and high latency. This includes the ten time-dependent parameters

in Eqs. 2.3.1 and 2.4.1: κC, fcc, fs, Q, κT, τT, κP, τP, κU, and τU [17].

Changes in the optical gain of the sensing function κC occur due to changes in mirror

alignment and input laser power to the detectors. These can account for up to ∼15%

changes in the optical gain occurring on timescales of several minutes. Changes of ∼ ±
20 Hz are observed over similar timescales in the coupled cavity pole frequency fcc, whose

nominal value is expected to be ∼400 Hz during O3. The optical antispring frequency

of the SRC (generally / 10 Hz) is seen to fluctuate by ∼2 Hz. The strength of the

electrostatic actuator κT sees fluctuations of ∼10% on timescales of days to weeks, due

to the gradual accumulation of charge on the test masses. κP and κU can change by

up to 5% on timescales of weeks. The variable time delays τT, τP, and τU are generally

expected to remain negligibly small; however, occasional changes of multiples of 15 µs

(64 kHz digital sampling time in the front-end computers) were observed during O2 [17].

Even when deviations of the TDCFs from their nominal values are small, the resulting

systematic errors in h(t) can be magnified due to the fact that the components of ∆Lfree

which are added together are out of phase at some frequencies.

The following sections describe the methods used by the calibration group, and in

particular, the gstlal calibration pipeline, to measure, compute, and compensate for

time dependence in the calibration. The impact of compensating for time dependence

on calibation accuracy is also assessed. In the following sections, let j, k ∈ {T,P,U} be

indices labeling the stages of actuation and the associated calibration line frequencies,

` ∈ {1, 2} be indices labeling Pcal line frequencies, and n ∈ {T,P,U, 1, 2}.

5.1 Calibration lines

Frequently taking full measurements of the detectors during observation is impractical

due to the loss of observation time and extra effort required. For this reason, sinusoidal
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excitations called calibration lines are continuously injected at select frequencies using

the Pcal and the three lowest stages of actuation (see Fig. 5). This allows us to measure

the detectors continuously while not hindering their operation or sensitivity. Our ability

to use measurements at only a few frequencies to effectively correct the response function

R(f) at all frequencies requires the functional form of our models of A and C to be

accurate representations of the true calibration. The results shown later in this section

(especially Fig. 16 and Fig. 17) suggest that our models are indeed good representations

of the true calibration, with systematic errors near 1% and 1◦.

The frequencies of calibration lines need to be chosen with care, for several reasons:

• Calibration lines cannot be placed near any resonant frequencies of the suspensions

or violin mode frequencies.

• Calibration line frequencies in Hz should not be integers (they are often chosen as

prime numbers divided by 10).

• Calibration lines cannot be harmonics of each other, or harmonics of 60 Hz, due to

the power mains.

• Calibration lines should avoid the most sensitive band in LIGO’s detection band.

• Each interferometer should use a unique set of calibration line frequencies.

• Continuous-wave search groups prefer calibration lines to be at least 1.0 Hz away

from known pulsar frequencies, a restriction that has not been feasible below 20 Hz,

where an effort is still made to keep lines 0.1 Hz away as much as possible.

• Searches for the GW stochastic background require a minimum separation of cali-

bration lines of 0.5 Hz

• The calibration lines used to estimate κT, κP, and κU (1 Pcal line and 3 actuator

lines) need to be placed within ∼1 Hz of each other, due to the approximation noted

in Eq. 5.2.9.
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Table 2 shows the calibration lines planned for use in O3, with their frequecies at each

site and purpose.

Table 2 : Summary of the purpose of each calibration line during O3

Line Purpose Injected with H1 frequency L1 frequency

f4 Compute fs and Q Pcal 7.93 Hz N/A

fU Compute κU UIM actuator 15.6 Hz 15.1 Hz

fP Compute κP PUM actuator 16.4 Hz 15.7 Hz

f1 Compute κT, κP and κU Pcal 17.1 Hz 16.3 Hz

fT Compute κT TST actuator 17.6 Hz 16.9 Hz

f2 Compute κC and fcc Pcal 410.3 Hz 434.9 Hz

f3 High-frequency check Pcal 1083.7 Hz 1083.1 Hz

The Pcal line at f1, as well as the actuator lines fj are placed in a range of 10 - 40

Hz, where the impact of time dependence in the actuation is significant, for the purpose

of measuring the actuation. A higher Pcal line at f2 ∼ 400 Hz is located near the

coupled cavity pole frequency in order to measure the optical gain and coupled cavity

pole frequency. At H1 only, an additional Pcal line is located at 7.93 Hz, where the impact

of SRC detuning is significant, in order to measure fs and Q. During O2, a calibration

line was injected into the control signal dctrl just after the digital filter D (see Fig. 5) for

the purpuse of computing the factor κPU, representing the combined time dependence of

the penultimate and upper intermediate stages of actuation.

5.2 Computing time-dependent correction factors

5.2.1 Measuring the calibration lines

In order to measure the calibration at the calibration-line frequencies fn, we compare the

amplitude and phase of the error signal derr and the injection channel at each frequency.

If the ratio derr(fn)/xn(fn) deviates from what is predicted by the static reference model,

then it is necessary to correct the model. When taking these measurements, it is necessary
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to remove signal components at all other frequencies and represent the calibration lines

in the frequency domain. In order to do this efficiently, we use demodulation.1 To

demodulate a time series, the gstlal calibration pipeline first multiplies each sample by

e−iωt, where ω is the angular frequency of a calibration line. The resulting time series is

then downsampled to 16 Hz, using an effective anti-aliasing filter, necessary to prevent

excess noise in the computed TDCFs. Then a 20-second Blackman window is used to

low-pass filter the time series. For a calibration line with amplitude a and phase φ,

B ∗
{
e−iωt [a cos(ωt − φ) + n(t)]

}
= (5.2.1)

B ∗
{a

2

[
e−iφ + ei(−2ωt+φ)

]
+ n(t)e−iωt

}
≈ a

2
e−iφ,

where B is the Blackman window and n(t) is noise, that is, anything other than the

sinusoidal injection [16]. The precision of the result is improved by increasing the length

of the Blackman window. Since the Pcal is used as the reference for displacement at

each calibration line, a conversion factor is applied when demodulating the Pcal injection

channel to convert it from counts in to meters of displacement. Then, the sensing func-

tion and components of the actuation function can be measured by comparison of the

demodulated signals in derr and the actuator injection channels to those of the calibrated

Pcal.

Currently, the amplitude and phase of the calibration lines is measured in derr, but

not in dctrl. For this reason, the solution used to compute the TDCFs has necessary

dependence on the digital filter D. This nullifies the benefit of the convention used

to compute h(t) in Eq. 2.0.1 when time dependence is compensated for. The simple

substitution D̃ = d̃ctrl/d̃err in any of the following derivations can be used to formulate

a solution that is independent of D. The only exception is in Eq. 5.2.10, where the

response function is evaluated at fctrl, since xctrl is injected between the pick-off points

for derr and dctrl. This is an area of current development, with the eventual goal of avoiding

dependence on any portion of the DARM feedback control loop that is not tracked in the

TDCFs.
1During O1, the gstlal calibration pipeline took 10-second Fourier transforms to measure the cali-

bration lines.
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5.2.2 Computing the time-dependence of the actuation function

In the current method used by the gstlal calibration pipeline to compute the TDCFs,

the time-dependence of the actuation function is computed first, and the measured values

of the κj and τj are passed to the following stages of computing the time dependence of

the sensing function. This method is based on that given in [21] and relies on a few

approximations, noted below.

To begin solving for the values of the TDCFs, let us solve the full DARM feedback

loop depicted in Fig. 5, including injections, for derr:

d̃err = C̃res

(
κC

1 + i f/fcc

)(
f 2

f 2 + f 2
s − i ffs/Q

)(
∆̃Lfree + x̃pc − ∆̃Lctrl

)
, (5.2.2)

where C̃res = HCCR exp [−2πifτC] contains the portion of the sensing function that has

no parameterized time dependence. Noting that

∆̃Lctrl = κTe
iωτT

(
ÃT D̃ d̃err − ÃT,0 x̃T

)
+ κPe

iωτP
(
ÃP D̃ d̃err − ÃP,0 x̃P

)
(5.2.3)

+ κUe
iωτU

(
ÃU D̃ d̃err − ÃU,0 x̃U

)
,

and letting

Sc =
κC

1 + i f/fcc

, (5.2.4)

Ss =
f 2

f 2 + f 2
s − i ffs/Q

, (5.2.5)

we see that

d̃err =
∆̃Lfree + x̃pc + κTe

iωτTÃT,0 x̃T + κPe
iωτPÃP,0 x̃P + κUe

iωτUÃU,0 x̃U(
Sc Ss C̃res

)−1

+
(
κTeiωτTÃT + κPeiωτPÃP + κUeiωτUÃU

)
D̃

(5.2.6)

= R̃−1
(

∆̃Lfree + x̃pc + κTe
iωτTÃT,0 x̃T + κPe

iωτPÃP,0 x̃P + κUe
iωτUÃU,0 x̃U

)
,

where we have used the time-dependent response function R̃, defined in Eq. 2.1.5. To

measure the time dependence of the actuation, we demodulate derr and the injections xpc

and xj at the frequencies f1 and fj, yielding the two equations:

d̃err(fj) = κj e
iωjτj R̃−1(fj) Ãj,0(fj)x̃j(fj) , (5.2.7)

d̃err(f1) = R̃−1(f1)x̃pc(f1) . (5.2.8)
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Taking the following ratios results in an estimate of the κj:

κje
iωjτj ≈ 1

Ãj(fj)
· d̃err(fj)

x̃j(fj)

(
d̃err(f1)

x̃pc(f1)

)−1

· R̃
model(fj)

R̃model(f1)
. (5.2.9)

Note that the replacement of the time-dependent response function R with the static

reference model response function Rmodel represents an approximation that relies on the

slope of the response function remaining nearly constant and the calibration lines at f1

and fj being close in frequency. An effort is made to keep the separation between these

lines close to 1 Hz (see Table 2).

During O2, the factors κP and κU were tracked as the combined factor κPU using

the injection xctrl made directly into the control signal dctrl after the digital filter D (see

Fig. 5). κPU was estimated as

κPUe
iωctrlτPU ≈ − 1

ÃPU(fctrl)

[
d̃err(fctrl)

x̃ctrl(fctrl)

(
d̃err(f1)

x̃pc(f1)

)−1

· R̃
model(fctrl)

R̃model(f1)
(5.2.10)

+κTe
iωTτTÃT(fctrl)

]
,

where the frequency fctrl was necessarily chosen to be within ∼1 Hz of f1.

5.2.3 Computing the optical gain and coupled cavity pole frequency

Using the previously computed solutions for the time dependence of the actuation func-

tion, we can now estimate the time-dependent parameters of the sensing function, starting

with the optical gain κC and coupled cavity pole frequency fcc. To do this, we demodulate

derr and xpc at the Pcal line frequency f2 and estimate the factor

Sc(f2) ≈ 1

C̃res

(
x̃pc

d̃err

− D̃
[
κTe

iωτTÃT + κPe
iωτPÃP + κUe

iωτUÃU

])−1∣∣∣∣∣
f2

. (5.2.11)

Note that we neglected the detuning of the SRC by setting Ss(f2) = 1. As long as fs � f2,

the error introduced by this approximation is negligibly small. κC and fcc can then be

computed using

κC =
|Sc(f2)|2
< [S(f2)]

, (5.2.12)

fcc = −< [Sc(f2)]

= [S(f2)]
f2. (5.2.13)
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It is important that κC and fcc are computed before fs and Q, as temporal variations in

the optical gain have a significant impact on the calculation of fs and Q.

5.2.4 Computing the detuning of the signal recycling cavity

The algorithms used in the gstlal calibration pipeline to compute fs and Q were not

developed until O2 was in progress, as the detuning of the SRC was not known to have

significant time dependence at H1 until the run had started. Typical values at H1 during

O2 for the optical antispring frequency were 4 - 9 Hz, while values at L1 were estimated

to be closer to 3 Hz, making the impact of SRC detuning less significant there. In the

months leading up to O3, the L1 detector has shown some evidence of an optical spring

rather than an antispring during quantum squeezing of input laser light (described in

[31]). The algorithm in the gstlal calibration pipeline has therefore been generalized to

compensate for either an antispring or a spring by allowing f 2
s < 0.

By demodulating derr and xpc at the lowest Pcal line at f4, we find from Eq. 5.2.6 that

Ss(f4) =

[
Sc C̃res

(
x̃pc

d̃err

− (κTe
iωτTÃT + κPe

iωτPÃP + κUe
iωτUÃU)D̃

)]−1∣∣∣∣∣
f4

. (5.2.14)

Then, the solutions for fs and Q are

fs = f4

√
<[S−1

s (f4)− 1] , (5.2.15)

Q = −
√
<[S−1

s (f4)− 1]

=[S−1
s (f4)− 1]

. (5.2.16)

During O2, the values of fs and Q estimated using the Pcal line at f4 were subject

to both excessive noisy fluctuations as well as systematic errors [17]. Using the higher-

frequency line at f1, primarily intended to measure the actuation function, was shown to

produce results consistent with the reference model values. Although the impact of SRC

detuning is greater at f4, the seismic noise at this frequency makes it difficult to achieve

adequate SNR. This not only makes it difficult to inject a calibration line loud enough to

attenuate noise with a reasonable integration time, it also means that the measurements

of A and C that the reference model is based on may be subject to greater systematic

error at such a low frequency. Fig. 15 shows time series plots of fs and Q computed
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Figure 15 : Time series of fs and Q computed by the gstlal calibration pipeline using the two Pcal

lines at f4 and f1 at H1, and using the Pcal line at f1 at L1. The negative computed value of Q at H1

using the lower line is evidence of a systematic error, whereas all values computed using the Pcal line at

f1 are consistent with expectations based on the reference models.

by the gstlal calibration pipeline using the Pcal line at f4 and at f1. An additional

advantage of using the line at f1 is that SRC detuning can be measured at L1 using

this line. Results from L1 using this line are also shown in the figure, consistent with

reference model measurements made during O2. The repeated use of the Pcal line at f1 to

measure the actuation and SRC detuning has evoked concerns about covariance between

the TDCFs. However, using the Pcal lines at f1 and f2 in addition to the three actuator
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lines at fj still provides magnitude and phase information at 5 frequencies, enough to

solve for 10 real unknowns, which is the number of TDCFs in the current model.

5.2.5 Drawbacks of approximations in the calculation of the TDCFs

The approximations noted in Eq. 5.2.11 and especially in Eq. 5.2.9 are now known to

cause systematic biases in the computed values of the TDCFs. Of particular interest

is the impact of the approximation in Eq. 5.2.9 on the estimates of the τj, as changes

in the slope of the time-dependent response function R caused by normal fluctuations

in the TDCFs are known to cause apparent deviations from zero in τj. Although the

Table 3 : A simulation of time dependence showing unwanted covariance in the TDCFs

Simulated
Value

Measured
κTe

iωTτT

Measured
κPUe

iωPUτPU

Meas.
κC

Meas.
fcc (Hz)

Meas.
fs (Hz)

Meas.
Q−1

Nominal
values

0.9999 + 0.0000i 1.0000 + 0.0000i 1.0000 360.01 6.917 -0.0572

κTe
iωTτT

= 1.1 + 0.0i
1.1022–0.0055i 0.9883–0.0100i 1.0001 360.02 7.637 -0.1826

κTe
iωTτT

= 1.0− 0.05i
0.9974–0.0533i 0.9925 + 0.0055i 1.0001 359.99 7.390 -0.1169

κPUe
iωPUτPU

= 1.1 + 0.0i
0.9956 + 0.0027i 1.1037 + 0.0124i 1.0000 360.00 6.658 -0.0042

κPUe
iωPUτPU

= 1.0 + 0.05i
0.9996–0.0021i 0.9944 + 0.0492i 1.0000 360.02 7.273 -0.1139

κC

= 1.1
0.9990–0.0025i 0.9931 + 0.0005i 1.1001 360.02 7.397 -0.1389

fcc

= 340 Hz
0.9997 + 0.0001i 0.9999 + 0.0008i 1.0000 340.01 6.920 -0.0565

fs

= 10 Hz
1.0011–0.0002i 1.0003–0.0029i 0.9991 360.33 9.966 -0.0289

Q−1

= 0.5
1.0009–0.0016i 0.9967–0.0035i 0.9914 366.92 7.064 0.3390

sudden changes in τj seen during O2 are clearly not caused by this, it could contribute

significantly to their values, leading to systematic errors in the corrected calibration. It

may even be possible that in some instances, compensating for time dependence in τj could

be detrimental to calibration accuracy. To assess the overall impact of all approximations

made in the calculations of the TDCFs on their estimated values, the impact of variations

in the TDCFs was simulated using real H1 data from O2. Since derr is used to measure
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the TDCFs, derr was filtered using

d̃sim
err (f) =

R̃(f)

R̃sim(f)
d̃err , (5.2.17)

where R̃(f) is the true time-dependent response function and R̃sim(f) is the response

function being simulated in dsim
err . After this manipulation of derr, the TDCFs were mea-

sured and computed as they are in the gstlal calibration pipeline. The first step in

this investigation is to find the true response function R̃(f). Since we are attempting

to measure systematic errors in TDCFs, we cannot simply use a response function cor-

rected using the computed values of the TDCFs. Instead, the above operation was done

repeatedly using R̃sim(f) = R̃model(f), and adjusting the TDFCs used in R̃(f) until the

TDFCs computed in the pipeline were exactly equal to their nominal values in the refer-

ence model. Then, each TDCF was individually varied to assess the impact on all other

TDCFs.

The results of this simulation are shown in Table 3. 30 minutes of H1 data were

averaged, starting at 12:00 UTC on April 26, 2017. The nominal values of the TDFCs

in the reference model used for this study were κje
iωjτj = 1.0, κC = 1.0, fcc = 360.0 Hz,

fs = 6.91 Hz, and Q = 21.739. Note that it was impossible to achieve a measured value

of Q that agreed with the reference model, which is not suprising given the fact that this

study was done using the Pcal line at f4 to compute fs and Q. The results show significant

covariance between κT, κPU, τT, and τPU, and in some cases typical variations lead to ∼1%

errors in other TDCFs. Additionally, estimates of fs and Q are significantly impacted

by every previously-computed TDCF other than fcc. One solution to this problem is

to frequently update the reference model with a new set of measurements, to prevent

the TDCFs from straying too far from their nominal values. However, this is somewhat

impractical, especially since κC is known to change on timescales of minutes.

5.2.6 Computing the TDCFs using an exact solution

In order to avoid the approximations currently used in computing the TDCFs, we shall

now derive a full algebraic solution for all the TDCFs using the three actuator lines and
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two Pcal lines, the only approximating assumption being that the time delays τj are small.

Evaluating Eq. 5.2.6 at the calibration line frequencies, we have

d̃err(fj) = R̃−1(fj)κje
iωjτj Ãj,0(fj)x̃j(fj) (5.2.18)

d̃err(f`) = R̃−1(f`)x̃pc(f`) . (5.2.19)

Let us then define

Xj ≡ x̃j(fj)

d̃err(fj)
=

R̃(fj)

κjeiωjτj Ãj,0(fj)
, (5.2.20)

X` ≡ x̃pc(f`)

d̃err(f`)
= R̃(f`) . (5.2.21)

Expanding these yields 5 complex equations with 10 real unknowns:

Xj =
1

κjeiωjτj Ãjj,0

[(
1 + i fj/fcc

κCC̃
j
res

)(
f 2
j + f 2

s − i fj fs/Q

f 2
j

)
(5.2.22)

+ D̃j
(
κTe

iωjτTÃjT + κPe
iωjτPÃjP + κUe

iωjτUÃjU

)]
,

X` =

(
1 + i f`/fcc

κCC̃`
res

)(
f 2
` + f 2

s − i f` fs/Q

f 2
`

)
(5.2.23)

+ D̃`
(
κTe

iω`τTÃ`T + κPe
iω`τPÃ`P + κUe

iω`τUÃ`U

)
,

where we have used the shorthand notation F̃ j = F̃ (fj) and F̃ ` = F̃ (f`) for any function

of frequency F̃ (f). Breaking these into real and imaginary parts and rearranging produces

10 equations to be solved for the 10 unknowns:

κC<(Z̃j) = 1 +
f 2

s

f 2
j

+
fs

fccQ
+ <(G̃j

res) , (5.2.24)

κC=(Z̃j) =
fj
fcc

+
f 2

s

fj fcc

− fs

fj Q
+ =(G̃j

res) , (5.2.25)

κC<(Ỹ `) = 1 +
f 2

s

f 2
`

+
fs

fccQ
+ <(G̃`

res) , (5.2.26)

κC=(Ỹ `) =
f`
fcc

+
f 2

s

f` fcc

− fs

f`Q
+ =(G̃`

res) . (5.2.27)
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For convenience, we have defined the parameters

Z̃j = κjC̃
j
resÃ

j
j,0X

jeiωjτj , (5.2.28)

Ỹ ` = C̃`
resX

` , (5.2.29)

G̃n
res =

∑

j

(
κjC̃

n
resD̃

nÃnj e
iωnτj

)
. (5.2.30)

Note that Z̃j and G̃n contain unknowns, but only the time dependence of the actuation,

while Ỹ ` contains no unknowns. The solution method adopted here is to solve all 10

equations for one unknown. Then, we will have 10 expressions that are all equal to each

other, for a total of 45 equations. However, only 9 of these will be linearly independent,

and a wise choice can make the rest of the solution easier. To be somewhat consistent

with the method currently used, we solve for Q first:

Q−1 =
fcc

fs

(
κC<(Z̃j)− 1− f 2

s

f 2
j

− κC<(G̃j
res)

)
(5.2.31)

=
−fj
fs

(
κC=(Z̃j)− fj

fcc

− f 2
s

fj fcc

− κC=(G̃j
res)

)
(5.2.32)

=
fcc

fs

(
κC<(Ỹ `)− 1− f 2

s

f 2
`

− κC<(G̃`
res)

)
(5.2.33)

=
−f`
fs

(
κC=(Ỹ `)− f`

fcc

− f 2
s

f` fcc

− κC=(G̃`
res)

)
. (5.2.34)

Setting the expressions 5.2.33 and 5.2.34 equal,

f` fcc

[
κC<(Ỹ `)− 1− f 2

s

f 2
`

− κC<(G̃`
res)

]
+ κCf

2
`=(Ỹ )` − f 3

`

fcc

− f` f
2
s

fcc

− κCf
2
`=(G̃`

res) = 0 .

(5.2.35)

Setting expressions 5.2.33 equal to each other for f1 and f2,

κC<(Ỹ 1)− f 2
s

f 2
1

− κC<(G̃1
res) = κC<(Ỹ 2)− f 2

s

f 2
`

− κC<(G̃2
res) . (5.2.36)

Setting expression 5.2.33 equal to the expressions 5.2.31 gives the three equations

κC<(Ỹ `)− f 2
s

f 2
`

− κC<(G̃`
res) = κC<(Z̃j)− f 2

s

f 2
j

− κC<(G̃j
res) . (5.2.37)

Setting expressions 5.2.34 equal to each other for f1 and f2,

f1

[
κC=(Ỹ 1)− f1

fcc

− κC=(G̃1
res)

]
= f2

[
κC=(Ỹ 2)− f2

fcc

− κC=(G̃2
res)

]
. (5.2.38)
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Setting expression 5.2.34 equal to the expressions 5.2.32 gives the three equations

f`

[
κC=(Ỹ `)− f`

fcc

− κC=(G̃`
res)

]
= fj

[
κC=(Z̃j)− fj

fcc

− κC=(G̃j
res)

]
. (5.2.39)

The solutions for fs are then

f 2
s =

(
fcc

f`
+
f`
fcc

)−1 [
f` fcc

(
κC<(Ỹ `)− 1− κC<(G̃`

res)
)

(5.2.40)

+κCf
2
`=(Ỹ `)− f 3

`

fcc

− κCf
2
`=(G̃`

res)

]

= κC

(
1

f 2
2

− 1

f 2
1

)−1 [
<(Ỹ 2)−<(G̃2

res)−<(Ỹ 1) + <(G̃1
res)
]

(5.2.41)

= κC

(
1

f 2
j

− 1

f 2
`

)−1 [
<(Z̃j)−<(G̃j

res)−<(Ỹ `) + <(G̃`
res)
]
. (5.2.42)

Note that Eqs. 5.2.38 and 5.2.39 have no dependence on fs, and therefore can be used in

the next set of equations. Additionally, setting the expressions 5.2.40 and 5.2.41 equal,
(
fcc

f`
+
f`
fcc

)−1 [
f` fcc

(
κC<(Ỹ `)− 1− κC<(G̃`

res)
)

+ κCf
2
`=(Ỹ `)− f 3

`

fcc

− κCf
2
`=(G̃`

res)

]

= κC

(
1

f 2
2

− 1

f 2
1

)−1 [
<(Ỹ 2)−<(G̃2

res)−<(Ỹ 1) + <(G̃1
res)
]
. (5.2.43)

Then let us set the expressions 5.2.41 and 5.2.42 equal, noting that either choice of value

for ` leads to the same simplified result
(

1

f 2
j

− 1

f 2
2

)(
<(G̃1

res)−<(Ỹ 1)
)
−
(

1

f 2
j

− 1

f 2
1

)(
<(G̃2

res)−<(Ỹ 2)
)

(5.2.44)

=

(
1

f 2
1

− 1

f 2
2

)(
<(G̃j

res)−<(Z̃j)
)
.

Next, we solve for fcc, noting that only Eqs. 5.2.38, 5.2.39, and 5.2.43 have dependence

on fcc. Starting with Eqs. 5.2.38 and 5.2.39,

fcc =
f 2

2 − f 2
1

κC

[
f1=(G̃1

res)− f1=(Ỹ 1)− f2=(G̃2
res) + f2=(Ỹ 2)

] (5.2.45)

=
f 2
j − f 2

`

κC

[
f`=(G̃`

res)− f`=(Ỹ `)− fj=(G̃j
res) + fj=(Z̃j)

] . (5.2.46)

Eq. 5.2.43 is a quadratic equation with the solution

fcc = f`

κCĨ
` +

√
κ2

C(Ĩ`)2 − 4 (κCξ + f 2
` )
[
κC

(
H̃` + ξ

)
+ f 2

`

]

−2
[
κC

(
H̃` + ξ

)
+ f 2

`

] (5.2.47)
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where we have defined

H̃` = f 2
`

(
<(G̃`

res)−<(Ỹ `)
)

(5.2.48)

Ĩ` = f 2
`

(
=(G̃`

res)−=(Ỹ `)
)

(5.2.49)

ξ =
f 2

2 H̃
1 − f 2

1 H̃
2

f 2
1 − f 2

2

. (5.2.50)

It can be shown that this is the desired solution to the quadratic equation by substituting

model values back into the defined parameters and showing that this result is equal to fcc.

We now have 7 unknowns remaining, and the first 3 equations are given by Eq. 5.2.44.

We obtain three more equations by setting the expressions 5.2.45 and 5.2.46 equal, noting

that either choice of value for ` leads to the same simplified result

f1

(
f 2
j − f 2

2

) (
=(G̃1

res)−=(Ỹ 1)
)
− f2

(
f 2
j − f 2

1

) (
=(G̃2

res)−=(Ỹ 2)
)

(5.2.51)

= fj
(
f 2

1 − f 2
2

) (
=(G̃j

res)−=(Z̃j)
)
.

Note that Eqs. 5.2.44 and 5.2.51 have no dependence on κC, which is the next unknown

to solve for. They will therefore be used later. One more equation is obtained by setting

the expressions 5.2.45 and 5.2.47 equal. This leads to the quartic equation

aκ4
C + bκ3

C + cκ2
C + dκC + e = 0 (5.2.52)

with coefficients

a = f 2
2 ξ(H̃

2 + ξ)ζ2 (5.2.53)

b = f2(f 2
2 − f 2

1 )(H̃2 + ξ)ζĨ2 + f 4
2 (H̃2 + 2ξ)ζ2 (5.2.54)

c = f 3
2 (f 2

2 − f 2
1 )ζĨ2 + (f 2

2 − f 2
1 )2(H̃2 + ξ)2 + f 6

2 ζ
2 (5.2.55)

d = 2f 2
2 (f 2

2 − f 2
1 )2(H̃2 + ξ) (5.2.56)

e = f 4
2 (f 2

2 − f 2
1 )2 , (5.2.57)

where

ζ =
Ĩ1

f1

− Ĩ2

f2

. (5.2.58)
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To construct a solution, we first define several parameters:

∆0 = c2 − 3bd+ 12ae (5.2.59)

∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace (5.2.60)

p =
8ac− 3b2

8a2
(5.2.61)

q =
b3 − 4abc+ 8a2d

8a3
(5.2.62)

Q0 =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
(5.2.63)

S0 =
1

2

√
−2

3
p+

1

3a

(
Q0 +

∆0

Q0

)
. (5.2.64)

The solutions are

κC,1,2 = − b

4a
− S0 ±

1

2

√
−4S2

0 − 2p+
q

S0

(5.2.65a)

κC,3,4 = − b

4a
+ S0 ±

1

2

√
−4S2

0 − 2p− q

S0

. (5.2.65b)

Using both reference-model values for A, C, and D from L1 measurements taken on 2019-

01-17, as well as real L1 data from 2019-02-02, it was shown using Wolfram Mathematica

that the desired solution depends on input values at the time. Therefore, further investi-

gation is needed to find a method to determine how to choose which of the solutions to

use at each point in time.

What remains is to solve for the time dependence of the actuation using the remaining

6 equations from 5.2.44 and 5.2.51. At this point, we will make the simplifying approxi-

mations that

sinωnτj ≈ ωnτj (5.2.66)

cosωnτj ≈ 1 . (5.2.67)

To justify this approximation, consider the impact at the highest calibration line used to

measure the TDCFs, f2 ∼ 400 Hz, when the τj are the largest they were in O2, ∼100 µs.

Even in this most extreme case, errors are ∼3%, and only at the highest calibration

line, where the actuation has a relatively small impact. Moreover, one of the motivating

factors for finding this solution is the concern that other time dependence is causing the
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computed values of τj to deviate from zero, when in reality, they may not deviate much

from zero. This method should ensure that the computed τj do not stray from zero unless

their true values do.

Since the τj appear only in the form eiωnτj in Eqs. 5.2.44 and 5.2.51, this will make

the remaining 6 equations linear in all unknowns. It is therefore possible to solve for

the remaining time dependence computationally in the gstlal calibration pipeline using

matrix manipulations. The gstlal-calibration software package [26] already has an

element that can solve such systems. Thus, we wish to find the elements of the matrix

M and the vector V such that



M11 M12 . . . . . . . . . M16

M21 M22 . . . . . . . . . M26

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

M61 M62 . . . . . . . . . M66







κT

κP

κU

κTτT

κPτP

κUτU




=




V1

V2

V3

V4

V5

V6




(5.2.68)

In order to have a one-to-one mapping between the indices of the κj and τj and the indices

of M and V, we adopt the notation T → 1, P → 2, and U→ 3. After some algebraic

and trigonometric manipulations, we find that the matrix elements are

Mjj =

(
1

f 2
1

− 1

f 2
j

)
<(G̃2

res,j) (5.2.69)

+

(
1

f 2
j

− 1

f 2
2

)
<(G̃1

res,j)−
(

1

f 2
1

− 1

f 2
2

)(
<(G̃j

res,j)−<(C̃j
resÃ

j
j,0X

j)
)

Mjk
j 6=k

=

(
1

f 2
1

− 1

f 2
j

)
<(G̃2

res,k) (5.2.70)

+

(
1

f 2
j

− 1

f 2
2

)
<(G̃1

res,k)−
(

1

f 2
1

− 1

f 2
2

)
<(G̃j

res,k)
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Mj,j+3 = −2πf2

(
1

f 2
1

− 1

f 2
j

)
=(G̃2

res,j) (5.2.71)

− 2πf1

(
1

f 2
j

− 1

f 2
2

)
=(G̃1

res,j) + 2πfj

(
1

f 2
1

− 1

f 2
2

)(
=(G̃j

res,j)−=(C̃j
resÃ

j
j,0X

j)
)

Mj,k+3
j 6=k

= −2πf2

(
1

f 2
1

− 1

f 2
j

)
=(G̃2

res,k) (5.2.72)

− 2πf1

(
1

f 2
j

− 1

f 2
2

)
=(G̃1

res,k) + 2πfj

(
1

f 2
1

− 1

f 2
2

)
=(G̃j

res,k)

Mj+3,j = f2

(
f 2

1 − f 2
j

)
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+ 2πf 2
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res,k) + 2πf 2
j

(
f 2

2 − f 2
1

)
<(G̃j

res,k) ,

where G̃n
res,j = C̃n

resD̃
nÃnj . The components of the vector V are

Vj =

(
1

f 2
1

− 1

f 2
j

)
<(Ỹ 2) +

(
1

f 2
j

− 1

f 2
2

)
<(Ỹ 1) (5.2.77)

Vj+3 =
(
f 2

1 − f 2
j

)
=(Ỹ 2) + f1 (fj − f2)=(Ỹ 1) . (5.2.78)

This solution has not yet been implemented in the gstlal calibration pipeline, but it is

likely that it will be tested using O3 data. If shown to be effective, it may be implemented

at some point during the run. In addition to improvement in accuracy, another advantage
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of using this method is increased flexibility of calibration line placement. In particular,

this method does not require the lines at f1 and fj to be in a ∼1 Hz frequency band as

the method currently implemented does.

5.2.7 Attenuating noise in the computed TDCFs

The TDCFs are computed continuously in the calibration pipelines, whether the detectors

are in a nominal low-noise configuration or not. When the detectors are not in a low-

noise state, the computed values of the TDCFs are unreliable. It is therefore necessary

to implement a method that distinguishes between reliable and unreliable measurements

and chooses the most reasonable values of the TDCFs at times when they cannot be

computed. In order to distinguish between acceptable and unacceptable measurements,

the coherence between the injection channels xi and error signal derr is measured at each

of the calibration lines in the front-end calibration pipeline. After demodulating at a

frequency f using a local oscillator, the coherence between two signals x(t) and y(t) is

computed using

γ2
xy(f) =

|〈x̃∗(f)ỹ(f)〉|2
〈|x̃(f)|2〉〈|ỹ(f)|2〉 , (5.2.79)

where the superscript asterisk denotes complex conjugation and the angled brackets de-

note averages, which are estimated using a low-pass filter. Coherences are computed

using 10-second segments of input data, and nd = 13 independent, consecutive values are

then averaged, so that each averaged coherence is based on 130 seconds of input data.

The average coherence is used to compute the normalized random error in the magnitude

of the transfer function Ĥxy at each calibration line frequency:

ε
[∣∣∣Ĥxy

∣∣∣
]
≈
√

1− γ2
xy

2ndγ2
xy

(5.2.80)

as derived in [32]. The gstlal calibration pipeline reads in this uncertainty from the

front end in order to determine whether the TDCFs currently computed are acceptable.

Then each computed TDCF is “gated” using the uncertainty at each calibration line used

to compute it.
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Even when the coherence at the calibration line frequencies is considered acceptable,

the noise in the computed time series is enough to contribute significant uncertainty

to h(t). This is especially true during the occasional large glitches that corrupt the

calculations of the TDCFs. Since none of the TDCFs are observed to change on timescales

shorter than a few minutes, a 128-second running median is used to attenuate noise in

the time series. A running median reduces the uncertainty of a normally-distributed time

series by a factor of only
√
π/2n, while a running mean reduces this by a factor 1/

√
n.

However, a running median is much less sensitive to occasional outliers caused by glitches

that would corrupt a running mean. In order to remove the effect of these glitches in

the time series, the running median must be long compared to the low-pass filter used

for demodulation of the calibration lines, which is 20 s in length. If the coherence of the

calibration lines is considered unacceptable, the computed TDCFs entering the running

median are replaced with the previously-computed median, so that the output time series

stabilizes when the detector exits low-noise state. A 10-second running mean is used

after the running median to remove a small amount of high-frequency content left by the

running median.

Note that the gating, as well as the running median and mean occur after the TDCFs

are computed. This process could be done immediately after the ratios d̃err(fn)/x̃n(fn)

are computed at each calibration line. Since lack of coherence in one calibration line

does not imply that all of the calibration lines are incoherent, this alternative order

of operations would offer the benefit that it does not stop computing the TDCFs just

because a single line is incoherent. Additionally, the time series d̃err(fn)/x̃n(fn) is more

likely to be normally-distributed than the computed TDCFs. This is particularly true of

fs and Q, whose non-normal distributions are known to lead to systematic errors if not

handled with care.2 The primary reason that this is done after the TDCFs are computed

is because the expected values (based on the static reference model) of the TDCFs are

known, while the expected values of d̃err(fn)/x̃n(fn) would need to be computed. The

2For this reason, the gating, running median, and running average are now applied to the parameter
(
S−1s (f4)− 1

)
before fs and Q are computed.
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expected values are used to produce calibrated data at times when no reliable values of

the TDCFs have yet been computed.

When running the gstlal calibration pipeline in low latency, it is important that this

method does not add latency, as the length of the running median is much longer than the

current calibration latency. Therefore, in low latency, the timestamps of samples exiting

the smoothing process are equal to the timestamps of the most recent data entering the

smoothing process. Since the TDCFs do not change on such short timescales, this “shift”

in timestamps has negligible impact on calibration accuracy. In high latency, since jobs

are run in parallel in 4096-second segments, it is advantageous to do the opposite, that is,

to assign timestamps to samples exiting the smoothing process equal to the timestamps

of the earliest samples in the input array. Otherwise, each time the detector enters a

low-noise configuration, the calculation of the TDCFs is delayed, adding an unnecessary

few minutes of delay before h(t) is ready for analysis.

This method was used during O2 to attenuate noise in the TDCFs and was shown to

be consistently effective. There are therefore no plans to change this for O3.

5.3 Compensating for time dependence in the calibration mod-

els

Here, we outline the methods used in the gstlal calibration pipeline to compensate for

the parameterized time-dependence in the calibration models. Since O1, it has been pos-

sible to compensate for changes in the magnitudes of the sensing and actuation functions.

Since O2, new methods have been developed that allow compensation for all known time

dependence using adaptive filtering techniques.

5.3.1 Applying scalar corrections to the components of ∆Lfree

The highest-latency calibration in O1, as well as the low- and high-latency calibration

in O2 included compensation for the time dependence of the parameters κT, κPU, and

κC. Since the calibration pipeline applies separate filters to derr and dctrl representing the
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functions C−1, AT, AP, and AU, compensating for these factors requires only a simple

time-domain multiplication:

h(t) =
1

L

(
1

κC(t)
C−1,model ∗ derr(t) + κT(t)Amodel

T ∗ dctrl(t) (5.3.1)

+ κP(t)Amodel
P ∗ dctrl(t) + κU(t)Amodel

U ∗ dctrl(t)

)
.

The impact on calibration accuracy of compensating for the scalar factors κT, κPU, and

κC is shown in [21] and [16].

5.3.2 Compensating for frequency-dependent temporal variations

The content of this section closely follows the discussion in [17].

The highest-latency calibration produced after O2 additionally included compensation

for the coupled cavity pole fcc. This was accomplished by applying and periodically

updating a short FIR filter to derr that modeled one zero and one pole before the inverse

sensing filter was applied:

∆Lres(t) =
1

κC(t)
C−1 ∗

(
1 + if/fcc(t)

1 + if/fmodel
cc

)
∗ derr(t) . (5.3.2)

Since O2, a more generalized algorithm has been developed that allows the application of

an arbitrary number of time-dependent zeros and poles, as well as a time-dependent gain

factor and time delay, in the form of an adaptive FIR filter. The adaptive filter therefore

has the general form

F̃corr(f) =

∏
m (1 + if/zm)∏
n (1 + if/pn)

Ke2πifτ , (5.3.3)

where zm and pn are the frequencies of variable zeros and poles, respectively, K is a

variable gain factor, and τ is a variable time advance. All of these components can be

read in as a time series computed previously in the pipeline. The zeros and poles can

also be read in as constants, which is necessary when dividing out poles or zeros in the

model that need to be corrected. It is additionally possible to read in a static filter

and convolve it with the time-dependent correction filter, so that the resulting filter is

F = Fcorr ∗ Fstatic. This became necessary when correcting for the time dependence of fs
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and Q using a short correction filter produced inadequate results, requiring a replacement

of the reference-model filter, which is passed to the algorithm as Fstatic.

This new algorithm makes it possible to additionally include the time-dependence of

fs and Q in the inverse sensing filter. The procedure used to compensate for all the time

dependence of the inverse sensing filter is as follows:

1. Take a mean of the computed values of κC(t), fcc(t), fs(t), and Q(t) for a time set by

the user. Currently, the averaging of these values in the gstlal calibration pipeline

prior to updating the filter is sufficient, and no additional averaging is necessary.

2. In the frequency domain, compute the correction filter

C̃−1
corr(f ; t) =

1

κC(t)

1 + if/fcc(t)

1 + if/fmodel
cc

× f 2 + f 2
s (t)− iffs(t)/Q(t)

f 2 + (fmodel
s )2 − iffmodel

s /Qmodel
. (5.3.4)

In the frequency domain, the length of the correction filter is one more than half

the length of the static time-domain filter C−1,model.

3. Add a delay to the filter of half the length of the filter to ensure that the resulting

time-domain filter is centered in time. This is done by negating every other value

in the frequency-domain filter, starting after the DC component and ending before

the Nyquist component. This is equivalent to multiplying each frequency-domain

value by e−πifτfilt , where τfilt is the temporal duration of the time-domain filter.

4. Take the inverse Fourier transform of the frequency-domain filter to produce a time-

domain filter equal in length to the static filter C−1,model.

5. Convolve the correction filter with the static filter to produce the updated inverse

sensing filter

C−1 = C−1,corr ∗ C−1,model. (5.3.5)

The resulting filter has a length one sample less than twice the length of the static

reference-model filter. In order to preserve manageable calibration latency and

computational cost, the additional coefficients at the beginning and end of the filter

are removed.
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6. Apply a Tukey window to the time-domain FIR filter so that it falls off smoothly

at the edges. (It may be beneficial to use a Kaiser window instead, for the reasons

noted in Section 4.2.1.)

7. Pass the updated filter to an algorithm that applies FIR filters and smoothly handles

filter updates by using half of a Hann window to taper out the old filter and bring

in the new filter [33]. During a transition of duration ttrans beginning at t0, the

output is therefore

∆Lres(t) = cos2

(
π

2
· t− t0
ttrans

)
C−1

old ∗ derr(t) + sin2

(
π

2
· t− t0
ttrans

)
C−1

new ∗ derr(t). (5.3.6)

A drawback of this method is that is degrades the quality of the high-pass filter included

in the inverse sensing filter by removing filter coefficients at the edges of the convolved

filter and applying another window. The impact of this is reduced by the use of the

additional high-pass filter in the inverse sensing path (see Fig. 12). In principle, a filter

with only 4 coefficients can be used to compensate for all known time dependence in the

inverse sensing function, which consists of only a time-dependent gain and three time-

dependent zeros (fcc and two zeros for SRC detuning). Such a method would require

using a static inverse sensing filter with dependence on the three zeros removed so that

they could be handled separately. Such a method is currently being developed for use

later during O3, the primary challenge being due to small errors in phase that will need

to be corrected. This method would not only improve high-pass filtering, it would also

significantly reduce computational cost, since the adaptive inverse sensing filter is the

most computationally expensive process in the gstlal calibration pipeline.

A similar procedure is used to compensate for all known time dependence in each

component of actuation function. However, since the high-pass filters in the actuation

path are combined with the model filters to minimize latency, it is necessary to cor-

rect for time dependence using short correction filters that are separate. Otherwise, the

curruption of the high-pass filters contained in each actuation path would lead to an

unacceptable increase in low-frequency noise. Since the only time-dependent parameters

in the Aj are a variable gain and a variable time delay, the time-dependent actuation
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Figure 16 : The ratio ∆̃Lfree(f)/x̃pc(f) at three Pcal line frequencies for three versions of calibrated

data for H1. 128 seconds of ∆Lfree data and xpc data were demodulated before taking the ratio to

produce each point. The red points (labeled “Scalars”) represent calibrated data that was corrected for

the time dependence of κT, κPU, and κC, requiring no filter updates. The green points (labeled “Cavity

pole”) show improved accuracy resulting from additionally compensating for time-dependence in fcc.

The yellow points (labeled “All”) show the most accurate calibration, produced by compensating for all

known time-dependence.

corrections κje
−2πifτj are modeled using linear-phase FIR filters (see Fig. 8 and Fig. 9).

5.3.3 Impact of compensating for time dependence on calibration accuracy

We now wish to assess the impact on calibration accuracy of compensating for temporal

variations in the TDCFs, especially frequency-dependent variations that require periodic

updates to the calibration filters. Since the Pcal is used as the reference for fundamental

displacement calibration, the success of the methods used to compensate for time de-

pendence is best evaluated by comparison of h(t) to the Pcal. The Pcal lines injected

through xpc provide a way to continuously monitor the accuracy of the calibration at the

Pcal line frequencies. Fig. 16 shows the ratio ∆̃Lfree(f)/x̃pc(f) for H1 data during O2
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Figure 17 : The transfer function ∆̃Lfree(f)/x̃pc(f) computed for three versions of calibrated data for

H1. Each transfer function was produced from 250 seconds of data during a Pcal broadband injection on

2017-08-16. The red trace (labeled “Only scalar corrections”) represent calibration that was corrected

for time-dependence in κT, κPU, and κC. The green trace (labeled “Cavity pole corrections”) is from

a calibration that additionally compensated for time-dependence in fcc. The yellow trace (labeled “All

corrections”) is from a calibration that compensates for all known time-dependence.

at three calibration line frequencies in the detection band. For calibrated data that is

accurate relative to the Pcal, this ratio is expected to have a magnitude close to unity

and a phase close to zero. 128 seconds of data were used to compute each point, in order

to avoid correlation between points caused by the 128 s running median that is applied

to the TDCFs. Systematic errors of a few percent in magnitude and a few degrees in

phase are seen at all three frequencies in the calibrated data that is only corrected for

the time dependence of the scalar factors κT, κPU, and κC. As expected, additionally

compensating for the time dependence of the coupled cavity pole fcc improves calibration

accuracy at the two higher frequencies, leaving negligible error at f2 = 331.9 Hz and

errors of only ∼1% and 1◦ at f3 = 1083.7 Hz. The remaining ∼2% and 2◦ of systematic
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error at f1 = 36.7 Hz can be removed by compensating for the time dependence of the τj,

fs, and Q. Note the sudden shift in the phase of ∆̃Lfree(f1)/x̃pc(f1) present in the first

two versions of calibration. This was coincident with sudden changes in the values of the

τj, and compenasating for the time dependence of τj is shown to remove this unwanted

shift.

In addition to monitoring the calibration at the Pcal line frequencies over long periods

of time, it is possible to measure calibration accuracy across a range of frequencies below

1kHz using broadband injections made using the Pcal. Pcal broadband injections are

made on an occasional basis during observing runs in order to check the accuracy of the

calibration model across the detection band. Unfortunately, it is not possible to measure

the TDCFs during a broadband injection due to the fact that the Pcal lines must be turned

off during broadband injections. Fig. 17 shows the transfer function ∆̃Lfree(f)/x̃pc(f)

computed during a Pcal broadband injection lasting 250 seconds, comparing the same

three versions of calibrated data. Noise increases with frequency due to the difficulty

of injecting DARM motion at higher frequencies. It is therefore difficult to assess the

impact of compensating for the time dependence of fcc using a broadband injection. The

impact of compensating for time dependence in τj, fs, and Q can be seen to result in an

improvement below ∼50 Hz. Due to the lack of ability to compute the TDCFs during

and just before the injection, the applied values of the TDCFs were estimated based on

data from about 2 hours earlier (the following low-noise data occurred more than 2 hours

later). There is therefore a possibility that the true values of the TDCFs deviated slightly

from the applied values. This is especially true of κC, which was observed to be varying

that day by ∼5% on timescales of a few hours.
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Chapter 6

Subtraction of excess noise from the

calibrated signal

The goal of computing the strain signal in the Advanced LIGO detectors is to calibrate

GW signals. However, the majority of the content of the calibrated h(t) signal does not

come from GWs, but from various sources of noise. Some of these noise sources, such as

the shot noise that dominates at high frequencies, cannot be distinguished from GWs due

to the fact that they are only measured in DARM. Other sources of noise can be measured

by other witness sensors that are not sensitive to GWs. Such witness sensors have been

successfully used to subtract excess noise from h(t) in high latency, significantly increasing

detector sensitivity [3, 34, 35]. After O2, an offline noise subtraction pipeline written in

Python was used to subtract spectral lines and broadband noise over the entirety of the

run [3]. This had an especially significant impact at H1, where excess motion in the

laser beam contributed significant measureable noise to the h(t) spectrum. Removal of

this noise was shown at many times to increase H1’s total detectable volume for binary

neutron star inspirals by a factor of 2.

Since O2, a method for subraction of persistent spectral lines and broadband noise has

been developed in the gstlal calibration pipeline. Perhaps the most significant benefit of

including broadband noise subtraction in the gstlal calibration pipeline is the resulting

ability to provide noise-subtracted h(t) data in very low latency. A second benefit is that
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Figure 18 : Comparison of the three amplitude spectral densities computed from 8192 s of data around

the time of the event GW170817. The channel DCS-CALIB STRAIN contains h(t) data produced in high

latency. DCH-CLEAN STRAIN C02 was produced in high latency after O2 by subtracting spectral lines

and broadband noise. Similar subtraction methods have since been developed in the gstlal calibration

pipeline to produce the channel DCS-CALIB STRAIN CLEAN.

0.0 0.5 1.0 1.5 2.0

Time [hours] from Aug 17 2017 11:26:38 UTC

0

20

40

60

80

100

A
n

gl
e-

av
er

ag
ed

ra
n

ge
[M

p
c]

H1:DCS-CALIB STRAIN [median = 51.5 Mpc, σ = 0.6 Mpc]

H1:DCH-CLEAN STRAIN C02 [median = 64.3 Mpc, σ = 0.8 Mpc]

H1:DCS-CALIB STRAIN CLEAN [median = 66.0 Mpc, σ = 0.9 Mpc]
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this method does not require the production of a new set of GW frame files; the cleaned

h(t) data is included in the GW frame files as they are produced. Preliminary results

show that this subtraction pipeline can provide cleaned data similar to that produced in

high latency after O2, with negligible impact on latency. Fig. 18 shows a comparison of

the calibrated h(t) data without subtraction, the cleaned h(t) data produced after O2,

and the noise subtraction done in the gstlal calibration pipeline, around the time of the

binary neutron star merger GW170817. Noise reduction in gstlal cleaned data is similar

to that produced after O2 above ∼100 Hz, with improved reduction below ∼100 Hz. This

is primarily due to the fact that the O2 noise subtraction team elected not to use angular

and length sensing control witness channels that couple to low-frequency noise, due to the

fact that these did not have a large impact throughout the run. Also note that the high-

pass filtering shown here has improved since O2, which may impact noise subtraction at

low frequencies. The impact of the noise subtraction on the inspiral range (the average

distance at which a binary neutron star system with each mass equal to 1.4 M� can be

computed with a signal-to-noise ratio of 8, as computed by GWpy [36]) during the same

time is shown in Fig. 19, where the subtraction in the gstlal calibration pipeline accounts

for a 210% increase in total detectable volume at H1. Preliminary results shortly prior to

O3 indicate a smaller impact, contributing an increase in detectable volume for the H1

detector of ∼5%.

6.1 Subtraction of calibration lines

Removal of loud spectral lines is not only useful for downstream data analysis such as

searches for continuous waves and the GW stochastic background, it is also beneficial

for the subtraction of broadband noise to follow. Loud lines that are present in the h(t)

signal but not in the broadband noise witness sensors corrupt the calculation of transfer

functions between witness channels and h(t) at their frequencies, leading to the injection

of noise around those lines.

To subtract calibration lines injected using the Pcal and the actuators at each stage,
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the gstlal calibration pipeline measures the amplitude and phase of the calibration lines

in the injections channels xpc, xT, xP, and xU, and it then computes the corresponding

sinusoidal excitation expected to occur in h(t). The Pcal lines are therefore subtracted

under the assumption that the computed h(t) is accurate relative to the Pcal. The steps

used to subtract Pcal lines are:

1. Demodulate the Pcal channel xpc at the frequency of the calibration line being

subtracted. Letting xpc(t) = a cos(ωt−φ) +n(t), where ω, a, and φ are the angular

frequency, amplitude, and phase of the calibration line, respectively, and n(t) is

noise, the result of the demodulation is the factor (a/2)e−iφ.

2. Convert this factor from counts in x̃pc to meters in ∆L̃free. Note that the first two

steps are often already done to compute the TDCFs, in which case it is possible to

save computational cost by using the previous result.

3. Reconstruct a sinusoid to be subtracted from h(t):

<
(

2eiωt × a

2
e−iφ

)
= a cos(ωt− φ). (6.1.1)

4. Subtract from h(t).

Pcal lines could also be subtracted by applying an FIR filter to xpc to convert it from

counts to meters at all frequencies and then subtracting all the lines at once. The reason

for using the method is to save computational cost, especially in light of the fact that two

of the three lines that are normally subtracted are already demodulated to compute the

TDCFs.

The method used to subtract actuator lines from h(t) is the same except that the

conversion from counts to meters is time-dependent, due to fluctuations in the actuation

strength. A demodulated factor (aj/2)e−iφj , where j ∈ {T, P, U}, and aj and φj are the

amplitude and phase as measured in the injection channel xj, is converted from counts

to meters using

a

2
e−iφ = κje

−iωjτjaj ×
aj
2
e−iφj (6.1.2)
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Figure 20 : A time series of the ratio h̃clean(f)/h̃(f) at the calibration line frequencies at H1 during O2.

h(t) and hclean(t) were demodulated using a 10-second low-pass filter, and the ratios were averaged for

128 seconds to produce each point. Three pcal lines are shown at frequencies f1 = 36.7 Hz, f2 = 331.9

Hz, and f3 = 1083.7 Hz. The electrostatic drive actuator line at fT = 35.9 Hz is also shown. These were

all the visible calibration lines in the detection band during O2.

Note that the time-dependent calibration model is used to construct the actuator injec-

tions to be subtracted from h(t). In addition to saving computational cost using the fact

that these lines have already been demodulated to compute the TDCFs, this can offer

the benefit of applying the same time-dependent compensations to the line subtraction

that is applied to correct h(t). Since much effort has been dedicated to compensating

for time dependence in the calibration, and since the TDCFs computed by the gstlal

calibration pipeline were shown to be stable and well-behaved throughout O2, we suggest

that this method is a stable and safe way to subtract calibration lines, with very little

risk of impacting GWs in the h(t) signal.
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For both Pcal lines and actuator lines, this method relies on the accuracy of the time-

dependent calibration model. It therefore can provide a continuous check of calibration

accuracy at the calibration lines; in other words, systematic errors in the calibration will

reduce the effectiveness of the subtraction.

The performance of the calibration line subtraction is shown over ∼22 hours of H1

data during O2 in Fig. 20. The ratio h̃clean(f)/h̃(f) is shown at each of the calibration line

frequencies. The lower reduction of the line height of the Pcal line at f3 is likely due in

part to the fact that this line has a lower signal-to-noise ratio than the others, but lower

calibration accuracy may also contribute. The clustering of the phase of h̃clean(fT)/h̃(fT)

around 90◦ is evidence of a small systematic error in the calibration, possibly originating

from the computed value of κT or τT.

At times when the calibration model is believed to be unreliable, the calibration lines

can be subtracted using the same method that is used to subtract additional spectral

lines, described in the next section.

6.2 Subtraction of additional spectral lines

In addition to calibration lines, the h(t) spectrum also contains other spectral lines, such

as 60-Hz power mains lines and harmonics, whose amplitude and phase can be estimated

from correlated noise in witness sensors. Unlike the case for the calibration lines, the

transfer functions between these witness sensors and h(t) are not thoroughly studied to

produce an accurate time-dependent calibration model. Moreover, such lines are gener-

ally much less stable than calibration lines, with frequent fluctuations in amplitude and

frequency.

The general method used in the gstlal calibration pipeline to subtract spectral lines

allows the use of multiple witness channels, in order to subtract as much noise as possible.1

The steps in the process are described below:

1. Demodulate h(t) and each witness channel wn at the expected frequency of the line

1So far, the best results have been obtained using only one witness channel, but the general method

is described for completeness.
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to be subtracted. If there are multiple line frequencies (e.g., harmonics) in a single

witness channel to be subtracted, wn is demodulated at each frequency separately,

and steps 1-4 are done for each frequency.

2. Take the ratios h̃(f)/w̃n(f) and w̃m/w̃n.

3. Take a running median and a running average of the above ratios. Currently, only

a 128-second running median is used.

4. Due to the fact that different witness sensors may detect the same noise, care

must be taken to avoid subtracting the same signal from h(t) multiple times. To

accomplish this, we find “optimized” transfer functions Tn by solving the matrix

equation 


1 w̃2

w̃1
. . . w̃N

w̃1

w̃1

w̃2
1 . . . w̃N

w̃2

...
...

. . .
...

w̃1

w̃N

w̃2

w̃N
. . . 1







T1

T2

...

TN




=




h̃
w̃1

h̃
w̃2

...

h̃
w̃N




(6.2.1)

at the frequencies of the spectral lines. In order to prevent large errors in these

transfer functions, the values of the transfer functions are updated only when the

detector is in a nominal low-noise configuration.

5. As shown in Fig. 21, fluctuations of about ±0.03 Hz are observed in the fundamental

frequency of the power mains. In general, the low-pass filter used in demodulating

h(t) and the witness channels is not centered in time (this is necessary in low latency,

for instance). Deviations in the true frequency of the line being subtracted from

the expected frequency would therefore cause a phase error in the sinusoid that is

constructed in the next step if this were not compensated for. To correct this in the

power mains subtraction, the fundamental frequency of the power mains, expected

to be ∼60 Hz, is tracked continuously. The algorithm that tracks the frequency does

so by measuring the temporal separation between times when the witness-channel

signal crosses zero, measured using linear interpolation. The number of half-cycles

to use for each measurement is set by the user, and the output is averaged to remove
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Figure 21 : A time series of the power mains fundamental frequency over time, as measured by the

gstlal calibration pipeline.

any “kinks” from the resulting time series. This provides a computationally cheap

and accurate measure of frequency with a very fast response to changes over time.

It assumes, however, that the line being measured in the signal is loud compared

to all other components of the signal. If this is not the case, a short band-pass

filter can be used before measurement. The deviation of the measured frequency

from the expected frequency is then used to produce corrective phase factors φcorr

to be applied to the transfer functions Tn. For the case of power mains lines, the

measured fundamental frequency is used to compute a corrective phase factor for

each harmonic.

6. The spectral lines are then reconstructed and subtracted from h(t) using

hclean(t) = h(t)−
∑

j

∑

n

<
(
eiωjt × φcorr,jTn(fj)w̃n(fj)

)
, (6.2.2)

where the fj are the expected frequencies of the lines being subtracted using a set

of witness channels wn.

In general, this can be done using multiple sets of witness channels that detect different

spectral lines.

The performance of the power mains line subtraction is shown in Fig. 22 using the
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Figure 22 : A time series of the ratio h̃clean(f)/h̃(f) at 60 Hz and harmonics, showing the performance

of the power mains line subtraction over time. h(t) and hclean(t) were demodulated using a 10-second

low-pass filter, and the ratios were averaged for 128 seconds to produce each point.

same H1 data as was used in Fig. 20. The ratio h̃clean(f)/h̃(f) is shown at the first 3

harmonics of the fundamental frequency f1 = 60 Hz. The next 2 harmonics are also

subtracted in the gstlal calibration pipeline, but the impact is increasingly smaller with

each harmonic due to the fact that the higher harmonics are not as loud in the h(t)

spectrum.

6.3 Subtraction of broadband noise in the gstlal calibration

pipeline

Witness sensors and other auxiliary channels can also be used to subtract broadband noise

from the h(t) signal, if they contain correlated noise and are insensitive to GWs. During
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O2 at H1, jitter in the laser beam contributed significant noise from 100 Hz to 1kHz. To

measure this noise, a set of three split photodiodes was installed to measure beam motion

and fluctuations in beam size [35]. Each photodetector has a center photodiode, and

three photodiodes of equal size arranged in a ring around the center photodiode. Control

of the length of the cavities and angluar motion of the mirrors also contributed noise at

frequencies below a few tens of Hz. The digital control signals sent to the actuators are

used to subtract this noise.

The methods developed in the gstlal calibration pipeline to subtract broadband

noise in h(t) assume that the noise in the witness channels is linearly coupled to h(t) and

that it is stationary on the tens-of-minutes timescales typically used to compute transfer

functions between these witness sensors and h(t).

6.3.1 Computing transfer functions

The first step necessary to subtract noise contributions from the chosen witnesses from

the h(t) signal is to estimate transfer functions that minimize the RMS of the signal

h̃clean(f) = h̃(f)−
∑

n

Tn(f)w̃n(f). (6.3.1)

We begin by applying short Hann windows to time-domain h(t) data and witness channel

data and taking Fourier transforms to compute h̃(f) and w̃n(f) for each segment of

data. Each window is overlapped with the previous window by half the length of the

window so as to weight each moment in time equally while still avoiding edge effects.

Any frequency bands that are known beforehand to have loud spectral lines in h(t) that

are not present in the witness channels are then smoothed over by replacing the Fourier

transforms with straight lines in those bands. If this is not done, the transfer functions

computed later may have errors around the frequencies of loud lines due to the large

amount of noise in the transfer functions at those frequencies. The ratios h̃(f)/w̃n(f)

and w̃m(f)/w̃n(f) are then taken from the DC component to the Nyquist frequency of

the witness channels for each windowed segment of data separately. Median values of

these ratios are taken at all frequencies, in order to reduce noise in the transfer functions.
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In order to achieve the desired temporal duration for the FIR filters produced later, these

ratios are then resampled using a windowed sinc table. This allows the flexibility of being

able to average over noise in the time domain using a median or in the frequency domain.

The use of a median instead of a mean in the time domain is important, as it renders the

result insensitive to occasional outliers due to, e.g., large short-duration glitches in the

h(t) data. The ability to smooth the transfer functions in the frequency domain also has

benefits, especially for cases in which witness channels are highly correlated. In this case,

the matrix in Eq. 6.3.2 is ill-conditioned, and the solutions for the transfer functions can

have large noisy fluctuations over frequency.

In the current configuration used in the low-latency gstlal calibration pipeline, 1000

4-second Fourier transforms are taken over a total time of 2002 seconds used to compute

the median values of each ratio. The length of the FIR filters is 1 second, meaning that

the ratios h̃(f)/w̃n(f) and w̃m(f)/w̃n(f) are downsampled by a factor of 4.

Similar to the case for the subtraction of spectral lines discussed in Section 6.2, witness

channels used in broadband noise subtraction often are correlated to one another, and it

is therefore necessary to find optimized transfer functions Tn by solving



1 w̃2

w̃1
. . . w̃N

w̃1

w̃1
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...
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...

w̃1

w̃N

w̃2
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. . . 1


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
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, (6.3.2)

this time at each frequency in the transfer functions. To insure accuracy in each estimate

of the optimized transfer functions, new Fourier transforms are computed only when the

detector is in a nominal low-noise configuration.

6.3.2 Producing and updating FIR filters for witness channels

The optimized transfer functions Tn can be applied to the witness channels wn to subtract

their noise contributions from h(t) as described by Eq. 6.3.1. In order to do this in the

gstlal calibration pipeline, they must be used to produce FIR filters to be applied to the

witness channels. To do this, we first apply any high- or low-pass filters by rolling the Tn
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Figure 23 : An example showing the workflow of broadband noise subtraction in the gstlal calibration

pipeline. Solid lines represent the flow of time series data, while dashed lines represent the periodic

passing of FIR filters from elements that compute them to elements that apply them. In this exmaple,

two iterations of noise subtraction are done, the first processing three witness channels in parallel, and

the second processing two witness channels in parallel. The block labeled “Compute h(t)” represents the

primary component of the gstlal calibration pipeline described in Ch. 3 and in Figs. 8 and 9.

off in the frequency domain. Currently, a high-pass filter with a 10-Hz corner frequency

is applied to prevent the addition of any noise in h(t) below 10 Hz. A delay of half the

length of the filter is then added in order to center the filter in time, making it non-causal.

Then an inverse Fourier transform is taken to produce a time-domain FIR filter. The

edges of the filter are smoothed off using a Tukey window in the time domain. These

filters are sent to a filtering algorithm that smoothly handles filter updates by windowing
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out the output of the previous filter using half of a Hann window while windowing in

the output of the new filter over some transition time set by the user. These filters are

updated each time a new set of transfer functions is computed from a new data set.

If desired, multiple iterations of noise subtraction can be done, i.e., after subtracting

noise from h(t) using one set of witness channels, another set of witness channels can

be used to do additional cleaning. It is important to note that, in order to avoid sub-

tracting the same signal multiple times, transfer functions produced for later iterations of

noise subtraction must be computed using cleaned h(t) data from previous iterations of

subtraction. Results from the noise subtraction in the gstlal calibration pipeline have

shown benefits from processing witness channels together using Eq. 6.3.2 primarily when

those witness channels measure noise in the same frequency band. For sets of witness

channels that do not measure noise in the same frequency band, results were improved

by subtracting noise computed from those witness channels using separate iterations of

the noise subtraction in series, thus reducing the size of the matrix of Eq. 6.3.2 in each

iteration. The subtraction done using H1 data from O2 shown in this section used two

iterations of cleaning, starting with 7 witness sensors used to detect beam jitter from

∼100 Hz to 1kHz, followed by 7 control signals for angular motion and length control,

contributing noise below ∼100 Hz. Fig. 23 shows an example of the noise subtraction in

the gstlal calibration pipeline in the form of a block diagram.

6.3.3 Low-latency and high-latency noise subtraction

Several key differences exist between the methods used in low latency versus those used

in high latency. In the low-latency gstlal calibration pipeline, the noise subtraction

is configured so as to not add any latency to the h(t) data stream. The FIR filters

being applied to witness channels are therefore computed using previous data, leading to

possible concerns about the time-dependence of the transfer functions. Results seen so

far indicate that temporal variations are slow enough that updating the transfer functions

about once per hour is sufficient to achieve effective subtraction.

In low latency, transfer functions are computed as soon as possible once the detector
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enters a low-noise state, if it has been a sufficiently long time (as determined by the user)

since the last low-noise state. Additionally, two previous transfer functions are stored

at all times: one based on the most recent data, and one based on the beginning of the

current or most recent low-noise strecth. The reasoning behind this is that we expect

the transfer functions at the beginning of a low-noise state to be more similar to ones

computed at the beginning of the previous low-noise state than they are to the most

recently computed transfer functions.

Unlike low-latency noise subtraction, high-latency noise subtraction can be done us-

ing FIR filters computed from a given segment of data to subtract noise from the same

segment of data. This constitutes a slight improvement over the low-latency noise sub-

traction, since the transfer functions are known to drift with time. The high-latency

noise subtraction needs to be done using many 4096-second jobs run in parallel, and it

is therefore important that the end of each 4096-second chunk of cleaned strain data is

continuous with the beginning of the next 4096-second chunk of cleaned strain data. In

order to accomplish this, it is necessary to compute the same transfer functions at the

end of a job as those computed at the beginning of the next job. As an example of how

this can be done, consider the case of using 1024 s of data to compute each set of transfer

functions. During a 4096-second job, 5 sets of these transfer functions need to be pro-

duced, requiring an extra 512 s of raw data before the beginning and after the end of the

4096-second job, plus any additional time needed to produce the uncleaned strain data.

To ensure that the transfer functions computed from a segment of data are independent

of start time, transfer functions are computed from predetermined time intervals set by

the user and separated by 1024 s. If the full 1024 s is not available during the job, the

transfer functions will not be computed for that cycle. Only data during low-noise states

will be used, regardless of how much or how little low-noise data is availible during the

predetermined 1024-second time window.
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Figure 24 : The transfer function h̃clean(f)/h̃(f) computed using ∼22 hours of H1 data on August 7,

2017. Fourier transforms of 16-second chunks of overlapped Hann-windowed data were used to compute

the ratio h̃clean(f)/h̃(f), and the median of this ratio was taken over 22 hours. Slight deviations of the

phase of this transfer function from 0◦ indicate drifts in the phase of the linear transfer functions between

witness channels and h(t) that are not captured by the gstlal calibration pipeline.

6.3.4 Stability over time

As mentioned previously, the transfer functions relating the witness channel data to h(t)

are known to vary over time. This can be shown by making numerous plots of each transfer

function at different times, but here we wish to use a diagnostic based on final results

and requiring only one plot. Fig. 24 shows the transfer function h̃clean(f)/h̃(f) computed

from ∼22 hours of H1 data during O2. Assuming consistently effective broadband noise

subtraction, we expect that the magnitude of the transfer function plotted to be less than

one and the phase to be consistent with zero. At times when the phases of the transfer
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Figure 25 : A time series over 22 hours of H1 data during O2 of the ratio ∆̃L(f)/x̃pc(f) at the two Pcal

lines in the frequency band impacted by broadband noise subtraction. Each ratio was taken using 20 s

of demodulated data. The average values of the ratios are unaffected, but noisy fluctuations are reduced,

especially in the Pcal line at f2 = 331.9 Hz.

functions between wn and h(t) drift, the phase of the plotted transfer function deviates

from zero. This effect is seen to a small degree below ∼15 Hz, indicating that the transfer

functions are changing at low frequencies. However, the variations are not significant

enough to cause the noise subtraction to add noise to h(t).

6.3.5 Impact on calibration accuracy and uncertainty

Although noise subtraction impacts the calibration of the noise we attempt to remove, it

is not expected to impact the accuracy of the calibration of GW signals, since the witness

sensors used are insensitive to GWs. To test the impact of broadband noise subtraction

on calibration accuracy, the Pcal lines can be left unperturbed in the h(t) spectrum while

broadband noise is subtracted. Then the Pcal lines, like GWs, are insensitive to the

subtraction. Fig. 25 shows time series of the ratio ∆̃L(f)/x̃pc(f) at the two Pcal line
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Figure 26 : A time series over 8 hours of H1 data showing the latency of the calibration pipeline with

and without noise subtraction. The latencies were computed by measuring the difference in the time

that calibrated data exited the pipeline and the time that raw data with the same timestamp entered the

pipeline. The median latency µ1/2 and standard deviation σ are shown for each data set in the legend.

An anomalous bimodal distribution of latencies and an associated decrease in the median latency is seen

when using the noise subtraction. The bar at the bottom indicates times when the detector was in a

nominal low-noise state (green) and when it was not (red).

frequencies at which the noise subtraction has an impact. ∼22 hours of uncleaned and

cleaned H1 strain data were used. Each ratio was taken using 20 s of demodulated data.

This integration time is short enough to ensure that the contribution of detector noise

is large compared to that of the noise in the time-dependent calibration model, which

is correlated over the 128-second length of the running median used for the TDCFs. As

expected, the data shows no significant change in the average values of the demodulated

ratios caused by the noise subtraction. However, noisy fluctuations in the ratio decreases

significantly in the Pcal line at f2 = 331.9 Hz, where the noise subtraction has a large

impact.
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6.3.6 Impact on calibration latency

Since the noise subtraction in the gstlal calibration pipeline is done in parallel to the

calibration of h(t) data and the filters used for noise subtraction are shorter than the

calibration filters, adding noise subtraction to the calibration pipeline’s procedure is not

expected to significantly increase calibration latency. Moreover, the noise subtraction uses

numerous threads when running, allowing the computational cost to be divided between

many CPUs, reducing any risk of a buildup of latency due to computational cost. Fig. 26

shows a time series comparison of calibration latency with and without noise subtraction.

The latencies were computed by measuring the difference in the time that calibrated

data exited the pipeline and the time that raw data with the same timestamp entered

the pipeline. The Hanford computing cluster was used for this test, since such tests could

interfere with h(t) production if done on the DMT machines. Recent latencies seen in

the production pipelines on the DMTs are consistent with these results. An anomalous

bimodal distribution of latency and an associated decrease in median latency is seen when

using the noise subtraction. The cause of this is unknown, but the median latency of the

cleaned strain data is more consistent with what is expected based on the length of the

calibration filters.
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Chapter 7

Impact of calibration accuracy and

noise subtraction on astrophysical

analyses

Estimation of source parameters of GW events associated with compact binary coales-

cences is impacted by both systematic errors in the calibration and noise in the detectors.

To assess the impact on parameter estimation caused by the improvements in calibration

accuracy discussed in Chapter 5 and the subtraction of spectral lines and broadband noise

discussed in Chapter 6, a brief study was done using two GW events from O2 data: the

binary black hole merger GW170814 and the binary neutron star merger GW170817.

7.1 Methods of the study

For the study, 8192 s of data was calibrated around the time of each event. Four different

sets of calibrated strain data were produced, with:

1. No compensation for any time dependence. This calibration simply relies on the

static reference model, produced months earlier.

2. Compensation for the time dependence of the scalar correction factors κT, κPU, and

κC. The low-latency calibration during O2 was produced with these corrections.
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3. Compensation for the time dependence of the scalar correction factors and the

coupled cavity pole fcc. A high-latency calibrated strain data set was produced

shortly after O2 similar to this, called the C02 calibration.

4. Compensation for all known time dependence, as discussed in Chapter 5. This is

the first production of such an accurate calibration for either of the events.

Each of these calibrated data sets contains both strain data without noise subtracted

and strain data with noise subtracted. These four data sets were compared to the noise-

subtracted high-latency strain data set produced shortly after O2, the “cleaned C02”

data. The cleaned C02 data was produced by compensating for time dependence in the

scalar correction factors and the coupled cavity pole fcc, similar to the third data set in

the above list. A high-latency noise subtraction was done after the production of the high

latency h(t) data to produce the cleaned C02 data. Each of these strain data sets was

analyzed using a nested sampling algorithm provided by LAL [28] to estimate parameters

based on the strain data from the two Advnaced LIGO detectors. Data from the Virgo

detector was not used for this study. For the binary neutron star event GW170817, the

sky localization was fixed at the location of the electromagnetic counterpart.

7.2 Time dependence and parameter estimation

In general, the results presented here show that compensating for time dependence in the

calibration has a small impact on the estimation of source parameters of a single event.

7.2.1 GW170814

Fig. 27 shows four skymaps with the estimated locations of GW170814 for each of the four

calibration configurations produced in this study. Differences between each are distin-

guishable by eye. Probability distributions and cumulative distributions of the luminosity

distance dL are shown in Fig. 28, additionally including the cleaned C02 data. Interest-

ingly, the calibration produced that includes compensation for all time dependence is in
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No corrections Scalar corrections

Scalar + fcc corrections All corrections

Figure 27 : Skymaps produced by LAL parameter estimation software showing the estimated location

of the binary black hole merger GW170814, comparing four different calibration configurations. The

upper left plot was produced without compensating for any time dependence. The upper right plot was

produced by compensating for the scalar factors κT, κPU, and κC. The lower left plot was produced by

additionally compensating for the time dependence of the coupled cavity pole fcc. The lower right plot

was produced by compensating for all known time dependence. Spectral lines and broadband noise were

subtracted from all h(t) data, in order to better resolve differences.

closer agreement with the cleaned C02 data than that which compensated for time de-

pendence in scalar factors and fcc as was done to produce the C02 data. This may be due

to small differences in the subtraction of broadband noise, as is seen in Fig. 18. Fig. 29

shows probability distributions and cumulative distributions of the chirp mass M of the

system in the detector frame. Chirp mass is defined by

M =
(m1m2)3/5

(m1 +m2)1/5
, (7.2.1)

where m1 and m2 are the component masses of each object in a binary system. The

significance of chirp mass is that it is the only combination of masses that appears in

both the amplitude and phase of the lowest order term in the post-Newtonian expansion

of a gravitational waveform produced by a compact binary system. It is therefore pos-

sible to estimate it with better accuracy than either of the component masses. Again,

small differences are seen between different calibration configurations, but none of these
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Figure 28 : Probability distributions and cumulative distributions of luminosity distance dL for

GW170814, comparing 5 versions of calibration with: no compensation for time dependence; correc-

tions for scalar factors; corrections for scalar factors and fcc; compensation for all known time depen-

dence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise were

subtracted from all data sets.

differences are large compared to the uncertainty in the measurement of chirp mass.

Fig. 30 shows similar plots for the symmetric mass ratio η, which is defined by

η =
m1m2

(m1 +m2)2
. (7.2.2)

Since the symmetric mass ratio does not appear in the lowest order term in the waveform,

it is more difficult to measure than the chirp mass, but accurate measurements of both

η and M would allow for accurate estimates of the component masses. η can take on

values from 0 to 1/4, with 1/4 corresponding to equal-mass binary systems, and values

near 0 corresponding to an extreme mass ratio. Fig. 31 is a related plot showing the 90%

confidence region in m1-m2 parameter space in the detector frame. Results are shown

for average values of matched filter signal-to-noise ratio (SNR) and the log-liklihood lnL
(natural logarithm of the liklihood that the observed signal is an artifact of noise), and

average values and standard deviations of M (detector frame), η, and dL in Table 4.

Subtraction of spectral lines and broadband noise was used for all data sets except for

one, labeled “All noclean.”

7.2.2 GW170817

The L1 calibrated data from the binary neutron star inspiral GW170817 required addi-

tional processing due to a loud glitch present in the data about a second before the time
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Figure 29 : Probability distributions and cumulative distributions of chirp mass M for GW170814 in

the detector frame, comparing 5 versions of calibration with: no compensation for time dependence;

corrections for scalar factors; corrections for scalar factors and fcc; compensation for all known time

dependence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise

were subtracted from all data sets.

Figure 30 : Probability distributions and cumulative distributions of symmetric mass ratio η for

GW170814, comparing 5 versions of calibration with: no compensation for time dependence; correc-

tions for scalar factors; corrections for scalar factors and fcc; compensation for all known time depen-

dence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise were

subtracted from all data sets.
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Figure 31 : 90% confidence regions in m1-m2 parameter space (detector frame) for GW170814, compar-

ing 5 versions of calibration with: no compensation for time dependence; corrections for scalar factors;

corrections for scalar factors and fcc; compensation for all known time dependence; high-latency cali-

bration produced just after O2 (C02). Spectral lines and broadband noise were subtracted from all data

sets.

Table 4 : Estimated source parameters for GW170814 for several different calibration configurations

Corrections SNR lnL M (M�) σM (M�) η ση dL (Mpc) σdL

None 17.4921 -7993.21 26.5579 0.7670 0.246079 0.005978 562.231 98.967

Scalars 17.6186 -7735.51 26.5976 0.8240 0.245715 0.006348 538.781 113.180

Scalars + fcc 17.4422 -7987.60 26.7048 0.7124 0.245989 0.005739 561.622 112.137

All 17.4129 -7997.77 26.8131 0.8091 0.246412 0.004917 596.102 126.149

All noclean 15.5780 -7985.56 26.9420 0.9493 0.244196 0.008258 705.301 154.781

C02 clean 17.2492 -7983.27 27.0883 0.7894 0.246523 0.004982 597.148 124.125

of coalescence (see [37]). Left unaddressed, this glitch would significantly corrupt the

parameter estimation. To remove the glitch, the calibrated data was multiplied by an

inverted Planck-taper window to taper the h(t) data to zero for the duration of the glitch

(∼0.25 s). The duration of the taper used for the window was 0.25 s. This differs from

what was done to produce the cleaned C02 data, which is included in the following plots
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Figure 32 : Probability distributions and cumulative distributions of luminosity distance dL for

GW170817, comparing 5 versions of calibration with: no compensation for time dependence; correc-

tions for scalar factors; corrections for scalar factors and fcc; compensation for all known time depen-

dence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise were

subtracted from all data sets.

Figure 33 : Probability distributions and cumulative distributions of chirp mass M for GW170817 in

the detector frame, comparing 5 versions of calibration with: no compensation for time dependence;

corrections for scalar factors; corrections for scalar factors and fcc; compensation for all known time

dependence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise

were subtracted from all data sets.
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Figure 34 : Probability distributions and cumulative distributions of symmetric mass ratio η for

GW170817, comparing 5 versions of calibration with: no compensation for time dependence; correc-

tions for scalar factors; corrections for scalar factors and fcc; compensation for all known time depen-

dence; high-latency calibration produced just after O2 (C02). Spectral lines and broadband noise were

subtracted from all data sets.

for comparison. The cleaned C02 data was produced by subtracting a model of the glitch

based on wavelet reconstruction from the h(t) data, according to the methods described

in [38].

Probability distributions and cumulative distributions of the luminosity distance dL

are seen in Fig. 32, showing only small differences between calibration configurations.

Fig. 33 shows probability distributions and cumulative distributions of the chirp massM
of the system in the detector frame, and Fig. 34 shows similar plots for the symmetric

mass ratio η. Fig. 35 shows the 90% confidence region in m1-m2 parameter space in

the detector frame. Results are shown for average values of matched filter SNR and the

log-liklihood lnL, and average values and standard deviations of M (detector frame), η,

and dL in Table 5. Subtraction of spectral lines and broadband noise was used for all

data sets except for one, labeled “All noclean.”

In general, the impact of compensating for the time dependence of the TDCFs was

relatively small for both events compared to the uncertainty in the parameters. The

impact would likely become larger in signals with higher SNR, or in results that will

eventually be based on large numbers of measurements from numerous observing runs,

such as the neutron star equation of state [39], estimates of rates and populations [40],

and measurements of the Hubble constant H0 [41].
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Figure 35 : 90% confidence regions in m1-m2 parameter space (detector frame) for GW170817, compar-

ing 5 versions of calibration with: no compensation for time dependence; corrections for scalar factors;

corrections for scalar factors and fcc; compensation for all known time dependence; high-latency cali-

bration produced just after O2 (C02). Spectral lines and broadband noise were subtracted from all data

sets.

Table 5 : Estimated source parameters for GW170817 for several different calibration configurations

Corrections SNR lnL M (M�) σM (M�) η ση dL (Mpc) σdL

None 32.0659 -435150 1.19752 0.00008 0.247647 0.002387 40.1608 8.5824

Scalars 31.9267 -435096 1.19752 0.00008 0.247676 0.002343 40.5240 7.0810

Scalars + fcc 31.8898 -435183 1.19752 0.00008 0.247594 0.002445 39.9722 7.7153

All 31.5160 -434784 1.19754 0.00008 0.247977 0.002161 40.5781 7.73101

All noclean 29.7538 -436495 1.19757 0.00009 0.247963 0.002263 40.6685 6.9811

C02 clean 32.3551 -435432 1.19752 0.00008 0.247626 0.002558 39.5273 7.2086

7.3 Noise subtraction and parameter estimation

The impact of the subtraction of spectral lines and broadband noise is quite significant in

the results of this study. Fig. 36 shows the impact of the noise subtraction on the skymap

computed for GW170814. A systematic shift in position is clearly visible, and the the 1-σ

confidence region is reduced in size from 462 square degrees to 310 square degrees. The
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Figure 36 : Skymaps produced by LAL parameter estimation software showing the estimated location of

the binary black hole merger GW170814, with and without subtraction of spectral lines and broadband

noise. The cleaned data is on the right. Due to noise subtraction, the 1-σ confidence region is reduced

in size from 462 square degrees to 310 square degrees. All known time dependence was compensated for

in both plots.

strain data used for this comparison was compensated for all known time dependence. A

comparison of the same two data sets is also shown in Table 4. The rows labeled “All”

and “All noclean” are the cleaned and uncleaned data, respectively. The results show an

11% increase in matched filter SNR due to the noise subtraction. Additionally, the 1-σ

uncertainties of all parameters in the data set are significantly reduced. Most surprising

is the systematic change in luminosity distance dL due to noise subtraction. The majority

of this impact comes from the removal of broadband noise caused by laser beam jitter

in the H1 detector. A similar comparison is shown for GW170817 in Table 5, where the

SNR increases by 6% due to noise subtraction.
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Chapter 8

Conclusion

Since the beginning of O2, significant improvements have been made to the low- and

high-latency calibration procedures in the gstlal calibration pipeline. These imclude

improvements in calibration accuracy, reduction in intrinsic calibration latency, and the

inclusion of a method to subtract spectral lines and independently-measurable broadband

noise from the h(t) spectrum.

A significant reduction in systematic error in the calibrated strain data was accom-

plished through the development of a calibration procedure that compensates for all

parameterized time dependence in the calibration model. Previously, it was only possible

to apply scalar magnitude corrections to the calibrated components of ∆Lfree. A method

has now been developed and implemented in the gstlal calibration pipeline that allows

periodic updates to FIR filters, using a generic filter model with an arbitrary number

of time-varying zeros and poles, a variable gain, and a variable time delay. Analysis of

O2 data indicates that this method can reduce systematic errors in the calibrated h(t)

data to the level of ∼1% in magnitude and ∼1◦ in phase from 20 Hz to 1 kHz. This is a

significant improvement over the systematic errors in h(t) of up to 5% in magnitude and

3◦ in phase reported during O2. Additionally, the flexibility of this generic filter model

makes it adaptable to many different time-dependent models that could be discovered in

future observing runs.

A new analytical solution useful for computing the TDCFs is also presented, which
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does not rely on the approximations employed by the method currently used. This is not

implemented in the gstlal calibration yet, simply becuase it is a very recent development.

This new solution has two main advantages. The primary motivating factor in finding

this solution is to remove unwanted covariance in the computed values of the TDCFs

and thus remove the systematic errors induced by the breakdown of the approximations

currently used, occuring at times when the true response function deviates significantly

from that of the static reference model. A second benefit is increased flexibility of the

placement of calibration lines. The approximations used in the currently-implemented

method require that 4 of the calibration lines be placed in a narrow frequency band,

within ∼1 Hz of one another. Under this newly-developed method, calibration accuracy

will be optimized simply by choosing calibration line frequencies in bands where each

TDFC is expected to have a significant impact.

Although the current impact of systematic errors at the level of 5% on most astro-

physical analyses is fairly small, it is anticipated that as detector sensitivity increases and

large numbers of detections of binary black hole mergers, binary neutron star mergers,

and other exotic astrophysical systems are made, calibration accuracy will become in-

creasingly important, especially for estimation of populations and rates [40], the neutron

star equation of state [39], and the Hubble constant [41].

A significant reduction in calibration latency was also achieved due to this work.

Since the beginning of O2, latency intrinsic to the gstlal calibration pipeline has been

reduced from ∼12 s to its current value of ∼3 s. Although calibration latency is cur-

rently only a small contributor to the total latency between acquiring a GW signal and

sending automated alerts to astronomers, a coordinated effort to reduce latency from

other sources during O3 will make calibration latency a significant limiting factor. Early-

warning searches for events like the binary neutron star merger GW170817 will benefit

greatly from the reduction of total latency to a few seconds, as the temporal separation of

such mergers and the resulting gamma-ray bursts is now known to occur on this timescale

[37]. Further improvements to calibration latency are necessary for this purpose, with

the goal of achieving intrinsic calibration pipeline latency of ∼1 s.
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A recent improvement related to calibration latency is the improvement in the high-

pass filtering of h(t) data, accomplished primarily through the use a better window func-

tion in the production of the FIR filters. This is expected to benefit downstream data

analysis as well.

Finally, a new feature has been developed in the gstlal calibration pipeline that

allows for the subtraction of spectral lines including calibration lines and power mains

lines, as well as broadband noise with correlated noise in any witness sensors that are

insensitive to GWs. This is accomplished through the calculation and periodic revision

of optimized transfer functions and FIR filters used to produce estimates of excess noise

in h(t) to be subtracted from the signal. Offline noise subtraction done following O2

increased detectable volume in H1 calibrated data by about a factor of 2. Results from

the line and noise subtraction implemented in the gstlal calibration pipeline using the

same data show a similar improvement, with an associated increase in signal-to-noise

ratio and significant improvement in the estimation of source parameters in compact

binary sources of GWs. Results show that this method is stable over time and has no

detrimental impact on calibration accuracy. Moreover, the inclusion of noise subtraction

in the calibration procedure can make this data product available in low latency for the

first time, and is seen to have a negligible impact on calibration latency.
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