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ABSTRACT 

INTERNAL FAULT DIAGNOSIS OF MMC-HVDC BASED ON CLASSIFICATION 

ALGORITHMS IN MACHINE LEARNING 

by 

Tianyi Jin 

The University of Wisconsin Milwaukee, 2019 

Under the Supervision of Professor Lingfeng Wang 

With the development of the HVDC system, MMC-HVDC is now the most advanced 

technology that has been put into use. In power systems, faults happen during the operation 

due to natural reasons or devices physical issues, which would cause serious economic losses 

and other implications. Thus, fault detection and analysis are extremely important, especially 

in the HVDC system. Existing works in literature mainly focus on the faults detection and 

analysis on the system side such as short circuit of the AC side, and open circuit of the DC side. 

However, little attention has been paid to the fault detection and analysis inside the converters. 

With the technology development of converter devices, replacing the whole converter becomes 

more expensive. Thus, my research mainly focuses on the detection and classification of the 

faults within the internal of the MMC module. 

In this research, an SPS model of MMC-HVDC is built as the example. Faults including 

short circuit and open circuit located inside the MMC module are simulated. Machine learning 

algorithms are chosen as the tool to achieve the goal of detecting faults and locating the fault 

position inside the MMC module precisely. After comparing the basic characteristics and 

properly application situations of various methods of machine learning, Coarse KNN, Complex 

Tree and Bagged Tree (Random Forest) are deployed to solve the problem. The performance 

of the methods are analyzed and compared, to get the most proper method in solving the 
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problem. 
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Chapter 1 HVDC system 

 Introduction of HVDC 

With the integration of renewable energy, Power systems are getting more interconnected, 

where HVDC technology can play a key role [1].  

HVDC (High-Voltage Direct Current) is a highly efficient alternative for transmitting large 

amounts of electricity over long distances and for special situation applications. As a key 

technology in the future energy system based on renewables, HVDC is truly shaping the grid 

of the future [2]. 

HVDC, also known as electric highways or electric highways, is increasingly being 

integrated into modern power networks. It has been very expensive in history and only 

preserves the inconvenience of power transmission through traditional alternating current (AC) 

systems - for example transmission over very long distances, submarine interconnections and 

transmissions between asynchronous networks. With the development of technology, the 

economic competitiveness of HVDC transmission systems is becoming stronger and more 

flexible, leading to a surge in projects [3,4].  

Comparing with HVAC, HVDC has some unbeatable natural advantages to some extent, 

which are shown in the Table 1.1 [5]. 

Table 1.1 Comparison of HVAC and HVDC 

Aspects Comparison 
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Investment Cost 

 

Losses 

Skin effect is absent in DC. Also, corona losses are significantly 

lower in the case of DC. An HVDC line has considerably lower 

losses compared to HVAC over longer distances. 

Controllability 

Due to the absence of inductance in DC, an HVDC line offers 

better voltage regulation. Also, HVDC offers greater controllability 

compared to HVAC. 

Asynchronous 

Interconnection 

AC power grids are standardized for 50 Hz in some countries 

and 60 Hz in other. It is impossible to interconnect two power grids 

working at different frequencies with the help of an AC 

interconnection. An HVDC link makes this possible. 

Interference with 

Nearby 

Communication Lines 

Interference with nearby communication lines is lesser in the 

case of HVDC overhead line than that for an HVAC line. 

Short Circuit Current 

In longer distance HVAC transmission, short circuit current level 

in the receiving system is high. An HVDC system does not contribute 

to the short circuit current of the interconnected AC system. 

Investment
cost

Distance

DC terminal cost AC terminal cost

Break-even 
distance 

(around 600 km) 

http://www.electricaleasy.com/2016/08/skin-effect-and-proximity-effect.html
http://www.electricaleasy.com/2016/07/corona-discharge.html
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As we can see, HVDC transmission system has many more advantages over HVAC, such 

as stability, controllability etc. For distances longer than the break-even distance, HVDC 

system becomes more cost effective. Submarine HVDC links can be more suitable for 

connecting offshore wind farms as they prove to be more efficient and cost effective than 

undersea HVAC cables. Hence, there is an increasing interest in HVDC transmission. Still, 

HVAC system will remain much longer as it has its own advantages in transmission and 

distribution, such as it can be easily stepped up and stepped down. HVDC is actually a 

complement for AC systems rather than a rival. 

 Background of HVDC 

AC has been the preferred and most common choice for electrical transmission to homes 

and businesses for past hundred years. However, high voltage AC transmission has some 

limitations, starting with transmission capacity and distance constraints, and the impossibility 

of directly connecting two AC power networks of different frequencies. So here comes HVDC. 

The development of electricity began in DC, but it was quickly replaced by AC for a long 

time. HVDC technology has been in use since the 1950s. After half a century of development, 

the application of HVDC technology has made great progress. According to incomplete 

statistics, there are nearly one hundred HVDC transmission projects in the world, including 

projects under construction, covering more than 20 countries on five continents. [6].  

Among them, the Swedish Gotland HVDC transmission project (20MW, 100kV, 90km 

submarine cable) was completed and put into operation in 1954, which is the world's first high-

voltage DC transmission project; The HVDC project with the highest voltage (± 600kV) and 

maximum transmission capacity (2 * 3150MW) is the Itaipu project in Brazil. The longest 
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transmission distance (1700 km) of HVDC transmission projects is South Africa's Inga-Shaba 

project; the largest HVDC transmission projects in China, such as Sanchang, Sanguang and 

Guigang projects, rated DC current is 3000A. Developed HVDC technologies are in Europe 

and North America, ABB and Siemens have the most advanced HVDC technology, and the 

United States is the country with the most HVDC projects [6,7]. 

 Structural Characteristics of HVDC 

Today, power generation and power consumption are almost all AC power systems, which 

determines that in addition to DC transmission lines, HVDC transmission systems should also 

be equipped with AC-DC converter stations at both ends of the DC line, which means AC is 

converted to DC at the transmitting end, and then converted to AC after the DC line is sent to 

the receiving end [8]. 

The process of converting AC to DC is called rectification, and the process of converting 

DC to AC is called inversion. The devices that implement rectification and inversion are called 

rectifiers and inverters, respectively, and the corresponding converter stations are called 

rectifier stations and inverter stations respectively. 

In order to increase the flexibility and reliability of the HVDC system by using ground (or 

seawater) as a loop, the HVDC system should also have a ground electrode and its leads. In 

addition, in order to achieve the normal start and stop of the HVDC system, changes in 

operating mode, adjustment of operating parameters and protection under fault conditions, 

control and protection systems are also an integral part of the HVDC system. 

The converter transformer provides the converter with the appropriate commutation 

voltage magnitude and phase. When a DC system has a short-circuit fault, its impedance also 
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acts to limit the short-circuit current and avoid damage to the converter. Smooth reactor 

applications include: (1) suppressing harmonic currents in the DC line, (2) reducing 

commutation faults of the inverter, and (3) preventing current discontinuity during light loads, 

(4) Limiting the peak current of the converter when the DC line is short-circuited The AC 

current of the DC filter is the harmonic current required to filter the converter. The AC filter 

also provides some of the reactive power required by the converter. The communication system 

transmits operational control and voice information between the converter stations to achieve 

coordinated control of the HVDC system [9-11]. The converter is the most important part of 

the HVDC system. 

 

Fig 1.1 The Growth of Transmission Capacity of LCC(MW) 
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Fig 1.2 The Growth of Transmission Capacity of VSC(MW) 

 Converter 

The inverter is a device for realizing mutual conversion of AC and DC power. The 

converter valve is a controllable or uncontrollable switchgear that can realize the function of 

the converter bridge arm and is the most basic component of the inverter. The inverter is 

constructed by connecting one or more three-phase bridge converter circuits (also called 6-

pulse converters) in series. Change the trigger phase of the converter valve, which can be 

operated either in the rectified state or in the inverter state. The converter that converts the 

alternating current to the direct current is called a rectifier, and the inverter that converts the 

direct current to the alternating current is called an inverter. The rectifier is basically the same 

as the inverter device and is collectively referred to as the converter [12,13].  

HVDC converters come in several different forms. The early HVDC systems built until 

the 1930s were efficient rotary converters and used electromechanical conversion, where the 

motor-generators were connected in series on the DC side and in parallel on the AC side. 

However, all HVDC systems built since the 1940s have used electronic (static) converters. [7]. 
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Electronic converters for HVDC can be divided into two main categories, Line-

commutated converters (LCC) and voltage-source converters (VSC), the first one is made with 

electronic switches that can only be turned on, while the second is made with switching devices 

that can be turned both on and off. Line-commutated converters (LCC) used mercury-arc valves 

until the 1970s [7] and from the 1970s to the present day, using thyristors. VSC, which first 

appeared in 1997, using transistors, usually the Insulated-gate bipolar transistor (IGBT). 

As of 2012, both LLC and VSC are important, with LLC used mainly where very high 

capacity and efficiency are needed, and VSC used mainly for interconnecting weak AC systems, 

and also for connecting large-scale wind power to the grid or for HVDC interconnections that 

are likely to be expanded to become Multi-terminal HVDC systems in the future. The market 

for voltage-source converter HVDC is growing rapidly, in part because of the surge in offshore 

wind power investments, a special type of converter, and the emergence of modular multilevel 

converters (MMC) as a leader [14]. 

1.4.1 LCC-HVDC 

Most HVDC systems currently in operation are based on LCC. The term line commutation 

indicates that the conversion process relies on the line voltage of the AC system to which the 

converter is connected to affect the commutation from one switching device to its neighbors 

[15]. The LCC uses an uncontrolled switching device (such as diode) or can only be turned on 

by a control action (such as a thyristor). 

In LCC, the DC current does not change direction; it flows through a large inductor and 

can be considered almost constant. On the AC side, the converter appears roughly as a current 
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source, injecting grid frequency and harmonic current into the AC network. Therefore, the line 

commutating converter for HVDC is also considered to be a current source converter [16]. 

Since the direction of the current cannot be changed, the reversal of the power flow direction 

(when needed) is achieved by reversing the polarity of the DC voltage at the two stations.  

• Six-pulse bridge 

The basic LCC configuration of HVDC uses a three-phase Graetz bridge rectifier or a six-

pulse bridge containing six electronic switches, each of which connects one of the three phases 

to one of the two DC terminals [17]. Often referred to as a complete switching element 

Typically, two valves in a bridge are electrically conductive at any time: one on the top row 

and one on the bottom row (from different phases). Two conductive valves connect two of the 

three AC output voltages in series to the DC terminal. Therefore, the DC output voltage at any 

given moment is given by the series combination of the two AC phase voltages. For example, 

if valves V1 and V2 are turned on, the DC output voltage is given by the voltage of phase 1 

minus the voltage of phase 3. 

The transition from a pair of conductive valves to the next conductive valve does not occur 

immediately due to the inevitable (but beneficial) inductance of the AC power source. 

Conversely, when the two valves on the same row of the bridge are simultaneously turned on, 

there is a short overlap period. For example, if valves V1 and V2 are initially turned on and 

then valve V3 is open, conduction is transferred from V1 to V3, but both valves are 

simultaneously conducted [15]. During this time, the DC output voltage is given by the average 

of the voltages of phases 1 and 2 minus the voltage of phase 3. The overlap angle μ (or u) in 

the HVDC converter increases with load current, but is typically about 20° at full load.. 
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Fig 1.3 Working principle of Six-pulse bridge LCC 

In other words. When only valves 1 and 2 are turned on, the DC voltage is formed by two 

of the three-phase voltages. During the overlap period, the DC voltage is formed by all three 

phase voltages. 

• Twelve-pulse bridge 

With a phase changes only every 60°, considerable harmonic distortion is produced at both 

the DC and AC terminals when the six-pulse arrangement is used. An enhanced structure was 

using 12 valves in a twelve-pulse bridge. 

The structure of the twelve-pulse bridge can be regarded as two six-pulse bridges 

connected in series on the DC side, and a phase shift is placed between their respective AC 

power sources so that some harmonic voltages and currents are eliminated. 

The phase offset between the two AC sources is typically 30°, achieved by using a 

converter transformer with two different secondary windings (or valve windings). Usually one 

valve winding is a star (Y-shaped) connection and the other is a delta connection [18]. By 

connecting each of the two sets of three phases to the twelve valves of the two DC rails, a phase 

change occurs every 30° and the harmonics are greatly reduced. For this reason, the twelve-

pulse system has become the standard for almost all line commutated converter HVDC systems, 
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although HVDC systems constructed with mercury arc valves typically allow for temporary 

operation, with one of the two six-pulse groups being bypassed. 

 

Fig. 1.4 A 12-pulse HVDC converter using thyristor valves 

1.4.2 VSC-HVDC 

Since the thyristor can only be switched on by control action and relies on an external AC 

system to affect the shutdown process, the control system has only one degree of freedom - 

when to turn on the thyristor [15]. This limits the usefulness of HVDC in certain situations 

because it means that the AC system to which the HVDC converter is connected must always 

contain a synchronous motor to provide commutation voltage - the HVDC converter cannot 

feed power into the passive system. 

For some other types of semiconductor devices, such as insulated gate bipolar transistors 

(IGBTs), turn-on and turn-off can be controlled to provide a second degree of freedom. 

Therefore, IGBTs can be used to fabricate self-commutated converters. In such a converter, the 

polarity of the DC voltage is usually fixed, and the DC voltage smoothed by the large 
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capacitance can be considered to be constant. Therefore, an HVDC converter using an IGBT 

is generally referred to as a voltage source converter (or a voltage source converter [18]).  

Additional controllability offers many advantages, especially the ability to switch IGBTs 

multiple times per cycle to improve harmonic performance and (self-rectifying) converters no 

longer rely on synchronous motors in the AC system for operation. Therefore, the voltage 

source converter can supply power to an AC network consisting only of passive loads, which 

is not possible with LCC HVDC. 

Voltage source converters are also more compact than line commutator converters (mainly 

because less harmonic filtering is required) and are better than line commutated converters 

where space is at a premium, such as on offshore platforms [19]. 

HVDC systems based on voltage source converters typically use a six-pulse connection 

because the converter produces harmonic distortion that is much lower than a similar LCC and 

does not require a twelve-pulse connection. This simplifies the structure of the converter 

transformer. However, voltage source converters come in several different configurations [19] 

and research is continuing to evolve into new alternatives. 

• Two-level converter 

From the installation of the first VSC-HVDC solution (the Hellsjön experimental link [7] 

commissioned in Sweden in 1997) to 2012, most of the VSC HVDC systems built were based 

on two-stage converters. The two-level converter is the simplest three-phase voltage source 

converter [20] and can be thought of as a six-pulse bridge in which the thyristor has been 

replaced by an IGBT with an anti-parallel diode, the DC smoothing reactor has been replaced 

by a DC smoothing capacitor. The name of this converter is derived from the voltage at each 
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phase of the AC output switching between two discrete voltage levels, corresponding to the 

potential of the positive and negative DC terminals. 

 

Fig 1.5 Three-phase, two-level voltage-source converter for HVDC 

 

Fig 1.6 Operating principle of 2-level converter 

As shown in the above figures, when the upper portions of the two valves in one phase are 

turned on, the AC output terminal is connected to the positive DC terminal, resulting in an 

output voltage of +½ Ud with respect to the midpoint potential of the converter. Conversely, 

when the lower valve in the phase is turned on, the AC output terminal is connected to the 

negative DC terminal, resulting in an output voltage of --½ Ud. The two valves corresponding 

to one phase must never be switched on at the same time, as this would result in an uncontrolled 

discharge of the DC capacitor, which could severely damage the converter device. 

But this model does have some key shortcomings, such as high power loss due to 
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conversion time and high levels of electromagnetic interference due to special IGBT types with 

complex gate drive circuits. 

• Three-level converter 

In order to improve the low harmonic performance of the two-level converter, some HVDC 

systems have built a three-level converter. 

 

Fig 1.7 Three-phase, three-level, diode-clamped voltage-source converter for HVDC 

 

Fig 1.8 Operating principle of 3-level, diode-clamped converter, single-phase representation 

The three-level converter can synthesize three (rather than just two) discrete voltage levels 
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at the AC terminals of each phase: +½ Ud, 0 and -½ Ud. A common type of three-level converter 

is a diode-clamped (or neutral-point clamp) converter in which each phase contains four IGBT 

valves, half of each rated DC line voltage, and two clamp diode valves [33]. The DC capacitor 

is divided into two branches connected in series, and the clamp diode valve is connected 

between the midpoint of the capacitor and between one quarter and three quarters of each phase. 

In order to obtain a positive output voltage (+½ Ud), the top two IGBT valves open, to get the 

negative output voltage (-½ Ud), the bottom two IGBT valves open and to obtain a zero-output 

voltage, the middle two IGBT valves open. In the latter state, the two clamp diode valves 

complete the current path through the phase. 

• Modular Multi-Level Converter (MMC) 

 

(a) 
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(b)  

Fig 1.9 Three-phase Modular Multi-Level Converter (MMC) for HVDC 

Like the two-level converter and the six-pulse line commutator, the MMC consists of six 

valves, each of which connects an AC terminal to a DC terminal. However, in the case where 

each valve of the two-stage converter is actually a high voltage control switch consisting of a 

large number of IGBTs connected in series, each valve of the MMC itself is a separate 

controllable voltage source. Each MMC valve consists of a number of independent converter 

sub-modules, each containing its own storage capacitor. In the most common circuit form, a 

half-bridge variant, each sub-module comprising two IGBTs connected in series on the 

capacitor, a midpoint connection and one of the two capacitor terminals as an external 

connection [21]. Depending on which of the two IGBTs in each submodule is turned on, the 

capacitor is bypassed or connected to the circuit. Therefore, each sub-module acts as a separate 

two-level converter, producing a voltage of 0 or Usm (where Usm is the sub-module capacitor 

voltage). With a proper number of submodules connected in series, the valve can synthesize a 

stepped voltage waveform that approximates very closely to a sine-wave and contains very low 

levels of harmonic distortion. 

 The MMC differs from other types of converters in that current flows continuously through 
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all six valves of the converter throughout the power supply frequency cycle. Therefore, 

concepts such as "on state" and "off state" have no meaning in the MMC. The direct current is 

equally divided into three phases, and the alternating current is equally divided into upper and 

lower valves of each phase [22]. The current in each valve is therefore related to the direct 

current 𝐼𝑑 and alternating current 𝐼𝑎𝑐 as follows: 

Upper valve: 𝐼𝑣 =
𝐼𝑑

3
+

𝐼𝑎𝑐

2
(1.1) 

Lower valve: 𝐼𝑣 =
𝐼𝑑

3
−

𝐼𝑎𝑐

2
(1.2) 

A typical MMC for HVDC applications consists of approximately 300 sub-modules 

connected in series in each valve, thus equivalent to a 301-level converter. As a result, harmonic 

performance is very good, and filters are usually not needed. Another advantage of MMC is 

that PWM is not required, and as a result, the power loss is much lower than the power loss of 

the 2-stage converter, which is about 1% at each end [23, 24]. Finally, since the direct series 

connection of the IGBT is not necessary, the IGBT gate driver does not need to be as complex 

as a 2-level converter. 

MMC has two major drawbacks. First, control is much more complicated than a 2-level 

converter. Balancing the voltage of each sub-module capacitor is a major challenge and 

requires considerable computational power and high-speed communication between the central 

control unit and the valve. Second, the submodule capacitor itself is large and bulky [25]. The 

MMC is much larger than the equivalent level 2 converter, although this can be offset by saving 

space without the need for a filter. 

As of 2012, the MMC HVDC transmission system with the largest capacity in operation 

is still a 400 MW cross-bay cable project, but many large-scale projects are under construction, 

https://en.wikipedia.org/wiki/HVDC_converter#cite_note-Westerweller-36
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Including underground cable interconnections from France to Spain, including two 1000 MW 

shunt voltages with a voltage of ±320 kV [26]. 

1.4.3 Comparison of LCC and VSC 

The table 1.2 below shows the difference between LCC-HVDC and VSC-HVDC. 

Table 1.2 Comparison of LCC and VSC 

LCC-HVDC VSC-HVDC 

Thyristor base technology (turn on only) IGBT base technology (turn on/off) 

The semiconductor can with-stand 

voltage in either polarity 

Withstand current in either direction 

Constant current direction Current direction changes with power 

Filter and Shunt capacitor Small Filter 

Energy is stored inductively Store energy capacitively 

Turned on by a gate pulse but rely on external 

circuit for its turn off 

Both turn on and off is carried out without 

the help of an external circuit 

High power capability Lower power capability 

Good overload capability Has weak overload capability 

Requires stronger AC systems for excellent 

performance 

Operate well in a weak AC system 

Requires additional equipment for black start 

operation 

Possesses black start capability 

Requires AC and DC harmonic filters for Requires no filter because it generates an 
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removal of distortion and harmonics insignificant level of harmonics 

Poor in reactive power control Good reactive power control 

Large site area dominated by harmonic filters A more compact site area 

Requires converter transformer Conventional transformer is used 

Lower station losses Higher station losses 

More mature technology Still at its infancy 

Reversal of power is done by reversing the 

voltage polarity 

Power is reverse by changing the current 

direction 

Higher voltage capability of over 1000KV 

Lower voltage capability of almost 

600KV 

Mostly used to transmit bulk power for a long 

distance 

Used for transmitting power from remote 

area with renewable energy 

Suffers commutation failures as a result of a 

sudden drop in the amplitude or phase shift in 

the AC voltage, which result in dc temporal 

over-current Though, the effect has no 

significant impact on the AC systems as it’s a 

self-clearing effect within a few power 

frequency cycles. 

Ability to be turned on and turned off of 

VSC makes it immune to any voltage dips 

or transient AC disturbance, therefore, it 

does not suffer commutation failure. 

Commutation failures need for change in dc 

polarity when converter want to change from 

rectifier to inverter mode make LCC HVDC 

Proper for multi-terminal HVDC systems 

because it does suffer from commutation 

failures, has independent, multidirectional 
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more problematic to adopt in a multi-terminal 

HVDC system. Reason for low number of 

LCC base technology for multi-terminal 

HVDC. 

power flow, and operate with the same 

voltage polarity. 

During short circuits on the dc line, control of 

the firing angle of the thyristors valves stop 

the increase of dc fault current. This converter 

control and protections reduces the damage 

caused by the fault current. Incased of 

overhead lines fault, power transmission is 

stopped for arc deionization, after which 

power transmission resumed. 

Continuous conduction in the diode will 

cause an increase in dc fault current even 

when the IGBTs are turned off. The ac 

circuit breakers at both VSC HVDC ends 

must be opened to stop the diode 

conduction. The converter link must be re-

started after fault has been removed. 

As a conclusion, we can see the loss of VSC is larger than LCC because the higher 

switching losses in IGBT. Thus, the future trend of development of HVDC converter is to 

improve the efficiency of VSC via better topology or better converter design. 
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Chapter 2 Fault Analysis of MMC-HVDC 

In this thesis, we focus on MMC-HVDC, especially the failure of its sub-modules. The 

sub-module (SM) widely used in engineering is a half-bridge sub-module structure and is the 

basic unit of MMC. The timely diagnosis of fault conditions and local protection during 

operation is directly related to the stable operation of the system and has important research 

significance. 

The drive protection circuit on the sub-module controller (SMC) provides some basic sub-

module fault diagnosis functions, such as capacitor undervoltage and overvoltage, IGBT 

overcurrent, over temperature, etc. However, the hardware circuit design is more complicated, 

and it is impossible to diagnose a certain type of fault, and its diagnostic capability is poor. [27-

30].  

Therefore, it is of practical engineering significance to study how to realize rapid diagnosis 

of various faults of sub-modules and realize fast in-situ protection without adding additional 

measurement points and hardware circuits. 

2.1 Sort of Faults 

2.1.1. Fault on AC system 

The common AC system faults in HVDC projects mainly include the following: Phase-to-

phase short-circuit fault or single-phase short-circuit fault on the rectifier side, two-phase short-

circuit fault or single-phase short-circuit fault on the inverter-side AC system. 

When an interphase short circuit fault occurs in any two phases of the AC system, the two 

phases are shorted, and a two-phase short circuit current occurs in the AC system. If the 

rectification fails, due to the loss of the two-phase voltage, the rectifier will not be able to 
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complete the normal commutation operation, causing the current and voltage on the DC line to 

drop rapidly, and the transmission power will decrease linearly. If there is a fault on the inverter 

side, the inverter will not be able to reverse direction, eventually causing the DC transmission 

line current to rise and the AC system current to drop. 

When a single system short-circuit fault occurs in the AC system, the short-circuit current 

directly passes through the inverter-opened converter valve, and then reaches the neutral side 

of the DC side through the grounding grid and the grounding pole system, thereby forming a 

short circuit. The fault feature is similar to the short circuit of the converter valve. If a fault 

occurs on the rectifying side, it is also necessary to prevent DC loop resonance that may be 

caused by the second harmonic entering the DC line. 

2.1.2. Fault on DC side 

HVDC transmission projects are mainly used for power transmission across regions. 

Among the various types of faults occurring on the DC line, the probability of a ground fault 

short circuit is the highest, accounting for more than 80% of the DC line fault. There are many 

factors that can cause DC line ground shorts, and frequent lightning strikes, contamination, and 

branch lines.  

When a ground short fault occurs, the current stored in the line is instantaneously released, 

which causes the current to rise sharply. The magnitude of this current is related to the point at 

which the fault occurs and the distance between the rectifier stations. The location of the fault 

comes from the rectifier station. Almost, the smaller the grounding resistance at the outlet of 

the rectifier station, the larger the short-circuit current. 

Lightning strike is one of the main factors leading to DC line faults, especially high-voltage 
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direct current transmission projects that transmit power across regions. Due to the long 

transmission distance and the complex and varied local environment, the probability of 

lightning strikes is relatively large [29]. In addition, there are other types of faults, such as wire 

breaks on DC lines and foreign object impacts. 

2.1.3. Sub-module fault characteristics analysis 

This article divides common sub-module faults into two categories, namely component 

fault faults and trigger control faults. Component failure faults include short-circuit faults, 

open-circuit faults, and storage capacitor faults for power electronics (IGBTs and free-wheeling 

diodes FWD); trigger control faults are caused by system fault pulses or communication faults 

between controllers. The following are breakdowns of fault characteristics for several typical 

faults [31]. 

2.1.4. IGBT or FWD short circuit fault: 

When another normal IGBT is turned on, a short-circuit fault of the IGBT causes the sub-

module bridge arms to pass between the circuits. When the complementary IGBT is turned on, 

the short-circuit fault of the FWD also causes the bridge arm to pass. 

Since the time constant is small at this time, the result is that the capacitor is rapidly 

discharged, the capacitor voltage drops rapidly, and a large short-circuit current flows through 

the power electronics in the fault sub-module. 

2.1.5. IGBT open circuit fault:  

When the bridge arm current flows through the sub-module, the IGBT open circuit will 

change the output voltage of the path and sub-module as well as the charging and discharging 

of the capacitor. Taking the open circuit of T1 as an example, after the T1 open circuit fault, 
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when the trigger pulse is cut off by the submodule, the running state is the same as when the 

fault does not occur; when the trigger pulse is the input of the submodule, its working state is 

as shown in Fig. 2.1.  

 

Fig 2.1 Arm Current Path When T1 is Open-circuited 

When the arm current Iarm>0, a capacitor charging circuit is established which is the same 

as the normal operating state. When a fault occurs, the capacitor voltage does not cause a 

discharge loop, the bridge arm current flows through D2, and the outlet voltage is zero. 

It can be seen that an open circuit fault of T1 will cause the capacitor voltage of the faulty 

submodule to continuously rise. Due to the sequencing of the control system, when the 

capacitor voltage of the faulty submodule rises to a certain value (i𝑎𝑟𝑚 > 0), T1 will no longer 

turn on to charge the capacitor. However, when i𝑎𝑟𝑚 < 0 and T1 are turned on, the output 

voltage of the submodule is 0 instead of the normal voltage 𝑈𝑐. At this point, a large circulating 

current will be generated in the bridge arm, and the sub-module protection must be activated. 

Therefore, similarly, when T2 has an open circuit fault and the trigger pulse is the input of 

the submodule, the running state is the same as when the fault does not occur; and when the 

trigger pulse is in the cutting state and i𝑎𝑟𝑚 > 0, the bridge arm current will pass through D1. 

The capacitor is charged, and the output voltage is 𝑈𝑐. In this case, the current circuit of the 

submodule is the same as that shown in Figure 2.1; when the trigger pulse is in the cutting state 

and i𝑎𝑟𝑚 < 0, the bridge arm current flows through D2, which is the same as normal operation. 
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At this time, although the capacitor is abnormally charged and discharged, the capacitor voltage 

of the faulty submodule can still fluctuate around the rated value due to the sequential 

equalization effect. Since the output voltage is A instead of 0 when the trigger pulse is in the 

off state, a large loop is also generated in the bridge arm and the submodule protection must be 

activated. 

2.2 Method of fault diagnosis 

Through the research of VSC fault diagnosis technology, fault diagnosis and fault location 

can be realized quickly and accurately, which provides reliable guarantee for the safe operation 

of the whole system equipment and the rapid recovery of faults. 

At present, the mathematical model, operational characteristics, control strategy and 

protection method of VSC-HVDC are studied globally [32]. However, little research has been 

done on fault type diagnosis and fault location for internal circuit faults of VSC equipment. 

In paper [33], based on the analysis of the influence of random noise on the fault signal of 

VSC-HVDC system, the independent component analysis method is used to suppress the noise 

signal, and the support vector machine is used to complete system fault diagnosis. 

For the single-phase ground fault, two-phase short circuit, two relative ground faults, three 

relative ground faults, and DC line short-circuit faults in the VSC-HVDC system, the literature 

[34] uses the fault signal as the fault feature vector and uses the artificial neural network to 

complete the fault diagnosis. 

Because the VSC-HVDC system itself is flexible, it can operate at different transmission 

powers. The paper [35, 36] analyzes the fault diagnosis of the VSC-HVDC system, and does 

not take into account the interference of the transmission power to the fault signal, so the 
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diagnosis generated depends on the transmission power. 
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Chapter 3 Neural Network 

Artificial neural networks (ANN) or connectionist systems are computing systems vaguely 

inspired by the biological neural networks that constitute animal brains [37,38]. 

Firstly, begin with the basic concept, including samples, features, tags, models, learning 

algorithms, and more. Take a life experience as an example. Suppose we are going to buy 

mangoes on the market, but before we have no experience in selecting mangoes, how can we 

acquire this knowledge through learning? 

Firstly, we randomly select some mangoes from the market. The characteristics of each 

mango, which are also called attributes, including color, size, shape, origin, brand, and the label 

that we need to predict. Labels can have continuous values (such as a comprehensive score on 

the sweetness, moisture, and maturity of a mango), or discrete values (such as "good" or "bad"). 

A mango that marks good features and labels can be thought of as a sample, also called an 

instance. A collection of samples is called a Data Set. The Data Set is generally divided into 

two parts: a training set and a test set. The samples in the Training Set are used to train the 

model, also called the Training Sample, and the samples in the Test Set are used to test whether 

the model is good or bad, also called the test sample. 

We use a d-dimensional vector x = [x1 , x2 , …, x𝑑 ]T to represent a vector of all the 

characteristics of a mango, which is called a feature vector, where each dimension represents a 

feature.  

Assuming that the Training Set consists of N samples, each of which is identically and 

independently distributed (IID), that is, independently extracted from the same data distribution, 

which recorded as 
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𝐷 = {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), … , (𝑥(𝑁), 𝑦(𝑁))}. (3.1) 

Given Training Set D, we hope the computer to automatically find a function f(x, θ) to 

establish a mapping between each sample property vector x and label y. For a sample x, we can 

predict the value of its label by a decision function. 

�̂�  = f(x, θ) (3.2) 

Or conditional probability of the label, 

𝑝(𝑦|𝑥) =  𝑓𝑦(𝑥, 𝜃) (3.3) 

Where θ is a learnable parameter. 

Through a learning algorithm (A), a set of parameters θ ∗ is found on the training set, so 

that the function 𝑓(𝑥, θ∗)  can approximately reflect the true mapping relationship. This 

process is called learning or training process, and the function 𝑓(𝑥, 𝜃) is called model. The 

next time you buy mango (test sample) from the market, you can use the learned model 

𝑓(𝑥, θ∗) to predict the quality of the mango based on the characteristics of the mango. For the 

fairness of the evaluation, we also independently and distribute extract a set of samples as the 

test set D', and test on all the samples in the test set to calculate the accuracy of the predicted 

results. 

𝐴𝑐𝑐(𝑓(𝑥, θ∗)) =
1

𝐷′
∑ 𝐼(𝑓(𝑥, θ∗) = 𝑦)

(𝑥,𝑦)∈𝐷′

(3.4) 

Where 𝐼(·) is the indicator function and |𝐷′| is the size of test set. 

Figure 3.1 shows the basic concepts of machine learning. For a prediction task, the input 

eigenvector is x and the output label is y. We choose a function 𝑓(𝑥, 𝜃). We can find a set of 

optimal parameters θ∗ by the learning algorithm A and a set of training samples D, to get the 

final model 𝑓(𝑥, θ∗). Then we can use this to predict the new input x.  
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A

Learning Algorithm 

Output y/p(y|x)Input X

Training Sample {X(i),y(i)}

 

Figure 3.1 Machine learning system example 

 Basic Element 

Machine learning is a general rule of learning (or "guessing") from limited observational 

data, and then can apply the summarized rules to unobserved samples. Machine learning 

methods can be roughly divided into three basic elements: models, learning criteria, and 

optimization algorithms. 

3.1.1. Models 

Firstly, the machine learning task needs to be determined its input space X and output space 

Y. The main difference between different machine learning tasks is the difference in output 

space. Y = {−1, +1} in the two classification problems, Y = {1, 2, · · ·, C} in the C classification 

problem, and Y = R in the regression problem. 

The workspace is then been formed by input space X and output space Y. For element 

(x, y) ∈ X × Y in sample space, assuming that there is an unknown true mapping function g 

making X → Y 

Y = g(X) (3.5) 

Or true conditional probability distribution 

𝑝𝑟(𝑌|𝑋) (3.6) 

To find a model to approximate the true mapping function g(X) or the true conditional 

probability distribution is the goal of machine learning. 
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Since we do not know the specific forms of the true mapping function g(X) or the 

conditional probability distribution 𝑝𝑟(𝑌|𝑋) , we can only empirically determine a set of 

hypothesis functions F, which is called Hypothesis Space, then choose an ideal hypothesis 

𝑓∗ ∈ F by observing its characteristics on the training set D,  

Assuming that space F is usually a parameterized family of functions 

F = {f(x, θ)|θ ∈ R𝑚} (3.7) 

Where f(x, θ) is the model in the hypothesis space, θ is a set of learnable parameters, and m 

is the number of parameters. 

The common hypothesis space can be divided into linear and nonlinear, and the 

corresponding model f is also called linear model and nonlinear model. 

a. Linear model 

The hypothesis space of a linear model is a parameterized linear function family. 

f(x, θ) = 𝑤𝑇𝑥 + 𝑏 (3.8) 

Where the parameter θ contains the weight vector w and the offset b. 

b. Nonlinear model 

A generalized nonlinear model can be written as a linear combination of multiple nonlinear 

basis functions φ(x). 

f(x, θ) = 𝑤𝑇𝜑(𝑥) + 𝑏 (3.9)  

Where φ(x) = [φ1(x), φ2(x),· · ·, φK(x)]𝑇 is a vector of K nonlinear basis functions, and the 

parameter θ contains the weight vector w and the offset b. 

If φ(x) itself is a learnable basis function, such as 

φ𝑘(x) = h(𝑤𝑘
𝑇φ′(x) + 𝑏𝑘), ∀1 ≤ k ≤ K (3.10) 
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Where h (·) is a nonlinear function, φ′(x) is another set of basic functions, and w𝑘 and 𝑏𝑘  

are learnable parameters, then f (x, θ) is equivalent to the neural network model. 

3.1.2. Learning criteria 

Assuming that the training set D = {(x(n), y(n))}𝑛=1
𝑁  is composed of N Identically and 

independently distributed (IID) samples, which means each sample (x, y)  ∈  X ×  Y  is 

randomly generated from the joint space of X and Y according to an unknown distribution 

pr(x, y). It is required here that the sample distribution pr(x, y) must be fixed (although it 

may be unknown) and does not change over time. If pr(x, y) is itself variable, we cannot learn 

by it. 

A good model  𝑓(𝑥, θ∗) should be consistent with the true mapping function y =  g(x) 

for all possible values of (x, y), which is 

|𝑓(𝑥, θ∗) − y| < ϵ, ∀(x, y) ∈ X × Y (3.11) 

Or consistent with the true conditional probability distribution pr(y|x), which is 

|𝑓(𝑥, θ∗) − pr(y|x)| < ϵ, ∀(x, y) ∈ X × Y (3.12) 

Where ϵ is a small positive number and 𝑓𝑦(𝑥, θ∗) is the probability corresponding to y in the 

conditional probability distribution predicted by the model. 

The quality of the model f(x, θ) can be measured by the Expected Risk R(θ). 

R(θ) = E(𝑥,𝑦)~pr(y|x)|ℒ(𝑦, f(x, θ))| (3.13) 

Where pr(y|x) is the true data distribution, ℒ(𝑦, f(x, θ)) is the loss function which is used to 

quantify the difference between the two variables. 

3.1.3. Optimization algorithms 

After determining the training set D, the hypothesis space F and the learning criteria, how 
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to find the optimal model 𝑓(𝑥, θ∗) becomes an optimization problem. The training process of 

machine learning is actually the process of solving the optimization problem. 

Parameters and hyperparameters: In machine learning, optimization can be divided into 

parameter optimization and hyperparameter optimization. The θ in the model f(x, θ) is called 

the parameter of the model and can be learned by the optimization algorithm. Except for 

parameters θ that can be learned, there is a class of parameters that are used to define the model 

structure or optimization strategy. These parameters are called Hyper-Parameter. 

Common hyperparameters include: the number of categories in the clustering algorithm, 

the step size of the gradient descent method, the coefficient of the regular term, the number of 

layers of the neural network, and the kernel function in the support vector machine. The 

selection of hyperparameters is generally a combinatorial optimization problem, and it is 

difficult to learn automatically through an optimization algorithm. Therefore, hyperparameter 

optimization is an empirical technique for machine learning. It is usually set according to 

human experience, or through a search method to continuously adjust and correct a set of 

hyperparameter combinations. 

 Machine learning algorithm 

Machine learning algorithms can be classified according to different criteria. For example, 

according to the different functions 𝑓(𝑥, 𝜃), machine learning algorithms can be divided into 

linear models and nonlinear models; according to different learning criteria, machine learning 

algorithms can also be divided into statistical methods and non-statistic methods.  

But in general, we can classify machine learning algorithms into the following categories 

according to the information provided by the training samples and the feedback methods: 
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3.2.1 Supervised Learning 

If the goal of machine learning is to establish the relationship between the feature x and 

the label y of the sample: y = 𝑓(𝑥, 𝜃) or p(y|x, θ), and each sample in the training set has a 

label, then This type of machine learning is called Supervised Learning. According to the type 

of label, supervised learning can be divided into two categories: regression and classification. 

a. The label y in the Regression problem is a continuous value (real or continuous integer), 

and the output of 𝑓(𝑥, 𝜃) is also a continuous value. 

b. The label y in the Classification question is a discrete category (symbol). In the 

classification problem, the model is also called a classifier. Classification problems can 

be further divided into two types of classification, Binary Classification and Multi-

class Classification according to the number of categories. 

c. The output of Structured Learning is a structured object, such as a sequence, tree, or 

graph. Since the output space of structured learning is relatively large, we generally 

define a joint feature space, mapping x, y to the joint feature vector φ(x, y) in the space, 

and the prediction model can be written as 

�̂� = argmax
𝑦∈𝐺𝑒𝑛(𝑥)

𝑓(𝜑(𝑥, 𝑦), 𝜃) (3.14)
 

Where Gen(x) represents the input x all possible output target sets. The process of 

calculating argmax is also called the decoding process, and is generally calculated by a 

dynamic programming method. 

3.2.2  Unsupervised Learning 

Unsupervised Learning (UL) refers to the automatic learning of valuable information from 

training samples that do not contain target tags. Typical unsupervised learning problems 
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include clustering, density estimation, feature learning, and dimensionality reduction. 

3.2.3  Reinforcement Learning 

Reinforcement Learning (RL) is a kind of machine learning algorithm that learns through 

interaction. In reinforcement learning, the agent makes an action based on the state of the 

environment and gets instant or delayed rewards. The agent continuously learns and adjusts the 

strategy in interaction with the environment to maximize the expected total return. 

Table 3.1 Comparison of three types of machine learning 

 Supervised Learning 

Unsupervised 

Learning 

Reinforcement 

Learning 

Training Sample 

Train set 

{(x(n), y(n))}𝑛=1
𝑁  

Train set 

{x(n)}𝑛=1
𝑁  

Agent and the 

trajectory τ of the 

environmental 

interaction and the 

cumulative reward 

Gτ 

Optimization Goal 

y = 𝑓(𝑥, 𝜃) or 

p(y|x, θ) 

P(x)or p(x|z) with a 

hidden variable z 

Expectation total 

return 

Learning Criteria 

Expected risk 

minimization 

Maximum likelihood 

estimation 

Maximum likelihood 

estimation 

Minimum 

reconstruction error 

Strategic assessment 

Strategy 

improvement 

Supervised learning requires labels for each sample, while unsupervised learning does not 
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require labels. In general, supervised learning usually has a large number of tagged data sets, 

which are generally required to be manually labeled and costly. 

Therefore, there are also many methods of Weak Supervised Learning and Semi-

Supervised Learning, which hope to fully exploit useful information from large-scale unlabeled 

data and reduce the requirement for the number of labeled samples. 

The difference between reinforcement learning and supervised learning is that 

reinforcement learning does not need to explicitly give training samples in the form of 

“input/output pairs”, which is an online learning mechanism. 

 Evaluation index 

In order to measure the quality of a machine learning model, it is necessary to give a test 

set, use the model to predict each sample in the test set, and calculate the evaluation score based 

on the predicted result. For classification problems, common evaluation criteria include correct 

rate, accuracy, recall rate and F value. 

Given the test set 𝑇 =  (𝑥(1), 𝑦(1)),· · · , (𝑥(𝑁), 𝑦(𝑁)), assuming the label 𝑦(𝑛)  ∈  {1,·

 · · , 𝐶}, Using the well-learned model 𝑓(𝑥, 𝜃) to predict each sample in the test set, the result 

is 𝑌 =  �̂�(1),· · ·, �̂�(𝑁). 

The most commonly used evaluation indicator is Accuracy. 

𝐴𝐶𝐶 =
1

𝑁
∑ 𝐼(𝑦(𝑛) = �̂�𝑛)

𝑁

𝑛=1

(3.15) 

where 𝐼(·) is the indication function. 

Corresponding to the accuracy rate is the error rate.  

𝐸 =  1 −  𝐴𝐶𝐶 =
1

𝑁
∑ 𝐼(𝑦(𝑛) ≠ �̂�𝑛)

𝑁

𝑛=1

(3.16) 
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Accuracy is the average of the overall performance of all categories. In order to estimate 

the performance of each class, the precision and recall ratio need to be calculated. The precision 

and recall ratio are two metrics widely used in the field of information retrieval and statistical 

classification and are also widely used in the evaluation of machine learning. 

For category c, the results of the model on the test set can be divided into the following 

four cases: 

a. True Positive (TP): The real category of a sample is c and the model is correctly 

predicted as category c. The number of such samples is recorded as 

TP𝑐 = ∑ 𝐼(𝑦(𝑛) = �̂�(𝑛) = 𝑐)

𝑁

𝑛=1

(3.17) 

b. False Negative (FN): The real category of a sample is c, and the model is incorrectly 

predicted as other classes. The number of such samples is recorded as 

F𝑁𝑐 = ∑ 𝐼(𝑦(𝑛) = 𝑐 ∧ �̂�(𝑛) ≠ 𝑐)

𝑁

𝑛=1

(3.18) 

c. False Positive (FP): The real category of a sample is other classes, and the model is 

incorrectly predicted as class c. The number of such samples is recorded as 

FP𝑐 = ∑ 𝐼(𝑦(𝑛) ≠ 𝑐 ∧ �̂�(𝑛) = 𝑐)

𝑁

𝑛=1

(3.19) 

d. True Negative (TN): The real category of one sample is other classes, and the model is 

also predicted to be other classes. The number of such samples is recorded as T𝑁𝑐. For 

category c, this situation generally does not require attention. 

Precision, which is also called accuracy or precision, the precision of category c is the ratio 

of all predictions that are predicted to be category c. 
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𝑅𝑐 =
𝑇P𝑐

𝑇P𝑐 + 𝐹P𝑐

(3.20) 

Recall, which is also called Recall rate. The recall rate for category c is the correct 

proportion of all real-labeled samples in category c. 

𝑅𝑐 =
𝑇P𝑐

𝑇P𝑐 + 𝐹N𝑐

(3.21) 

F Measure is a comprehensive index, it’s the harmonic average for precision and recall 

𝐹𝑐 =
(1 + 𝛽2) × 𝑃𝑐 × 𝑅𝑐

𝛽2 × 𝑃𝑐 + 𝑃𝑐

(3.22) 

Cross Validation is a good statistical analysis method that can measure the machine 

learning model. It can effectively avoid the impact of the randomness of the training set and 

test set on the evaluation results. We can divide the original data set into a subset of K groups 

that are not repeated, each time selecting K − 1 subsets as the training set, and the remaining 

set of subsets as the verification set. This allows K tests to be performed and K models to be 

obtained. The average of the error rates of the K models on the respective verification sets as 

the classifier evaluation. 
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Chapter 4 Case Study 

 The framework of model 

To simulate the real fault scenario as much as possible, the model of HVDC system is the 

first and also one of the most important steps. A SimPowerSystem (SPS) model of HVDC 

(High Voltage Direct Current) interconnection using VSC (Voltage-Sourced Converters) based 

on the MMC (Multi-level Converter) technology has been built. The SPS simulation is 

optimized by using an aggregate MMC model. 

 

Figure 4.1 Overall figure of the model 

In this model, MMC converter is implemented using an aggregate model to simulate 36 

power modules per arm. With this aggregate model, control system dynamics, converter 

harmonics and circulating currents phenomena are all well-represented. However, having only 

one virtual capacitor to represent the 36 capacitors of the arm, the model assumes that capacitor 

voltages of all power modules are well-balanced. The aggregate model runs much faster than 

a detailed model that would use two switching devices and one capacitor for each individual 

power module. This aggregate model is also well-suited for real-time simulation.  
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Figure 4.2 Internal structure and control strategy of Submodule 

Simulating our SPS model for 3.5 seconds allows observation of the interconnection 

operation during start-up (capacitor charging), voltage regulation, and power regulation.  

 

Figure 4.3 Control System of the model 

To simplify the model, an equivalent circuit instead of inverter side after DC transmission 

line has been used.  
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Figure 4.4 DC side of the model 

And for the whole system, the total operating time is 3.5s. For the first 2.5s, it’s time for 

control system operation, and after, system would be stable and able to simulate the faults. 

 

(a) 

 

(b) 

Fig 4.5 Waveform of Voltage and Circuit of AC Side of Normal Operation 
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(a) 

 

(b) 

Fig 4.6 Waveform of Voltage and Circuit of DC Side of Normal Operation 

 Fault simulation 

The model comes to stable after 2.5s, the fault start time as 3.0s, while fault end time as 

3.1s. 

To get enough amounts of datasets for the NN, two parameters of system should be 

changed separately, voltage of generator and active power regulator limit. Voltage of generator 

is easy to understand, just to control the voltage of the whole system. But for active power 

regulator upper and lower limit, this is to control the rated power of DC transmission line. 

Through adjusting these two parameters, as many as datasets can be collected.  
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4.2.1  Fault types  

In the whole HVDC system, the faults can be generally divided into two parts, one is faults 

of system side, such as single short circuit of phase A to ground of AC side and single-phase 

short circuit of DC side, and the other is faults located in MMC module, which is also called 

internal faults. 

The faults that this thesis focuses on is internal faults including Short circuit of upper and 

lower arms, Short circuit of DC side of Submodule, open circuit of upper and lower arms and 

open circuit of DC side of submodule. 

4.2.2  Selection of measurement points 

Measurement points can directly affect the accuracy of fault judgement, so selection of 

measurement points is one of the most important things to achieve fault judgement and analysis. 

If we can put measurement device in every submodule, of course the collected data could be 

the most precise and the analysis result could be relatively more accurate. But it’s not realistic 

for either commercial reasons or physical reasons.  

 

(a) AC side 
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(b) MMC internal (take Bm as example) 

 

(c) DC side 

Figure 4.7 Measurement Points 

So, these are the measurement points been chosen after comprehensively consideration. 

① is the bus that near the generator, before the soft start device, and at ①, voltage and current 

of three phases are detected; ② is the bus that between the transformer and MMC module, at 

this location, the parameters that been detected are also voltage and current; Then are the points 

in the MMC module, take submodule Bm as example, ③ is the measurement point of AC side 

input, where voltage and current should be detected, ④ is the point located at DC side output 

of submodule, current is the only parameter that been measured. ⑤ is apparently the DC side 

point, DC voltage and current are the parameters been detected. Details can be seen in table 

4.1. 
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Table 4.1 Measurement points for data collection  

Point Location Parameters 

1 AC side Voltage and current 

2 AC side Voltage and current 

3 MMC internal Voltage and current 

4 MMC internal Current 

5 DC side Voltage and current 

 Data analysis 

The first step is preprocessing them, because the time step of the system is too small, so 

the datasets are too big to analyze efficiently. To this point, the datasets should be resembled 

with a proper sample step to compress the memory occupation. And then put into Matlab 

toolbox Neural Pattern Recognition and Classification Learner for analysis.  

In Classification Learner, there are several different models to choose, which includes 

Decision Trees, Discriminant Analysis, Logistic Regression classifiers, Support Vector 

Machines, Nearest Neighbor Classifiers and Ensemble Classifiers. The table below shows the 

proper application situation [39]. 

Table 4.2 Comparison of Classifiers in Classification Learners 

Classifiers 
All predictors 

numeric 

All predictors 

categorical 

Some 

categorical, 

some numeric 

Prediction 

speed 
Interpretability 

Decision Trees Yes Yes Yes Fast Easy 

Discriminant 

Analysis 
Yes No No Fast Easy 

Logistic 

Regression 

classifiers 

Yes Yes Yes Fast Easy 

Support Vector Yes Yes Yes Medium for Easy for 
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Machines linear, slow 

for others 

Linear SVM. 

Hard for all 

other kernel 

types 

Nearest 

Neighbor 

Classifiers 

Euclidean 

distance only 

Hamming 

distance only 
No 

Slow for 

cubic, 

medium for 

others 

Hard 

Ensemble 

Classifiers 
Yes 

Yes, except 

Subspace 

Discriminant 

Yes, except 

subspace 

Fast to 

medium 

depending on 

choice of 

algorithm 

Hard 

For the first step, the Nearest Neighbor Classifiers, Decision Trees and Ensemble 

Classifiers are chosen as the classification methods because these are more proper for the 

datasets. 

Table 4.3 Comparison of specific classifier types 

Classifier Type Prediction Speed Memory Usage Interpretability Model Flexibility 

Simple Tree Fast Small Easy 

Low 

Few leaves to make 

coarse distinctions 

between classes 

(maximum number of 

splits is 4). 

Medium Tree Fast Small Easy 

Medium 

Medium number of 

leaves for finer 

distinctions between 

classes (maximum 

number of splits is 

20). 

Complex Tree Fast Small Easy 

High 

Many leaves to make 

many fine 

distinctions between 

classes (maximum 

number of splits is 

100). 

Fine KNN Medium Medium Hard 
Finely detailed 

distinctions between 
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classes. The number 

of neighbors is set to 

1. 

Medium KNN Medium Medium Hard 

Medium distinctions 

between classes. The 

number of neighbors 

is set to 10. 

Consine KNN Medium Medium Hard 

Coarse distinctions 

between classes. The 

number of neighbors 

is set to 100. 

Coarse KNN Medium Medium Hard 

Medium distinctions 

between classes, 

using a Cosine 

distance metric. The 

number of neighbors 

is set to 10. 

Cubic KNN Slow Medium Hard 

Medium distinctions 

between classes, 

using a cubic 

distance metric. The 

number of neighbors 

is set to 10. 

Weighted KNN Medium Medium Hard 

Medium distinctions 

between classes, 

using a distance 

weight. The number 

of neighbors is set to 

10. 

Bagged Trees Medium High Hard 

High — increases 

with Number of 

learners setting. 

Boosted Trees Fast Low Hard 

Medium to high — 

increases with 

Number of learners 

or Maximum number 

of splits setting. 

Comparing with these methods and algorithm firstly by basic characteristics, so Coarse 

KNN, Complex Trees and Bagged Trees would be used after comprehensively comparison and  

consideration. 
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 And here are the results. 

4.3.1 Fault Type Classification  

Firstly, I am aiming at classifying short circuit and open circuit, which is just a binary 

classification problem. Define short circuit fault as ‘1’ while open circuit fault as ‘0’.  

4.3.1.1 With Neural Pattern 

 

Figure 4.8 Result with Neural Pattern   

What we can get from figure above with two conclusions, one is about accuracy, which 

includes these indexes, TP (true positive), FN (false negative), FP (false positive), TN (true 

negative), the other is confidence level. Both indexes can get to 99.8%, even higher accuracy. 
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To be detail, accuracy means if the fault is 0, it has 99.76% possibility that can be judged as 0 

and 0.23% possibility that can be judged as 1, the possibilities are calls true positive and false 

negative respectively, and the fault 1 is in the same way. 

Table 4.4 Accuracy List 

Fault Type TP FN 

Short circuit 99.74% 0.26% 

 TN FP 

Open Circuit 99.78% 0.22% 

Table 4.5 Confidence Level 

Fault Type Confidence level 

Short circuit 99.76% 

Open Circuit 99.74% 

4.3.1.2 With the classification learner 

 

(a) Result with Coarse KNN 
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(b) Result with Bagged Trees 

 

(c) Result with Complex Tree 

Figure 4.9 Results with Classification Learner of Fault Type Classification 

As can be seen, the accuracy is not that good with Coarse KNN, it’s about 95.5%, because 

KNN is a relatively simple judgement method, so the results can be foreseen. And for other 

two method, complex trees and random forest, the results are perfect. 

4.3.2  Device Location Classification 

In this part, we are going to make the fault classification more detailed. For classifying the 

fault happened in which device (six IGBT in total), Classification Learner is used, whose results 
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are shown as below. 

 

(a) Result with Coarse KNN 

 

(b) Result with Bagged Tree 

 

(c) Result with Complex Tree 
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Figure 4.10 Results with Classification Learner of Device Location Classification 

This problem is more complex comparing with first one, this is a 6-classification problem. 

As the results shown, KNN can still solve this kind of problems, with the accuracy of 96%, just 

little lower than other two methods. Although complex tree and random forest are both with 

99.87%, for the training time, complex tree needs more than random forest; and for the memory 

occupation, complex tree needs less than random forest. Training time and memory occupation 

are both important reference indicators, short training time can provide control center the fault 

situation and location first timing and quickly, and memory occupation should be less if the 

CPU is limited.  

4.3.3  Specific fault point classification 

In this part, my aim is to classify the specific fault location inside the IGBTs, and still use 

the classification learners. There are 3 fault points in each submodule that have been simulated, 

which means it should be 36 types of faults in total, but for some reason, this part should be 

divided into two different cases. Case 1 is the normal one, so 36 faults in total. In case 2, the 

short circuit faults happening at upper and lower bridges are defined as the same fault, which 

means there are 30 types of faults in this case. 

4.3.3.1 Case 1 
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(a) Result with KNN 

 
(b) Result with Bagged Tree 

 

(c) Result with Complex Tree 

Figure 4.11 Results with Classification Learner of Specific Faults Location Classification 

Case 1 

The results for this case is not that good as imagine, from the figure, we could tell that it’s 
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hard to recognize short circuit faults happening at upper bridge and lower bridge in the 

submodules. For now, no proper method could be found to solve this problem, because it’s not 

realistic to equip the measurement devices into the IGBTs. This part will be put into the future 

works. 

4.3.3.2 Case 2 

In case 2, short circuit faults happening at upper and lower bridges of each submodule have 

been defined as same fault. 

 

(a) Result with KNN 

 

(b) Result with Bagged Tree 
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(c) Result with Complex Tree 

Figure 4.12 Results with Classification Learner of Specific Faults Location Classification 

Case 2 

As for conclusion, classification with complex tree and random forest can perfectly solve 

judge the fault specific location, which are both higher than 99.3%, while the result with KNN 

is not equally satisfying, which is only 72.4%. 

Comparing with Complex Tree and Random Forest, in the system with a large enough 

memory CPU, Random Forest is a better choice because of the training time is much faster, 

which means control system can react faster when the fault happens. 
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Chapter 5 Conclusion and Future Work 

 Conclusion 

Firstly, to classify short circuit and open circuit faults, KNN, Complex Tree and Random 

Forest can all meet the requirements of fault type distinguishing. The accuracy of KNN is a 

little lower than other two methods, but it still can reach 95.5%. 

To classify the faults happening in which device, all three methods still have high accuracy 

which are all higher than 96%, where the result of KNN is still a little bit lower than others. 

In order to classify the specific location of faults, we cannot distinguish the faults 

happening at upper and lower bridges in each certain submodule, the results of the three 

methods are lower than 75.56%. That may because they are originally the same point in the 

system. If considering the faults happening at upper and lower bridges in same submodule as 

the same type of faults, the accurate rates of using Complex Tree and Bagged Tree both can get 

up to 99.7%. In contrast, the disadvantages of KNN can be shown obviously, the accuracy of 

which is just 75.1%. 

It can be concluded that Complex Tree and Random Forest can both determine the fault 

location precisely with an accuracy higher than 99.93%. But KNN cannot meet the 

requirements. Furthermore, because less training time can make protection devices act faster 

to reduce loss caused by faults and RAM of central control system is limited, these two facts 

should also be taken into consideration. Complex Tree spends more training time but less 

memory occupation than Random Forest, so the methods should be chosen based on realistic 

situation. 

 Future Work 
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Because the short circuit fault cannot be distinguished when located at upper and lower 

bridges of the same submodule, so my next step is to solve this problem. 

Further, it’s necessary to put all faults’ scenarios together, which means put all faults 

including the faults on the system sides and faults inside the MMC modules together. After that, 

fault location on DC transmission line can also be taken into consideration. As such, a more 

comprehensive framework of the fault detection and classification framework can be achieved. 

Furthermore, cyber security is a new area for power systems today. Cyber-attacks can 

affect the accuracy of the collected data, in this case, the fault detection and classification of 

the HVDC system under cyber-attacks becomes a valuable research direction. 
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