
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2018

Manufacturing Energy Consumption and
Assessment for Us Small and Medium Sized
Manufacturers
Yadan Zeng
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Zeng, Yadan, "Manufacturing Energy Consumption and Assessment for Us Small and Medium Sized Manufacturers" (2018). Theses
and Dissertations. 2028.
https://dc.uwm.edu/etd/2028

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F2028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=dc.uwm.edu%2Fetd%2F2028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2028?utm_source=dc.uwm.edu%2Fetd%2F2028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

 

MANUFACTURING ENERGY CONSUMPTION AND 

ASSESSMENT FOR US SMALL AND MEDIUM SIZED 

MANUFACTURERS 

 

 

 

by 

Yadan Zeng 

 

 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

in Engineering 

at 

The University of Wisconsin-Milwaukee 

December 2018



ii 

 

ABSTRACT 

MANUFACTURING ENERGY CONSUMPTION AND ASSESSMENT FOR US 

SMALL AND MEDIUM SIZED MANUFACTURERS 
by 

Yadan Zeng 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Chris Y. Yuan 

U.S. Manufacturing sector consumes remarkable amount of energy while the energy 

efficiency is quite low. Energy consumption of CNC machines is significant and various empirical 

models have been developed to model the Specific Energy Consumption (SEC) of CNC machines. 

However, most of the models are developed for specific machines, hence have limited applications 

in manufacturing industry. In this research, a general empirical SEC model for milling machine at 

certain power level is developed based on actual cutting experimental data. In this model, stand-

by power and spindle power are used in the SEC model for the first time. The Material Removal 

Rate (MRR) is used to represent cutting parameter. The proposed model is fitted by regression 

analysis and validated using experimental data. Results show that the proposed model can be 

applied on various milling machines with an average absolute residual ratio of 6%. The model is 

also validated through a series of cutting experiments on a machine center, with an accuracy of 

91.5%, for the SEC calculation. 

Compressed Air Systems (CAS) are the 3rd energy source in industrial facilities and has a 

significant impact on the energy efficiency of manufacturing systems. This thesis provides an 

overview of all typical energy conservation measures (ECM) for CAS as well as all the energy 

savings calculations methods. To provide a simple guideline for decision maker, an economic 

benchmark analysis is presented for typical ECMs using the baseline conditions from Technical 
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Reference Manuals (TRM) of multiple States in the US. Due to the ECMs correlate with each 

other, the comprehensive savings from multiple ECMs is not the simple summation of each 

individual measure. An integrated model is proposed to investigate the interrelationships of all 

measures and obtain combined savings. Meanwhile, the dryer’s impact to the other ECMs is 

included for the first time in the proposed model. CAS is a dynamic system with changing load, 

operations, and specifications etc. Therefore, the savings is a variable depending on system 

situations. The reliabilities of the ECMs are analyzed to obtain their dynamic characteristics. The 

optimization of the ECMs is discussed to demonstrate the interrelationships and dynamic of the 

savings mechanisms. 

While the above studies focus on the energy modeling and savings of important system of 

manufacturing activities, it is important to have an overall understanding of the energy efficiency 

and saving potentials. Energy intensity is commonly used as an indicator for the energy efficiency. 

Encourage the implementation of proposed ECMs is the main strategy for energy efficiency 

improvement programs to influence the plant’s energy intensity. Study the trends of energy 

intensity of SMEs and the acceptance of proposed ECMs could draw outlines of the changes of 

energy usage, understand the flavor of plant managers towards energy savings projects and reflect 

the shift of technologies in the past decades. This thesis found that the industry structure of SMEs 

had limited effects on the energy usage while the fluctuation of producing activities and 

improvement of energy efficiency were the main contributors over the past three decades. 

Compared with the manufacturing plants with best energy efficient practices, an average of 15.71% 

of electricity and 14.51% of natural gas could be saved. However, the saving potentials of each 

subsectors varies dramatically due to the differences of production processes and energy use 

strategies. This discrepancy also reflected on the implementation of ECMs. Special planning and 
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stimulations should be developed to accommodate the unique saving demands for different 

industries, ECM types and regions.  
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Chapter 1 Introduction 

The projected primary energy consumption of the United States will have a 5% growth 

from the 2016 level by the year of 2040, especially in the consumption of natural gas[1]. The use 

of fossil fuels has contributed to a great amount of greenhouse gas (GHG) emissions, which is 

blamed for the global climate change[2]. The increase of primary energy consumption and 

associated environmental concerns have driven public attention to the improvement of energy 

efficiency of the industrial sector (manufacturing, agriculture, construction and mining) [3]. As 

shown in Figure 1, the industrial sector is historically the largest energy consumer of United States, 

in which the manufacturing sector alone consumed 19.6% (19,045 trillion BTU) of U.S. primary 

total energy and generated more than 1.2 billion metric tons of greenhouse gas in 2014[1, 4]. 

However, as illustrated in Figure 2, only half of the energy that entered the manufacturing sector 

were used to support production processes. Improving energy efficiency by end-users has been an 

emerging and inevitable research trend.  

 

Figure 1 Energy Consumption by U.S. Sector (1985-2015)[1] 
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Figure 2 Energy Consumption by Sector and Manufacturing Energy End Usage[1, 4] 

Manufacturing system is not isolated and comprises complex activities. Herrmann et al.[5] 

pointed out that measures on single production units is not sufficient to improve the efficiency of 

the organization. An integrated methodology to evaluate the process chain was proposed to help 

improve energy efficiency of manufacturing companies and solve potential conflicts of objectives. 

Apostolos et al.[6] proposed a bottom-up structure to study the energy efficiency of manufacturing 

companies and divided the analysis into process level, machine level, line level and factory level. 

The paper analyzed the factors that may have impacts on energy efficiency with emphasis at 

process- and machine- level and discussed the inter-level interactions. Duflou et al.[7] proposed 

similar strategies to improve energy efficiency and focused on the effectiveness of available 

techniques and measures. To achieve the overall goal of effective manufacturing, efforts should 

be put into each layer of activities. 

The basic organization structure of manufacturing plants is a pyramid as shown in Figure 

3, which includes unit processes, manufacturing/auxiliary systems, and factories. This thesis aims 

to select a representative object in each level to thoroughly analyze the energy characteristic of the 
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manufacturing facility from micro to macro. Unit processes and individual devices are the 

foundation for manufacturing production. Understanding the energy consumption per process can 

better support engineering designs and production planning. Since the machine tool is the most 

common processing unit in industrial facility, its energy use will be modeled to provide a powerful 

tool to estimate the unit process energy consumption. Besides the machining processes, the daily 

operations of a plant consist of various manufacturing and auxiliary processes. Optimization of 

manufacturing/auxiliary systems can help to manage energy flows and maximize the cooperation 

between systems. Compressed air system (CAS) is one of the major auxiliary energy consumers 

in manufacturing facilities [8]. This thesis will build an integration model to evaluate the energy 

saving potentials in CAS. Further towards to factory level would require more investigation of the 

barriers and drivers to improve the effectiveness of industry facilities in manufacturing sector. This 

research will study the energy use, efficiency, and savings potential of the small and medium sized 

manufacturers based on Industrial Assessment Center Data. 

 

Figure 3 Manufacturing System Structure and Research Scheme 

1.1 Energy Consumption Models for CNC Machines 

Machine tools serve as basic equipment in most manufacturing plants and are one of the 

major electricity consumers[9]. Although electricity is a relatively clean energy to use for end-
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users, it is not generated and transmitted in sustainable ways in most of U.S.[10]. A 22kW machine 

tool under main shift could result in more GHG emissions than 61 SUVs per year[9]. The concerns 

for the environmental impact of manufacturing processes and the desire for sustainable 

manufacturing keep increasing in recent years. Meanwhile, the rising energy price and growing 

production demands have greatly increased the utility costs for manufacturing enterprises[11]. It 

is another strong motivation for manufacturers to reduce the energy costs and pursue more energy 

efficient machine tools. On the other hand, the machine tools that are commonly used for typical 

manufacturing processes such as milling and turning usually have low energy efficiency[12]. 

Therefore, there exist tremendous opportunities for potential energy and cost savings in 

manufacturing plants[13]. 

 

Figure 4 Energy Saving Strategies of Machine Tools for Manufacturing Processes[14] 
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Various energy saving technologies and strategies have been developed and proposed to 

improve the efficiency of manufacturing processes. Yoon et al. [14] reviewed state-of-the-art 

energy saving technologies and summarized 6 hierarchical approaches for machine tools to 

achieve energy saving goals during manufacturing processes. As shown in Figure 4, understanding 

and monitoring the energy consumption of machine tools would be the first and essential step 

towards more energy-efficient machine tools. The characteristics of the machine tool could be 

revealed by modeling its energy consumption during machining processes. Factors that would 

affect the energy usage of the machine tool, such as cutting conditions and machining states, are 

studied and analyzed at this level. The knowledge obtained by energy modeling at this approach 

not only could provide quantitative information of energy consumption; but also assist the 

following steps such as cutting parameter optimization and stand-by time minimization and 

eventually help manufacturers to improve energy efficiency, reduce energy costs and associated 

emissions. Accurate prediction of energy consumption can also improve manufacturers’ 

understanding of facilities’ efficiencies and products’ energy intensities. Hence more efficient and 

economical production plans can be made accordingly [9]. 

Many efforts have been made to develop accurate energy consumption models for machine 

tools. In literature, various empirical models were proposed to predict the energy consumption 

during machining processes. Zhou et al. [9] summarized the essential methods of developing 

energy consumption models into three categories (linear model, detailed parameter correlation 

model, process oriented model). Table 1 lists the divisions of energy modeling methods and 

relative common model expressions. It is important to note that the boundaries among each 

modelling category are not rigid, so as the emphases of the applications for each modelling method. 

Some research may use one or more methods at the same time to obtain a satisfactory accuracy. 
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During energy modelling, Specific Energy Consumption (SEC, J/mm3) is usually used to express 

the energy consumption level of machine tools. It is defined as the energy required to remove unit 

volume of material. Material Removal Rate (MRR, mm3/s) is the volume of material removed by 

machine tool per unit time. Together with SEC, they can represent the energy intensity of the 

machine tool and their relation is commonly utilized in energy modelling methods. 

Table 1 Energy Consumption Model Categorization for Machining Process 

Types of 

Energy 

Model 

Reference Basic Model Equation Notes 

Energy 

Model base 

on MRR 

Kara et al. [2] 𝑆𝐸𝐶 = 𝐶0 +
𝐶1

𝑀𝑅𝑅
             ( 1 ) Models are consisted of a constant 

part and a variant part, which is 

represented as a function of 

material process rate. 

Gutowski et al. 

[15] 
𝑆𝐸𝐶 =

𝑃0

𝑀𝑅𝑅
+ 𝑘               ( 2 ) 

Li et al. [16] 𝑆𝐸𝐶 = 𝐶0 +
𝐶1

𝑀𝑅𝑅
+

𝐶2 ×𝑛

𝑀𝑅𝑅
         ( 3 ) 

Detailed 

Parameter 

Correlation 

Model 

Rodrigues et al. 

[17] 
𝑆𝐸𝐶 =

𝑣𝑐

𝑉𝑐ℎ𝑖𝑝
∫ (𝐹𝑥

2 + 𝐹𝑦
2)

1

2𝑡𝑐

0
𝑑𝑡  ( 4 ) 

Models are proposed based on tool 

wear, cutting force or cutting 

parameters, etc. The machine 

characteristics are not considered. 
Guo et al. [18] 𝑆𝐸𝐶 =

𝐶1

𝑣𝑐∙𝑓∙𝑎𝑝
+ 𝐶0 ∙ 𝜈𝑐

𝛼 ∙ 𝑓𝛽 ∙ 𝛼𝑝
𝛾

∙ 𝐷𝜑  ( 5 ) 

Process 

Oriented 

Model 

Mori et al. [19] 𝐸 = 𝑃1(𝑇1 + 𝑇2) + 𝑃2(𝑇2) + 𝑃3(𝑇3)  ( 6 ) 
Models are established according 

to machine tool's movements or 

part processing routes. The models 

consider the comprehensive 

production processes. 

Aramcharoen et 

al. [20] 

𝐸 = 𝑃𝑏 ∙ 𝑡𝑏 + 𝑃𝑡 ∙ 𝑡𝑡 ∙ 𝑛𝑡 + 𝑃𝑠 ∙ 𝑡𝑠 +       

        ∑ ∫ 𝑃𝑓𝑒𝑒𝑑
𝑡𝑒𝑛

𝑡𝑠𝑡

𝑚
𝑖=1 dt + 𝑃𝑐 ∙ 𝑡𝑐 + 𝑃𝑓 ∙ 𝑡𝑓    

( 7 ) 

Budinoff et al. 

[21] 
𝐸 =  𝑃0∆𝑡 + 𝑘 (

ℎ

ℎ𝑟
)

𝑎

∆𝑉         ( 8 ) 

 

Kara et al. [2] proposed a SEC model solely with respect to MRR in Eq. 1 of Table 1, 

where 𝐶0 and 𝐶1 are machine specific coefficients. The coefficients are subject to change for each 

different machine. The test results on multiple turning and milling machine tools indicated that 

this model format could generally predict the specific energy consumption under various cutting 

conditions with different types of workpiece material and cutting methods. Their paper also 
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pointed out that in wet cut scenario when extra energy costs were required for coolant or lubricant, 

adjustments on coefficients were necessary to keep model accuracy, especially for 𝐶1 coefficient, 

which could reflect the stand-by power consumption of machine tool. Gutowski et al. [15] tracked 

the energy transformation of various processes from raw material producing through the final 

product processing with consideration of manufacturing efficiencies. Their paper provided 

generalized energy consumption trends for common manufacturing processes. Based on their 

analysis, the material process rate is one of the main factors that would impact the specific energy 

consumption. In other words, processes working with finer dimensions and smaller scales would 

result in lower process rate, longer process time and larger specific energy consumption. Their 

theory-based model followed the similar format in this category with two coefficients. Besides 

MRR, some other cutting or machine related parameters are also frequently used for modeling the 

specific energy consumption. Li et al. [16] proposed an improved SEC model with respect to MRR 

and spindle speed n as in Eq. 3. Their model had a 96% prediction accuracy for various cutting 

conditions. To better understand the model, the paper clearly defined the model coefficients where 

𝐶0 is the specific cutting energy requirement that depends on cutting method, workpiece material 

and cutting parameters;  𝐶1  is the specific coefficient of spindle motor and 𝐶2  is the constant 

coefficient of tested machine tool. 

Rodrigues et al. [17] proposed a SEC model utilizing cutting speed, removed chip volume, 

and cutting forces along cutting surface. Their paper compared the SEC and the surface roughness 

with different tool edge geometries at conventional and high cutting speed. Guo et al. [18] pointed 

out that the cutting tool characteristics and cutting parameters should be considered together to 

estimate the cutting energy consumption using Eq. 5, where D is the cutter’s diameter, and 𝑣𝑐 , 𝑓, 𝑎𝑝 

are the cutting parameters. The coefficients in related models can be determined easily by 
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numerical analysis with experiment data. Since multiple tool and cutting parameters are considered 

in those models, it is usually used to analyze the tool wear conditions, material surface quality and 

cutting parameters optimization. Mori et al. [19] divided the machining process into three segments 

and calculated the total energy consumption through stand-by power P1, machining power P2, 

feeding/air-cutting power P3 as shown in Eq. 6. Based on the proposed model, a new control 

method was proposed to minimize the energy consumption. Aramcharoen et al. [20] decomposed 

the total energy consumption into several key components: basic, tool change, cutting fluid pump 

spindle, feeding and cutting power. This process-oriented model is excellent at the optimization of 

toolpaths during cutting process. Energy consumption can also be predicted based on theoretical 

analysis. Branham et al. [12] proposed potential approaches to calculate minimum work required 

for material removal processes. However, the results from theoretical models are commonly 

deviated from actual manufacturing process due to the lack of prediction on auxiliary processing 

energy consumption. Thus, those models are less accurate than empirical models and may only 

account for a small amount of actual energy consumption. To obtain sufficient accuracy, empirical 

modeling method is adopted in this research.  

The development and validation of each energy consumption model is time-, cost- and 

labor-consuming due to the complexity of experimentation for data collection. However, our 

literature review shows that most existing energy consumption models are tied to specific CNC 

machine tools and lack versatility. Since there are a large number of different machine tools being 

used in manufacturing sector, developing a general and accurate energy consumption model that 

can be applied to various machines is imperative. This research focuses on the energy consumption 

modeling in CNC milling machines during metal-cutting processes. A general SEC model which 

is applicable to a range of machine tools for milling processes will be proposed. 
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1.2 Energy Savings in Air Compressor System 

Compressed air is a form of stored energy that can be used to operate machinery, equipment, 

or processes. It is widely used throughout manufacturing industries, due to its cleanness, 

availability, and ease to use. Compressed Air System (CAS) plays a strategic role in achieving 

better energy efficiency in industrial field due to its large diffusion, low efficiency and high energy 

intensity [22, 23]. CAS typically accounts around 10% or more of an industrial facility’s total 

electricity consumption [24]. 

 

Figure 5 Typical Compressed Air System [25] 

CAS typically includes of various components, such as air compressors, air dryers, filters, 

pipes, valves, nozzles, air tools, regulators and controllers etc. as shown in Figure 5. There are 

potential energy losses in the form of flow or pressure loss for all the components. Energy savings 
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opportunities have been found in nearly all the CAS during energy assessment. The distribution of 

popular energy saving opportunities for CAS is illustrated in Figure 6 [26]. The top three 

recommendations contribute 88.3% of overall opportunities for CAS. In the IAC database, three 

of the top five recommendations are about compressed air system, which are: eliminate leaks in 

inter gas and compressed air lines/valves (rank #2), install compressor air intakes in coolest 

locations (rank #4), and reduce the pressure of compressed air to the minimum required (rank #5).  

 

Figure 6 Recommendation and Saving Rate for Air Compressor System 

Since energy saving opportunities are presented everywhere in CASs, it is relatively easy 

to identify where energy can be saved [23, 27]. There are several low cost or even no cost measures. 

Repair air leak, as the most popular recommendation for the compressed air system, has the highest 

implementation rate 83.5%. The simple payback period is less than 4 months according to the 

implementation data. Air leak detection and repair are suggested to be done every year in many 

energy savings programs[28]. The potential cost savings is a dynamic value related to control type, 

system pressure, storage size, leakage percentage and dryer type etc.  However, the energy waste 
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due to air leak was evaluated statically in many literatures [29, 30]. This thesis aims to capture the 

dynamic feature of air leaks through integrated calculation with other measures. Another key ECM 

is to reduce system operation pressure [31]. The maintenance person can set the pressure to the 

lowest level required by the production process. Apparently, reducing set pressure requires no 

investment and is a no-cost measure to save energy. Most of the CAS has to be set at a relatively 

high pressure for special reasons, such as high pressure drop in the air filter, insufficient of air 

storage, high instant demand etc. Thereby, there are many energy savings measures related with 

system pressure other than reducing set pressure, such as replacing air filter and installing 

pressure/flow controller. To achieve reducing pressure in the most effective way, both quality and 

quantity impacts of all the pressure related measures need to be unbiasedly compared. The best 

measure-candidate for reducing pressure can be obtained through optimization research.  

Some of the ECMs require higher capital investment, for instance, installing extra air tank, 

applying VFD air compressor, and use efficient dryer etc. In the past, the rule of thumb for air tank 

size is 1 gal/cfm to 3gal/cfm, which is mainly derived based on reciprocating compressors. This 

guideline is already out of date for load/non-load (LNL) rotary screw air compressor or more 

advanced CAS because of the different partial load characteristics. Nonetheless, many air tanks in 

CAS are still sized following this rule. The inappropriate size of air receiver has a negative impact 

on system efficiency. The energy savings of using larger tank was estimated based on experiment 

data [32] without the consideration of system pressure and control details.  

To evaluate the energy savings, data collection and analysis are essential, which typically 

requires a specific CAS energy audit. A comprehensive energy audit will collect necessary data, 

identify energy wastages, evaluate energy savings opportunities, propose ECMs and provide 

economic analysis. AIRMaster+ is a systematic software developed by U.S. Department of Energy 
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(DOE) to simulate performance of CAS. Its algorithm is designed based on one-hour time interval, 

which restricts its accuracy [33]. The energy savings from dryer or dryer related measures are not 

well include in the simulations. AirSim from Dayton can capture more dynamic behavior of CAS 

benefited from its lower time interval and specific data calibration capability [34]. Nonetheless, 

both software is modeled for supply side and lacks the modules for end use side.  

Literature review shows the ECM for CAS is well researched through audits, experiment 

and simulations. It takes concerted efforts to ensure that these ECMs can be correctly evaluated 

and maintained. Many independent studies aim at ranking the saving potential of different 

measures, to address main criticalities of CAS [35]. The industry lacks reliable economic benefit 

comparison of all the measures during practice. Most of the researches only focused on air 

compressor and distribution line. The impact of dryer hasn’t been comprehensively integrated. 

Meanwhile, the savings was evaluated separately in the literatures. Due to the interrelationship 

among all the measures, the combined savings effect is not the simple summation of the individual 

measures. The calculation of integrated savings from multiple ECMs is missing. Because of the 

continue changing status of the CAS, the savings from the same measure is subjected to change in 

various scenarios. The dynamic characteristic of the savings hasn’t been researched to the author’s 

best knowledge. Therefore, a benchmark for each measure will be presented to compare their 

economic benefits. A new integrated energy savings calculation model will be proposed and 

analyzed to address the interaction of ECMs and their dynamic characteristics. 

1.3 Energy Characteristics Analysis of U.S. SMEs 

Improving energy efficiency is an important strategy to mitigate the energy depletion and 

a promising approach to tackle environmental problems to ensure sustainable use of energy for 

end-use entities[36]. Efficient use of energy not only benefits manufacturing plants financially but 



13 

 

also on other features. For instance, higher production capacities and improved customer 

satisfaction were reported after using more efficient process lines[37]. The industrial sector 

consistently consumes more than 30% of the total U.S. energy usage based on Figure 7, in which 

the manufacturing sector is the largest end-user. A strong boost towards the reduction of energy 

consumption is needed.  

 

Figure 7 Industrial Sector Energy Consumption Trend (1985-2015) [1] 

To better analyze energy efficiency and achieve energy savings, the existing energy 

consumption situation and possible energy conservation measures are two key aspects. Energy 

intensity is widely used to measure the industrial energy efficiency[38]. It is typically computed 

as the energy consumed per dollar of gross domestic product (GDP)[39]. Although the underlying 

influences of technical advancement, policy support or other factors may not be clearly explained, 

energy intensity is a simple and straightforward indicator to reflect the changes of energy-use 

structure. Hasanbeigi et al.[40] analyzed influences of different factors on energy usage and output 

of 17 manufacturing subsectors in California between 1997 and 2008 by decomposition analysis. 
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The energy intensity reduction and structural effects are concluded as the most important factors 

that affect the energy use demand. 18-26% of the total industrial energy consumption could be 

saved by adopting best practice commercial technologies [41]. Small- and medium- sized 

manufacturers/enterprises (SMMs or SMEs) are a vitally important part to achieve this goal.  

 

Figure 8 Manufacturing Establishments by Employment Size [42] 

The definition of SMEs varies between organizations. To qualify a SME defined by IAC, 

the facility must be within the manufacturing sector, employ less than 500 staffs, have no on-site 

energy management personnel, spend between $100,000 and $2.5 million per year on its utility 

bills and make no more than $100 million annual sales of its products. The employment size is a 

popular criterion as it is easy to assess and track. As shown in Figure 8 [42], SMEs operate in every 

manufacturing subsectors and are account for more than 90% of establishments in U.S. 

manufacturing sector and 50% of the energy use [43, 44]. Addressing the special needs for SMEs 

to improve energy efficient could make a big difference on the energy profile of manufacturing 
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sector. However, SMEs have unique and significant internal barriers to adopt energy efficient 

improvements. Trianni et al. [45] explored the barriers and drivers for SMEs of various countries. 

The results indicated that the economic concern is the most common barrier in SMEs, followed by 

the awareness issues. Financial support and energy efficiency promotion from different forms and 

through different channels were suggested. Bunse et al. [46] studied “energy efficiency 

implementation gap” between the available sustainable solutions and the actual implementations 

in end-users. To encourage the implementation of energy efficiency features, measurable and 

accurate key performance indicators (KPIs) should be identified and developed. Kissock et al. [33] 

pointed out that accurate measurement of energy savings could enhance the management’s 

confidence during decision-making process and guide the selection of future projects. 

There exist a variety of policies and programs to encourage the improvement of energy 

efficiency in the manufacturing sector. Compared with other sectors, the facilities of 

manufacturing sector are usually larger and more energy-intensive. As such, there exist great 

energy and cost saving potentials in the manufacturing facilities. However, the energy use 

strategies vary significantly between facilities, even within the same industry. This feature 

challenges the development and implementation of energy saving measures, as well as the policy 

and program makers for energy efficiency programs. Tanaka [41] reviewed over 300 energy 

efficiency policies across the world and proposed assessment criteria to evaluate the effectiveness 

of various policies. The paper also summarized the key features for industrial owners to implement 

energy efficiency measures. Thollander et al. [47] evaluated a Sweden energy efficiency program 

that focused on manufacturing SMEs and discussed the barriers to adopt energy efficiency 

measures among the companies. The results affirmed the positive influence of energy programs 

on improve industrial energy efficiency. Various programs that provided technical or financial 
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assistances are available for manufacturing enterprises. The U.S. government has provided more 

than 600 billion dollars through 2003 for energy development in R&D funding, regulations, 

taxation, direct incentives and other related activities[48].  

The Industrial Assessment Center (IAC) Program is initialized by the Department of 

Energy (DOE) and has been focused on improving the energy efficiency of SMEs for over 40 

years. Students and energy engineers trained by this program have conducted thousands of energy 

audits to firms and facilities that couldn’t afford on-site energy management staff and averagely 

proposed 7.6 assessment recommendations per visit. Among all those recommendations, the ones 

that emphasize on reducing the energy consumption of the facility buildings, the manufacturing 

systems and production processes could be concluded as energy conservation measures (ECMs). 

The follow-up interviews by IAC staffs indicate that more than half of the proposed measures are 

successfully implemented. By the year of 2015, the adopted ECMs have saved more than 230 

million dollars and 16 million MMBTU of energy for participated companies. 

To achieve energy and cost savings for SMEs, identifying potential savings opportunities 

is only the first step. How to break the internal barriers and difficulties and attract plant managers 

to implement the ECMs would be an important follow-up step. Anderson et al. [49] analyzed the 

adoption rates of energy efficiency projects at manufacturing plants. Various factors, such as 

payback period, implementation costs, capitol savings and energy price, were identified to have 

influence on decision making. Fleiter et al. [50] evaluated cases of an energy audit program in 

German and examined various self-assessed reasons that hurt the adoption of efficiency measures. 

Lack of capital was found to be the biggest barrier to adopt energy-efficiency measures. The paper 

also found that the quality of the energy audits would affect the final decisions on ECM adoption. 

Alhourani et al. [51] used IAC data to analyze the factors that affect the implementation rates of 
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proposed recommendations. The paper found out that the payback period would greatly impact the 

company’s willingness to adopt the recommendation and different industries have different 

patterns towards the proposals. It also pointed out that the production capacity could influence the 

implementation rate. 

Based on the literature and program reviews, most of the energy efficient programs are 

neutrally designed without consideration of difference between industries. Programs primarily aim 

to achieve calculated savings, while lack the necessary feedback from the implementation side. 

The general factors that impact the decisions of ECM adoption remain unclear. Therefore, this 

thesis proposes to analyze the trend of the energy intensity and the key factors that affect the 

implementation of ECMs in the industrial field. The interaction between the changes of energy 

intensity and the preference of ECMs will be analyzed for the first time. The results will provide 

some insights to the policy makers for the design of the program and prediction of energy savings.  
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Chapter 2 General Energy Consumption Model of CNC Machines 

2.1 Energy Model for Milling Machines 

The objective of this study is to investigate the general relationship between SEC and other 

machining related parameters. Based on the investigations of various manufacturing processes, 

Gutowski et al. [15] proposed a general power consumption model for all machining processes as 

shown in Eq. 2 in Table 1, where 𝑃0 is the idle power, 𝑀𝑅𝑅 is the rate of material removal rate 

and k is a coefficient that related to the material and physics of the cutting processes. For a specific 

cutting process on a specific machine and a specific material, 𝑃0 keeps the same, while MRR varies 

with different cutting processes and materials. Based on this theory, the SEC was modeled as a 

function of MRR in some research work [2, 52]. Such empirical models are usually established for 

a specific machine based on a series of scientifically designed experiments. As shown in Eq. 1, 𝐶0  

and 𝐶1 are coefficients obtained from experimental data analysis and are unique for each machine. 

The model’s accuracy could reach above 90% in some cases. However, this model only considers 

MRR variable and lacks machine-related parameters. Comparing with the modeling process of Eq. 

2, the machine related parameter 𝑃0  and material related parameter k are not explored. 

Theoretically, it is possible to improve the modeling accuracy or utilization range by better 

interpreting additional process parameters. Li et al. [16] observed the linear relationship between 

spindle speed and air cutting power and brought in spindle speed as another parameter to modify 

the model as Eq. 3, where n is the spindle speed (rpm), 𝐶0  𝐶1 and 𝐶2 are coefficients. In the 

modified model, the accuracy has been improved to about 97%. The results show the possibility 

of improving the traditional SEC model by further investigating the essential parameters. Similarly, 

Budinoff et al. [21] proposed a general material-based energy prediction model in Eq. 8, where 
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(
ℎ

ℎ𝑟
)𝑎 is a material related function to capture the dependence of k on average chip thickness. This 

model was validated with over 97% accuracy when tested with several materials. 

Inspired by the above work, this paper aims to introduce new parameters into the traditional 

MRR based SEC model to develop a general energy consumption model that can be used for 

various machines. Similar with the material related function in material-general energy model, 

parameters that can be used to distinguish different machines should be included in the machine-

general model. Therefore, the power consumption characteristic of the machining process is 

analyzed to identify the key factors.  

Figure 9 shows the typical power consumption profile of a machining process. Depending 

on the machining stages, the power can be divided into three sections: stand-by power, air-cutting 

power and machining power. Each section represents a stage of machining process and includes 

the powers of different components.  

 

Figure 9 Power Profile of a 5.5 kW Machine Center (Sharp SV2414-SE) 

The total energy consumption includes machine-based constant power and processing-

based variable power. The proportions of each part are remarkably different among different 
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machine tools[53]. The stand-by power is a portion of constant power consumption and includes 

the power required by the servo motor, control units, lighting and other auxiliary power 

consumption related to specific machining process. It ensures the operational readiness of the 

machine. A Highly automated machine tool tends to include more functions such as work handling, 

automation controls, etc. As a result, its total power consumption of a machining process could be 

dominated by the stand-by power, especially at lower production rates[54]. Therefore, the stand-

by power is a key parameter to represent the automation level of a machine tool and would be 

unique for each machine. The air-cutting power is the operational power of the machine before its 

real engagement in cutting materials, which include idling spindle power and optional tool change 

power. Spindle power is the major addition of the air-cutting power compared with stand-by power. 

Since the nameplate power rating of the spindle motor is often used as the nominal power rating 

of the machine tool, it can also be used to represent the size or capacity of the machine for its 

energy level. A machine with a higher nominal power rating consumes more energy but is capable 

to process larger MRRs, which in turn will reduce its energy intensity. Hence, the power rating of 

the spindle motor (𝑃𝑠) is a key factor to determine the power consumption level of a machine. The 

machining power is the total power consumed during the cutting process, which equals to air 

cutting power plus tool tip power and unproductive power, which depends on cutting parameters 

(MRR in this thesis). The machining power varies dramatically with different cutting parameters. 

Based on the above analysis, the stand-by power, power rating of spindle motor and cutting 

parameters are three key factors that decide the total power consumption. Therefore, they are all 

considered in the development of a new machine-general energy consumption model in this thesis. 

In this thesis, machines with different nameplate power rating of spindle motors are categorized 

for their energy capacity levels and analyzed separately. The actual energy consumption of each 
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machine tool is varying with the actual operating conditions and is measured in this study. In order 

to demonstrate the influence of different 𝑃𝑠, the machine tools with two different power levels of 

𝑃𝑠  (5.5 kW and 11 kW) are analyzed in this study. Since the stand-by power varies with the 

automation level and the power capacity of the machine, a parameter, the stand-by power ratio 

(𝑅𝑠), is introduced here to consider this effect. 𝑅𝑠 is defined as the ratio of the stand-by power and 

the nominal power rating of the machine tool. As a result, the proposed method is to use MRR and 

𝑅𝑠 as parameters to predict SEC for different sizes of machine tools. 

 

Figure 10 SEC Trend for Machine Tools with 11 kW Spindle Motor at Different MRR 

A proper relationship among all key parameters is needed to establish the new SEC model. 

Due to the well-known connection between MRR and SEC in a specific machine, the only work 

left is to discover the relationship between SEC and 𝑅𝑠. When MRR is set at three levels, a clear 

quadratic relationship between 𝑅𝑠 and SEC is observed in experiments, as shown in Figure 10, 

which is from four selected machine tools with 11 kW rated spindle power, data presented in Table 

2. Similar relation is observed for machines with other sizes of spindle power. This quadratic 

relationship cannot be observed using the traditional SEC model as shown in Eq. 9, in which, the 
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SEC would be constant if the MRR is constant. To integrate the quadratic impact of 𝑅𝑠 into the 

SEC mode, the constant parameter 𝐶1 in Eq. 1 needs to be changed to a polynomial function. 

Therefore, a new energy consumption model is proposed as: 

SEC =  
(a×𝑅𝑠

2+𝑏×𝑅𝑠+𝑐)

𝑀𝑅𝑅
+ 𝑑          ( 9 ) 

where, a, b, c, d, and e are coefficients and will be determined by experimental data 

analyses. 

2.2 Machine Modeling Case Study 

Two case studies at two rated spindle power levels are carried out in this study to validate 

the proposed model. The experimental data of eight machine tools are used to fit the proposed 

model. To ensure adequate application range of the regression model, machine tools (vertical 

milling machines or vertical machine centers) from low-end to highly automated are all considered. 

According to the sizes of the spindle motors, we categorized the selected machines into 2 power 

levels (5.5 kW and 11 kW). The detailed specifications of the selected machine tools are listed in 

Table 2. The cutting material used in the experiments were assorted carbon steel with HB hardness 

ranging from 120 to 220. The stand-by power ratio 𝑅𝑠, MRR and SEC were obtained either directly 

from experimental data or from the energy models in literature.  

Table 2 Specifications of Selected Machine Tools 

Reference 
Machine 

Model 
 

Rated Spindle 

Power (kW) 

Stand-by 

Power (kW) 
Rs (%) 

Campatelli et al. [55] 
NMV 1500 

DCG 
 5.5 2.20 40.0 

Li et al. [16] 
Hurco BMC-

20LR 
 5.5 0.41 7.4 

Diaz et al. [52] NV 1500 DCG  5.5 0.92 16.7 

Li et al. [56] PL700B  5.5 0.60 10.9 
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Kara et al. [2] 
Mori Seiki 

5100 
 11 1.02 9.3 

Aramcharoen et al [20] 
Hitachi Seiki 

VG45 
 11 2.44 22.2 

Li et al. [57] VGC1500  11 2.31 21.0 

Yoon et al. [58] 
Hyundai WIA 

F400 
 11 2.13 19.4 

 

Table 3 Modelling Data from Previous Research 

MRR 

[mm3/s] 

SEC [J/mm3] 

NV1500 

DCG 

Hurco BMC-

20LR 

NMV1500 

DCG 

Hyundai 

WIA F400 
VGC1500 

Mori Seiki 

5100 

11.00 138.31 67.22 199.04 233.04 273.45 125.01 

14.33 107.00 54.23 153.92 180.38 210.72 96.60 

22.00 71.00 39.30 102.04 119.82 138.59 63.92 

28.67 55.34 32.81 79.48 93.49 107.22 49.71 

33.00 48.56 30.00 69.70 82.07 93.63 43.56 

43.00 38.12 25.67 54.66 64.52 72.72 34.09 

44.00 37.34 25.34 53.54 63.20 71.16 33.38 

55.00 30.61 22.55 43.84 51.88 57.67 27.27 

57.33 29.51 22.10 42.26 50.04 55.47 26.27 

66.00 26.12 20.69 37.37 44.33 48.68 23.19 

71.67 24.34 19.95 34.81 41.35 45.12 21.58 

77.00 22.91 19.36 32.75 38.94 42.26 20.28 

82.50 21.63 18.83 30.90 36.78 39.69 19.12 

86.00 20.90 18.52 29.85 35.56 38.22 18.46 

100.33 18.44 17.50 26.31 31.42 33.30 16.23 

107.50 17.45 17.10 24.89 29.76 31.32 15.33 

114.67 16.59 16.74 23.65 28.31 29.60 14.55 

143.33 14.01 15.67 19.93 23.97 24.42 12.21 

172.00 12.29 14.95 17.44 21.07 20.97 10.64 

200.67 11.06 14.44 15.67 19.00 18.51 9.53 

215.00 10.57 14.24 14.96 18.18 17.52 9.08 
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(a) Customized Fit for 5.5 kW Machines 

 

(b) Customized Fit for 11 kW Machines 

Figure 11 Curve Fitting Results from Matlab 

Based on past research, it is known that the SEC of a machine tool dramatically decreases 

with the increase of MRR at low MRR region. The decrease trend transits smoothly and becomes 

flat around the middle and high MRR regions. To study the full characteristic of the SEC profile, 
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an appropriate range of MRR needs to be investigated to include all the transition stages. The 

selected range of MRR in this study is listed in Table 3, as well as the associated SEC for all the 

selected machines used for regression.   

In this study, the custom equation fitting in Matlab Curve Fitting application was used to 

fit the proposed SEC model with selected MRR range. The results are shown in Figure 11 for 

machines with 5.5 kW and 11 kW spindle motors separately. It is clear that most of the data points 

are scattered closely around the fitting surface, which means the quadratic relation within the 

proposed model is capable of explaining the SEC distribution among various machines. Table 4 

lists the corresponding fitting coefficients for each spindle size, and the results confirm that the 

proposed model could approximate most of the data points quite well. 

The experimental data of the fourth machine in each power level was used to validate the 

fitted model. Additional experimental SEC data of the other three machine tools for each power 

level was also used in the model validation. Finally, the experimental data was compared with the 

calculated data. The residual ratios are presented in Figure 12. The results show that: 

a) The overall accuracy of the developed model is confirmed as the residual ratios for all 

tested machines are within 20%. The average absolute residual ratio is around 6%. 

b) The characteristic of the residual ratios is highly related to the stand-by power ratio. The 

average residual ratios of highly automated machines are more likely to be positive, while 

the average residual ratios of the less automated machines are negative. The prediction 

for middle level machines seems to present the best accuracy. The reason is: the highly 

automated machines are usually more energy intensive and have higher SEC. When 

fitting the model for various machines, it may compromise the accuracy of the machines 

at both higher and lower ends to develop a general adaptive model. Therefore, employing 
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more types of machines and more experimental data will be useful to improve the 

reliability of the proposed model.  

c) The average residual ratio of the machine with the highest 𝑅𝑠 at the rated spindle power 

level of 11 kW has a dramatic drop (-12%). All residual ratios for this machine are 

negative despite the machine being the most energy intensive. It is because the 

experimental data used for this machine was high cutting speed testing data with the 

average testing MRR around 560 mm3/s, which is much higher than the MRR range 

values that were used to fit the model. Since the SEC trend has been predicted to be 

steady within high MRR range (above 220 mm3/s), it may underestimate the decrease of 

SEC at high MRR range and predict a high SEC at that range. In future work, larger 

MRR range should be considered to include all possible conditions during machining 

processes. 

Table 4 Fitted Coefficient Values 

Coefficient 5.5 kW 11 kW 

a -13380 112300 

b 10530 -19960 

c 21.74 2.192 

d 6.701 4.383 

R-square 0.995 0.999 

 

To illustrate the advantages of the proposed general model, here the applications of the 

traditional SEC models are presented using a benchmark analysis. NV 1500 DCG and Hurco 

BMC-20LR are both machine centers with 5.5 kW spindle motor. Diaz et al.[52] and Li et al.[16] 

proposed SEC models for those machines with accuracy of around 90%. However, when their 

models were used to predict the SEC for the other machines, much larger residual ratios were 



27 

 

observed. For instance, the SEC for Hurco VMC-20LR was significantly over-estimated with an 

average residual ratio of -125% when using the proposed model for NV 1500 DCG. Likewise, the 

predicted SEC for NV 1500 DCG shows an average residual ratio of 43%. Therefore, it is clear 

the traditional SEC models are not interchangeable among machines. 

 

Figure 12 Comparison of Residual Ratios for Selected Machines 

2.3 Experiment Validation 

The validation experiment was performed on a CNC machine center (Sharp SV2414-SE) 

with a 5.5 kW spindle motor. Three cutting tools with 2 flutes carbide inserts were used to face-

cut a medium carbon steel blank (AISI 1045). A portable power cell (PPC3) power meter was used 

to monitor the power consumption in real time. The DI-149 data logger manufactured by DATAQ 

was used to record the data gathered by power meter. This data collection system can continuously 

record the power consumption situation at a 0.1s sampling interval.  

As shown in Figure 9, the power consumption of the machine center (Sharp SV2414-SE) 

during milling process was measured. The pre-experiment readings show that the average stand-
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by power of the machine center, which includes the control units, lighting and servo, was around 

380 W. The power profile was similar for each process with variable machining power. The 

machining power consisted of the constant power consumption of the machine center and the 

variable power consumption during the milling process with respect to the planned cutting 

parameters. As shown in Table 5, the cutting parameters were selected to obtain a similar range of 

MRR compared with previous research. During the experiment, each cutting tool travelled along 

positive y direction nine times with assorted depth of cut and feed rate. The experimental SEC, 

which is the ratio of the measured energy consumption and associated MRR for each process, was 

then compared with the estimated SEC using the proposed model in Figure 13.   

Table 5 Cutting Parameters and Levels 

Parameters Level 1 Level 2 Level 3 

Depth of Cut (mm) 0.84 1.68 2.54 

Feed Rate (mm/min) 50.80 101.60 152.41 

Tool Diameter (mm) 6.35 12.7 19.05 

 

The accuracy of the proposed model is about 91.5%. To test the difference between the 

experimental and calculated data, a paired t-test was carried out. The null hypothesis of the t-test 

is that there is no difference between the two groups of data. To reject the null hypothesis for a t-

test, the calculated t value need to be equal to, or greater than the critical t value [57]. The test 

results are listed in Table 6. Since tcalculated = 2.03 is less than tcritical = 2.05, the result fails to reject 

the null hypothesis, which means that the proposed SEC data has no significant difference with 

the experiment data and obeys similar tendency, as shown in Figure 13. Since the sample size of 

this experiment was only 27, we believe that the P-value of 0.053 would improve with an increased 

sample size. Since there is no rational to pursue normality of the differences of two data sets, 
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Wilcoxon test can also be performed. It is the nonparametric equivalent to the paired t-test. The P-

value from Wilcoxon test is 0.167, which also validate the reliability of the prediction from 

proposed model. Therefore, it is safe to state that the proposed model can successfully predict the 

energy consumption of milling processes for tested machine center. 

Table 6 Paired t-Test Results for Experiment and Calculated Data 

 Mean St Dev SE Mean t P-value t critical 

Experiment 49.56 41.83 8.05 2.03 0.053 2.05 

Estimation 47.42 8.23 7.36    

Difference 2.14 5.49 1.06    

 

 

Figure 13 Comparison of Calculated and Experimental SEC Results 

Observations from Figure 13 shows that the experimental data scattered around the 

calculated data with slightly higher residuals around the lower MRR region. The experimental data 

points distribute around the calculated data evenly within the middle and higher MRR regions. On 

average, the experimental SEC data is higher than the calculated data by 8%. Comparing with the 
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MRRs of previous research, 20% more MRRs of the tested machine center are under 60 mm3/s. 

Also, the MMR range (0-120 mm3/s) is smaller than those of previous research (0-215 mm3/s) due 

to the limitation of the tested machine center. The concentrated data points around lower MRR 

range could cause the higher SEC during the test. 
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Chapter 3 Energy Savings in Compressed-Air System 

Energy Savings for single ECM was well researched in literatures. Typical ECMs for each 

category are listed in Figure 14. In this chapter, an integrated CAS modeling method will be 

introduced to systematically evaluate the energy savings opportunities. There are three main 

classifications of compressors: reciprocating, rotary screw, and centrifugal. According to audit 

experiences, rotary screw compressor dominates the small and medium sized applications. Its 

market share is more than 45% of the global revenue generation in 2015 [59]. Therefore, this thesis 

will focus on the energy savings opportunities of small size rotary screw air compressors. 

 

Figure 14 Typical ECMs in CAS 

3.1 Modeling Methodology 

At first, the detailed mathematical formulations for major ECMs will be established. 

Necessary key parameters for each ECM will be identified. The interaction of the ECMs and their 

dynamic characteristics will be concluded. A generic calculation method will be proposed for all 

ECMs to obtain an integrated model to evaluate the CAS as a whole. 
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3.1.1 Energy Savings Calculation Methods  

Repair Air Leaks 

There are two typical methods to calculate the air leaks and following possible energy 

savings by repairing the air leaks. First, the overall air leak percentage can be estimated by logging 

the load/unload time during non-production time for load/unload controlled air compressor. The 

compressor will load and unload because of the air leaks. The total leakage percentage can be 

calculated by the following equation: 

LP =
𝑡𝑙𝑜𝑎𝑑×100

𝑡𝑙𝑜𝑎𝑑+𝑡𝑢𝑛𝑙𝑜𝑎𝑑
       ( 10 ) 

where, LP is leakage percentage, 𝑡load is load time (minute), 𝑡unload is unload time. For the 

air compressor with other control types, the total air leak can be measured by air flow meter during 

non-production time.  

Table 7 Air leak Size Lookup Table [60] 

Decibel Readings vs. CFM 

 Pressure (PSIG) 

Digital Reading (dB) 100 75 50 25 10 

10 0.5 0.3 0.2 0.1 0.05 

20 0.8 0.9 0.5 0.3 0.15 

30 1.4 1.1 0.8 0.5 0.4 

40 1.7 1.4 1.1 0.8 0.5 

50 2.0 2.8 2.2 2.0 1.9 

60 3.6 3.0 2.8 2.6 2.3 

70 5.2 4.9 3.9 3.4 3.0 

80 7.7 6.8 5.6 5.1 3.6 

90 8.4 7.7 7.1 6.8 5.3 

100 10.6 10.0 9.6 7.3 6.0 
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Second, the location, size and number of air leaks can be detected by ultrasonic air leak 

detector. The volume of air loss in a minute through a leak can be estimated according to Table 7. 

Because most air leak surveys in the industry use the ultrasonic air leak detector, the lookup table 

method is utilized in the proposed model.  

Cool Air Intake 

Compressors have to work harder to compress hot air because air expands at higher 

temperatures. The amount of work done by an air compressor is proportional to the temperature of 

the intake air. Therefore, the energy savings from using cool air intake can be calculated by: 

 𝐹𝑠 =
𝑇𝑖−𝑇𝑓

𝑇𝑖+460
        ( 11 ) 

where, 𝐹𝑠  is fractional savings, Ti is initial air intake temperature, Tf is final air intake 

temperature. It is worth to mention that the cool air intake measure is only applicable for lubricant 

free air compressor. The air will be warmed up to the lubricant temperature in lubricant flooded 

air compressor, which results the invalidation of cool air intake effect.  

Pressure 

The thermodynamic process happens in a rotary screw air compressor is similar to an 

isentropic compression. The work done by the process equals to: 

𝑊 =
𝑛𝑅𝑇1

𝑛−1
((

𝑃2

𝑃1
)

𝑛−1

𝑛
− 1)          ( 12 ) 

where, W is work, n=1.4 is isentropic index, R is ideal gas constant, T1 and P1 are the initial 

temperature and pressure, P2 is the final temperature and pressure. Based on this equation, it can 

be seen that lowering the pressure of the compressed air will reduce the power requirement during 

the compression process. The power deduction at the air compressor can be expressed as followed 

equation where Pi, Pin, Pf are initial pressure, inlet pressure, and final pressure respectively.  
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PR𝑤 =
(

𝑃𝑖
𝑃𝑖𝑛

)
0.286

−(
𝑃𝑓

𝑃𝑖𝑛
)

0.286

(
𝑃𝑖

𝑃𝑖𝑛
)

0.286

−1

      ( 13 ) 

Energy savings from simply reducing system pressure, flow controller and low pressure 

drop filter can all be calculated based on the same equation. Flow controller, also called demand 

valves or pressure controller, is basically a precision pressure regulator that allows the airflow to 

fluctuate while maintaining a constant pressure to the plant’s air distribution piping network. The 

installation of a flow controller on the downstream side of an air storage receiver allows the 

creation of a pressure differential entering and leaving the vessel, which generates system storage 

to compensate for high, random air usage and avoid the need to increase the entire system pressure. 

In this way, the set pressure at the air compressor end can be reduced. Similar energy savings can 

be achieved through using low pressure drop filter. In most air compressor system air filtration is 

needed for proper operation. The filter removes oil mist from the supply air of lubricated 

compressor to protect the distribution and end-use devices. However, there is obvious pressure 

drop through the filter. The low pressure drop filter operates with longer life and lower pressure 

drop than standard coalescing filters. Typically, the baseline of standard filter is 3psid (psid is 

pressure drop in psi) at new and 10psid at end-of-life. The drop in efficient condition is 1psid when 

new and 3psid at end-of-life. Therefore, the average pressure drop can be reduced by 4.5psi. Last 

but not the least, lower pressure also means less artificial demand, which helps to reduce the waste 

from air leak. The corresponding air leak reduction can be expressed by: 

𝐿𝑅 = 1 −
𝑃𝑓

𝑃𝑖
          ( 14 ) 

where, LR is leak reduction, 𝑃𝑓 and 𝑃𝑖 are final and initial pressure respectively.  
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Add Air Storage 

The frequent cycling caused by short of storage is a waste of energy. The fixed speed 

compressor will load/unload in certain period of time when working at part load. The load/unload 

mode transform causes cycling loss. The main reasons are: first, blowdown will waste the 

compressed air between compressor outlet and the check valve, which will be released to 

atmosphere. This volume is usually about 2 ft3; second and the most important loss is the loss 

because of partial load during blowdown time. The blowdown time is typically 30 s to 90 s, the 

compressor doesn’t produce compressed air but consume even more energy than that consumed 

during absolutely unload period. Figure 15 shows the cycling current of compressor. Research has 

shown short cycling time will cause significant loss. Cycling loss percentage of a 15HP air 

compressor was simulated by Maxwell et al. [61], as shown in Figure 16. The cycling loss is less 

than 2% when the cycling time is longer than 5 minutes. It can be as high as 25% if the cycling 

time is less than 1 minute. 

 

Figure 15 Cycling Current of Air Compressor 
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Figure 16 Cycling Loss Percentage During Different Cycling Time 

Installing big enough air storage is an effective way to reduce the cycling loss. Storage can 

be divided into dedicated, off-line and general storage based on its location in the CAS. Dedicated 

storage is typically installed near specific applications to ensure their sufficient flows or pressures. 

Off-line storage needs to be maintained at high pressure to support special event such as peak 

demand reduction. General storage is the air tank installed between air compressor and main 

deliver line to improve the pressure and flow of the whole system. Therefore, the storage 

mentioned in this thesis is mainly the general storage or air tank. The amount of compressed air 

available in a tank depends on both tank size and the pressure difference between the tank pressure 

and the system’s minimum acceptable target pressure, as shown in Equation: 

𝑉𝑔𝑎𝑠 = 𝑉𝑠 × (𝑃𝑠 − 𝑃𝑎𝑡𝑚)/𝑃𝑎𝑡𝑚      ( 15 ) 

where, 𝑉𝑔𝑎𝑠 is usable compressed air in storage, 𝑉𝑠 is the storage tank size,  𝑃𝑠 is pressure 

in air tank, 𝑃𝑎𝑡𝑚 is the atmospheric pressure. The typical effects on the power consumption of the 

LNL compressor with different sizes of air receivers is shown in Figure 17. 
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Figure 17 Effect of Air Receiver on LNL Controlled Air Compressor [32] 

Table 8 Percentage Power Calculations for Different Tank Sizes 

Percentage of Nameplate Power (PNP) Tank Size (gal/cfm) 

−𝟎. 𝟗𝟑𝟔𝟔𝐋𝐅𝟐 + 𝟏. 𝟔𝟎𝟓𝟒𝐋𝐅 + 𝟎. 𝟑𝟏𝟏𝟏 1gal/cfm 

−𝟎. 𝟓𝟎𝟎𝟖𝐋𝐅𝟐 + 𝟏. 𝟐𝟒𝟔𝟑𝐋𝐅 + 𝟎. 𝟐𝟓𝟗𝟗 3gal/cfm 

−𝟎. 𝟑𝟑𝟑𝟑𝑳𝑭𝟐 + 𝟏. 𝟎𝟖𝟔𝟏𝑳𝑭 + 𝟎. 𝟐𝟓𝟏𝟖 5gal/cfm 

−𝟎. 𝟏𝟖𝟎𝟐𝑳𝑭𝟐 + 𝟎. 𝟗𝟑𝟕𝟑𝑳𝑭 + 𝟎. 𝟐𝟓𝟏 10gal/cfm 

 

It can be seen that the power consumption is almost linear with the load factor (LF) when 

the receiver size is 10gal/cfm. When using 1gal/cfm receiver, the percentage is much higher in low 

LF scenarios. These relationships can be mathematically expressed through regressions [34] as 

shown in Table 8.  
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Use Efficient Controls 

The power characteristics of air compressors are primarily determined by the types of 

compressor controls, which include modulation, load-non-load (LNL), variable displacement and 

VFD etc. In modulation mode, the air compressor adjusts the inlet valve to the air compressor, 

allowing more air to flow into the compressor when more compressed air is needed, and less when 

less is needed. It is the least efficient control strategies for an air compressor. Air compressor in 

modulation typically draws about 70% of its rated power even at no load. Some modulation-

controlled air compressors have blowdown function, which helps to increase the no load efficiency. 

LNL controlled air compressor can meet the air demand by loading/unloading the air compressor. 

According to survey from CAGI data, the typical unload power is about 25% of the rated power 

of the air compressor. This unload energy waste is made worse since most of the air compressors 

are oversized. Lower LF results longer unload time and larger idling loss for LNL air compressor. 

Variable displacement and VFD are capable to adjust the speed of air compressor according to the 

air demand at the end use. In this way, the air compressor only runs at optimized speed without 

idling power loss. The comparison of power consumption pattern of all air compressors is shown 

in Figure 18. The regression expressions are shown in Table 9. 

Table 9 Regression Equations of PNP at Various Conditions 

Control Type Percentage of Nameplate Power (PNP) LF Ranges 

Modulating 0.3LF+0.7  

Modulating 

w/Blow down 

0.3LF+0.7 LF≥0.4 

1.425LF+0.25 LF<0.4 

Variable 

Displacement 

0.77LF+0.23 LF≥0.5 

0.15LF+0.54 0.5>LF≥0.4 

0.875LF+0.25 LF<0.4 

VFD 0.872LF+0.128  
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Figure 18 Percentage of Nameplate Power for Various Air Compressors 

Increase Dryer Efficiency 

Air dryer in CAS is needed to prevent condensate from being deposited in the supply lines 

of a facility.  Based on the operation dew point temperature, the dryer can be divided into 

refrigerated dryer and desiccant dryer. A refrigerated dryer removes moisture from the lines by 

using a heat exchanger to cool the air so the water vapor condenses into liquid water.  A non-

cycling refrigerated air dryer runs at full load consistently which wastes energy during partial load 

time. A cycling refrigerated air dryer will vary the refrigeration compressor load with regards to 

the compressed air demands, resulting in energy savings.  The cycling dryer includes thermal mass 

dryer, variable speed dryer and digital scroll dryer. The power consumption of the refrigerated 

dryers at various LFs are shown in Table 10 [62]. 
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Table 10 Regression Equations of PNPD at Various Conditions 

Dryer Types Percentage of Nameplate Power of Dryer (PNPD) LF Ranges 

Non-cycling 

Refrigerated 
0.238LF+0.762 N/A 

Thermal Mass 

Refrigerated 
-0.928LF2+1.8751LF+0.0715 N/A 

VFD Refrigerated 
LF LF≥0.5 

0.1048LF+0.4476 LF<0.5 

Digital Scroll 

Refrigerated 
0.9094LF+0.0906 N/A 

 

Desiccant dryers are used when air needs to be dried to a lower dew point (-20°F or below) 

than refrigerated-type dryers can provide (37°F).  A desiccant dryer consists of two towers 

containing a desiccant medium.  One of the towers dries the air, while the other purges 

compressed air to regenerate the desiccant medium. The towers swap functions when the drying 

tower is saturated.  This regeneration can be accomplished by several different mechanisms: 

heatless compressed air, heated compressed air or heated blower air.  Due to the inefficiency of 

compressed air generation, energy can be saved through replacing heatless dryer by heated dryer 

or blower purge dryer, which reducing compressed air consumption by heater or blower. The key 

energy related parameters are concluded in Table 11 according to air compressor survey. 

Table 11: Desiccant Dryer Power Consumptions 

 Heatless 

Desiccant 

Heated 

Desiccant 

Blower Purge 

Desiccant 

Purge CA Demand Percentage 15% 7% 0 

Heater Power (kW/cfm) 0 0.012 0.019 

Blower Power (kW/cfm) 0 0 0.003 

 

Dew point control is another important energy savings method for desiccant dryer. For 

instance, heatless desiccant dryer uses fixed amount of purging compressed air to regenerate the 
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desiccant towers, regardless of the LF of the CAS. This situation leads to energy wasting over-

purging, which increases compressed air consumption and system LF. Similar phenomenon exists 

for other type of dryers in the form of wasting energy for heating or blowing. Installing dewpoint-

dependent switching control will monitor the dewpoint within the dryer and only regenerate when 

necessary. The power consumption of the dryer with dew point control is proportional to the LF 

of air compressor.  

3.1.2 Integration Process 

Despite the diversity of the savings calculations, most of the energy savings is ultimately 

related to either load reduction or efficiency improvement as shown in Table 12. With necessary 

key parameters known, the system energy consumption can be purely decided based on load and 

efficiency. Therefore, it is proposed to evaluate the impacts of all ECMs on those two key factors 

to model the integrated energy savings.  

 

Figure 19 Interaction of the Calculation System 
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There are three interaction mechanisms among the calculation system as shown in Figure 

19. First, direct impact of key parameters. Although the savings calculations of many ECMs are 

simple and only require limited information per the proposed equations, the realized savings 

greatly depends on or influences key parameters. The change of key parameters will hence impact 

the savings from the other ECMs. For instance, repairing air leaks will reduce load factor. The 

savings can be evaluated through leakage calculation. However, the realized savings from the 

corresponding load reduction also depends on the power consumption curve of the air compressor, 

which is related to all the key parameters. In the meanwhile, most of the efficiency related ECMs 

directly influence key parameters and hence impact the savings from repairing air leaks. Such as 

adding air tank is capable to reduce cycling loss due to larger storage size, and pressure/flow 

controller can help to reduce pressure because of the better flow control.  

Table 12 Key Impacts of ECMs 

ECMs Key Impacts 

Repair Air Leak Reduce Load Factor 

Engineered Nozzles Reduce Load Factor 

Electric Motors Replacing Pneumatic Motors Reduce Load Factor 

Zero-loss Condensate Drain Reduce Load Factor 

Cool Air Intake Increase Compressor Efficiency 

Reduce CAS Pressure Increase Compressor Efficiency 

Pressure/Flow Controller Increase Compressor Efficiency 

Low Pressure Drop Filter Increase Compressor Efficiency 

Add Air Storage Increase Compressor Efficiency 

Use VFD Air Compressor Increase Compressor Efficiency 

Use Efficient Air Compressor Increase Compressor Efficiency 

Replace Non-Cycling Refrigerated Dryer Increase Dryer Efficiency 

Replace Heatless Desiccant Dryer Increase Dryer Efficiency or Reduce Load Factor 

Desiccant Dryer Dew Point Demand Control Reduce Load Factor 
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Second, relevancy of LF and system efficiency. In most cases, the change of LF will 

indirectly impact CAS efficiency. Such as, using engineered nozzles in an LNL CAS will reduce 

LF. However, the system efficiency will also be reduced due to the lower LF. Meanwhile, the 

increase of system efficiency quite possibly reduces the overall LF. For instance, flow/pressure 

control will increase system efficiency, with the “co-product” of reducing artificial demand, which 

reduces LF. Therefore, all the ECMs are interrelated with each other through this mechanism. 

Third, interaction between dryer and air compressor. Dryer energy consumption depends 

on the operation status of CAS. For example, reducing LF will enhance the savings effect of 

replacing non-cycling refrigerated dryer because of the lower cycling numbers. Replace heatless 

desiccant dryer can save compressed air but increase the direct electricity consumption of the dryer. 

The savings of installing dew point control on heatless desiccant dryer depends on both LF and 

system efficiency due to its savings comes from compressed air consumption reduction. On the 

other hand, the measures for dryer will also impact the ECMs for air compressor through their 

impacts to the CAS load factor.  

Based on the analysis above, an integrated energy savings evaluation method is proposed 

as shown in Figure 20. At first, the energy savings from single ECM is calculated based on initial 

baseline situation. The algorithm is established for each single measure separately. In this step, the 

impacts of all the measures on key parameters, LF, and system efficiency needs to be concluded, 

which is necessary for the following integration. For instance, Pressure/Flow Controller can help 

to reduce system operation pressure, which is key parameter. The system efficiency will be 

increased and the improvement can be calculated based on Eq. 13. Because of the lower line 

pressure, the artificial demand will be reduced, which influences LF. All those key characteristics 

are recorded to facilitate the interaction analysis afterwards. 
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Figure 20 Basic Modeling Flow Chart 

Second, integrate all calculations together to address all the interactions and finish 

necessary iterations due to the close loop feedback in the proposed model. Such as, Desiccant 

Dryer Dew Point Demand Control can cut back the purged compressed air demand and reduce LF 

when the air compressor is at partial load. In the meanwhile, the reduced LF will provide more 

room for the decreasing of purged air consumption. Therefore, it is critical to evaluate this close 

loop effect and ensure more accurate savings calculation. During integration, similar measures will 

be grouped together to simplify the integration. For example, all the pressure related measures 

have similar savings mechanism, therefore are evaluated in the same equation. Another two groups 

are direct system efficiency improvement group and load reduction group. 
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At last, evaluate the proposed LF, system efficiency and dryer efficiency and calculate the 

final the energy savings by comparing existing and proposed CAS energy consumption.  Based on 

all the final key parameters and the integrated savings calculation algorithm, the proposed LF, 

System Efficiency and Dryer Efficiency can be obtained. By changing the combination of ECMs, 

the integration effect can be investigate based on the savings difference. 

3.2 Results Analysis 

3.2.1 Benchmark Analysis 

Due to the difficulty of treating every single project separately and doing thoroughly energy 

audit, many states or programs have prescriptive measures for CAS. This section aims to evaluate 

the economic benefit of each measure and provide a benchmark reference for developers.  

Table 13 Key parameters and assumptions 

Parameters Values Units 

Operating Hours 5083 Hour 

Nameplate HP 50 HP 

Nameplate CFM Capacity 187 CFM/HP 

Motor Efficiency 91.50% N/A 

Control Type Load/No-Load N/A 

Air Storage Size 1 Gal/cfm 

Max Rated Pressure 125 psi 

Load/unload Pressure 110/120 psi 

Intake Air Temperature 70 °F 

LF 47% N/A 

 

To represent the majority situations, the baselines for typical CAS and operation conditions 

are defined based on surveys. Inlet modulation-controlled air compressor is already out of date due 

to its low partial load efficiency. To be conservative, the baseline air compressor in this thesis is 



46 

 

LNL rotary screw air compressor. The load/unload pressure at the air compressor end is 

110psi/120psi, while the pressure at the end use is 85psi. According to the CAS surveys from MI 

and OH, the average LF is 47%. Average electricity rate of the industrial facility in the whole US 

is used in economic analysis [63] . Since the savings calculation algorithms for refrigerated dryer 

and desiccant dryer are totally different, two separate scenarios are analyzed in this section. Other 

essential data is obtained based on typical IAC audits. All critical parameters, assumptions and 

CAS audit data are listed in Table 13 and Table 14. 

Table 14 Audit Data for the CAS 

Air leak 

Quantity 
Decibel 

Reading 

Pressure 

at Leak 

Reduced 

Load 

5 70 75 psi 24.5 cfm 

Engineered Nozzles 

Nozzle 

Size 

Nozzle 

Number 
Pressure Flow Rate 

Operation 

Hours 

Reduced 

Load 

1/8" 5 80 psi 16.9 cfm 1000 10 

Install Zero-Loss Condensate Drain 

Drain 

Orifice 

Size 

Drain 

Number 

Pressure 

at Drain 

Drain 

Duration 

Drain 

Interval 

Operation 

Hours 
Reduced Load 

1/2" 1 110 psi 5 Seconds 5 Minutes 84.7 5.9 cfm 

Electric Motors Replacing Pneumatic Motors 

Motor 

hp 

Motor 

Efficiency 

LF of 

Pneumatic 

Motor 

Efficiency 

of Electric 

Motor 

Annual 

Operation 

Hours 

Average 

Reduced 

Load 

Extra Electricity 

Consumption 

by Electric 

Motor 

2 
39 

cfm/HP 
0.75 0.65 400 4.6 cfm 688.6 

 

Annual energy savings can be evaluated for each measure with all the parameters. Simple 

payback and Net Present Value (NPV) are treated as major economic indexes in the analysis. When 
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evaluating NPV, real discount rate and electricity price escalation rate from US Department of 

Commerce were utilized [64]. The lifetimes of the measures vary in different resources. To be 

conservative, 10 year was adopted for most measures. Since air leak and filter need continue 

maintenance, 2 year and 5 year were used respectively based on [60]. The benchmark results are 

shown in Figure 21 and Figure 22. 

 

Figure 21 Annual Energy Savings of All Measures 

At first, Use VFD Air Compressor and Add Air Storage have largest savings potential. In 

both situations, the savings is achieved by reducing system cycling loss. The system efficiencies 

are promoted by 43.5% and 19.8% respectively. Therefore, the partial load inefficiency is 

recognized as the most significant factor in the system. Use VFD Air Compressor represents the 

best NPV of 73,975kWh but has a relatively high simple payback period of more than four years. 
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In contrast, Add Air Storage provides moderate NPV and low payback, which makes it the most 

important measure under assumed baseline conditions. Repair Air Leak and Desiccant Dryer Dew 

Point Demand Control can also contribute considering savings. According to the load reduction 

calculation, the load is reduced by 13.1% and 9.4% respectively, which illustrates that LF also 

plays as a significant factor.  

 

Figure 22 NPV and Simple Payback of All Measures 

Second, besides of Add Air Storage and Use VFD Air Compressor, the other system 

efficiency related measures only provide limited savings potentials. The maximum savings are 

capped by temperature and pressure requirements. Load reduction measures are overall more 

attractive compared with system efficiency measures because of their shorter payback period. 
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Several measures are not recommended for early replacement project due to their NPVs. For 

instance, Use VFD Refrigerated Dryer and Replace Heatless Desiccant Dryer have negative NPVs. 

The NPV of low pressure drop filter is only $142. Therefore, only end-of-life replacement is 

recommended for them.  

At last, the savings and economic results from the ECMs are well coincident with 

observations from IAC database. Repair Air Leak is recognized as the top measure due to its big 

savings potential and short payback period in the benchmark analysis. It is also the top 

recommendation in the whole IAC database. Similarly, Engineered Nozzles, Cool Air Intake and 

Reduce CAS Pressure have payback period of less than one year, which makes them the best 

options for many customers. 

3.2.2 Integration Results 

To better illustrate the advantage of using the integration model, this section employs the 

same baseline situation for single ECM and compares their savings side by side. The Difference%, 

which is defined as the savings difference of integration model and separation model in percentage, 

is used to indicate the interaction of the measures. When testing the proposed integrated model, 

there are thousands of combinations if every possibility is examined. Since the interaction 

mechanisms were already obtained in the methodology section, similar ECMs were grouped 

together to simplify the analysis. Because of the negative or minimal NPVs, Use VFD Refrigerated 

Dryers, Replace Heatless Desiccant Dryer, and Low Pressure Drop Filter are eliminated in the 

analysis. In practice, Use VFD Air Compressor and Add Air Storage are usually not recommended 

simultaneously, therefore they are analyzed separately. The final group assignments are shown in 

Table 15. The simulation results are shown in Figure 23. 
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At first, the total savings is increased by 17.7% when integrating all the load reduction 

ECMs, which implies positive interaction among all the load related measures. This effect can be 

further demonstrated by the 30.7% difference in scenario of putting Group 1 and Group 5 together. 

Although Group 5 is not a direct load reduction measure, it cuts the system load through the 

reduction of purged compressed air in the desiccant dryer.  Due to its highest Difference%, the 

internal interaction of the load reduction is recognized as the most significant interaction in the 

integrated system.  

Table 15 Group Assignments 

Name Group Number Measures 

Load Reduction 

ECMs 
Group 1 

Repair Air Leak, Engineered Nozzles, Electric Motors 

replacing Pneumatic Motors, Zero-loss Condensate 

Drain 

Low-Cost 

System 

Efficiency ECMs 

Group 2 
Cool Air Intake, Reduce CAS Pressure, Pressure/Flow 

Controller 

High-Cost 

System 

Efficiency ECMs 

Group 3 Add Air Storage 

Group 4 Use VFD Air Compressor 

Dryer ECM Group 5 Desiccant Dryer Dew Point Demand Control 

 

Second, the gradually decrease of Difference% in system efficiency groups as shown in 

scenarios of “Group 2”, “Group 2,3”, and “Group2,4” illustrates their negative internal interactions. 

All measures in Group 2 are Low-Cost system efficiency ECMs with relatively small savings, 

therefore the Difference% is only -1.3%. When Add Air Storage and Use VFD Air Compressor 

are included, the Difference% is decreased to -6.3% and -7.3% respectively. This is because of 

their higher savings potential and more significant interaction. 

Third, mixed Difference% values are obtained when combining load reduction and system 

efficiency ECMs. Comparing scenarios of “Group 2,3” and “Group 1,2,3”, the addition of Group 
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1 provides more negative impact, which is opposite with the results of evaluating Group 1 

separately. The reason is that the lower system pressure reduces the load reduction savings. In 

scenarios of “Group 1,2”, “Group1,3”, and “Group 1,4”, the absolute Difference% are less than 3% 

due to counteract effect of both mechanisms.  

 

Figure 23 Savings Comparison of Integration Model and Simple Model 

Forth, the negative impacts from system efficiency ECMs dominate the interaction results 

in most scenarios. It can be explained by its higher overall savings compared with load reduction 

ECMs. Dryer type is a significant factor in the CAS. The savings potential of refrigerated dryer is 

minimal. The dew point control of desiccant dryer not only contributes a lot to the savings, but 

also greatly interact with all the other ECMs during integration.  

Overall, the interaction among all the ECMs are complicate and cannot be ignored. It is 

recommended to use the proposed integration model to accurately evaluate the savings.  
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3.2.3 Reliability and Optimization Analysis  

The savings from the ECMs can be accumulated along the lifetime of the measures. 

Nonetheless, it is unrealistic to claim the same energy savings every year due to the dynamic 

compressed air operation conditions. The LF and operation hours may increase or decrease with 

the change of production plan.  It is necessary to carry out reliability analysis for the savings and 

research the impact of CAS’s dynamic characteristic. 

Table 16 Load Factor Reliability Analysis 

Scenarios 
Annual Savings(kWh) 

LF=40% LF=50% LF=60% LF=70% LF=80% 

Group 1 51,439 42,483 33,526 24,570 15,613 

Group 2 13,497 14,778 15,744 16,396 16,732 

Group 2,3 44,396 45,248 43,599 39,448 32,795 

Group 1,2,3 80,856 78,968 74,578 67,687 58,295 

Group 1,2,3,5 107,448 100,614 91,743 80,834 67,888 

Scenarios 
 

Difference Percentage with LF=40% as 

Baseline 

 LF=50% LF=60% LF=70% LF=80% 

Group 1  -17.4% -34.8% -52.2% -69.6% 

Group 2  9.5% 16.6% 21.5% 24.0% 

Group 2,3  1.9% -1.8% -11.1% -26.1% 

Group 1,2,3  -2.3% -7.8% -16.3% -27.9% 

Group 1,2,3,5  -6.4% -14.6% -24.8% -36.8% 

 

Load factor is not only the critical factor for the savings calculation, but also the most 

dynamic parameter which changes all the time. The annual savings from typical Groups at various 

LFs were analyzed to obtain their reliabilities. The Results are shown in Table 16. It can be seen 

the savings from Group 1 quickly decreases with the increase of LF, which means the Load 
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Reduction ECMs works better at low LF situations. The opposite results are observed for the Low-

Cost System Efficiency ECMs. The reason is these measures increase the overall system 

efficiencies no matter what the LFs are. Larger LF provides higher baseline, hence greater savings. 

However, the High-Cost System Efficiency ECMs act differently. In the situation of “Group 2,3”, 

the savings slightly increase at first, and decrease quickly after LF passes 50%. It is because LF is 

also the critical value for the savings from “Add Air Storage” and “Use VFD Air Compressor”. 

Higher LF results lower savings opportunities of increasing partial load efficiency. Therefore, a 

negative impact from increasing LF is obtained for “High-Cost System Efficiency ECMs”. Overall, 

Larger LF means less savings potentials in the integrated system as shown in the results for 

“Group1,2,3,5”. 

 

Figure 24 Relationship Between Operation Hours and Simple Payback 

The influence of operation hours is straightforward. The savings is linear related to 

operation hours. Therefore, the simple payback will decrease at the situation of high operation 

hours as shown in Figure 24. It is shown the VFD air compressor will have a simple payback of 

less than 2.5 years when operation hour is over 8,300 hrs. It is worth to mention that Use VFD 
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Refrigerated Dryer has negative NPV and more than ten years simple payback even at 27/7 

operation condition.  

Due to the dynamic characteristic of CAS and the variation of customer’s demand, there is 

no absolute optimized energy savings matrix for each CAS. however, several basic guidelines can 

be provided based on the results of proposed model. 

For the scenario of high load factor, the low-cost system efficiency measures are the best 

options because of its better savings and shorter payback. Load reduction measures are not 

suggested to be adopted alone because its saving potential tends to decline with the increase of LF. 

For the same reason, high-cost system efficiency ECMs are not suggested in this situation either. 

Nonetheless, if the customer has enough budget and intend to achieve maximum NPV by installing 

a new VFD air compressor or air tank, the load reduction measures are highly recommended to be 

implemented together. It is because they are positively related to each other in this situation. For 

instance, the integrated savings of “Group 1,2,4” is 20% more than that of applying them separately. 

For the scenario of low load factor, the load reduction measures have higher priority due 

to the low system overall efficiency. Comparably, the low-cost system efficiency measures can 

only provide less than 30% of the savings. Reduce system setting pressure is still recommended 

due to its zero-implementation cost, but cool air intake and pressure/flow controller should be 

avoided considering its low savings and negative impact on the load reduction measures. High-

cost system efficiency measure is more attractive in this situation compared with that of high load 

factor. However, replacing pneumatic motors is not recommended if VFD air compressor is 

already implemented because the add-in NPV is minimal in the integrated system. 
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Chapter 4 Energy Characteristics Analysis of U.S. SMEs 

This section aims to research the overall characteristics of the energy consumption in the 

U.S. SMEs. At first, the IAC data is collected and processed to obtain valid research samples. The 

methodologies used to study the changes of energy intensity and the ECM adoption rate of U.S. 

SMEs are explained. The impacts of various factors related to energy intensity and ECM adoption 

are exanimated.  

4.1 Energy Management Strategies and Data Acquisition 

The manufacturing processes and auxiliary systems interact with each other to support 

regular operations of industry facilities. Integrated strategies of energy assessment, improvement 

and management are required to achieve industrial energy efficiency [8]. Various programs and 

tools that aim at promoting energy efficient practices and reducing energy consumption are 

available in the United States. The IAC program is one of them and has been operated for more 

than 40 years. Thousands of energy audits for SMEs have been conducted by IAC staffs across the 

states. The research of this section is based on the analysis of the IAC database.  

4.1.1 Energy Management Strategies for SMEs 

Numerous energy efficient equipment and technologies are available in the market. While 

they are easy to access, there still exist challenges for manufacturing plants to achieve energy 

efficiency. Most of the manufacturing companies, especially the small- and medium-sized 

manufacturers, would not choose to replace their existing equipment for machining or auxiliary 

systems with more advanced and efficient devices. This kind of primary updates is usually too 

pricey to implement for SMEs due to the expensive equipment and labor costs. Lack of 

professional knowledge also prevents companies to installing efficient practices. Introducing 
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energy conservation measures that SMEs can afford is critical for the energy efficiency 

improvement in this sector.  

Conducting energy assessments by professional staffs are widely accepted method to help 

SMEs upgrade and optimize current equipment and systems with affordable capital costs. The 

plant will be assessed by a team of trained energy engineers during an on-site visit. Before the visit, 

a comprehensive data gathering process is carried out. Besides of the basic plant information like 

sales, employment size and the industry type, the team also collects energy usage files of the 

participated manufacturing companies. The annual energy usages and costs per provided utility 

bills are usually extracted and analyzed before the on-site audit. The energy usage profiles and the 

billing charges not only reveal the energy structure of the plant, but also help to identify special 

saving potentials in advance, such as unnecessary fee charges and abnormal peak-demand 

consumptions. The analysis results will be shared and discussed with plant personals before the 

audit to better understand the tradition and energy use structure of the plant. Additional data are 

also obtained during the audit by communicating with the facility managers and sub-metering 

critical energy consumers. 

After each visit, the audit team will write an energy report to illustrate identified energy or 

cost saving opportunities and propose several assessment recommendations. Energy saving 

potentials exist in most energy systems of industrial facilities. The IAC program prepared a list of 

potential recommendations, which can be used as training document, as well as a great reference 

book to guide the team to check every possible area with saving potentials. The assessment 

recommendations are categorized into three main groups according to their saving objectives: to 

improve energy management, to minimize wastes and prevent pollutions, and to enhance 

productivity. The recommendations aiming to improve energy management are also known as 
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Energy Conservation Measures (ECMs). They are the main subjects of this research due to their 

predominate quantities and saving potentials as shown in Figure 25. The content of the ECMs, 

estimated annual energy and cost savings, and calculated payback period are all recorded in the 

IAC database. The database also provides the adoption status of proposed ECMs, which is obtained 

by follow-up survey or interview within 6 to 12 months after the on-site assessment. 

 

 

Figure 25 IAC Recommendation Frequencies per Original Database [65] 

ECMs developed in the following categories are the most popular and promising during 

energy audits: 

1. Motor System. Popular ECMs include to install variable speed drives for motors of 

various equipment; optimize motor sizes and air compressors; upgrade motor control 

systems. 
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2. Building and Grounds. Lighting and space conditioning are the most important parts 

of this category. Install energy efficient lighting sources and optimize the temperature 

controls contribute large amount of saving potentials.  

3. Thermal System. The maintenances and operations of the steam system is the theme 

of this category. Appropriate heat recovery from various equipment could save 

tremendous energy for the plant. 

4. Combustion. The furnaces, ovens and boilers can be optimized by installing ECMs in 

this category. Proper insulations and efficient burners are usually recommended. 

Regular maintenances are also encouraged best practices. 

5. Electrical Power.  Electricity demand management and thermal energy storage could 

benefit the plant in the long run. Maintain high power factors and use appropriate 

transformers usually bring instant capital benefits. 

Because of the variance of energy use strategies between industries, it is important to 

understand the industry types before analyzing [36]. The IAC database provides both SIC 

(Standard Industrial Classification) and NAICS (the North American Industry Classification 

System) code to classify participated manufacturing establishments. However, the NAICS code is 

only available for assessments after the year of 1997. In order to extend the scope of research 

subjects, SIC code system is used in this research. Based on SIC system, the companies with codes 

ranging from 2000 to 3999 are categorized as manufacturing enterprises. The major manufacturing 

subsectors included in this research and their industry descriptions are listed in Table 17. The 

subsectors of Tobacco (SIC 2100 to 2199), Apparel (SIC 2300 to 2399), Petroleum and Refining 

(SIC 2900 to 2999), Leather (SIC 3100 to 3199) and Miscellaneous (SIC 3900-3999) are excluded 

due to lack of valid data points in IAC database. 
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Table 17 List of Manufacturing Subsectors 

Industry Types Description SIC Range 

Food Food and Kindred Products 2000-2099 

Textile Textile Mill Products 2200-2299 

Wood Lumber and Wood Products, Except Furniture 2400-2499 

Furniture Furniture and Fixtures 2500-2599 

Paper Paper and Allied Products 2600-2699 

Publishing Printing, Publishing, And Allied Industries 2700-2799 

Chemical Chemicals and Allied Products 2800-2899 

Plastics Rubber and Miscellaneous Plastics Products 3000-3099 

Nonmetallic Mineral Stone, Clay, Glass, And Concrete Products 3200-3299 

Metal Primary Metal Industries 3300-3399 

Fabricated Metal  
Fabricated Metal Products, Except Machinery 

and Transportation Equipment 
3400-3499 

Machinery & PC 
Industrial and Commercial Machinery and 

Computer Equipment 
3500-3599 

Electronic Equip. 
Electronic and Other Electrical Equipment and 

Components, Except Computer Equipment 
3600-3699 

Transportation Equip. Transportation Equipment 3700-3799 

Entertainment 

Measuring, Analyzing, and Controlling 

Instruments; Photographic, Medical and Optical 

Goods; Watches and Clocks 

3800-3899 

 

4.1.2 Data Acquisition and Filtering Methods 

The IAC program is known as one of the world’s largest and best documented energy 

efficiency program [50]. A collection of all completed assessments and proposed 

recommendations since 1981 is publicly available online and updating regularly [65]. Over 18 

thousand of energy assessments and 130 thousand of proposed recommendations are recorded in 

IAC database by September 2018. A statistically significant sample of the assessments and 
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recommendations is obtained after cleaning the data, removing out-of-range points and excluding 

outliers.  

Although the assessment data has been available since 1981, the records for the first several 

years are incomplete, and only a few assessments and ECMs are available in the database. To 

ensure that the selected data sets are comparable with the each other, the assessment data that are 

out of time frame of 1987 to 2017 are firstly excluded. The data of audits in 2018 is not included 

because most of the implementation status is not available by the time this thesis is composed. It 

is worth to mention that some non-SME companies were allowed to participate the program if 

obtained special approvals. Therefore, the audits for companies that are out of the ranges of SME 

definitions are identified and excluded since this research is focused on the energy profiles of 

SMEs. The annual sales and number of employees are provided as basic information of the plant. 

Annual costs of various energy sources such as electricity, natural gas, water and LPG are also 

included in the database. Although multiple types of energy sources are used in manufacturing 

sector, natural gas and electricity are the most common energy sources and can be used to generate 

other types of secondary energy sources such as steam and compressed air [66]. The electricity 

and natural gas are also the major saving targets during energy audits. Therefore, the total utility 

cost of a plant is calculated as the sum of the annual electricity and natural gas costs in the filtering 

processes. 

The next step is to eliminate abnormal energy usage records in the rest of the database. 

Energy price is an important element of energy cost. Although it is not directly recorded in the 

database, the energy price for electricity or natural gas can easily be calculated by dividing the 

energy costs by the consumptions. Since the electricity demand is not recorded before the year of 

1996, the average electricity price is calculated by dividing the sum of the electricity and demand 
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cost by the electricity usage. The records that have impractical energy prices, i.e. with gas price 

more than $50/MMBTU or less than $0.5/MMBTU, or average electricity price greater than 

$0.5/kWh or less than $0.01/kWh, are eliminated from the data set. A reasonability check for 

proposed recommendations is also conducted. Although the payback period can be relatively long 

at certain circumstances, it is financially impossible for a small or medium sized company to invest 

on such projects. Also, the recommendation that promises to save more than 25% of the total utility 

costs or reduce the energy usage by half is not convincible to be a valid proposal. All the records 

that have above characteristics are excluded for the following analysis. 

Finally, the energy intensity outliers are removed from research sample. Energy intensity 

is a widely used indicator for energy efficiency. To obtain the energy intensity of a participated 

plant, the total energy consumption of a plant uses the sum of its annual natural gas and electricity 

usage in terms of MMBTU. Since the gross domestic product or the value added of the plant is not 

listed in the database, the annual sales is considered as an alternative in this case. Considering that 

there exists an average of 2.93% CPI inflation during the period of 1981 to 2015 [67], the sales 

will be recalculated to chain to 2015 U.S. dollar value.  

The interquartile range (IQR) rule is used to detect the presence of outliers. IQR can be 

used as a measure to describe the distribution of the data. The first quartile 𝑄1 includes the lowest 

25% of the data points in the sample and the third quartile 𝑄3 includes 75% of the data points. IQR 

is the difference between 𝑄1 and 𝑄3, which consists of middle ranged data points. The upper fence 

and lower fence to identify outliers of sample can be quantified using Eq. 16 and 17. The value of 

coefficient 𝑘 can be adjusted to suite different sampling purpose. For this work, 𝑘 equals to 1.5. 

The upper fence is 3753 BTU/Dollar. However, the lower fence calculated in this method is invalid 

as it is less than zero. In order to screen abnormally low energy intensity data points, the 5% 
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percentile of the sample is used as lower fence, which is 172.5 BTU/Dollar. Any plants with 

calculated energy intensity beyond the upper and lower fences are excluded in future work. 

IQR = 𝑄3 − 𝑄1      ( 16 ) 

Upper Fence = 𝑄3 + 𝑘 × IQR     ( 17 ) 

Lower Fence = 𝑄1 − 𝑘 × IQR     ( 18 ) 

Table 18 lists the number of assessments and recommendations that have been removed 

during the filtering processes and shows the surviving number of data records. There are 10,293 

assessments conducted for SMEs of selected manufacturing subsectors during 1987 to 2017 and 

68,895 ECMs proposed for energy saving purpose. Although a large amount of records are 

excluded in future study, this process is necessary as it ensures that the obtained sample data is 

compliant with research criteria without any interferences from incomplete, inaccurate data and 

outliers. 

Table 18 Number of Assessments and Recommendations Removed in Filtering Processes 

Filtering Process 

Number of 

Filtered 

Assessments 

Number of 

Filtered 

Recommendations 

Non-ECM Filter 0 16,040 

Out of Research Range (Time Frame, SIC) 1,472 9,520 

Non-SME Filter 4,698 30,230 

Abnormal Data Filter 106 673 

Reasonability Check 0 2,028 

Energy Intensity Outliers 1,851 12,201 

Surviving Data Points 10,293 68,895 
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4.2 Analysis Method 

Three data analysis methods are adopted in this thesis to research the filtered IAC database. 

Decomposition analysis is used to estimate the major effects on energy usage among SMEs. Data 

Envelopment Analysis is employed to examine the participated companies and compare the energy 

efficiency between regions and sectors. Logistic regression analysis is carried out to obtain the key 

factors that affect the adoption of proposed ECMs. 

4.2.1 Decomposition Analysis 

The decomposition analysis is often used to study the changes of energy use in industry 

[68]. While there are many different techniques to utilize decomposition analysis, the additive 

LMDI (logarithmic mean Divisia index) method is more preferred to interpret the changes of 

industrial energy consumption [40, 69]. Thus, additive LMDI method will be used herein to 

analyze the energy use trend among SMEs for the past three decades.  

By analyzing the energy consumption changes between selected base year and target year, 

the decomposition method segregates the impacts on energy use changes into three main terms: 

aggregate activity level, sectoral structure and energy intensity. Eq. 19 to Eq. 25 [40] shows the 

calculation formulas used to quantify the total energy usage changes and the main effects. “E” and 

“Q” denote to the energy consumption and industry activity, while “S” and “I” are used for sectoral 

share of activity and energy intensity. The superscripts “T” and “0” represent the target (last) year 

and base year of selected time frame. The subscripts “i” indicates the different subsectors within 

manufacturing sector, “tot”, “act”, “str” and “int” are the total energy consumption and the effects 

caused by activity level variances, industry structure adjustments and energy intensity changes 

respectively. 

∆E𝑡𝑜𝑡 = 𝐸𝑇 − 𝐸0 = ∆𝐸𝑎𝑐𝑡 + ∆𝐸𝑠𝑡𝑟 + ∆𝐸𝑖𝑛𝑡    ( 19 ) 
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∆𝐸𝑎𝑐𝑡 = ∑
𝐸𝑖

𝑇−𝐸𝑖
0

ln𝐸𝑖
𝑇−ln𝐸𝑖

0𝑖 ln (
𝑄𝑇

𝑄0
)      ( 20 ) 

∆𝐸𝑠𝑡𝑟 = ∑
𝐸𝑖

𝑇−𝐸𝑖
0

ln𝐸𝑖
𝑇−ln𝐸𝑖

0𝑖 ln (
S𝑖

𝑇

S𝑖
0)      ( 21 ) 

∆𝐸𝑖𝑛𝑡 = ∑
𝐸𝑖

𝑇−𝐸𝑖
0

ln𝐸𝑖
𝑇−ln𝐸𝑖

0𝑖 ln (
I𝑖

𝑇

I𝑖
0)      ( 22 ) 

𝑄 = ∑ 𝑄𝑖𝑖         ( 23 ) 

S𝑖 = 𝑄𝑖/𝑄        ( 24 ) 

I𝑖 = 𝐸𝑖/𝑄𝑖        ( 25 ) 

The IAC database provides the annual sales in dollars and production levels in physical 

units as the output of participated companies. However, the physical units of production levels are 

mixed even within the same subsector and may cause misinterpretations between subsectors as the 

units cannot compare with each other. A company that only manufactures thousands of motors a 

year may consume the same energy with the one that produces millions of nails. Thus, the annual 

sales are selected to represent the activity level in the following decomposition analysis. 

Accordingly, the energy intensity is the ratio of plants’ energy usage (annual electricity and gas 

usage in MMBTU) and the annual sales (in million dollars). To reduce the effect of monetary 

inflation, all the dollar amounts are chained to the 2015 dollar-value. 

The effect of activity level represents the contribution of the output (sales) fluctuation to 

the change of the total energy usage. The activity effect usually has direct relation with the final 

energy consumption as higher output would typically require more energy input. On the other hand, 

lower output, especially lower sales in this case, would not only decrease the demand of the 

company’s energy usage, but also could be a driver for the management to seek for lower 

producing costs and lead to more energy efficient processes.  

 



65 

 

 

Figure 26 Energy Consumption by Subsectors (Trillion Btu) [4] 

The effect of the sectoral structure should illustrate the impacts from the shifts of the 

industry types within manufacturing sector. The composition of the industries could highly affect 

the total energy consumption and energy intensity. As illustrated in Figure 26 (data retrieved from 

the Manufacturing Energy Consumption Survey of 2014), the most energy-intensive industries, 

subsectors of Wood (SIC group 2400), Paper (SIC group 2600), Chemical (SIC group 2800), 

Nonmetallic Mineral (SIC group 3200) and Metal(SIC group 3300), contribute to 32% of 

manufacturing gross output but use more than 80% of fuel consumption [4]. When the share of the 

more energy-intensive subsectors increases, the energy consumption would significantly increase 

and vice versa. The energy intensity reduction caused by the shifting of industries from more 

energy-intensive to less energy-intensive ones was five times more than the reduction via purely 

installing energy efficient measures for U.S. manufacturing sector from 2010 to 2014 [4, 70]. 

Therefore, the structure change of manufacturing sector is a key indicator to understand the energy 

consumption and intensity changes. Energy-related policies, regulations and programs could affect 
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the choices of industry types, encourage the adoption of energy-efficient technologies and 

subsequently influence the trend of energy intensity.  

The intensity effect reflects the changes in energy efficiency in the manufacturing sector 

that could result in changes of final energy usage. The popularization of efficient technologies and 

environmental awareness could help to reduce the energy intensity. However, the modernization 

of manufacturing processes does not always reduce the energy consumption as the new added 

ancillary processes requires additional energies. 

4.2.2 Data Envelopment Analysis 

The Data Envelopment Analysis (DEA) is a popular tool to evaluate the efficiency among 

a group of objectives. While the LMDI method analyzed the macro effects on the energy usage 

within the manufacturing sector, it is important to investigate the micro level at specific facilities 

to understand the variance of energy efficiency. DEA is a useful method to benchmark the energy 

efficiency within selected group of companies and identify the inefficient sources[71]. The 

techniques employed by DEA can be used to deal with large amount of objectives and multiple 

variables [72].  

Each chosen objective company would be the decision making unit (DMU) in the analysis 

with multiple inputs and outputs be examined and compared. Various kinds of measures such as 

economic output, energy consumption, or operational cost can be involved in DEA. The peer 

companies with the best energy efficiency practices are identified as the output frontiers during 

the analysis. A relative efficiency score will then be assigned to each DMU by comparing with the 

frontiers. The DEA model calculates the relative efficiency of DMUs by solving the following 

linear programing equations [72]: 

max 𝜃𝑘 =
∑ 𝑢𝑗𝑦𝑗𝑘𝑗

∑ 𝑣𝑖𝑥𝑖𝑘𝑖
      ( 26 ) 
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   subject to  𝜃𝑘 ≤ 1       ( 27 ) 

𝑢𝑗 ≥ 0       ( 28 ) 

 𝑣𝑘 ≥ 0       ( 29 ) 

where, k is the plant or decision making unit (DMU) in the analysis; 

 𝜃𝑘  is the relative efficiency of company k or DMUk, which is at most 1 for the 

frontiers; 

𝑢𝑗 , 𝑣𝑖 are the coefficients or “weights” of inputs and outputs to calculate to obtain 

the optimal 𝜃𝑘; 

𝑦𝑗𝑘 is the jth output of DMUk; 

𝑥𝑖𝑘 is the ith input of DMUk; 

The DEA system has been extended to many different models to fit all kinds of research 

scenarios. Two kinds of DEA models are commonly used in literature. The CCR method was 

proposed by Charnes, Cooper and Rhodes in 1978 and the BCC method was then developed as an 

important extension by Banker, Charnes and Cooper in 1984 [73]. The difference between these 

two models is the assumption about the return-to-scale (RS) activities. The CCR model assumed 

constant RS while the assumption in BCC method is variable, which leads to piecewise efficient 

output frontiers [74]. The energy efficiency of manufacturing plants could be measured in multiple 

ways and affected by various factors. Thus the BCC method is selected to evaluate the performance 

of participated companies.  

According to the purpose of the study, the BCC method can also be divided in to two 

models. The version that aims to maximize the outputs of the plant under constant inputs is called 

output-oriented model. On the other hand, the model that is mainly designed to minimize the inputs 

to the plant while keep the same output levels refers as input-oriented model. In this case, the main 
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objective of the IAC program and many similar energy programs are primarily devoted to reducing 

the energy consumption and cost of manufacturing plants without sacrificing their productivity. 

Thus, the input-oriented BCC model suites the requirements of the study. Various tools can be 

used to solve data envelopment problem. MaxDEA Pro 6.6 is used in this work. MaxDEA is a 

powerful and professional DEA software and equips with extensive range of DEA models.  

If a company satisfies 𝜃𝑘 = 1 , it is called BCC-efficient. The other companies are then 

BCC-inefficient and the analysis defines reference slacks for each input sources and output 

measures based on the BCC-efficient units. The slacks provide improvement potentials (𝑠−∗ or 

𝑠+∗) to the BCC-inefficient companies. The improved activities are then BCC-efficient, as follows: 

𝜃𝑘
∗𝑥𝑘 = ∑ 𝜆𝑗

∗𝑥𝑗 + 𝑠−∗      ( 30 ) 

 𝑦𝑘 = ∑ 𝜆𝑗
∗𝑦𝑗 − 𝑠+∗      ( 31 ) 

The next step of DEA is to determine the input sources and output measures that would 

involve in the analysis. Although the DEA method is designed to analyze the performance of 

entities with multiple inputs and outputs, it is an important task to select suitable input and output 

variables that could fully represent the performance of energy utilization for the actual 

manufacturing processes and exclude the miscellaneous factors. The selection of the input and 

output variables is also dependent on the data acquisition method and data availability. 

The annual consumption of electricity and natural gas is one of the most important input 

sources for SMEs that participated in the IAC program. Other sources such as LPG, oil, water and 

other charges like electric demand and fees are also available in the database. Although the DEA 

method could analyze the efficiency with various input types, the records for those sources are 

inconsistent and incomplete. For instance, the electric demand is recorded only for companies that 

assessed after the year of 1996 and the water consumption is only available for less than 50% of 
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the companies despite its necessity to almost all plants. Since this study is focused on the energy 

usage and efficiency of manufacturing plants, other physical inputs such as raw material are not 

considered. Certain features of the company can also affect the final energy usage. The plant area 

and the employment size are among those influential features. The labor energy intensity (energy 

usage per employee) and the space energy intensity (energy demand per square foot of plant area) 

are important indictors when evaluating plant efficiency [75]. The size of the employment 

correlated to the electricity usage and cost, while the plant area directly impacts the gas usage and 

cost especially for those located in cold areas or with weak building envelop. In summary, the 

electricity, natural gas, size of employment and plant area were chosen to be the input factors for 

the analysis. 

Table 19 Input Values of Selected Companies per Subsector in DEA 

Manufacturing 

Subsectors  

 Average 

Employment 

Size  

 Average 

Plant Area 

SQ FT  

 Average 

Electricity Usage 

103 kWh  

 Average Gas 

Usage 

MMBTU  

 Food  156 133,085 5,524 32,547 

 Textile  175 171,885 8,484 31,797 

 Wood  137 160,338 6,676 10,519 

 Furniture  219 216,022 3,473 13,526 

 Paper  129 169,283 5,630 25,963 

 Publishing  176 112,833 4,568 11,255 

 Chemical  109 134,626 6,106 28,353 

 Plastics  130 114,468 7,506 7,043 

 Nonmetallic Mineral  133 119,627 4,514 20,734 

 Metal  133 142,609 6,872 35,682 

 Fabricated Metal   153 147,112 4,246 16,955 

 Machinery & PC  169 136,836 3,639 11,999 

 Electronic Equip.  209 133,731 5,475 11,014 

 Transportation Equip.  212 144,373 5,468 12,020 

 Entertainment  207 117,397 4,662 7,234 

 



70 

 

Both annual sales and physical yearly production are valid components to measure the 

outcome levels for manufacturing plants. However, as discussed before, it is hard to unify the 

physical units of production levels and may cause misunderstanding during analysis.  The utility 

costs consist an important part of total expenses for the plant. The costs vary between plants and 

may fluctuate among industries, regions and years. Analysis of the utility bills could reflect the 

healthiness of the energy use structure and reveal hidden or unnecessary charges by comparing 

with similar demand entities. Thus, the utility costs for electricity and natural gases, together with 

the annual sales are selected as output measures in analysis. 

Since DEA analyze the internal energy efficiency of selected units and the energy usage 

structures may be significantly different between industries, the DEA analysis was carried out 

separately for each manufacturing subsectors. 150 companies of each subsector were selected 

randomly from the database. The average employment size, plant area and energy usage for each 

subsector are listed in Table 19. An energy efficiency score is provided after each analysis by 

comparing with the companies with best energy efficient practices in the group, as well as the 

estimated slack distance between inefficient and efficient units for each input factor. 

4.2.3 Logistic Regression Analysis 

Applying energy and cost saving projects is an important way to approach better energy 

efficiency. Tremendous programs and policies are devoted to promoting the best energy practices. 

The IAC program aims to help SMEs around United States to connect with advanced energy 

efficient knowledges and commercially available energy-saving technologies. One of the most 

important outcomes for each energy audit is the ECMs proposed by IAC staff. To ensure complete 

understanding and adequate adoption of the proposed ECMs would be a promising way to achieve 

the program objectives. While the situation of each plant and the concerns for each ECM 
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installation are different, the implementation status of ECMs simply shows the results of 

“implemented” or “non-implemented”. To investigate the reasons for a proposal to be adopted or 

not could help future IAC staffs to better serve the SME community. 

Unlike the sales or costs that have continuous values, the values for the adoption of ECMs 

are discrete and in this case, only structured with binary outcomes. Logistic regression could 

statistically analyze the relationship between categorical response variable and multiple 

independent variables [51]. It is superior in this analysis as the adoption status of ECMs is a typical 

categorical variable. The model also expands the limits on other inputs or factors and could involve 

either continuous or discrete variables for the analysis. The response variable in the Logistic 

Regression is the logarithm of the ECM implementation odds ratio. The odds ratio is the 

probability of the response variable occurring against the probabilities of the response variable not 

occurring [76]. In this case, it is the probability of an ECM to be adopted versus the probability to 

be abandoned. A transformation function is developed to convert the categorical data to continuous 

values. The function used to accomplish the conversion is called the Logit function or the link 

function. After the transformation, the converted response variable would be linear with the 

independent variables. A simple Logistic Regression model is formed as the following equation: 

𝐿𝑜𝑔𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑌 = ln (
𝑝

1−𝑝
) = 𝛼0 + 𝛼1𝑋1 + ⋯ + 𝛼𝑠𝑋𝑠   ( 32 ) 

where, p is the probability of an ECM to be implemented; 

 𝛼0 is the intercept; 

 𝛼1, … , 𝛼𝑠 are the regression coefficients; 

 𝑋1, … , 𝑋𝑠 are the independent variables. 

Dummy variables will be used if the selected factors include categorical variables. A 

dummy variable is an artificial variable created to represent an attribute with two or more distinct 
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categories. Dummy variables are assigned to distinguish different groups, i.e. different ECM 

categories. In that case, an enormous amount of information can be packed into a single model 

with appropriate use of dummy variables. The values of “0” or “1” are assigned to dummy 

variables to indicate its membership with any mutually exclusive categories. If a parameter 

consists of 𝑁 categories, the necessary number of dummy variables to represent this parameter is 

equal to 𝑁 − 1. The category with no dummy variable constructed is represented by assigning “0” 

to all the dummy variables of other categories for this parameter. 

All possible factors that may affect the implementation of proposed ECMs will be explored 

and discussed. The stepwise testing procedure will be used to evaluate the selected factors and 

determine the best logistical regression model. A significant level of 0.05 will be used for the 

factors to entry or retention of the analysis. The non-significant factor is removed before adding 

the next factor into the analysis. 

The intercept and regression coefficients are calculated by the maximum likelihood method. 

If all the regression coefficients are zero, the Logistic Regression fails to generate better prediction 

of probability of the outcome occurrence than the mean of the dependent variable [76]. If at least 

one of the regression coefficients is not zero, then take antilog transformation on both side of the 

model formula to obtain the calculated probability of the occurrence of a proposed ECM: 

𝑝 =
𝑒𝛼0+𝛼1𝑋1+⋯+𝛼𝑠𝑋𝑠

1+𝑒𝛼0+𝛼1𝑋1+⋯+𝛼𝑠𝑋𝑠
       ( 33 ) 

4.3 Results and Discussion 

4.3.1 Results of SME Energy Usage Decomposition Analysis 

Since the number of companies that participates the IAC program varies every year, we 

randomly selected 200 plants each year from 1987 to 2017 to study the changes of energy end 
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usage. As shown in Figure 27, the average energy usage per plant slightly increases for the period 

of before 1990 and between 1997 and 2002.  During all the other time interval, it steadily decreases. 

By 2017, the average plant energy consumption has dropped more than 10% compared with that 

of 1987. The decomposition analysis would indicate the main causes of those changes. Based on 

energy usage trend, six periods were selected to carry out the LMDI decomposition analysis: 1987-

1992,1992-1997, 1997-2002, 2002-2007, 2007-2012 and 2012-2017. For each period, the last 

year’s energy usage was compared with the base year’s and the changes will be separated into 

three main effects. 

 

Figure 27 Average Plant Energy Usage from 1987 to 2017 of Participated SMEs 

Although only 200 companies were analyzed in this study per year, all objectives were 

randomly selected and included all subsectors distributed across all contiguous states. The analysis 

of those selected companies should be able to draw the trend of SMEs’ energy consumption in 

silhouette. Figure 28 shows the results of the LMDI decomposition analysis for the energy 

consumption during 1987 to 2017. The results are illustrated by four columns that represent the 

activity effect, the structural effect, the intensity effect and the aggregate energy use change for 

each time period. The structure effects are relatively small in all selected time periods, which 
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indicates that the shares of the manufacturing subsectors retain at a steady status for the past three 

decades. The activity and the intensity effects are the main contributors to the energy use changes.  

From 1987 to 1992, the activity effect is the main driver to the change of final energy usage. 

The sales of the manufacturing sector experienced an extraordinary increase from 1987 to 1992 

and then constantly declined except a small bounce up during 2007 to 2012. The decrease of energy 

intensity at 1987-1992 period balanced the raise of activity level and finalized the total energy 

consumption increase at 960 trillion BTU. The other increase of total energy consumption is the 

period of 1997 to 2002 with a rise of 726 trillion BTU. It is worth noticing that the three main 

effects of these two periods have exact opposite influences. The largest energy use decrease 

happened during 2002 to 2007, which matched the timeline of the economic depression started 

early 2007. Declines on all effects were observed, especially the activity level effect. The 

depressed activity level stimulated the plants to transfer to lower energy intensity production. 

However, simply correlate the negative activity effect and the energy intensity decrease would be 

arbitrary. During the period of 1992 to 1997, the activity level experienced similar negative trend 

but the energy intensity effect is only as quarterly strong as period of 2002 to 2007. Further 

investigations of the differences of the behaviors of SMEs, such as the energy profiles, popular 

ECMs and their adoption levels in these periods, would reveal interesting facts. The energy 

intensity effect observed on to the period of 2007 to 2012 even with the economic recovery. It is 

also noticed that the aggregate energy consumption keeps the declining trend and remains at low 

level since then. 
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Figure 28 Decomposition Analysis Results for U.S. SMEs' Energy Use 

4.3.2 DEA Results for Energy Efficiency 

As revealed by the quantitative results of the decomposition analysis, the changes of energy 

intensity and output level could greatly affect the trend of the final energy consumption among 

SMEs. Improving energy efficiency is a common method to achieve higher output with lower 

energy consumption. The data envelopment analysis can help to understand the variance of energy 

use efficiency in industries and their distances to the best energy efficient practices. 
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Figure 29 Average Efficiency Scores by Manufacturing Subsector 

Figure 29 shows the average DEA efficiency scores per manufacturing subsector. 

Generally, the average efficiency score ranged between 80% to 90% for all selected subsectors. It 

is worth noticing that the efficiency scores under BCC model are usually higher than CCR model 

because the return-to-scale is variable, which means the score is estimated by comparing with the 

closest optimal DMUs [77]. Although the scores only reflect the relative energy efficiency among 

selected companies, the estimations show the similarity of energy use strategies within the same 

industry. The known energy-intensive industries such as Wood, Paper, Chemical and Metal have 

lower efficiency while the Nonmetallic Mineral is among the most efficient industries in this 

comparison. Furniture, Transportation Equipment and Electronic Equipment have the highest 

relative efficiency as they are usually highly automated in their production lines with standard 

procedures. The Textile and Wood industries have the lowest efficiency scores and share the 

largest variance within the industry, which indicates diverse and less efficient energy practices in 

these subsectors. 
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     (a)               (b) 

Figure 30 Calculated Improvements of Employee and Plant Area from DEA 

Figure 30 shows the average suggested improvements on size of employment and plant 

area for each subsector to approach the optimal DMUs. It would be unrealistic to suggest 

companies to lay off employees or close part of their plants, but the calculated improvements for 

employment size and plant area indicate the saving potentials in their direct connected energy-

consuming areas. For instance, more employees could mean more office areas which have 

additional requirements for constant lighting, room temperature, more office appliances and 

ancillary facilities such as lunch rooms and restrooms. The improvement under this input variable 

implies inefficient use of energy in non-production plant areas. The average redundant of this input 

is pretty similar for most subsectors, except the ones typically have smaller employment size like 

Metal, Plastics, Nonmetallic Mineral and Chemistry. On the other hand, the redundant plant area 

could lead to unnecessary cost on both electricity and natural gas. A poor insulated building could 

greatly increase the plant’s energy costs during heating and cooling seasons. An inappropriate 

planning of the plant areas may cause the system to supply excessive energy to unnecessary areas 

such as warehouses and loading docks. Smart controls and functional zoning could help to reduce 

energy lost in those areas. Although the improvement potentials vary largely between industries, 
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it wouldn’t be a surprise to find more opportunities in the ones with larger average plant areas as 

summarized in Table 19. 

 

(a)             (b) 

Figure 31 Calculated Improvements and Ratios of Electricity and Natural Gas from DEA 

The improvement suggestions on energy sources of electricity and natural gas could reveal 

the potentials on energy efficient of DMUs. It is noticed that the subsectors consumed more energy 

per plant usually have larger saving potentials. Another parameter, the improvement ratio, is 

introduced to mitigate the plant-size effect and illustrate unbiased energy use efficiency of the 

subsector. As illustrated in the filled radar charts in Figure 31, 15.71% of electricity and 14.51% 

of natural gas could be saved averagely in manufacturing plants with best energy efficient practices. 

The Textile, Paper and Metal industries are among the most energy-intensive and lest efficient 

subsectors. They have the most saving potential on both the electricity and natural gas usage. The 

improvement ratios indicate that the Paper subsector has the worst practices on natural gas and the 

Wood industry uses electricity the least efficient. While the saving potentials of the Machinery and 

Fabricated Metal are relatively small, their efficiencies are below average on both energy input 

sources. Transportation and Electronic Equipment subsectors excels in efficient use of electricity 
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and natural gas. Publishing subsector has the smallest improvement potentials and uses relatively 

smaller amount of energy per plant.  

4.3.3 Influential Factors on ECM Adoption Rate and Logistic Regression Analysis Results 

The DEA results can provide initial prediction of the possible saving areas for each industry. 

Together with a systematic recommendation list, the audit efficiency and accurately can be greatly 

improved. However, to detect the energy inefficient areas and propose energy saving measures are 

only the first steps. Promoting and encourage the implementation of good ECMs would be an 

important follow-up. 

The implementation of ECMs depends on many factors. Figure 32 shows the calculated 

energy intensity of selected manufacturing subsectors. It is clearly stated that the energy intensity 

varies dramatically between industries and even between regions within the same industry. The 

production energy end users within the same industry may be similar, but the factors of the non-

production areas could make the difference in different regions. For instance, the plants in Rocky 

Mountain and Great Lakes tend to be more energy intensive than other regions in many subsectors 

as they need to use more energy during heating seasons to keep their plants warm; on the other 

hand, the plants in more developed regions such as Far West and New England usually have more 

chances to connect with advanced efficient technologies and are more likely to adopt efficient 

measures, which would result in lower energy intensities. Thus, the subsector and the region would 

be important factors to test in analyzing the adoption rates. 
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Figure 32 Energy Intensity Between Regions and Industries 

 The popularity and adoption level of ECM categories could be significantly different as 

illustrated in Figure 33. The adoption rate per category varies from 5.8% to 55.2%, while over 97% 

of proposed ECMs focus on the six main categories of Motor, Building, Thermal, Combustion, 

Operation and Electrical Power. To test whether the ECM category is a significant factor on the 

final adoption probability could assist the audit team in preparing more attractive 

recommendations to plant managers to eventually implement the ECM.  
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Figure 33 Stacked Frequency and Implementation Rate per ECM Category 

The decomposition analysis has shown how the changes of energy intensity affect the total 

energy usage. The interests on different types of saving opportunities have also changed over the 

years. To achieve energy efficiency for existing plants is a slow process. Energy engineers have 

dedicated to promoting and implementing energy efficient projects for years. The first impression 

of a plant’s energy usage situations to the energy audit team would be much different compared 

with those of 40 years ago, so as the plant saving potentials and management’s preferences. Figure 

34 shows the changes of average payback periods of the most popular proposed and accepted 

ECMs from 1987 to 2017. The focus of the audits has changed from short-term projects to longer 

ones, which could also reflect that many plants have already been operating with basic efficient 

practices (such as motion sensors, efficient light sources, etc.). However, a response delay to this 

change can be observed in the figure. The average payback for the implemented ECMs does not 

show a significant increase during the observation period. Overall, more than 67.3% of 

implemented ECMs has payback period less than one year, which is shorter than the average 
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payback of 1.27 years for all proposed ECMs. To test the influence of the payback length and its 

related elements like implementation cost and cost savings could disclose the opinions of the plant 

decision makers towards energy saving measures. 

 

Figure 34 Average Payback of Top 25 ECM Types 

Among the screened sample of ECMs, a total of 33,730 recommendations have been 

implemented, which makes the sample probability for an ECM to be adopted is 48.96%. The 

logistical regression analysis could develop a model to estimate the probability to implement an 

ECM according to the determined significant factors. The industry type, the located region, the 

ECM type, payback period, implementation cost and cost savings are evaluated.  

 The industry type was the first factor to enter the model. Although the p-value of this 

variable is less than 0.05, the odds ratio for the plant to implement an ECM keeps at 1.00, which 

means that the change of the industry type is not always together with change of adoption 

probability. Therefore, the industry type that are not significant related to the implementation of 
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ECMs were removed in the model. As shown in Table 20, it is found that different industries treat 

the saving opportunities differently. The Publishing, Electronic and Transportation industries are 

the most efficient industries according to DEA results, which also make them the least likely 

industries to accept ECMs. The subsectors of Wood, Furniture, Nonmetallic Metal and 

Entertainment are more open to install ECMs compared with other industries. The plants in Paper, 

Chemical and Metal has the lowest odds ratios to implement ECMs while they have most saving 

potentials. To increase the plants’ interests to adopt ECMs, future recommendations should work 

harder to focus on the specific needs of each industry. Five industries (Wood, Paper, Publishing, 

Chemical, and Metal) are included in the regression model and represented by dummy variables 

𝑋1 to 𝑋4. The Wood industry is represented by assigning “0” to all these four dummy variables.  

Table 20 Significant Test for Industry Type 

Predictor Coefficient 
P-

Value 

Odds 

Ratio 

95% CI 

Lower 

95% CI 

Upper 

SIC Group  0.028  1.00 1.00 1.00 

Constant -0.0036 0.892      

Textile 0.0036 0.568 1.00 0.91 1.10 

Wood 0.0914 0.028 1.14 1.05 1.23 

Furniture 0.0109 0.839 1.01 0.91 1.12 

Paper -0.1249 0.011 0.91 0.85 0.98 

Publishing -0.2055 0.000 0.85 0.78 0.92 

Chemical -0.0639 0.020 0.91 0.84 0.98 

Plastics -0.0567 0.050 0.94 0.89 1.00 

Nonmetallic Mineral 0.0313 0.678 1.03 0.93 1.14 

Metal -0.0577 0.034 0.92 0.86 0.99 

Fabricated Metal  -0.0368 0.207 0.96 0.91 1.02 

Machinery & PC -0.0331 0.297 0.97 0.91 1.03 

Electronic Equip. -0.0548 0.184 0.95 0.88 1.02 

Transportation Equip. -0.0680 0.117 0.93 0.87 1.01 

Entertainment 0.0320 0.642 1.03 0.93 1.15 
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The cost savings and implementation cost are not reported to have significant influence of 

the implementation of the recommendation. However, the length of the payback period is an 

important factor that greatly influence the implementation of an ECM. As illustrated in Table 21, 

the analysis results show that the odds ratio of the payback period is 0.82, which indicates that for 

every one-year increase of the payback period, the odds for the plant to implement the measure 

decreases by 0.18. This parameter is represented by variable 𝑋5 in the model. 

Table 21 Results of Logistic Regression Analysis 

Predictor Coefficient P-Value 
Odds 

Ratio 

95% CI 

Lower 

95% CI 

Upper 

Constant 0.1092 0.016 0.02     

Payback -0.1925 0.000 0.82 0.81 0.84 

ECM_Group   0.000 1.37 1.27 1.48 

Thermal Systems -0.2115 0.000 0.81 0.75 0.87 

Electrical Power -0.3530 0.000 0.70 0.64 0.77 

Motor Systems 0.3249 0.000 1.38 1.29 1.48 

Operations 0.2030 0.000 1.23 1.12 1.34 

Building and Grounds 0.1619 0.000 1.18 1.10 1.26 

State_Group   0.000 1.03 1.02 1.04 

Mideast -0.1069 0.011 0.90 0.83 0.98 

Great Lakes -0.2866 0.000 0.75 0.70 0.81 

Plains 0.0995 0.014 1.10 1.02 1.20 

Southeast -0.0533 0.150 0.95 0.88 1.02 

Southwest -0.0032 0.937 1.00 0.92 1.08 

Rocky Mountain 0.0887 0.076 1.09 0.99 1.21 

Far West 0.0259 0.529 1.03 0.95 1.11 

 

The ECM type shows a strong relationship with the adoption of efficient measures. It shows 

that the plant managers are more likely to install ECMs about Motor system, Operation and 

Building & Ground. The odds to install an ECM about thermal system or electrical power reduce 

by 0.19 and 0.3 respectively. The recommendations about these topics usually involve large 
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amount of financial inputs and have longer payback periods. However, as revealed in Figure 34, 

the easy and quick payback measures have been fully developed over the years, the future trend of 

the ECMs are the ones that have longer payback periods but would benefit the plants in the long 

run.  Six ECM categories are explored in the model and are represented by five dummy variables 

𝑋6  to 𝑋10 . The situation with all “0” values in all of these dummy variables indicate the 

Combustion category. 

The location of the plant is another significant factor. The plants located in less developed 

areas like the Plain, Rocky Mountain regions are more likely to install proposed ECMs. If the plant 

located in Southwest, Southeast and Far West regions, the adoption rates of ECMs would not be 

significantly impacted. However, the probabilities of the plants in Great Lakes and Mideast areas 

to install ECM are reduced by 0.25 and 0.10. Numerous SMEs locate in those regions and most of 

them consumes large amounts of natural gas during winter times, in which lies huge saving 

potentials as illustrated in DEA results. Special stimulations should be developed to encourage the 

adoption of ECMs for each region. Dummy variables 𝑋11 to 𝑋17 are used to represent the regions 

except New England.  

The final model is expressed in Eq. 34 with complete coefficients listed in Table 22. 

Table 22 Logistic Regression Coefficients 

Coefficients Values Coefficients Values Coefficients Values 

a0 0.1473 a6 -0.2115 a12 -0.2866 

a1 -0.1249 a7 -0.353 a13 0.0995 

a2 -0.2055 a8 0.3249 a14 -0.0533 

a3 -0.0639 a9 0.203 a15 -0.0032 

a4 -0.0577 a10 0.1619 a16 0.0887 

a5 -0.1925 a11 -0.1069 a17 0.0259 
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𝑝 =
𝑒0.1473−0.1249𝑋1+⋯+0.0259𝑋17

1+𝑒0.1473−0.1249𝑋1+⋯+0.0259𝑋17
    ( 34 ) 

4.3.4 Case Study 

Case studies are carried out to demonstrate the application of the proposed models in this 

section. A predictive evaluation with clear saving targets can help the plant to make feasible goals 

towards more energy efficient manufacturing. Six SMEs are random selected from the IAC 

database to performance the energy evaluation and set up the savings and implementation targets. 

The results are then compared with actual assessment recommendation savings and adoption status. 

The basic information about the six companies are described in Table 23. The companies 

are from different industries and regions with distinct sizes of employment, plant area and 

economic outputs. These companies are analyzed by the input-oriented BCC models to calculate 

the DEA efficiency scores and input improvement values. The analysis results are listed in Table 

24. The performance indicator of selected companies varies from 0.64 to 0.96. 

Table 23 Characteristics of Selected SMEs 

Company Sales ($) Employee 
Plant Area  

(Sq Ft) 
Industry Region 

C1 $91,070,493 150 220,000 Chemical Plains 

C2 $57,518,206 200 240,000 Chemical Far West 

C3 $88,443,190 375 4,539,823 Fabricated Metal Southeast 

C4 $86,277,309 425 600,000 Machinery & PC Great Lakes 

C5 $85,277,309 290 300,000 Machinery & PC Great Lakes 

C6 $64,228,664 219 523,000 Electronic Equip. Southeast 

 

The comparisons of electricity savings and gas savings in different scenarios are illustrated 

in Figure 35 and Figure 36. The “Improvement” columns indicate the estimated potential based on 

the DEA models. The “Proposed” columns are the identified savings during energy audits. The 

“Implemented” columns represent the actual implemented energy savings based on the feedbacks 
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from customer surveys. It is shown the potential savings identified by models for both electricity 

and natural gas are not fully explored during energy audits with “C2” and “C3” as exemptions. 

Comparing the DEA score data, it is shown both exemptions are high-score customer with already 

decent energy efficiency. Therefore, plants with better practice of energy efficiency are more 

willing to explore and implement ECMs. In contrast, the implemented ECMs for low-score 

customer are relatively small as shown in “C1” and “C6”. Although more than enough ECMs are 

proposed for customer “C6”, only less than 30% of them are adopted. Last but none the least, both 

recommendation and implementation situations for gas related measures are far from reaching 

targets. The possible reason is the relatively low natural gas price. 

Table 24 Energy Inputs and Calculated Improvement Values via DEA 

Company 
Annual Elec. 

Usage (kWh) 

Annual Gas 

Usage (MMBTU) 

DEA 

Score 

Improvement 

(Elec. kWh) 

Improvement 

(Gas MMBTU) 

C1 7,551,960 18,549 0.700 2,263,095 5,559 

C2 3,073,333 9,719 0.930 215,905 683 

C3 5,800,467 10,798 0.738 1,520,285 2,830 

C4 9,756,000 27,135 0.965 345,697 962 

C5 4,926,321 14,245 0.758 1,192,590 3,449 

C6 5,804,609 15,887 0.640 2,086,971 5,712 

 

Overall, the savings potential prediction and comparison analysis can provide guidelines 

for future assessments and set up better objectives for the energy audits. For instance, more 

attention should be paid to low-score customers and natural gas consumption especially when it 

comes to implementation. It is suggested to do more education work to address the economic 

benefits and environmental contribution during the assessment process.  
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Figure 35 Electricity Savings Comparison 

 

Figure 36 Natural Gas Savings Comparison 

A total of 48 ECMs are proposed in the selected six energy assessments. An example of 

proposed ECMs and predicted implementation probability are shown in Table 25. The predicted 

probability of implementation is calculated using Eq. 34. The values of the four factors (payback, 
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industries, ECM categories and regions) are substituted in to the model. Noting that only a few 

industries are entered in the model with constructed dummy variables. The ECM category of 

Combustion System and the region of New England are represented with the related dummy 

variables 𝑋6 to 𝑋10 and 𝑋11 to 𝑋17 to be “0” values. The observed implementation status is the 

recorded status of proposed ECMs from each assessment. The performance of the proposed 

logistic regression model is assessed by comparing those two values.  

Table 25 Example of Proposed ECMs and Implementation Prediction 

ID Payback Industries ECM Category Region 

Predicted 

Implementation 

Probability 

Observed 

Implementation 

Status 

C4-1 0.00 Machinery 
Building and 

Grounds 
Great Lakes 51% I 

C4-2 0.00 Machinery Motor Systems Great Lakes 55% I 

C4-3 0.00 Machinery Operations Great Lakes 52% I 

C4-4 0.23 Machinery Motor Systems Great Lakes 54% I 

C4-5 0.00 Machinery Operations Great Lakes 52% I 

C4-6 2.77 Machinery Thermal Systems Great Lakes 29% I 

C4-7 0.36 Machinery Thermal Systems Great Lakes 40% N 

C4-8 0.85 Machinery Electrical Power Great Lakes 34% N 

C4-9 1.43 Machinery Combustion Great Lakes 40% N 

C4-10 0.00 Machinery Combustion Great Lakes 47% N 

 

The classification table of the prediction accuracy is listed in Table 26. If the predicted 

probability is greater than 50% and the ECM is actually implemented (with status “I”), the 

prediction is considered to be correct; otherwise the prediction fails. A successful prediction can 

also occur when the ECM is not implemented and the calculated probability is less than 50%. The 

overall correct prediction percentage of this model is 64.6%. 
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Table 26 Classification Table for Prediction Accuracy of ECM Implementations 

Implementation 
Predicted Correct 

Prediction % 1 0 

Observed 
I 11 7 61.1% 

N 10 20 66.7% 

Overall Correct Perdition % 64.6% 
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Chapter 5 Conclusions 

This thesis aims to draw a sophisticated picture for the energy usage, efficiency and savings 

for the manufacturing SMEs.  Key energy characteristics are progressively investigated from 

micro to macro in three chapters. A general energy model for CNC machine is proposed to evaluate 

the energy consumption during unit machining process, an integrated model for CAS is built to 

investigate the energy savings potential of the whole system, IAC database is analyzed to obtain 

the overall energy characteristics of the SMEs in the US. The main contributions are summarized 

as follows: 

1. This thesis built a general SEC model which can be used for multiple machines with 

similar power capacity level. In the proposed model, the stand-by power ratio (Rs) and the power 

rating of the spindle motor (Ps) are selected as factors to represent the automation level and size 

of the machine. The MRR is used to indicate the machining speed. A regression model is proposed 

based on the analysis of the relationship among Rs, MRR and SEC. The experimental and modeling 

data from reference papers are used to fit the regression model using Matlab.  

2. In validation analysis, the results show an accuracy of over 80% for all cases. The 

average absolute residual ratio is about 6%, which is comparable with most of the traditional SEC 

models. The model was further validated through designed cutting experiments on a 5.5kW 

machine center. The results show the proposed model is suitable to be used for multiple milling 

machines.  

3. A benchmark analysis for all typical ECMs in CAS was carried out to provide a basic 

guideline for the customer. In proposed baseline situation, Use VFD Air Compressor and Add Air 

Storage provide the largest savings. Load reduction related measures are more attractive because 

of their shorter payback. Some of the ECMs are only suggested for end-of-life replacement due to 



92 

 

their negative NPVs. The results from the benchmark analysis well coincident with the 

recommendation rate distributions of the IAC database. 

4. The savings from the ECMs were evaluated at different combinations in the proposed 

integrated model to investigate their interactions. A Difference% of 17.7% for load reduction 

measures implies significant positive interactions. Mixed Difference% were obtained at various 

scenarios with negative interactions dominate the integrations. An optimization guideline was 

proposed for different load factors based on the integrated savings results. 

5. Reliability analysis was carried out to investigate the savings in the changing operation 

conditions. Load reduction measures are extremely sensitive to the LF with a savings reduction of 

over 69% when increasing LF from 40% to 80%. In contrast, low-cost system efficiency measures 

are positively related to LF. Overall, larger LF and less operation hours mean less savings potential 

in most scenarios.  

6. Energy usage was researched for selected SMEs in different time periods and 

manufacturing subsectors using decomposition analysis. The statistical data reveals that the energy 

intensity varies among regions and industries. For SMEs, the structure change over the past three 

decades has few contributions to the changes of total consumption. The economic healthiness and 

prosperity, together with the popularization of energy efficient measures have greatly impacted the 

energy usage of SME plants.  

7. The energy efficiency of different manufacturing subsectors was analyzed by DEA 

method. The results show the variance of energy efficiency between industries and reveal the 

improvements that the plant need to achieve by implementing energy efficient measures. An 

average of 15.71% of electricity and 14.51% of natural gas can be saved if approaching energy use 

strategies of the manufacturing plants with best energy efficient practices. 
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8. Key factors that influence the decision to adopt ECM proposals was analyzed using 

logistic regression. The simulations show that payback period, region and ECM type are significant 

factors that determine the implementation of ECMs. The odds ratio for an ECM to be installed 

reduces 0.18 for every one-year incremental of payback period. Also, ECMs about thermal system 

or electrical power are less likely to be implement by 0.19 and 0.3 respectively. It also found out 

that the probabilities to install ECMs dropped to 0.75 and 0.90 if the plants located in Great Lakes 

and Mideast areas. 

Future Researches 

This thesis analyzed the manufacturing usage characteristics from unit process, to 

manufacturing system and finally the overall SMEs community to discover the energy and cost 

saving opportunities. Although the proposed general model can predict the SEC of multiple 

machines, there are some limitations with the proposed model. First, the current model is limited 

to predict the energy consumption of machine tools with similar or same level of power capacity. 

In this study, two regression analyses were carried out to obtain the models for two selected 

machine power levels. There is potential to include machines with various power capacity levels 

into one general SEC model in future research. Second, due to the experimental data limitation, 

the proposed model can only be effectively applied for certain range of MRRs. The accuracy and 

reliability of the proposed model can be improved through adding more MRR data in the future. 

Also, additional experiments should be carried out to further validate the versatility of the proposed 

model. 

Although encouraging the industry to install ECMs has been a traditionary and popular 

objective of energy efficiency policies and programs, there has been an increasing emphasis on 

energy saving opportunities at other levels such as reducing production energy usage and recycling 



94 

 

[41]. The IAC Recommendation Code has included measures about minimizing wastes, increasing 

productivity and other production-related problems for a long time. As shown in Figure 37 non-

ECM proposals have been popular in energy reports between 1995 and 2005, but gradually shrink 

into oblivion thereafter. It is worth promoting non-ECMs among SMEs as most of them cannot 

afford on-site energy staff and good, efficient processes would be easier to keep and pass along. A 

recent update of IAC has expanded the saving potential scope to explore smart manufacturing 

technologies and improve cybersecurity awareness. The transitions reflect the newest demand and 

attention from industry about energy efficiency. Future energy engineers should be closer to the 

trends and integrate those potential into opportunities. 

 

Figure 37 Non-ECM Recommendations Frequency from IAC Database 
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