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ABSTRACT 
COORDINATION AND CONTROL OF A TEAM OF MOBILE ROBOTS IN AN UNKNOWN 

DYNAMIC ENVIRONMENT 

by 

Sucheta Roy 

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Dr. Mohammed H. Rahman 

 

This research presents a dual-level control structure for controlling a mobile robot or a group of 

robots to navigate through a dynamic environment (such as an object is moving in the workspace 

of a robot). The higher-level controller operates in cooperation with robot’s state estimation and 

mapping algorithm, Extended Kalman Filter – Simultaneous Localization and Mapping (EKF-

SLAM), and the lower-level controller (PID) controls the motion of the robot when it, encounters 

an obstacle, i.e., it reorients the robot to a predefined rebound angle and move it straight to 

maneuver around the obstacle until the robot is out of the obstacle range. The higher-level 

controller jumps in as soon as the robot is out of the obstacle range and moves the robot to the 

goal. The obstacle avoidance technique involves a novel approach to calculate the rebound angle. 

Further, the research implements the aforementioned technique to a Leader-Follower formation. 

Simulation and Experimental results have verified the effectiveness of the proposed control law. 
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INTRODUCTION 

 

Mobile robots are widely used today in a variety of fields such as agriculture, industry, land 

mining, military applications, space exploration, nuclear plants, and in many other applications 

where the environment is inaccessible or hazardous to humans. WMR have a greater degree of 

autonomy, which make them ideal for Lean operations, where robots help with increasing the 

efficiency of an industry or an organization. Most WMRs are equipped with an array of complex 

sensors to detect objects around them. The ability to accurately perceive a dynamic environment 

in real-time is incredibly difficult, but that is why WMRs are so valuable in a constantly shifting 

industrial setting. In the case of WMR, the problems of path planning, trajectory following, and 

obstacle avoidance are the most challenging and interesting subjects and would be addressed 

throughout the project. 

 

To address this issue, as a part of this research we propose to develop an optimal path planning 

technique to make good use of any available information on the environment and to develop a 

control technique to drive the robot along the planned path. Also, the intent was to have a seamless 

communication of multiple robots, on the field, to a primary computer so that the location of the 

obstacles and the robots are recorded simultaneously to the common map. If no information is 

available about the environment or if a dynamic obstacle suddenly emerges, an obstacle avoidance 

technique that can autonomously drive the robots safely to the destination without colliding with 

objects on its way is desirable.  

 

The research uses EKF-SLAM [12] to navigate around the room and to implement an obstacle 

avoidance method. This process was implemented by using a LIDAR and six IR sensors to scan 
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the immediate environment. The robot uses the scanned data to learn about its surroundings and 

to build a map of the previously unknown environment. The EKF-SLAM process continuously 

updates its location based off landmarks. Having created a map of the environment, the robot can 

use it to determine the best route for navigation. Another function of this research was to utilize 

the obstacle information to calculate and predict the optimum path to avoid the obstacle would be 

determined. The design objective of the research was to create a small and compact system which 

can be mounted on the robot without any interference with the navigation or other computer 

components. Detail description of the mechanical components are given in Chapter 3.  

 

The goal of this research is to develop control and learning algorithms that will enables a group of 

robots to cooperate and work within a dynamic and in a completely unknown environment. The 

methodology would involve a combination of EKF and SLAM. The research would be validated 

on MATLAB using a group of three mobile robots to reach some pre-determined locations and 

return to the base or the origin. The hardware implementation of the algorithm on two mobile 

robots in the Leader-Follower formation would further corroborate the research. 

 

The specific aims of this research project, based on the limitations outlined above, are: 

• To develop the kinematic model of a three wheeled omni-directional mobile robot,  

• To develop a group architecture which initiates coordination between the mobile robots, 

• To construct some simple system dynamics where a generalized model is designed for  

the group of robots, and 

• To implement EKF-SLAM to a team of mobile robots. 
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This project is divided into five phases, as follows: 

Phase I – Design 

In the design phase, all the necessary components that would be required, in order for the robot to 

avoid obstacles and communicate with the processing GPU, will be determined. The primary goal 

for the robot will be decided and its maximum capabilities were established. The chassis for the 

robot would be chosen so that the robots have a small size and have frames to mount sensors. 

 

Phase II – Build and Program 

In this phase, all the components will be mounted to the robot chassis. The initial programing to 

test all the motors will be completed, along with the calibration all the sensors. Further, initial tests 

will be done on the sensors and motors. Necessary changes would be made on the robot 

accordingly. 

 

Phase III – Test 

After the robot is assembled, it will be tested by a completely wired system. The robot would be 

tested extensively to verify that the robot detects an obstacle and consequently move through the 

predetermined locations. Troubleshooting and tweaking of the robot will be done in Phase IV to 

make sure the robot would perform as intended and that no unexpected errors arise once completed. 

 

Phase IV – Adding Multiple robots 

In this phase, multiple robots (one in our case) will be built in the same way as the first robot. The 

robot would be tested to effectively communicate with the processing GPU to simultaneously 

determine the locations of the other robots in a common map.  
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Phase V – Experimentation 

After establishing communication between the robots and the processing GPU, the algorithm will 

be tested by simulating random static obstacles. After the simulation worked, the obstacle will be 

modified to be more complex, for this research, a circular wall with one opening would be 

designed. The next step would be to implement the hardware with the final algorithm and simulate 

real-time obstacles. Two tests will be conducted with the hardware. The first test directed the 

robots to predefined goals while avoiding static and dynamic obstacles. The next test instructed 

the robots to move randomly while avoiding all the obstacles. This phase would, therefore, 

conclude the objective of this project.  
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CHAPTER 1 

LITERATURE REVIEW 

 

Nowadays, groups of mobile robots are widely used in a variety of fields such as logistics robots 

and autonomous transport systems at plants, exploration, and navigation in space and nuclear 

plants, where the environment is inaccessible or hazardous to humans and even for educational 

purposes like use of Lego Mindstorm EV3 for FIRST Robotics challenges. The development of 

concepts for navigation for a group of robots is often a common research topic and has been studied 

extensively for finding an efficient strategy to avoid obstacles and for path optimization. 

Navigation in a dynamic environment presents a challenge for mobilizing and path planning for 

multiple robots. Although there are numerous solutions presented, there are plenty of hinderance 

associated with it, like for Heuristics algorithms [1], which can only be implemented for just static 

obstacles, or for MST [2], which needs to be re-computed at every time step and overloads 

communication, or in case of Gaussian Process Frontier-based Exploration [3], where dense 

coverage of obstacles leads to a noisy control. These are important issues since robots often must 

be able to exchange data and communicate with each other in order to coordinate and to 

successfully fulfill their tasks. 

 

Baede, T.A., in [4] defines the system kinematics and implements a planar motion control 

algorithm of an omni-directional robot. The time-domain performance of the motion controller 

was tested under a variety of PID conditions using position control perfectly suited to the robot.  

The proposed strategies identified in the research removed the performance-degrading effect but 

could not accommodate velocity control due of its significantly lower performance in time-

domain. 
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The motion of an omnidirectional robot with four wheels has been discussed in [5]. This research 

determined the problems in driving an omnidirectional robot, which are to detect and handle wheel 

slippage and to handle the failure of motors. Therefore, for an optimal control, the slippage in 

wheels are considered for the kinematics. The research also studied the effects of high velocity 

and accuracy of driving a robot in a real-life scenario using a PID control. Further, a control 

strategy is developed for the case in which the robot loses one of its motor. 

 

A three wheeled omni-directional mobile robot, where the wheels are arranged at the vertices of 

an equilateral triangle, has been analyzed for its kinematics in [6]. In this research a very simple 

and easy to implement vector analysis on the wheels of the robot to determine its kinematic model 

is presented. Further, the wheel slippage was not considered for the analysis of the motion. This 

particular research uses a low-level program to achieve basic robot functionalities like turning 

around, moving forward, etc., which can easily be built up to a complex program where the robot 

can maneuver diagonally. 

 

There are other algorithms such as Sequential Decision Theory, Feedback Motion Planning, 

various Differential Models which gives an optimum means to develop a trajectory and path 

planning and following system for a particular type of robot. For example, Maalouf in [7] adopted 

a technique to assess terrain and generate a cost matrix for a 3D terrain for the trajectory planning 

for the Pioneer 3-AT robot has been analyzed. It uses fuzzy controller with a terrain smoothness 

factor to follow the planned trajectory. Further, a fully autonomous navigation system was 
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implemented using the ARIA interface for localization and CVM for obstacle avoidance. The 

algorithm worked well for simple obstacle objects but was not debugged for complex obstacles. 

 

Mojtahedzadeh, in [8], presents an obstacle avoidance model using the Kinect sensor. The 

algorithm presented is primarily developed in MATLAB and uses the straight-line segments and 

circle arcs methods along with the point cloud data extracted from the Kinect to model the 

surrounding environment. The data clustering process is used to group the point cloud data in such 

a way that it resembles the obstacles. This algorithm can be adapted for a LIDAR and/or IR sensor, 

which are used to develop various small-scale robots, as has been used for this research. But the 

research suffered due to the projection pattern of Kinect, which was not able to detect very bright 

and dark areas. Further, the limited range detection of Kinect limited the research to indoor 

environment. 

 

The research presented in [9], provides a simple real-time obstacle avoidance algorithm for mobile 

robots. The proposed algorithm calculates a rebound angle based on the data collected equally 

spaced ultrasonic sensors. The primary advantages of the algorithms were that it has a very less 

computational load and can be used for low cost sensors and microcontrollers. Some of the 

drawbacks are that the sensors are highly subjected to noise and further, implements less data 

points collected from the surroundings. This algorithm, therefore, has the potential to be modified 

and be implemented to a higher-level programming with sensors like LIDAR which can collect 

multiple data points from all around the robot. 
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For a group of robots, one of the most primary concern is to control and update each of the robots’ 

location in the map, so that the robots don’t interfere with another robot’s trajectory. The leader-

follower approach is one of the most implemented method for formation control problems, as 

described in [10-11]. The research done in [10] defines a chain structure with two Leaders but due 

to lack of correcting spacing errors, the errors gets amplified considerably down the chain of 

robots. Approaches for the leader-follower formations, like non-smooth analysis with 

synchronization of navigation around artificial potential fields to maintain a triangular formation, 

has been discussed in [11]. This research based its navigation feedback based on the partial state 

of the leader received by the followers due to a time-varying velocity, which eventually leads to 

uncertainty when obstacles are taken into consideration. 

 

A combination of the traits mentioned by the aforementioned researches can be useful for 

successfully having a formation control in a dynamic environment. Techniques like SLAM where 

a robot enters an unknown environment and collects surrounding information to spatially locate 

itself and other obstacles in a map can further contribute to an effective localization and mapping. 

In [12], SLAM has been used with an EKF estimator to reduce uncertainties in the system. In the 

proposed algorithm, the robot observes landmarks (obstacles) to locate itself or correct its location 

in a space. This technique can be extended to a more complex program to achieve robot mobility 

in real-time. 

 

In case of a multiple number of robots in a system, the primary issue to look at is how to establish 

an effective localization strategy so that one robot does not interfere with another. Exploring an 

unknown environment by a group of robots has been discussed extensively in [13-15]. Instead of 
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building a powerful single robot, a WMR group can provide flexibility in performing the task 

required, as well as making the system more tolerant to possible individual robot faults. Most of 

the robots use a global map to plan their paths to efficiently coordinate their actions. Using the 

information collected from a robot about an explored cell and simultaneously updating the global 

map, the robots move to their respective targets.  

 

In [13], a target point is assigned to a specific robot so as to minimize the time needed to completely 

explore an environment. The robots use a global map to plan their paths to efficiently coordinate 

their actions. The concept of grid maps has been used where each cell gets assigned a probability 

of having an obstacle. Using the information collected from a robot about an explored cell and 

simultaneously updating the global map, the robots move to their respective targets. The primary 

drawback of this research was that the robots were not able to distinguish between targets assigned 

to another robot. 

 

The research discussed in [14], uses several strategies, referred as Reserves, Divide and Conquer, 

and Buddy System for multi-robot spatial exploration. In Divide and Conquer, the group of splits 

in two to accomplish a particular task, in Reserves, extra robots in waiting until they are needed 

for the task and in the Buddy System, the group of robots split in two to achieve two separate tasks. 

The Reserves strategy is significantly slower at exploring the environment than other strategies. 

But all the strategies had some amount of interference between the robots. 

 

Mehrjerdi, in [15] proposes a dynamic tracking control using a two-level controller to deliver 

smooth robot movement. The lower level controller uses a simple PID whereas the higher-level 



 

10 
 

controller uses a feedback controller using an exponential sliding mode, a Lyapunov technique for 

coordination between robots and fuzzy control to instruct the robots to avoid any obstacles along 

their paths. The robot effectively avoids collision to another robot by simply moving out of its 

way, but the strategy presented cannot regain its path if it loses its coordination, after a collision. 

 

Coordination techniques like static and dynamic and communication has been detailed in [16]. 

Further, two control architectures, centralized and decentralized, were elaborated. The advantages 

and disadvantages of both were discussed. A centralized control architecture proved to be better 

for a small group of robots in a relatively quiet environment. For the decentralized control 

architecture, a hierarchal and distributed control was defined. The decentralized control proved to 

be more reliable and robust, but the control is not as effective as that of the centralized control 

where a single computer can manage the path of all the robots. 

 

In this research, a dual-level controlling algorithm has been discussed. A higher-level controller is 

developed based on SLAM with EKF as discussed in [12]. The lower-level controller is used when 

the robot encounters an obstacle. The higher-level controller activates as soon as the robot is out 

of the range of the obstacle/s. A novel obstacle avoidance technique has been described which 

makes the obstacle avoidance algorithm very easy to implement with different control algorithms. 

The Chapter 2 of the paper describes the setup of the system the proposed method has been tested 

upon. Chapter 3 and 4 goes over the Kinematic Modelling and the Obstacle Avoidance method, 

Control Approach and, the Mapping and Localization, respectively. Finally, the paper establishes 

the results derived by the simulation and hardware implementation (Chapter 5) and presents a 

conclusion (Chapter 6). 
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CHAPTER 2 

KINEMATIC MODELING 

 

This Section of the research goes over the Kinematics of the HCR with Omni wheels. Further, this 

chapter explores techniques enable an efficient, smooth and continuous robot movement along a 

desired path determined by the control algorithm discusses in Chapter 3. Moreover, the Formation 

Control Method and the Obstacle Avoidance method for a group of three mobile robots has been 

discussed later in this section. 

 

2.1. Modelling the Motors 

This section aims to describe the kinematic model for robot with omni directional wheels 

as shown in Figure 1. Therefore, via the suitable structure design, this kind of the mobile 

robot base can make the robot move any direction, and hence construct omnidirectional 

maneuvering capability. 

 

 

Figure 1: Omni directional wheels 
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Figure 2 depicts the kinematic diagram that is used to find the kinematic model of the  

robot, where θ denotes the vehicle orientation. Velocity components in the x and y 

direction, Vx and Vy, can be determined by the linear velocity V and the rotating angle θ, 

as shown in Figure 2. 

 

V2 = Vx
2 + Vy

2 

 

V = √Vx
2 + Vy

2 

Vx = Vcos(θ) 

 

Vy = Vsin(θ) 

 

 

 

Figure 2: Rotation with respect to the robot center 

 

The kinematic model of the mobile robot is based on the analysis of the rotation of the 

wheels. The velocity of each wheel is calculated using Vectors method. The vector is 

determined for each wheel, as shown in Figure 3, for the robot placed at the origin in its 

initial position. 
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Figure 3: Wheel vector analysis for Omni-wheeled drive 

 

The x and y component for each wheel with respect to the wheel velocities V1, V2 and V3 

can be written as, 

 

V1x  =  −V1cos(30°) V1y  =  −V1sin(30°) 

V2x =   V2cos(30°) V2y = −V2sin(30°) 

V3x = V3cos (90°) V3y = V3sin (90°) 
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Also, the angular velocity θ̇, for the robot can be written as, 

 

θ̇ =  
V

L
=

V1 + V2 + V3

r
 

 

here, L is the radius of the robot base and r is the radius of the wheels. 

 

Vx = −V1cos(30°) + V2cos(30°) + V3 cos(90°) 

Vy = −V1sin(30°) − V2sin(30°) + V3sin (90°) 

 

By combining the three equations for  θ̇, Vx and Vy, we get, 

 

[

𝑉𝑥

𝑉𝑦

�̇�

] = [

−cos(30°) cos(30°) cos(90°)
−sin(30°) −sin(30°) sin(90°)

1

𝑟

1

𝑟

1

𝑟

] [
𝑉1

𝑉2

𝑉3

] 

 

By inverting the coefficient matrix, we can get the wheel velocities as, 

 

[
V1

V2

V3

] =  

[
 
 
 
 
 −0.5774 −

1

3

1

3

0.5774 −
1

3

1

3

0
2

3

1

3]
 
 
 
 
 

[

Vx

Vy

Vz

] 
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Thus, we can get the equations for the wheel velocities as, 

 

V1 = −0.5774Vx −
1

3
Vy +

1

3
θ̇ 

V2 = 0.5774Vx −
1

3
Vy +

1

3
θ̇ 

V3 =
2

3
Vy +

1

3
θ̇ 

  

2.2. Formation Control 

This research defines a leader-follower approach with a triangular formation for three 

identical robots. The follower robots are equally spaced from the leader and the formation 

is shown by Figure 4. 

 
Figure 4: Leader-Follower Formation 

 

The leader and the followers, both follow the same angle of rotation and are always facing 

the same direction. The position of the followers can be estimated by vector analysis as 

shown in Figure 5. 
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Figure 5: Followers position and orientation 

 

For follower 1, 

x1 = x + 0.5cos (θ + 135) 

y1 = y + 0.5sin (θ + 135) 

 

For follower 2, 

x2 = x + 0.5cos (θ + 225) 

y2 = y + 0.5sin (θ + 225) 

 

2.3.  Obstacle Avoidance  

The obstacle avoidance method uses a novel modified version of the combination of the 

Bayes theorem, which states the probability of an event given the probability of a known 

event, along with the VFH method, where it calculates a rebound angle, which is the angle 
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at which the robot should rotate to avoid collision with an obstacle, for the robot by 

determining the lowest obstacle density. 

 

For the proposed method, an efficiency quotient is calculated which determines the factor 

using the equation shown below and Figure 6, shows how the robot observes its 

surrounding.  

 

Figure 6: Robot Observation of Obstacles 

 

For the purpose of this research, the obstacles are considered as circular objects with the 

radius equal to the radius of the robot, whereas, the robot is considered as a point in the 2D 

space.  

The efficiency quotient is calculated by obtaining a ration of the distances decreases as the 

obstacle distance increases from the robot. The efficiency quotient’s value is between 0 

and 1, for an obstacle range of 1m to 2m, 0 being the robot should avoid the angle and 1 
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being the angle the robot can go in the particular direction without any interaction with any 

obstacles. 

 

η𝑖  =  |1 −
d𝑖

𝑑𝑚𝑖𝑛
| 

 

where, η = Efficiency quotient, di=Distance between the obstacle and robot center, dmin = 

Minimum distance at which the obstacle is detected 

 

The formula given in the equation below uses the efficiency quotient. The numerator is the 

sum of the resultant of the product of the efficiency quotient and the slope of the obstacles 

detected by the robot. Since there are multiple sensor readings, an optimum rebound angle 

is determined using equation below, 

 

Rebound Angle =  
√(∑ 𝑠𝑙𝑜𝑝𝑒𝑖 × 𝜂𝑖

𝑟
𝑖 = 1 )2 + (∑ slopei × ηi

r−1
i= 2 )2

∑ ηi
r
i = 1

 

 

where, r = Number of robots, slope = Angle of the obstacle w. r. t the robot pos 
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CHAPTER 3 

TECHNICAL DESCRIPTION AND SYSTEM ARCHITECTURE 

 

This chapter presents all the hardware components use for the successful completion of this 

research. Some of the key aspects for the robot is that it should have a small base frame so that it 

can move around small spaces along with multiple follower robots. Also, the sensors should have 

an unobstructed view of its surroundings. Furthermore, the system architecture, which provides 

supports for behaviors of the system hardware interface, has been discussed in this chapter. 

 

3.1. Physical Components 

The hardware of this research comprised of two fully functioning robots, 2 Microcontrollers, 

2 pairs of XBee S1 modules with a pair of Shields and USB Adapters and 12 IR Sensors. 

Moreover, one Lidar was mounted on the Leader robot to collect additional obstacle data, 

 

3.1.1. HCR Robot 

The control algorithms developed in this research have been tested on the HCR 

robot. The HCR (Figure 7) is holonomic robot with 3 Swedish 90o omni-wheels. 

The robot is equipped with 3 12V DC motors with a maximum speed of 122rpm 

each. Therefore, the maximum linear velocity of 1 m/sec, is calculated using vector 

algorithm, can provided to the robot algorithm. As a result of having omni-

directional wheels, the robot has unique capability to move diagonally. Further, the 

robot has a span of diameter 31.5 cm, which is small and compact for small-scale 

research purposes. 
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Figure 7: HCR Omni wheeled robot with LIDAR 

 

3.1.2. Bluno Mega 2560 Microcontroller 

The Bluno Mega 2560 (Figure 8) is very similar to Arduino Mega 2560 with an 

additional Bluetooth capability. This microcontroller is made by DF Robots, who 

also manufactured the HCR mobile platform. The microcontroller is Arduino 

software compatible and delivers the same performance as any other Arduino 

boards. 
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Figure 8: Bluno Mega 2560 Microcontroller 

 

It has 54 digital I/O (input/output) ports, 15 of which can be used as PWM output, 

16 analog input, and 4 UART. The power supply will be automatically switched. 

The range of voltage limit of the control board is from 5V to 23V. 

 

3.1.3. Wireless Serial Communication 

Two XBee S1 modules are configured to act as both a receiver and a transmitter. 

One Xbee module is mounted to the robot via a Sparkfun Arduino XBee Shield 

(XBee 1) and the other XBee module is attached to the main PC via an USB adapter 

(XBee 2) as shown in Figure 9. The main function of XBee 1 is to send the collected 

IR sensor data by the Arduino when XBee 2 sends a command to read the IR 

sensors. Whereas XBee 2 receives the IR data from XBee 1 and after the 

computation send the command and computed individual wheel velocities to XBee 

1 to run the robot. 
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Figure 9: XBee S1 modules with Sparkfun Arduino Shield (Left) and USB Adapter (Right) 

 

These modules are reliable and simple point to point and multi-point networks are 

easy to implement with Bluno Mega 2560 to get data and transfer it to a main 

computer via serial. 

 

3.1.4. IR Sensors 

The robot is equipped with 6 Sharp GP2Y0A02YK0F IR sensors (Figure 10). There 

are 3 pairs of sensors, each located between two wheels of the robot, and are 

mounted on the pre-built sensor frame of the robot. This device outputs the voltage 

corresponding to the detection distance. So, this sensor can also be used as a 

proximity sensor. The sensors have a measuring range of 20 to 150 cm.  
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Figure 10: GP2Y0A02YK0F IR Sensor 

 

The sensors are mounted on the robot as shown in Figure 11. The distance between 

a pair of sensors is 13 cm. The location and the angle at which the sensors are 

positioned are used for determining the location of the obstacles with respect to the 

center of the robot. 

 

Figure 11: Schematic drawing for Sensor placement on the HCR robot 
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The IR sensors are read by the Arduino module as a voltage. Therefore, the voltage 

needs to be converted to a distance reading. Hence, by analyzing the analog voltage 

readings at every 5 cm from 25 cm to 145 cm (Appendix A) and curve fitting as 

shown in Figure 12 was done to obtain the equation relating the distance (d) of an 

obstacle from IR sensors to the analog voltage (v) read by the Arduino for the IR 

sensor. 

 

 

Figure 12: Analog Voltage readings to the Distance from the IR Sesnor 
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The following equation was determined to calculate the distance, 

 

d =  15161 × v−1.04     (m) 

 

The distance represented by the above equation is with respect to the sensor it is 

read out from. Therefore, each sensor reading is then converted using simple vector 

components to represent the distance from the center of the robot. These readings 

would be used for obstacle avoidance and, would be transformed to a global 

coordinate system to map and update the obstacles’ and the robot’s position and 

orientation. 

 

3.1.5. Lidar 

The YDLIDAR G4 Lidar (Figure 13) is a 360-degree two-dimensional distance 

measurement sensor. The Lidar is based on the principle of triangulation and is 

equipped with relevant optics, and algorithm design to realize high-frequency and 

high-precision distance measurement. At the same time as the distance 

measurement, a 360 degrees of scanning distance measurement is achieved by 

continuously obtaining the angle information through the 360-degree rotation of 

the motor. The Lidar was used as an additional sensor to observe obstacles in the 

surroundings. The Lidar is very effective in getting a range scan point cloud data 

through the Serial port.  
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Figure 13: YDLidar G4 

 

For the purpose of this research, the Lidar uses ROS packages which are sourced 

by the manufacturer, to run and collect surrounding obstacles data. The Lidar 

communicates using a 3.3V level serial port (UART). The serial port is used to send 

data over to MATLAB for further computation. The polar coordinate of the system 

is based on the center of the rotating core of G4. The specified angle is clockwise 

positive. The zero angle is located at the exit of the G4 interface cable, as shown in 

the Figure 14.  

 

 

Figure 14: Lidar Configuration diagram 
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The data extracted from the LIDAR are found with respect to the orientation of the 

LIDAR on the HCR robot. The LIDAR is placed on the top of the robot and is 

centered with the robot’s coordinates, so that the LIDAR reads the data with respect 

to the robot position and orientation. 

 

3.2. System Architecture 

3.2.1. Block Diagram 

The block diagram shown in Figure 15 represents the current system with which 

the results have been generated. This system is completely a wired setup except the 

transmission of data via the two XBee modules. 

 

 

Figure 15: Block Diagram representing the System Architecture for the HCR 

   

 

 



 

28 
 

3.2.2.  Experimental Setup 

Figure 16 shows the complete system design of the experimental tests. A Zigbee 

technology communication device is used between the application program with 

115200 baud rate, implemented in MATLAB, and the mobile robots. The mobile 

robots used in the experimental setup have three omnidirectional wheels actuated 

with DC-motor.  

 

 

Figure 16: Hardware Setup 
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3.2.3. Communication Protocol 

In the communication protocol, shown in Figure 17, the serial communication 

between the Robot and the GPU has been presented. The serial receives a command 

(1 or 2) from MATLAB and instructs the Arduino presented on the Robot to either 

read the IR Sensor or read the wheel velocities to run the motors. 

 

 

Figure 17: Communication Protocol 
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3.2.4.  Controls Schematic 

The complete system design of the control has been shown in Figure 18. The 

schematic defines the control process implemented by the algorithm on MATLAB. 

The process starts with receiving the data from the Sensors on the Robots and then 

checking for any obstacle detected. The Update section involves running the higher 

and lower level controller, discussed in Section 4.3 and 4.4. The Kinematics 

described in Chapter 2 are then implemented to the Robots. 

 

 

Figure 18: Controls structure 
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CHAPTER 4 

CONTROL, LOCALIZATION AND MAPPING 

 

This chapter explores techniques to concurrently estimate in real time the structure of the 

surrounding perceived by moving sensors and with robot’s state estimation and mapping algorithm 

EKF-SLAM, and the PID to control the motion of the robot Further, the pseudocode presented 

defines the structure of the algorithm and the flowcharts breaks down the structure of the primary 

functions used in the algorithm.  

 

4.1. Pseudocode 

Set Goals 

Get sensors data from all robots 

while final goal is not reached 

 Check for obstacles 

If Obstacle does not exist 

 Run EKF (Make State prediction and update coordinates) 

 Run Robot 

Else 

 Calculate Rebound Angle  

 Run PID (Get updated coordinates) 

 Run Robot 

End 

Update sensor data from all robots 

 End 
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4.2. Flowcharts 

Below are the flowcharts for the robot’s functionality. 

 

 

Figure 19: Main System Flowchart 
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(a) (b) 

 

Figure 20: (a) Flowchart to get Obstacle coordinates (b) Flowchart to move the robot to a desired goal 
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(a) (b) 

 

Figure 21: (a) Flowchart to update coordinates  (b) Flowchart to move the robot to the origin 
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4.3. Control 

The algorithm presented in this research uses a dual level control structure to navigate 

through the dynamic environment. The higher-level controller uses the predicted position, 

velocity and time computed using EKF-SLAM to maneuver the robot to the next goal. The 

robot is primarily run using the higher-level controller. But when an obstacle is 

encountered, the lower level controller turns on.  

 

This lower level controller uses PID Control to navigate the robots. In this case, the robot 

turns at a rebound angle determined with respect to the current position of the robot. The 

robot then moves for 1.5 sec at a velocity of 1m/s to go out of the range of the detected 

obstacle/s. As soon as the robot is out of range, the higher controller switches back on. The 

lower level considers the robots as points in the 2-D space and therefore, the PID uses 

unicycle dynamics as given below, 

 

ẋ = Vcosθ ẏ = Vsinθ ω = θ̇ 

 

where, ẋ is the linear velocity in x direction, ẏ is the linear velocity in y direction, V is the 

velocity, θ is angle of rotation of the robot, θ̇ is the angular velocity and ω is the resultant 

angular velocity 

 

The objective of the PID control is used to drive the robot towards the rebound angle 

calculated when the robots detect an obstacle. 
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The error e and error function ê for the PID controller are calculated as follows, with the 

desired angle θd equal to the rebound angle for this research 

 

e = θd − θ  

ê = tan−1 (
sin e

cos e
) �̂� ∈ [−π, π] 

 

The angular velocity ω can, therefore, be written as, 

 

ω = KPê + KI ∫ ê(τ). dτ

t

0

+ KD

dê

dt
 

  

Using the control equations presented in this section, the Simulink model can be created as 

shown in Figure 22. 

 

Figure 22: Simulink for PID Control 
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4.4. Localization and Mapping 

In many applications, a model of the environment in which the robot operates is often 

available. It is often quite advantageous to use this information to plan an optimal path even 

if some changes in the environment might occurring real time due to the appearance of some 

dynamic obstacles. Robots often navigate in pre-known environments modeled using 

different tools such as maps. The Extended Kalman Filter is one way to apply Bayesian 

estimation techniques to update robot’s state at each time step and invoke the state update 

methods of the Vehicle. The complete history of estimated state and covariance is stored 

within the EKF object. In EKF-SLAM, the map is a large matrix of sensors and landmarks 

states which is modeled by a Gaussian variable using the mean and the covariance of the 

state matrix as shown by, 

 

x̅ = [ ℛ̅
ℳ̅

] 

 

where ℛ is the robot state and ℳis the set of all the landmarks, �̅� is the mean of the state 

vector. 

P = [
Pℛℛ Pℛℳ

Pℳℛ Pℳℳ
] 

 

here, P is the covariance matrix. Therefore, the map is represented as {x, P} and gets updated 

at every timestep. The generic time-update function is dependent on the state vector x, the 

control vector u, and the perturbation vector n. It can be defined as, 

 

x ← f(x, u, n) 
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The sensors return measurements about landmarks relative to the vehicle’s location and is 

represented by a Sensor object. This map is maintained by the EKF through the processes 

of prediction and correction. The EKF uses the sensor data to collect its surrounding 

landmark information and predict the robot’s position and correct the previously made 

observations for the landmarks on the map. The EKF prediction step is written as,  

 

x̅ ← f(x̅, u, 0) 

P ← FxPFx
T + FnNFn

T 

 

where the Jacobian matrices are, Fx =
∂f(x̅,u)

∂x
 and Fn =

∂f(x̅,u)

∂n
, and N is the covariances 

matrix of the perturbation n. 

 

In SLAM, the time-variant robot ℛ is represented as, 

 

ℛ ← fℛ(ℛ, u, n) 

ℳ ← ℳ 

 

here the first equation defines the motion model and as the largest part of the map is 

invariant due to motion, the sparse Jacobian matrices are given as, 

 

Fx = [
∂fℛ

∂ℛ
0

0 I
], Fn = [

∂fℛ

∂n

0
] 
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EKF also has an extra step of landmark initialization, where newly discovered landmarks 

can added to the map.  These observation are given as, 

 

y =  h(x) + v 

 

where y is the noisy measurement, x is the full state, h() is the observation function and v 

is the measurement noise. 

 

Landmark initialization is performed by inverting the observation function and using it and 

its Jacobians to compute, from the sensor pose and the measurements, the observed 

landmark state and its necessary co- and cross-variances with the rest of the map. The EKF 

corrections are then appended to the state vector and the covariances matrix, as shown 

below, 

z̅ = y − h(x̅) 

Z = HxPHx
T + ℛ 

K = PHx
TZ−1 

x̅ ← x̅ + Kz̅ 

P ← P − KZKT 

 

here, the Jacobian Hx =
∂h(x̅)

∂x
 and R is the covariances matrix of the measurement noise. 

The first two equations represent the mean and the covariance matrix for the newly 
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discovered landmarks, respectively. The third equation defined the Kalman gain, K. 

Finally, the last two equations constitute the filter update. 

 

In SLAM, observations occur when a measure of a particular landmark is taken by any of 

the robot’s embarked sensors. The observation function for the observed landmark I is 

written as, 

yI  =  hi(ℛ, S, ℒi) + v 

 

where Hℛ =
∂hi(ℛ̅,S,ℒ̅i)

∂ℛ
 and Hℒi

=
∂hi(ℛ̅,S,ℒ̅i)

∂ℒI
 represents the Jacobian matrices for EKF-

SLAM. 

 

Therefore the correction equations for EKF-SLAM are, 

z̅ = yi − hi(ℛ̅, S, ℒ̅
i) 

Z = [Hℛ Hℒi] [
Pℛℛ Pℛℒi

Pℒiℛ
Pℒiℒi

] [
Hℛ

T

Hℒi

T ] + ℛ 

K = [
Pℛℛ Pℛℒi

PMℛ PMℒi

] [
HR

T

Hℒi

T ] Z−1 

x̅ ← x̅ + Kz̅ 

P ← P − KZKT 
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CHAPTER 5 

SIMULATIONS 

 

The simulation was performed using two types of static obstacles scenario. In the first case, the 

obstacles were randomly generated and for the second case, the obstacle was modified to be a 

circular wall with one opening was designed to demonstrate a complex situation for the robots to 

maneuver around. For simulation purposes, the robots are considered as a point and the obstacles 

detected are considered as circular objects with radius equal to the diameter of the robots being 

considered. This is done so that the robot can move in between two obstacles without any 

interference. The simulation therefore concludes that the algorithm can be successfully integrated 

with any hardware system. The hardware implementation and its results are discussed in Chapter 

6. Figure 23 presents an shows the robots moving from the origin at (0,0) to three predetermined 

goals and returning back.  

 
Figure 23: Simulated path for Random Obstacles
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The obstacles shown in Figure 23 are randomly generated and the minimum distance for the robot 

to detect the obstacle and to change its direction is 1 m for the Leader and 0.5 m for the Followers 

from the obstacle circumference.  

 

From Figure 24 and 25, it can be determined that the relative position of the followers remain fairly 

constant (~0.5±0.006m). The peaks appearing in the plot can be attributed to the turning motion of 

the robots. The peak with the flat top at 0.5 m, in Figure 24, indicates that the robots have 

encountered an obstacle and the PID controller, discussed in Section 4.3, initiates the process of 

moving the robot out of the obstacle range.  

 

 
Figure 24: Relative Position of the Followers with respect to the Leader for Random Obstacles 
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Similarly, the flat peak, in Figure 25, denotes that there is no error in the relative positions between 

the Leader and Followers. The stability of the formation can also be seen in Figures 24 and 25, 

where the Followers maintain their distance of 0.5 m from the Leader. Although there are some 

minor fluctuation in the relative position while the robots are turning from an obstacle, it is enough 

to maintain a safe space for the robots not to collide. 

 

 

Figure 25: Relative Position Error for Random Obstacles
 

 

The plot given by Figure 26, compares the Linear Velocity at which the robots are running. It can 

be deduced that the velocity difference from the given velocity is almost negligible (~0.05 m/s). 

Also, the constant velocity line at around 18 sec, can be attributed to the robot detecting an obstacle 

and the PID. Also, the Velocity error plot shown in Figure 27, has a gap at 18 sec. The error at the 

gap is zero as the PID runs the motors at the constant velocity of 1 m/s. 
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Figure 26: Linear Velocity for Random Obstacles 

 

 

Figure 27: Velocity Error for Random Obstacles
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After getting promising results from the first simulation, the second simulation was made complex 

so that the sensing capability and the effectiveness of the rebound angle can be tested. This was 

done by conducting the simulation with a circular wall surrounding the robots with only one exit as 

shown in Figure 28. 

    

  
Figure 28: Simulated path for Complex Obstacles 

 

As it can be seen from Figure 28, that the robots successfully reach their goal. Further, looking at 

the relative position (Figure 29) and its error (Figure 30), we can deduce that the plots behave very 

similar to the aforementioned test, stating a relative position error of about 0.006 m. Multiple 

obstacles can be confirmed from the plots as they have flat peaks, at 0.5 m, each time the robots 

encounter an obstacle. 
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Figure 29: Relative Position of the Followers with respect to the Leader for Complex Obstacles

 

 

 
Figure 30: Relative Position Error for Complex Obstacles 
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Figures 31 and 32, we can see similar gaps as in Figure 26 and 27. These gaps can also be attributed 

to the PID controller which drives the robots at a constant velocity of 1 m/s. 

 
Figure 31: Linear Velocity for Complex Obstacles

 

 
Figure 32: Velocity Error for Complex Obstacles 
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CHAPTER 6 

RESULTS AND DISCUSSION 
 

In this section, we will validate results by implementing the Hardware setup discussed in Chapter 

3. Four tests were performed. The first and the second tests, involves a singles robot to go to two 

and three goals respectively. The first test was an open loop setup where the robots moves from 

the origin to the final goal and stops. For the second test, a closed loop setup was used, so that the 

robot returns back to the origin. The third test executed a single robot along with a simulated 

follower to avoid the obstacles detected by the robots. Finally, the last test implemented two robots 

to move in a formation from the origin to a defined goal. 

 

The simulation was conducted by changing the ideal linear velocity to 4 m/s for the first two 

experiments and 0.5 m/s for the third experiment. The tests 1, 2 and 4, were done without 

considering the existence of an obstacle in the field. Also, for the tests 1, 2, and 3, the follower 

robots were not implemented for focusing the tests exclusively to path following (for tests 1 and 

2) and obstacle avoidance (for test 3). To accommodate the dimensions of the robots, the obstacle 

detection range, for test 3, was decreased to 0.5 m for the Leader and 0.3m for the simulated 

Follower. Also, the Lidar used for test 3, was used to map the room before the simulation started 

to provide the map of the room to the robot. All hardware simulated results used the control, 

localization and mapping algorithms that has been previously discussed in Chapter 4. 

  

For the first test, the path of the robot, shown in Figure 33, shows that the robot reaches its goal. 

The curves at the turning points denotes that the turning was smooth, not abrupt. 
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Figure 33: Path following by a Single Robot in an Open Loop 

 

However, the graph doesn’t represent the motion of the body, but only the position of its center. 

In real-time, one can see the robot rotating while translating during its motion. This movement can 

be attributed to the robot’s three omni-directional wheels, which adds an angular velocity to the 

robot while its moving. 

 

From Figure 34, it can be seen that the velocity of the robot, closely follows the ideal velocity of 

4 m/s. The plot also depicts that the robot eventually slows down as it moves closer towards the 

last goal before coming to a halt. The error, shown in Figure 35, between the ideal velocity and 

the velocity of the robot is also very negligible (~ -0.05 to 0.07 m/s) and therefore, doesn’t 

significantly affect the motion of the robot. 
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Figure 34: Velocity of a Single Robot in an Open Loop
 

 

 

Figure 35: Velocity Error of a Single Robot in an Open Loop
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For the second test, the path of a square (shown in Figure 36) was given to the robot. The only 

difference in this test, from the previous test, is that the robot returns back to its origin after reaching 

its last goal. 

 

Figure 36: Path following by a Single Robot in a Closed Loop
 

 

All the parameters were kept the same from the previous test. The only notable difference can be 

seen in Figure 37, where the velocity can be seen moving in a wave like motion with almost same 

amplitude. This can be attribute to the robot going from one equi-distant point of the square to 

another. Also, from Figure 38, it can be seen that the error between the velocity of the robot and the 

ideal velocity are very insignificant with an average value ranging from -0.03 m/s to 0.03m/s. This 

negligible error doesn’t affect the linear velocity of the robot which has a much higher magnitude.  
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Figure 37: Velocity of a Single Robot in a Closed Loop 

 

 

Figure 38: Velocity Error of a Single Robot in a Closed Loop
 

 



 

53 
 

The third test was implemented by using the Lidar to map the environment of the robot, as seen in 

Figure 39. The Leader robot moves along with the simulated Follower from the origin to the goal. 

As it can be seen in the figure below, the robots encounter an obstacle and turns around to avoid it. 

The robots then move straight and smoothly to its final goal. 

 

 

Figure 39: Leader-Follower Path following with Obstacles 

 

The distance between the Leader and the Follower can be seen in Figure 40. From the plot it can 

be deduced that like the simulated tests, the distance equalizes to the ideal distance, 0.5 m for this 

case. Also, it can be seen that the distance approaches to a steady value as soon as the robots move 

straight. Further, the velocity plot shown in Figure 41, also shows similar attributes to the 

simulated tests, as gaps where the Ideal Velocity (0.5 m/s) equals to the Velocity of the robot. 
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Figure 40: Relative distance for Leader-Follower with Obstacles 

 

 

Figure 41: Velocity for Leader-Follower with Obstacles
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CONCLUSION AND FUTURE OBJECTIVES 

 

This paper introduces the idea of an efficient algorithm for mapping and obstacle avoidance for 

robots on a small scale. The presented solution generates a continuous global map and 

simultaneously updates the robot’s location on the map. The higher-level control works accurately 

and can reach the goals with an accuracy of ± 0.006 m. Also, the lower-level algorithm effectively 

detects the obstacle from a distance of 1 m and follows the flawlessly calculated rebound angle to 

avoid any static or dynamic obstacle/s. Although the algorithm works well in a small scale, it has 

the potential to be upgraded very easily to a more complex algorithm using very high-quality 

sensors and a more robust robot.  

 

Some key achievements of this research are: 

• The robot is able to follow its given path 

• The IR sensors and the Lidar are able to detect the obstacle/s from a distance of 1m 

• The calculated rebound angle effectively predicts turn angle for the robot to avoid the 

obstacle 

• The lower-level algorithm smoothly follows the rebound angle 

 

Some of future objectives can be 

• To upgrade to a higher quality sensor with a better range 

• Add more robots with different or unconstrained formation  

• To replace the robot chassis to robots, like Pioneer A3, which can work in a rugged terrain 

• Extend the functioning capabilities of the robot 

• To upgrade serial modules or use API protocols 
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APPENDIX 

IR SENSOR CALIBRATION DATA 

 

 

 

25 463 25.61672565 2.466903

30 384 31.11883819 3.729461

35 349 34.37078124 1.797768

40 302 39.95035355 0.124116

45 271 44.71361522 0.636411

50 244 49.8703514 0.259297

55 220 55.54030492 0.982373

60 204 60.07758598 0.12931

65 191 64.3358652 1.021746

70 180 68.4296695 2.243329

75 167 73.97802245 1.362637

80 156 79.41056124 0.736798

85 147 84.47298084 0.620023

90 139 89.53492115 0.516754

95 132 94.47805833 0.549412

100 127 98.3494596 1.65054

105 119 105.2347098 0.223533

110 114 110.0390424 0.035493

115 107 117.5354079 2.204703

120 104 121.0634859 0.886238

125 100 126.1037053 0.882964

130 96 131.5726935 1.209764

135 92 137.5271703 1.871978

140 91 139.0992536 0.64339

145 86 147.5195091 1.737592

cm V Sensor Measurement Error
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