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ABSTRACT 
 

COST-EFFICIENT LOAD SCHEDULING 

FOR HYBRID RENEWABLE ENERGY 

SYSTEMS 

 

by 

 

Avinash Rajendra

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Jun Zhang

 

 Hybrid renewable energy systems offer great promise for the future. However, some 

lingering concerns regarding stability and cost efficiency still exist. If a private party installs the 

system and maintains full control, the party may itself alleviate some of these problems by 

wisely optimizing the benefits offered by the system. One of the ways to do so is to develop a 

schedule for their load such that the cost incurred is minimized; this is done by maximally 

utilizing the renewable sources of energy before using the backup options of more conventional 

energy sources. Creating such a schedule involves considering several factors, such as solar 

energy available and the quantity of load that may be flexibly scheduled as opposed to fixed 

demands. This work presents a unique and innovate method – dynamic programming – to solve 

this problem. This is modeled in a mathematical context, one of optimal control, and then 

implemented using MATLAB. Care is taken to generate a realistic model that serves as a starting 

point for further research while idealizing some components for simplicity.
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Chapter 1 – Introduction 

 Solar power is a primary source of energy for the future. Generating the energy, of 

course, costs nothing at all, so the financial concerns are limited to harvesting and storing the 

energy. Although these costs are not necessarily insignificant – the costs of labor and equipment 

can add up to a high amount that might make the whole project impractical – the benefits of 

utilizing solar energy are considered highly lucrative. However, as with any source of energy, 

solar power has its downsides. 

Solar energy is unstable, which means that the Sun to often unable to accommodate 

demand for electricity at all times of the day. Cloud cover and precipitation may significantly 

impact the quantity of solar power that can be harvested, as does geographical latitude of the 

location utilizing energy from the Sun. The need to supply energy at such possible downtimes for 

solar power suggests that other, more reliable sources of energy must be available for 

deployment as well. On the other hand, if the Sun blazes on to the PV cells at a time when 

demand of energy is low, there would be great wastage of precious energy. An energy-storage 

mechanism thus merits strong consideration. The system that results from these reflections is a 

hybrid one that contains a renewable source of energy, an energy-storage mechanism, and one or 

more traditional sources of energy. 

This thesis describes a hybrid system that consists of several forms of energy, namely 

grid, generator, direct solar power (from PV cells), and stored solar power (from battery); from 

which electrical demands, of which some are fixed and unchangeable, may be met. The cost and 

availability of each form of energy is different and may be dependent on the time of day, week, 

and year. Using solar energy as the most preferable option and utilizing several types of data 
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along with the technique of dynamic programming, a load schedule that minimizes cost for the 

consumer is developed. The process and technique described may be utilized at a variety of sites, 

like family home, school, and commercial property. They may also be applied at any location 

around the world at any time of the year. As an example, this thesis uses the application of 

single-family residence in Milwaukee, WI, USA and focuses on the warm month of July. 

Contributions of This Thesis 

 This thesis applies dynamic programming for the first time as the method to solve a 

problem that has been a popular subject in industry and academia. The project involves using in 

a practical situation an algorithm often associated with mathematical contexts. Existing 

literature, which is briefly explored in Chapter 2, contains plethora of works on optimization of 

hybrid renewable energy systems but few, if any, that apply dynamic programming or related 

techniques to such a topic. Although some parts of this thesis are idealized and simplified, the 

project proffers a strong basis for more intricate additions and modifications. 
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Chapter 2 – Related Works 

 An abundance of literature exists on the topic of optimization of renewable energy 

sources. A few of them will be concisely explained here to provide context to the current thesis. 

[1] discusses a computer program that was developed to calculate the most efficient 

energy source to meet a required load in rural South Africa at any time of the day. The available 

energy sources were solar and wind, so the program logically considered, among other factors, 

time of day and average wind speed at the location in question. The description of this program 

suggests that it required manual execution and entering of parameters. Because the project was 

completed before the 21st Century, it did not incorporate modern tools such as new algorithms 

and machine learning. 

[2] explains a method using linear programming, a specific type of mathematical 

optimization that minimizes a linear function under linear constraints, to develop an optimized 

schedule of charging and discharging a battery in a system that can cover a load with solar 

power, battery power, or a distribution feeder. The paper also contains cost analyses that 

highlight, in turn, the economic benefits of adopting the best schedule when the solar-energy 

infrastructure already exists; the effectiveness of the battery in reducing demand from the grid 

even when the costs of installing the solar equipment are prohibitive; and the situations where 

solar-energy utilization is practically advantageous. While this work was innovative in using a 

linear function for optimization in this context, the linear model might not have captured all the 

details contained in the energy system. 

[3] and [4] both describe projects that suggest installation of a hybrid renewable energy 

system for areas in need of progress. [3] concentrates on proposing a system for a rural school in 
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Morocco. The suggested system is equipped with a hybrid renewable energy system consisting 

of solar energy, wind energy, a battery, and a diesel generator. Using HOMER Pro (Hybrid 

Optimization Model for Electrical Renewable), which is a simulation software developed by the 

U.S. National Renewable Energy Laboratory (NREL), the authors analyze three combinations of 

energy sources to determine the best strategy for covering the electrical load of the school while 

maintaining cost efficiency and considering the unpredictability of wind and solar energy. [4] 

explores a possible system for an underdeveloped island in Bangladesh. This system does not 

include wind energy; however, it does add a generator fueled by biogas, which is an economical 

source of energy for this specific location because of the large number of cattle residing there. As 

in [3], this project considers solar energy, a battery, and a diesel generator. Also, as in [3], the 

authors of [4] use the HOMER simulation program to develop an optimized system architecture. 

These works both put emphasis on cost optimization, but using an existing program developed 

by a third party instead of creating a new approach themselves. 

[5] uses a probabilistic approach to study the performance of a hybrid solar-wind energy 

system that is backed up by a battery and generator. Connection to an electric grid is available as 

an additional option to the system. This system is installed at Vasavi College of Engineering in 

Hyderabad, India. The study is conducted using the average wind speed at an attractive location 

for harvesting wind energy and ten years’ worth of prior data on solar radiation to predict the 

solar power generation. The prediction is made with the quadratic equation 𝑃 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, 

where x is the solar radiation; P is the power generation; and A, B, and C are coefficients derived 

from measured data. The average wind speed and predicted solar power generation act as the 

probabilistic factors for this project. Information on annual energy production by this hybrid 

system is collected over two years. As usual, a cost-benefit analysis is presented and considers 
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lifetimes of the equipment. It concludes that if a reduction in cost of renewable-energy 

equipment is assumed, the hybrid system is indeed an economically superior choice to a more 

conventional option. It also states that solar and wind energies act as complements to one 

another. This project also shines a spotlight on optimization, but on a hybrid system that has 

already been installed. Flexibility in modifying the components of the system for study purposes 

is thus limited.  
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Chapter 3 – Problem Formulation 

Chapter 3.1 – Components of the System 

Energy Sources: As explained earlier, the system contains four different sources of energy – 

solar energy, battery, grid, and generator. The first of these is the one most preferred to meet the 

demand. If, after completely doing so, excess solar energy is available, the battery (which 

initially has no charge) is charged so that it can be used as the backup to solar energy if needed in 

the future. In other words, if solar energy is unable to fully meet the demand, the battery is 

discharged. Some unavoidable loss of energy occurs when charging the battery with solar 

energy. The percentage of solar energy that charges the battery compared to the quantity of solar 

energy that is provided to the battery is known as round-trip efficiency. If both solar energy and 

battery combined are unable to fully meet the demand, grid or generator is chosen depending on 

the cost of each at the hour the energy needs to be supplied. 

 An example of realistic solar-energy output is 1 kWh per day with a PV panel rated 250 

W. Of course, the actual output depends on the rating of the panel, the size of the panel, the 

geographic location where the panel is installed, precipitation, and other factors [6]. The round-

trip efficiency of a battery is determined by the age and constitution of the battery along with 

other details, but ranges from 80% to 95% for a typical battery [7]. 

Costs: Energy can be bought from the grid or generator for a certain cost if both solar energy and 

battery cannot completely meet the load demand for the hour. Depending on the hour of day, the 

grid or generator is cheaper than the other and the more economical option is accordingly 

selected. 
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Loads: There are two types of loads – fixed and variable. Fixed loads cannot be changed in 

timing or quantity. On the other hand, variable loads can be changed in timing or hourly quantity 

but must remain constant for the day. A variation is considered where the variable load for the 

day is within a range, but the exact value is randomly determined. 

An example of a fixed load is lighting. The lights must always be kept on at certain times, 

sometimes even throughout the day. If ten bulbs rated 100 W are used for ten hours on one day, 

the energy consumption by the lighting is 10,000 Wh or 10 kWh [8]. An example of a variable 

load is a washing machine. This can be operated at a time of the user’s choosing. A typical 

washing machine consumes 255 watts per hour of use. This translates to 255 Wh or 0.255 kWh 

[9]. 
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Figure 1 shows a diagram of the components of the system. 

 

Figure 1: Components of the System 

Chapter 3.2 – Mathematical Description 

Chapter 3.2.1 – The Model 

 The mathematical model for this problem is a state-space representation that contains 

inputs, a control, a state, and a cost. 

Inputs: There are two inputs to the system – solar energy available and fixed-load schedule. 

Neither is controllable but must be considered while developing the optimal-control strategy. 
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Control: The control is the variable-load schedule. This is completely controllable and needs to 

be determined such that the cost incurred after adopting the total-load schedule – the schedule for 

the fixed and variable loads combined – is the lowest possible. 

State: The state of the system is given by the amount of battery charge available at the beginning 

of any hour. This depends on both an uncontrollable factor – the solar energy available at the 

previous hour – and a controllable factor – the demand at the previous hour. 

Cost: The cost is the price of energy bought from the grid or generator. The cost thus depends on 

the total load as well as the available solar energy and energy in battery. 

Chapter 3.2.2 – Notations and Definitions 

t: The time, indicated in discrete, whole-number values that represent the hour of the time span 

being studied 

x(t): The state of the system, which is the energy in the battery, at time t 

s(t): One input to the system, which is the solar energy available, at time t 

l(t): Another input to the system, which is the fixed-load schedule, at time t 

u(t): The control, which is the variable-load schedule, at time t 

a(t, u(t)): The amount of energy to be purchased from the generator or grid at time t as a result 

of covering u(t) amount of variable load 

g1(t): The generator cost at time t 

g2(t): The grid cost at time t 
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c(t, u(t)): The total cost incurred by the system at time t for covering u(t) amount of variable 

load 

Chapter 3.2.3 – Equations 

The problem that has been described thus far may be viewed as one of optimal control. 

Here, the optimal-control strategy is to obtain the cheapest-possible load schedule for a given 

day. The following equations mathematically model this problem of optimal control. 

State Equation: 𝑥(𝑡 + 1) = max(𝑥(𝑡)  + 𝑠(𝑡) − 𝑙(𝑡) − 𝑢(𝑡), 0) 

The state equation models the energy available in the battery (x(t + 1)) for the next hour (t + 1). 

Depending on which is higher, it is either zero or the difference between the energy available and 

the total load. The energy available is the sum of solar energy and the energy in the battery (x(t) 

+ s(t)). The total load is the sum of fixed and variable loads (l(t) + u(t)). Zero is the lowest output 

of this equation because energy available in the battery can never be negative. 

Cost Function: 𝑐(𝑡, 𝑢(𝑡)) = min(𝑔1(𝑡) ∗ |𝑎(𝑡, 𝑢(𝑡))|, 𝑔2(𝑡) ∗ |𝑎(𝑡, 𝑢(𝑡))|),  

where 𝑎(𝑡, 𝑢(𝑡)) = min(𝑥(𝑡) + 𝑠(𝑡) − 𝑙(𝑡) − 𝑢(𝑡), 0) 

The cost function calculates the cost of a certain quantity of variable load (u(t)) at a certain time 

(t). The min operator chooses the cheaper option between grid (g2(t)) and generator (g1(t)). a(t, 

u(t)) is the amount of energy to be bought from either of those two sources. If solar energy alone 

or solar energy combined with battery were able to cover all the load, the amount of energy to be 

bought will be zero. Otherwise, it is the difference between the load that was covered by solar 

and battery energies (x(t) + s(t)) and the total load to be covered (l(t) + u(t)). If a(t, u(t)) is not 

zero, it is negative, indicating that some load remains to be covered. Because a(t, u(t)) is non-

positive and both g1(t) and g2(t) are non-negative, the absolute value of a(t, u(t)) is inserted into 
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the cost function before being multiplied by g1(t) and g2(t) (separately) to obtain two non-

negative values, out of which the minimum is chosen. 

 The min and max operators found in the state equation and cost function make this 

problem highly non-linear. Straightforward analytic techniques, such as linear programming, 

would be difficult, if not impossible, to execute on this model. Therefore, a more complex 

approach is necessary. 
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Chapter 4 – Approach to Solution 

Chapter 4.1 – Dynamic Programming 

Chapter 4.1.1 – Theory 

 Dynamic programming is an algorithm commonly applied to optimal-control problems. It 

is similar to the divide-and-conquer method in that both approaches solve a problem by first 

solving subproblems recursively and then joining the results. However, those problems that are 

conducive to dynamic programming contain overlapping subproblems – the subproblems 

themselves contain subsubproblems. This means that divide-and-conquer, while still a 

theoretically valid algorithm for this problem, may become highly inefficient because the same 

subsubproblems may be solved repeatedly. Dynamic programming, on the other hand, saves 

solutions to these subproblems in a table so that they need not be computed more than once. 

Dynamic programming can be also contrasted to greedy algorithms. While the former first 

optimally solves subproblems before constructing an optimal solution to the complete problem, 

the latter makes the apparent best choice before solving subproblems. [10] 

A dynamic-programming algorithm consists of four key steps: 

1) Conceive of optimal-solution structure. 

2) Define optimal value to each subproblem recursively. 

3) Compute optimal value; often starting from smallest subproblem. 

4) Create optimal solution from solutions to subproblems generated previously. 

Dynamic programming is essentially defined by the first three steps. [10] 
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Saving the solution to each subproblem after it is calculated just once is crucial to the 

viability of dynamic programming as an algorithm. The saved solutions to the subproblems may 

simply be referred to whenever the subproblems need to be solved more than once. While saving 

the solutions consume memory, the process saves much time. This situation is an example of 

time-memory tradeoff. The increase in runtime efficiency is potentially great enough to reduce 

an exponential-time solution to a polynomial-time one. For dynamic programming to run in 

polynomial time, the number of distinct subproblems must be polynomial in input size and each 

subproblem can be solved in polynomial time. [10] 

Dynamic programming may be implemented in two equivalent ways. Top-down with 

memorization starts with recursion on the whole problem, but then saves the results in a table to 

each subproblem beginning with the smallest one. Whenever a certain subproblem is 

encountered, the table is first checked if the subproblem has been solved previously. If so, that 

solution is returned and repeated computation of the solution to a subproblem is avoided. 

Otherwise, the solution to the subproblem is calculated normally. The bottom-up method 

involves sorting subproblems by size and solving them in ascending order. When solving a 

subproblem, all smaller subproblems are assumed to have been already solved and their solutions 

saved. Each subproblem is thus solved only once. Both approaches usually lead to the same 

asymptotic running times. [10] 

Two features are characteristic of dynamic-programming problems: optimal substructure 

and overlapping problems. [10] 

Optimal Substructure 
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If a problem displays optimal substructure, the full optimal solution contains optimal 

solutions to smaller subproblems. Finding such a substructure often involves four steps. 

1) The initial, whole problem needs to be solved by making a choice that leaves subproblems to 

be solved. 

2) For a given problem, the choice that results in the optimal solution is known. 

3) This choice leads to a specific set of subproblems with certain qualities. 

4) Solutions to the subproblems of the complete optimal solution are themselves optimal. [10] 

A problem that exhibits optimal substructure adheres to the Principle of Optimality, which states 

that “An optimal policy has the property that whatever the initial state and initial decision are, 

the remaining decisions must constitute an optimal policy with regard to the state resulting from 

the first decision.” [11] 

 Optimal substructure varies across the problem domain in two different ways. 

1) The number of subproblems used by the optimal solution. 

2) The number of choices available to select the subproblem for usage in the optimal solution. 

[10] 

Optimal substructure is often utilized in dynamic programming by first finding optimal 

solutions to subproblems and then finding the complete optimal solution. This involves choosing 

the subproblems to use the optimal solution. The total cost of the solution is usually the sum of 

the subproblem costs and the cost of the choice itself. [10] 

A Bellman equation uses the nature of optimal substructure that is inherent to a problem 

able to be solved by dynamic programming to describe the necessary condition for optimality 
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[12]. The value of the equation is the combination of the cost resulting from a certain choice and 

the costs obtained from the subproblems derived from making that choice. Some simple Bellman 

equations may be solved analytically; most, however, need to be solved numerically, especially 

if the optimal-control strategy contains nonlinear elements. [13] 

Overlapping Subproblems 

 Overlapping subproblems are present when a recursive algorithm repeatedly arrives at the 

same subproblems. This quality distinguishes a problem that can be solved by dynamic 

programming from one that can be handled by divide-and-conquer. Overlapping subproblems 

generally means that the space of subproblems is rather small. In other words, the number of 

distinct subproblems is low compared to the input size. [10] 

Chapter 4.1.2 – Application to Thesis Problem 

Dynamic programming is quite a suitable approach to solving the thesis problem. It can 

be modeled by the following Bellman equation: 

𝑣(𝑡, 𝑘) = min
𝑢

(𝑐(𝑡, 𝑢(𝑡)) + 𝑣(𝑡 − 1, 𝑘 − 𝑢(𝑡))), 

where t is a certain hour of the day, k is the quantity of variable load to cover during the time 

interval [0, t], v is the minimum cost of k, u is the control defined in Chapter 3.2.3, and c is the 

cost function defined in the same chapter. This equation fits the standard model for Bellman 

equations, except that the cost function implicitly contains the state term x(t) – energy in the 

battery at hour t, which is a term in a(t, u(t)) as defined in Chapter 3.2.3 – that is dependent on 

the solution to the subproblem v(t – 1, any). Typically, the cost function is independent from 

solutions to subproblems. 
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The existence of Bellman equation implies that this problem exhibits optimal 

substructure. This can also be proven according to the four steps described in Chapter 4.1.1 

(note: example values given in the remainder of Chapter 4.1.2 will assume 12 kWh of variable 

load per day, which is the primary case). 

1) The full problem has n be 24. Make a choice for the 24th hour, like 1 kWh. u(24) is thus 1. The 

total variable load to cover during the day is 12 kWh. This corresponds to v(24, 12). Then, the 

largest subproblem to be solved is v(23, 11). 

2) Assume u(24) is known such that c(24, u(24)) is optimal. Let u(24) be 1 for this purpose. 

3) The optimal u(24) results in the subproblem v(23, 11). In fact, this is a superset of even 

smaller subproblems. 

4) v(23, 11) and the smaller subproblems within it are themselves optimal. To prove so, assume 

that v(24, 12) is optimal but v(23, 11) is not. Then, a better solution for v(23, 11) must exist, 

making v(24, 12) better as well. But, this contradicts the assumption that v(24, 12) was already 

optimal. 

 The existence of the Bellman equation also shows the presence of overlapping 

subproblems. This can be evidenced in the fact that v(24, 12) is a superset of smaller 

subproblems like v(23, 11), which is itself a superset of even smaller subproblems. 

 Because the cost function contains the nonlinear min and max operators, and the cost 

function is part of the Bellman equation describing the optimal-control strategy, the Bellman 

equation cannot be solved analytically. However, it is friendly to a numerical approach, 

specifically one with top-down memorization because x(t), energy in the battery, will be known 

for hour t only after the problem has been solved for all previous hours. The Bellman equation is 
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implemented as a recursive algorithm, so the first function to be called is v(24, 12), but the table 

is filled in a bottom-up fashion, starting from v(1, 12). 

Chapter 4.2 – Implementation 

Chapter 4.2.1 – Data for Each Element of Mathematical Equations 

The following list compiles the sources and/or basis for the data supplied for each part of 

the state equation and cost function. 

t: The time is supplied in discrete values for every hour of the day 

x(t): The battery contains no energy in the beginning and is supplied with excess energy from the 

Sun if such excess is available. The battery is assumed to have a round-trip efficiency of 50%, 

which is on the lower end of the possible values [7]. 

s(t): The hourly values for solar energy are supplied by the System Advisor Model (SAM) 

program, explained in Chapter 4.2.2.  

l(t): Fixed loads are specified to be 0.5 kWh each at the following hours of the day: 0, 4, 8, 12, 

16, and 20. 

u(t): The variable load is the output generated for every hour by the dynamic-programming 

algorithm implemented with MATLAB, explained in Chapter 4.2.3. The primary case considered 

is where the total variable load for the day stays constant at 12 kWh. For the variation where the 

total variable load for the day is determined randomly but remains within a range, the minimum 

and maximum quantities are specified as 9 kWh to 15 kWh, respectively. 

a(t, u(t)): The amount of energy to be purchased from the grid or generator is derived from x(t), 

s(t), l(t), and u(t). 
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g1(t): The generator cost is given as $0.15/kWh at all times of the week [14]. 

g2(t): The grid costs are given in the following table. They are stated such that the grid is 

competitive in price with the generator. The units are cents per kilowatt-hour. 

Table 1: Grid Costs 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Sunday 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

Monday 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 17 17 17 17 13 13 13 

Tuesday 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 17 17 17 17 13 13 13 

Wednesday 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 17 17 17 17 13 13 13 

Thursday 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 17 17 17 17 13 13 13 

Friday 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 17 17 17 17 13 13 13 

Saturday 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

 

c(t, u(t)): Using MATLAB, the cost is calculated for every hour from g1(t), g2(t), and a(t). 

Chapter 4.2.2 – System Advisor Model 

 The System Advisor Model (SAM) is “techno-economic computer model designed to 

facilitate decision making for people involved in the renewable energy industry” [15]. It is a 

sophisticated program that allows a variety of professionals, including researchers, engineers, 

project managers, and financial analysts to develop realistic models of renewable energy systems 

[15]. These models consider several factors like basic components of the system (solar only, 

wind only, solar-and-wind hybrid, etc.), location of the system, and type of battery to be 

installed. 

 For the current project, SAM is used to obtain a series of values of solar energy that 

would be available to meet the load requirements. To do this, a complete system needs to be 

modeled. The model preferred for this case is the Photovoltaic (detailed) option (this one allows 

more settings to be modified by the user than the simpler Photovoltaic (PVWatts) choice). 
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Within the Photovoltaic (detailed) option, the Residential (distributed) selection is made because 

the application of current project resembles that of a single-family home.  

The chosen model contains many more factors than the ones being considered in the 

current application; so, those components that are not within its scope or do not affect the goal of 

acquiring the solar-energy values, like snowfall and lifetime of battery, are kept at default. The 

important parameters to set are the Location and Resource and the Electric Load. 

The weather data are generated by a file that contains real recordings from past years or 

simulations for a typical meteorological year (TMY) at a certain location. To select a file, under 

the parameter Location and Resource and under the section NREL National Solar Radiation 

Database (NSRDB), the button for TMY or Single-year for Americas and Asia is clicked. The 

location is then entered and searched. Milwaukee, WI is selected for this case as this project is 

being conducted in that city. The first option yielded by the search, 

milwaukee_WI_psm_satellite_60_tmy, is chosen. As the name of the file suggests, it contains the 

TMY simulations that will be a general depiction of the weather in Milwaukee and thus will be 

better suited for this project, which is intended to be valid for any year. This file will now appear 

in the subsection Files in Library within the section Solar Resource Library. Clicking on the file 

will allow it and some of its details to populate a few of the fields in Solar Resource Library. The 

process for selection of weather data is now complete. 

Now, the Electric Load section must be completed. This section accounts for the total 

load consumption by the building so that the model can calculate the solar energy available to 

meet this demand. Entering realistic values for the current situation suffices to produce 

satisfactory results. For the model, under the Building Characteristics subsection, the Floor area 

is specified as 1,000 sq. ft., the Year built is given as 1975, the Number of stories is declared as 
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1, and the Number of occupants is also declared as 1. All the options are checked under the 

Electrical Appliances subsection. Under the Temperature Settings subsection, the Heating 

setpoint and Heating setback point are set to 75° F and the Cooling point and Cooling setup 

point are set to 82° F. Under the Monthly Load Data, the values submitted are 800 kWh for Jan. 

to Mar. and Oct. to Dec., 700 kWh for Apr. and Sep., and 600 kWh for May to Aug. The premise 

behind these relative energy values is that the heating system will be heavily utilized during the 

colder months. 

After these steps are finished, the Simulate button is clicked. The Data Tables tab is 

selected, the Hourly Data section is expanded, and the option for Electricity from system to load 

(year 1 hourly) (kWh) is chosen as the only column to display. Then, the data is saved by 

clicking the Save as CSV button and choosing a desirable directory. If the time range of the data 

to be examined is smaller than the whole dataset, which is true in this case as the desired time 

range is the month of July, the dataset is trimmed using a program like Excel to contain only the 

desired range. The solar-energy values have now been obtained and can be used to solve the 

problem with another application. 
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Figure 2 shows the screen on SAM where for every hour, the quantity of solar energy 

applied to the load is shown. Because the SAM model has all solar energy directed to the load 

with no battery enabled, these values serve, in effect, as those of solar energy available to the 

whole system at each hour of the year for this thesis project. 

 

Figure 2: Example Screenshot of SAM 

Chapter 4.2.3 – MATLAB 

 The problem is solved by means of a computer program written in MATLAB, which is a 

software and computer language created for scientific and mathematical computation. This 

program applies the top-down-memoization version of dynamic programming that was explored 

in Chapter 4.1.1 by utilizing typical computer-language data types and concepts like arrays, for 

loops, if-then statements, and functions. 

 To calculate the total minimum cost for a given day, a function known as 

recursive_portion is created. This function essentially implements the Bellman equation 
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stated in Chapter 4.1.2. Parameters to this function include n and k, as defined in the Bellman 

equation, as well as the energy in the battery available at the beginning of the day (same as 

quantity available after previous day; 0 if first day). Initially, n is 24 and k is 12 (for the primary 

case – this case will henceforth be assumed for the remainder of Chapter 4.2.3). Then, a choice is 

made for u(t = n). This choice ranges in ascending order from 0 to 12 in specified increments 

(also known as step sizes), so the first u(t = n) will always be 0. The function proceeds to call 

itself in a recursive way with n – 1 (e.g. if n = 24, 24 – 1 = 23) and k – u(t = n) (e.g. if n = 24, 12 

– 0 = 12) as the parameters. This process will continue until n = 1. At this point, the recursion 

stops momentarily and the cheapest cost possible for the remaining load of u(t = 1) (e.g. 12) is 

calculated. This value, along with the energy available in the battery for u(t = 2) (e.g. 0) after 

possibly having used the battery for u(t = 1), is saved in a table and subsequently returned to the 

instance of recursive_portion that has n = 2 and a corresponding variable-load choice of 

u(t = 2) (e.g. 0). This instance now calculates the cheapest cost possible for the current choice of 

u(t = 2). Then, this instance makes the next choice available for u(t = 2) (e.g. 1 if increment = 1) 

and again calls itself with parameters n – 1 and k – u(t = 2) (e.g. 11), which triggers a repetition 

of the procedure described for t = 1 but for the quantity of u(t = 1) resulting from the new choice 

of u(t = 2). In this manner, the cheapest cost possible for each valid combination of n (1 – 24 in 

integer values) and k (0 – 12 in specified increments) will eventually be tabulated. Whenever an 

instance of recursive_portion is called with a certain combination of n and k for which 

the minimum cost has already been calculated, that value will simply be retrieved from the table 

and returned to the previous instance of recursive_portion, thereby saving significant 

computation time.  
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 The aforementioned process may be repeated for multiple days with ease. The cheapest 

cost may be calculated for several days by simply adding together the cheapest cost over each 

day in that time span. One important point is that this sum is much distinguished from the 

minimum cost computed over several days, which would result from applying dynamic 

programming over that combined time frame.  
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Chapter 5 – Results and Analysis 

Chapter 5.1 – Results 

Primary Case – Constant Quantity of Variable Load for Day 

 As mentioned before, the amount of variable load that can be assigned to any hour ranges 

from 0 to the total remaining variable load to be assigned (12 kWh initially). Ideally, this is a true 

spectrum, out of which any value can be considered valid. However, because this solution is 

numerical in nature, the range consists of increments of a size that is determined by the user. As 

the increments become smaller, the program takes a much greater amount of time to complete, 

thus rendering extremely small increments impractical, if not impossible. So, to determine the 

best practical increment and to observe the correlation between increment size and minimum 

cost, the increments considered here are 1 kWh, 0.5 kWh, and 0.25 kWh. Table 2 tabulates the 

total minimum cost and the running time of the program using each of these increments for the 

31 days in July. Figure 3 shows the information on Table 2 on a bar graph for better visual 

comparison. On the bar graph, the total minimum cost is on the x-axis and the running time 

(shown on the graph as the average of the two extreme values listed on the table) is on the y-axis 

to glean light on the tradeoff between decrease in cost and increase in running time. 
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Table 2: Total Minimum Cost and Running Time for Each Increment (Primary Case) 

Increment Total Minimum Cost Running Time 

1 kWh $22.53 0.6 – 0.9 seconds 

0.5 kWh $21.57 1.8 – 1.95 seconds 

0.25 kWh $21.31 6.8 – 8.4 seconds 

 

 

 

 

 

 

 

 

 

Figure 3: Running Time vs. Total Minimum Cost 
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Table 3 displays the hourly variable load schedule for the same duration in increments of 

1 kWh. The unit is kWh. Each row represents a day in July. Each column represents an hour of 

the day. 

Table 3: Variable Load Schedule in Increments of 1 kWh 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1st 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

2nd 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 

3rd 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 

4th 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 1 0 0 0 0 0 

5th 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

6th 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

7th 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

8th 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

9th 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 0 0 0 1 0 0 

10th 0 0 0 0 0 0 0 0 0 0 1 2 1 2 2 2 1 1 0 0 0 0 0 0 

11th 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 0 0 0 1 0 0 

12th 0 0 0 0 0 0 0 1 0 1 1 1 0 2 2 2 1 1 0 0 0 0 0 0 

13th 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 2 1 1 0 0 0 1 0 0 

14th 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 1 0 0 0 0 0 

15th 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 0 0 

16th 0 0 0 0 0 0 0 1 0 1 1 2 1 2 2 1 0 1 0 0 0 0 0 0 

17th 0 0 0 0 0 0 0 0 0 0 1 2 1 2 2 2 1 1 0 0 0 0 0 0 

18th 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 1 0 0 0 0 0 

19th 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 2 1 2 

20th 0 0 0 0 0 0 0 1 0 1 1 1 1 2 2 1 1 1 0 0 0 0 0 0 

21st 0 0 0 0 0 0 0 1 0 1 1 1 0 1 2 2 1 1 1 0 0 0 0 0 

22nd 0 0 0 0 0 0 0 1 0 1 1 1 0 2 2 2 1 1 0 0 0 0 0 0 

23rd 0 0 0 0 0 0 0 1 0 1 1 1 1 1 2 2 1 1 0 0 0 0 0 0 

24th 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

25th 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 3 0 0 

26th 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

27th 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 1 1 0 0 0 0 0 0 

28th 0 0 0 0 0 0 0 0 0 0 1 2 1 2 2 2 1 1 0 0 0 0 0 0 

29th 0 0 0 0 0 0 0 1 0 1 1 1 1 2 2 1 1 1 0 0 0 0 0 0 

30th 0 0 0 0 0 0 0 0 0 0 1 2 1 2 2 2 1 1 0 0 0 0 0 0 

31st 0 0 0 0 0 0 0 1 0 1 1 2 1 2 2 1 0 1 0 0 0 0 0 0 
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Table 4a displays the load schedule (in kWh) for the first twelve hours of the day in 

increments of 0.5 kWh. Table 4b displays the same data for the second twelve hours of the day. 

As before, the unit is kWh, each row represents a day in July, and each column represents an 

hour of the day. 

Table 4a: Variable Load Schedule for First Twelve Hours in Increments of 0.5 kWh 

 0 1 2 3 4 5 6 7 8 9 10 11 

1st 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1 

2nd 2 0 0 0 0 0.5 0.5 1 0.5 0.5 0.5 1 

3rd 4 0.5 0 0 0 0.5 0.5 0.5 0 0.5 0.5 0.5 

4th 0 0 0 0 0 0.5 0.5 0.5 0 0.5 1 0.5 

5th 0 0 0 0 0 0.5 0.5 0.5 0 0.5 0.5 1 

6th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 0.5 

7th 0 0 0 0 0 0 0 1.5 0 1 2 0.5 

8th 2.5 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

9th 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

10th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1.5 

11th 2.5 0 0 0 0 0 0.5 0.5 0 0.5 0.5 0.5 

12th 1 0 0 0 0 0 2.5 0.5 0 0.5 0.5 0.5 

13th 0.5 0 0 0 0 2.5 0.5 0.5 0 0.5 0.5 0.5 

14th 0 0 0 0 0 1.5 0.5 0.5 0 0.5 0.5 0.5 

15th 0 0 0 0 0 0 0 0.5 0 0.5 0.5 1.5 

16th 0 0 0 0 0 0.5 0.5 1 0.5 0.5 1 1.5 

17th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1.5 

18th 4 0 0 0 0 0 0.5 0.5 0 0.5 0.5 0.5 

19th 4 0.5 0.5 0.5 0 0.5 1 1 0 0.5 0.5 0.5 

20th 0.5 0 0 0 0 0.5 0.5 0.5 0 0.5 0.5 0.5 

21st 0 0 0 0 0 1 0.5 1 1.5 0.5 0.5 0.5 

22nd 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

23rd 0 0 0 0 0 0.5 0.5 0.5 0.5 1 0.5 0.5 

24th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1 

25th 1 0 0 0 0 2 1 0.5 0.5 0.5 0.5 0.5 

26th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1 

27th 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 1 

28th 0 0 0 0 0 0 0 0.5 0 0.5 1 1.5 

29th 0 0 0 0 0 0 0.5 0.5 0 0.5 1 1.5 

30th 0 0 0 0 0 0 0 0.5 0 0.5 0.5 1.5 

31st 0 0 0 0 0 0 0.5 0.5 0 0.5 1 1.5 
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Table 4b: Variable Load Schedule for Second Twelve Hours in Increments of 0.5 kWh 

 12 13 14 15 16 17 18 19 20 21 22 23 

1st 1 1.5 1.5 2 1 1 0.5 0.5 0 0 0 0 

2nd 0 0.5 1 1.5 0.5 0.5 0.5 0 0 1 0 0 

3rd 0 0.5 0.5 1 1 1 0.5 0 0 0 0 0 

4th 0 1 1.5 1.5 1 1 0.5 0 0 1.5 0.5 0 

5th 1 1.5 1.5 2 1 1 0.5 0 0 0 0 0 

6th 1 1.5 2 1.5 0.5 0.5 0.5 0 0 1 0.5 0.5 

7th 0.5 1 0.5 1 1 1 1 0.5 0.5 0 0 0 

8th 0 0.5 1 1 1 1 1 0.5 0 0 0 0 

9th 0.5 1.5 1.5 1.5 1 1 0.5 0 0 0.5 0.5 0 

10th 1 1.5 2 1.5 1 0.5 0.5 0 0 0.5 0 0 

11th 0 1 1.5 1.5 1 1 0.5 0 0 0.5 0 0 

12th 0 1.5 1.5 1.5 1 0.5 0.5 0 0 0 0 0 

13th 0 1 1.5 2 0.5 1 0.5 0 0 0 0 0 

14th 0.5 1.5 1.5 1.5 1 1 0.5 0.5 0 0 0 0 

15th 1 1.5 2 2 1 1 0.5 0 0 0 0 0 

16th 1.5 1.5 1.5 1 0 0.5 0.5 0 0 0 0 0 

17th 1 2 2 2 0.5 0.5 0.5 0 0 0 0 0 

18th 0 0.5 1.5 1.5 0.5 1 0.5 0 0 0 0 0 

19th 0 0.5 0.5 0.5 0 0.5 0.5 0 0 0 0 0 

20th 0.5 1.5 1.5 1 1 1 0.5 0 0 0.5 0.5 0.5 

21st 0 1 1.5 1.5 1 1 0.5 0 0 0 0 0 

22nd 0.5 1.5 1.5 1.5 1 1.5 1 0 0 0 0 0 

23rd 0.5 1.5 1.5 2 1 1 0.5 0 0 0 0 0 

24th 1 2 2 1.5 1 0.5 0.5 0 0 0.5 0 0 

25th 0 1.5 1 1 1 0.5 0.5 0 0 0 0 0 

26th 1 1.5 2 2 1 1 0.5 0 0 0 0 0 

27th 1 2 2 2 1 0.5 0.5 0 0 0 0 0 

28th 1 1.5 1.5 2 1 1 0.5 0 0 0 0 0 

29th 1 1.5 2 1.5 1 0.5 0.5 0 0 0 0 0 

30th 1 2 2 2 1 0.5 0.5 0 0 0 0 0 

31st 1.5 2 1.5 0.5 0 0.5 0.5 0 0 1.5 0 0 
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Table 5a displays the load schedule (in kWh) for the first twelve hours of the day in 

increments of 0.25 kWh. Table 5b displays the same data for the second twelve hours of the day. 

Once again, the unit is kWh, each row represents a day in July, and each column represents an 

hour of the day. 

Table 5a: Variable Load Schedule for First Twelve Hours in Increments of 0.25 kWh 

 0 1 2 3 4 5 6 7 8 9 10 11 

1st 0 0 0 0 0 0.25 0.5 0.5 0.25 0.75 0.75 0.75 

2nd 1.75 0.25 0.25 0.25 0 0.25 0.5 1 0.5 0.5 1 0.75 

3rd 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.5 0.5 

4th 0 0 0 0 0 0.25 0.25 0.5 0 0.5 0.5 0.5 

5th 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.5 0.75 

6th 1.25 0 0 0 0 0.25 0.5 0.75 0.25 0.5 0.75 0.5 

7th 0.75 0.5 0.5 1 0.5 0.5 0 0.5 0.5 0.75 0.75 0.5 

8th 0.25 0 0 0 0 0.5 0.25 1.5 0.75 1 0.5 0.75 

9th 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.5 0.5 

10th 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.75 1.5 

11th 1.75 0.25 0.25 0.25 0.75 0.25 0.5 1 0 0.5 0.5 0.5 

12th 1.75 0.25 0.25 0.25 0.75 0.25 0.25 0.75 0.25 0.75 0.5 0.5 

13th 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.5 0.5 

14th 0 0 0 0 0 0.25 1.25 0.5 0.25 0.5 0.5 0.75 

15th 0 0 0 0 0 0 0.25 0.5 0 0.5 0.75 1.5 

16th 1.75 0.25 0.25 0.25 0 0.25 0.25 0.75 0.25 0.5 0.75 1.5 

17th 0.25 0 0 0 0 0.25 0.25 0.5 0 0.5 0.75 1.5 

18th 1.75 0.25 0.25 0.25 0.75 0.25 1 0.25 0 1 0.5 0.5 

19th 4 0.5 0.5 0.5 0 0.5 1 1.25 0.25 0.25 0.5 0.5 

20th 1.25 0 0 0 0 0.25 0.5 0.5 0.25 0.5 0.75 0.5 

21st 0.75 0.5 0.5 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.75 

22nd 0.5 0 0 0 0 1.25 0.25 0.75 0.5 0.5 0.5 0.5 

23rd 1.25 0 0 0 0 0.25 0.25 0.75 0.5 0.75 0.5 0.75 

24th 0 0 0 0 0 0.25 0.25 0.5 0 0.5 0.5 1.5 

25th 1.75 0.25 0.25 0.25 0.75 0.75 1 0.5 0.5 0.75 0.5 0.5 

26th 0 0 0 0 0 0.25 0.25 0.5 0 0.5 0.5 1.25 

27th 0 0 0 0 0 0.25 0.5 0.5 0 0.5 0.5 0.75 

28th 0 0 0 0 0 0 0.25 0.5 0 0.5 1.25 1.5 

29th 0 0 0 0 0 0 0.25 0.5 0.25 0.5 1 1.5 

30th 0 0 0 0 0 0 0.25 0.5 0 0.5 0.75 1.25 

31st 1.25 0 0 0 0 0.25 0.25 0.75 0.25 0.5 1 1.75 
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Table 5b: Variable Load Schedule for Second Twelve Hours in Increments of 0.25 kWh 

 12 13 14 15 16 17 18 19 20 21 22 23 

1st 0.75 1.5 1.5 2 1 1 0.25 0.25 0 0 0 0 

2nd 0 0.5 1 1.25 0.5 0.5 0.25 0 0 0.75 0.25 0 

3rd 0 0.5 0.5 1 0.75 1 0.25 0 0 5.25 0 0 

4th 0 1 1.25 1.25 1 1 0.25 0 0 3.5 0.25 0 

5th 0.75 1.25 1.5 1.5 1 1 0.25 0 0 1.75 0 0 

6th 1 1.5 1.75 1.5 0.5 0.75 0.25 0 0 0 0 0 

7th 0.25 0.75 0.5 1 0.75 0.75 0.75 0.25 0.25 0 0 0 

8th 0 0.5 1 1 1 1 0.75 0.25 0.5 0.25 0.25 0 

9th 0.25 1.25 1.5 1.5 1 0.75 0.25 0 0 2.5 0.25 0 

10th 1 1.75 1.75 1.5 1 0.75 0.25 0 0 0 0 0 

11th 0 0.75 1.25 1.5 1 0.75 0.25 0 0 0 0 0 

12th 0 1.5 1.25 1.25 0.75 0.5 0.25 0 0 0 0 0 

13th 0 0.75 1.25 1.5 0.5 0.75 0.25 0 0 4.25 0 0 

14th 0.5 1.5 1.75 1.5 1 1.25 0.25 0.25 0 0 0 0 

15th 1.25 1.75 1.75 2 0.75 0.75 0.25 0 0 0 0 0 

16th 1.25 1.25 1.5 0.5 0 0.5 0.25 0 0 0 0 0 

17th 1.25 1.75 2 1.75 0.5 0.5 0.25 0 0 0 0 0 

18th 0.25 0.75 1.25 1.5 0.5 0.75 0.25 0 0 0 0 0 

19th 0 0.25 0.5 0.5 0 0.5 0.25 0 0 0.25 0 0 

20th 0.75 1.25 1.75 1.75 1 0.75 0.25 0 0 0 0 0 

21st 0 1.25 1.75 1.5 1 1.25 0.25 0 0.5 0 0 0 

22nd 0.75 1.25 1.5 1.5 1 1 0.25 0 0 0 0 0 

23rd 0.5 1.25 1.5 1.75 1 0.75 0.25 0 0 0 0 0 

24th 1.25 2 2 1.5 0.75 0.75 0.25 0 0 0 0 0 

25th 0.25 0.75 0.75 1 0.25 0.5 0.25 0 0 0.5 0 0 

26th 1 1.5 2 1.75 1.25 0.75 0.25 0 0 0.25 0 0 

27th 1.25 1.75 2.25 2 0.75 0.75 0.25 0 0 0 0 0 

28th 1 1.5 1.75 1.75 1 0.75 0.25 0 0 0 0 0 

29th 1 2 1.75 1.25 1 0.5 0.25 0 0.25 0 0 0 

30th 1.25 1.75 1.75 2 1 0.75 0.25 0 0 0 0 0 

31st 1.25 2 1.25 0.5 0 0.75 0.25 0 0 0 0 0 
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Figure 4 shows the optimal variable-load schedule with each increment. 

 

Figure 4: Optimal Variable-Load Schedule with Each Increment 
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Table 6a shows for the increment of 1 kWh the energy in the battery at the beginning of 

hours 0 to 11 of each day of the month. Table 6b shows the same data at the beginning of hours 

12 to 23 of each day of the month. Similarly, Tables 7a and 7b show the respective data for the 

increment of 0.5 kWh and Tables 8a and 8b do so for the increment of 0.25 kWh. For all the 

tables, the unit is kWh, each row represents a day in July, and each column represents an hour of 

the day. Figure 5 shows the energy in the battery with each increment. 

Table 6a: Energy in Battery at Beginning of First Twelve Hours (1 kWh Increment) 

 0 1 2 3 4 5 6 7 8 9 10 11 

1st 0 0 0 0 0 0.025 0.18715 0.4276 0.4292 0 0 0 

2nd 0 0 0 0 0 0.0196 0 0 0.0016 0 0 0 

3rd 0 0 0 0 0 0 0 0 0 0 0 0 

4th 0 0 0 0 0 0.01945 0.11755 0 0 0 0 0 

5th 0 0 0 0 0 0.0219 0.1767 0.4108 0.3958 0 0 0 

6th 0 0 0 0 0 0.0226 0.1785 0.4126 0.3976 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0.01425 0 0 0.0016 0 0 0 

9th 0 0 0 0 0 0.02035 0.1709 0 0.0016 0 0 0 

10th 0 0 0 0 0 0.01755 0.15765 0.39175 0.37675 0.5919 0.1505 0 

11th 0 0 0 0 0 0 0.0587 0 0 0 0 0 

12th 0 0 0 0 0 0 0.0436 0 0 0 0 0 

13th 0 0 0 0 0 0.0132 0 0 0 0 0 0 

14th 0 0 0 0 0 0.0128 0.1538 0 0 0 0 0 

15th 0 0 0 0 0 0.00995 0.1431 0.38355 0.38515 0.6111 0.3332 0.55335 

16th 0 0 0 0 0 0.0084 0.11525 0 0.0016 0 0 0 

17th 0 0 0 0 0 0.00705 0.1301 0.3642 0.3492 0.56435 0.11345 0 

18th 0 0 0 0 0 0 0.0284 0 0 0 0 0 

19th 0 0 0 0 0 0 0 0 0 0.02385 0 0 

20th 0 0 0 0 0 0.0036 0.06525 0 0 0 0 0 

21st 0 0 0 0 0 0.00295 0.0723 0 0 0 0 0 

22nd 0 0 0 0 0 0.00265 0.12455 0 0.0016 0 0 0 

23rd 0 0 0 0 0 0.00285 0.1272 0 0.0016 0 0 0 

24th 0 0 0 0 0 0.00135 0.111 0.3451 0.3301 0 0 0.00465 

25th 0 0 0 0 0 0.00065 0 0 0 0 0 0 

26th 0 0 0 0 0 0.0006 0.11485 0.34895 0.33395 0 0 0.02 

27th 

0 0 0 0 0 

5.00E-

05 0.11525 0.34935 0.33435 0 0 0 

28th 0 0 0 0 0 0 0.1058 0.3399 0.3249 0.61225 0.7087 0.1789 

29th 0 0 0 0 0 0 0.03155 0 0.0016 0 0 0.09595 

30th 0 0 0 0 0 0 0.1078 0.34825 0.34985 0.5758 0.2846 0 

31st 0 0 0 0 0 0 0.0969 0 0 0 0 0 
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Table 6b: Energy in Battery at Beginning of Second Twelve Hours (1 kWh Increment) 

 12 13 14 15 16 17 18 19 20 21 22 23 

1st 0 0 0 0 0 0 0.1125 0.1316 0 0 0 0 

2nd 0 0 0 0.00065 0 0 0.0758 0.08305 0 0 0 0 

3rd 0 0 0 0 0 0 0 0.0208 0 0 0 0 

4th 0 0 0 0 0 0 0 0.01935 0 0 0 0 

5th 0 0 0 0 0 0 0.1277 0.14665 0 0 0 0 

6th 0 0 0 0 0 0 0.11 0.12525 0 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0 0 0 0 0 0 0 

9th 0.0766 0.1032 0 0 0 0 0.1203 0.13585 0 0 0 0 

10th 0 0 0 0 0 0 0.0782 0.08395 0 0 0 0 

11th 0 0 0 0 0 0 0.1135 0.12705 0 0 0 0 

12th 0 0 0 0 0 0 0.06895 0.07315 0 0 0 0 

13th 0 0 0.0497 0 0 0 0.10975 0.1311 0 0 0 0 

14th 0.1044 0.16015 0 0 0 0 0 0.01195 0 0 0 0 

15th 0.61705 0.32755 0.18495 0.03885 0 0 0 0.01935 0 0 0 0 

16th 0.03095 0 0 0 0 0 0.07705 0.08125 0 0 0 0 

17th 0.0277 0 0 0 0 0 0.0947 0.1025 0 0 0 0 

18th 0 0 0 0 0 0 0 0 0 0 0 0 

19th 0 0 0 0 0 0 0.09975 0.09975 0 0 0 0 

20th 0 0 0 0 0 0 0.10465 0.10465 0 0 0 0 

21st 0 0 0 0 0 0 0 0 0 0 0 0 

22nd 0.06725 0 0 0 0 0 0.10845 0.10845 0 0 0 0 

23rd 0 0.1095 0 0 0 0 0.1091 0.1091 0 0 0 0 

24th 0 0 0 0 0 0 0.10275 0.10275 0 0 0 0 

25th 0 0 0 0 0.0095 0 0.09595 0.09595 0 0 0 0 

26th 0 0 0 0 0 0 0.10145 0.10145 0 0 0 0 

27th 0 0 0 0 0 0 0.0909 0.0909 0 0 0 0 

28th 0.2176 0 0 0 0 0 0.095 0.095 0 0 0 0 

29th 0.02315 0 0 0.02545 0 0 0.00995 0.00995 0 0 0 0 

30th 0.0422 0 0 0 0 0 0.08785 0.08785 0 0 0 0 

31st 0.11225 0 0 0 0 0 0.0917 0.0917 0 0 0 0 
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Table 7a: Energy in Battery at Beginning of First Twelve Hours (0.5 kWh Increment) 

 0 1 2 3 4 5 6 7 8 9 10 11 

1st 0 0 0 0 0 0.025 0 0 0.0016 0 0 0 

2nd 0 0 0 0 0 0 0 0 0 0 0 0 

3rd 0 0 0 0 0 0 0 0 0 0 0 0 

4th 0 0 0 0 0 0 0 0 0 0 0 0 

5th 0 0 0 0 0 0 0 0 0 0 0 0 

6th 0 0 0 0 0 0.0226 0 0 0 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0 0 0 0 0 0 0 

9th 0 0 0 0 0 0 0 0 0 0 0 0 

10th 0 0 0 0 0 0.01755 0 0 0 0 0.0293 0 

11th 0 0 0 0 0 0 0 0 0 0 0 0 

12th 0 0 0 0 0 0 0 0 0 0 0 0 

13th 0 0 0 0 0 0 0 0 0 0 0 0 

14th 0 0 0 0 0 0 0 0 0 0 0 0 

15th 0 0 0 0 0 0.00995 0.1431 0.124 0.1256 0.0775 0.18855 0.12885 

16th 0 0 0 0 0 0 0 0 0 0 0 0 

17th 0 0 0 0 0 0.00705 0 0 0 0 0.02455 0 

18th 0 0 0 0 0 0 0 0 0 0 0 0 

19th 0 0 0 0 0 0 0 0 0 0 0 0 

20th 0 0 0 0 0 0 0 0 0 0 0 0 

21st 0 0 0 0 0 0 0 0 0 0 0 0 

22nd 0 0 0 0 0 0 0 0 0 0 0 0 

23rd 0 0 0 0 0 0 0 0 0 0 0 0 

24th 0 0 0 0 0 0.00135 0 0 0 0 0 0.00465 

25th 0 0 0 0 0 0 0 0 0 0 0 0 

26th 0 0 0 0 0 0.0006 0 0 0 0 0 0.02 

27th 

0 0 0 0 0 

5.00E-

05 0 0 0 0 0 0 

28th 0 0 0 0 0 0 0.1058 0.074 0.059 0.09635 0.1928 0.163 

29th 0 0 0 0 0 0 0 0 0.0016 0 0 0 

30th 0 0 0 0 0 0 0.1078 0.0887 0.0903 0.0422 0.1466 0 

31st 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 7b: Energy in Battery at Beginning of Second Twelve Hours (0.5 kWh Increment) 

 12 13 14 15 16 17 18 19 20 21 22 23 

1st 0 0 0 0 0 0 0 0 0 0 0 0 

2nd 0 0 0 0 0 0 0 0.00725 0 0 0 0 

3rd 0 0 0 0 0 0 0 0.0208 0 0 0 0 

4th 0 0 0 0 0 0 0 0.01935 0 0 0 0 

5th 0 0 0 0 0 0 0 0.01895 0 0 0 0 

6th 0 0 0 0 0 0.04555 0 0.01525 0 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0 0 0 0 0 0 0 

9th 0 0 0 0 0 0 0 0.01555 0 0 0 0 

10th 0 0.0455 0 0.00025 0 0.0617 0 0.00575 0 0 0 0 

11th 0 0 0 0 0 0 0 0.01355 0 0 0 0 

12th 0 0 0 0 0 0.01495 0 0.0042 0 0 0 0 

13th 0 0 0 0 0 0 0 0.02135 0 0 0 0 

14th 0 0 0 0 0 0 0 0 0 0 0 0 

15th 0.19255 0.2978 0.1552 0.0091 0 0 0 0.01935 0 0 0 0 

16th 0 0 0 0 0 0 0 0.0042 0 0 0 0 

17th 0.0277 0 0 0 0 0 0 0.0078 0 0 0 0 

18th 0 0 0 0 0 0 0 0 0 0 0 0 

19th 0 0 0 0 0 0 0 0 0 0 0 0 

20th 0 0 0 0 0 0 0 0 0 0 0 0 

21st 0 0 0 0 0 0 0 0 0 0 0 0 

22nd 0 0 0 0 0 0 0 0 0 0 0 0 

23rd 0 0 0 0 0 0 0 0 0 0 0 0 

24th 0 0 0 0 0 0.0462 0 0 0 0 0 0 

25th 0 0 0 0 0 0 0 0 0 0 0 0 

26th 0 0 0 0 0 0 0 0 0 0 0 0 

27th 0 0 0 0 0 0.0635 0 0 0 0 0 0 

28th 0.2017 0.2316 0.3146 0 0 0 0 0 0 0 0 0 

29th 0 0.0085 0 0 0 0 0 0 0 0 0 0 

30th 0.0422 0 0 0 0 0.1052 0 0 0 0 0 0 

31st 0 0 0 0 0 0.0571 0 0 0 0 0 0 
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Table 8a: Energy in Battery at Beginning of First Twelve Hours (0.25 kWh Increment) 

 0 1 2 3 4 5 6 7 8 9 10 11 

1st 0 0 0 0 0 0 0 0 0 0 0 0 

2nd 0 0 0 0 0 0 0 0 0 0 0 0 

3rd 0 0 0 0 0 0 0 0 0 0 0 0 

4th 0 0 0 0 0 0 0 0 0 0 0 0 

5th 0 0 0 0 0 0 0 0 0 0 0 0 

6th 0 0 0 0 0 0.00995 0.0181 0 0.0016 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0 0 0 0 0 0 0 

9th 0 0 0 0 0 0 0 0 0 0 0 0 

10th 0 0 0 0 0 0 0 0 0 0 0 0 

11th 0 0 0 0 0 0 0 0 0 0 0 0 

12th 0 0 0 0 0 0 0 0 0 0 0 0 

13th 0 0 0 0 0 0 0 0 0 0 0 0 

14th 0 0 0 0 0 0 0 0 0 0 0 0 

15th 0 0 0 0 0 0 0 0 0 0 0 0 

16th 0 0 0 0 0 0 0 0 0 0 0 0 

17th 0 0 0 0 0 0 0 0 0 0 0 0 

18th 

0 0 0 0 0 

0.00E+

00 0 0 0 0 0 0 

19th 0 0 0 0 0 0 0 0 0 0.03735 0 0 

20th 0 0 0 0 0 0 0 0 0 0 0 0 

21st 0 0 0 0 0 0 0 0 0.0016 0 0 0.0447 

22nd 0 0 0 0 0 0 0 0 0 0 0 0 

23rd 0 0 0 0 0 0 0 0 0 0 0 0 

24th 0 0 0 0 0 0 0 0 0 0 0 0 

25th 0 0 0 0 0 0 0 0 0 0 0 0 

26th 0 0 0 0 0 0 0 0 0 0 0 0 

27th 0 0 0 0 0 0 0 0 0 0 0 0 

28th 0 0 0 0 0 0.00995 0.0181 0 0.0016 0 0 0 

29th 0 0 0 0 0 0 0 0 0 0 0 0 

30th 0 0 0 0 0 0 0 0 0 0 0 0 

31st 0 0 0 0 0 0 0 0 0 0 0 0 

  



37 
 

Table 8b: Energy in Battery at Beginning of Second Twelve Hours (0.25 kWh Increment) 

 12 13 14 15 16 17 18 19 20 21 22 23 

1st 0 0 0 0 0 0 0 0 0 0 0 0 

2nd 0 0 0 0 0 0 0 0.00725 0 0 0 0 

3rd 0 0 0 0 0 0 0.0068 0.0276 0 0 0 0 

4th 0 0 0 0.0047 0 0 0.0019 0.02125 0 0 0 0 

5th 0 0.00475 0 0.00015 0 0 0.0027 0.02165 0 0 0 0 

6th 0 0 0 0 0 0 0 0.01525 0 0 0 0 

7th 0 0 0 0 0 0 0 0 0 0 0 0 

8th 0 0 0 0 0 0 0 0 0 0 0 0 

9th 0 0 0 0 0 0.02075 0.01135 0.0269 0 0 0 0 

10th 0 0 0 0.00025 0 0 0 0.00575 0 0 0 0 

11th 0 0 0 0 0 0.0033 0 0.01355 0 0 0 0 

12th 0 0 0 0 0 0.01495 0 0.0042 0 0 0 0 

13th 0 0 0 0 0 0 0 0.02135 0 0 0 0 

14th 0 0 0 0 0 0 0 0 0 0 0 0 

15th 0 0 0.0537 0 0.0446 0.04585 0.01685 0.0362 0 0 0 0 

16th 0 0 0 0 0 0 0 0.0042 0 0 0 0 

17th 0 0 0 0 0 0 0 0.0078 0 0 0 0 

18th 0 0 0 0 0 0 0 0 0 0 0 0 

19th 0 0 0 0 0 0 0 0 0 0 0 0 

20th 0 0 0 0 0 0 0 0 0 0 0 0 

21st 0 0 0 0 0 0 0 0 0 0 0 0 

22nd 0 0 0 0 0 0 0 0 0 0 0 0 

23rd 0 0 0 0 0 0.01495 0 0 0 0 0 0 

24th 0 0 0 0 0 0 0 0 0 0 0 0 

25th 0 0 0 0 0 0 0 0 0 0 0 0 

26th 0 0 0 0 0 0.00785 0 0 0 0 0 0 

27th 0 0 0 0 0 0 0 0 0 0 0 0 

28th 0.0387 0.0686 0 0 0 0 0 0 0 0 0 0 

29th 0 0 0 0 0 0 0 0 0 0 0 0 

30th 0 0 0.05095 0 0 0 0 0 0 0 0 0 

31st 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 5: Energy in Battery with Each Increment 

Variation – Variable Load for Day is Randomly Determined within Range 

 The process used to develop the variable load schedule and obtain the cheapest cost is 

quite similar to that used for the previous case. The key difference is that instead of the total 

variable load invariably summing to 12 kWh each day, it adds up to a random quantity within the 

range 9 kWh to 15 kWh.  

One point of note is that the values that can be chosen within this range are restricted to 

multiples of the increment – multiples of 1, 0.5, or 0.25. All three options are studied and the 

results are displayed in Table 6.  

Another notable mention is that the element of randomness in the quantity of variable 

load to meet on a certain day will likely cause the minimum cost and optimal load schedule to 

vary for every run of the program; however, because the variable load is randomly determined 31 
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times (for every day of the month of July), the randomness results in a reasonably uniform 

distribution and thus a single run of the program sufficiently represents typical values. 

Running time is omitted from this variation because the primary case offers better 

relative perspective on this metric. 

Table 9: Total Minimum Cost for Each Increment (Variation) 

Increment Total Minimum Cost 

1 kWh $23.97 

0.5 kWh $22.40 

0.25 kWh $21.01 

 

Chapter 5.2 – Analysis 

Primary Case – Constant Quantity of Variable Load for Day 

A randomized practice to develop the load schedule is introduced to gain perspective into 

the significance of the reduction in cost offered by the dynamic-programming approach. This 

new procedure, used for comparative purposes, sets a random quantity of variable load for each 

hour of the day. This algorithm pays no heed to efficiency concerns; the only limitation placed 

on this method is that as before, the quantity of variable load for each day needs to total 12 kWh. 

A variable load schedule is thus developed for the whole month of July and the respective cost is 

obtained. 
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Table 10 shows the cost of the randomized algorithm as well as the cost improvements of 

dynamic programming over that process. 

Table 10: Comparison Between Randomized Algorithm and Dynamic Programming 

Algorithm/Increment Cost Improvement over Randomized Algorithm 

Randomized/NA $28.55 N/A 

Dynamic Programming/1 kWh $22.53 21.1% ($6.02) 

Dynamic Programming/0.5 kWh $21.57 24.4% ($6.98) 

Dynamic Programming/0.25 kWh $21.31 25.4% ($7.24) 

 

The differences shown by Table 10 are beyond marginal and prove that dynamic programming 

offers considerable savings. 

 The tables and plot showing energy in the battery clearly have the smallest values when 

the increment size is also smallest, proving that smaller increment sizes allow more solar energy 

to be directed to the load before charging the battery. However, the additional precision that is 

provided by increments of 0.25 kWh comes with a significant tradeoff in increased running time 

and only a marginal improvement in the total cost, as shown in Table 11.  
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 Table 11 documents the tradeoff between smaller increments/cost improvements and 

increased running times. 

Table 11: Tradeoff Between Smaller Increments/Cost Improvements and Increased Running Times (Primary Case) 

Increment Cost Improvement over Previous 

Increment 

Running Time Increase 

over Previous Increment 

1 kWh N/A N/A 

0.5 kWh 4.3% ($0.94) 147% (~1 s) 

0.25 kWh 1.2% ($0.26) 311% (~ 5 s – 6 s) 

 

Table 11 shows that 0.5 kWh offers a nice balance between running time and cost efficiency. For 

this reason, it is the best one to use for this problem. 

Variation – Variable Load for Day is Randomly Determined within Range 

 The relationship between increment size and minimum cost carries over from the primary 

case to this variation. Table 12 shows the relationship between smaller increment sizes and 

improvements in total minimum cost. Running time is omitted from this variation as a topic of 

focus because the primary case offers more suitable grounds (without randomness) for that study. 

Table 12: Relationship Between Smaller Increments and Cost Improvements (Variation) 

Increment Cost Improvement over Previous Increment 

1 kWh N/A 

0.5 kWh 6.5% ($1.57) 

0.25 kWh 6.2% ($1.39) 
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The improvement obtained by the 0.25-kWh increment over the 0.5-kWh increment is higher 

than that obtained by using the 0.25 kWh for the primary case and is comparable to the 

improvement obtained by the 0.5-kWh increment over the 1-kWh increment in this variation, but 

because of the discussion regarding running time in the primary case coupled with the fact that 

the reductions in cost will vary in this variation due to randomness, the best increment size still 

appears to be 0.5 kWh for this problem. 
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Chapter 6 – Conclusion and Future Work 

This project has proven that dynamic programming is a robust and innovative way to 

solve the problem of cost optimization with hybrid renewable energy systems. As shown, it leads 

to a reduction in cost compared to a randomized approach to developing a load schedule. The 

technique described is also quite flexible, as the process remains similar regardless of details 

such as type of building, time of year, or geographic location. The procedure may be easily 

adjusted by substituting the relevant parts. 

There are many avenues of expansion to this project. The following is a non-exhaustive 

list of possible ideas. 

1) A comparison could be made between the savings that result from using dynamic 

programming for the month of July and those that may be obtained from using the same 

algorithm on a cold month, such as December. During such times of the year, the savings may or 

may not be as significant as those during warmer months. Similarly, the type of building and 

geographic location could be varied to develop a more general understanding of the efficiency of 

the approach described in this thesis. 

2) Rather than requiring that the variable load remain constant or within a range for the whole 

day, this constraint could instead be applied to a week or month. Making this change could result 

in a cheaper cost, but may also appear to be less realistic, as operating electrical devices on such 

a tight schedule for long periods of time may be unfeasible. Also, dynamic programming tends to 

get inefficient as the time frame is lengthened. 

3) Instead of considering a month as the window of time over which the cost must be optimized, 

the scope could be widened by focusing on several months or even years. 
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4) Instead of always allowing variable loads to be split into smaller quantities, introduce a 

restriction that certain loads may not be divided. In reality, this limitation would correspond to a 

certain appliance or other electrical device that necessarily consumes a minimum quantity of 

energy when in operation. 

5) The battery for this project was a simple bank of energy that only considered a round-trip 

efficiency. This device could be made more complex and realistic, such as by introducing 

lifetime and a maximum capacity, especially if this technique is conducted for several months or 

years instead of only one month. In the same vein, the efficiency and lifetime of solar PV cells 

may also be factored into the problem. 

6) Snow cover on the solar PV cells may detract from the amount of energy available to the 

system. This may be added as a factor for colder months. 

7) Wind energy could be included as an additional source of renewable energy. This would 

require understanding of the details of its production and storage. 

8) Other techniques and algorithms, especially machine learning, may be implemented to 

perhaps improve on the cost savings offered by dynamic programming. 
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