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Abstract

Applications of Dynamic Mode Decomposition and Sparse Reconstruction
in The Data-Driven Dynamic Analysis of Physical Systems

by
Mojtaba F. Fathi

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Prof. Roshan M. D’Souza

Recent advancements in data collection methods and equipment have resulted in a huge increase

in the amount of data collected by observing various types of physical phenomena. Regardless of

the amount of data collected, it is well known for many physical systems, the so-called

information rank of the collected data is much lower than the rank of the data itself. This usually

means the data may be represented sparsely in terms of a properly-chosen basis. This realization

has led to methods for storing large amounts of data through compression by sacrificing negligible

data quality. More importantly, with the advent of compressed sensing techniques, using an

appropriate representation basis and sampling technique, it is now possible to sample data far

below the Shannon-Nyquist limit thus speeding up data acquisition and also reducing the

complexity of data-acquisition hardware. In this research, we explore the application of various

modern data analysis techniques such as proper orthogonal decomposition (POD), dynamic mode

decomposition (DMD), compressed sensing, and Kalman filter and smoother in the data-driven

analysis of dynamic systems with many degrees of freedom. This research has resulted in four

novel methods. The first method is developed for denoising and spatial resolution enhancement of

4D-Flow MRI data based on POD and sparse reconstruction. The second method combines DMD

and compressed sensing and takes discrete cosine transform (DCT) as the representation basis for

dynamic denoising and gappy data reconstruction in 2D. The third method is a fast and

parameter-free dynamic denoising method which combines a reduced-order model (ROM), a

Kalman filter and smoother, and a DMD-based forward model. The fourth method is developed

for reconstructing a 2D incompressible flow field by taking sparse measurements from the Fourier
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domain. As the reconstruction basis, a custom divergence-free set of basis vectors are derived and

implemented.
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Chapter 1

Introduction

Recent advancements in data collection methods and equipment have resulted in a huge increase

in the amount of data collected by observing various types of physical phenomena. For example,

Particle Image Velocimetry (PIV) experiments for time-resolved analysis of flow results in a rich

volumetric three-component flow velocity field which can be in the order of 20+ GB [1]. While the

hardware may exist for acquiring high spatial resolution data, the time taken may be impractical.

For example, the time-resolved three-dimensional phase contrast magnetic resonance imaging of

blood flow in cerebral aneurysms over a single cardiac cycle can typically take about 20 minutes

[2] during which no physical motion by the patient is permitted to eliminate motion artifacts.

It is well known that for data resulting from physical processes, the information rate of the

data may be much lower than the rank of the data itself [3]. This means that given an appropriate

representation basis (wavelet basis, for example), the data may be represented using a coefficient

vector whose size is much smaller than the acquired data. This realization initially led to the

development of various data compression techniques where a process of sparse encoding of the raw

data led significant memory saving with negligible loss in fidelity [4]. It has also led to techniques

for directly acquiring data in an appropriate sparse basis using techniques which are broadly called

compressed sensing [3]. Under certain circumstances, this has enabled the sampling of data much

below the Shannon-Nyquist limit thus simplifying data acquisition hardware and also reducing the

time for data acquisition. In the recent past, the confluence of the increasing amount of data being

collected and novel mathematical techniques for analysis of such data has enabled “data-driven

dynamical systems” where physical systems can be characterized purely in terms of data. This data
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can result from actual observations or through numerical simulation of complex numerical models.

Two prominent techniques include Proper Orthogonal Decomposition (POD) [5] and Dynamic Mode

Decomposition. Observation data is typically noisy, and state estimation techniques such as Kalman

Filtering [6] have been used to mitigate the effect of acquisition noise.

In this research, we explore the use of a combination of techniques from state estimation,

compressed sensing, and data-driven dynamic system analysis in various applications including de-

noising and resolution enhancement of 4D-Flow MRI data by merging observations and simulation,

denoising and reconstruction of gappy time-resolved dynamic datasets, purely data-driven Kalman

filtering and smoothing of raw 4D-Flow MRI data, and finally, data-driven Kalman filtering and

smoothing of sparsely-acquired flow data in frequency space.

The outline of this thesis is as follows: Chapter 2 gives a brief overview of the various tech-

niques used in this dissertation. In Chapter 3, a novel method is introduced for denoising and

spatial resolution enhancement of 4D-Flow MRI data. In Chapter 4, a novel framework is pro-

posed by combining DMD and compressed sensing and taking discrete cosine transform (DCT)

as the representation basis for dynamic denoising and gappy data reconstruction in 2D. Chapter

5 presents a fast and parameter-free dynamic denoising method which combines a reduced-order

model (ROM), a Kalman filter and smoother, and a DMD-based forward model. In Chapter 6, the

problem of taking sparse measurements from the Fourier domain to reconstruct the signal in the

Cartesian domain is addressed and a solution method is proposed. The method is developed for 2D

incompressible flow fields for which the signal representation is done based on a custom divergence-

free set of basis vectors. The derivation and implementation method of the custom divergence-free

basis is presented in the Appendix.
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Chapter 2

Overview

In this chapter, an overview of various techniques used in this research is provided.

2.1 Proper Orthogonal Decomposition (POD)

The POD is a statistical method of obtaining a compact representation of a dataset [7]. As a

multivariate method, the POD aims at reducing a given dataset expressed in terms of several inde-

pendent variables to a much fewer number of uncorrelated variables. The reduction is performed

while as much of the variation in the dataset is retained as possible. The POD is also known as

the Karhunen-Loève decomposition. It results in an ordered set of orthonormal basis vectors which

represent the directions along which most variability in the data is observed [5]. The common

approach of finding the POD vectors for a given real-valued dataset is through using a real factor-

ization called the Singular Value Decomposition (SVD) for which various reliable algorithms have

been developed.

2.2 Kalman Filter

The Kalman filter was introduced in 1960 as a discrete-time linear filter [6]. It can efficiently

estimate the state of a dynamic process by minimizing the mean of the squared error in the presence

of system model uncertainty and also, process and measurement noise. Consider a stochastic linear
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process governed by the following difference equation

xk = Axk−1 + Buk−1 + wk−1 (2.1)

where x is the vector of state variables, u is the vector of inputs, and w represents the process noise

which is assumed to be a white normally-distributed random variable with the known covariance

Q. Suppose the measurements are taken as

zk = Hxk + vk (2.2)

where z is the vector of measurements and v is the measurement noise which is also assumed to

be a white normally-distributed random variable with the known covariance R. The process and

measurement noise are assumed to be independent. The Kalman filter provides a recursive solution

to the discrete-data linear filtering problem through a sequence of prediction and correction steps

as depicted below

Correction
(Measurement update)

Prediction
(Time update)

At each step, a prediction of the state variables is made based on the governing difference equation

(2.1) which is further corrected according to the measurements equation (2.2).

Since its first introduction, The Kalman filter has been used extensively in various applications.

Also, many researchers have attempted to expand its applicability by proposing variants of the

Kalman filter, e.g. the extended Kalman filter [8], the unscented Kalman filter [9], and the linear

Kalman smoothing [10] to name a few. The linear Kalman filter may be applied to dynamic

processes governed or approximated by a linear difference equation, as the name implies.
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2.3 Compressed Sensing

Talking about data acquisition, the first thing that comes to mind is Shannon’s theorem which states

the data acquisition rate must be not less than twice the highest frequency present in the signal [3].

This rate is usually referred to as the Nyquist rate. In contrast to this traditional data acquisition

scheme, the theory of compressed sensing states certain signals may be recovered from much fewer

samples than Shannon’s theorem specifies [3]. To make this happen, the compressed sensing relies

on the signal to be sparse when represented in some basis. That means the information rank of the

signal is much smaller than its length. As stated earlier, this is usually the case with most natural

signals and such signals have a sparse representation in terms of a proper basis [3]. Besides the

sparsity of the signal, compressed sensing also relies on the incoherence of the measurements. This

means if sampling is done in Φ basis and the signal is sparse in Ψ basis, then Φ basis should have a

dense representation in Ψ basis. For example, a commonly-used sampling basis is the Dirac delta

function (spikes) whereas the Fourier basis is commonly used for signal representation. Spikes have

a dense representation in Fourier basis and so, spikes and sinusoids are incoherent. In fact, spikes

and sinusoids are maximally incoherent in any dimension. Due to this property, the pair of spikes

and sinusoids is a good choice for compressed sensing applications.

In order to solve compressed sensing problems, the Orthant-Wise Limited-memory Quasi-

Newton (OWL-QN) algorithm was used [11]. The OWL-QN algorithm was developed based on

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, which is a well-known

quasi-Newtonian method for optimizing the parameters of large-scale log-linear models with l2-

regularization. It can be used for solving the large-scale optimization problems having a very high

number of parameters with an l1-regularized term in a memory-efficient manner. The OWL-QN is

well implemented and is proven to converge under certain conditions. The overall procedure of the

algorithm is shown in Algorithm 1.

2.4 Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition (DMD) was introduced by Schmid and Sesterhenn [12] in 2008 to

study the spatial dynamic modes of fluid flow [13, 14]. DMD approximates the nonlinear dynamics

underlying a given time-varying dataset in terms of a linear auto-regressive model by extracting
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Algorithm 1. The overall procedure of OWL-QN algorithm

Data:
• Initial solution c0
• Cost function f(c)
Result:
• Final solution c

1 c← c0
2 while maximum number of iterations not reached do
3 Calculate pseudo-gradient of f(c)
4 Find the search direction
5 Update c by solving the constrained line search problem
6 if convergence achieved then
7 return c
8 end
9 Update the internal variables

10 end

a set of mode shapes and their corresponding eigenvalues, where the mode shapes represent the

spatial spread of dominant features and the eigenvalue associated with each mode shape specifies

how that feature evolves over time in terms of the frequency of oscillation and the rate of growth

or decay.

2.4.1 Expanding the applications of DMD

The widely-used classic implementation of DMD is known as exact DMD [15] and is briefly intro-

duced in section 4.2.1. Rowley et al. [16] and Chen et al. [14] envisioned DMD as an approximation

to the modes of Koopman operator, which is an infinite-dimensional linear representation of nonlin-

ear finite-dimensional dynamics. Even though DMD was initially meant to be used for extracting

dynamic information from flow fields [13], soon it found new applications in other areas of study as

a powerful tool for analyzing the dynamics of nonlinear systems. At first, the input data of DMD

was supposed to be time-resolved. That means the data was in the form of a sequence of several

snapshots where the time interval between any two consecutive snapshots remained the same. The

number of snapshots is usually much smaller than the length of each snapshot. In 2014, Kutz

et al. [15] showed that besides time-resolved datasets, DMD may also be applied to paired datasets

where there is a mapping between each snapshot of one dataset with the corresponding snapshot

from the other dataset. In such case, the snapshots are not required to be time-resolved. Jovanovic
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et al. [17] proposed the sparsity-promoting DMD (spDMD) to obtain a sparse representation of the

system dynamics by limiting the number of dynamic modes through an l1-regularization approach.

In 2015, the extended DMD (EDMD) was introduced by Williams et al. [18] to approximate the

leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The EDMD is a com-

putationally intensive algorithm since it requires the choice of a rich dictionary of basis functions

to produce an approximation of the Koopman eigenfunctions. The richer the dictionary is, the

more time it takes to compute the inner products which are a key part of EDMD algorithm. In an

attempt to overcome this issue, Williams et al. proposed the kernel-based DMD (KDMD) in 2015

[19]. In this approach, rather than choosing the dictionary of the basis functions explicitly, they are

defined implicitly by the choice of a kernel function. The kernel function resolves the computational

intensity issue of EDMD by finding the inner products of the basis functions without the need to

having them defined explicitly.

2.4.2 Compressed sensing and DMD

An initial attempt for incorporating compressed sensing in DMD was made by Guéniat et al. [20],

where a subset of an originally-large dataset was taken by non-uniform sampling and was used for

finding the temporal coefficients (eigenvalues) through solving an optimization problem. Further,

the corresponding modes were found by solving a set of linear equations which involved the fully-

sampled dataset. This makes the proposed algorithm (known as NU-DMD) impractical in the case

the fully-sampled dataset is not available. Another approach for incorporating compressed sensing

in DMD (known as csDMD) was developed by Kutz et al. [21]. In csDMD, the DMD eigenvalues are

obtained from a sub-sampled dataset (similar to NU-DMD), which has the advantage of reducing

computation time, and then the full DMD mode shapes are reconstructed through using an l1-

minimization scheme based on a chosen set of basis vectors. In contrast to NU-DMD, csDMD does

not need the fully-sampled dataset in order to recover the mode shapes.

2.4.3 DMD in presence of noise

By applying DMD on a noisy dataset, many of the dynamic modes identified will be mostly due

to noise [22]. As Dawson et al. [22] showed, the effect of sensor noise is seen as a shift in the

computed DMD eigenvalues such that they appear to be more stable than they are in reality. In
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order to compensate the effect of noise, they proposed three different variants of DMD among

which forward-backward DMD (fbDMD) was shown to perform usually better than the other two

(Noise-corrected DMD and Total least-squares DMD). The fbDMD also has the advantage of not

requiring any prior knowledge about the noise covariance matrix.
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Chapter 3

4D-Flow MRI Denoising and Spatial

Resolution Enhancement

3.1 Introduction

The 4D-Flow MRI technique (3D+Time)[23, 24] enables non-invasive in vivo volumetric time-

resolved three-dimensional blood flow velocity measurements. In addition to basic analysis such

as volumetric visualization of blood flow and quantification of volume flow rate, this technique

enables advanced analysis such as the estimation of important hemodynamic parameters (wall shear

stress (WSS)[25], pressure gradients (PG) [26], and viscous dissipation (VD)[27]). Furthermore, it

enables retrospective placement of analysis planes at any location within the acquisition volume

for volumetric flow analysis.

However, this technique suffers from issues such as velocity aliasing, phase offsets, random

acquisition noise, and low spatial and temporal resolution. (in order of 0.8 mm− 1.3 mm isotropic

spatial resolution and 20−50ms temporal resolution). Velocity aliasing is caused when the velocity

encoding (Venc) range setting is lower than the maximum velocity being imaged. A high Venc

setting may ameliorate this problem but will increase acquisition noise [28, 29]. Recently, there

have been efforts to simultaneously address velocity aliasing and noise issues using multi-Venc

approaches [30, 31]. Phase offset errors are caused by various factors including Maxwell terms [32],

gradient field nonlinearities[33], and eddy currents[34]. Techniques have been developed to address
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both velocity aliasing [35] and velocity offset errors [36, 37].

Acquisition noise impacts computation of WSS, PG, and VD [27] since these parameters are

dependent on gradients of the velocity field. It has been shown that at spatiotemporal resolution

available with 4D-Flow, computation of WSS and maximum shear stress (MSS) is not reliable

because of averaging effects [38]. Furthermore, studies have demonstrated that 5− 6 voxels across

the vessel diameter is required for flow volume quantification [28, 39]. For intra-cranial aneurysms,

depending on the location, even sizes of 5 mm (with < 4 voxels across the vessel diameters) can

have a high risk of rupture and will need investigation [40]. Theoretically, the spatial resolution of

4D-Flow can be increased using a combination of higher magnetic fields (improving SNR), a smaller

field of view (FOV), and accelerated imaging techniques [41, 42]. Even with these enhancements,

achieving 0.3 mm isotropic spatial resolution, which is barely sufficient for accurate calculation of

WSS and MSS [38], requires rather impractical acquisition times (≈ 20 min) in a clinical setting.

Patient-specific computational fluid dynamics (CFD) simulations using boundary conditions from

4D/2D-Flow and geometry from CT/MRI scans address the spatiotemporal resolution issues [43,

44, 45]. However, the assumption on the type of flow, and imprecision in the estimation of boundary

conditions means that the resulting simulation can be significantly different from reality [28].

There are two main types of denoising methods: regularization-based methods and projection-

based methods. The regularization-based methods use constrained optimization. There are two

terms in the objective function. The first minimizes the Euclidean norm between the solution and

4D-Flow data. The second term, called the penalty/regularization term, imposes flow physics on

the solution (divergence-free and curl-free conditions) [46, 47]. Projection-based techniques use

vector projection of the unprocessed 4D-Flow data on to a divergence-free basis such as wavelets

[48, 49, 47], radial basis functions [50], and vector-fields derived using finite differences [51]. These

methods address the noise issue and partially account for flow physics (mass balance but not

momentum balance). However, the spatiotemporal resolution issues are not addressed.

Recently, methods based on merging CFD with 4D-Flow have attempted to fully account for

flow physics and address the spatiotemporal issues. Rispoli et al. [52] used a Tikhonov regularized

[53] patient-specific CFD by modifying the semi-implicit method for pressure linked equations-

revised (SIMPLER) algorithm [54]. The regularization step used 4D-Flow data to correct the CFD

simulation. Our group has developed two methods. The first uses proper orthogonal decomposition
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(POD) [55] basis obtained from snapshots of patient-specific CFD and ridge regression to compute

the underlying flow-field of the 4D-Flow data at an arbitrary level (depending on the resolution

of the CFD mesh) of spatial resolution [56]. This method required Monte Carlo type sampling of

boundary conditions and multiple CFD simulations to cover the variance in measurements from

unprocessed 4D-Flow data. This can be computationally expensive in cases of multiple inlet/outlet

geometries. Another method used an ensemble of patient-specific CFD simulations in a data as-

similation framework using an ensemble Kalman filter (EnKF) [57]. For stability of the EnKF,

we required up to 80 different CFD solutions in the ensemble, which is again computationally

expensive.

In this chapter, a novel method is described which merges patient-specific CFD simulations with

4D-Flow using POD and Least Absolute Shrinkage and Selection Operator (LASSO) regularization

[58]. The method has been tested on numerical phantoms derived from two actual intra-cranial

aneurysm geometries. Benchmarks against contemporary state-of-the-art techniques (at the low

resolution of 4D-Flow acquisition) show significant improvements in error metrics. Furthermore, we

show successful recovery of the underlying reference flow field in the high-resolution CFD mesh.

3.2 Materials and Methods

Assuming that a given signal is sparse in a certain representation basis (for example, wavelet/Fourier),

the LASSO regression is a method to find the sparse representation of a signal in a given basis while

minimizing error. In our work, we use the POD basis vectors derived from a CFD simulation using

the method of snapshots [59] where the flow field can be sparsely represented. This allows us

to insert the complete flow physics (momentum and mass balance) into the LASSO formulation.

Our overall algorithm is as shown in Fig. 3.1. Our algorithm begins by sampling boundary con-

ditions from the 4D-Flow data. These are used to run a patient-specific CFD simulation based

on segmented geometry. Snapshots from this CFD simulation are used to generate the POD basis

vectors. Subsequently, velocity components from the 4D-Flow data are used to perform the LASSO

regularization to obtain the sparse coefficient vector. The resulting coefficient vector is then used

to generate the flow velocity profile underlying the 4D-Flow data in the CFD mesh resolution.
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Estimate the boundary conditions
In-vivo 4D-Flow

MRI data

Run CFD simulation

Vascular
geometry

Find POD basis vectors in CFD
mesh resolution using SVD

Find POD basis vectors in 4D-Flow
MRI resolution by downsampling

Find sparse coefficients through
l1-regularization

Reconstruct in 4D-Flow
MRI resolution

Reconstruct in CFD mesh
resolution

Figure 3.1: The flowchart of the proposed method.
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3.2.1 Testing the algorithm using numerical phantom

An actual intra-cranial aneurysm geometry with a realistic pulsatile boundary condition was used to

conduct a CFD simulation. Time snapshots of this simulation formed the noiseless CFD reference

(“CFD ref”) in high resolution. Next, we down-sampled the “CFD ref” (“d-CFD ref”) into a

typical 4D-Flow grid (each grid voxel had a spatial resolution of 1.09 × 1.09 × 1.3mm3). Next,

the 4D-Flow acquisition process was simulated by adding noise in the k-space to the “d-CFD ref”

based on the algorithm suggested by Johnson and Markl [60]. The calculated noisy and time-

resolved datasets (“d-CFD ref+noise”) were used as the numerical phantom to test the algorithm,

benchmark its performance against other denoising methods in 4D-Flow resolution, and test its

ability to reconstruct the “CFD ref” in the high-resolution CFD mesh.

It should be noted the “CFD ref” is different than the CFD simulation used to calculate the

POD modes. The “CFD ref” was only used for calculating the error metrics defined in Section

3.2.4 and was never used during the reconstruction process.

3.2.2 POD

The POD technique, similar to principal component analysis, allows the construction of a set of

spatial modes or solution bases from time-resolved CFD data. In our method, the CFD simulation

is generated from boundary conditions obtained from sampling the 4D-Flow data at the inlets and

outlets of the blood vessels of interest. In order to calculate the POD, we used the method of

snapshots [59]. Initially, a matrix of CFD solutions was generated as:

ZH =

[
sH1 sH2 · · · sHn

]
(3.1)

where sHk ∈ R3NH×1 is one snapshot of the simulated flow field calculated using the averaged BC

and NH is the dimension of the high-resolution vectorized flow field (from the CFD mesh). The

length of sHk is 3NH because there are three velocity components corresponding to each node of

the high-resolution vectorized flow field. Therefore, ZH ∈ R3NH×Ns , where Ns is the number of

snapshots. Hereafter, the vectors in low- and high-resolution domains will be denoted by L and H

subscripts respectively. We can calculate the POD modes of the matrix ZH by using singular value
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decomposition (SVD) [61]:

ZH = AHΣHVT
H (3.2)

where AH ∈ R3NH×Ns and VH ∈ RNs×Ns are the left and right eigenvectors respectively. The

matrix ΣH ∈ RNs×Ns is a diagonal matrix containing the singular values. Here, the left eigenvectors

AH represent the basis vectors that span the space of all possible solutions in the CFD mesh which

have BC close to the calculated mean BC. Next, the calculated left eigenvectors were down-sampled

into 4D-Flow resolution as:

AL = DAH (3.3)

where D ∈ R3NL×3NH is the down-sampling matrix. In order to down-sample the modes, D averages

the values belonging to all CFD mesh centers that fall within a 4D-Flow voxel. The calculated

matrix AL represents the basis vectors that span the solution space in the 4D-Flow resolution.

3.2.3 Reconstructing flow field in the CFD mesh using LASSO regression

Since any flow field is sparse in the POD basis, reconstructed flow field can be written as

uHrec = AHc (3.4)

where c is a sparse vector of coefficients. The goal is to find this vector. Note that 4D-Flow data

is available only in low resolution of the 4D-Flow grid. Therefore, we need to down-sample the

reconstructed velocity field in order to compute the error. This is done as follows

uLrec = DAHc = ALc (3.5)

Finally, we solve a LASSO optimization problem which finds the sparsest solution in the POD basis

which is closest to the 4D-Flow data. The objective function is given by

ĉ = argmin
c

(
‖uLrec − uL4DFlow‖22 + β‖c‖1

)
(3.6)

The first term penalizes the error between the reconstructed solution and the actual 4D-Flow data,

the second term enforces sparsity. The parameter β controls the sparsity of the solution vector c.
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The OWL-QN algorithm was used to solve the LASSO regression equation.

3.2.4 Error analysis

The reconstructed flow field in 4D-Flow resolution was compared with different reconstruction

methods in the literature using three different metrics [48, 56]. These metrics are: velocity normal-

ized root mean square error (vNRMSE), the speed normalized root mean square error (sNRMSE),

direction error (DE), and peak velocity-to-noise ratio (PVNR) which was used to quantify the

initial noise level in simulations.

vNRMSE ,
1

maxi

(∣∣∣uLi,ref ∣∣∣)
√√√√ 1

N

N∑
i=1

∣∣∣uLi,ref − uLi,rec

∣∣∣2 (3.7)

sNRMSE ,
1

maxi

(∣∣∣uLi,ref ∣∣∣)
√√√√ 1

N

N∑
i=1

(∣∣∣uLi,ref ∣∣∣− ∣∣∣uLi,rec∣∣∣)2 (3.8)

DE ,
1

N

N∑
i=1

1−

∣∣∣uLi,ref · uLi,rec∣∣∣∣∣∣uLi,ref ∣∣∣ ∣∣∣uLi,rec∣∣∣
 (3.9)

PVNR , 20 log10
1

vNRMSE
dB (3.10)

where uLi,ref , and uLi,rec are the ith components of the reference flow field (“d-CFD ref”) and

reconstructed velocity profiles in 4D-Flow resolution, respectively.

3.3 Results

3.3.1 Effect of regularization parameter β on sNRMSE

Figure 3.2 shows the effect of changing the regularization parameter β on the sNRMSE. Small

values of β generate denser solutions and push the solution towards minimization of least squares

error. Large values of β result in very sparse solutions and also increase sNRMSE. In between,

there is an optimal value of β that balances sparsity of the solution with the least squares error.

In our numerical phantom tests, β = 5× 10−4 was optimal.
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Figure 3.2: The effect of lasso regularization parameter (β) on the number of modes and recon-
struction error in high resolution. Reconstruction error is shown as the speed-normalized RMSE
(sNRMSE) of sparse representation. The large values of β result in sparsity-dominant solutions
while the small values result in over-fitted least-square-dominant solutions. The optimal choice of
β = 5× 10−4 results in a good balance between sparsity and reconstruction error (sNRMSE =
0.75% with only 12 modes).

3.3.2 Numerical phantom results

Figure 3.3 represents the results of denoising and spatial resolution enhancement on a numerical

phantom generated using an actual aneurysm geometry. The first image from the left (Fig. 3.3(a))

shows the intra-cranial aneurysm geometry. The second image (Fig. 3.3(b)) shows the “CFD ref”

velocity profile in one slice of the geometry. The third image (Fig. 3.3(c)) shows the “d-CFD ref”.

The fourth image (Fig. 3.3(d)) shows the “d-CFD ref+noise” with noise standard deviation of

σ = 0.15 × |vmax| in k-space. The fifth image (Fig. 3.3(e)) is the data denoised by using POD

and lasso regularization (“POD-lr”) in 4D-Flow resolution, and finally, the last image (Fig. 3.3(f))

illustrates the results of spatial resolution enhancement. As can be seen, the results of our method

in the mesh resolution are nearly identical to the “CFD ref”.

3.3.3 Comparisons with state-of-the-art denoising methods

A benchmark test was run to compare the results from the developed algorithm with available

methods using the synthetic data. A series of well-known denoising methods were used for the test,
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(a) (b) (c) (d) (e) (f)

1

Figure 3.3: Results of the reconstruction process. Column (a) shows the overall geometry, (b)
shows the “CFD ref”, (c) is the “d-CFD ref”, (d) represents “d-CFD ref+noise”, (e) illustrates
the reconstructed data in 4D-Flow resolution (low resolution), and (f) shows the results of recon-
struction using POD and lasso regularization in high resolution (CFD mesh resolution) applied to
input data in column d. All velocity profile magnitudes are in cm/s.

such as finite difference method (“FDM”), divergence-free wavelets (“DFW”), and a total variation

method [51, 48, 47]. The kernel size for “FDM” was fixed and equal to 3× 3× 3. The parameters

for “DFW-sm” (with automated selection of sub-band dependent threshold using Sure-Shrink and

median absolute deviation), “DFW-sms” (with Sure-Shrink, median absolute deviation, and partial

cycle spinning), and total variation (“TV”) methods were used in a such to achieve the minimum

value of error metrics.

The error metrics are listed in Table 3.1. Three different noise levels were selected for these

tests, 26.32 dB, 24.53 dB, and 20.19 dB PVNR which are corresponding to noise standard deviations

of σ = 0.1×|vmax|, σ = 0.15×|vmax|, and σ = 0.2×|vmax|, respectively. All metrics were calculated

in 4D-Flow typical resolution as 1.09 × 1.09 × 1.3mm3. As represented in Table 3.1, for all three

noise levels, “POD-lr” results in a much lower error in denoising.

Figure 3.4 shows the visual comparison, (a) shows the “CFD ref”, (b) represents “d-CFD

ref” in 4D-Flow resolution, (c) illustrates “d-CFD ref+noise” with noise standard deviation of

σ = 0.15×|vmax| in k space, and (d) shows the results of denoising as well as the differences between

the denoised data and “d-CFD ref” in left and right columns, respectively. “FDM” results weren’t

plotted because as shown in Table 3.1 it almost did not reduce any noise. As it can be observed
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Table 3.1: Error metrics of the reconstructed data using several methods with three different noise
levels as 10%, 15%, and 20% of the maximum velocity. All values are in percentage.

Noise level Metric / d-CFD ref FDM DFW-sm DFW-sms TV POD-lr
Method +noise

vNRMSE 4.83 4.84 4.53 3.53 2.42 1.20
10% sNRMSE 3.87 3.62 3.73 3.07 1.96 0.98

DE 7.15 7.04 4.55 2.68 1.81 0.36

vNRMSE 5.93 5.76 6.96 6.27 3.72 1.52
15% sNRMSE 3.99 3.52 5.82 5.66 3.22 1.28

DE 11.58 10.96 6.61 4.22 2.59 0.47

vNRMSE 9.78 8.48 6.94 5.41 4.30 2.20
20% sNRMSE 8.00 6.77 5.83 4.69 3.44 1.92

DE 12.70 11.22 7.25 4.84 4.10 0.70

from Table 3.1 and Figure 3.4, “POD-lr” gives the best results and others can be listed in order of

reconstruction quality as: “TV”, “DFW-sms”, “DFW-sm”, and “FDM”.

3.4 Discussion

3.4.1 Comparison with other methods

One drawback of our method as compared to other denoising methods is the fact that it needs an

expensive CFD simulation with accurately segmented geometry of the blood vessel. Furthermore,

this segmented geometry must be registered with the 4D-Flow dataset. This consumes most of

the time in our method. The next most expensive step is the generation of the POD modes with

the SVD algorithm. Once the POD modes are generated, reconstructing the velocity profiles in

high resolution is fairly quick (10 to 20 sec per time dataset). This means that the user could

interactively change the parameter β to generate the best results. In return, unlike other denoising

methods, our method is capable of generating high-resolution flow fields to an arbitrarily high level

of spatial resolution (depending on the user-defined resolution of the CFD mesh).

3.4.2 Effect of parameter β on speed-normalized error

According to Figure 3.2, there is an optimal value for the lasso regularization parameter β, which

is β = 5× 10−4 in this case. The initial value of β = 1× 10−6 uses 79 out of 139 POD modes for
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Method Reconstructed Difference

DFW-sm

DFW-sms

TV

POD-lr
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1

Figure 3.4: Comparison of data reconstruction using different methods. (a) represents the “CFD
ref”, (b) is the “d-CFD ref” in 4D-Flow resolution (each voxel represents 1.09 × 1.09 × 1.3mm3

in real space), (c) is the “d-CFD ref+noise” which was calculated by adding noise with standard
deviation of σ = 0.15 × |vmax| to the “d-CFD ref” in the k-space. The left column of Table
(d) illustrates the reconstructed data using: divergence-free wavelet with Sure-Shrink and median
absolute deviation (“DFW-sm”), divergence-free wavelet with Sure-Shrink and median absolute
deviation and partial cycle spinning (“DFW-sms”), total variation (“TV”), and POD with lasso
regularization (“POD-lr”). The right column shows the difference between the reconstruction and
“d-CFD ref” (image (b)). All images are illustrating velocity profiles in cm/s.
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reconstruction resulting in a sNRMSE value of 2.0%. As the β value increases, the number of POD

modes and sNRMSE value both drop because higher β corresponds to a sparser reconstruction and

so, fewer number of POD modes. The drop in sNRMSE is expected as well since using too many

POD modes may result in over-fitting to the noisy data and so, higher error compared to the “CFD

ref”. Both values drop until β = 5× 10−4 where the lowest reconstruction error is obtained by

using only 12 out of 139 POD modes. Afterward, the number of POD modes keeps going down but

the reconstruction error increases which means the number of POD modes used for reconstruction

is too few.

For some given 4D-Flow data, the proper choice of the LASSO regularization parameter β

remains an open question. One possible method of finding the proper value of β is the K-fold cross-

validation method [62]. Another method might be taking one snapshot from the reconstructed

hi-resolution CFD results, down-sampling that and adding noise to that and then, trying to see

what beta value we get the best hi-resolution reconstruction for. The beta value found this way

may be taken as a proper selection. We will leave this question to be addressed in further studies.

The problem of selecting an appropriate weighting of various regularization parameters exists in

other regularization-based denoising methods such as TV as well.

3.5 Conclusion

In this chapter, a novel algorithm was developed that could be used to couple patient-specific CFD

simulation with 4D-Flow measurements by use of POD and lasso regularization. The efficacy of the

method has been tested using a numerical phantom. This method is capable of reconstructing data

to any arbitrary high resolution (depending on the resolution of the CFD mesh) and reconstruct

many flow details. Therefore, this method can potentially improve the ability to accurately derive

relevant secondary hemodynamic parameters such as wall shear stresses and pressure gradients at

a much higher resolution than 4D-Flow.
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Chapter 4

Dynamic Denoising and Gappy Data

Reconstruction Based on DMD and

Discrete Cosine Transform

4.1 Introduction

Dynamic Mode Decomposition (DMD) was a concept that was first introduced by Schmid and

Sesterhenn [12] to study the spatial dynamic modes of fluid flow [14]. DMD approximates the

nonlinear dynamics underlying a given time-varying dataset in terms of a linear auto-regressive

model by extracting a set of mode shapes and their corresponding eigenvalues, where the mode

shapes represent the spatial spread of dominant features and the eigenvalue associated with each

mode shape specifies how that feature evolves over time in terms of the frequency of oscillation

and the rate of growth or decay. Rowley et al. [16] envisioned DMD as an approximation to the

modes of Koopman operator, which is an infinite-dimensional linear representation of nonlinear

finite-dimensional dynamics [14]. Even though DMD was initially meant to be used for extracting

dynamic information from flow fields [13], soon it found new applications in other areas of study

as a powerful tool for analyzing the dynamics of nonlinear systems. Kutz et al. [15] [15] expanded

the theory of DMD to handle mapping between paired datasets. Jovanovic et al. [17] proposed the

sparsity-promoting DMD (spDMD) to obtain a sparse representation of the system dynamics by
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limiting the number of dynamic modes through an l1-regularization approach. In 2015, the extended

DMD (EDMD) was introduced by Williams et al. [18] to approximate the leading eigenvalues,

eigenfunctions, and modes of the Koopman operator. The EDMD is a computationally intensive

algorithm since it requires the choice of a rich dictionary of basis functions in order to produce an

approximation of the Koopman eigenfunctions. The richer the dictionary is, the more time it takes

to compute the inner products which are a key part of EDMD algorithm. In an attempt to overcome

this issue, Williams et al. [19] proposed the kernel-based DMD (KDMD) in 2015. In this approach,

rather than choosing the dictionary of the basis functions explicitly, they are defined implicitly

by the choice of a kernel function. The kernel function resolves the computational intensity issue

of EDMD by finding the inner products of the basis functions without the need to having them

defined explicitly.

An initial attempt for incorporating compressed sensing in DMD was made by Guéniat et al.

[20], where a subset of an originally-large dataset was taken by non-uniform sampling and was

used for finding the temporal coefficients (eigenvalues) through solving an optimization problem.

Further, the corresponding modes were found by solving a set of linear equations which involved

the fully-sampled dataset. This makes the proposed algorithm (known as NU-DMD) impractical

in case the fully-sampled dataset is not available. Another approach for incorporating compressed

sensing in DMD (known as csDMD) was developed by [21]. In csDMD, the DMD eigenvalues are

obtained from a sub-sampled dataset (similar to NU-DMD), which has the advantage of reducing

computation time and then, the full DMD mode shapes are reconstructed through using an l1-

minimization scheme based on a chosen set of basis vectors. In contrast to NU-DMD, csDMD does

not need the fully-sampled dataset in order to recover the mode shapes.

One of the initial attempts to deal with the issues involved in recovering a dataset from gappy

data is presented in [63]. The proposed method relies on the presence of a set of empirical eigen-

functions which represent an ensemble of like datasets and hence, the fully-sampled dataset is

reconstructed based on these empirical eigenfunctions. In case there is no such set available, they

described a technique to build one from an ensemble of marred samples. In the case of marred

samples, it is assumed there are several marred samples taken from each face, each one taken with

a different mask. Also, it is implicitly assumed that for each pixel there is at least one sample avail-

able. If there is a pixel which is not included in any marred sample, this method cannot recover it.
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Another well-known method for gappy data reconstruction is the Gappy Proper Orthogonal De-

composition (POD) method [64, 65], which was proposed as an extension to POD considering the

incomplete datasets. POD captures most of the phenomena in a large amount of high-dimensional

dataset while representing it in a low-dimensional space which causes a significant reduction in

required computational power [66]. This technique has been used in various problems such as fluid

dynamics [66], active control [67], and image reconstruction [56, 68], to name a few. The original

POD uses the fully-sampled dataset in order to reconstruct the POD basis functions. Even though

Gappy POD aims at reconstructing gappy datasets, it, in fact, relies on the presence of a set of

completely-known standard POD basis vectors which we believe makes the whole method inappli-

cable when there is no such set available. In chapter 3, a POD-based method for denoising and

spatial resolution enhancement of 4D-Flow MRI datasets is proposed. This method uses a set of

POD basis vectors as the reconstruction basis where the set of POD basis vectors is derived from

the results of a computational fluid dynamics (CFD) simulation. Even though this method is shown

to outperform the competing state-of-the-art denoising methods, the fact that it is specifically de-

veloped for noisy 4D-Flow MRI datasets makes it impractical for the datasets resulting from other

types of dynamic systems. None of these methods take into consideration the dynamics of a given

dataset.

In the work presented here, an approach similar to csDMD is taken. With csDMD, the aim is to

reconstruct the DMD mode shapes based on some given set of basis vectors whereas in our approach,

called DMDct hereafter, given the DMD eigenvalues obtained from the sub-sampled dataset, the

full dataset is reconstructed through an l1-minimization scheme. Like csDMD, DMDct relies on

the proper choice of the underlying basis functions. In this paper, we are specifically focusing on

2D problems defined over a rectangular grid of equally-spaced nodes. By considering this specific

geometry, we can take the one-dimensional discrete cosine transform (DCT) basis vectors and use

them for building the two-dimensional basis vectors implicitly, hence requiring less memory.

4.2 Method

The DMDct method is derived for real-valued two-dimensional problems defined over a rectangular

mesh of equally-spaced nodes as depicted in Figure 4.1. For each snapshot, only a subset of its
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elements is observed which is obtained by applying a pre-defined random sampling mask. The

mask is defined as a set of pairs of (i, i′) indices, shown as M , for which the samples are taken. All

observed elements of each snapshot Sk are vectorized and represented as a real-valued data vector

sk of length Ns, where Ns is the number of sampling points. The data vectors sk are taken as the

input to the DMDct algorithm. First, the Ns×m matrix Zs = [s0 . . . sm−1] is constructed and the

exact DMD method is applied to that to obtain DMD eigenvalues λ (Section 2.4). Then, the spatial

component of DMD is reconstructed based on the DCT basis vectors by taking random samples

from the fully-sampled dataset while maintaining the sparsity of reconstruction coefficient matrices

through an l1-regularization scheme (Section 4.2.2). Finally, each snapshot is reconstructed in full

using the calculated reconstruction coefficient matrices and the DCT basis vectors.

S0

...

s0

S1

...

s1

S2

...

s2

Sm−1

...

sm−1

. . .

. . .

ny

nx

m snapshots

Zs =

Ns ×m

Figure 4.1: Schematic representation of the designated structure of the input data of DMDct
algorithm where each snapshot Sk is an ny × nx matrix of real values. The randomly-sampled
points of each snapshot (colored in gray) are vectorized and represented as a real-valued data
vector sk of length Ns, where Ns is the number of sampling points. The sampling mask remains
the same for all snapshots.
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4.2.1 Exact DMD

The Exact DMD method [15] is briefly introduced here since DMDct relies on that for finding the

eigenvalues and reconstructing the data. Given a sequential set of m data vectors zk shown as an

N × m matrix Z = [z0 . . . zm−1], the exact DMD method gives us the set of r DMD modes φj

and their corresponding eigenvalues λj (Algorithm 2). The DMD modes and eigenvalues together

describe how each vector zk−1 evolves in time and results in the vector zk. By showing all DMD

modes as the N × r matrix Φ = [φ1 . . .φr] and the corresponding eigenvalues as the r× r diagonal

matrix Λ = diag(λ1 . . . λr), exact DMD lets us reconstruct the k-th vector as

z̃k = ΦΛΦ†zk−1 (4.1)

where z̃k is the reconstruction of the vector zk and Φ† is the pseudo-inverse of Φ. When the DMD

modes are independent, the pseudo-inverse of Φ is given as Φ† = (Φ∗Φ)−1 Φ∗ where ∗ denotes the

conjugate transpose. In such case, each vector zk can be reconstructed based on the first vector

(z0) as

z̃k = ΦΛkΦ†z0 (4.2)

By showing all reconstructed vectors as the matrix Z̃ = [z̃0 . . . z̃m], it can be shown that

Z̃ = ΦDV, D , diag(Φ†z0) (4.3)

where V is the r ×m pseudo-Vandermonde matrix of the eigenvalues defined as

V =


1 λ1 λ21 . . . λm−11

...
...

...
. . .

...

1 λr λ2r . . . λm−1r


r×m

(4.4)

4.2.2 Formulation of DMDct

In DMD reconstruction, given as Equation (4.3), we know the matrix product ΦD as the spatial

component while the matrix V represents the temporal evolution of the spatial component. Let us
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Algorithm 2. The pseudocode of the Exact DMD algorithm.

Data:
• Z = [z0 . . . zm−1]: the N ×m matrix of sequential data vectors
• r: the number of modes to pick
Result:
• Φ: the matrix of DMD modes
• λ: the vector of DMD eigenvalues

1 Find the SVD of X = [z0 . . . zm−2] such that X = UΣV∗

2 Truncate U to the first r columns
3 Truncate Σ to the upper-left r × r matrix
4 Truncate V∗ to the first r rows

5 Define Ã , U∗YVΣ−1 where Y = [z1 . . . zm−1]

6 Find the eigenvalues λ and eigenvectors W of Ã, i.e., ÃW = W diag(λ)

7 Compute the DMD modes Φ , YVΣ−1W
8 return Φ, λ

assume there is a set of basis vectors ul represented as an N × s matrix U = [u1 . . .us] based on

which the matrix product ΦD can be approximated as

ΦD ≈ UC (4.5)

where C is the s×r matrix of the unknown complex coefficients. In many cases, the N -dimensional

data vectors zk and the basis vectors ul are real-valued. Based on this assumption and the approx-

imation given above, the reconstructed real-valued data matrix Ẑ is defined as

Ẑ , < (UCV) = U< (CV) (4.6)

→ ẑk = U
r∑
j=1

(αjkaj − βjkbj) (4.7)

where aj and bj are the respective real and imaginary parts of the j-th column of C and λkj = αjk + iβjk.

For the class of two-dimensional problems addressed here, each snapshot Sk is an ny × nx matrix

of real values for which Equation (4.7) may be rewritten as

Ŝk = Uy

Ux

r∑
j=1

(
αjkA

T
j − βjkBT

j

)T

(4.8)
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where Ŝk is the real-valued reconstruction of k-th snapshot, Uy is the ny × sy matrix of the basis

vectors along the columns of Sk, Ux is the nx× sx matrix of the basis vectors along the rows of Sk,

and Aj and Bj are the sy× sx matrices of unknown coefficients corresponding to the j-th dynamic

mode. The columns of Ux and Uy are the basis vectors. For the special case of DCT basis vectors,

Equation (4.8) may be rephrased as

Ŝk = D−1y

D−1x
 r∑
j=1

(
αjkA

T
j − βjkBT

j

)T
 (4.9)

where the operator Dx and its inverse D−1x are defined as

Dx (X) , UT
xX, D−1x (X) , UxX (4.10)

The forward and inverse operators Dx and D−1x , respectively, apply the forward and inverse DCT

transforms of length sx to the columns of their arguments. The forward and inverse operators

Dy and D−1y are defined similarly. Most numerical analysis packages provide forward and inverse

DCT transforms as built-in functions hence eliminating the need to define the matrices Ux and Uy

explicitly.

Given the sampling mask M , the reconstruction error of the k-th snapshot is defined as

Ek =
[
e
(k)
ii′

]
ny×nx

, e
(k)
ii′ =

 ŝ
(k)
ii′ − s

(k)
ii′ , (i, i′) ∈M

0 , (i, i′) /∈M
(4.11)

Ek , ‖Ek‖2F =
∑

∀(i,i′)∈M

(
ŝ
(k)
ii′ − s

(k)
ii′k

)2
(4.12)

where ŝ
(k)
ii′ and s

(k)
ii′ are the respective (i, i′) elements of the matrices Ŝk and Sk. The unknown

matrices Aj and Bj are found by solving the l1-regularization problem

argmin
Aj ,Bj

E + β
r∑
j=1

(
‖Aj‖1 + ‖Bj‖1

) , E ,
1

2

m−1∑
k=0

Ek (4.13)

Some l1-regularization methods rely on derivatives of E with respect to the unknown matrices Aj
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and Bj . The derivatives are given as

∂E

∂Aj
= Dy

(
Dx
(
FT
j

)T)
, Fj =

[
f
(j)
ii′

]
ny×nx

, f
(j)
ii′ =

m−1∑
k=0

e
(k)
ii′ αjk (4.14)

∂E

∂Bj
= Dy

(
Dx
(
GT
j

)T)
, Gj =

[
g
(j)
ii′

]
ny×nx

, g
(j)
ii′ =

m−1∑
k=0

e
(k)
ii′ βjk (4.15)

The implementation steps of DMDct are listed as Algorithm 3.

4.3 Results

To compare DMDct against csDMD as well as show its effectiveness in dynamic denoising and

reconstruction, three tests were performed. For each case, both csDMD and DMDct were tried

with several levels of sparsity and then, the best results were picked for comparison. The root

mean square error (RMSE) defined below was used as the comparison metric for all noise-free cases

RMSE ,
1√
n
‖Zrec − Zref‖F (4.16)

where Zrec is the reconstructed dataset, Zref is the reference dataset, and n is the total number

of elements of the dataset. A lower RMSE value represents a better reconstruction. For the noisy

cases, the peak value to noise ratio (PVNR), inspired by PVNR defined in [48] and as defined below

was used as the comparison metric

PVNR , 20 log10
max |Zref |

RMSE
(dB) (4.17)

A higher PVNR value represents a less-noisy reconstruction.

The original implementation of csDMD was partly based on the method of compressive sam-

pling matching pursuit (CoSaMP) [69]. We used the Orthant-Wise Limited-memory Quasi-Newton

(OWL-QN) algorithm [11] to solve the l1-regularization problem; thus, to ensure all the differ-

ences between the results of the two methods are due to the methods themselves and not the l1-

regularization algorithms, the csDMD was re-implemented by using OWL-QN rather than CoSaMP.
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Algorithm 3. The implementation steps of DMDct.

Data:
• sk: the m randomly-sampled real-valued data vectors of length Ns (see Figure 4.1)
• M : the sampling mask (set of Ns pairs of indices (i, i′) for which the samples are taken)
• r: the number of modes to pick
• sx, sy: the respective lengths of DCT transforms along the rows and columns of each
snapshot
• β: l1-regularization parameter
• Aj ,Bj (1 ≤ j ≤ r): initial values of the sy × sx unknown matrices of coefficients
(optional, can be zero)
Result:
• Ŝk (0 ≤ k < m): the m reconstructed snapshots

1 Form the sampled data matrix Zs = [s0 . . . sm−1]
2 Apply Exact DMD to the matrix Zs to get the vector of DMD eigenvalues λ( see

Algorithm 2)
3 Initialize the unknown matrices Aj ,Bj (1 ≤ j ≤ r)
4 repeat
5 E ← 0
6 for k = 0 to m− 1 do
7 T← 0
8 for j = 1 to r do

9 αjk ← <
(
λkj

)
, βjk ← =

(
λkj

)
10 T← T + αjkAj − βjkBj

11 end

12 Ŝk ← D−1y
(
D−1x

(
TT
)T)

13 ŝk ← vectorized sample of Ŝk according to the sampling mask M
14 sk ← vectorized sample of Sk according to the sampling mask M

15 E ← E + 1
2 ‖ŝk − sk‖22

16 end
17 if convergence not achieved then
18 for j = 1 to r do
19 Update Aj and Bj according to the chosen l1-regularization method (use

Equations (4.14) and (4.15) to find the Jacobians ∂E
∂Aj

and ∂E
∂Bj

if needed)

20 end

21 end

22 until convergence achieved

23 return all Ŝk (0 ≤ k < m)
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4.3.1 DMD Mode-Shapes Reconstruction

As the first test, the vorticity of the double-gyre flow (as represented in [21]) was taken and used.

The vorticity w is given as

w =
∂v

∂x
− ∂u

∂y
=πA cos (πf(x, t)) sin (πy)

∂2f

∂x2
− π2A sin (πf(x, t)) sin (πy)

(
∂f

∂x

)2

− π2A sin (πf(x, t)) sin (πy)

(4.18)

where A = 0.1, ω = 2π
10 , ε = 0.25, and

f(x, t) = ε sin (ωt)x2 + x− 2ε sin (ωt)x (4.19)

The equation was evaluated over the bounded region [0, 2]× [0, 1] for 10 s with time intervals of 0.05

s which resulted in 201 snapshots. The region was discretized as a 512 × 256 mesh. The number

of sampling points was 2500 and they were randomly spread over the region. The same sampling

mask was used for both methods. Due to the very few numbers of nonzero Fourier coefficients,

only 10 DCT basis vectors along each spatial direction were used (sx = sy = 10). The csDMD

method directly resulted in the reconstruction of DMD mode shapes whereas DMDct resulted in

the reconstruction of the fully-sampled dataset. After the fully-sampled dataset was reconstructed

by DMDct, the exact DMD method was applied to get the DMD mode shapes which were further

used for comparison. All DMDs were performed with nine modes. Since the complex eigenvalues

come in pairs of conjugate numbers, only those having non-negative imaginary parts are represented

here. Note that, similar to an eigenvector, a mode shape may be multiplied by any non-zero scalar

without making a difference. Thus, to compare the mode shapes, they should be aligned with

each other prior to making any comparison. Given φi and ψi are the vectorized mode shapes

corresponding to the i-th eigenvalue resulted from DMD and csDMD, respectively, the complex

scalar ci that results in the best alignment of the vector ψi with the vector φi is found by solving

the following minimization problem

ci = argmin
c
‖φi − cψi‖22 =

φTi ψ̄i

ψTi ψ̄i
(4.20)
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Similarly, for the vectorized mode shape θi resulted from DMDct, the alignment factor di is found

as

di = argmin
d
‖φi − dθi‖22 =

φTi θ̄i

θTi θ̄i
(4.21)

Thus, the comparison was made between the vectors φi and the corresponding aligned vectors ciψi

and diθi.

Figure 4.2 shows the real parts of the mode shapes of the first five DMD modes related to the

eigenvalues with non-negative imaginary parts and the reconstruction of their mode shapes. The top

row shows the mode shapes obtained by applying exact DMD on the fully-sampled dataset, whereas

the second and third rows show the aligned csDMD and DMDct reconstructions, respectively. Each

column is titled with the corresponding eigenvalue. Both csDMD and DMDct resulted in the

reconstruction of the mode shapes with correlation coefficients of approximately 1 which means the

reconstructed mode shapes almost identically resembled the references.
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Figure 4.2: The real parts of the mode shapes of the first five DMD modes corresponding to the
eigenvalues with non-negative imaginary parts for the double-gyre dataset. The top row shows
the mode shapes obtained by applying exact DMD on the fully-sampled dataset. The second and
third rows show the aligned csDMD and DMDct reconstructions, respectively. The corresponding
eigenvalues are represented above the columns. The Pearson correlation coefficients between the
aligned reconstructed mode shapes and those of exact DMD are shown as well.

Five sample snapshots of the fully-sampled dataset reconstruction are shown in Figure 4.3.

Both methods resulted in reconstruction RMSE of 0.002. The top row of Figure 4.3 shows the

reference snapshots. The samples are shown in the second row. The third and fourth rows show

the reconstruction of csDMD and DMDct, respectively.
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Figure 4.3: Five sample snapshots of the fully-sampled dataset reconstruction for the double-gyre
dataset. The top row shows the reference snapshots titled with the snapshot numbers. The second
row shows the random samples taken. The third and the fourth rows show csDMD and DMDct
reconstructions, respectively.

4.3.2 Dynamic Denoising and Reconstruction

As the second test, the unforced Duffing equation taken from [18] was used to generate the test

dataset. The governing differential equation is

ẍ = −δẋ− x(γ + αx2) (4.22)

where δ = 0.5, γ = −1, and α = 1. The equation was solved over the region x, ẋ ∈ [−2, 2], which

was discretized as a 41 × 41 mesh. For each node of the mesh, the corresponding values of x and

ẋ were taken as the initial conditions and the ODE was solved for 5 s during which the snapshots

were taken every 0.1 s resulting in a total of 51 snapshots. Even though the numerical solution

resulted in both x and ẋ values, only x values were taken and used as the test dataset. Figure 4.4

shows six sample snapshots of the reference dataset.

Two cases are presented here for comparison. The first case does not have a gap, whereas the

second case has a rectangular gap. Both cases were evaluated with noise-free and noisy samples.

In all cases, 20% of the available data of each snapshot was taken as the measurement samples and

were used for reconstruction. For each case, twenty different random sampling masks were tested.

For each mask, the sampling locations remained the same over all the snapshots.

The noisy cases were to study the effect of measurement noise and to see how well the two
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Figure 4.4: The reference Duffing dataset. (a) Six sample snapshots are shown. All 51 snapshots
were used in calculations. (b) The amplitudes of the dynamic mode shapes are shown. Since the
complex eigenvalues come in pairs of conjugate numbers, only those with non-negative imaginary
parts are presented.

methods could denoise the data. To make the noisy dataset, random Gaussian noise with the

standard deviation of 0.25 was added to the reference dataset. The PVNR metric was calculated

only for the noisy reconstructions. The same set of basis vectors was used by both methods. For

the noise-free samples, the maximum number of basis vectors were used (sx = sy = 41), whereas,

for the noisy samples, a reduced set of basis vectors was incorporated (sx = sy = 20), hence

dropping the high-frequency components from reconstruction. The eigenvalues derived by csDMD

were used for DMDct reconstruction as well. The number of DMD modes to use was found through

the method of singular value hard thresholding (SVHT) [70]. According to SVHT, the number of

DMD modes for the noise-free and noisy samples was taken as 25 and 5, respectively. Figure 4.4b

shows the amplitudes of the dynamic mode shapes of the reference Duffing dataset. In the figures

depicting the snapshots, the first (#0), the middle (#25), and the last (#50) snapshots of the first

sampling mask are presented for comparison.

The csDMD method aims at reconstructing the mode shapes and not the fully-sampled dataset.

Since no fully-sampled snapshot is available, it is not possible to reconstruct the whole dataset solely

based on Exact DMD framework by simply marching forward/backward in time using Equation

(4.2). One possible workaround is to find the optimal amplitudes of DMD modes by minimizing

the RMS of reconstruction error as proposed in [17] which leads to

bopt =
(

(Φ∗sΦs)�
(
VV∗

))−1
diag(VZ∗Φs) (4.23)
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where � is the element-wise product of two matrices and Φs is the matrix of mode shapes as

reconstructed by csDMD but only the rows corresponding to the sampled points are kept. Then,

the fully-sampled dataset can be reconstructed in full as

Z̃cs = Φ diag(bopt)V (4.24)

Equation (4.24) was used for csDMD reconstruction.

4.3.3 No-Gap Reconstruction

In this case, the reference dataset without any gap was reconstructed by using the two methods.

Figures 4.5a and 4.5b respectively show the sample snapshots of the noise-free and noisy recon-

structions for the first sampling mask. The noisy dataset had the total PVNR of 19.0 dB and

RMSE of 0.250, as depicted in the top row of Figure 4.5b. In Figure 4.5a, the top row shows the

reference and the second row shows the sampling mask. The third row shows the sample noise-free

snapshots as reconstructed by csDMD method resulting in an RMSE value of 0.291. The bottom

row shows the same snapshots as reconstructed by the DMDct method. The RMSE value of DMDct

reconstruction is 0.130. In Figure 4.5b, the third row shows the results obtained from the csDMD

method by using the noisy samples. This resulted in an RMSE value of 0.182 and PVNR of 21.8

dB. The bottom row shows the results of DMDct reconstruction which resulted in an RMSE value

of 0.119 and PVNR of 25.5 dB.

4.3.4 Rectangular Gap Reconstruction

For the second case, a rectangular gap was made in the dataset, as shown in the top rows of

Figures 4.6a and 4.6b. The size of the gap was 30× 10 with the bottom-left and top-right corners

at (−1.5, 0) and (1.5, 1), respectively. The gap covers almost 18% of the area of the region. The

first row of Figure 4.6a shows the reference without the gap, which is what both methods were

aimed at recovering by filling the gap. The second row shows the noise-free and noisy samples

taken by using the first random sampling mask. The third row shows the reconstruction of the

csDMD method with the corresponding RMSE values of 0.334 for the noise-free samples and 0.181

for the noisy samples. The bottom row shows the reconstruction of the DMDct method, where the
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Figure 4.5: Results of Duffing dataset reconstruction using the first random sampling mask with
both DMDct and csDMD (no gap). The snapshot numbers are shown at the top of each column.
The error metrics are listed in Table 4.1. (a) The noise-free case without any gap. (b) The noisy
case without any gap.

RMSE values were found as 0.154 and 0.138 for the noise-free and noisy samples, respectively. The

respective PVNR values of csDMD and DMDct for the noisy case were 21.8 dB and 24.2 dB.

A summary of the error metrics of reconstruction based on the first random sampling mask is

presented in Table 4.1 for comparison.

4.3.5 Statistical Analysis

Three-factor analysis of variance was conducted to determine whether the reconstruction error

significantly changed with the three factors method, noise, gap, and their interaction. The RMSE

was taken as the error metric and the significance level of 0.05 was used. Tukey post hoc analysis

was used for desired pairwise comparisons of significant factors. In all four cases, the two methods

were found to result in significantly different reconstruction errors (Tukey post hoc test, p < 0.001)

with the DMDct method having a lower error. The effect of noise on DMDct was insignificant

(p = 0.797), whereas the error of csDMD for noisy cases was significantly lower than its error for
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Figure 4.6: Results of Duffing dataset reconstruction using the first random sampling mask with
both DMDct and csDMD (rectangular gap). The snapshot numbers are shown at the top of each
column. The error metrics are listed in Table 4.1. (a) The noise-free case with the rectangular gap
(the white hollow). (b) The noisy case with the rectangular gap (the white hollow).

the noise-free cases (p < 0.001). Both methods resulted in significantly higher errors for the gappy

cases (p < 0.001). Figure 4.7 shows the mean RMSE values of DMDct and csDMD for the four

test cases studied with the error bars showing the standard deviations.

4.3.6 Variation of Parameters

As the third test, a dataset representing the 2D velocity field for the wake behind a cylinder at

Reynolds number Re = 100 taken from [71] was used. The size of the mesh grid is 449× 199. The

dataset consists of 151 snapshots with regular time intervals of 0.2 s. Random Gaussian noise with

a known standard deviation was added to both components. Two rectangular gaps were made in

the dataset. The size of the first gap was 60 × 70 with the bottom-left and top-right corners at

(270, 115) and (329, 184), respectively. The size of the second gap was 46× 46 with the bottom-left

corner at (97, 44) and the top-right corner at (142, 89). The aim of this test was to investigate the

effect of changing various parameters on the quality of reconstruction. The parameters are noise
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Table 4.1: The summary of the error metrics for the first random sampling mask. The numbers
given are RMSE values with the PVNR values in dB shown inside parenthesis when applicable. In
all cases studied, DMDct resulted in lower reconstruction error than csDMD.

Type of gap Region
Noise-Free Noisy

csDMD DMDct Dataset csDMD DMDct

None whole 0.291 0.130
0.250 0.182 0.119

(19.0 dB) (21.8 dB) (25.5 dB)

Rectangular

inside 0.408 0.199 - 0.231 0.185
outside 0.316 0.142 - 0.168 0.126

whole 0.334 0.154
0.250 0.181 0.138

(19.1 dB) (21.8 dB) (24.2 dB)

standard deviation, sampling ratio, number of basis vectors, and number of dynamic modes. The

nominal values of the parameters were chosen as noise standard deviation of 0.25, 2% sampling,

sx = 67, sy = 30, and five dynamic modes (according to SVHT). Although both u and v velocity

components were used for analysis, only the results corresponding to the u component are presented

here. Figure 4.8 shows four sample snapshots of the reference noise-free u velocity components,

the reference with noise added, the random sample, reconstructions of csDMD and DMDct, and

reconstruction errors for the nominal values of the parameters.

Figure 4.9 shows the effects of the variation of parameters on PVNR values of csDMD and

DMDct reconstructions per snapshot. In all sub-figures, the blue and red curves correspond to

DMDct and csDMD results, respectively. The solid lines represent the results based on the nominal

values. Figure 4.9a shows the effect of changing noise standard deviation. As the noise standard

deviation increases, the PVNR values drop but in all snapshots, DMDct results in higher PVNR

values than csDMD. The effect of changing the sampling ratio is shown in Figure 4.9b . As expected,

increasing the sampling ratio results in higher PVNR values. Figure 4.9c shows the effect of taking

different numbers of basis vectors. As the number of basis vectors increases, the PVNR values

drop slightly. Finally, the effect of changing the number of dynamic modes is shown in Figure 4.9d.

Picking a fewer number of modes than SVHT’s result slightly lowers the PVNR values, whereas

picking more modes does not make any improvements. The curves corresponding to 5 and 10 modes

are almost always overlapping. In all cases studied here, DMDct resulted in higher PVNR values

than csDMD in all snapshots.
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Figure 4.7: The mean RMSE values of the two methods for the four test cases of the Duffing
dataset. Each test case consisted of twenty different random sampling masks. The error bars show
the standard deviations. A three-factor analysis of variance was conducted to determine whether
the reconstruction error significantly changed with the three factors method, noise, gap, and their
interaction. Tukey post hoc analysis showed the reconstruction error of DMDct was significantly
lower than the error of csDMD in all cases (all p < 0.001).

4.4 Discussion

The three tests performed aimed at comparing DMDct vs csDMD in terms of both dynamic mode

shape reconstruction and fully-sampled dataset reconstruction based on a sparsely-sampled dataset.

While csDMD is developed to reconstruct the mode shapes, DMDct reconstructs the fully-sampled

dataset. To use csDMD for fully-sampled dataset reconstruction, the spDMD method was incor-

porated to find the optimal amplitudes of DMD modes.

The first test showed both methods reconstructed the mode shapes almost identical to the ones

resulting from applying exact DMD on the fully-sampled dataset even though a very small set

of basis vectors was used. Both methods resulted in RMSE of 0.002 in reconstructing the fully-

sampled dataset. These results show neither method outperforms the other in dealing with the test

dataset which has a few dynamic modes.

The second test consisted of four cases. In the first case, where there is no gap in the data

and the samples are noise-free, csDMD reconstruction shows some glitches, especially in the first

snapshot, whereas the DMDct reconstruction has much fewer glitches (Figure 4.6a). The glitches
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Figure 4.8: Four sample snapshots of reconstructing the noisy u velocity component of the wake
behind a cylinder at Reynolds number Re = 100. The circular hollow represents the cylinder. The
top row shows the noise-free reference u velocity component. The second row shows the reference
with random Gaussian noise having the standard deviation of 0.25 added. The two rectangular
gaps are seen as two white rectangular hollows. The third row shows the random samples taken
(2% sampling). The fourth and fifth rows show csDMD reconstruction and its error. The two
bottom rows show DMDct reconstruction and its error.
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Figure 4.9: Investigating the effect of changing various parameters on per-snapshot PVNR values
of DMDct and csDMD reconstructions of u velocity component of the wake behind a cylinder at
Reynolds number Re = 100. Blue and red, respectively, represent DMDct and csDMD. The solid
lines correspond to the nominal values. (a) The effect of variation of noise standard deviation. (b)
The effect of variation of sampling ratio. (c) The effect of changing the number of basis vectors.
(d) The effect of changing the number of dynamic modes. The lines corresponding to 10 dynamic
modes are overlapped by the lines corresponding to 5 modes most of the times.

40



reduce as the time goes on which is probably due to the high decay rate of the corresponding modes.

As depicted in Figure 4.4b, the amplitudes of about half of the modes reduce to 10% or less of

their initial values after 20 snapshots which means the corresponding modes die out quickly. In the

third and fourth cases, where there is a rectangular gap in the data, DMDct has resulted in less

reconstruction error than csDMD in both noisy and noise-free cases. Obviously, the RMSE values

are higher compared to those of the no-gap case. Visually comparing, both methods were able to

fill the rectangular gap but DMDct seems to have resulted in a smoother and more consistent filling

than csDMD. This is also confirmed numerically for the first sampling mask through the RMSE

values listed in row “inside” of Table 4.1.

As the statistical analysis showed, the RMSE values of DMDct reconstruction are significantly

lower than those of csDMD. The post hoc analysis also showed the noise has no significant effect

on the error of DMDct. This means DMDct is robust with respect to the noise. The glitches in

the noisy reconstruction of csDMD seem to be less than the noise-free case, which is probably due

to the smaller number of DMD modes taken (5 vs. 25) and the fewer basis vectors used (20 vs.

41). It is also seen DMDct has resulted in more reconstruction error for the noisy cases than the

noise-free cases which is as expected, but the reconstruction errors of csDMD for the noisy cases

are less than those of the noise-free cases, which indicates csDMD is more sensitive to the number

of mode shapes and basis vectors than DMDct.

As stated earlier, the noisy reconstructions were performed using a fewer number of DMD modes

and basis functions than the noise-free ones. Comparing the RMSE values in Figure 4.7 reveals

DMDct resulted in smaller changes in the RMSE values compared to csDMD. In addition, the

standard deviation of DMDct results is much lower than csDMD’s according to the error bars in

Figure 4.7. Thus, DMDct is more robust than csDMD.

The third test showed the effect of changing the values of various parameters on the PVNR

values of DMDct and csDMD reconstructions. The first parameter to investigate was the standard

deviation of the random Gaussian noise. As shown in Figure 4.9a, as the standard deviation

increases, the PVNR values drop which is as expected since higher noise standard deviation means

a lower signal-to-noise ratio. For the case of high noise (SD = 0.50), csDMD resulted in a very

low PVNR value (¡10 dB) in all snapshots (not shown in the figure). This was even lower than the

PVNR values of the noisy dataset which means csDMD failed to denoise the data in that case. The
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second parameter was the sampling ratio. Figure 4.9b shows higher sampling ratio results in higher

PVNR and so, better reconstruction. This is expected as well since higher sampling ratio means

more information is provided. In contrast to the first and second cases, the results of changing

the number of basis vectors are interesting and unexpected. As shown in Figure 4.9c, the highest

PVNR values correspond to the case of the fewest number of basis vectors (45× 20). We initially

expected to observe an improvement in the results as the number of basis vectors increased which

did not happen. The reason is that the number of unknowns is determined by the number of

basis vectors, i.e., for the case of 45× 20 basis vectors, there is a total of 900 unknowns, whereas,

for the case of 90 × 40 basis vectors, the number of unknowns is 3600. Increasing the number of

unknowns affects the performance of the l1-regularization method and makes it more difficult to

find the proper non-zero subset of coefficients. Thus, limiting the number of basis vectors to a

reasonable value is the key. The last parameter to study was the number of dynamic modes. The

SVHT method suggested five dynamic modes to pick. Picking fewer modes than five resulted in

lower PVNR values over the first half of the snapshots, whereas picking more modes did not make

any improvement. This shows the number of modes resulted from SVHT is a good choice.

In all cases studied, the PVNR values of csDMD over the first few snapshots were too low

whereas DMDct resulted in less deviation of PVNR values than csDMD. In addition, in all cases,

DMDct almost always resulted in higher PVNR values than csDMD.

Even though DMDct was developed for the special case of 2D problems defined over a rectan-

gular grid of equally-spaced nodes, the method can be extended to the 3D problems as well. It is

also possible to adapt the method to an arbitrary grid of nodes.

In summary, DMDct outperforms csDMD in terms of reconstructing the whole dataset regarding

the defined metrics. One disadvantage of DMDct compared to csDMD is the more computation

time it needs. This is because there are more data to fit in DMDct than csDMD. Since DMDct

aims at reconstructing the whole dataset, the Exact DMD must be employed at the end if the mode

shapes are desired. The results of both DMDct and csDMD are sensitive to the value of sparseness

coefficient β in Equation (4.13). Here, we ran each algorithm with various β values and then picked

the best ones for comparison. For a real case, where the actual solution is unknown, this approach

is impractical. The proper choice of sparseness coefficient β remains an open question and will be

addressed later.
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4.5 Conclusion

In this chapter, a novel approach for dynamic reconstruction of a given dataset based on DMD

and a set of basis vectors and by taking a random sub-sample of the fully-sampled dataset was

proposed. The proposed approach was compared against csDMD in terms of reconstruction error

for three test cases. The results of the tests showed that while the two methods performed similarly

on the dataset with a few numbers of dynamic modes, the proposed method outperformed csDMD

in terms of both denoising and gap-filling. The third test also showed per-snapshot reconstruction

error of DMDct has less variation than csDMD reconstruction.
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Chapter 5

Denoising Dynamic Data With a

Reduced-order DMD-based Kalman

Filter and Smoother

5.1 Introduction

The 4D-Flow MRI (3D+Time) [23, 24] is a non-invasive technique for three-dimensional in vivo

measurement of volumetric time-resolved blood flow velocity. However, this technique suffers from

various shortcomings such as velocity aliasing, phase offsets, low spatial and temporal resolution,

and random acquisition noise. Among these, acquisition noise impacts computation of secondary

parameters which depend on gradients of the velocity field. In an attempt to address both acqui-

sition noise and low resolution, a denoising method was proposed in Chapter 3 for 4D-Flow MRI

datasets. The proposed method was based on proper orthogonal decomposition (POD) and least

absolute shrinkage and selection operator (Lasso) regularization [72] where a set of POD basis vec-

tors derived from the results of a computational fluid dynamics (CFD) simulation was used as the

reconstruction basis. It was shown to outperform the competing state-of-the-art denoising methods

but it relied on a CFD simulation for generating the set of POD basis vectors which makes it a

computationally-intensive method.

The concept of Dynamic Mode Decomposition (DMD) was first introduced by Schmid and
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Sesterhenn [12] in 2008. It was initially aimed at studying the spatial dynamic modes of fluid flow

[13, 14]. Given a time-varying dataset, DMD can approximate its underlying nonlinear dynamics

as a linear autoregressive model. DMD extracts a set of mode shapes and associates each one

with an eigenvalue. Each mode shape represents the spatial spread of a dominant feature and the

corresponding eigenvalue specifies how that feature evolves over time in terms of the frequency of

oscillation and the rate of growth or decay. The DMD was initially meant to be used for extracting

the dominant dynamic features from flow fields [13]. Nonetheless, it shortly found applications in

other areas as well. At first, the input data of DMD was supposed to be time-resolved. That means

the data was in the form of a sequence of several snapshots where the time interval between any two

consecutive snapshots remained the same. The number of snapshots is usually much smaller than

the length of each snapshot. In 2014, Kutz et al. [15] showed that besides time-resolved datasets,

DMD may also be applied to paired datasets where there is a mapping between each snapshot of one

dataset with the corresponding snapshot from the other dataset. In such case, the snapshots don’t

need to be time-resolved. In 2009, Rowley et al. [16] showed the connection between DMD and

the Koopman operator. The Koopman operator is an infinite-dimensional linear representation of

nonlinear finite-dimensional dynamics and the DMD was shown to approximate its modes [16, 14].

Williams et al. [18] further introduced the extended DMD (EDMD) in 2015 to approximate not

only the modes of the Koopman operator but also its leading eigenvalues and eigenfunctions. The

extended DMD is a computationally intensive algorithm. As a workaround, the kernel-based DMD

(KDMD) was proposed in 2015 [19].

By applying DMD on a noisy dataset, many of the dynamic modes identified will be mostly

due to noise [22]. As Dawson et al. [22] showed, the effect of sensor noise is seen as a shift in

the computed DMD eigenvalues such that they appear to be more stable than they are in reality.

In order to compensate the effect of noise, they proposed three different variants of DMD among

which forward-backward DMD (fbDMD) was shown to perform usually better than the other two

(Noise-corrected DMD and Total least-squares DMD). The fbDMD also has the advantage of not

requiring any prior knowledge about the noise covariance matrix. Another attempt to deal with

noise in a partially-sampled 2D dataset was made by combining DMD and a set of discrete cosine

transform (DCT) basis vectors [73]. Even though this method was shown to be effective in denoising

a partially-sampled 2D dynamic dataset, it is inapplicable to 4D-Flow MRI datasets due to having
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three spatial dimensions. In Chapter 4, a method called DMDct was proposed to deal with noise

in a partially-sampled 2D dataset. The method was obtained by combining DMD and a set of

discrete cosine transform (DCT) basis vectors. Even though DMDct was shown to be effective in

denoising a partially-sampled 2D dynamic dataset, it is inapplicable to 4D-Flow MRI datasets due

to having three spatial dimensions.

The Kalman filter was introduced in 1960 as a discrete-time linear filter [6]. It can efficiently

estimate the state of a dynamic process by minimizing the mean of the squared error in the presence

of system model uncertainty and also, process and measurement noise. Since its first introduction,

The Kalman filter has been used extensively in various applications. Also, many researchers have

attempted to expand its applicability by proposing variants of the Kalman filter, e.g. the extended

Kalman filter [8], the unscented Kalman filter [9], and the linear Kalman smoothing [10] to name a

few. The linear Kalman filter may be applied to dynamic processes governed or approximated by

a linear difference equation, as the name implies. Since the DMD and its variants can derive such

approximation for a given dynamic dataset solely based on the data, the idea of integrating DMD

and the Kalman filter sounds promising. In 2015, Iungo et al. [74] proposed a new paradigm for

prediction of wind turbine wakes by embedding a reduced-order model (ROM) in a Kalman filter

where the ROM was derived by using DMD. The reduced order model was achieved by projection

onto the subspace spanned by the set of basis vectors generated by proper orthogonal decomposition

(POD).

In this chapter, the similar approach of combining the Kalman filter, fbDMD, and a reduced-

order model is taken. The fbDMD method provides a linear approximation to the forward model.

The Kalman filter is used to reduce the noise in the process and improve the state estimation in

the presence of process and measurement noise. The linear approximate forward model derived by

fbDMD is used by the Kalman filter for state prediction. Since the size of the state vector is too

large (> 1000), the reduced-order model is utilized to lower the size of the state vector and make

the Kalman filter implementation feasible. We also propose a new method to find an estimate to

the process and measurement noise covariance matrices used by the Kalman filter. Finally, we

use a linear Kalman smoother to smooth the data even further. The resulting method (known as

KfDMD hereafter) is a fast and parameter-free denoising method which denoises each snapshot

by taking advantage of the dominant dynamic features of the whole dataset. Even though the
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proposed method is derived having 4D-Flow MRI data in mind, in fact, it may be applied to any

dynamic dataset as will be shown in test case 1.

5.2 Method

The flowchart of the proposed method is presented in Figure 5.1. Since the proposed method is

parameter-free, the only input is the matrix Z.

Unbiased dynamic analysis
using fbDMD
(Algorithm 4)

matrix Z
(Figure 5.2)

Reduced-order
model

Noise covariance
estimation

Reduced-order
Kalman filter and smoother

(Algorithm 5)

Denoised
matrix Ž

Figure 5.1: The flowchart of the proposed method.

5.2.1 Input data

The input data is in the form of a sequential set of time-resolved data arrays, known as snapshots

hereafter, as depicted in Figure 5.2. The number of snapshots is m. Even though the method

proposed here can be applied to the data from various kinds of dynamic systems, we will specifically

focus on data generated by an in-vivo 4D-Flow MRI scan. In such data, each snapshot is composed

of three velocity components of the blood flow passing through the scanned vessel where each

velocity component is represented as a 3-dimensional array. The scanned volume is box-shaped

within which the scanned points are spread equidistantly as a grid. The vessel takes only a portion

of the scanned volume. The scanned points falling outside the vessel are assumed to be representing

the surrounding soft tissues. In order to distinguish the points falling inside the vessel from the
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points outside, the geometry of the vessel should be specified as well. This is done by defining the

geometry mask, which is given as a 3-dimensional boolean array the size of which is the same as

that of the snapshots. Each element of the mask is true (false) if the corresponding point in the

snapshots falls inside (outside) the vessel. For snapshot k, the points falling inside the vessel are

extracted and represented as the data vector zk of length N . Since each snapshot is composed of

three velocity components, N = 3N ′ where N ′ is the number of points falling inside the vessel.

The m data vectors zk are used to form the N ×m matrix Z as shown in Figure 5.2.

snapshot 0

...

z0

snapshot 1

...

z1

snapshot 2

...

z2

snapshot m− 1

...

zm−1

. . .

Taking samples accord-
ing to the geometry mask

. . .

m snapshots

Z =

N ×m

Figure 5.2: Schematic representation of the input data of the proposed method. The points sampled
from each snapshot according to the geometry mask are vectorized and represented as a real-valued
data vector zk of length N .

5.2.2 Unbiased dynamic analysis

If the input data is noisy, applying Exact DMD will result in a biased set of dynamic modes. As

stated earlier, the bias is seen as a shift in the eigenvalues so that they appear to be more stable

than they are in reality. As a workaround, the fbDMD was used instead of Exact DMD to remove

the bias and find the unbiased eigenvalues. The steps of fbDMD are presented in Algorithm 4.

Like most variants of DMD, the desired number of dynamic modes to pick should be specified.

Here, we first employed the method of singular value hard thresholding (SVHT) [70] prior to fbDMD
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to find the optimal number of dynamic modes. Then, fbDMD was performed to find the unbiased

eigenvalues and their corresponding modes. Since fbDMD involves an SVD, the set of POD basis

vectors resulting from that was retained and later used as the basis for the reduced-order model

hence eliminating the need for running a separate SVD.

Algorithm 4. Forward-backward DMD (fbDMD)

Data:
• Z = [z0 . . . zm−1]: the N ×m matrix of sequential data vectors
• r: the number of modes to pick
Result:
• Φ: the matrix of DMD modes
• λ: the vector of unbiased DMD eigenvalues
• U: the matrix of POD basis vectors

1 X← [z0 . . . zm−2]
2 Y ← [z1 . . . zm−1]
3 begin the forward path
4 Find the SVD of X such that X = UxΣxV

∗
x

5 Urx ← Ux truncated to the first r columns
6 Σrx ← Σx truncated to the upper-left r × r matrix
7 V∗rx ← V∗x truncated to the first r rows

8 Ãm ← U∗rxYVrxΣ
−1
rx

9 end
10 begin the backward path
11 Find the SVD of Y such that Y = UyΣyV

∗
y

12 Ury ← Uy truncated to the first r columns
13 Σry ← Σy truncated to the upper-left r × r matrix
14 V∗ry ← V∗y truncated to the first r rows

15 B̃m ← U∗ryXVryΣ
−1
ry

16 end

17 Ã←
(
ÃmB̃

−1
m

)1/2
// an improved estimate

18 Find the eigenvalues λ and eigenvectors W of Ã, i.e. ÃW = W diag(λ)

19 Compute the DMD modes Φ , YVrxΣ
−1
rx W

20 return Φ, λ, Urx // Urx is returned as the matrix of POD basis vectors U

5.2.3 The reduced-order Kalman filter and smoother

Consider an autonomous discrete-time dynamic process governed by the linear stochastic equation

ŷk = Aŷk−1 + w
(y)
k−1 (5.1)
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and the full state measurements

yk = ŷk + v
(y)
k (5.2)

where ŷ ∈ Rn is the state vector, y ∈ Rn is the measurement, w(y) ∈ Rn is the white normally-

distributed process noise with covariance Qy, and v(y) ∈ Rn is the white normally-distributed

measurement noise with covariance Ry. The Kalman filter provides an estimate to the state vector

ŷ given the noisy measurements x and the noise covariance matrices Qy and Ry through a sequence

of prediction and correction steps. The prediction step is performed as

 y
(p)
k = Ay

(c)
k−1

P
(p)
k = AP

(c)
k−1A

T + Qy

(5.3)

where P denotes the estimate error covariance matrix and (p) and (c) superscripts respectively

represent the predicted and corrected values. The predicted estimate y
(p)
k is then corrected as


Kk = P

(p)
k

(
P

(p)
k + Ry

)−1
y
(c)
k = y

(p)
k + Kk

(
yk − y

(p)
k

)
P

(c)
k = (I−Kk) P

(p)
k

(5.4)

where K denotes the Kalman gain.

Due to the matrix inversion operation in equation (5.4), applying the Kalman filter to large-

scale problems might not be feasible. As a possible workaround, we project the snapshots onto the

subspace spanned by the POD basis vectors and take the projection coefficients as the new state

variables. The number of the new state variables will be the same as the number of POD basis

vectors. As seen in Algorithm 4, as many POD basis vectors as the DMD modes are taken and so,

the number of state variables will equal the rank of DMD.

The approximate forward model (equations (5.1)) is derived through fbDMD. The real-valued

fbDMD-based prediction of snapshot k (shown as z
(p)
k ) is given in terms of the previous snapshot

as

z
(p)
k = <

(
ΦΛΦ†

)
zk−1 (5.5)

where Φ is the matrix of mode shapes and Λ is the diagonal matrix of eigenvalues λ (both Φ and
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λ are resulting from fbDMD). By showing the matrix of POD basis vectors as U (also resulting

from fbDMD), the projection y
(p)
k of prediction of snapshot k onto the subspace spanned by the

basis vectors (columns of U) is found as

y
(p)
k = UT z

(p)
k

= UT<
(
ΦΛΦ†

)
zk−1

(5.6)

Suppose the snapshot k and its reconstruction based on the POD basis vectors are approximately

equal, i.e.

Uyk ≈ zk (5.7)

∴ y
(p)
k ≈ UT<

(
ΦΛΦ†

)
Uyk−1 = Ayk−1 (5.8)

where A , UT<
(
ΦΛΦ†

)
U.

Each snapshot zk is a full-state noisy measurement, i.e.

zk = ẑk + v
(z)
k (5.9)

where ẑ ∈ RN is the state vector and v(z) ∈ RN is the white normally-distributed measurement

noise with covariance Rz. Projecting onto the space of POD basis vectors gives

UT zk = UT ẑk + UTv
(z)
k (5.10)

→ yk = ŷk + UTv
(z)
k (5.11)

Comparing equations (5.2) and (5.11) implies

v
(y)
k = UTv

(z)
k (5.12)

So, given v
(z)
k is a white normally-distributed variable with covariance Rz, v

(y)
k will also be a white

normally-distributed variable with covariance Ry such that

Ry = UTRzU (5.13)
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Consequently, the correction equations of the Kalman filter (equations (5.4)) become


Kk = P

(p)
k

(
P

(p)
k + Ry

)−1
y
(c)
k = y

(p)
k + Kk

(
UT zk − y

(p)
k

)
P

(c)
k = (I−Kk) P

(p)
k

(5.14)

The initial values of the predicted state y
(p)
0 and the predicted estimate error covariance P

(p)
0 are

taken as  y
(p)
0 = UT z0

P
(p)
0 = Q

(5.15)

After the prediction and correction steps are performed for all snapshots (equations (5.3) and (5.14)

respectively), a backward smoother [75] is applied to further smooth the data as given below


K

(s)
k = P

(c)
k AT

(
P

(p)
k+1

)−1
P

(s)
k = P

(c)
k −K

(s)
k

(
P

(p)
k+1 −P

(s)
k+1

)(
K

(s)
k

)T
y
(s)
k = y

(c)
k −K

(s)
k

(
y
(p)
k+1 − y

(s)
k+1

) (5.16)

where the initial values at k = m− 1 are given as

 y
(s)
m−1 = y

(c)
m−1

P
(s)
m−1 = P

(c)
m−1

(5.17)

Algorithm 5 summarizes the proposed implementation of the Kalman filter and smoother.

5.2.4 The noise covariance matrices

A key part of the Kalman filter is properly estimating the covariance matrices of the process and

measurement noise. Here, a scheme is proposed to find an estimate to those matrices. Let’s combine

equations (5.1) and (5.2)

yk = ŷk + v
(y)
k

= Aŷk−1 + w
(y)
k−1 + v

(y)
k

= A
(
yk−1 − v

(y)
k−1

)
+ w

(y)
k−1 + v

(y)
k

(5.18)
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Algorithm 5. Kalman filtering and smoothing in the reduced-order space of POD basis
vectors

Data:
• U: the N × r matrix of orthonormal POD basis vectors
• Φ: the N ×m matrix of DMD modes
• λ: the vector of r DMD eigenvalues
• zk: the m vectorized noisy snapshots of length N (0 ≤ k < m)
• Q: the r × r matrix of process and measurement noise covariance
Result:
• x̌k: the m denoised snapshots (0 ≤ k < m)

1 A← UT<
(
Φ diag(λ)Φ†

)
U

2 begin the Kalman filter

3 Initialize y
(p)
0 and P

(p)
0 (equation (5.15))

4 Do correction for the first snapshot (equation (5.14))
5 for k ← 1 to m− 1 do
6 Do prediction (equation (5.3))
7 Do correction (equation (5.14))

8 end

9 end
10 begin the backward smoother

11 Initialize y
(s)
m−1 and P

(s)
m−1 (equation (5.17))

12 Reconstruct the last snapshot as žm−1 ← Uy
(s)
m−1

13 for k ← m− 2 downto 0 do
14 Do smoothing (equation (5.16))

15 Reconstruct the k-th snapshot as žk ← Uy
(s)
k

16 end

17 end
18 return all žk (0 ≤ k < m)

So, the error ek between the measured snapshot k and its fbDMD-based prediction is defined as

∴ ek , yk −Ayk−1 = −Av
(y)
k−1 + w

(y)
k−1 + v

(y)
k (5.19)

Since the three random variables on the right-hand side of equation (5.19) are white, normally-

distributed, and independent from each other, the error ek will also be a white normally-distributed

random variable with the covariance S given as

S , E
[
eke

T
k

]
= ARyA

T + Qy + Ry (5.20)
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The covariance matrix S may be calculated by finding the error between the projected snapshots

and their corresponding projected fbDMD-based predictions and then, employing an Oracle Ap-

proximating Shrinkage (OAS) estimator [76] to estimate the covariance of the projected error.

If the measurement noise covariance matrix Rz is known, the projected covariance matrix Ry

can be calculated from equation (5.13) and so, equation (5.20) can be solved for Qy easily. If the

matrix Rz (or Ry) is not known, we may assume Ry = Qy and then, solve equation (5.20) for both

as

vec{Ry} = vec{Qy} = (A⊗A + 2I)−1 vec{S} (5.21)

where ⊗ is the Kronecker product of two matrices and the vec operator turns a matrix into a vector

by stacking the columns [77].

5.3 Results

The proposed method was evaluated in three different test cases against the total variation method

(TV) [47] and divergence-free wavelets with Sure-Shrink, median absolute deviation, and partial

cycle spinning (DFW-sms) [48] which are the leading state-of-the-art denoising methods as shown

in Chapter 3. For the first test case, a synthetic dataset generated by using the unforced Duffing

equation was used. Although our algorithm was developed having 4D-Flow MRI datasets in mind,

in fact, it does not care about the source and structure of the input data, as most other DMD-

based methods do. As seen in Algorithm 5, the noisy snapshots are taken as a vector input which

is nothing but a list of real numbers without knowing how those numbers are related to each

other. For this reason, the unforced Duffing equation was taken as the first test case to show the

applicability of our method to a general dynamic dataset. For the second test case, a synthetic

4D-Flow MRI dataset generated based on the geometry of an actual aneurysm was used. The

synthetic dataset was generated according to the method proposed in Chapter 3. For the third

test case, two datasets acquired by in-vivo 4D-Flow MRI scans were used. For the first and second

test cases, since the noise-free datasets were available, the root mean square error (RMSE) defined

below was used as the comparison metric

RMSE ,
1√
n
‖Zrec − Zref‖F (5.22)
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where Zrec is the reconstructed dataset, Zref is the reference noise-free dataset, and n is the total

number of elements of the dataset.

5.3.1 Test case 1: the unforced Duffing equation

The unforced Duffing equation was used to generate the test dataset. The governing differential

equation is

ẍ = −δẋ− x(γ + αx2) (5.23)

where δ = 0.5, γ = −1, and α = 1. The region x, ẋ ∈ [−2, 2] was discretized as a 41× 41 mesh over

which the equation was solved as explained in section 4.3.2 and then, the ẋ values were taken as the

noise-free dataset consisting of 51 snapshots. Random Gaussian noise with the standard deviation

of 0.25 was added to the noise-free dataset to make the noisy dataset as seen in Figure 5.3.
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Figure 5.3: The reconstruction results of the unforced Duffing dataset. The numbers at the top
of the columns show the corresponding snapshot numbers. The two top rows show the noise-free
(reference) and noisy datasets, respectively. The reconstructions of TV and KfDMD methods are
shown as indicated. The numbers inside the parenthesis are the overall RMSE values, where the
lower is better.
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The number of DMD modes for the noisy dataset was taken as 6, according to SVHT. Figure

5.3 shows a few sample snapshots from the reconstructed datasets. The two top rows show the

noise-free and noisy datasets, respectively. The reconstructions of the TV and KfDMD are also

shown as indicated. Several runs of TV were conducted and the one resulting in the least RMSE

was picked for comparison. Figure 5.4 shows the effect of the λ parameter of TV on the RMSE of

its reconstruction. As seen in the figure, the error of TV reconstruction is minimum when λ ≈ 0.2.

Since KfDMD is a parameter-free method, only one run was conducted to generate the results. The

simulation times were 5-6 seconds for TV (λ = 0.2) and about 0.2 seconds for KfDMD. For the

noisy and the two reconstructed datasets, the overall RMSE values are provided as well. Figure

5.5 shows the RMSE values calculated for the noisy and the two reconstructed datasets. The solid

and dotted lines represent the per-snapshot and overall RMSE values, respectively.

10−3 10−2 10−1 100
λ

0.12

0.14

0.16

0.18

0.20

0.22

0.24

RMSE

Figure 5.4: TV reconstruction error vs the λ parameter. There is an optimal value of λ parameter
(λ ≈ 0.2) for which the reconstruction error is minimum.

5.3.2 Test case 2: a synthetic 4D-Flow MRI dataset

A synthetic 4D-Flow MRI dataset was generated by following the approach taken in Chapter 3 and

as briefly explained here. A CFD simulation was conducted first to simulate an actual intra-cranial

aneurysm geometry where the boundary conditions were taken from a realistic pulsatile. The high-

resolution time snapshots of the CFD simulation were down-sampled into a typical 4D-Flow grid

to form the noise-free reference dataset. The synthetic dataset was acquired by adding noise to

the noise-free reference dataset in k-space [60]. The size of the 4D-Flow grid was 25 × 31 × 86.
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Figure 5.5: Error of reconstruction for the unforced Duffing dataset. Per-snapshot (solid lines) and
overall (dotted) RMSE values of the noisy and the reconstructed datasets are shown.

There were a total of 50 snapshots in the dataset. A geometric mask was defined to distinguish

the aneurysm from the surrounding tissues. According to the mask, the aneurysm contained 6516

spatial locations which account for 9.8% of the total number of points in the grid.

The number of dynamic modes was taken as 3 as resulted from SVHT. Figure 5.6 shows sample

slices from the noise-free reference, noisy, and reconstructed datasets. The reconstruction errors

are shown as well. Like the first dataset, several runs of TV and DFW-sms were performed to

find and pick the best for comparison while KfDMD results were acquired by a single run. The

simulation times were about 127 seconds for TV, about 19 seconds for DFW-sms, and not more

than 1.3 seconds for KfDMD. This confirms KfDMD is one order of magnitude faster than TV and

two orders of magnitude faster than DFW-sms. Figure 5.7 shows the plot of per-snapshot RMSE

values as the bold lines and the overall RMSE values as the dotted lines.
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Figure 5.6: The results for the synthetic 4D-Flow MRI dataset reconstruction. The top row shows
sample slices where at each point, the norm of the velocity is shown. The bottom row shows the
norm of the difference between the datasets and the noise-free reference. The bottom row figures
are titled with the corresponding overall RMSE values. All areas outside the geometry mask are
zeroed before RMSE values are calculated.

5.3.3 Test case 3: in-vivo 4D-Flow MRI datasets

Two datasets generated by in-vivo 4D-Flow MRI scans were used in this test case. In this case,

unlike the other two test cases, the noise-free datasets are unknown and so, there is no metric to

make a comparison based on and evaluate the results. Each dataset consisted of 20 consecutive

snapshots. The spatial resolutions were 30 × 40 × 103 and 22 × 30 × 48. For either dataset,

the geometry of the aneurysm was provided as a binary mask. The geometries of the aneurysms

contained 4900 and 1566 spatial locations which respectively accounted for 4.0% and 4.9% of the

spatial locations scanned. The simulation times for the first in-vivo dataset were about 100 seconds

for TV, about 13 seconds for DFW-sms, and about 1 second for KfDMD. Similarly, the simulations

times for the second in-vivo dataset were about 26 seconds for TV, 3-4 seconds for DFW-sms, and

less than 0.3 seconds for KfDMD. Two sample slices of the noisy datasets are shown in Figures 5.8

and 5.9.
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Figure 5.7: Plot of reconstruction error for the synthetic 4D-Flow MRI dataset. Per-snapshot (solid
lines) and overall (dotted) RMSE values of the noisy and the reconstructed datasets are shown.

5.4 Discussion

Three tests were conducted to compare the proposed denoising method versus TV and DFW

methods which are well-known state-of-the-art denoising methods. In contrast to TV and DFW,

our method considers the dynamics of the underlying dynamic system while denoising. This is

done by using the dominant dynamic modes and eigenvalues detected by fbDMD to implement the

forward model. Also, our method is parameter-free and runs very fast. It didn’t take more than a

few seconds for any of the test cases to run our method.

The first test was based on a 2D dataset generated from the unforced Duffing equation. As

Figure 5.5 shows, the per-snapshot RMSE of KfDMD result is initially high but it drops quickly

and goes lower than the RMSE of TV as the simulation marches forward in time. It starts to go up

again over the last few snapshots. This is because DMD approximates the nonlinear dynamics as a

linear auto-regressive model and so, it fails to estimate the next snapshot properly in the presence

of highly nonlinear dynamics. The dotted lines in Figure 5.5 represent the overall RMSE values.
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Figure 5.8: The results for the first in-vivo 4D-Flow MRI dataset. The binary mask was used to
exclude all points outside the vessel. The spatial resolution is 30× 40× 103.
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Figure 5.9: The results for the second in-vivo 4D-Flow MRI dataset. The binary mask was used to
exclude all points outside the vessel. The spatial resolution is 22× 30× 48.

While both methods have resulted in more than 50% reduction in overall RMSE, the overall RMSE

of KfDMD has seen more drop than TV’s (0.096 versus 0.111). The last snapshot (#51) in Figure

5.3 shows the effectiveness of the proposed algorithm in recovering fine features. Even though most

fine features seem to be washed out by the noise, the KfDMD was still able to reconstruct some

of them by taking advantage of knowing the dominant dynamic features and their corresponding

growth/decay rate and frequency of oscillation.

The second test was based on a synthetic 4D-Flow MRI dataset consisting of 50 snapshots. The

plot of per-snapshot RMSE values in Figure 5.7 reveals the effectiveness of KfDMD in denoising

the noisy dataset where it has resulted in lower reconstruction error in all snapshots. The overall

RMSE of KfDMD is less than DFW’s and TV’s and less than one-third of the noisy dataset’s

(0.021, 0.037, 0.042, and 0.066, respectively). This test clearly shows the effectiveness of KfDMD

in denoising without having to set any parameters.
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The third test was based on two actual 4D-Flow MRI in-vivo datasets. Due to the lack of the

desired solution, it is not possible to find the RMSE values and make a comparison based on them.

By observing the reconstruction results, it seems KfDMD has been able to reveal more fine features

than TV and DFW. Since KfDMD was shown to perform better than TV for the first test case

and better than both TV and DFW for the second test case and also since it is a parameter-free

method, we tend to believe it performed better for the third test case as well but there is no proof.

In summary, KfDMD outperforms TV and DFW in terms of denoising a dynamic dataset

regarding the defined metric. It runs very quickly and is parameter-free. Our method relies on

fbDMD to approximate the dynamics of the given dataset. The fbDMD algorithm (Algorithm

4) involves finding the square root of a matrix. The square root of a matrix is not unique and

so, picking the best square root remains an open question. If the dynamics are highly nonlinear,

fbDMD will fail to identify them properly and so, the forward model derived from fbDMD will be

inaccurate. This might affect the performance of our method. One possible workaround is to use

a variant of DMD which takes into consideration the nonlinear dynamics as well (such as extended

DMD or kernel-based DMD). It is also possible to use a more advanced variant of the Kalman filter

such as extended Kalman filter or unscented Kalman filter.

5.5 Conclusion

In this chapter, a new method for denoising 4D-Flow MRI data was proposed. The proposed

method is fast, parameter-free, and not computationally-intensive. It was compared against TV

and DFW-sms methods in three test cases. In the first two cases, where the noise-free dataset

is available, our method was shown to perform better than TV and DFW-sms (when applicable)

methods in terms of the defined error metric.
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Chapter 6

Dynamic Reconstruction of a 2D Flow

Field Based on Sparse Measurements

Taken in The Fourier Space: A

Preliminary Study

6.1 Introduction

Magnetic Resonance Imaging (MRI) is a widely-used technique in medical imaging for diagnostic

purposes. It provides high soft-tissue contrast and is non-invasive. However, a major drawback of

the technique is its lengthy data acquisition time. During data acquisition, the patient is supposed

to stay steady for the whole duration of acquisition. This can get frustrating since depending on

the size of the area to be scanned, data acquisition may take several minutes. Things get even

worse when a time-varying phenomenon like blood flow is scanned.

One possible workaround is to reduce the acquisition time by reducing the number of phase-

encoding steps [78]. MRI data acquisition is performed in the frequency domain. Inspired by the

idea of compressed sensing, the data acquisition time may be reduced by sampling a portion of the

frequency domain rather than the whole and then, trying to reconstruct the scanned region through

post-processing. This results in shorter scan time at the expense of further processing time and the
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need for higher computation power. In 2017, Lustig et al. [79] introduced the idea of incorporating

sparse sampling in MR imaging. They exploited the implicit sparseness of the representation of MR

images in terms of wavelet basis. In 2016, Kustner et al. [78] proposed a scheme called ESPReSSo

aimed at partially sampling the k-space and reconstructing the full image through compressed

sensing [78]. These methods were implemented for single images and no dynamics were involved.

In this chapter, a scheme is proposed for reconstructing a 2D incompressible fluid flow by taking

a series of sparse noisy measurements performed in the frequency domain while accounting for the

dynamics of the flow as well. Our scheme takes advantage of the KfDMD method introduced in

Chapter 5 for denoising the noisy measurements and reconstructing the noisy measurements based

on the set of POD basis vectors. Then, the POD vectors are reconstructed in Cartesian space

in full by taking the POD vectors in the frequency domain as the sparse measurements through

l1-regularization.

Since a 2D incompressible fluid flow is studied, a set of divergence-free basis vectors are devel-

oped and used as the reconstruction basis. The derivation and implementation of our custom set

of divergence-free basis vectors are explained in the Appendix.

6.2 Method

Consider a 2D incompressible flow velocity field defined over a rectangular mesh of equally-spaced

nodes as shown in Figure 6.1. The figure shows the wake behind a cylinder. The dimensions of

the domain shown in Figure 6.1 are lx × ly which is discretized as an nx × ny grid. Each velocity

component is represented as an ny × nx matrix, so 2nxny real values should be specified at each

moment of time in order to describe the state of the discretized flow field in full. Nonetheless,

the 2nxny real values are not fully independent since the flow field is governed by Navier-Stokes

equation and conservation of mass (continuity). This implies the information rank of the flow field

is much smaller than 2nxny and so, it might have a sparse representation in terms of a proper set

of basis vectors.

Suppose the measurement of the velocity components is performed in the frequency domain.

Also, assume the measurements are performed sparsely such that rather than the whole frequency

domain, only a fraction is scanned. The measurements are further assumed to be altered by random
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Figure 6.1: A sample 2D incompressible flow velocity field. The size of the field is lx × ly which is
discretized as an nx × ny grid of equally-spaced nodes.

Gaussian white noise in the frequency domain. Figure 6.2 shows the amplitude of the frequency

components of the sample flow field shown in Figure 6.1. As seen, the amplitudes are larger at

lower frequencies (near the origin which is at the center).
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Figure 6.2: The amplitude plots of the sample 2D incompressible flow velocity field in the frequency
domain. The amplitudes are larger at lower frequencies (near the center).

The aim is to reconstruct the noise-free velocity components based on a given set of basis vectors

in the Cartesian domain given the sparse noisy measurements from the frequency domain and while

preserving the dynamics of the flow field. In the method proposed here, the divergence-free DCT-

based basis vectors will be used as the reconstruction basis (see the Appendix for derivation and

implementation steps). The inverse discrete transform in 2D is given as equation (A9). Using the
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divergence-free basis vectors as the reconstruction basis guarantees the reconstructed flow field will

satisfy the continuity equation since the reconstruction is performed as a linear combination of the

basis vectors and the continuity equation (A1) is linear as well.

In the sample domain shown in Figure 6.1 there is no flow passing through the cylinder. This

means when the domain is discretized, the nodes that fall inside the cylinder must be excluded

from the reconstruction. This is usually accomplished through defining the discretized geometry as

a boolean mask. The geometry mask can be presented as an ny × nx matrix of 0 or 1 values such

that a value of 0 (1) at a node means the corresponding location in the domain is excluded from

(included in) the flow field.

Figure 6.3 shows the flowchart of the proposed method. The approach is to take the sparse

noisy measurements in the frequency domain and then, apply the KfDMD method introduced in

Chapter 5 to denoise the noisy measurements. The KfDMD method results in the set of POD basis

vectors and the corresponding snapshot-wise projection coefficients. Next, the POD vectors are

reconstructed in the Cartesian domain using the divergence-free DCT-based basis vectors. Finally,

the reconstructed POD vectors are linearly combined according to the snapshot-wise projection

coefficients to reconstruct the divergence-free flow field in full. Note that in contrast to the POD

vectors obtained from KfDMD, their fully-reconstructed versions are neither normal nor orthogonal.

By showing the geometry mask as the matrix G and using the inverse discrete transform

equations (A9), the components of the fully-reconstructed POD vector i may be represented as

 Ũi = G�
[
lxCsXiC

T
r + lxSsYiD

T
r

]
Ṽi = G�

[
lyDsXiS

T
r + lyCsYiC

T
r

] (6.1)

where � is the element-wise product of two matrices. The measurements in the frequency domain

are sparse. Let’s assume the sparse measurements are taken according to a sampling mask which

is also presented as a boolean matrix. By showing the sparse measurements of the horizontal

and vertical components of the POD vector i as ΩŨi
and ΩṼi

respectively, the errors between the
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Figure 6.3: The flowchart of the proposed method.

reconstructed components and the measurements are calculated as

 EŨi
, M�F2D

{
Ũi

}
−ΩŨi

= M�
(
FT
s ŨiFr

)
−ΩŨi

EṼi
, M�F2D
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Ṽi
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−ΩṼi

= M�
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s ṼiFr

)
−ΩṼi

(6.2)

where M is the sampling matrix, F2D is the 2D Fourier transform, and Fs and Fr are the matrices

of the forward 2D Fourier transform. The two matrices ΩŨi
and ΩṼi

are sparse and have zeros

wherever no sample is taken. The error of reconstruction is defined as
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1
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F

(6.3)

The unknown real-valued matrices Xi and Yi are found by solving the following minimization

problem

Xi,Yi = argmin
Xi,Yi

(Ei + β (‖Xi‖1 + ‖Yi‖1)) (6.4)

where β is the l1-regularization parameter. The following equations are helpful if a gradient-based
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minimization algorithm is used

∂Ei
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FsĒŨi

FT
r

))
Dr + lyC

T
s

(
G�<

(
FsĒṼi

FT
r

))
Cr (6.6)

Note that equation (6.4) should be solved for each POD vector individually. This means the

POD vectors may be reconstructed simultaneously.

6.3 Results

A test was performed to demonstrate the usefulness of the proposed method in denoising and

reconstruction of an incompressible 2D flow field. The test dataset was generated by downsampling

the dataset used in section 4.3.6 from 449× 199 to 89× 39. The dataset consists of 151 snapshots.

The geometry mask shown in Figure 6.4 was used to exclude the cylinder from the flow region.

Figure 6.4: The 89× 39 geometry mask of the downsampled 2D test dataset. The dark nodes fall
inside the cylinder and are excluded from the flow region.

The test dataset was transformed to the frequency domain by applying 2D Fourier transform.

Then, white Gaussian noise with the standard deviation of twice the maximum flow speed was added

to the transformed data. Three different types of sampling mask were tested, namely Normal, Full-

disk, and Half-disk. The Normal sampling masks were generated by randomly distributing the

sampling points all over the mask with the normal distribution. For the Full-disk masks, half of

the sampling points were located around the center forming a disk and the rest were uniformly

distributed over the mask. The Half-disk masks have the same disk at the center as the Full-masks,

except the rest were spread over the top half plane rather than the whole plane. Since the input

data is real-valued, the bottom half plane is the same as the conjugate of the top half plane rotated
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180°. So, in the absence of measurement noise, taking measurements from the top half plane is

enough. For each mask type, three masks corresponding to 5%, 10%, and 20% sampling were

generated to study the effect of sampling percent as well. Figure 6.5 depicts the sampling masks

used.

5%

Normal Full-disk Half-disk

10
%

20
%

Figure 6.5: The sampling masks are shown. White dots show the sampling spots. The data in the
frequency domain is sampled according to the chosen mask. The numbers on the left represent the
sampling ratio.

For each sampling mask, the noisy transformed data was sampled and taken as the input data.

The reduced-order DMD-based Kalman filter and smoother introduced in chapter 5 was employed

to denoise the sampled data in the frequency domain. The noise standard deviation was assumed

to be unknown. To study the effect of the l1-regularization parameter β (equation (6.4)) on the

quality of data reconstruction, eleven different β values were tested.

The root mean square error (RMSE) defined below was used as the comparison metric

RMSE ,
1√

2mn

√√√√m−1∑
k=0

[∥∥∥G� (Ûk −Uk

)∥∥∥2
F

+
∥∥∥G� (V̂k −Vk

)∥∥∥2
F

]
(6.7)

where m is the number of snapshots, n is the number of points the geometry mask G contains,

Ûk and V̂k are the reconstructed velocity components of snapshot k, and Uk and Vk are the

reference velocity components of snapshot k. Figure 6.6 shows the plots of RMSE values for the
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three types of sampling mask and the three sampling ratios versus eleven different values of the

l1-regularization parameter β. As seen, the RMSE values decrease as the β value decreases. In all

cases, the reconstruction error remains almost the same at β = 0.002 and below.
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Figure 6.6: The RMSE values versus mask type and sampling ratio for various values of the l1-
regularization parameter β.

Figure 6.7 shows the reconstruction results for β = 0.002 using a Full-disk mask.

6.4 Discussion

As a proof of concept, the method proposed here was tested with a simulated dataset showing the

wake behind a cylinder in 2D. In order to study the effect of sampling mask and sampling ratio,

three different sampling masks and sampling ratios were tested. Also, the effect of the sparsity

level was studied by using eleven different values of the l1-regularization parameter.

As Figure 6.6 shows, the error decreases as the sparsity level decreases in all cases (lower β

means denser solution). As previously seen in Figure 3.2, there is an optimal level of sparsity which

results in the perfect balance between least-square fit and sparseness of the solution. Similarly, we

would expect to see an increase in the reconstruction error if we tried lower β values.
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Figure 6.7: The results of reconstruction for β = 0.002 using the Full-disk mask. The snapshot
numbers are shown at the top. The top row shows the reference. The second row shows the sample
snapshots as reconstructed by applying the inverse Fourier transform on the noisy and sparsely-
sampled data (20% sampling). The remaining rows show the results of reconstruction for different
sampling ratios as shown at the left of each row.
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With 5% and 10% sampling, the reconstruction errors of the Normal mask seem to be sig-

nificantly higher than the errors of the Full-disk and Half-disk masks. The reconstruction errors

decrease as the sampling ratio increases, which is as expected. In all cases, the Full-disk and

Half-disk masks show the same performance.

With 20% sampling, no notable difference between the masks is observed. As seen in Figure

6.5, the Normal mask with 20% sampling has a very good overlap with the disk at the center.

This is probably why no significant difference between the masks is observed with 20% sampling.

Comparing the errors of 5% sampling versus 10% sampling shows using a Full-disk or Half-disk

mask with 5% sampling results in slightly lower reconstruction error than the Normal mask with

10% sampling. This justifies the importance of fully sampling the low-frequency components.

Figure 6.7 shows that with all sampling ratios, the reconstructed snapshots follow the dynamics

of the reference dataset. Even with 5% sampling, the proposed scheme is able to reconstruct the

snapshots with good agreement with the reference. Some artifacts are seen in the reconstruction

which almost disappear as the sampling ratio increases.

In summary, the proposed scheme shows effectiveness in reconstructing a 2D incompressible

flow field by taking noisy sparse measurements in the frequency domain. The denoising ability of

KfDMD is promising. Also, the proposed divergence-free DCT-based basis vectors seem impressive

in reconstructing divergence-free flow features.

6.5 Conclusion

In this chapter, the preliminary results of a new scheme were presented. The proposed scheme aims

at reconstructing a 2D incompressible fluid flow by taking a series of sparse noisy measurements

performed in the frequency domain. The reconstruction method accounts for the dynamics of the

flow as well. The method was evaluated by using a 2D flow past a cylinder as the test dataset.

Three different sampling masks and three different sampling ratios were studied. The effect of

sparsity coefficient on reconstruction error was studied as well. As part of the method, a set of

divergence-free basis vectors were developed and used as the reconstruction basis.
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Chapter 7

Conclusion

7.1 Summary

During these studies, various applications of DMD, POD, compressed sensing, Kalman filter and

smoother, and lasso regularization were investigated. The main focus was to analyze physical

systems solely based on some collected data. Four novel methods were devised for data denoising

and reconstruction. Several tests were conducted to evaluate the effectiveness of the proposed

methods.

In Chapter 3, a novel algorithm was developed that could be used to couple patient-specific CFD

simulation with 4D-Flow measurements by use of POD and lasso regularization. The efficacy of

the method was tested using a numerical phantom. This method is capable of reconstructing data

to any arbitrary high resolution (depending on the resolution of the CFD mesh) and reconstruct

many flow details. Therefore, this method can potentially improve the ability to accurately derive

relevant secondary hemodynamic parameters such as wall shear stresses and pressure gradients at

a much higher resolution than 4D-Flow. See [2] for the journal article published based on this

chapter.

In Chapter 4, a novel approach for dynamic reconstruction of a given dataset based on DMD

and a set of basis vectors and by taking a random sub-sample of the fully-sampled dataset was

proposed. The proposed approach was compared against csDMD in terms of reconstruction error

for three test cases. The results of the tests show that, while the two methods performed similarly

on the dataset with a few numbers of dynamic modes, the proposed method outperformed csDMD
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in terms of both denoising and gap-filling. The third test also showed per-snapshot reconstruction

error of DMDct has less variation than csDMD reconstruction. See [73] for the journal article

published based on this chapter.

In Chapter 5, a new method for denoising 4D-Flow MRI data was proposed. The proposed

method is fast, parameter-free, and not computationally-intensive. As part of the method, a new

approach to estimating the noise covariance matrices using full state observations and fbDMD-

based reconstruction was presented. The method was compared against TV and DFW methods in

three test cases. In the first two cases, where the noise-free dataset was available, our method was

shown to perform better than TV and DFW methods (when applicable) in terms of the defined

error metric.

In Chapter 6, the preliminary results of a new scheme were presented. The proposed scheme

aims at reconstructing a 2D incompressible fluid flow by taking a series of sparse noisy measurements

performed in the frequency domain. The reconstruction method accounts for the dynamics of the

flow as well. The method was evaluated by using a 2D flow past a cylinder as the test dataset.

Three different sampling masks along with three sampling ratios were studied. The effect of sparsity

coefficient on reconstruction error was studied as well. As part of the method, a set of divergence-

free basis vectors were developed and used as the reconstruction basis.

7.2 Future work

The method proposed in Chapter 3 relies on a CFD simulation for generating the POD vectors used

as the reconstruction basis. Running the CFD simulation is a time-consuming and computationally-

intensive task. Devising an alternative method for finding the POD vectors which is not as com-

plicated as a CFD simulation may improve the applicability of the proposed method. The DMDct

method introduced in Chapter 4 is limited to 2D problems but it is possible to extend its application

to 3D problems. Also, the divergence-free DCT-based basis vectors presented in the Appendix may

replace the DCT basis vectors to make a DMD-based method for dynamic denoising and gappy

data reconstruction of incompressible flow fields. The method proposed in Chapter 6 is the first

step towards a DMD-based reconstruction method for sparse MRI. The proposed method relies on a

reduced-order model for denoising. It will be desirable if the denoising is performed in the Cartesian
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space while taking the sparse noisy measurements from the Fourier space without incorporating the

reduced-order model. In order to make the proposed scheme practical, the measurements should

rather be more similar to the MRI data acquisition method than a pure Fourier transform. Fi-

nally, investigating the possibility of using the divergence-free wavelets as the reconstruction basis

is recommended.
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Appendix

The Divergence-Free DCT-Based Basis Vectors

In this section, the derivation steps of the proposed basis functions and the corresponding forward

and inverse discrete transforms are presented. The idea is first introduced for the case of a 2D

velocity field. Later, it is shown how to extend the idea to 3D velocity fields.

2D velocity fields

Consider a divergence-free velocity field defined over a 2D Cartesian region where xmin ≤ x ≤ xmax
and ymin ≤ y ≤ ymax. The divergence-free velocity field must satisfy this equation:

∂u

∂x
+
∂v

∂y
= 0 (A1)

where u and v are the velocity components along the x (horizontal) and y (vertical) directions,

respectively. Let’s linearly map the x and y coordinates to a new set of Cartesian coordinates r

and s as below  lx , xmax − xmin
ly , ymax − ymin

→

 x = xmin + lx
π r

y = ymin +
ly
π s

(A2)

where r, s ∈ [0, π]. The divergence-free equation (A1) may be rewritten in terms of the new

coordinates r and s as

∂

∂r

(
u

lx

)
+

∂

∂s

(
v

ly

)
= 0 (A3)
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Now consider the pairs of functions fpq and gpq defined as

 fpq(x1, x2) , cos (px1) cos (qx2)

gpq(x1, x2) ,
p
q sin (px1) sin (qx2) = px2 sin (px1) sinc

( q
πx2

) (A4)

where p and q are arbitrary constants. It is clearly seen the definition of the function fpq above

is inspired by the definition of the discrete cosine transform (DCT) basis vectors. It can be easily

verified

∂

∂x1
fpq +

∂

∂x2
gpq = 0 (A5)

So, these pairs of functions satisfy the divergence-free condition (A3) for any arbitrary choice of p

and q constants. Figure A1 shows the first few basis functions corresponding to p, q = 0, 1, 2. In

general, p and q don’t need to be integers and can be any arbitrary real number.

(p, q) = (0, 0) (p, q) = (1, 0) (p, q) = (2, 0)

(p, q) = (0, 1) (p, q) = (1, 1) (p, q) = (2, 1)

(p, q) = (0, 2) (p, q) = (1, 2) (p, q) = (2, 2)

Figure A1: Plot of the first few divergence-free basis functions. The corresponding p and q constants
are indicated.
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Using these basis functions, the following form may be used for representing the components of

a divergence-free velocity field in 2D

 û(r, s) = lx
∑

p,q apqfpq(r, s) + lx
∑

p′,q′ a
′
p′q′gq′p′(s, r)

v̂(r, s) = ly
∑

p,q apqgpq(r, s) + ly
∑

p′,q′ a
′
p′q′fq′p′(s, r)

(A6)

where apq and a′p′q′ are the constant coefficients to be determined.

Discretization

Suppose the Cartesian domain of (r, s) is discretized at nr × ns equally-spaced locations (ri, sj)

defined as  ri ,
(
i+ 1

2

)
δr , 0 ≤ i < nr, i ∈ N0, nr ∈ N

sj ,
(
j + 1

2

)
δs , 0 ≤ j < ns, j ∈ N0, ns ∈ N

,

 δr , π
nr

δs , π
ns

(A7)

where nr and ns are the number of divisions along r and s directions, respectively. In this scheme,

the r and s coordinates are uniformly divided into nr and ns pieces of respective lengths δr and δs

and then, the middle points of all pieces are taken as the equidistant sampling points.

Using this scheme, the velocity component u(r, s) can be discretized and represented as an

ns × nr matrix U defined as

Uns×nr = [uji] where uji = u(ri, sj) (A8)

The same applies to the velocity component v(r, s) too.

Inverse discrete transform

Using matrix notation, the inverse discrete transform equations may be written as

 U = lxCsXCT
r + lxSsYDT

r

V = lyDsXSTr + lyCsYCT
r

(A9)
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where

cp ,
1√
nr


cos (pr0)

...

cos (prnr−1)

 , Cr ,

[
c0 . . . cnr−1

]
(A10)

sp ,
1√
nr


sin (pr0)

...

sin (prnr−1)

 , Sr ,

[
s0 . . . snr−1

]
(A11)

dp ,
1√
nr


r0 sinc

( p
π r0
)

...

rnr−1 sinc
( p
π rnr−1

)
 , Dr ,

[
d0 . . . dnr−1

]
(A12)

c′q ,
1√
ns


cos (qs0)

...

cos (qsns−1)

 , Cs ,

[
c′0 . . . c′ns−1

]
(A13)

s′q ,
1√
ns


sin (qs0)

...

sin (qsns−1)

 , Ss ,

[
s′0 . . . s′ns−1

]
(A14)

d′q ,
1√
ns


s0 sinc

( q
πs0
)

...

sns−1 sinc
( q
πsns−1

)
 , Ds ,

[
d′0 . . . d′ns−1

]
(A15)

3D velocity fields

The proposed 2D divergence-free basis functions may be extended to 3D as explained here. A given

divergence-free velocity field defined over a 3D Cartesian region must satisfy this equation:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (A16)

where u, v, and w are the velocity components along the x, y, and z directions, respectively. The

x, y, and z coordinates are linearly mapped to the new set of Cartesian coordinates r, s, and t as
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below 
lx , xmax − xmin
ly , ymax − ymin
lz , zmax − zmin

→


x = xmin + lx

π r

y = ymin +
ly
π s

z = zmin + lz
π t

(A17)

where r, s, t ∈ [0, π]. The divergence-free equation (A16) becomes

∂

∂r

(
u

lx

)
+

∂

∂s

(
v

ly

)
+
∂

∂t

(
w

lz

)
= 0 (A18)

The pair of divergence-free functions fpqm and gpqm are defined as

 fpqm(x1, x2, x3) , fpq(x1, x2) cos (mx3) = cos (px1) cos (qx2) cos (mx3)

gpqm(x1, x2, x3) , gpq(x1, x2) cos (mx3) = px2 sin (px1) sinc
( q
πx2

)
cos (mx3)

(A19)

where p, q, and m are arbitrary constants.

Using these basis functions, the following form may be used for representing the components of

a divergence-free velocity field in 3D


û(r, s, t) = lx

∑
p,q,m apqmfpqm(r, s, t) + lx

∑
p′′,q′′,m′′ a

′′
p′′q′′m′′gm′′p′′q′′(t, r, s)

v̂(r, s, t) = ly
∑

p′,q′,m′ a
′
p′q′m′fq′m′p′(s, t, r) + ly

∑
p,q,m apqmgpqm(r, s, t)

ŵ(r, s, t) = lz
∑

p′′,q′′,m′′ a
′′
p′′q′′m′′fm′′p′′q′′(t, r, s) + lz

∑
p′,q′,m′ a

′
p′q′m′gq′m′p′(s, t, r)

(A20)

where apqm, a′p′q′m′ , and a′′p′′q′′m′′ are the constant coefficients to be determined.

Discretization

The same discretization scheme as the 2D case may be used


ri ,

(
i+ 1

2

)
δr , 0 ≤ i < nr, i ∈ N0, nr ∈ N

sj ,
(
j + 1

2

)
δs , 0 ≤ j < ns, j ∈ N0, ns ∈ N

tk ,
(
k + 1

2

)
δt , 0 ≤ k < nt, j ∈ N0, nt ∈ N

,


δr , π

nr

δs , π
ns

δt , π
nt

(A21)
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The velocity components may be represented as 3D tensors. For example, the velocity component

u(r, s, t) is discretized and represented as an nt × ns × nr tensor U defined as

Unt×ns×nr = [ukji] where ukji = u(ri, sj , tk) (A22)

The same applies to the velocity components v(r, s, t) and w(r, s, t) as well.

Inverse discrete transform

Using 3D tensor notation defined above, the inverse discrete transform equations in 3D may be

written as 
U = lxCt ⊗ (Cs ⊗ (Cr ⊗ X)) + lxSt ⊗ (Cs ⊗ (Dr ⊗ Z))

V = lyCt ⊗ (Cs ⊗ (Cr ⊗ Y)) + lyCt ⊗ (Ds ⊗ (Sr ⊗ X))

W = lzCt ⊗ (Cs ⊗ (Cr ⊗ Z)) + lzDt ⊗ (Ss ⊗ (Cr ⊗ Y))

(A23)

where

c′′m ,
1√
nt


cos (mt0)

...

cos (mtnt−1)

 , Ct ,

[
c′′0 . . . c′′nr−1

]
(A24)

s′′m ,
1√
nt


sin (mt0)

...

sin (mtnt−1)

 , St ,

[
s′′0 . . . s′′nt−1

]
(A25)

d′′m ,
1√
nt


t0 sinc

(
m
π t0
)

...

tnt−1 sinc
(
m
π tnt−1

)
 , Dt ,

[
d′′0 . . . d′′nt−1

]
(A26)
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