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ABSTRACT

CONCURRENCY ANALYSIS IN JAVASCRIPT PROGRAMS USING ARROWS

by

Josh Cochrane

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Tian Zhao

Concurrency errors are difficult to detect and correct in asynchronous programs such as

those implemented in JavaScript. One reason is that it is often difficult to keep track of which

parts of the program may execute in parallel and potentially share resources in unexpected,

and perhaps unintended, ways. While programming constructs such as promises can help

improve the readability of asynchronous JavaScript programs that were traditionally written

using callbacks, there are no static tools to identify asynchronous functions that run in

parallel, which may potentially cause concurrency errors.

In this work, we present a solution for implementing JavaScript programs using a library

based on the abstraction of arrows. We enhanced the previous implementation of the arrows

library by enabling its use with Node.js and by adding parallel asynchronous path detection.

Automated identification of which arrows may execute in parallel helps the programmer

narrow down the possible sources of concurrency errors.
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1 Introduction

Concurrency errors in asynchronous programs are notoriously difficult to detect and correct

due to the difficulty in reproducing the errors and the fact that such errors are often caused

by mistakes in other parts of the program. Event races are common types of concurrency

errors in JavaScript programs where multiple events arrive in an order or at a rate that is

not expected by the programming logic, which results in unexpected effects. To detect errors

caused by event races, programmers have to identify the culprits of the errors, which often

are event handlers that can run in an unexpected order.

1.1 Motivation

For example, a real-life concurrency error reported on GitHub 1 involves an application

which, at the time, only supported one user in the database. When a developer clicks the

button to create the first user, the event handler first checks if the database already has

a user before it starts the asynchronous creation process, which then takes some time to

complete. Meanwhile, there is no feedback to the user that it is in progress, so in some cases

the developer would click the button and trigger the event again. If the first creation had

not finished, the database would still be empty and the initial check would pass again, so

it would start creating another user. When the second user was added to the database, it

would report uniqueness constraint violations and cause other unspecified problems.

We replicate the implementation in question with a simplified code snippet below, where

createOneUser is an asynchronous function that communicates with a remote database to

confirm that it is empty, creates and adds a user to the database, and then activates its

callback on completion.

button.on(’click ’, () => createOneUser(callback));

Listing 1: A simple handler createOneUser

1https://github.com/TryGhost/Ghost/issues/1834
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If the user clicks the button twice, the button event handler will run twice. The initial

database-check will pass, and if the first call to createOneUser takes a long time to complete,

the database-check in the second instances will pass as well. As a result, two users are

created in the database. This is an event race because multiple instances of the handler to

the button events can run in parallel while the asynchronous calls within the event handler

cannot prevent race conditions.

Note that it may have been true when the code was first written that the handler would

complete well before the user could reasonably click the button again, but (based on the

issue report), stronger password hashing algorithm usage or execution on a slower platform

appears to have broken that assumption, making it easier for a user to trigger this behavior.

Once we identify the source of the error, fixing it is rather easy, at least naively. Below is

a corrected version, which uses a local variable active to disable the button listener before

a call to createOneUser returns. Using ‘ad-hoc’ synchronization like this is not fool-proof,

but does add a layer of protection in this case.

let active = false;

button.on(’click ’, () => {

if (! active) {

active = true;

createOneUser (() => {active = false; callback ()});

}

});

Listing 2: createOneUser protected with ad-hoc synchronization

The question, then, is how to identify the potential event races like this automatically,

which is necessary for analyzing larger applications. Analyzing JavaScript programs with

dependencies on multiple libraries is very difficult. Despite advances in program analysis

techniques and algorithms for asynchronous JavaScript programs, statically detecting event

races may require static analysis of the entire JavaScript language [12], which can be impre-

cise and time consuming, particularly for such a complex and dynamic language.

Promises, introduced in ECMAScript 6, are a language construct provided to help de-

scribe and control asynchronous execution. While they have helped many projects move

2



away from deeply-nested callbacks (colloquially known as ‘callback hell’), they are not with-

out their own problems. The semantics are still complex, and the number and breadth of

issues reported on platforms like Stack Overflow indicate users still struggle to understand

their proper use. Not many static tools exist to help analyze the specific behavior of promises

to identify potential issues, and none we have found help identify concurrency issues amongst

promises. Madsen et al. [10] presented the Promise Graph, which helps track when promises

are defined and activated/resolved as a step toward helping developers identify issues, but

it still does not indicate when pieces may execute in parallel and may cause concurrency

errors. They argue that still more could be done to help programmers ensure the correctness

of their promise-based code.

Static analysis of race conditions and concurrency errors in JavaScript is also fundamen-

tally limited by the complexity and dynamic nature of the language itself [12, 6, 11]. The

‘eval’ construct, which can (for instance) be used to run arbitrary user-provided code, could

not be ignored for full coverage. Even if you skip support for that impossibly-dynamic con-

struct, the specifics of the happens-before relationship for event handlers often cannot be

determined statically, as it may depend on external events.

1.2 Our Contributions

In this work, we propose a lightweight implementation of asynchronous JavaScript programs

using the arrows library [3], where the asynchronous computation can be analyzed before it

starts. An arrows program encodes programming logic with compositions of arrows, which

are lifted functions that perform synchronous or asynchronous computation. An arrows

program executes in two stages: a composition stage and an execution stage. After the

composition stage, we can analyze the structure of the composed arrows and determine the

possible pairs of asynchronous arrows that are potentially parallel.

An arrows-based implementation of the above example is shown below, where Arrow.fix

introduces a recursive arrow in which a is a variable that refers to the recursive arrow itself.

3



// Arrow Syntax

var x = Arrow.fix(a => button.on(’click’,

a.any(createOneUser.seq(callback).seq(a))

)

);

x.run();

Listing 3: A simple arrows implementation of createOneUser.

The call .on binds an arrow once to the named event on the referenced arrow (button)

while a.any(createOneUser.seq(callback).seq(a)) is an any arrow that races two paral-

lel arrows: a and createOneUser.seq(callback).seq(a). In an any arrow, progress made

by one arrow will cancel the other arrows in that race. In this case, either createOneUser

makes progress, in which case the parallel arrow a is canceled, or arrow a makes progress when

the button is clicked again, in which case the createOneUser is canceled. If createOneUser

makes progress, then the sequenced arrow callback will run, which is followed by arrow a

again. Note that an arrow registered to an event source is immediately deregistered once an

event occurs and the arrow is called, or if the arrow is canceled. Hence, we use recursion to

implement the click event listener.

The arrow x does not run until we call its run method, which provides an opportunity

for us to analyze potential event races in x before its actual execution. A simple analysis

of x does reveal that there is a race condition between the arrow createOneUser and itself.

That is, in the any arrow, users can click the button again before createOneUser returns,

in which case another instance of createOneUser is launched.

If user clicks button again before createOneUser returns, then createOneUser is can-

celed in the sense that its result is ignored and its subsequent sequenced arrows are not

executed. Normally, this would be a good implementation if createOneUser does not have

harmful side effect to the remote server, as it allows users to cancel an operation that takes

too long. An example would be to ‘cancel’ the loading of an image from a server; while we

may not be able to cancel the request for the image outright, we can safely just ignore the

image returned.

In this case, the implementation does present an event race, as the asynchronous operation

4



eventually modifies a common database. Once a user has noticed errors when running this

code, the user can analyze the arrows code to determine arrows that may run in parallel

and use the results to identify the source of the error, which in this case is the simultaneous

execution of multiple instances of createOneUser.

To fix this problem, we can make a simple change as follows, which is to remove the any

arrow combinator so that users cannot preemptively cancel an execution of createOneUser

and this arrow must execute one at a time.

var x = Arrow.fix(a => button.on(’click’, createOneUser)

.seq(callback).seq(a)

);

x.run();

Listing 4: A safer arrows implementation of createOneUser.

The button click will have no effect because each click event will cause createOneUser

be deregistered from the button and it will not be registered again until the previous call

returns and subsequent computation completes. An analysis can reveal that there is no

parallel execution of arrows within this code.

In summary, we make the following contributions:

• We extend and update the existing arrows library (syntax, semantics, and implemen-

tation) to support lifting of asynchronous functions, and enable its use with Node.js

applications.

• We present rules for parallel arrow detection and show its application in detecting

concurrency errors in arrow programs.

• We discuss real-world use cases demonstrating the usefulness of parallel arrow analysis.

For the rest of the paper, we first give a formal definition of the arrows library in Section 2,

which includes its syntax and semantics. In Section 3, we present the rules for detecting

asynchronous arrows that may run in parallel. In Section 4, we discuss the implementation

of case studies to use arrows to detect event races. Related works are discussed in Section 5.

In Section 6, we conclude and suggest directions for future research.

5



2 Arrows library for JavaScript

In this section, we discuss the formal syntax and semantics of arrows. The definitions are

similar to those in [3] with some updates but we included the entire set of definitions for

clarity.

2.1 Syntax of Arrows

An arrow is either constructed with a function or composed through combinators. The

arrow abstraction supports the implementation of asynchronous JavaScript programs with

a sequential style similar to JavaScript promises. The major difference between arrows and

promises for our purpose is that the execution of an arrow a is delayed until a.run() is called.

This gives us an opportunity to analyze the structure of the arrow before it actually runs.

As shown in Figure 1, arrows are constructed through two constructors: lift, which lifts a

synchronous function to an arrow, and alift, which lift an asynchronous function. Arrows a1

and a2 can be sequenced with seq combinator as in a1.seq(a2). They can also run in parallel

with all or any combinators where a1.any(a2) completes either arrow a1 or arrow a2 while

a1.all(a2) completes both arrows a1 and a2. In a1.any(a2), if one of the two arrows makes

progress, then the other one is cancelled. An arrow lifted from a function f makes progress

if f completes. A composite arrow makes progress if any part of the arrow makes progress.

The progress of an arrow a may be suppressed with noemit(a), so that it only makes progress

when arrow a completes. For example, in (a1.seq(a2)).any(a3), the progress of arrow a1 will

cancel arrow a3, while in noemit(a1.seq(a2)).any(a3), only the completion of a1.seq(a2) can

cancel arrow a3. The try combinator is used to handle exceptions that may be thrown during

the execution of an arrow. For example, in the arrow a1.try(a2, a3), if arrow a1 completes

successfully, its result will be passed to the arrow a2, and if arrow a1 throws an exception,

then the exception will be handled by the arrow a3. In the arrow a1.on(s, a2), the arrow a2

runs only if the event s occurs on an event emitter returned by arrow a1.

6



a ∈ Arrow ::= lift(f) lift a synchronous function as arrow

| alift(f) lift an asynchronous function as arrow

| a1.on(s, a2) event handling

| a1.seq(a2) arrow sequence

| a1.all(a2) all arrow

| a1.any(a2) any arrow

| a1.try(a2, a3) try arrow

| noemit(a) no emit arrow

| fix(α⇒ a) recursive arrow

f ::= λx.e function

s string expression

e ∈ Exp ::= . . .

| a.run() run arrow

Figure 1: Syntax of λasyncArrow.

2.2 Semantics of Arrows

The arrows are translated using the rules in Figure 2 to functions of the form λx.p.k.h. e,

where the parameter x is the arrow input, the parameter p is a progress value, the parameter

k is a continuation function for normal execution, and the parameter h is a continuation

function to handle exceptions.

An arrow lifted from a synchronous function f is translated to a function that applies

continuation k to the result of the call to f if it returns normally or in case of an exception,

applies the error handler h to the exception. An arrow lifted from an asynchronous function

f is translated to an async expression of the form async ve p λz.e that registers the pair

(p, λz.e) with the event value ve, which is written as event(f, x). If the event fires, the

callback λz.e is invoked. If z is a success, the callback signals the progress of the arrow with

adv p (which may cancel other arrows related to p) and calls the continuation k.

The arrow a1.on(s, a2) runs a2 if the event emitter y returned from a1 has an event of the

name s, which is represented by the event value event(y, s). The arrow a1.seq(a2) sequences

7



Jlift(f)K ≡ λx.p.k.h. case (f x) of succ(y)⇒ k y, fail(y)⇒ h y

Jalift(f)K ≡ λx.p.k.h. async event(f, x) p λz. case z of
succ(y)⇒ adv p; k y,
fail(y)⇒ h y

Ja1.on(s, a2)K ≡ λx.p.k.h. Ja1K x p (λy. async event(y, s) p λz.Ja2K z p k h) h

Ja1.seq(a2)K ≡ λx.p.k.h. Ja1K x p (λy.Ja2K y p k h) h

Ja1.all(a2)K ≡ λx.p.k.h. y = [(), ()];

Ja1K x[1] p (λz. y[1] = z; if y[2] 6= () then k y) h;

Ja2K x[2] p (λz. y[2] = z; if y[1] 6= () then k y) h

Ja1.any(a2)K ≡ λx.p.k.h. Ja1K x (P 1
i :: p) k h; Ja2K x (P 2

i :: p) k h

Ja1.try(a2, a3)K ≡ λx.p.k.h. Ja1K x (P 1
i :: p)

λy. Ja2K y p k h

λy. adv (P 2
i :: ε); Ja3K y m k h

Jnoemit(a)K ≡ λx.p.k.h. JaK x (Q :: p) (λy. adv p; k y) h

Jfix(α⇒ a)K ≡ fix(λα. JaK)

JαK ≡ α

Ja.run()K ≡ JaK () ε λx.x λx.x

Figure 2: Arrow translation rules

the execution of a1 and a2 by passing the computation of a2 as a continuation to a1. The

arrow a1.all(a2) runs both a1 and a2 in parallel by using a shared array y to store the arrow

output so that when both arrows complete, the continuation to the arrow k will be applied

to y. The arrow a1.any(a2) makes a1 and a2 race by calling Ja1K and Ja2K with a pair of

progress value P 1
i :: p and P 2

i :: p so that the progress of one arrow cancels the other one.

The arrow a1.try(a2, a3) handles possible exception of a1 by calling Ja1K with a progress value

P 1
i :: p and an error handler continuation, which runs adv (P 2

i :: ε) to cancel a1 and then

runs a3 if the handler is called. The arrow noemit(a) runs a with a progress value Q :: p

to suppress the progress made by arrows within a. Only when a itself completes, progress

8



can be made with adv p inside the continuation passed to JaK. A recursive arrow with fix

combinator is directly translated to a function with fix combinator. Lastly, an arrow a is run

by passing unit value as input, empty progress value, and identity function as continuation

and error handler.

2.3 Syntax of Translated Arrows

e ∈ Exp ::= x variable

| λx.e function

| e e′ call

| e1; e2 sequence

| case e of succ(y)⇒ e1, fail(y)⇒ e2 case expression

| async ve ep λx.e async expression

| adv ep advance the progress of arrow

| fix(λα.e) recursive arrow

| ep

ep ::= p | P j
i :: ep | Q :: ep | vp progress expression

vp ::= ε | P j
i :: vp | Q :: vp progress value

ve ::= event(f, v) event value

Figure 3: Syntax of translated arrows

The syntax of the translated arrow is summarized in Figure 3. The case expression is

used for pattern-matching a value that corresponds to either the successful execution of an

arrow or a failure caused by exception. The expression async ve ep λz.e registers a pair of

a progress expression ep and a callback function λz.e to an event value ve in the runtime

environment. The expression fix(λα.e) defines a recursive function where α is a variable

that recursively binds to the function itself. The expression adv ep removes arrows using the

progress expression ep. A progress expression is a list of markers of the form of P j
i or Q.

The marker pair P 1
i and P 2

i is used to signal the progress of an arrow so that the arrows

9



associated with P j
i is cancelled if an arrow associated with P k

i makes progress, where j 6= k.

The evaluation of adv ep will proceed from left to right for each marker in ep but it stops if

the marker Q is reached. Effectively, the marker Q is used to stop the propagation of arrow

cancellation.

2.4 Semantics of Translated Arrows

∆, E [async ve vp λz.e] → ∆[ve 7→ (vp, λz.e)], E [()] R-Async

∆, v → ∆\{ve 7→ (vp, λz.e)}, [resp(ve)/z]e R-Event

∆, E [adv P j
i :: vp] → ∆′, E [adv vp] R-Adv

∆′ = {ve 7→ (v′p, λz.e) ∈ ∆ | P k
i 6∈ v′p, k 6= j}

∆, E [adv Qi :: vp] → ∆, E [()] R-Adv2

∆, E [adv ε] → ∆, E [()] R-Adv3

∆, E [fix(λα.e)] → ∆, E [ [fix(λα.e)/α]e ] R-Fix

∆, E [(λx.e) v] → ∆, E [ [v/x]e ] R-Call

∆, E [v; e] → ∆, E [e] R-Seq

Figure 4: Runtime semantics of translated arrows

The operational semantics of the translated arrows is shown in Figure 4 with reduction

rules of program states represented by a context ∆ and an expression e. ∆ is a list of

mapping from event value ve to a pair of a progress object and a callback (vp, λx.e). E is the

evaluate context that represents a family of terms with a hole as defined below.

E ::= [.]

| E e
| v E
| E ; e

| case E of succ(y)⇒ e1, fail(y)⇒ e2

By Rule R-Async, async ve vp λx.e adds to ∆ the mapping from ve to a pair of a progress

value and a callback. After the program state evaluates to a value ∆, v, events may be

10



handled. By Rule R-Event, if an event ve fires, then its response resp(ve) is passed to the

callback registered to ve and the mapping for this event is removed from the context ∆. By

Rule R-Adv, the evaluation of adv P j
i :: vp removes any event callback paired with a progress

value that contains P k
i from ∆ where j 6= k and then evaluates adv vp. Rules R-Adv2 and

R-Adv3 stop the evaluation of adv vp when vp is empty or marker Q is reached.

3 Parallel Asynchronous Arrows Detection

In this section, we present a set of formal rules for obtaining a list of the possibly-parallel

arrows within a given construct, and provide some example applications of the rules provided.

A user can use a utility function provided with the framework to analyze their program, in

part or in full.

3.1 Analysis Rules

We present a set of functions for analyzing an arrow program to identify parallel arrows.

The function P (a, σ) is used to analyze an arrow a with context σ and yields a set of pairs

of possibly-parallel arrows. The context is not used for most rules, but the recursive nature

of the fix combinator requires its use, so we must carry it along as a result.

This is a ‘may’ analysis in that if we list two asynchronous arrows as potentially parallel,

they may be parallel, but we cannot tell for sure; conversely, if we do not list a pair of arrows

within a construct as potentially parallel, they must not be parallel (within that construct).

When looking for pairs of parallel, it is sometimes necessary to know all of the asyn-

chronous arrows a given construct contains, for which we provide the function A(a, σ). Like-

wise, in some cases we need to know only the first asynchronous arrow in a construct, for

which we provide the function F (a, σ). This is required in situations where the first asyn-

chronous arrow to complete makes ‘progress’ and causes the cancellation of other ‘competing’

arrows, as in the case of an any combinator. So the analysis of the P function will often in-
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volve the invocation of the A and F functions to provide the necessary information, and these

functions in turn are often called recursively on a proper subset of the current arguments

(thus we can guarantee that analysis will terminate).

At the end of the analysis, the user is presented with a set of pairs of arrows which may be

parallel to each other. They can then analyze this set to check if it matches their expectation

of their program. For example, if it contains asynchronous arrows that are indicated to be

parallel to themselves, they may desire to investigate that arrow to ensure that it is safe for

it to execute in that manner.

3.1.1 All Asynchronous Arrows

The first function we present is used to identify all of the asynchronous arrows within a given

construct. This is necessary for constructs like the ‘all’ combinator, where all asynchronous

arrows in each branch may be parallel to all others. The function A identifies all asynchronous

arrows within a given construct:

A(lift(f), σ) = ∅
A(alift(f), σ) = {alift(f)}
A(a1.seq(a2), σ) = A(a1, σ) ∪ A(a2, σ)

A(a1.on(s, a2), σ) = A(a1, σ) ∪ A(a2, σ)

A(a1.any(a2), σ) = A(a1, σ) ∪ A(a2, σ)

A(a1.all(a2), σ) = A(a1, σ) ∪ A(a2, σ)

A(noemit(a), σ) = A(a, σ)

A(a1.try(a2, a3), σ) = A(a1, σ) ∪ A(a2, σ) ∪ A(a3, σ)

A(fix(λα.a), σ) = A(a, σ)

A(α, σ) =

{
σ(α)[0] if α ∈ dom(σ)
∅ otherwise

A(boxed(a), σ) = {a}

Figure 5: Concurrency Detection: All Arrows

Most rules here are straightforward. It is clear, for example, that synchronous arrows (lift)

are not asynchronous arrows, and asynchronous arrows (alift) are by definition asynchronous.
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Analysis of the seq, any, all, and try combinators should clearly return any asynchronous

arrows in any of their parts.

The noemit combinator prevents asynchronous arrows contained therein from reporting

progress and potentially cancelling ‘competing’ arrows, but still may contain asynchronous

arrows, all of which must be identified.

The context σ in all of the rules and in particular the A(α, σ) will be explained in more

detail later, but for now it should be evident that if a term α is not in the context, it can have

no asynchronous arrows. The fix combinator, described in some detail in the introduction,

will use the context in later analysis, but for identification of all asynchronous arrows within,

we simply drill further into the term.

The ‘boxed’ construct allows a user to ‘wrap’ a given set of arrows to prevent the analysis

of that set and considers the whole thing as one asynchronous arrows (which can still be

parallel to others). This can be particularly useful if we are not concerned about parallelism

in that particular section, or have already analyzed it and determined it is not involved in

the particular issue at hand.

Note that for the ‘on’ combinator, which itself introduces asynchrony between the reg-

istration and emission of the named event s on the specified emitter a1, we ignore the

asynchronous event registration and emission for the purposes of parallel arrow detection.

There are several reasons for this simplification. One, the information necessary to make

such a construct useful for parallel detection makes it quite cumbersome to encode, analyze,

and present coherently. Two, the high usage of events for control flow would generate a huge

number of results which would quickly become overwhelming. Last, it is not our goal to

handle errors involving named events intermixed with other asynchrony.

3.1.2 First Asynchronous Arrows

Next, we identify the first arrow in a given construct, defining the function F . This is mostly

useful with the any combinator, which races two or more arrows against each other; when one
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arrow makes progress, the competing arrows are canceled, but their ‘first’ arrows may have

already partially executed, so we must consider them as potentially parallel to the others.

F (lift(f), σ) = ∅
F (alift(f), σ) = {alift(f)}

F (a1.seq(a2), σ) =

{
F (a1, σ) if F (a1, σ) 6= ∅
F (a2, σ) otherwise

F (a1.on(s, a2), σ) = F (a1, σ)

F (a1.any(a2), σ) = F (a1, σ) ∪ F (a2, σ)

F (a1.all(a2), σ) = F (a1, σ) ∪ F (a2, σ)

F (noemit(a), σ) = A(a, σ)

F (a1.try(a2, a3), σ) =

{
F (a1, σ) ∪ F (a3, σ) if F (a1, σ) 6= ∅
F (a2, σ) ∪ F (a3, σ) otherwise

F (fix(λα.a), σ) = F (a, σ)

F (α, σ) =

{
σ(α)[1] if α ∈ dom(σ)
∅ otherwise

F (boxed(a), σ) = {a}

Figure 6: Concurrency Detection: First Arrows

This function has a few twists, but should otherwise be mostly straightforward. The

first arrow for a lone asynchronous arrow is itself, and a synchronous arrow has no first

asynchronous arrow. The first arrow in a fix combinator will be the first arrow in its wrapped

term. The α rule is similar to that of the A function; if a term α is not in the context, it

can have no asynchronous arrows, and in particular no ‘first’ asynchronous arrow.

A seq combinator will hit its first asynchronous point after its first asynchronous arrow,

so if the first arrow is synchronous, we look to the next, and so forth through any chained

sequences as well. The any and all combinators will begin execution of each of their branches,

so the ‘first’ arrow must include the ‘first’ arrow from each branch.

The on combinator will actually make progress upon receipt of the event, so we only need

to consider the event source for potential parallelism, as we have mentioned previously that

we will ignore the asynchronous events themselves for the purposes of this analysis.

The noemit combinator is interesting in this case as it wraps all internal arrows and
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prevents them from emitting progress events, so it will not make progress until the end of

the combinator. For this reason, we must consider all arrows inside to be part of the ‘first’

asynchronous arrow for that construct.

The try combinator will attempt to execute arrow a1 and will follow with arrow a2 on

success or arrow a3 on failure. If arrow a1 has asynchronous component arrows, the first

thereof would be the obvious candidate for the ‘first’ arrow, but if there are synchronous

arrows preceding it and one of those throws an exception, the first asynchronous arrow to

make progress will actually be the first asynchronous arrow in arrow a3. If arrow a1 has

no asynchronous components, arrow a1 will either succeed and pass to arrow a2 or fail and

fall to arrow a3; in either case the latter component is our only chance for an asynchronous

arrow. Note that if there is an exception in arrow a2, it will not be handled by arrow a3; to

handle a failure in arrow a2, you would need to wrap the whole try in another try.

And again, the boxed construct allows us to wrap a section of arrows and consider it all

to be one asynchronous arrow for parallel detection purposes.

3.1.3 Parallel Asynchronous Arrows

And finally, we identify any pairs of arrows that may be parallel within a given construct,

using the function P :
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P (lift(f), σ) = ∅
P (alift(f), σ) = ∅
P (a1.seq(a2), σ) = P (a1, σ) ∪ P (a2, σ)

P (a1.on(s, a2), σ) = P (a1, σ) ∪ P (a2, σ)

P (a1.any(a2), σ) = P (a1, σ) ∪ P (a2, σ) ∪
{

(a, a′)

∣∣∣∣ (a ∈ A(a1, σ) ∧ a′ ∈ F (a2, σ)) ∨
(a ∈ F (a1, σ) ∧ a′ ∈ A(a2, σ))

}
P (a1.all(a2), σ) = P (a1, σ) ∪ P (a2, σ) ∪ {(a, a′) | a ∈ A(a1, σ) ∧ a′ ∈ A(a2, σ)}
P (noemit(a), σ) = P (a, σ)

P (a1.try(a2, a3), σ) = P (a1, σ) ∪ P (a2, σ) ∪ P (a3, σ) ∪
{

(a, a′)

∣∣∣∣ a ∈ A(a1, σ) ∧
a′ ∈ A(a3, σ)

}
P (fix(λα.a), σ) = P (a, σ[α 7→ [A(a, σ), F (a, σ)]])

P (α, σ) = ∅
P (boxed(a), σ) = ∅

Figure 7: Concurrency Detection: Parallel Arrows

Clearly within a single lift or alift there are no parallel arrows, and clearly seq and noemit

consist of simply the parallel arrows within their components. For the boxed construct, we

treat all internals as a single asynchronous arrow, so like alift, we report no internal parallel

arrows.

The on combinator has a similar restriction here as before, keeping in mind that we ignore

the asynchrony of the event itself, as discussed previously. This leaves simply the internal

parallel arrows of its two component parts.

For the any, all, and try combinators, clearly we must include any parallel arrows within

any of their components, but in each case there is a bit more to consider.

The all combinator will fully execute each branch, with no particular synchronization

between them. Thus, we simply consider all asynchronous arrows in each branch to be

potentially parallel to all asynchronous arrows from each other branch.

In the any combinator, each branch will begin execution, and the first to make progress

will be allowed to continue on while the others are canceled. Thus, one branch will execute

all of its arrows and the others will execute only up through their first asynchronous arrow.
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One might think we could then just match up the ‘first’ arrows from each branch, but it

turns out to be a little more complicated than that. The first arrow in competing branches

cannot necessarily be stopped immediately (e.g., consider a request to a remote server), so

it still has the ability to effect change before detecting that it has been canceled, and this

change may happen when the ‘winning’ arrow is already well past its first asynchronous

point. Thus, we have to consider the set of arrows where all asynchronous arrows of each

branch may be parallel to the ‘first’ of any other branches.

The try combinator involves a similar technicality of progress and cancellation. In this

case, we are particularly concerned about the scenario where an arrow within a1 throws an

exception while other asynchronous arrows are executing. For example, consider a1.try(a2, a3)

and a1 = ax.all(ay), in which all arrows are asynchronous. The all combinator will kick off

execution of both the ax and ay arrows. If an exception occurs in arrow ax while arrow ay

is in-flight, the handler arrow a3 may begin executing before arrow ay is fully terminated.

Thus, in the rule we must consider all asynchronous arrows in a1 to be potentially parallel

to all asynchronous arrows in a3. We need not consider any interaction between arrows in

arrows a1 and a2 as a1 will have run to completion before execution of a2 begins.

The fix combinator relies on processing its ‘All’ and ‘First’ rules for its wrapped term in

order to build up context for usage of its recursive variable.

3.2 Examples

In this section we present some example applications of the rules. In order to make it easier

to follow along, we will often use underlining to indicate the rule or term being processed in

the current step.

3.2.1 Simple Example

Consider a simple example application of function P to a1.any(noemit(a2.seq(a3)).seq(a4)),

in which arrows a1–a4 are asynchronous. Suppose arrow a1 represents loading a previously-
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processed image from a server, arrow a2 represents loading the unprocessed image from disk,

arrow a3 represents processing the image (so together arrows a2 and a3 load and process

the image), and arrow a4 represents saving the locally-processed image back to the cache.

By considering the example, we should expect arrow a1 to be potentially parallel to all the

others, even with the noemit. The full application of the rules follows:

P (a1.any(noemit(a2.seq(a3)).seq(a4))) ⇒
P (a1) ∪ P (noemit(a2.seq(a3)).seq(a4)) ∪{

(a, a′)

∣∣∣∣ (a ∈ A(a1) ∧ a′ ∈ F (noemit(a2.seq(a3)).seq(a4))) ∨
(a ∈ F (a1) ∧ a′ ∈ A(noemit(a2.seq(a3)).seq(a4)))

}
⇒

∅ ∪ P (noemit(a2.seq(a3))) ∪ P (a4) ∪{
(a, a′)

∣∣∣∣ (a ∈ A(a1) ∧ a′ ∈ F (noemit(a2.seq(a3)).seq(a4))) ∨
(a ∈ F (a1) ∧ a′ ∈ A(noemit(a2.seq(a3)).seq(a4)))

}
⇒

P (a2) ∪ P (a3) ∪ P (a4) ∪{
(a, a′)

∣∣∣∣ (a ∈ A(a1) ∧ a′ ∈ F (noemit(a2.seq(a3)).seq(a4))) ∨
(a ∈ F (a1) ∧ a′ ∈ A(noemit(a2.seq(a3)).seq(a4)))

}
⇒

∅ ∪ ∅ ∪ ∅ ∪{
(a, a′)

∣∣∣∣ (a ∈ A(a1) ∧ a′ ∈ F (noemit(a2.seq(a3)).seq(a4))) ∨
(a ∈ F (a1) ∧ a′ ∈ A(noemit(a2.seq(a3)).seq(a4)))

}
⇒{

(a, a′)

∣∣∣∣ (a ∈ {a1} ∧ a′ ∈ F (noemit(a2.seq(a3)))) ∨
(a ∈ {a1} ∧ a′ ∈ A(noemit(a2.seq(a3))) ∪ A(a4))

}
⇒{

(a, a′)

∣∣∣∣ (a ∈ {a1} ∧ a′ ∈ A(noemit(a2.seq(a3)))) ∨
(a ∈ {a1} ∧ a′ ∈ A(noemit(a2.seq(a3))) ∪ {a4})

}
⇒{

(a, a′)
∣∣(a ∈ {a1} ∧ a′ ∈ A(a2.seq(a3)) ∪ {a4})

}
⇒

{(a, a′)|(a ∈ {a1} ∧ a′ ∈ {a2} ∪ {a3} ∪ {a4})} ⇒
(a1, a2), (a1, a3), (a1, a4) .

Figure 8: Parallel arrow analysis of a1.any(noemit(a2.seq(a3)).seq(a4))

Thus our expectation is fulfilled.

3.2.2 Simple Example with ‘.on’

Consider a1.seq(a2).any(e1.on(s, a3.seq(a4))), where a1–a4 are asynchronous arrows, e1 is an

emitter (e.g. a button), and s is an event name. Upon analysis, we expect arrow a1 to be

potentially parallel to both arrow a3 and arrow a4, as the any construct pairs the first arrow
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from each part with each asynchronous arrow from the other, but e1 is synchronous, which

eliminates that set. We omit the context (σ) in each call since this example does not require

any context.

P (a1.seq(a2).any(e1.on(s, a3.seq(a4)))) ⇒
P (a1.seq(a2)) ∪ P (e1.on(s, a3.seq(a4))) ∪{

(a, a′)

∣∣∣∣ (a ∈ A(a1.seq(a2)) ∧ a′ ∈ F (e1.on(s, a3.seq(a4)))) ∨
(a ∈ F (a1.seq(a2)) ∧ a′ ∈ A(e1.on(s, a3.seq(a4))))

}
⇒

P (a1) ∪ P (a2) ∪ P (e1) ∪ P (a3.seq(a4)) ∪{
(a, a′)

∣∣∣∣ (a ∈ A(a1.seq(a2)) ∧ a′ ∈ F (e1.on(s, a3.seq(a4)))) ∨
(a ∈ F (a1.seq(a2)) ∧ a′ ∈ A(e1.on(s, a3.seq(a4))))

}
⇒

∅ ∪ ∅ ∪ ∅ ∪ (∅ ∪ ∅) ∪{
(a, a′)

∣∣∣∣∣ (a ∈ A(a1.seq(a2)) ∧ a′ ∈ F (e1.on(s, a3.seq(a4)))) ∨
(a ∈ F (a1.seq(a2)) ∧ a′ ∈ A(e1.on(s, a3.seq(a4))))

}
⇒{

(a, a′)

∣∣∣∣ (a ∈ A(a1) ∪ A(a2) ∧ a′ ∈ F (e1)) ∨
(a ∈ F (a1) ∧ a′ ∈ A(e1) ∪ A(a3.seq(a4)))

}
⇒{

(a, a′)

∣∣∣∣ (a ∈ {a1} ∪ {a2} ∧ a′ ∈ ∅) ∨
(a ∈ {a1} ∧ a′ ∈ {a3, a4})

}
⇒

{(a1, a3), (a1, a4)} .

Figure 9: Parallel arrow analysis of a1.seq(a2).any(e1.on(s, a3.seq(a4)))

Thus, arrow a1 may be parallel to both arrow a3 and arrow a4, but no other arrows may

be, as expected.

3.2.3 Introduction Arrow Example, Broken Form

Here we analyze the arrows example from the Introduction. As mentioned there, we expect

it to report createOneUser parallel to itself. Assume button is a synchronous emitter and

callback is synchronous. We use α instead of a and fix(λα.x) instead of fix(a ⇒ x) here to

match the rule syntax and make it a bit easier to follow.

fix(λα.button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))))
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P (fix(λα.button.on(‘click’, α.any(createOneUser.seq(callback).seq(α)))), σ) ⇒
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ[α 7→ [
A(button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ),
F (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ)]]) ⇒
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ[α 7→ [
A(button, σ) ∪ A(α.any(createOneUser.seq(callback).seq(α)), σ),
F (button, σ)]]) ⇒
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ[α 7→ [
∅ ∪ A(α, σ) ∪ A(createOneUser.seq(callback).seq(α), σ), ∅]]) ⇒
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ[α 7→ [
∅ ∪ A(createOneUser, σ) ∪ A(callback, σ) ∪ A(α, σ), ∅]]) ⇒
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ[α 7→ [
{createOneUser} ∪ ∅ ∪ ∅, ∅]]) ⇒

let σ′ ::= σ[α 7→ [{createOneUser}, ∅]]
P (button.on(‘click’, α.any(createOneUser.seq(callback).seq(α))), σ′) ⇒
P (button, σ′) ∪ P (α.any(createOneUser.seq(callback).seq(α)), σ′) ⇒
∅ ∪ P (α, σ′) ∪ P (createOneUser.seq(callback).seq(α), σ′) ∪{

(a1, a2)

∣∣∣∣ (a1 ∈ A(α, σ′) ∧ a2 ∈ F (createOneUser.seq(callback).seq(α), σ′)) ∨
(a1 ∈ F (α, σ′) ∧ a2 ∈ A(createOneUser.seq(callback).seq(α), σ′))

}
⇒

∅ ∪ P (createOneUser, σ′) ∪ P (callback, σ′) ∪ P (α, σ′) ∪{
(a1, a2)

∣∣∣∣ (a1 ∈ {createOneUser} ∧ a2 ∈ F (createOneUser, σ′)) ∨
(a1 ∈ ∅ ∧ a2 ∈ A(createOneUser.seq(callback).seq(α), σ′))

}
⇒

∅ ∪ ∅ ∪ ∅ ∪ {(a1, a2)|(a1 ∈ {createOneUser} ∧ a2 ∈ {createOneUser})} ⇒
(createOneUser, createOneUser) .

Figure 10: Parallel arrow analysis of Introduction Arrow Example, Broken Form

Thus, as expected, we see that createOneUser is potentially parallel to itself.

3.2.4 Introduction Arrow Example, Fixed Form

And now we will analyze the ‘fixed’ arrows example from the Introduction, which should

report that createOneUser is no longer parallel to itself. Again we assume that button is

a synchronous emitter and callback is synchronous. We use α instead of a and fix(λα.x)

instead of fix(a⇒ x) here to match the rule syntax and make it a bit easier to follow.
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fix(λα.button.on(‘click’, createOneUser).seq(callback).seq(α))

P (fix(λα.button.on(‘click’, createOneUser).seq(callback).seq(α)), σ) ⇒
P (button.on(‘click’, createOneUser).seq(callback).seq(α), σ[α 7→ [
A(button.on(‘click’, createOneUser).seq(callback).seq(α), σ),
F (button.on(‘click’, createOneUser).seq(callback).seq(α), σ)]]) ⇒
P (button.on(‘click’, createOneUser).seq(callback).seq(α), σ[α 7→ [
A(button.on(‘click’, createOneUser), σ) ∪ A(callback, σ) ∪ A(α, σ),
F (button.on(‘click’, createOneUser), σ)]]) ⇒
P (button.on(‘click’, createOneUser).seq(callback).seq(α),
σ[α 7→ [A(button, σ) ∪ A(createOneUser, σ) ∪ ∅ ∪ ∅, F (button, σ)]]) ⇒
P (button.on(‘click’, createOneUser).seq(callback).seq(α),
σ[α 7→ [∅ ∪ {createOneUser}, ∅]]) ⇒

letσ′ ::= σ[α 7→ [{createOneUser}, ∅]]
P (button.on(‘click’, createOneUser).seq(callback).seq(α), σ′) ⇒
P (button.on(‘click’, createOneUser), σ′) ∪ P (callback, σ′) ∪ P (α, σ′) ⇒
P (button, σ′) ∪ P (createOneUser, σ′) ∪ ∅ ∪ ∅ ⇒
∅ ∪ ∅ ⇒ ∅ .

Figure 11: Parallel arrow analysis of Introduction Arrow Example, Fixed Form.

And thus, no arrows herein are parallel to themselves anymore.

3.2.5 Double ‘Fix’ Arrow

Consider the application of the parallel arrow detection rules to the double-‘fix’ arrow

fix(λα.a.seq(fix(λβ.b.seq(α.any(β))))), where both a and b are asynchronous arrows:
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P (fix(λα.a.seq(fix(λβ.b.seq(α.any(β))))), σ) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))),
σ[α 7→ [A(a.seq(fix(λβ.b.seq(α.any(β)))), σ), F (a.seq(fix(λβ.b.seq(α.any(β)))), σ)]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))),
σ[α 7→ [A(a, σ) ∪ A(fix(λβ.b.seq(α.any(β))), σ), F (a, σ)]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))), σ[α 7→ [a ∪ A(b.seq(α.any(β)), σ), a]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))), σ[α 7→ [a ∪ A(b, σ) ∪ A(α.any(β), σ), a]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))), σ[α 7→ [a ∪ b ∪ A(α, σ) ∪ A(β, σ), a]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))), σ[α 7→ [a ∪ b ∪ ∅ ∪ ∅, a]]) ⇒
P (a.seq(fix(λβ.b.seq(α.any(β)))), σ[α 7→ [a ∪ b, a]]) ⇒
let σ′ ::= σ[α 7→ [a ∪ b, a]]

P (a, σ′) ∪ P (fix(λβ.b.seq(α.any(β))), σ′) ⇒
∅ ∪ P (b.seq(α.any(β)), σ′[β 7→ [A(b.seq(α.any(β)), σ′), F (b.seq(α.any(β)), σ′)]]) ⇒
P (b.seq(α.any(β)), σ′[β 7→ [A(b, σ′) ∪ A(α.any(β), σ′), F (b, σ′)]]) ⇒
P (b.seq(α.any(β)), σ′[β 7→ [b ∪ A(α, σ′) ∪ A(β, σ′), b]]) ⇒
P (b.seq(α.any(β)), σ′[β 7→ [b ∪ {a ∪ b} ∪ (∅), b]]) ⇒
P (b.seq(α.any(β)), σ′[β 7→ [a ∪ b, b]]) ⇒
let σ′′ ::= σ′[β 7→ [a ∪ b, b]] = σ[α 7→ [a ∪ b, a], β 7→ [a ∪ b, b]]
P (b.seq(α.any(β)), σ′′) ⇒
P (b, σ′′) ∪ P (α.any(β), σ′′) ⇒
∅ ∪ P (α.any(β), σ′′) ⇒

P (α, σ′′) ∪ P (β, σ′′) ∪
{

(a1, a2)

∣∣∣∣ (a1 ∈ A(α, σ′′) ∧ a2 ∈ F (β, σ′′)) ∨
(a1 ∈ F (α, σ′′) ∧ a2 ∈ A(β, σ′′))

}
⇒

∅ ∪ ∅ ∪
{

(a1, a2)

∣∣∣∣ (a1 ∈ {a ∪ b} ∧ a2 ∈ {b}) ∨
(a1 ∈ {a} ∧ a2 ∈ {a ∪ b})

}
⇒

((a, b) ∪ (b, b) ∪ (a, a) ∪ (a, b)) ⇒
(a, b) ∪ (b, b) ∪ (a, a) .

Figure 12: Parallel arrow analysis of double ‘Fix’

And thus what we expected: arrow a is potentially parallel to itself and to arrow b, and

arrow b is potentially parallel to itself and to arrow a.
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4 Implementation

In this section, we discuss the implementation of the alift construct and some the work

required to enable the use of the arrows framework within the Node.js environment. We then

show some examples of applying parallel arrow analysis to concurrency errors in real-world

Node.js projects. We select our examples mainly from NodeCB, a database of concurrency

errors in real-world Node.js projects, compiled by Wang et al. [16]. We describe each problem,

distill its raw JavaScript form to a minimal working example, convert it to arrows, show the

parallel arrows detected, and present a fixed arrow form that addresses the concurrency

issues.

4.1 Arrows for Node.js

The alift construct enables the arrows framework to be used in a variety of new ways,

including with Node.js applications. A large amount of work was thus undertaken to enable

the arrows framework to be used with Node.js applications while maintaining compatibility

with the existing browser/DOM usage.

This involved stitching the code back together where it was previously artificially sepa-

rated, adding stubs as appropriate for each environment, and exporting the appropriate types

and functions for use in the arrows module. Through the process, a significant amount of

unit testing was also added to ensure continued operation of the core mechanics and to

improve maintainability and enable future work with reduced risk.

In order to implement the alift rule for Node.js applications, we first had to determine

which callback formats would be handled by the arrows framework, since the framework

must provide the callback as a hook back to itself so it can process the result and handle

arrow logistics. The error-first callback pattern is widespread in Node.js, used by most

asynchronous methods exposed by the Node.js core API2 as well as many popular third-

party packages. Under this pattern, each callback should be provided two parameters; the

2https://nodejs.org/api/errors.html#errors_error_first_callbacks
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first parameter represents an error if one was encountered or is just null if all went well, in

which case the second parameter holds the result.

The near-ubiquitous use of this pattern made it the easy choice for support within the

arrows framework, and other callback forms should be translatable into this form without

much effort. For instance, for an asynchronous function which only provides the value to the

callback, a simple wrapper-callback can be provided which simply provides a null ‘error’:

var a = ((x, cb) => noErr(x, (res) => cb(null , res))).liftasyncerr ();

Listing 5: Converting a non–error-first callback for use with liftasyncerr.

Note that the arrow in Listing 5 takes two parameters, but the asynchronous function only

takes one input. The arrow itself will also only take this one input, x, which is provided by

the preceding arrow; the callback parameter cb is actually supplied by the arrow framework.

This is because the framework uses the callback to retake control, check return values, and

handle arrow logistics.

Thus, using liftasyncerr, asynchronous functions in Node.js can be lifted into arrows,

and can then be composed with other lift’ed synchronous functions and combinators to

form full arrow programs.

4.1.1 Get-Port Node.js Module Translated to Arrows

What follows is a simple example of alift within Node.js, based on a real Node.js package,

get-port3, implemented with promises. It includes the (MIT-licensed) JavaScript/promises

source4 and a translation into arrows. This module is used to simply obtain an available

TCP port.

// Original JavaScript/promises implementation:

const getPort = options => new Promise ((resolve , reject) => {

const server = net.createServer ();

server.unref();

server.on(’error’, reject);

3https://www.npmjs.com/package/get-port
4https://github.com/sindresorhus/get-port/blob/master/index.js
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server.listen(options , () => {

const port = server.address ().port;

server.close (() => {

resolve(port);

});

});

});

Listing 6: Original get-port Node.js module implementation.

The package essentially attempts to open a Node.js server on the port specified or the

next available port, and returns a Promise object, which the caller can then use to wait for

resolution. If the asynchronous call to ‘listen’ on (open) the port is successful, Node.js will

activate the callback, and the promise will be ‘resolved’, allowing the caller to move on with

the port value. If the ‘listen’ call fails, Node.js will raise an ‘error’ event, which then causes

the promise to be ‘rejected’, which can be handled appropriately by the caller.

In the translation to arrows in Listing 7, we leave the synchronous parts alone for the most

part and wrap the targeted asynchronous components in alift constructs as required, and we

allow access to the local server and options variables (the latter being defined elsewhere)

rather than trying to marshall them around between the various arrows. Furthermore, we

allow the ‘error’ event to throw an error, which will then be caught by the arrows framework

and handled appropriately through the error continuation, either by the failure branch of a

try construct or via the default error handler, which is to print the error message and exit.

The remember combinator used here simply ‘remembers’ the input to the preceding arrow

and supplies it as the input to the following arrow, in this case preserving the port from

the saveSvrPort arrow to pass it along as the getPort arrow result. ‘{}’ is provided as an

unnamed positional argument to closeAsync as saveSvrPort sends a value the close doesn’t

actually need (which is then ‘remembered’ to be returned from the arrow, as discussed).

// translation to arrows/liftasyncerr:

const arrows = require(’arrows ’)

// synchronous parts

const server = net.createServer ();

server.unref ();

server.on(’error ’, err => {throw err});
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// Arrows

const listenAsync = ((cb) => server.listen(options , cb)).liftasyncerr ();

const saveSvrPort = (() => server.address ().port).lift();

const closeAsync = (({}, cb) => server.close(cb)).liftasyncerr ();

var getPort = listenAsync.seq(saveSvrPort).seq(closeAsync).remember ();

Listing 7: Arrows implementation of get-port Node.js module.

Thus it is now possible to implement Node.js applications in the arrows framework,

and thereby gain access to the additional program analysis and features provided by the

framework.

4.2 Repeated Remote Requests

In many cases, repeated remote requests, e.g. a user clicking the same button to load an

image several times in quick succession, causes concurrency errors in event handlers and

other sections of code that the developer expected to run independently. We present two

such examples.

4.2.1 NodeCB BugID 37: Long CreateUser Process and Impatient User

This is the same example from Section 1, explained in more detail.

NodeCB Bug ID: 37
Project Name: TryGhost/Ghost
Bug report URL: https://github.com/TryGhost/Ghost/issues/1834

Bug report Title: Race condition when creating initial user could allow
multiple users to be created.

Here is the distilled callback form from the Introduction with both the ‘broken’ and the

‘fixed’ versions:

// callback syntax - ’broken ’

button.on(’click ’, () => createOneUser(callback));

// callback syntax - ’fixed’

let active = false;

button.on(’click ’, () => {

if (! active) {

active = true;

26

https://github.com/TryGhost/Ghost/issues/1834


createOneUser (() => {active = false; callback ()});

}

});

Listing 8: createOneUser callback implementation, revisited.

In this case, it would be obvious based on the bug report that there is a problem with

the user creation, so you would know where to start looking. But it may still not be obvious

from looking at this code in-situ what enables the bad behavior.

Our addition, within the arrows framework, allows us to explicitly indicate that the

createUser arrow may be parallel to itself, which could clearly be a problem. As discussed

in the rule application of Section 3.2.3, the analysis specifically indicates that only the pair

(createOneUser, createOneUser) herein may be parallel.

// Arrow Syntax

var x = Arrow.fix(a => button.on(’click’,

a.any(createOneUser.seq(callback).seq(a))

)

); x.run();

Listing 9: createOneUser broken arrow implmementation, revisited.

With the following fix, the analysis of this construct indicates no arrows may be in parallel

any more, as per the full application of the rules in Section 3.2.4:

var x = Arrow.fix(a => button.on(’click’, createOneUser)

.seq(callback).seq(a)

); x.run();

Listing 10: createOneUser fixed arrow implmementation, revisited.

4.2.2 NodeCB BugID 1: Database Atomicity Violation

NodeCB Bug ID: 1
Project Name: porygonco/porybox
Bug report URL: https://github.com/porygonco/porybox/issues/157

Bug report Title: Race conditions

This example involves adding ids to user entries in a database. In the following listing,

the original code and identified resolution are provided, as discussed in the paper by Wang et

al. [16] (the deleted code is proceeded with ‘-’ while new code is proceeded with ‘+’). If the
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function addIdToArray is called twice in quick succession with the same ownerName, e.g. in

response to user input, the findOne function will asynchronously return a copy of the same

user object. Each invocation will then add its own id to its copy, and save its copy back

to the database. Whichever save runs last will override and trample the earlier save, losing

that information. The fix is to atomically update the user in the database, ideally utilizing

facilities provided by the database implementation.

// Original: Porybox #157: Atomicity violation caused by non -

// deterministic event triggering:

function addIdToArray (ownerName , id) {

- return User.findOne ({name: ownerName }).then(user => {

- user._ids.push(id);

- return user.save();

- });

+ db.user.update ({name:ownerName },{$push :{_ids: id}})

}

Listing 11: Porybox addIdToArray implementation.

If this example were implemented in arrows, it would look something like this:

// Find a user

const findOne = ((name , cb) => {db.findOne(name , cb);}).liftasyncerr ();

// Add an id to a user and save to the database

const pushIdAndSave = ((user , cb) => { user.ids.push(nextId ++);

db.save(user , cb); }).liftasyncerr ();

// a sample user name , lifted to an arrow

const ownerName = "Fred".lift();

// update twice in quick succession - produces a race condition

// where only the last id is preserved

ownerName.seq(findOne , pushIdAndSave)

.all(ownerName.seq(findOne , pushIdAndSave))

.run();

// The db entry only contains {2} now , instead of {1,2} - oops!

Listing 12: Arrows-based asynchronous database update.

This arrows implementation has the same problem as the original JavaScript implemen-

tation: two runs of the same (or similar) arrow are interleaved, and whichever save runs last

will trump the previous save. When run on this example, the parallel detection algorithm

indicates that findOne and pushIdAndSave are potentially run in parallel to themselves and

to each other (technically, it will indicate that the full liftasyncerr parts of each may be

parallel, but it is simpler to consider the representative names here). This, in particular the
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db.save calls in the latter function, is a problem, and it should be clear to the user that

some interleaving could be, and in fact is, happening here.

The solution is to use an asynchronous update provided by the database to find and

update the user in one atomic process:

// ’atomically ’ add an id to a user

const updateUser = ((name , cb) => {

db.update(name , nextId++, cb)

}).liftasyncerr ();

ownerName.seq(updateUser).all(ownerName.seq(updateUser)).run();

// Two entries added safely ’in parallel ’

// The db entry now (properly) contains {1,2}

Listing 13: Arrows-based atomic database update.

In this case, the parallel detection algorithm will still indicate that updateUser may be

parallel to itself, but on closer inspection we can confirm that the new parallelism is safe. If

this were being analyzed as part of a larger program, it could now be wrapped in a boxed

combinator to prevent the algorithm from looking inside.

4.3 Logical Atomicity Violations

There are quite a number of bugs in NodeCB labeled as ‘Atomicity Violations’ which involve

the user taking some (unexpected) action which then creates an atomicity violation, like

those covered in the previous section. There are also a few issues labeled as ‘Atomicity

Violations’ where the violation is enabled by the logic of the implementation itself, not

requiring any specific action from the user to trigger the error. We cover one of these issues

in this section.

4.3.1 NodeCB BugID 57: Task Queue Management

NodeCB Bug ID: 57
Project Name: OptimalBits/bull
Bug report URL: https://github.com/OptimalBits/bull/issues/370

Bug report Title: Jobs can be processed and left in the ‘wait’ state
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Bull is described as ‘the fastest, most reliable, Redis-based queue for Node’ (Redis is ‘an

open source (BSD licensed), in-memory data structure store, used as a database, cache and

message broker’). Essentially, Bull provides a task queue with several parallel or interleaved

worker processes (‘processors’). Some processors take tasks from the wait queue, activate,

lock, and process them; others identify ‘stalled’ tasks—tasks with locks which have expired

and not have been renewed by their host processors.

In this particular issue, one processor removed a task from the queue and attempted

to asynchronously obtain a lock to process the task. While it waited patiently for the

lock, another processor swapped in and noticed the task in the ‘active’ state without a lock

(yet), considered it ‘stalled’, and sent it back to the ‘wait’ queue. Then the first processor

successfully obtained the lock and processed the task, yet it remained in the ‘wait’ queue,

eventually to be processed again.

function processorTask () {

let task = mgr.getWaitingTask (); // take job from wait queue

task.obtainLock (() => { // lock - asynchronous!

task.doStuff (); // process

// schedule self to run again

setTimeout(processorTask , processDelay);

});

}

function cleanupTask () {

// find an active+unlocked job & send it back to wait queue

mgr.handleStalledTask (() => {

// schedule self to run again

setTimeout(cleanupTask , cleanupDelay);

});

}

Listing 14: Bull task queue callback implementation.

If the full details of even a distillation of the example were provided, it quickly becomes

obvious that the problem is not readily identifiable. In the version below written in arrows,

it is still not clear where the problem exists. Parallel arrow analysis on this construct,

however, will indicate the pair (obtainLockArrow, handleStalledArrow) may be parallel.

The remember combinator used here simply ‘remembers’ the input to the preceding arrow

and supplies it as the input to the following arrow, in this case preserving the task to later
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pass it along to the task runner (doStuffArrow). Its effects are synchronous, so it can be

ignored for parallel arrow analysis. The delay combinator simply inserts a delay of the

specified duration and then continues with the subsequent arrow.

const getTaskArrow = (() => mgr.getWaitingTask ()).lift();

const obtainLockArrow =

((task ,cb) => { task.obtainLock(cb); }).liftasyncerr ().remember ();

const doStuffArrow = ((task) => task.doStuff ()).lift();

const handleStalledArrow =

((cb) => mgr.handleStalledTask(cb)).liftasyncerr ();

const processTaskArrow = Arrow.fix(x => getTaskArrow

.seq(obtainLockArrow).seq(doStuffArrow).delay(processDelay).seq(x));

const cleanupTaskArrow =

Arrow.fix(x => handleStalledArrow.delay(cleanupDelay).seq(x));

processTaskArrow.all(cleanupTaskArrow);

Listing 15: Bull task queue arrows implementation.

In PR#379, the maintainers of Bull switched to a package called ‘node-redlock’ for their

task-locking to “implement atomic locking with a guaranteed owner” (it was not just a ‘sim-

ple’ change). A similar strategy could be taken with the arrows example, which would elimi-

nate the asynchrony of the obtainLockArrow, or at least replace it with a more general asyn-

chronous processTaskArrow, which is safer to run in parallel with handleStalledArrow,

with the lock race condition eliminated.

4.4 Both Branches

In this classification of concurrency errors, the program is expected to take one of two paths

to accomplish a task, but in some special circumstances, the code takes actions from more

than one of the paths. For instance, in the rule application example from Section 3.2.1, the

request to the remote server raced with the local image processing; if the arrows were not

configured properly, both branches could complete and cause some concurrency issues.

31

https://github.com/OptimalBits/bull/pull/379


4.4.1 NodeCB BugId 17: getBlock

NodeCB Bug ID: 17
Project Name: ipfs/js-ipfs
Bug report URL: https://github.com/ipfs/js-ipfs/issues/318

Bug report Title: Uncaught Error: no writecb in Transform class

In this database example, if a request is made to a database for a block of data that is

not yet available, an event is registered to notify the caller when the data becomes available.

If the data is already available in the cache, the notification is canceled and the data is

returned.

function getBlock (key , cb) {

const finish = (key , block) => { removeListener(key); cb(block); }

addBlockListener(key , (block) => finish(key , block));

db.has(key , (exists) => {

if (! exists) return cb(); // event will fire when data is ready

db.get(key , (block) => {

finish(key , block);

});

});

}

Listing 16: The original getBlock callback implemenation.

A call to getBlock first registers for listeners for when the data block becomes available,

and checks to see if data is already available. If data is available, it calls the finish function,

which cancels the listener and invokes the callback cb. The corresponding data event only

fires when data is actually added to the database, not if it is already available, so in most

cases it should be safe to register, as either the data will be available and the registration

will be immediately canceled (in the call to finish), or the function will exit quietly and

allow the notification to provide the data at a later point.

The problem comes in when data is being asynchronously added to the database (with

the put method) when the request for the corresponding block is started as well. This could

be done in separate threads, but are placed here sequentially for simplicity:

db.put(key , data , () => {something });

getBlock(key , () => {something });

Listing 17: getBlock activates the callback twice.
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If the put takes some time to process and a getBlock request comes in during that time,

the has call is blocked by the database. The put then completes, and triggers the data event,

which is then processed, calling finish and then the cb. Then the has is unblocked, calls

get, and then finish, which then also calls the cb. The cb does not handle being called

twice very well and in this case throws an exception.

An equivalent, though somewhat simplified, arrows implementation is provided here (the

variable key is defined elsewhere and provides the database key of the data for which we are

looking):

var getNewBlockArr = ((cb) => addBlockListener(key , (err , block) =>

{ finish(key , block); cb(err , block); })).liftasyncerr ();

var hasBlkArr = ((cb) => db.has(key , cb)).liftasyncerr ();

var getBlkArr = ((cb) => db.get(key , (err , block) =>

{ finish(key , block); cb(err , block); })).liftasyncerr ();

var getBlockNowArrow = noemit(hasBlkArr.seq(getBlkArr));

var getBlock = getNewBlockArr.any(getBlockNowArrow);

Listing 18: getBlock arrow translation.

Arrow getNewBlockArr registers finish to run when the listener on the new block of

data for key is triggered, and then calls the framework-provided callback (this is somewhat

unnatural in this case, but is closer to the original implementation). Arrows hasBlkArr

and getBlkArr both wrap their respective asynchronous functions, with getBlkArr also

calling finish. The two are then combined into getBlockNowArrow, wrapped in a noemit

combinator to ensure simple progress of hasBlkArr does not impede the getNewBlockArr.

Finally, getBlock races the two composite arrows against each other.

Parallel arrows analysis of this implementation yields {(getNewBlockArr, hasBlkArr),

(getNewBlockArr, getBlkArr)}, with the pair containing getBlkArr causing the concur-

rency issues here (if getBlkNowArr has proceeded to getBlkArr, it has already committed

to getting the data and calling finish).

Initially the ipfs maintainers just protected the callback from being called multiple times
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within the finish function, but that didn’t really resolve the root cause of the issue. Even-

tually in later versions, through at least one major refactoring, they moved the notification

registration into the ‘else’ section of the has, so it will only register for the notification if it

doesn’t have the data in the first place. This is similar to the following arrows implementa-

tion, using try:

var finishArr = finish.lift();

var getBlock = hasBlkArr.try(getBlkArr , getNewBlockArr).seq(finishArr);

Listing 19: Fixed getBlock arrow implementation.

Now the parallel arrows analysis yields {(hasBlkArr, getNewBlockArr)}, which makes

sense; it will check if it has the data, and proceed to get the data if so. If the has fails, it will

fall back to registering for the notification. The potential parallelism remaining is due to the

exception handling path; if has throws an exception at any point in its execution, it will be

handled by invoking the getNewBlockArr, as discussed in Section 3.1.3. So this parallelism

is expected, and could be ignored by wrapping the construct in a boxed construct, if so

desired.

5 Related work

5.1 On the Analysis of Bugs in JavaScript

Wang, et al. [16] present a categorized database of Node.js concurrency bugs and discuss

potential resolution strategies for similar errors. They found that two thirds of the bugs an-

alyzed were caused by atomicity violations. They describe why concurrency bugs in Node.js

(or server-side JavaScript in general) are difficult to find and what sets them apart from sim-

ilar bugs in other asynchronous programming systems. In their analysis, almost all of the

bugs studied led to severe failures of the affected application. We borrow several examples

from their database, implement them in the arrows framework, and show how parallel arrow

analysis helps to identify concurrency errors.
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Mutlu et al. [12] attempt to limit the scope of “races that matter” by focusing on bugs

which cause problems in persistent state (e.g. cookies, localStorage, or server-side storage)

or semi-persistent state (e.g. sessionStorage, cleared on browser restart). They argue

that the browser runtime model is basically designed to quietly ignore unhandled errors in

general, and users have been ‘trained’ over time to handle such transient or ‘benign’ bugs as

well, often by simply reloading the page. Their work also requires an specially-instrumented

browser and DOM, used to track data propagation through memory and storage operations.

Our work, in contrast, does not venture to specifically differentiate between concurrency

bugs or place any intrinsic value thereon, but also does not require an instrumented browser

to perform our analysis.

Hanam et al. [6] research common bug and fix patterns in JavaScript using machine

learning on bug fix commits in open source repositories. Their aim is to help tool developers

target the most prevalent bugs and provide strategies for finding and fixing bugs. They look

at three different ways of grouping defects: by fault or root cause, typically used by static

analysis tools; by symptom/presentation, typically used by dynamic analysis tools; or by

repair, typically identified by automated repair tools, and how their research can be used

to improve each. Our work fits within the static analysis category, so it would target errors

their tool could identify based on fault or root cause.

5.2 On Bug Detection in JavaScript

Zheng et al. [17] perform static analysis to identify possible data inconsistencies and atomicity

violations involving asynchronous calls. Their analysis is limited specifically to client-side

JavaScript code by processing application code to extract the client-side code for automatic

analysis, and is thus restricted to client-side scripting. The JavaScript landscape has also

changed fairly dramatically since their research was published, so it obviously does not

account for developments in Node.js or promises. Our work supports newer developments in

the JavaScript language including the emergence of server-side scripting and Node.js.
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Petrov et al. [14] present WEBRACER, a dynamic race detection tool for web applications.

It relies on an instrumented browser that helps track memory access and uses their happens-

before relationship definition to identify possible race conditions, and they were successful in

locating such race conditions in several Fortune 100 company websites. There are limitations

to their process, and it does generate quite a few false positives, which follow-up work by

Raychev et al. [15] seeks to mitigate. Our analysis is, once again, static, and does not require

software specifically instrumented for the analysis.

Raychev et al. [15] discuss the prevalence of harmful race conditions and found many such

errors, even in the online presence of many of the largest public and privately held companies

in the United States. They present a dynamic race detection tool called EVENTRACER

which improves upon existing race detection solutions by introducing the concept of ‘race

coverage’, which helps significantly reduce the number of false-positives by ruling out races

‘covered’ by another detected race. They plan to improve on their work by utilizing static

analysis techniques to positively identify synchronization variables and further reduce false-

positives. However, their solution is still dynamic and requires appropriate instrumentation

and coverage to detect races, and ours provides static analysis to help identify concurrency

issues.

Hong et al. [7] presents WAVE, the “Web Application’s Virtual Environment”, a testing

framework for client-side JavaScript applications. It records a ‘monitored execution’ and

then essentially reorders interactions in various permutations to see if that brings to light

any concurrency bugs. This is obviously very different from the arrow composition and static

analysis we provide, but does provide an interesting approach to identifying runtime issues

with the non-determinism we also seek to handle.

5.3 On JavaScript Semantics

Work by Madsen et al. [11] introduces the ‘event-based call graph’ for static analysis of event-

based Node.js JavaScript programs, and shows how it can be used to find dead listeners and
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dead emits as well as some information about mismatched synchronous/asynchronous calls

and unreachable functions. Their work, however, requires modeling of any modules that use

native C++, which includes all of the core Node.js framework components. They report that

their analysis appears to be useful for small Node.js programs. Our work does not look into

the specific function being lifted, so we do not need to model Node.js framework components

in order to make use of them.

Madsen et al. [10] then discuss some of the benefits and pitfalls of using promises, in-

troduced in ECMAScript 6. Essentially they argue that promises are substantially better

than pure event-driven JavaScript, but still have a lot of problems, on which we agree. They

identify at least seven different types of problems they found in promise-based code, and

introduce the promise graph to help programmers reason about their promise-based code

and identify some of the errors discussed in the paper. This work is tangential to our work

in arrows, but shows that promises are not a perfect solution to the asynchronous problem

in JavaScript.

Loring, et al. [9] investigate the semantics of JavaScript, and in particular the Node.js

runtime, in an effort to support future work on static and dynamic analysis of applications

or to evaluate improvements to the framework itself. They investigate the semantics of node

event queues and identify the differences between the two main asynchronous scheduling

mechanisms, process.nextTick and setImmediate.

Gallaba et al. [5] present an empirical study characterizing JavaScript callback usage.

They study the error-first callback convention, the Async.js library5, and promises, and

argue that program analysis of JavaScript must take into account asynchrony and its effects

on control and information flow. Simplifying assumptions about callbacks and asynchrony in

general might invalidate such analysis or lead to invalid results. Subsequent work [4] presents

a tool called PROMISESLAND for refactoring JavaScript callbacks, including those utilizing

the error-first convention, into JavaScript promises.

5http://caolan.github.io/async/
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They also discuss related tools and frameworks used to help manage asynchrony in-place,

including one in particular called bluebird [1], a promise library for JavaScript which seeks to

improve debugging for JavaScript promises, including support for ‘long stack traces.’ Many

such libraries have mechanisms for wrapping existing asynchronous libraries into ‘promisified’

code that can more easily be integrated into other promise-based code. However, even blue-

bird still cannot statically analyze possible parallelization like we can do within the arrows

framework. There is currently no direct translation available for converting a JavaScript pro-

gram written with callbacks or promises into the arrows framework, which could represent

and area of further research and future work.

The work of Fritz et al. [3, 2] built upon work by Khoo et al. [8], which proposes arrows as

a generalization of monads to help coordinate execution of JavaScript applications. Arrows

serve similar purposes as promises in JavaScript to make callback logic easier to follow as

sequential logic, but arrows provide static capability in analyzing JavaScript programs as we

have demonstrated in this paper.

6 Conclusion and Future Work

In this work, we have shown that concurrency errors are a problem in JavaScript, and

while newer language features like promises and libraries like bluebird help to alleviate some

of the problems associated with raw callbacks, promises themselves are not without their

own difficulties. We’ve presented the arrows framework, and in particular our parallel arrow

analysis, as an alternative to promises, and have shown how it can help to locate concurrency

errors.

Future work could be undertaken to improve the usability and power of the parallel

analysis within the arrows framework. For example, the arrows framework is currently

limited to passing along the asynchronous result (in the callback) and does not provide

access to any synchronous results from the asynchronous call. There are some asynchronous
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functions which return meaningful synchronous data, and workflows using those functions

could be better supported if the proper semantics are determined. Events could also be

considered, perhaps in a configurable manner, for analysis with parallelism.

The syntax required for the arrows framework to trap the callback in some cases is

fairly cumbersome, and forms the basis for some additional work. Consider the example in

Section 4.2.2. While the findOne arrow appears to take two parameters, name and cb, only

one is actually provided by the preceding arrow; the cb is supplied by the arrow framework.

This syntax, or a similar but even more awkward syntax, is required because the framework

must provide the callback parameter explicitly, as it must retake control to check return

values and handle arrow logistics. Future work could investigate improvements to this syntax,

or perhaps a replacement syntax.

One such alternative syntax, similar to that of Haskell arrows notation using the proc-

expression, as described by Ross Patterson [13], is already in active development, which

could also simplify some of the mechanics of marshalling data between arrows.
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