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ABSTRACT 

 

DETERMINING PREDICTOR IMPORTANCE IN MULTILEVEL MODELS FOR 

LONGITUDINAL DATA: AN EXTENSION OF DOMINANCE ANALYSIS 

by 

Luciana Pacheco Cançado 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Razia Azen 

 

Longitudinal models are used not only to analyze the change of an outcome over time but 

also to describe what person-level and time-varying factors might influence this trend. Whenever 

a researcher is interested in the factors or predictors impacting an outcome, a common follow-up 

question asked is that of the relative importance of such factors. Hence, this study aimed to 

extend and evaluate Dominance Analysis (DA), a method used to determine the relative 

importance of predictors in various linear models (Budescu, 1993; Azen & Budescu, 2003; Azen, 

2013), for use with longitudinal multilevel models. A simulation study was conducted to 

investigate the effect of number of measurement occasions (level-1 units), number of subjects 

(level-2 units), different levels of model complexity (i.e., number of predictors at level-1 and 

level-2), size of predictor coefficients, predictor collinearity levels, misspecification of the 

covariance structure, and measures of model fit on DA results and provide recommendations to 

researchers who wish to determine the relative importance of predictors in longitudinal 

multilevel models. Results indicated that number of subjects was the most important factor 

influencing the accuracy of DA in rank-ordering the model predictors, and that more than 50 

subjects are needed to obtain adequate power and confidence in the reproducibility of DA 

results. The McFadden pseudo R² is recommended as the standard measure of fit to use when 
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performing DA in multilevel longitudinal models. Finally, asymptotic standard error and 

percentile confidence intervals constructed through bootstrapping can be used to determine if one 

predictor significantly dominates another but might not provide sufficient power unless there are 

at least 200 subjects in the sample or the magnitude of the general dominance difference measure 

is greater than 0.01 using McFadden’s R². 
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CHAPTER 1.  INTRODUCTION 

Multilevel models, also called hierarchical linear models (Raudenbush & Bryk, 2002), 

random coefficient models (de Leeuw & Kreft, 1986), or linear mixed models (Littell, Milliken, 

Stroup, & Wolfinger, 1996), were developed to analyze nested or hierarchical data where 

individuals are nested into groups. Longitudinal data, obtained when the same unit or person is 

measured at multiple points in time, are commonly found in applied fields such as educational and 

psychological research, among many others. The need to understand how an outcome changes 

over time, and what factors might influence these changes, is a typical research question in areas 

such as school effectiveness, human development, and program evaluation to name a few. The 

analysis of systematic change over time, commonly called growth curve modeling, is a 

straightforward application of multilevel modeling where the repeated measures are seen as nested 

within persons, which could be further nested within higher level units (Fox, 2010). 

Traditional methods of analyzing longitudinal data, such as repeated measures analysis of 

variance and multivariate analysis of variance, can be highly restrictive, imposing assumptions 

such as equal spacing between observations (i.e., time points), equal number of observations for 

all individuals, and complete (i.e., no missing) data. The use of multilevel models for the analysis 

of longitudinal data has become increasingly popular because these models are very flexible in 

terms of the inclusion of complex features including partially missing data, unequally spaced time 

points, non-normally distributed or discretely-scaled repeated measures, complex nonlinear 

growth paths, time-varying predictors, and multivariate growth processes. Longitudinal data 

analysis using multilevel models has been the focus of, among others, the books by Verbeke and 

Molenberghs (2000), Singer and Willett (2003), and Hedeker and Gibbons (2006). 
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Growth curve models are so popular because they can be used not only to analyze the 

change of an outcome over time, but also to describe what person-level and time-varying factors 

might influence this trend. Whenever a researcher is interested in the factors or predictors 

impacting an outcome, a common follow-up question is that of the relative importance of such 

factors. In the context of multiple regression, such questions have been answered by utilizing what 

has been called relative importance analysis (Budescu & Azen, 2004; Tonidandel & LeBreton, 

2011). Given the widespread use of multilevel longitudinal models and the need to understand the 

relative contributions of predictors in such models, this dissertation aims to answer the following 

question: once a given growth curve model has been identified, how can the relative importance 

of the predictors (or explanatory variables) contained within this model be determined? Answering 

this question might seem straightforward but, especially when the predictors are correlated, it is 

not. The difficulty lies in the very definition of importance and how it is supposed to be measured.  

Relative importance is defined here as the additional contribution of a given explanatory 

variable, in comparison to others in the selected model, in predicting the outcome (Azen & 

Budescu, 2003; Budescu, 1993). In multiple linear regression, several measures and corresponding 

analytical methods have been proposed to determine relative importance, such as Dominance 

Analysis (DA; Azen & Budescu, 2003; Budescu, 1993), relative weight analysis (J.W. Johnson, 

2000), and measures based on information (Retzer, Soofi, & Soyer, 2009). Dominance analysis is 

regarded by many researchers as a comprehensive approach for determining relative importance 

when predictors are correlated, and it is generally recommended when it is computationally 

feasible to do so (Gromping, 2015; LeBreton, Ployhart, & Ladd, 2004; Thomas, Zumbo, Kwan & 

Schweitzer, 2014). In fact, in a review of the research on predictor importance published in 2004, 

Johnson and LeBreton state that DA is “the first measure that was theoretically meaningful and 
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consistently provided sensible results (pp. 241).” Therefore, this dissertation focuses on the use of 

dominance analysis to quantify the concept of predictor importance. 

There is a large body of literature on variable importance for traditional statistical methods 

(e.g., Budescu, 1993; Darlington, 1968; Green, Carroll, & Desarbo, 1978; J.W. Johnson, 2000; 

Kruskal, 1987; Lindeman, Merenda & Gold, 1980; Pratt, 1987). However, the issue of relative 

importance in multilevel models in general, and growth curve models in particular, has received 

much less attention (Liu, Zumbo & Wu, 2014; Luo & Azen, 2013). The still widespread reliance 

on p-values, standardized regression coefficients, and other less informative measures for 

evaluating the importance of predictors in these models suggest that there is a need for better ways 

to understand the relative contributions of explanatory variables in growth models. The purpose of 

this study is to help fill this gap by demonstrating how to assess and rank-order the relative 

importance of predictors in a multilevel model for longitudinal data using dominance analysis. 

Dominance analysis examines all possible subset models formed from a set of predictors 

and compares the incremental fit obtained when each predictor is added to each subset model. One 

predictor is said to dominate another if it produces a larger incremental fit in each of the subset 

models or, more weakly, on average across models. The dominance relationship can be defined at 

three levels, providing a rich picture of the relative contributions of the predictors to explaining 

the outcome. Complete dominance is established when a predictor dominates (contributes more 

than) another in each and every subset model. Conditional dominance is established when a 

predictor’s average additional contribution within all subset models of a given size is greater than 

that of the other predictor. General dominance is achieved when the average conditional additional 

contribution of a predictor across all model sizes is greater than that of another predictor. General 

dominance is the weakest of the three levels but also the most straightforward to determine. 
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Additionally, it provides an intuitive quantitative representation of the predictor’s relative 

contributions to overall model fit (Luo & Azen, 2013).  

DA only requires a measure of model fit in order to assess the additional contribution of a 

predictor to a model. In linear (multiple) regression, the coefficient of determination, R², is well 

understood and can be easily decomposed in a variety of ways to help determine relative 

importance in terms of each predictor’s relative contribution to the total variance explained in the 

model. In other linear models, such as generalized linear models (e.g., logistic regression), linear 

multilevel models, or generalized linear multilevel models (e.g., logistic multilevel models), there 

is no universal analogue to the coefficient of determination, and the estimation of predictor relative 

importance in terms of contributions to the model’s explanatory power is less clear. Multilevel 

models for longitudinal data pose additional challenges since one must account for the time-

varying structure of the data, including the modeling of errors that might demand special 

covariance structures. The concept of variance explained in multilevel models is an active area of 

research, and no single definition exists as to how to measure it. Recently, Nakagawa and 

Schielzeth (2013) and Jaeger, Edwards, Das, & Sen (2017) have each proposed new measures that 

claim to overcome some of the problems, such as negative values, that have plagued older pseudo-

R² measures for multilevel models such as those proposed by Raudenbush and Bryk (2002) and 

Snijders and Bosker (2012). However, there are still very few comparative studies of these 

measures, most of them appearing in the original papers proposing the newer measures (Jaeger et 

al., 2017; LaHuis, Hartman, Hakoyama, & Clark, 2014; Nakagawa & Schielzeth, 2013).    

Prior research (Luo & Azen, 2013) provided some indication that DA might be a suitable 

method for determining relative importance in multilevel models with a continuous outcome. 

Work by Azen and Cancado (2017, July) provided further evidence of the suitability of DA for 
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linear multilevel models. This dissertation aims to further extend and evaluate the use of 

dominance analysis for determining the relative importance of predictors in multilevel models for 

longitudinal data with continuous (normally distributed) outcomes. Monte-Carlo simulations are 

used to investigate the impact of model complexity, sample size, collinearity and covariance 

misspecification on the accuracy of dominance analysis results in terms of (1) rank-ordering of 

predictors by relative importance, (2) the performance of bootstrap-based inferential procedures 

for the quantitative general dominance measure, and (3) the reproducibility rates of the qualitative 

general dominance measure over many bootstrap samples. Of added interest is the performance of 

different measures of model fit, especially those proposed more recently, on the inferential 

procedures for the general dominance measure. This study aims to contribute to the literature on 

both relative importance and multilevel models by examining and demonstrating the use of 

dominance analysis to answer questions about how predictors compare in terms of their influence 

on outcomes that change over time.  

  



 

6 

 

CHAPTER 2. LITERATURE REVIEW 

This literature review will cover six major topics. First, an overview of the general theory 

of multilevel models will be presented. Next, the specific concepts related to multilevel models for 

longitudinal data will be discussed, and the specific models used in the simulation study will be 

introduced and their rationale explained. Then, the concept of predictor importance will be 

introduced along with an exploration and critique of methods currently used to measure predictor 

importance in multilevel models. An in-depth review of dominance analysis follows. 

Subsequently, different measures of model fit that have been proposed for multilevel models are 

discussed. Lastly, the different bootstrap methods that could be used to carry out the inferential 

analyses are presented and critiqued, and the chosen method justified. 

 

Multilevel Models 

Many areas of research must deal with data that are nested or clustered, such as students 

within schools, patients within hospitals, or yearly screenings within individuals. This nesting 

introduces dependencies between individual observations, since observations from a given cluster 

or group (e.g., school or hospital) are often more similar to each other than to observations from a 

different cluster. If this dependence is ignored by, for example, using analysis of variance 

(ANOVA) or a linear regression model to analyze the data, standard error estimates are downward 

biased leading to erroneous rejection of the null hypothesis (Raudenbush & Bryk, 2002; Hox, 

2010; Snijders & Bosker, 2012). Multilevel models (also commonly known as hierarchical models 

or mixed models) have been proposed to handle data structures where observations are not 

independent, a central assumption of linear regression models. Multilevel models are designed to 
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combine information about variables from different levels of a hierarchical structure in a single 

model, modeling the dependency inherent in the lower level units by including different variance 

terms for the various levels (Hox, 2010). One of the primary differences between multilevel 

models and other linear “single-level” models, such as multiple regression, is the ability to estimate 

one or more of the coefficients or “effects” in the model as either fixed or random. A fixed effect 

has only a single parameter value in the whole model and is applied to each observation in the 

analysis regardless of the cluster under which the observation is nested. A random effect, on the 

other hand, is allowed to vary between clusters. 

Multilevel models can be formulated in different ways, resulting in different notations. 

Matrix representation, a more concise way of organizing the different models, is widely used in 

software documentation such as the SAS/STAT® User’s Guide (SAS Institute Inc., 2017). 

Algebraic or scalar notation, on the other hand, allow multilevel models to be formulated by either 

presenting separate equations for each of the levels, combining them into a single equation, or, 

usually for didactic reasons, writing separate equations at multiple levels and then substituting in 

to arrive at a single equation (Singer, 1998).  

In matrix form, the linear multilevel model can be expressed as: 

𝒚 = 𝑿 𝜷 + 𝒁 𝒖 + 𝒆

(𝑁 × 1) (𝑁 × (𝑝 + 1)) ((𝑝 + 1) × 1) (𝑁 × 𝑄) (𝑄 × 1) (𝑁 × 1)
 (1) 

where y is an N x 1 stacked vector of observed outcome measures for all M subjects, N is 

the total number of observations where 𝑁 = ∑ 𝑛𝑖
𝑀
𝑖=1 , 𝑛𝑖 is the number of observations for subject 

i, X is the  𝑁 × (𝑝 + 1) design matrix corresponding to the (𝑝 + 1) × 1 fixed-effects parameter 

vector β that contains the intercept and all the p fixed-effects (e.g., main effects and interactions); 

Z is the 𝑁 × 𝑄 blocked design matrix corresponding to the 𝑄 × 1 vector u that contains all the 
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random effects 𝑄, where 𝑄 = 𝑀 ∙ (𝑞 + 1)  (q random slopes and 1 intercept) aggregates the subject 

specific random effects, and e is the N x 1 vector of level-1 residuals. We assume that u and e are 

uncorrelated and normally distributed with zero mean and covariance matrices G and R, 

respectively. Hence, 

 (
𝒖
𝒆
)~𝑁 [(

𝟎
𝟎
) , (

𝑮 𝟎
𝟎 𝑹

)] (2) 

The expected value and variance (V) of the observation vector y are given by: 

 𝐸[𝒚] = 𝑿𝜷 (3) 

 𝑉𝑎𝑟[𝒚] = 𝑽 = 𝒁𝑮𝒁′ + 𝑹 (4) 

The vector of observations y is assumed to be normally distributed, 𝒚~𝑁(𝑿𝜷, 𝑽). The 

variance V can be modeled by configuring the random-effects design matrix Z and specifying G, 

the covariance matrix for the random-effects parameters, and R, the covariance matrix of the level-

1 errors. If we assume that level-1 errors are homoscedastic, then 𝑹 = 𝜎2𝑰𝑵, where 𝑰𝑵 corresponds 

to the 𝑁 × 𝑁 identity matrix. The general linear model can be defined as a special case where Z = 

0 and 𝑹 = 𝜎2𝑰𝑵 (SAS Institute Inc., 2017). 

 

Multilevel Models for Longitudinal Data   

Longitudinal data is collected as a set of repeated measurements on individuals across time. 

Longitudinal data can be considered a special case of multilevel data with the repeated measures 

(level 1) nested within individuals or subjects (level 2). These models can also be extended to 

include higher-level units (such as schools or clinics). Longitudinal data has specific characteristics 

that makes it an ideal candidate for multilevel analysis: (1) there are (at least) two sources of 
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variability: one within subjects (intra-individual) and one between subjects (inter-individual); (2) 

the within-subject observations are generally not independent of each other; (3) the between-

subject observations may not be constant over time; (4) the data set is usually incomplete or 

unbalanced, for example due to participants dropping out of a study or missing one or more 

measurement occasions; and (5) the points in time at which different subjects are measured might 

not be the same. The analysis of longitudinal data is complex because models must simultaneously 

account for within-subject observation dependence, between-subject variation, non-constant 

variance, and unbalanced data (Hox, 2010; Singer & Willett, 2003).  

Traditionally, repeated measures data were analyzed with univariate Analysis of Variance 

(ANOVA) or its multivariate extension (MANOVA), where the main focus is testing the null 

hypothesis that the means are equal across all occasions. The biggest advantages of these 

approaches are their simplicity and well-understood properties. However, ANOVA and 

MANOVA methods make several assumptions about the data that are likely to be violated in 

practice. ANOVA assumes sphericity, or equal variances for the differences between all possible 

pairs of time points, which is unlikely to occur if variances increase over time or the correlations 

between measurements decrease as a function of time. MANOVA, on the other hand, allows a 

general covariance structure for the repeated measures. However, both MANOVA and ANOVA 

have the disadvantage of requiring complete data for all subjects and identical measurement 

occasions. The use of multilevel models for longitudinal data overcomes these limitations and 

provides a flexible framework to study change over time (Hox, 2010; Singer & Willett, 2003). 

Specifically, incomplete data resulting from missed measurement occasions is handled seamlessly 

as long as it can be reasonably assumed that data is missing at random (MAR; Rubin, 1976), and 
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the procedure allows for a variable number of measurement occasions as well as different spacing 

between time points (Hox, 2010).  

Longitudinal studies can have substantially different designs in terms of number, timing 

and the balanced nature of the repeated measurements. In this study, the focus is on growth curve 

models where analysis is aimed at estimating change in the outcome variable over time and on 

predictors of such change. In general, longitudinal models include two types of predictors: those 

whose values are constant throughout the duration of the study (e.g., birth year, race), here referred 

to as time-invariant, person-level, or level-2 predictors, and those whose values change depending 

on time (e.g., weight), which are referred to as time-varying, time-level, or level-1 predictors.  

Additionally, in growth curve models an explanatory variable for time needs to be 

explicitly included in the models to represent the time points directly. Consider a study with four 

waves of measurement, where data is collected at baseline and then after 6, 12 and 24 months. An 

individual measured at all four occasions would have t = 1, 2, 3, 4, whereas an individual who 

missed the second wave would have t = 1, 3, 4, and would be missing the measurement obtained 

at month 6. However, t is not used to index time directly (e.g., t = 2 represents month = 6), so the 

explanatory variable for time, representing the number of months since baseline and denoted 

Timeti, needs to be explicitly included in the model to indicate the actual differences between time 

points (e.g., Time1i = 0, Time2i = 6, Time3i = 12, Time4i = 24). That is, t represents the measurement 

wave (on an ordinal scale) whereas Time represents the actual number of months (or a continuous 

time scale). The coding of time in growth curve models is also important since it affects the 

meaning of the fixed and random intercept components in the model. The time variable should be 

scaled so that the time point with a value of zero corresponds to the time point when the researcher 

wants a snapshot of the between-subjects differences. Care should be taken in the coding of time 
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because the fixed intercept is the average value of the response variable at whatever occasion time 

is coded as zero and the intercept variance represents inter‐individual differences at that particular 

time point (Hox, 2010).  

Using an example to put the models studied here into context, suppose a researcher has 

data on reading comprehension from a random sample of students measured once a year from first 

to fourth grade. Through appropriate model selection procedures, a set of explanatory variables is 

selected to model the direction and rate of change in reading comprehension over the four 

measurement occasions. The data set contains both scale scores on the reading test and a pass/fail 

decision according to a cut-score. Some of the predictors change over time, such as number of 

books read in the past year, a measure of social skills, expressive vocabulary skill, and verbal 

memory; other predictors are measures that do not change over time, such as gender, SES at 

baseline, number of books at home at baseline, and mother’s years of schooling at baseline. To 

better understand the impact of the predictors, the researcher wants to rank order the variables in 

terms of their relative importance in predicting the outcome across time.  

The focus of this study was the two-level longitudinal model where measurement occasions 

(level-1 units) are nested within individuals (level-2 units). To introduce the notation, assume the 

data described above were collected for M students, each denoted by i and having a total number 

of measurement occasions ni. The total sample size is defined as 𝑁 = ∑ 𝑛𝑖
𝑀
𝑖=1 . Let the outcome 

(e.g., reading comprehension score) for student i, measured at measurement occasion t, be denoted 

by yti. Also assume the design is unbalanced; that is, students might be measured at different times 

and measurement spacing is unequal, such that the gap in time between two consecutive 

measurement occasions need not be exactly the same. Let t index the measurement occasion, where 
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t varies from 1 to ni. Then, the general multilevel longitudinal model for student i, as introduced 

by Laird and Ware (1982), can be written as: 

𝒚𝒊 = 𝑿𝒊 𝜷 + 𝒁𝒊 𝒖𝒊 + 𝒆𝒊

(𝑛𝑖 × 1) (𝑛𝑖 × (𝑝 + 1)) ((𝑝 + 1) × 1) (𝑛𝑖 × (𝑞 + 1)) ((𝑞 + 1) × 1) (𝑛𝑖 × 1)
 (5) 

 (
𝒖𝒊

𝒆𝒊
)~𝑁 [(

𝟎
𝟎
) , (

𝑮 𝟎
𝟎 𝑹𝒊

)] (6) 

 𝑉𝑎𝑟(𝒚𝒊) = 𝑽𝒊 = 𝒁𝒊𝑮𝒁𝒊
′ + 𝑹𝒊 (7) 

where 𝒚𝒊 is the ni-dimensional vector of observed outcomes for student i, 1 ≤ 𝑖 ≤ 𝑀, M is 

the number of students (subjects), 𝑿𝒊 is the known design matrix for the fixed effects, β is a (p+1)-

dimensional vector (p predictor effects and 1 intercept) of unknown population (fixed) effects, 𝒁𝒊 

is the known design matrix for the random effects, ui is a (q+1)-dimensional vector of unobserved 

subject-specific (random) effects (q random slopes and 1 intercept), and 𝒆𝒊 is a ni-dimensional 

vector of residual components (i.e., level-1 random errors).  

In the context of the reading comprehension example, the Xi matrix is composed of a 

column of 1’s representing the fixed intercept, a column of the values of the Timeti variable, and 

columns with the values of all fixed predictors, both time-invariant (e.g., gender, SES, number of 

books at home at baseline, and mother’s years of schooling at baseline) and time-varying (e.g., 

number of books read in the past year, social-skills score, expressive vocabulary skill score, and 

verbal memory score), as well as their interactions. The components of the β vector are the fixed 

effects or slopes for the variables in Xi, which have the same value for all students in the sample. 

The random effects would be the random intercept (𝑢0𝑖) and the random slope of Time (𝑢1𝑖). 

Assuming the Time variable has a value of zero for the first measurement (i.e., for t = 0, 𝑇𝑖𝑚𝑒𝑡𝑖 =

0), the random intercept indicates that the value of the outcome variable, in this example reading 
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comprehension score, at baseline and when all covariates are zero is allowed to vary among 

students. Additionally, in longitudinal multilevel models for change (i.e., growth models), the 

slope of the Time variable (e.g., the rate of change of reading comprehension scores over time), is 

also allowed to vary among students; therefore, a random component for the slope of Time (𝑢1𝑖) 

is included in the ui vector. The variances and covariance of the random intercept and random 

slopes are captured in the covariance matrix G. The Zi design matrix in this example would be 

composed of two columns since we have two random components, one for the intercept, composed 

of 1’s, and another composed of the values of the Timeti variable from t = 1 to t = ni. The values in 

ei are the time-specific residuals for student i, so they can differ per student. The variance of these 

residuals for student i are captured in the covariance matrix Ri. 

The random effects and level-1 residuals are assumed to be independent (𝒖𝒊 ⊥ 𝒆𝒊), where 

G is the (𝑞 + 1) × (𝑞 + 1) covariance matrix of the student-level (level-2) random effects and 𝑹𝒊 

is a (𝑛𝑖 × 𝑛𝑖) covariance matrix for student i, but which does not depend on i other than through 

its dimension ni. Thus, it follows that 𝒚𝒊|𝒖𝒊 ∼ 𝑁(𝑿𝒊𝜷 + 𝒁𝒊𝒖𝒊, 𝑹𝒊); that is, conditional on the 

random effects ui, yi is normally distributed with mean 𝑿𝒊𝜷 + 𝒁𝒊𝒖𝒊 and covariance matrix 𝑹𝒊. The 

variance of yi is 𝑽𝒊 = 𝒁𝒊𝑮𝒁𝒊
′ + 𝑹𝒊 and the marginal distribution of yi is assumed to be 

𝒚𝒊~𝑁(𝑿𝒊𝜷, 𝑽𝒊). 

Multilevel analyses usually start with fitting an unconditional, or intercept-only, model in 

order to calculate the intraclass correlation (ICC). The ICC can be defined as the proportion of 

total variability in the outcome that is due to the nested structure of the data, or, alternatively, the 

expected correlation in the outcome of two random level-1 units belonging to the same level-2 

unit.  
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A two-level unconditional model can be represented as: 

 Level 1: 𝑦𝑡𝑖 = 𝛽0𝑖 + 𝑒𝑡𝑖 (8) 

 Level 2: 𝛽0𝑖 = 𝛾00 + 𝑢0𝑖 (9) 

 Combined model:  𝑦𝑡𝑖 = 𝛾00 + 𝑢0𝑖 + 𝑒𝑡𝑖 (10) 

where 𝑒𝑡𝑖~𝑁(0, 𝜎2), 𝑢0𝑖~𝑁(0, 𝜏0
2), and 𝐶𝑜𝑣(𝑒𝑡𝑖, 𝑢0𝑖) = 0. 

The combined model can be divided into two parts: a fixed part containing the overall 

intercept, 𝛾00, and a random part containing two random effects: the random intercept coefficient 

𝑢0𝑖 and the level-1 residual 𝑒𝑡𝑖. The model shows that the reading comprehension measurement at 

time t for student i is a function of three components: the overall mean reading score across all 

students and time points (𝛾00), how much student i’s mean score deviates from this grand mean 

(𝑢0𝑖), and how much the actual reading score at time t for student i differs from the student’s model 

predicted score at that time point (𝑒𝑡𝑖).   

The same model in matrix notation for a given student i with 4 measurement occasions (ni 

= 4) would be: 

𝒚𝒊 = 𝑿𝒊 𝜷 + 𝒁𝒊 𝒖𝒊 + 𝒆𝒊

[

𝑦1𝑖

𝑦2𝑖

𝑦3𝑖

𝑦4𝑖

] = [

1
1
1
1

] [𝛾00] + [

1
1
1
1

] [𝑢0𝑖] + [

𝑒1𝑖

𝑒2𝑖

𝑒3𝑖

𝑒4𝑖

]

(𝑛𝑖 × 1) (𝑛𝑖 × (𝑝 + 1)) ((𝑝 + 1) × 1) (𝑛𝑖 × (𝑞 + 1)) ((𝑞 + 1) × 1) (𝑛𝑖 × 1)

 (11) 

 (
𝒖𝒊

𝒆𝒊
)~𝑁 [(

𝟎
𝟎
) , (

𝑮 𝟎
𝟎 𝑹𝒊

)]  (12) 

𝑤𝑖𝑡ℎ 𝑮 = [𝜏0
2] 𝑎𝑛𝑑 𝑹𝒊 = 𝜎2𝑰𝒏𝒊
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𝑽𝒊 = 𝒁𝒊𝑮𝒁𝒊
′ + 𝑹𝒊 = [

1
1
1
1

] [𝜏0
2][1 1 1 1] + [

𝜎2

𝜎2

𝜎2

𝜎2

] =

[
 
 
 
 
𝜏0

2  +  𝜎2 𝜏0
2 𝜏0

2 𝜏0
2

𝜏0
2 𝜏0

2  +  𝜎2 𝜏0
2 𝜏0

2

𝜏0
2 𝜏0

2 𝜏0
2  +  𝜎2 𝜏0

2

𝜏0
2 𝜏0

2 𝜏0
2 𝜏0

2  + 𝜎2]
 
 
 
 

  (13) 

The formulation of the unconditional model implies that 𝑉𝑎𝑟[𝒚] has a compound symmetry 

structure, where the variance for any yti is 𝜏0
2  +  𝜎2, the covariance of any two measurements for 

the same student is 𝜏0
2, and the covariance between any two measurements from different students 

is zero. The structure of V, the variance of the full vector of responses y, is a 𝑀 × 𝑀 block diagonal 

matrix with M blocks (Vi) of dimension (𝑛𝑖 × 𝑛𝑖) for each student i (i = 1,…, M ) represented by: 

 𝑽 =

[
 
 
 
 
𝑽𝟏 0 ⋯ 0
0 𝑽𝟐 ⋯ 0
0 0 ⋯ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑽𝑴]

 
 
 
 

 (14) 

Once variances at the time and student levels are known, the ICC can be calculated as: 

 𝐼𝐶𝐶 =
𝜏0
2 

𝜏0
2 + 𝜎2 (15) 

 The magnitude of the ICC can be used as evidence for the need for multilevel modeling to 

account for the clustering in the data, since it represents how homogeneous the level-1 units are, 

or, equivalently, how different from each other the level-2 units are. For longitudinal data, the ICC 

measures the degree to which an outcome (e.g., reading literacy score, depression score, etc.) of 

the same individual is more similar to his/her own outcomes across time in comparison to 

outcomes from other individuals in the sample. Here, since the level-2 units are individuals and 
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the level-1 units are repeated measures within the same individual, a large ICC is usually expected 

as there is usually much more variation between individuals than between measurement occasions 

within individuals. 

 Next, the specific growth models used in this study are presented. These models are 

summarized in Table 1 and described in more detail below.  

Table 1 Summary of longitudinal models. 

Model 𝑦𝑡𝑖 = Equation 

Time-invariant predictors 

of random intercept 

(Model 1) 

𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

 

        +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 

18 

Time-invariant predictors 

of Time effect 

(Model 2)  

𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

+ ∑ 𝛾1ℎ𝑤ℎ𝑖𝑇𝑖𝑚𝑒𝑡𝑖

4

ℎ=1

 

 

        +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 

21 

Time-varying predictors 

(Model 3) 𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾𝑔0𝑥(𝑔−1)𝑡𝑖

5

𝑔=2

+ ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

 

 +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 

24 

  

Model 1: Growth model with time-invariant predictors of the random intercept. The 

first model represents a growth model in which both the intercept and the rate of change (over 

time) vary across individuals. In terms of the reading comprehension example, this model would 

be used to estimate the effects of student-level (i.e., level-2, time-invariant) predictors (gender, 

SES, number of books at home and mother’s years of schooling) on reading comprehension after 

accounting for the effect of time, where both the starting point (intercept) and the rate of change 
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(slope) of the time variable can differ across students. This model can be represented by the 

following equations: 

Level 1: 𝑦𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑒𝑡𝑖            (16) 

Level 2: 𝛽0𝑖 = 𝛾00 + 𝛾01𝑤1𝑖 + 𝛾02𝑤2𝑖 + 𝛾03𝑤3𝑖 + 𝛾04𝑤4𝑖 + 𝑢0𝑖         

𝛽1𝑖 = 𝛾10 + 𝑢1𝑖             (17) 

Combined: 𝑦𝑡𝑖 = 𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾0ℎ𝑤ℎ𝑖
4
ℎ=1 + 𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 (18) 

 where yit is the outcome for student i at time t; 𝛾00 is the overall intercept (i.e., the value 

of the outcome when all predictors are zero); the time variable, 𝑇𝑖𝑚𝑒𝑡𝑖, is a continuous measure 

of time at level-1 scaled so that the first measurement occasion (Time1i) has a value of zero and the 

subsequent values correspond to the distance in months to the first occasion, and 𝛾10 is the fixed 

effect of the Time variable (i.e., the linear time trend, measuring the population effect of time on 

the reading score across all students). Note that this coding of Time implies that the overall 

intercept 𝛾00 is the average outcome score at the first measurement occasion. The student-level 

(time-invariant) predictors are denoted by 𝑤ℎ𝑖, where h = 1,…, p predictors, with corresponding 

fixed effects 𝛾0ℎ. The model components described so far correspond to the fixed part of the model. 

The random model components are 𝑢0𝑖, representing the deviation of student i from the overall 

mean (𝛾00), 𝑢1𝑖, the random coefficient of the Time variable representing the difference between 

the estimated change over time in the outcome of the i-th participant from the average growth in 

outcome (𝛾10) across the M students, and 𝑒𝑡𝑖, representing the residual of student i at time t, or the 

difference between the observed and predicted outcome at time t for student i. 
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The level-1 errors are modeled by the first-order autoregressive covariance structure, 

AR(1). Specifically, the level-1 variance is defined as 𝜎𝑡𝑡`
2 = 𝜎2(𝜙|𝑡−𝑡`|), where 𝜎2 is the variance 

of the independent level-1 errors, t, t’ are two different time points from the same individual, and 

ϕ is the first order autoregressive parameter, or the autocorrelation between observations measured 

at times t and t-1. For m time points, the level-1 residual covariance matrix 𝑹𝒊 would be: 

𝑹𝒊 = 𝜎2

[
 
 
 
 

1 𝜙 𝜙2 ⋯ 𝜙𝑚−1

𝜙 1 𝜙 ⋯ 𝜙𝑚−2

𝜙2 𝜙 1 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

𝜙𝑚−1 𝜙𝑚−2 ⋯ ⋯ 1 ]
 
 
 
 

 

The random effect for the intercept is distributed as 𝑢0𝑖~𝑁(0, 𝜏0
2), the random effect of the 

time variable is distributed as 𝑢1𝑖~𝑁(0, 𝜏1
2), and their covariance is 𝐶𝑜𝑣(𝑢0𝑖, 𝑢1𝑖) = 𝜏01. The 

variation of the student intercepts around the overall average intercept 𝛾00 is represented by 𝜏0
2 and 

the variation in the individual students’ growth rates (differences from the average growth 𝛾10) is 

represented by 𝜏1
2. A positive covariance 𝜏01 (for example) would indicate that students who have 

a higher reading comprehension score (outcome) at the first time point measure are more likely to 

have larger predicted time change in reading scores than those who score lower on reading 

comprehension at the first time point. The random intercept and random slopes of time are modeled 

with an unstructured covariance matrix, that is, 𝒖𝒊~𝑁(𝟎,𝑮) and 𝑮 = [
𝜏0

2 𝜏01

𝜏01 𝜏1
2 ]. 

Model 2: Growth model with time-invariant predictors of the time effect. This model 

adds cross-level interaction terms to the previous model to allow for predictors of the effect of 

time on the outcome (i.e., the time slope or growth rate). In the reading example, the researcher 

would use this model to investigate the relative importance of student-level predictors and the 

interactions between student-level predictors and time on reading comprehension after accounting 
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for the (fixed and random) effect of time. This model is represented by the following growth model 

equations: 

Level 1: 𝑦𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑒𝑡𝑖            (19) 

Level 2: 𝛽0𝑖 = 𝛾00 + 𝛾01𝑤1𝑖 + 𝛾02𝑤2𝑖 + 𝛾03𝑤3𝑖 + 𝛾04𝑤4𝑖 + 𝑢0𝑖         

𝛽1𝑖 = 𝛾10 + 𝛾11𝑤1𝑖 + 𝛾12𝑤2𝑖 + 𝛾13𝑤3𝑖 + 𝛾14𝑤4𝑖 + 𝑢1𝑖        (20) 

Combined:   

𝑦𝑡𝑖 = 𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾0ℎ𝑤ℎ𝑖
4
ℎ=1 + ∑ 𝛾1ℎ𝑤ℎ𝑖𝑇𝑖𝑚𝑒𝑡𝑖

4
ℎ=1 + 𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 (21) 

This model includes level-2 (student-level) variables (whi) as predictors of both the random 

intercept and of the random slope of time, with the latter entering as cross-level interactions in the 

model.  The first four terms in the model are fixed components. The last three terms are the random 

components. The covariance structure for the random components is again modeled as 

unstructured. Since a cross-level interaction effect was added, the regression coefficients of the 

individual predictors are conditional effects and must be interpreted along with the interaction 

term. 

Model 3: Growth model with time-varying predictors. This model adds time-varying 

(level-1) predictors to model 1 to try and explain intra-individual variability in the outcome. In 

the hypothetical reading example, this model would be used to investigate the effect of the 

predictors that vary with time (e.g., social skills, number of books read, expressive vocabulary 

and verbal memory) on change in reading comprehension after accounting for the (fixed and 

random) effect of time and all other (i.e., student-level, time-invariant) predictors in the model. 

This model can be represented by the following equations:  
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Level 1: 𝑦𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝛽2𝑖𝑥1𝑡𝑖 + 𝛽3𝑖𝑥2𝑡𝑖 + 𝛽4𝑖𝑥3𝑡𝑖 + 𝛽5𝑖𝑥4𝑡𝑖 + 𝑒𝑡𝑖      (22) 

Level 2: 𝛽0𝑖 = 𝛾00 + 𝛾01𝑤1𝑖 + 𝛾02𝑤2𝑖 + 𝛾03𝑤3𝑖 + 𝛾04𝑤4𝑖 + 𝑢0𝑖         

𝛽1𝑖 = 𝛾10 + 𝑢1𝑖         

𝛽2𝑖 = 𝛾20;  𝛽3𝑖 = 𝛾30;  𝛽4𝑖 = 𝛾40;  𝛽5𝑖 = 𝛾50          (23) 

Combined:   

 𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + ∑ 𝛾𝑔0𝑥(𝑔−1)𝑡𝑖
5
𝑔=2 + ∑ 𝛾0ℎ𝑤ℎ𝑖

4
ℎ=1 + 𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑢0𝑖 + 𝑒𝑡𝑖 (24) 

 where the 𝑥1𝑡𝑖 , … , 𝑥4𝑡𝑖 variables represent the time-varying covariates and 𝛾20, … 𝛾50 their 

(fixed) effects on the outcome. Although the value of the time-varying predictors changes across 

time (i.e., the xti vary across time t and student i), the parameter value estimating the effect of these 

variables on the response variable (the 𝛾𝑔0) is assumed to be constant across time. 

In practice, when time-varying predictors are included in longitudinal models, some 

decisions regarding parametrization must be made. Here this model represents a parametrization 

using grand-mean centered predictors. Details on the issues of centering with time-varying 

predictors are discussed in the next section. 

Time-varying (TV) predictors 

Time-varying predictors can be modeled in different ways, resulting in different model 

parametrizations. The additional complexity in modeling TV predictors is due to the fact that these 

predictors are usually composed of two sources of variation, one within- and one between-subjects. 

Therefore, they are actually two variables, one representing the effect of the time-varying predictor 

on the outcome at a given time point for a given person, and another representing the average (over 

time) effect of that predictor on the outcome across all individuals (Hoffman & Stawski, 2009). 
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The different parametrizations allow for teasing out the different effects the TV predictor can have 

on the outcome. Let x be a time-varying predictor indexed by time t for student i. The simplest 

parametrization, and usually the incorrect one, is to just grand-mean center x and include it in the 

model at level 1 by itself; i.e., 𝐺𝑀𝐶𝑥𝑡𝑖 = 𝑥𝑡𝑖 − �̅�. This is problematic because the estimate of the 

effect of this variable conflates the effects of the variable at a specific occasion for a specific person 

with its effect across all subjects in the sample. The second and third options involve including a 

new time-invariant (level-2) variable formed by calculating the person-mean (PM) of the time-

varying predictor across time for person i. The new PM variable should be centered at the grand 

mean or another constant so that 0 is meaningful, just like any other predictor (i.e., 𝑃𝑀𝑥𝑖 = �̅�𝑖 −

𝐶, where C could be the grand mean of x). Alternatively, the third option transforms the time-

varying variable by person-mean centering it; that is, by subtracting the average value of that 

variable for the given person from it (𝑃𝑀𝐶𝑥𝑡𝑖 = 𝑥𝑡𝑖 − �̅�𝑖). The second parametrization allows the 

investigation of a contextual effect; that is, to find out if after controlling for the absolute value of 

the time-varying predictor at each occasion, there is still an incremental contribution from having 

a higher person mean of the TV predictor. The third parametrization allows investigation of the 

between-person and within-person effects of the time-varying predictors on the outcome 

separately, by looking at the significance of the fixed effects of each of these predictors. The 

different parametrizations will impact model estimates and interpretation if the within-person and 

between-person effects of the TV predictor are different, which is often the case in practice. In the 

simulation study, for the sake of simplicity, it is assumed that the between-person effects of the 

time-varying covariates are not substantially different than the within-person effects (i.e., there is 

no contextual effect) and therefore no additional person-mean variables are added, corresponding 

to the first parametrization described above. 
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Estimation methods and inference 

 Estimation for multilevel models is usually performed using Maximum Likelihood (ML) 

methods. These methods select as estimates of model parameters the set of values that maximize 

the likelihood function and produce standard errors for the estimates that can be used for 

significance testing (Singer & Willett, 2003; Hox, 2010). Two types of ML estimation are 

commonly implemented in software packages for multilevel analyses: Full Information Maximum 

Likelihood (FIML) and Residual (or Restricted) Maximum Likelihood (REML). The difference 

between these methods is that in FIML both the fixed and the random effects are included in the 

likelihood function while in REML only the variance components (i.e., random effects) are 

included. Both ML procedures produce a deviance statistic which indicates how well the model 

fits the data.  

The standard errors estimated by ML methods are used in Wald z and t-tests, where the test 

statistic is computed as the parameter estimate divided by its asymptotic standard error. The test 

statistic is compared to a standard normal distribution for the Wald z or a t-distribution for the t-

tests to determine p-values for the null hypothesis that the given parameter is zero in the 

population. The degrees of freedom (df) for t-tests depend on the level of the variable and how 

many variables are being tested. The Wald z is valid only for large samples because it relies on 

asymptotic standard errors. In general, deviance (likelihood ratio) tests are preferred for testing 

hypotheses about variance components (Singer & Willett, 2003; Snijders & Bosker, 2012).  

Deviance (or likelihood ratio) tests can also be used to test the difference in fit between 

nested models using the difference between the deviance statistics of two models as the test statistic 

and comparing this value to a 𝜒2 distribution with the appropriate degrees of freedom. For testing 

random components, since the null hypothesis is on the boundary of the parameter space, the 
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likelihood ratio test does not have the usual large sample 𝜒2 distribution. In this case, a mixture 

𝜒2 distribution should be used (Self & Liang, 1987). For deviance tests of fixed effects, FIML 

estimation should be used to obtain the deviance statistic since REML does not include the fixed 

regression coefficients in the likelihood function. For tests of random effects where the fixed 

effects are the same, either REML or FIML can be used.  The models in this study were estimated 

using the FIML method since dominance analysis is used here to compare the additional 

contribution of predictors with fixed effects only. 

Missing data in longitudinal studies 

 In longitudinal studies each subject is measured at a series of time points. It is often the 

case that some subjects are not measured at every time point or do not have measurements on all 

variables for various reasons, such as missing one or more measurement occasions, dropping out 

of a study or failing to answer questions in a test or questionnaire. All of these scenarios produce 

a situation where the researcher must deal with missing data. The mechanism underlying the 

tendency of data to be missing, or their “missingness”, has important implications to the analysis 

since modeling incomplete data appropriately depends on the assumptions about these 

mechanisms. Rubin (1976) introduced the terms that are commonly used to describe the missing 

data mechanisms: missing completely at random (MCAR), missing at random (MAR) and missing 

not at random (MNAR).  

MCAR occurs when missingness is not related to the observed or unobserved outcomes or 

covariates; that is, the missing values are just a random subset of the complete data. MCAR is the 

most restrictive assumption regarding the missing data mechanism. A less restrictive case of 

MCAR is the covariate-dependent MCAR (Little, 1995), where missingness may depend on 

observed covariates but not on the observed outcome.  
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MAR occurs when missingness depends only on the observed outcomes and covariates and 

not on the unobserved (missing) data. For example, a subject might drop out of a study because 

the symptoms being measured got much better or much worse in the previous measurement. In 

this case missingness is random conditional on the observed characteristics of the sample data. 

This is a less restrictive and therefore more realistic assumption regarding the missing data 

mechanism than MCAR, but now adjustments must be made because observed responses are no 

longer a random sample. 

Lastly, MNAR occurs when missingness depends on the unobserved data; that is, the 

failure to observe a value depends on the value of either the outcome or covariates that would have 

been observed. This is the least restrictive but also the most problematic missing data mechanism 

from the perspective of statistical analysis.  

In terms of model estimation, the missing data mechanisms can be divided into ignorable 

(MCAR and MAR) and non-ignorable (MNAR) missingness (Laird, 1988). Multilevel models for 

longitudinal data with maximum likelihood estimation have been shown to provide valid 

inferences in the case of ignorable missingness (MCAR or MAR) without the need to explicitly 

model the missing data mechanism (Laird, 1988). However, if missingness is non-ignorable, valid 

inferences require specifying either the correct model for the missing data mechanism or the 

distributional assumptions for the response variable, or both, and estimators and tests are usually 

sensitive to these assumptions (Ibrahim & Molenberghs, 2009). For this dissertation, the 

assumption is that any missing data are at least MAR and therefore can be handled seamlessly 

through multilevel estimation procedures without the need to specify the missing data mechanism. 

This is a reasonable assumption commonly made in practice (Collins, Schafer & Kam, 2001; 

Wang, Fisher, & Xie, 2011).  
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Predictor Importance Methods  

Multilevel models are tools to investigate the relationship between a set of predictors and 

an outcome variable when the observations are not independent due to clustering. In general, when 

selecting the appropriate model for the data, researchers have two main goals: explanation and 

prediction (Pedhazur, 1997). If focus is on prediction, the researcher is interested in finding a set 

of predictors that will account for the highest amount of variability in the outcome. When the goal 

is explanation, it is of interest to identify the correct model responsible for the outcome and theory 

or prior research should be used to determine the best model. In the prediction framework, it 

matters less which specific predictors are included and their coefficients are not of primary interest; 

so, while theory can and should guide model selection, the variables might be interchangeable if 

they produce the same model fit. In the explanation framework, the focus is on finding the specific 

model responsible for producing (i.e., explaining) the outcome, so the predictors and their 

coefficient values need to be specified correctly and are of primary interest. Regardless of the 

approach, but perhaps more applicable for prediction purposes, after a model is selected the focus 

shifts to evaluating the relationships between specific predictors and the outcome, and the issue of 

the relative importance of predictors becomes relevant. Researchers and analysts are usually 

interested in knowing which predictors among the set of explanatory variables in the chosen model 

have the highest impact on, or the strongest relationship with, the outcome. One might think this 

question has simple answers, but that is not the case when the predictors are correlated with each 

other, and the clustering of observations in multilevel data makes the determination of importance 

even more complicated. The complexity of devising a method (and measure) to clearly determine 

which predictor is more important than another in a linear model with several predictors comes 
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not only from the fact that, in most cases, predictors show some degree of correlation between 

them, but also from a lack of agreement on what is meant by “importance”.  

The problem with correlated predictors, or multicollinearity, is that the effect of a given 

predictor on the outcome will vary with values of the other predictors, so separating the effects of 

individual predictors is difficult. Furthermore, assessing the effect of a predictor that is added to a 

model depends on the set of predictors already in the model. If predictors are uncorrelated, relative 

importance is usually easy to determine using either standardized coefficients or simple bivariate 

correlations. However, because multilevel data violates the independence assumption, calculating 

simple bivariate correlations and standardized coefficients is not so straightforward. In multilevel 

data some level of correlation is usually always present due to the nested nature of the data. 

Observations in the same group, or, in the case of longitudinal data, measurements from the same 

person, will naturally be more similar than observations from different groups/persons.  There is 

an extensive literature on predictor importance for linear regression models, but even for these 

simpler models there is no consensus on a generally accepted measure. In the multilevel modeling 

literature there is still little discussion on the issue of relative importance. Following is a review of 

some methods that have been proposed for measuring relative importance of variables in linear 

(ordinary least squares) regression models that might be applicable to multilevel models. 

Zero-order correlation (r) 

 The zero-order correlation or bivariate correlation is one of the most basic measures of 

variable importance.  For any given predictor, x, the zero-order (simple, bivariate) correlation with 

y is  

 𝑟𝑦,𝑥 =
𝑐𝑜𝑣(𝑦,𝑥)

𝑠𝑑(𝑦)𝑠𝑑(𝑥) 
 (25) 
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where 𝑐𝑜𝑣(𝑦, 𝑥) is the covariance between y and x, 𝑠𝑑(𝑥) is the standard deviation of y and 𝑠𝑑(𝑥) 

is the standard deviation of x. This measure is appropriate only if one is interested in the isolated 

relationship between a predictor and the outcome, not accounting for any of the other predictors 

in the model. Comparing zero-order correlations will not provide a complete picture of the relative 

importance of a predictor variable in the presence of others if the predictors are correlated.  

Standardized regression coefficients 

Estimation of the relationship between the outcome and predictors included in a model 

produces (unstandardized) regression coefficients, which inform researchers as to the incremental 

or partial predictive power of each predictor in the model. Specifically, unstandardized regression 

coefficients represent the mean change in the outcome variable (y) for one single raw unit of 

change in the predictor variable (e.g., X1) while holding the other p-1 predictors (e.g., X2,…,Xp) 

in the model constant. Standardized regression coefficients (β coefficients, beta weights) represent 

the change in standard deviation units (i.e., the mean change in standard deviation units of the 

outcome variable) for one standard deviation unit of change in the predictor variable, while holding 

the other predictors constant. The use of standardized coefficients ignores the predictors’ (and 

outcome’s) scale of units, making comparisons between coefficients more straightforward. When 

predictors are perfectly uncorrelated, each predictor’s β weight equals each predictor’s zero-order 

correlation with the criterion variable (r, discussed above). In multilevel models, however, 

standardizing the coefficients is not straightforward because there might be two or more levels and 

separate sets of variables that account for variance at each level. Thus, it is not clear whether a 

variable should be standardized with respect to the standard deviation of the outcome at the lowest 

or higher levels. The issue is even less clear in growth models where one must decide on a specific 
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occasion to use for calculating the variance since there might be different variance estimates at 

each occasion.  

Pratt index (product measure) 

A measure introduced by Hoffman (1960) and later justified by Pratt (1987), the Pratt index 

(called the “product measure” by Bring, 1996, or “Pratt’s measure” by Thomas, Hughes, and 

Zumbo, 1998) assigns importance to an explanatory variable j in proportion to the product of its 

standardized regression coefficient (βj) and its zero-order correlation (rj) with the outcome 

variable. In multiple regression, the model explained variance (R²) can be expressed as R² = Σjβjrj, 

which can be partitioned by computing the Pratt index dj as: 

 𝑑𝑗 =
𝛽𝑗×𝑟𝑗

𝑅2  (26) 

Recently, Liu, Zumbo, and Wu (2014) demonstrated the use of Pratt’s measure to 

determine the relative importance of predictors in multilevel models with a random intercept, fit 

using a structural equation modeling (SEM) framework. The authors use the purported ability of 

SEM to partition the variance of a random-intercept-only multilevel model into orthogonal within 

and between covariance components to obtain the correlations and total explained variances 

needed to calculate the Pratt index. The main criticism of the Pratt measure is that it can produce 

negative values for variables in the model, rendering it an inappropriate metric of predictor relative 

importance (Bring, 1996; Johnson & LeBreton, 2004; Gromping, 2007, 2015). It is not clear if the 

same problem occurs in the extension of the Pratt measure to multilevel models proposed by Liu 

et al. (2014).  
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Akaike weights 

A widely used information-theoretic approach for model selection in the biological 

sciences, Akaike weights (AW; Burnham & Anderson, 2002) can also be used to form a measure 

of the relative importance of a variable based on the model’s Akaike information criterion (AIC; 

Akaike, 1973). In order to obtain the model’s AW, the researcher must first determine a set of M 

candidate models that could be fit to the data, usually based on theoretical grounds. Then, for each 

model, a difference measure called delta AIC is calculated as: 

 ∆𝐴𝐼𝐶𝑖 =  𝐴𝐼𝐶𝑖 –  𝑚𝑖𝑛(𝐴𝐼𝐶)  (27) 

where AICi is the AIC value for model i, and min(AIC) is the AIC value of the “best” model 

out of the set (i.e., the model with the smallest AIC). The weights are then calculated as the 

proportion of a given model’s ∆AIC to the sum of delta AICs from all models in the set using an 

exponential scale transformation. The Akaike weight for model i in a set of M candidate models is 

given by:  

 𝐴𝑘𝑎𝑖𝑘𝑒 𝑤𝑖 =
exp (− 

ΔAIC𝑖
2

)

∑ exp (− 
ΔAIC𝑚

2
)𝑀

𝑚=1

 (28) 

A measure of the relative importance of a predictor variable x can then be formed by 

summing the Akaike wi of models including x and comparing it to the same sum for other 

predictors. It is important to note that the weight of each variable is determined by the number of 

models in which the variable appears, in addition to the weight of those models. Therefore, the set 

of candidate models containing each variable must be balanced; that is, all variables should appear 

the same number of times across the set of candidate models in order to make sensible predictor 

importance comparisons based on Akaike weights (Burnham & Anderson, 2002). One way to 

accomplish this would be to include all subset models of the “full” model. 
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Dominance Analysis (DA) 

 Dominance analysis, the method that is the focus of this study, determines the relative 

importance of explanatory variables in a statistical model based on the additional contribution of 

each predictor to an overall model fit statistic across all subset models. We discuss DA in more 

detail in the next section.  

Other measures  

There are many other measures suggested in the literature to quantify predictor relative 

importance based on different approaches for estimating linear models, but most of these have not 

been extended to multilevel models. In linear regression, the relative weights measure proposed 

by J.W. Johnson (2000) is usually compared to dominance analysis as a measure of relative 

importance of predictors in the context of multiple correlated predictors. J.W. Johnson (2000) and 

others (Johnson & LeBreton, 2004; Gromping, 2015) argue that the relative weights method 

produce similar results to the dominance analysis general dominance weights but is much less 

computationally intensive. However, Thomas, Zumbo, Kwan, and Schweitzer (2014) showed that 

the method used to derive Johnson’s relative weights measure is theoretically flawed and 

recommend that it no longer be used. In any case, this measure has not yet been extended to 

multilevel models.  

In the Bayesian framework, Bayesian Model Averaging (BMA) has been proposed as a 

measure on relative importance (Shou & Smithson, 2015). Soofi and colleagues (e.g., Soofi, 1994; 

Soofi, Retzer, & Yasai-Ardekani, 2000; Retzer, Soofi & Soyer, 2009) used information theory to 

define importance in terms of the information provided by a predictor for reducing the uncertainty 

in predicting the outcome, and provide a formal justification and generalization of the “averaging 

over all orderings” procedure based on the maximum entropy (ME) principle, where importance 
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measures are provided for categorical and continuous predictors in a unified manner. In the field 

of machine learning, methods such as random forests offer variable importance measures such as 

decrease in node impurity (i.e., Gini) for categorical outcomes and permutation-based mean square 

error reduction for continuous responses (Gromping, 2009, 2015). None of these measures, 

however, seem to have been extended to applications with multilevel data. 

Summary of predictor importance measures 

Critics of variable importance research usually say that these are atheoretical techniques 

that do not provide valuable information (Ehrenberg, 1990; Stufken, 1992; Christensen, 1992). 

Conversely, the view taken here is that we use statistical methods to gain insight into real world 

phenomena. The models we use, as the aphorism goes, are useful at best. Variable importance 

analysis is one tool in a researcher’s toolkit that allows for a greater understanding of the process 

that might have generated the data and helps answer many questions related to the most relevant 

factors affecting an outcome (Kruskal, 1984).  

The general purpose of relative importance analysis is to uncover the contributions of 

multiple predictors relative to each other (i.e., in relation with or compared to each other) within a 

selected model (Azen & Budescu, 2003). The (mis)use of significance testing for quantification of 

relative importance has been a widespread issue for decades (Kruskal & Majors, 1989). The use 

of raw or standardized regression coefficients for determining predictor importance is commonly 

found in the literature when one searches for “predictor importance” or “relative importance”, 

despite the fact that the former is known to have an importance-irrelevant association with the 

scale of the predictor, and that both are misleading when predictors are correlated. When the 

concept of importance is understood in terms of a predictor’s direct, total, and partial effects, 

dominance analysis is without match and has been generally recommended as the preferred method 
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for relative importance analysis (Gromping, 2015; LeBreton et al., 2004; Tonidandel & LeBreton, 

2011). Next a more detailed description of dominance analysis is presented. 

 

Dominance Analysis 

Dominance Analysis was originally proposed by Budescu (1993) and refined by Azen and 

Budescu (2003) as a method to qualitatively and quantitatively determine the relative importance 

of predictors in a linear regression model. In this framework, relative importance is measured in 

terms of the predictor’s additional contribution to R² in all subsets of a given model of interest. 

Predictors are compared in a pairwise manner based on a common subset reference model, and 

this is performed across all possible subset models. Hierarchical levels of dominance are 

established depending on the pattern of dominance: complete dominance, conditional dominance, 

or general dominance.  

Due to the ambiguous definition of variable “importance”, Budescu (1993) proposed three 

criteria for a method designed to measure relative importance: (1) the importance of a predictor 

should be related to its contribution to reducing the prediction error, or, equivalently, to the total 

explained variance, in the outcome (as this is the most intuitive interpretation of importance in a 

social sciences context); (2) the method should provide a clear way to directly compare the relative 

importance of predictors so that one can distinguish situations when there is a meaningful 

difference in the importance of two predictors from situations where this difference cannot be 

defined or is not meaningful; and (3) the measure of relative importance should provide 

information of a predictor’s contribution at multiple levels: direct, total, and partial. Budescu 

(1993) then proposed Dominance Analysis as a methodology that satisfied all of these criteria.  
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The appeal of dominance analysis (DA) is that it provides an intuitive and meaningful 

definition of importance. Additionally, DA can be performed using any appropriate measure of 

model fit, which makes it easily extendable to other models. Indeed, so far DA has been 

successfully extended to a variety of statistical models such as multivariate regression (Azen & 

Budescu, 2006), logistic regression models (Azen & Traxel, 2009), canonical correlation analysis 

(Huo & Budescu, 2009), hierarchical linear models (Luo & Azen, 2013), models with 

multicategory dependent variables (Luchman, 2014), and beta general linear models (Shou & 

Smithson, 2015). This study proposes extending DA to multilevel models for longitudinal data.  

Next, I follow the explanation provided by Azen (2013) with notation found in Shou and 

Smithson (2015) to describe how to carry out dominance analysis for a generic linear model with 

p predictors using a measure of model fit that denoted Ƒ (e.g., this would be R² in multiple 

regression). DA uses the “all subset models” approach in which each possible combination of the 

predictors from the (full) model is considered as a subset model, and the measure of fit (Ƒ) is 

recorded for each model. For p explanatory variables, the number of possible subset models is 2p. 

Also, a subset model has size k if k predictors are included in the model. Therefore, there will be 

a number (
𝑝
𝑘
) =

𝑝!

𝑘!(𝑝−𝑘)!
 of models of size k. For example, with a total of p = 4 predictors, X1, X2, 

X3, and X4, 2
p = 24 = 16 subset models would need to be estimated, specifically: 

- k = 0 → (
4
0
) = 1 null/empty model; 

- k = 1 → (
4
1
) = 4 models with 1 predictor: [X1], [X2], [X3], [X4];  

- k = 2 → (
4
2
) = 6 models with 2 predictors: [X1X2], [X1X3], [X1X4], [X2X3], [X2X4], 

[X3X4];  
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- k = 3 → (
4
3
) = 4 models with 3 predictors: [X1X2X3], [X1X2X4], [X1X3X4], 

[X2X3X4]; and 

- k = 4 → (
4
4
) = 1 full model with all 4 predictors: [X1X2X3X4];  

  The incremental contribution a predictor makes to a subset model, ΔƑ, is defined as the 

difference between the value of the measure of fit (Ƒ) for a model that includes the predictor and 

Ƒ for the same model excluding the predictor. For example, the additional contribution that X1 

makes to model [X2X3] is computed as: 

 ΔƑ [X1|X2X3]  =  Ƒ[X1X2X3]  −  Ƒ[X2X3]  (29) 

In general, let X be a set of p predictors where each predictor, Xi, is compared in a pairwise 

fashion with each other predictor, Xj (where 𝑖, 𝑗 = 1, … , 𝑝 − 1 and i ≠ j), in terms of their additional 

contribution to the measure of fit Ƒ. Also, let Ƒq be the fit value for model Mq that does not include 

Xi, where q = model 1, 2 ,…, 2p and ΔƑiq is the change in Ƒq when Xi is added to Mq.  

If Xi contributes more than Xj to all models Mq that do not include both Xi and Xj, then 

complete dominance between Xi and Xj can be established. Even if complete dominance cannot 

be established, the additional contributions of the predictors can be averaged in different ways to 

produce what Azen and Budescu (2003) called conditional and general dominance. 

Conditional dominance is determined by first calculating the measure ΔƑ̅̅̅̅
𝑖𝑞|𝑘 for predictor 

Xi by averaging its additional contribution to subset models of a given model size k: 

 ΔƑ̅̅̅̅
𝑖𝑞|𝑘 =

∑ΔƑ𝑖𝑞|𝑘

(
𝑝
𝑘
)

 (30) 
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where k ≤ p denotes the number of predictors in the subset model (model size) and (
𝑝
𝑘
) is 

the number of models of size k. Conditional dominance of Xi over Xj is then measured by the 

difference between their conditional measures at each model size. If the average additional 

contribution of Xi is larger than the average additional contribution of Xj for all model sizes (i.e., 

all k), then conditional dominance is established. If conditional dominance cannot be established, 

further averaging can be performed to try and establish a weaker level of dominance, general 

dominance. 

The general dominance measure associated with Xi, Gi, is an average of all conditional 

contributions over all model sizes: 

 𝐺𝑖 =
∑ ΔƑ̅̅̅̅ 𝑖𝑞|𝑘

𝑝
𝑘=1

𝑝
 (31) 

The general dominance relationship of Xi over Xj is defined as the difference between their 

general dominance measures:  

 𝐺𝑖𝑗 = 𝐺𝑖 − 𝐺𝑗 (32) 

The general dominance measure for Xi therefore measures the mean difference (across all 

model sizes) between the fit of models that include Xi and the fit of the models (of the same sizes) 

that do not include Xi.  

The quantitative measure 𝐺𝑖𝑗 can also be used to define a qualitative measure of general 

dominance between Xi and Xj: 

𝐷𝑖𝑗 = {

  1, if G𝑖𝑗  >  0 (X𝑖 generally dominates X𝑗)

−1, if G𝑖𝑗 <  0 (X𝑗  generally dominates X𝑖) 

                                 0, if G𝑖𝑗 =  0 (general dominance cannot be established)
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Complete or conditional dominance between Xi and Xj can similarly be defined by a 

categorical variable (Dij), but this study focuses on general dominance. Note that it is simpler to 

evaluate dominance at the general level because only one comparison is required to determine 

general dominance (the overall averaged contributions) for each predictor pair. Complete and 

conditional dominance can only be established if multiple comparisons (across all models or across 

all models of different sizes) all consistently point in the same direction (i.e., favor the same 

predictor over another). 

Even though general dominance is the weakest of the three levels of dominance, it 

possesses some nice qualities that make it an attractive measure to use for evaluating relative 

importance. It is easy to compute, requiring only one comparison for each pair of predictors, the 

values Gi for each predictor in the model add up to the full model’s measure of fit Ƒ providing a 

simple “decomposition” of the overall model fit, and it can be established in most cases since it is 

unlikely that two predictors will have exactly the same values (i.e., overall average) in a given data 

set (Azen, 2013; Luo & Azen, 2013). Despite its nice properties, Azen (2013) recommends that 

one should not rely only on the general dominance measure to determine relative importance. 

Conditional and complete dominance should also be computed and reported if they can be 

established since they provide stronger evidence for relative importance and might also offer other 

insight into the relationships among the predictors. 

 

 

Constrained DA 

 Dominance Analysis can be extended to evaluate the relative importance of predictors in 

situations where some predictors must always be included in the model. Constrained dominance 
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analysis can be performed in cases, for example, where a set of predictors need to be included in 

the model for statistical control or because they are theoretically essential for predicting the 

outcome (thus excluding them in a subset model might render the model meaningless). The 

constrained dominance analysis, as described in Azen & Budescu (2003), is performed by 

comparing the additional contributions of the predictors of interest only to subset models that 

contain the essential or mandatory predictors. Subset models that do not contain those required 

predictors are not evaluated. This feature of DA is employed in this study to evaluate the additional 

contributions of interactions between predictors. In situations where there is an interaction of two 

or more predictors, it does not make sense to evaluate the additional contribution of the interaction 

when the corresponding main effects are not present in the model. Therefore, constrained DA is 

used to evaluate the interactions while controlling for the predictor main effects. 

Inference 

 Inferential procedures for DA is an area that still needs further research. Even in the well-

known case of DA for multiple regression using R² as a measure of fit, clear inferential procedures 

have not yet been put forth that unambiguously answer questions of whether dominance 

relationships are statistically significant (Azen, 2013). Azen & Sass (2008) investigated the power 

of the asymptotic method for comparing the additional contribution of a predictor to a model’s R² 

and found that the procedure demands very high sample sizes to achieve adequate power. Tang 

(2014) looked at both asymptotic and bootstrap-based confidence intervals for making inference 

about the differences between general dominance measures and found that the asymptotic and 

percentile bootstrap confidence intervals seem adequate when the effect size and sample size are 

large enough. Azen and Traxel (2009) found that the bootstrap confidence interval does not have 

enough power to detect a nonzero degree of general dominance in logistic regression and stated 
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the need for more research on inferential procedures for hypothesis testing purposes and sample 

size recommendations.  

 A different approach to investigate the stability and generalization of the qualitative 

dominance relationships, called reproducibility, was proposed by Azen and Budescu (2003) for 

multiple regression and used successfully in several extensions of the procedure to other statistical 

methods (e.g., Azen & Traxel, 2009; Azen & Budescu, 2006). Reproducibility is determined 

through the use of the bootstrap procedure to simulate the process of random sampling. The 

original sample data set is resampled with replacement a large number of times, B, to create 

bootstrap samples of the same size as the original sample. DA is then performed for each bootstrap 

sample and the qualitative measures of dominance are recorded. The reproducibility measure is 

computed as the proportion of bootstrap samples that match (i.e., reproduce) the dominance pattern 

observed in the original sample. This measure can also be reported as a percentage, and indicates 

the estimated probability that the dominance relationship observed in the sample might also be 

true in the population. The higher the reproducibility rates, the more confident one can be that the 

observed dominance relationships are also present in the population. Even though there is no clear 

threshold for the reproducibility values, Azen (2013) reported results from previous studies 

suggesting that a minimum reproducibility of 70% might be needed to provide a reasonable level 

of confidence that the dominance relationships detected in the sample are a reflection of the 

population values.  

 In this study the bootstrap procedure is used to construct confidence intervals and to 

calculate the reproducibility of the general dominance difference measures. For inference, 

asymptotic and bootstrap confidence intervals are calculated to determine the statistical 

significance of the difference in general dominance measures. This study should thus provide more 
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insight into the sampling characteristics of the general dominance difference measure and the 

behavior of confidence intervals for hypothesis testing with these measures. Inferential procedures 

using the bootstrap method are further described in last section of this chapter. 

Summary of Dominance Analysis 

In reviews of measures of relative importance, dominance analysis is generally considered 

a theoretically sound and encompassing approach for determining relative importance and is 

consistently among the recommended methods unless computation time is prohibitive (Gromping, 

2015; LeBreton, Ployhart, & Ladd, 2004; Thomas, Zumbo, Kwan & Schweitzer, 2014). Therefore, 

this study considers extending DA for use in longitudinal models under the multilevel framework. 

It must be noted that the “all subsets” approach of calculating a predictor’s contribution to 

R² had been used by several other researchers (Lindeman, Merenda, & Gold, 1980; Kruskal, 1987; 

Theil & Chung, 1988; Chevan & Sutherland, 1991; Lipovetsky & Conklin, 2001). However, these 

methods looked mainly at the average contributions over all orderings, equivalent to the general 

dominance measure in DA. Therefore, none of the other methods provide all the relative 

importance measures, and corresponding insight, offered by DA. Gromping (2007, 2015) provides 

a summary of these related methods. 

Dominance analysis needs only a measure of model fit to determine the additional 

contribution of a predictor to a subset model (Azen & Budescu, 2003; Azen & Traxel, 2009). In 

linear regression models, the R2 value not only provides an absolute value for the goodness-of-fit 

of the model, but is also a summary statistic that describes the proportion of the total variance in 

the outcome explained by the model. However, in multilevel models there is no single definition 

of R2 because variance explained can be defined at different levels of the model. Therefore, to 
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extend dominance analysis to these models, it is necessary to define what a predictor’s additional 

contribution to the prediction model means in these settings and how to measure this contribution. 

The next section presents a review of measures of fit that have been proposed in the multilevel 

model literature and could be used for dominance analysis. 

 

Measures of Fit for Multilevel Models  

The main requirement for the use of DA with any statistical model is a measure of model 

fit that allows the determination of the additional contribution of a given predictor to any subset 

model of interest (Azen & Traxel, 2009; Luo & Azen, 2013). Therefore, for this study, the selection 

of such a measure is critical to the extension of DA to multilevel models.  

Multilevel models present challenges in measuring model fit due to the multiple sources of 

unexplained variation. Therefore, the concept of explained variance in multilevel models, in the 

sense of what R² represents for the single-level case, is not clear-cut. Several measures have been 

proposed as proxies for explained variance in multilevel models but they each come with caveats. 

Some of the measures of model fit that seem more promising for use with dominance analysis will 

be discussed in this section. 

 The following criteria are typically applied for defining appropriate R² analogues 

(Kvalseth, 1985; Van den Burg & Lewis, 1988, Azen & Traxel, 2009; Azen & Budescu, 2006) 

and will also be used here: 

• Boundedness: The measure should vary between a minimum of zero, indicating 

complete lack of fit, and a maximum of one, indicating perfect fit.  
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• Linear invariance: The measure should be invariant to non-singular linear 

transformations of the variables (Y’s and X’s). 

• Monotonicity: The measure should not decrease with the addition of a predictor. 

• Intuitive interpretability: The measure of fit is intuitively interpretable, in that it agrees 

with the scale of the linear case for intermediate values (between 0 and 1). 

Model fit measures for multilevel models, to be discussed next, may be categorized into 

three groups: the first group includes measures based on the idea of variance explained, similar to 

R² in linear regression; the second group comprises measures based on the likelihood ratio, similar 

to some pseudo-R² measures proposed for logistic regression; and the third group represents 

information criteria measures (e.g., AIC and BIC) commonly used for model selection.  

Explained variance measures 

Because DA was originally developed using R², a natural starting point is to look at R² 

equivalent measures for multilevel models. A survey of the literature makes it clear, however, that 

extending R² from linear models to multilevel models is not straightforward (Snijders & Bosker, 

1994; Steele, 2013; Nakagawa & Schielzeth, 2013).  

One of the earliest measures of variance-explained in multilevel models was proposed by 

Raudenbush and Bryk (1986, 2002). Their approach computes separate R² statistics for each 

variance component and the measure is defined as the reduction in variance resulting from adding 

fixed effect predictors to an “empty”, intercept-only, model. For the growth curve models studied 

here, the R² measures corresponding to the level-1 residual variance, and level-2 random intercept 

and random slope variance components, are defined, respectively, as:  

 𝑅&𝐵 𝑅1
2 = PCV(𝜎2) = 1 −

𝜎2

𝜎(𝑛𝑢𝑙𝑙)
2  (33) 
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 𝑅&𝐵 𝑅2
2(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) = PCV(𝑢0𝑖) = 1 −

𝜏0
2

𝜏0(𝑛𝑢𝑙𝑙)
2  (34) 

 𝑅&𝐵 𝑅2
2(𝑠𝑙𝑜𝑝𝑒) = PCV(𝑢1𝑖) = 1 −

𝜏1
2

𝜏1(𝑛𝑢𝑙𝑙)
2  (35) 

 where 𝜎(𝑛𝑢𝑙𝑙)
2  is the level-1 variance, and 𝜏0(𝑛𝑢𝑙𝑙)

2  and 𝜏1(𝑛𝑢𝑙𝑙)
2  are the level-2 intercept and 

slopes variance components, respectively, from the unconditional growth model (which includes 

the random intercept and a random slope for time but no covariates); similarly, 𝜎2 is the level-1, 

and 𝜏0
2 and 𝜏1

2 are the level-2, variance components from the model of interest. One advantage of 

these measures is that they can be computed for models with any number of hierarchical levels 

since they look at individual variance components separately. Additionally, Nakagawa and 

Schielzeth (2013) recommend reporting these measures, which they refer to as proportion change 

in variance (PCV), along with other more general R² measures, because PCV allows researchers 

to evaluate specific changes to variance components (random effects and residual variance) at 

different levels that may result from including specific predictors at each level. However, as 

pointed out by Snijders and Bosker (1994), these measures can decrease or take on negative values 

when predictors are added at other levels of the model because, for example, adding fixed effects 

at level-2 may reduce the variance estimate for one component (e.g., the residual variance) while 

increasing variance for another (e.g., the random intercept) at the same time. 

In order to address the issues of negative R² arising from looking at reduction in specific 

variance components, Snijders and Bosker (1994) proposed different R² measures for each level 

of the model, in the context of two-level random intercept models, which they named 𝑅1
2 and 𝑅2

2. 

These measures look at the proportional reduction in total error of prediction at each level of the 

model as an estimate of the variance explained at the given level. For level 1, this measure is 

defined as: 
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 𝑆&𝐵 𝑅1
2 =

var(𝑦𝑖𝑗−�̂�𝑖𝑗)

var(𝑦𝑖𝑗)
=

𝜎2+𝜏2

𝜎0
2+𝜏0

2 (36) 

where 𝑅1
2 is the variance explained at level 1 (i.e., the variance among level-1 observations 

or units, or within-individual variance in longitudinal models). For longitudinal models, 𝑦𝑖𝑗 is the 

ith response of the jth individual, �̂�𝑖𝑗 is the ith predicted value for the jth individual, 𝜎2 is the level-

1 residual variance and 𝜏2 is the level-2 variance (i.e., random intercept variance) in the model of 

interest, and 𝜎0
2 and 𝜏0

2 are the level-1 and level-2 variances in the null model, respectively.  

The variance explained at level 2, 𝑅2
2, is defined as reduction in error in predicting 

individual (level-2) mean values and can be written as: 

 𝑆&𝐵 𝑅2
2 =

var(�̅�𝑗−�̂�𝑗)

var(�̅�𝑗)
=

𝜎2

𝑛∗+𝜏2

𝜎0
2

𝑛∗+𝜏0
2
 (37) 

where 𝑛∗ =
𝑀

∑
1

𝑛𝑖

𝑀
𝑖=1

 is the cluster size, which in an unbalanced design is the harmonic mean 

of the number ni of level-1 units in each of the M subjects.  

Snijders and Bosker’s (S&B) R² measures offer the advantage of being able to measure the 

amount of additional variance explained in both level-1 (observation or time level) and level-2 

(person level) when a predictor is added to this type of model. However, these measures might still 

decrease with the addition of a fixed predictor in larger models. Snijders and Bosker (2012) claim 

that decreases in R² estimates indicate misspecification of the model and can therefore be used as 

a diagnostic tool. However, Nakagawa and Schielzeth (2013) argue that misspecification is not 

necessarily the cause of an increase in the amount of unexplained variance in a model. Another 

criticism of the S&B R² measures, made by Nakagawa and Schielzeth, is that extending these 

measures to more than two levels is not clear, and that even though Gelman and Pardoe (2006) 
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proposed a solution so that an arbitrary number of levels could be modeled using these measures, 

the implementation is technically complex and therefore not readily accessible to applied 

researchers. 

The lack of a widely accepted statistic that can summarize how well multilevel models fit 

the data prompted Nakagawa and Schielzeth (2013) to propose what they call a “general and 

simple method” for calculating two types of R2 for both linear and generalized multilevel models 

(referred to as linear and generalized linear mixed models by the authors). The authors suggest that 

these two R2 statistics, named marginal and conditional R², can provide measures of variance-

explained that are less susceptible to the problems with previously proposed R² measures for 

mixed-effect models, such as negative values, and are easy to compute using standard statistical 

software. The marginal R2 (𝑅𝐺𝐿𝑀𝑀(𝑚)

2 ) is the variance explained by the fixed effects as a proportion 

of the sum of all the variance components. The conditional R2 (𝑅𝐺𝐿𝑀𝑀(𝑐)

2 ) estimates the variance 

explained by both fixed and random factors as a proportion of the total variance. Initially proposed 

for random-intercept models only, these measures have been extended to random-slopes models 

by P.C. Johnson, (2014).  

Formally, the original random-intercept marginal and conditional R² statistics for linear 

mixed models presented by Nakagawa and Schielzeth (2013) were defined as: 

 𝑅𝐺𝐿𝑀𝑀(𝑚)
2 =

𝜎𝑓
2

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1 +𝜎𝜀

2 (38) 

 𝑅𝐺𝐿𝑀𝑀(𝑐)
2 =

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1 +𝜎𝜀

2 (39) 

where 𝜎𝑓
2 is the variance explained by the fixed effects component, 𝜎𝑙

2 is the variance of 

the lth term of the u random effects, and 𝜎𝜀
2 is the residual (level-1) variance. For generalized 
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multilevel models, the residual variance is defined on the latent (link) scale as being composed of: 

(i) multiplicative dispersion (ω), (ii) additive overdispersion variance (𝜎𝑒
2), and (iii) distribution 

specific variance (𝜎𝑑
2). For binomial and Poisson distributions in particular, 𝜎𝜀

2 is defined as 𝜎𝑒
2 +

𝜎𝑑
2. P.C. Johnson (2014) extended this definition to random-slope GLMM by deriving a general 

formula for the mean random effect variance: 

 𝜎𝑙
2 = Tr(𝒁𝚺𝒁′)/𝑛 (40) 

where Z is the design matrix of the random effects of a model with n rows and k columns 

corresponding to k random effects, Σ is the covariance matrix of the k random effects, and Tr 

denotes the trace operation (summing the main diagonal elements). Most recently, Nakagawa, 

Johnson, and Schielzeth (2017) expanded their proposed version of R² to all other non-Gaussian 

distributions, with special emphasis on negative binomial and gamma distributions, by deriving 

the observation-level variance 𝜎𝜀
2 using three different methods: the delta method, a lognormal 

approximation, and the trigamma function. The authors indicated that their proposed R² framework 

could also be used for derivation of semi-partial R² by using commonality analysis (Nakagawa et 

al., 2017). 

Edwards, Muller, Wolfinger, Qaqish, and Schabenberger (2008) introduced an R² statistic 

based on the F-statistic for a Wald test of fixed effects, which they called 𝑅𝛽
2, as a measure of 

multivariate association between the outcome of interest and the fixed effects. Edwards et al. 

(2008) posit that, given a model of interest and a null model with only a random intercept and no 

covariates, the linear mixed model F statistic corresponds to a test of the null hypothesis: 

𝐻0: 𝑪𝜷 = 𝟎 𝑓𝑜𝑟 𝑪 = [𝟎(𝑞−1)×1𝑰𝑞−1] ≡ 𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑞−1 = 0 
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where 𝑞 − 1 is the numerator degrees of freedom for full rank C. The model F statistic is 

then given by: 

 𝐹(�̂�, �̂�) =
(𝑪�̂�)

′
[𝑪(𝑿′�̂�−𝟏𝑿)

−𝟏
𝑪′]

−𝟏
(𝑪�̂�)

rank(𝑪)
 (41) 

where �̂� is the estimated covariance matrix for the outcomes, 𝑉𝑎𝑟(𝒚𝒊) = 𝑽𝒊 = 𝒁𝒊𝑮𝒁𝒊
′ +

𝑹𝒊. The proposed 𝑅𝛽
2 statistic is then calculated using the one-to-one correspondence between R² 

and the F-statistic: 

 𝑅𝛽
2 =

(𝑞−1)𝑣−1𝐹(�̂�,�̂�)

1+(𝑞−1)𝑣−1𝐹(�̂�,�̂�)
 (42) 

Most recently, Jaeger, Edwards, Das, and Sen (2017) proposed an extension of 𝑅𝛽
2 for 

generalized linear mixed models (GLMM) where the response variable may come from 

distributions other than the normal. For the GLMM, Jaeger et al. (2017) calculate the F-statistic 

and corresponding 𝑅𝛽
2 for the pseudo linear data created by the penalized quasi-likelihood (PQL) 

estimation procedure, which they call 𝑅𝛽∗
2 . The authors show that their proposed measure also 

generalizes Nakagawa and Schielzeth’s (2013) marginal R2 and can be used for any distribution 

and with any link function. Jaeger et al. (2017) claim that 𝑅𝛽∗
2  is unique in providing semi-partial 

correlations for any combination of predictors with the outcome of interest, and indicate that this 

semi-partial R² measure, denoted 𝑅𝛽𝑗
∗

2  with j representing an index for the given fixed-effect 

parameter in the full model, would be able to answer research questions related to the relative 

importance of predictors. However, due to the unreliable nature of the Wald test for small samples, 

the authors advise caution when using their proposed R² statistics for small data sets, particularly 
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with logistic multilevel models. Additionally, the authors note that 𝑅𝛽∗
2  could decrease with the 

addition of a fixed effect under an incorrectly specified covariance. 

Likelihood ratio measures  

A second set of measures of fit that may be used with multilevel models are R²-analogue 

measures, originally proposed for generalized linear models such as single-level logistic 

regression. These measures are based on ratios comparing the likelihood of the data under the null 

(empty) model and a competing model (with predictors) and are supposed to indicate how well 

one can predict the outcome variable from the explanatory variables in the model. Commonly used 

measures are the ones proposed by Cox and Snell (1989), Nagelkerke (1991), and McFadden 

(1974).  

In order to define these measures, let L0 represent the likelihood of the null (intercept-only) 

model, LM represent the likelihood of the model of interest, and n the total sample size. The Cox 

and Snell measure can be written as: 

 𝑅𝐶&𝑆
2 = 1 − (

𝐿0

𝐿𝑀
)

2

𝑛
 (43) 

An attractive characteristic of the Cox & Snell measure is that it directly corresponds to 

the usual R² in linear regression models and therefore can be thought of as a “generalized” R² 

instead of a pseudo R² (Allison, 2013). However, Cox & Snell’s R² has a maximum value that is 

less than 1. When the full model perfectly predicts the outcome and thus has a likelihood of 1, Cox 

& Snell’s R² would be 1 − (𝐿0)
2

𝑛 , which can be considerably less than one. Therefore, an 

adjustment can be performed by dividing the 𝑅𝐶&𝑆
2  by its upper bound, 1 − (𝐿0)

2

𝑛, which produces 

the R² attributed to Nagelkerke (1991): 
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 𝑅𝑁
2 =

1−(
𝐿0
𝐿𝑀

)

2
𝑛

1−(𝐿0)
2
𝑛

 (44) 

 However, this adjustment is ad hoc, thus the resulting statistic does not have the theoretical 

interpretation of the original 𝑅𝐶&𝑆
2  (Allison, 2013). 

McFadden’s (1974) R² measure is defined as: 

 𝑅𝑀
2 = 1 −

ln(𝐿𝑀)

ln(𝐿0)
 (45) 

As summarized by Azen and Traxel (2009), McFadden's measure possesses many desirable 

properties when applied to single-level logistic regression: it is bounded between 0 and 1, does not 

depend on the units of the variables in the model, is monotonic, and has an intuitive interpretation. 

However, these features might not hold when the errors are correlated as is the case in multilevel 

models. 

Even though these pseudo-R2 measures do not have an independent interpretation (like that 

of a linear model’s R²), and cannot be used for model comparisons across different data sets, they 

are valid and useful in evaluating a set of models used to predict the same outcome on the same 

dataset (UCLA: Statistical Consulting Group, n.d.). There are, however, problems in using 

likelihood-ratio based R² measures with mixed models. Nakagawa and Schielzeth (2013) point out 

that some unresolved obstacles to using these measures are that they only provide R² at the lowest 

level (level 1) and that they can decrease or become negative with the addition of explanatory 

variables to the model. 
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Information criteria measures 

The third set of measures of fit available for use with multilevel models are information 

criteria (IC) statistics. Information criteria are based on the likelihood of the data given a fitted 

model, and have been commonly used with multilevel models for model selection and comparison 

(Hamaker, van Hattum, Kuiper, & Hoijtink, 2011; Nakagawa & Schielzeth, 2013; Steele, 2013; 

Wang, Fisher, & Xie, 2011). Information criteria apply some penalty for the number of estimated 

parameters and/or sample size and can be used to select the “best” or “better” model from a set of 

candidate models. Model selection based on information criteria aims to find a balance between 

model fit and parsimony, achieved by maximizing the likelihood function while also penalizing 

additional complexity. 

Commonly used information criteria include the Akaike Information Criterion (AIC; 

Akaike, 1973) and the Bayesian Information Criterion (BIC; Schwartz, 1978). IC take the general 

form of: 

 𝐼𝐶 = −2 log(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡𝑒𝑟𝑚 (46) 

The penalty term is based on the complexity or dimension of the model (d) and the sample 

size (n). For the AIC measure the penalty term is 2d and for BIC it is d log n. The AIC depends 

only on the number of parameters, while other measures depend on both the number of parameters 

and the sample size. The penalty term of BIC is more stringent than the penalty term of AIC since 

for 𝑛 ≥  8, 𝑑 × 𝑙𝑜𝑔(𝑛) > 2𝑑. Consequently, the BIC tends to favor smaller models compared to 

the AIC. Hamaker et al. (2011) provide a thorough discussion of how these and other information 

criteria can be used to make model selection decisions when fitting multilevel models. Even though 

IC measures are useful for model comparison, they are not ideal as measures of model fit (e.g., for 

DA) because they do not provide any information about absolute fit or how much variance the 
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model is able to explain, and do not provide a measure of each predictor’s additional contribution 

in an intuitive manner. Most importantly, because these measures include a penalty for model 

complexity, they might increase (i.e., get “worse”) if predictors that do not improve fit are added 

to the model. Therefore, these measures are not monotonic with model complexity.  

Summary of measures of fit 

 A summary of the desirable criteria (boundedness, linear invariance, monotonicity and 

intuitive interpretability) satisfied by each of the measures of fit (R² analogues) for multilevel 

models described here is presented in Table 2. There seems to be, so far, no measure of fit for 

multilevel models that meets all four criteria. Thus, this study will use measures of fit that meet 

at least three of the four criteria. The measures that seem most appropriate for use with 

multilevel models are Nakagawa and Schielzeth (2013) marginal R² (𝑅𝐺𝐿𝑀𝑀(𝑚)

2 ), Edwards et. 

al.’s 𝑅𝛽
2 (2008), McFadden’s (1974) 𝑅𝑀

2 , and Raudenbush and Bryk’s R² (PCV), which are 

highlighted in Table 2. Even though Snijders and Bosker’s 𝑅1
2 and 𝑅2

2 measures also meet 3 out 

of 4 criteria, this measure will not be used because computing these measures for the models 

with random slopes used in this study is non-trivial. 

Table 2. Summary of properties (indicated by x) of R² analogues for multilevel models. 

 Explained Variance Measures Likelihood Ratio Information 

Criteria 

Property PCV/ 

R&B R² 

S&B 

R² 

N&S 

𝑅(𝑀𝑎𝑟𝑔)
2  

N&S 

𝑅(𝐶𝑜𝑛𝑑)
2  

𝑅𝛽
2 𝑅𝐶&𝑆

2  𝑅𝑁
2  𝑅𝑀

2  AIC BIC 

Boundedness x x x x x  x x   

Invariance x x x  x x x x x x 

Monotonicity           

Interpretability x x x x x x  x   

Total 

Satisfied 
3 3 3 2 3 2 2 3 1 1 
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Bootstrapping for Multilevel Models 

Once the dominance relationship between two predictors has been determined in a sample, 

researchers might be interested in finding out if this relationship can be considered to represent the 

“true” dominance relationship between the predictors in the population of interest. For instance, 

researchers might like to determine if the estimated difference between two general dominance 

measures is significantly different from zero. Therefore, inferential procedures for dominance 

analysis measures in multilevel models are investigated in this study.  

The challenge in devising procedures to test hypotheses about dominance measures is that, 

other than for the large-sample multiple regression case using R² as measure of fit, the theoretical 

probability distribution of these measures is not known (Budescu, 1993; Azen & Traxel, 2009; 

Tang, 2014). The bootstrap method (Efron, 1979) estimates the sampling distribution of a statistic 

of interest empirically; that is, strictly from the sample data. Since the bootstrap does not rely on 

distributional assumptions, it can be used to estimate the variability of a statistic whose theoretical 

distribution is unknown (Mooney & Duval, 1993).  

Inferential procedures for dominance analysis based on bootstrapping have been 

investigated for linear regression models (Azen & Budescu, 2003; Tang, 2014), logistic regression 

models (Azen & Traxel, 2009) and multivariate regression models (Azen & Budescu, 2006). Here, 

we investigate the use of bootstrapping for making inferences regarding dominance measures in 

multilevel models.  

The bootstrap can also be used for estimating the reproducibility of the DA results, a 

measure for describing how stable the results may be across repeated sampling and how confident 

we are that we can reproduce the dominance pattern found in the original sample (Azen & 

Budescu, 2003, 2006). While to date bootstrap confidence intervals have been used for inference 
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on the quantitative general dominance measure only, reproducibility measures have been 

examined for all three dominance levels (i.e., complete, conditional, and general dominance). 

The basic bootstrap process for estimating a parameter θ involves the following steps: 

1) Draw a random sample (the original dataset) from the population and obtain the 

parameter estimate, 𝜃, using that sample.  

2) Draw a random (bootstrap) sample, with replacement, of the same size as the original 

dataset by resampling from the original dataset.  

3) Re-estimate the parameter of interest for this bootstrap sample b to obtain 𝜃𝑏. 

4) Repeat steps 1 and 2 a large number (B) of times to obtain the distribution of the 𝜃𝑏 

values, which represents the empirically estimated sampling distribution of the 

parameter estimate, 𝜃.  

As presented in Efron and Tibshirani (1993), the mean of the bootstrap estimates of the 

parameter is given by 𝜃∗ =
1

𝐵
∑ 𝜃𝑏

𝐵
𝑏=1   and the standard deviation by �̂�∗ = √

1

𝐵−1
∑ (𝜃𝑏 − 𝜃∗)2𝐵

𝑏=1 , 

and these values can be used to derive confidence intervals. A bootstrap estimate for the bias of 

the parameter of interest can be computed as: 

 𝐵𝑖𝑎𝑠(𝜃) = ( 𝜃∗ − 𝜃) (47) 

And its bias-corrected estimate is: 

 𝜃𝑏𝑐 = ( 𝜃 − 𝐵𝑖𝑎𝑠(𝜃)) = (2𝜃 − 𝜃∗) (48) 
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Bootstrap confidence intervals can be constructed in different ways depending on how well 

the distribution of the bootstrap estimates can be approximated by the normal distribution. Two 

common methods of constructing a confidence interval (Efron & Tibshirani, 1993) are: 

1) Asymptotic Normal CI: Use the standard deviation of the bootstrap distribution, �̂�∗, 

as the estimated standard error and construct a bootstrap confidence interval based on 

a standard normal distribution. If the sampling distribution is approximately normal, 

the 100(1-α)% CI can be computed as 𝐶𝐼100(1−𝛼)% = 𝜃∗ ± 𝑧𝛼/2�̂�
∗. In this study the 

95% CI is used, so α=0.05 and 𝑧𝛼/2 = 1.96 is the value from the standard normal 

distribution corresponding to the two-sided 95% confidence level.  

2) Percentile CI: If normality of the bootstrap sampling distribution cannot be 

established, we can find the middle 100(1-α)% of the distribution by sorting the B 

bootstrap estimates from smallest to largest and selecting the values corresponding to 

the 100(α/2)th and the 100(1-α/2)th positions as the lower and upper confidence limits, 

𝜃∗100(α/2) and 𝜃∗100(1−α/2), respectively. The 95% CI is used here, so the 2.5th and 

the 97.5th positions are the lower and upper confidence limits, corresponding to 𝜃∗2.5 

and 𝜃∗97.5. 

For multilevel models, however, the basic bootstrap algorithm described above is 

inadequate since it assumes independent and identically distributed (i.i.d) responses (Goldstein, 

2010). The bootstrap might not make assumptions about the specific distribution of the data, but 

it assumes that the sampling properties of the statistic of interest are preserved in the resampling 

distribution. Additionally, the bootstrap method is supposed to follow the same probabilistic 

mechanism that is assumed to have generated the data (van der Leeden, Meijer & Busing, 2008; 

Goldstein, 2011; Hox & van de Schoot, 2013). Therefore, alternative approaches to obtain the 
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bootstrap estimate  𝜃∗ have been proposed for multilevel data. These bootstrap methods are 

summarized below and follow the approaches described in Goldstein (2010, 2011) and van der 

Leeden et al. (2008). There are three general bootstrap approaches for multilevel modeling: 

parametric residual bootstrap, nonparametric residual bootstrap, and (nonparametric) case 

resampling.  

For the description of the different bootstrap procedures for multilevel models presented 

below, consider the following two-level model with a random intercept and a random slope for 

predictor x, where j = 1,..., J groups, i = 1,.., nj  individuals per group, and N is the total number of 

observations (i.e., ∑ 𝑛𝑗
𝐽
𝑗=1 = 𝑁): 

 𝑦𝑖𝑗 = 𝛾00 + 𝛾10(𝑥𝑖𝑗) + 𝑢0𝑗 + 𝑢1𝑗(𝑥𝑖𝑗) + 𝑒𝑖𝑗 (49) 

Here 𝑦𝑖𝑗 is the outcome value for person i in group j, 𝛾00 and 𝛾10 are the fixed intercept 

and slope, respectively, 𝑢0𝑗 is the random intercept coefficient, 𝑢1𝑗 is the random slope for x and 

𝑒𝑖𝑗 is the level-1 residual. Also, assume (
𝑢0𝑗

𝑢1𝑗
)~𝑁 [(

0
0
) , (

𝜏0
2 𝜏01

𝜏01 𝜏1
2 )], 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒

2), and let 𝑮 =

[
𝜏0

2 𝜏01

𝜏01 𝜏1
2 ] and 𝑹 = 𝜎𝑒

2𝑰𝒏𝒋
.   

Parametric residual bootstrap. The parametric bootstrap uses the parametrically 

estimated distribution function of the data to generate bootstrap samples. This method quantifies 

the design-specific sampling variance by simulating response values based on the estimated 

distribution of the residuals at each level followed by a re-estimation of the statistic of interest. 

Assuming the model and its error distributions are correctly specified, the variance among 

replicated simulations represents the sampling uncertainty of the estimate. This method also 

assumes that the predictors are fixed. The parametric bootstrap makes the strongest assumptions 
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of all three methods. For the model presented above, the parametric residual bootstrap is 

constructed as follows: 

1) Draw N elements �̂�𝑖𝑗
∗  from the estimated distribution of level-1 residuals, 

�̂�𝑒~𝑁(0, �̂�𝑒
2); 

2) Draw J vectors of elements �̂�0𝑗
∗  and �̂�1𝑗

∗ from the estimated distribution of the random 

effects �̂�𝑢~𝑁(0, �̂�). 

3) Generate the bootstrap responses as 𝑦𝑖𝑗
∗ = 𝛾00 + 𝛾10(𝑥𝑖𝑗) + �̂�0𝑗

∗ + �̂�1𝑗
∗ (𝑥𝑖𝑗) +

�̂�𝑖𝑗
∗    ∀𝑖, 𝑗. 

4) Refit the model and compute the bootstrap value  𝜃𝑏 on the generated sample and 

store its value. 

5) Repeat steps 1−4 B times as to obtain B sets of bootstrap replications of the 

parameter(s). 

The parametric bootstrap is not robust with respect to any deviation from the distributional 

assumption of the random terms and, therefore, it should be used with caution. Goldstein (2010) 

observes that an advantage of the parametric bootstrap procedure is that it can be extended 

straightforwardly to discrete response models. Nakagawa and Schielzeth (2010) indeed 

recommend the use of the parametric bootstrap to calculate uncertainty estimates for the ICC 

(which they call repeatability) in GLMM; however, they warn that the parametric bootstrapping 

may fail when non-Gaussian data exhibit underdispersion. 

Non-parametric residual bootstrap. The non-parametric residual bootstrap (Carpenter, 

Goldstein & Rasbash, 1999, 2003; Goldstein, 2010, 2011) consists of randomly drawing residuals 

with replacement from transformed (centered and reflated) residuals obtained from the model-
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estimated “crude” residuals. The need for “reflating” the residuals comes from the fact that in 

multilevel models both the level-1 and level-2 residuals are “shrunk” towards zero so that the true 

variability of the residuals is not reproduced in the bootstrap samples (Carpenter, Goldstein, & 

Rasbash, 1999). The non-parametric residual bootstrap method does not make assumptions about 

the distribution of the errors, but it assumes that the explanatory variables are fixed and that the 

model is correctly specified. These assumptions might make sense if the model is theoretically 

justified. For the model in Equation (49), the procedure involves the following steps: 

1) Use the original sample to fit the multilevel model under study and save the level-1 

and level-2 raw residuals.  

2) Center both the level-1 and level-2 residuals so that they have a mean of 0. 

3) Reflate1 the (centered) residuals. 

4) Draw, with replacement, J vectors of elements �̂�0𝑗
∗  and �̂�1𝑗

∗  from the set of reflated 

level-2 residuals. 

5) Draw with replacement N elements �̂�𝑖𝑗
∗  from the set of reflated level-1 residuals. 

6) Generate the bootstrap responses as 𝑦𝑖𝑗
∗ = 𝛾00 + 𝛾10(𝑥𝑖𝑗) + �̂�0𝑗

∗ + �̂�1𝑗
∗ (𝑥𝑖𝑗) +

�̂�𝑖𝑗
∗    ∀𝑖, 𝑗 

7) Refit the model, compute the bootstrap value  𝜃𝑏 on the generated bootstrap sample, 

and store its value. 

                                                 
1 The procedure to reflate the residuals is illustrated here for the level-2 residuals but it can be applied to all levels. 

This is the method described in Goldstein (2010, pp. 99-101) and reproduced here.  

First, rewrite model in Equation (49) as 𝑦𝑖𝑗 = (𝑋𝛽)𝑖𝑗 + (𝑍𝑈)𝑗 + 𝑒𝑖𝑗; where 𝑈𝑇 = {𝑈0, 𝑈1, … }. After fitting the model, 

residuals are calculated by �̂� = {�̂�0, �̂�1, … }. Then write the empirical covariance matrix of the estimated residuals at 

level-2 in 𝑈𝑇 = {𝑈0, 𝑈1, … } as 𝑆 = (�̂�𝑇�̂�) 𝐽⁄  and the corresponding covariance matrix of the level-2 random 

coefficients estimated from the model as R. Then transform the residuals using �̂�∗ = �̂�𝐴, where A is an upper 

triangular matrix of order equal to the number of random coefficients at level-2, such that (�̂�∗𝑇
 �̂�∗) 𝐽⁄ = 𝐴𝑇�̂�𝑇�̂�𝐴 =

𝐴𝑇𝑆𝐴 = 𝑅. The new set of residuals �̂�∗ now have covariance matrix equal to that estimated from the model. The set 

of residuals in step (4) are then re-sampled from �̂�∗. A similar procedure is carried out for the level-1 residuals in eij. 
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8) Repeat steps 1−7 B times as to obtain B sets of bootstrap replications of the 

parameter(s). 

Van der Leeden et al. (2008) caution about the use of the residual bootstrap, especially 

when residuals are not estimated in a satisfactory way or are not independent of the predictors in 

the model. On the other hand, the nonparametric residual bootstrap is robust with respect to non-

normality of the error processes since it does not make any assumptions about the error 

distribution. It also seems to provide better confidence interval coverage compared with the 

parametric bootstrap when the underlying distribution of the data is non-normal (Carpenter et al., 

2003). 

Case resampling bootstrap. The case-resampling bootstrap is a nonparametric approach 

where samples (cases) are randomly drawn before fitting the model. This method is the one that 

most closely resembles the basic bootstrap algorithm. It has the least restrictive assumptions of all 

three bootstrap approaches considered here. Specifically, it only assumes that the nested structure 

in the data is correctly specified and that all explanatory variables are random variables.  

If we consider the two-level model in Equation (49), there are different approaches to 

selecting cases to create a bootstrap sample, each with its advantages and drawbacks depending 

on the nature of the data at hand (Roberts & Fan, 2004): 

(i) Draw a sample of N observations with replacement, ignoring the nested data structure. 

(ii) Draw a bootstrap sample of nj observations with replacement from each and every group 

in the sample data. 

(iii) Bootstrap J groups with replacement while selecting all nj observations in each 

bootstrapped group. 
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(iv) Drawn a bootstrap sample of J groups with replacement, then, from each sampled group, 

draw a bootstrap sample of nj observations with replacement. 

Approach (i) samples level-1 units directly and retains the overall number of observations 

in the sample, N, but it leads to variable numbers of groups and observations per group and may 

alter the correlation structure in the dataset. Approach (ii) also provides a consistent sample size 

of N for each bootstrap iteration, and it might make sense if the level-2 unit is not a random sample 

from a population of groups. Approaches (iii) and (iv) will lead to variable number of observations 

N in the bootstrap samples. The third approach retains the nested structure of the data and makes 

sense if the level-1 units are not exchangeable, like repeated measures within a patient. Finally, 

method (iv) might be appropriate if both levels can be considered random samples from the 

population.  

Other bootstrap methods. Another bootstrap method that has been adapted for multilevel 

models is the wild bootstrap originally proposed by Wu (1986). This approach resamples residuals 

from an external distribution satisfying certain specifications and is supposed to obtain consistent 

estimators for the model when the errors are heteroscedastic. Modugno and Giannerini (2015) 

proposed a modified version of wild bootstrap for multilevel models that, similarly to the case 

resampling method, does not require homoscedasticity and makes no assumptions about the 

distribution of the error processes. The authors compared this new procedure with the traditional 

methods presented above in a simulation study and concluded that the wild bootstrap is preferred 

under heteroscedasticity and if sample sizes are large. However, since this study is specifically 

interested in cases where the sample sizes at the lowest levels are not large, this method will not 

be investigated further. 
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Summary of bootstrapping for multilevel models  

Van der Leeden et al. (2008) observe that cases bootstrap estimators are usually less 

efficient than those from parametric residuals bootstrap exactly because they work under weaker 

assumptions. The authors mention that, for instance, the cases bootstrap method is consistent under 

heteroscedasticity. Therefore, it provides robustness at the expense of efficiency. The authors 

mention different scenarios under which it makes sense to resample units from all levels of the 

model or from only level 1 or 2. According to van der Leeden and colleagues, two main factors 

will determine the best approach for case resampling: the degree of randomness of the sampling 

at both levels and the average sample size at each level (2008, pp. 413-414). Roberts and Fan 

(2004) argue that case-resampling approaches (i) and (ii) listed above are preferred because the 

sampling distribution is defined for a specific sample size, hence a consistent sample of size N is 

needed to construct an empirical sampling distribution for a statistical estimator of interest.  

Goldstein (2010) contends that, if model assumptions are plausible, the parametric 

bootstrap is preferred, particularly if models are complex. Van der Leeden et al. (2008) hypothesize 

that the cases bootstrap might be more sensitive to the problematic effects of small sample size but 

also that it is the most attractive due to relying on the least number of assumptions and leading to 

consistent estimators if the cases resampling scheme is appropriate for the data.  

The primary goal of the bootstrap method is to generate a distribution that is a close 

approximation of the true distribution of the original sample. To accomplish this goal, the 

resampling procedure should closely replicate the “true” data generating process. In this study, the 

outcome variable is continuous and the level-1 units are repeated measures which cannot be 

considered random realizations. Therefore, the cases bootstrap will be used where the level-2 units 

(e.g., persons) are randomly selected but all corresponding level-1 units are included in the sample.   
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CHAPTER 3. METHODS 

Study Overview 

 A simulation study was conducted to evaluate the performance of dominance analysis in 

determining the relative importance of predictors in multilevel models for longitudinal data. 

Specifically, this study investigated the suitability of DA for linear growth models where 

individuals are assumed to differ in their initial status of the (continuous) outcome variable. 

Dominance analysis was used to assess the relative incremental contribution of both time-varying 

(level-1) and time-invariant (level-2) predictors using various measures of model fit for multilevel 

models. Longitudinal models can be used to depict change over time in either continuous (e.g., 

student achievement, blood pressure, weight) or categorical (e.g., student proficiency, high blood 

pressure, obesity) outcome measures, and researchers might want to use DA for rank-ordering the 

factors that influence the direction and rate of change of such outcomes. This dissertation focuses 

on continuous responses; therefore, simulation conditions were used to generate continuous 

longitudinal data and the performance of DA was evaluated for the corresponding linear multilevel 

models. 

 The investigation of inferential procedures in this study focused on determining the general 

dominance relationships among p predictors in multilevel models for longitudinal data, similarly 

to Azen and Traxel (2009). The general dominance measure of a predictor, Xi, is denoted by Gi 

and reflects an overall (weighted) average of the additional contribution of the predictor across all 

subset models of interest. This is a quantitative measure of dominance that can be easily understood 

and will almost always allow the establishment of a dominance relationship between two 

predictors, making it a convenient and informative summary statistic of the relative importance of 
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one predictor over another. The difference between the quantitative general dominance measures 

of two predictors (Xi and Xj) is defined as: 

 𝐺𝑖𝑗 = 𝐺𝑖 − 𝐺𝑗 (50) 

where G𝑖 is the general dominance measure for predictor Xi and G𝑗 is the general dominance 

measure for predictor Xj with 𝑖 ≠ 𝑗 = 1, 2, … , 𝑝. As described earlier, each general dominance 

measure is an average of the additional contributions of a predictor to the fit of all relevant subset 

models (by model size). Additionally, the general dominance relationships between Xi and Xj can 

be defined qualitatively by 𝐷𝑖𝑗 such that: 

𝐷𝑖𝑗 = {

  1, if G𝑖  >  G𝑗

−1, if G𝑖 < G𝑗  

    0, if G𝑖 = G𝑗 .

 

 This categorical indicator of the general dominance relationship will be used to investigate 

the reproducibility of the general dominance results. The reproducibility provides an indication of 

how confident one can be that the dominance relationship found in the sample reflects the 

population dominance relationship. 

Research Questions 

 The simulations investigated the performance of DA for longitudinal multilevel models 

with continuous outcomes. The general research questions investigated are what effects do 

different levels of (i) model complexity, (ii) predictor coefficients, (iii) sample sizes, (iv) 

collinearity, (v) covariance structure misspecification, and (vi) measures of model fit, have on: 

1. Rank-ordering of the predictors in terms of their relative importance; 
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2. Inferential results for the quantitative dominance measure (Gij), including type I 

error, power, and accuracy of estimation, using asymptotic normal (standard error) 

and percentile confidence intervals; 

3. Reproducibility of the qualitative dominance measure (𝐷𝑖𝑗), including the expected 

level of reproducibility for a given population dominance effect. 

 In the sections that follow, details are provided on the conditions investigated as well as 

the evaluation of and expectations regarding the above outcomes. 

Simulation Conditions 

Two-level models, representing measurement occasions at level 1 and individuals at level 

2, were used to generate the data. All models reflect a linear effect of time on the outcome through 

a time main effect variable. A simple linear trend was used because it represents a basic growth 

model and a large proportion of applications of growth models use linear models (Kwok et al., 

2008). Non-linear time trends modeled through the inclusion of higher-order functions of the time 

variable (i.e., quadratic: time2, cubic: time3) could also be used. However, since time and its 

functions are held constant in the models when performing DA, the inclusion of the functions of 

time should not affect the DA results. That is, DA is used to compare predictors other than time in 

these models. 

The conditions manipulated include model complexity, predictor effects (coefficients), 

number of level-1 units (measurement occasions), number of level-2 units (e.g., students), and 

amount of collinearity between the predictors. The choice of models and covariance structures 

represented in this simulation study was driven by their prevalence and parsimony. The models 

reflect commonly used growth models and are also simple enough so that this initial evaluation of 

dominance analysis can be performed within a set of well-understood models. Collinearity is 
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introduced in the models by allowing the predictors to correlate with each other using a correlation 

parameter jk (set at the same value for all pairs of predictors j,k where j ≠ k), which is varied 

according to the collinearity simulation condition. Additionally, the impact of misspecification of 

the covariance structure (of the level-1 residuals) on DA results is investigated. Data for all models 

are generated assuming a linear time trend that can vary across individuals, in terms of both its 

intercept and slope, and correlation between the repeated measures is modeled by generating the 

level-1 residuals using a first-order autoregressive (AR(1)) covariance structure. The various 

simulation conditions are discussed in detail in this section. 

 

Model complexity. Three models of increasing complexity were used to investigate the relative 

importance of both time-invariant (level-2/between-subjects) and time-varying (level-1/within-

subjects) predictors. The number of predictors in each model was chosen to allow for different 

combinations of pairwise comparisons among predictors at different levels of analysis (person or 

time) and different magnitudes of effect size. Additionally, models with four predictors are 

commonly found in program evaluation research for example, while models with larger number 

of predictors can be found in exploratory research using data from large, federally funded 

longitudinal studies. Table 3 lists the combined equations for each model complexity condition. 

All models contain the terms + 𝑢0𝑖 + 𝑒𝑡𝑖 for the random effects (not explicitly shown in Table 3), 

and the models vary in terms of the fixed effects (predictors) at levels 1 and 2. The description and 

rationale for each model are presented next. 
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Table 3 Model complexity conditions. 

 Equations for 𝑦𝑡𝑖  (+ 𝑢0𝑖 + 𝑒𝑡𝑖) 

Model 
Intercept + 

Time effect 

Level-1  

predictors 

Level-2 

predictors 

Interaction 

terms 

Random 

Slope effect 

Predictors of 

random 

intercept 

(Model 1) 

𝛾00 + 

𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + 
 ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

  +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 

Predictors of 

Time effect  

(Model 2) 

𝛾00 + 

𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + 
 ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

+ ∑ 𝛾1ℎ𝑤ℎ𝑖𝑇𝑖𝑚𝑒𝑡𝑖

4

ℎ=1

 +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 

Time-

varying 

predictors 

(Model 3) 

𝛾00 + 

𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + 
∑ 𝛾𝑔0𝑥(𝑔−1)𝑡𝑖

5

𝑔=2

+ ∑ 𝛾0ℎ𝑤ℎ𝑖

4

ℎ=1

 +𝑢1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 

  

- Model 1: The growth model with (time-invariant) predictors of the random intercept 

includes four level-2 (student-level, time-invariant) explanatory variables as (fixed) 

predictors of the random intercept, and fixed and random slopes for the effect of time on 

the outcome. The presence of a random effect (slope) of time means that the rate of change 

(effect of time on the outcome) is allowed to vary across individuals. This model was used 

to investigate DA for longitudinal models where interest is in the relative importance of 

explanatory variables that are time-invariant (i.e., variables measured at baseline).  

 

- Model 2: The growth model with (time-invariant) predictors of the random intercept and 

of the time effect includes person-level (time-invariant) variables as predictors of both the 

random intercept and of the effect (slope) of time, the latter represented in the model as 

cross-level interactions between the person-level predictors and time. DA for this model 

compared the relative importance of person-level predictors when modeled as main effects 
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and as predictors of the time effect. Cross-level interactions are included in this model to 

represent situations where one is interested in investigating whether the effect of time (rate 

of change) on the outcome can be predicted by characteristics of the student such as gender 

or baseline SES. The dominance relationships of these cross-level interactions are 

determined using constrained DA to compare the relative importance of the interaction 

terms after controlling for the main effects. Therefore, comparisons between a cross-level 

interaction and its corresponding main effect were not considered.  

  

- Model 3: The growth model with time-varying predictors includes four time-varying 

(level-1) predictors, which change with time, in addition to the time-invariant (level-2) 

predictors of the intercept. The time-varying predictors are added to reflect situations where 

there is interest in including predictors that vary across time and in evaluating their relative 

importance. Following the example previously presented, the researcher might want to 

investigate the effects of predictors that could change over time, such as the number of 

books read in the past year, time-varying social skills, expressive vocabulary skill, and 

verbal memory, on reading comprehension scores after accounting for the effect of time 

(and the other time-invariant predictors). 

Table 4 lists the number of general dominance pairwise comparisons (Gij) examined in 

each model complexity condition. The comparisons are categorized according to the level of the 

predictors in the pair: L2 represents a person-level predictor, L1 represents a time-varying 

predictor, and IN represents the cross-level interaction between a level-2 predictor and the Time 

trend effect. The number of pairwise comparisons in a model with p predictors is 𝑝 × (𝑝 − 1). 
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However, for model 2, the (four) comparisons between a main effect and their own interaction 

terms were not considered; therefore, this model has (𝑝 × (𝑝 − 1)) − 4 Gij pairs. 

Table 4 Number of population general dominance difference measures (Gij) by model 

complexity and predictor type. 

  Predictor Type 

Total L2-L2 L2-IN IN-IN L2-L1 L1-L1 

Model 1 6     6 

Model 2 6 12 6   24 

Model 3 6   16 6 28 

 

Covariance structure misspecification. The data for the simulation were generated using the 

models just described and the AR(1) structure for the residual covariance matrix. To evaluate any 

potential effects of misspecification at the estimation stage (which often occurs in practice), the 

models were estimated (i.e., by fitting the data) under two different covariance structures:  

1. Growth model and AR(1) residual structure (correct specification): the random 

intercept and random slopes of time are modeled with an unstructured covariance 

matrix, 𝑮𝒊 = [
𝜏0

2 𝜏01
2

𝜏01
2 𝜏1

2 ], and the level-1 residuals are modeled with a first-order 

autoregressive structure: 𝑹𝒊 = 𝜎2[𝑨𝑹(𝟏)]. This model correctly specifies both the 

level-1 and level-2 covariance structures and will be referred to as “GAR” in this study. 

2. Standard growth model structure (misspecification): the random intercept and random 

slopes of time are modeled with an unstructured covariance matrix, 𝑮𝒊 = [
𝜏0

2 𝜏01
2

𝜏01
2 𝜏1

2 ], 

but the level-1 residuals are assumed to have an identity structure, 𝑹𝒊 = 𝜎2𝑰𝒏𝒊
. This 

model misspecifies the level-1 covariance structure. This specification is equivalent to 
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what Singer and Willett (2003) call the “standard multilevel model for change” and 

will be referred to as “SGR” in this study. 

 

Predictor effects.  Predictor fixed effects (model coefficients) were chosen to reflect a range from 

small (0.1) to large (0.8) as well as no effect (0). These are essentially the values of the standardized 

coefficients since all predictor variables are generated from a standard normal distribution. 

Differences in the magnitude of coefficients were chosen to investigate the sensitivity of the DA 

procedure for ordering predictors according to their absolute and relative effects. Combinations of 

within- and between-subjects effects (after controlling for the linear effect of time), as shown in 

Table 5, were investigated for a total of 9 model type and predictor effect combinations. The 

population fixed intercept, 𝛾00, was set to 1 for all conditions to represent the value of the outcome 

when time and all other predictors are zero. The fixed effect of time (𝛾10) was fixed at 0.5 for all 

conditions to represent a moderate linear effect of time on the outcome, and is similar to values 

chosen by other longitudinal simulation studies (Jaeger et al., 2017). The variance of the level-1 

random intercept (i.e, intercepts of individual growth models) was set to V(u0i) = 𝜏0
2 = 0.4, the 

variance of the random slope of time (Timeti, or the linear growth trends of individual growth 

models) was set to V(u1i) = 𝜏1
2  = 0.2, and the covariance between the individual intercepts and 

linear growth trends (i.e., slope)  was set to Cov(u0i, u1i) = 𝜏01= 0.1. These values were chosen 

following a study by Kwok, West, and Green (2007) to represent a strong clustering effect and a 

large variation among subjects in terms of both their outcome measures at time zero (arbitrarily 

chosen as the intercept) and the linear growth trend (slope of Time variable) in addition to an 

appropriate covariance between the two. For all models, the level-1 errors eti were generated with 

a first-order autoregressive model such that eti =ϕie(t−1)i + wti, where wti  is the independent and 
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identically distributed (i.i.d.) error, distributed N(0,σ2), with σ2 set to 1 following similar 

simulation studies (Ferron, Dailey, & Yi, 2002; Kwok et al., 2007). The autocorrelation between 

observations measured at time t and t-1 is modeled by the first order autoregressive parameter ϕ, 

which was set at 0.3 at the population level as this represents a moderate level of autocorrelation 

(Ferron et al, 2002).  
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Table 5 Model complexity by predictor effect conditions. 

Model  Effect Person-level (L2) Time (L1) Time-Varying (L1) Interaction (IN=L2*Timeti) 

  w1i w2i w3i w4i Timeti x1ti x2ti x3ti x4ti w1i(Tti) w2i(Tti) w3i(Tti) w4i(Tti) 

Model 1:  γ01 γ02 γ03 γ04 γ10 γ20 γ30 γ40 γ50 γ11 γ12 γ13 γ14 

Predictors Base .3 .3 .1 .1 .5         

of random  Small .5 .45 .4 .3 .5     n/a    

intercept Large .8 .6 .4 .2 .5         

Model 2: Base-Base .3 .3 .1 .1 .5     .3 .3 .1 .1 

Predictors of Base-Large .3 .3 .1 .1 .5  n/a   .8 .6 .4 .2 

Time effect Large-Large .8 .6 .4 .2 .5     .8 .6 .4 .2 

Model 3: Base-Base .3 .3 .1 .1 .5 .3 .3 .1 .1     

Time-varying Base-Large .3 .3 .1 .1 .5 .8 .6 .4 .2     

predictors Large-Large .8 .6 .4 .2 .5 .8 .6 .4 .2     
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 In Table 5, the base(line) condition, where some but not all pairs of predictors have the 

same fixed effects, was designed to try and investigate both type I error and power rates for testing 

the general dominance relationships (i.e., testing the null hypothesis H0: Gij = 0). Since the general 

dominance measures cannot be simulated directly, predictor fixed effects were used here as a way 

to manipulate the general dominance effect. Therefore, the predictor effects were varied to 

different extents to investigate how the power of the DA procedure may change under small to 

large differences in dominance effects for different combinations of fixed effects and their 

interaction with collinearity. It is expected that the power to detect dominance will increase with 

the dominance effect size, which corresponds to differences in predictor effects when the 

predictors are independent but can vary substantially when collinearity is present. Actual 

population general dominance values corresponding to the fixed effects and collinearity conditions 

are presented in the results section. 

 

Collinearity. Since relative importance measures are particularly informative when predictors are 

correlated, three degrees of collinearity (correlation 𝜌𝑗𝑘 among the predictors j and k, with j ≠ k) 

are considered: no collinearity (𝜌𝑗𝑘 = 0); medium collinearity (𝜌𝑗𝑘 = 0.5); and high collinearity 

(𝜌𝑗𝑘 = 0.8). The high collinearity condition is investigated only for model 1 as it is not expected 

that this condition will be prevalent in practice. When predictors are correlated, importance 

measures that are calculated by “holding all other predictors constant” might be misleading when 

comparing predictors to each other since each predictor’s effect will be affected by both the 

predictors included as well as the predictors excluded from the model (Azen & Budescu, 2003). 

Therefore, in order to identify the impact of collinearity on DA results, predictors were simulated 

to have different degrees of collinearity. The no-collinearity condition is unrealistic and used here 
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as a baseline. The collinearity value of 0.5 is an amount of collinearity that can be expected to be 

found in real datasets. The presence of collinearity is expected to impact dominance in the sense 

that dominance relationships might not be as clear cut and will not be directly related to predictor 

coefficients as in the case with uncorrelated predictors. 

 

Sample size. To account for situations typical of longitudinal designs, the level-1 sample size, 𝑛𝐿1, 

was set at 4 and 8 to reflect the number of measurement occasions or waves in longitudinal data. 

Sample size at level 2 (𝑛𝐿2) was set at 50 and 200 for models 2 and 3, and a larger sample size of 

1000 was investigated for model 1. These sample sizes reflect datasets from small to large in terms 

of number of subjects and were based on values used in previous simulation studies of longitudinal 

multilevel data (Matuszewski, 2011; Jaeger, 2017; Jaeger et al., 2017). Sample size conditions 

were fully crossed within each model, producing 4 sample size combinations for models 2 and 3, 

and 6 combinations for model 1. DA results were expected to be more accurate and less biased 

when sample sizes were larger, especially at the person level, but even under small samples DA 

was expected to produce accurate measures of relative importance.  

 

 Table 6 provides a summary of all simulation conditions per model complexity. The 

covariance structure misspecification is not listed in this table because it is not technically a design 

factor in the sense that only one matrix (growth model with AR(1) residuals) was used for data 

generation. However, each individual condition combination was estimated twice, once assuming 

the true (GAR) covariance structure and once assuming the simplified (SGR) structure, which 

effectively doubled the number of simulation conditions listed in Table 6. 
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Table 6 Summary of all simulation conditions and levels by model complexity. 

Model Predictor  

        effects 

 Occasions  

      (𝒏𝑳𝟏) 

Subjects  

(𝒏𝑳𝟐) 

Collinearity 

(𝝆𝒋𝒌) 

Number of 

conditions 

 1 2 3 4 8 50 200 1000 0.0 0.5 0.8  

1 x x x x x x x x x x x 54 

2 x x x x x x x  x x  24 

3 x x x x x x x  x x  24 

All            102 

 

Simulation Study – Procedure 

 The simulation study procedure consisted of the following steps: 

(1) Generate a pseudo-population according to the model complexity, predictor effects and 

collinearity conditions, and record the obtained parameters;  

(2) Obtain S = 100 simple random samples (SRS) from each pseudo-population; 

(3) Obtain B = 300 bootstrap samples for the S=100 randomly selected (parent) samples 

from each pseudo-population; 

(4) Perform dominance analysis on all of these samples; 

(5) Collect relevant outcome measures; and  

(6) Evaluate these measures in the context of the simulation conditions.  

 As steps (2) and (3) indicate, two different sampling methods were used to obtain samples 

for each condition: simple random sampling (SRS) and bootstrap sampling. SRS was used to 

evaluate the dominance analysis procedure more directly because in this study the population is 

known and random samples can be selected from it. However, this is not a realistic or feasible 

situation in practice. Therefore, SRS is used only to demonstrate the procedure’s theoretical 

applicability. In practice, researchers will most likely have only one, presumably random, sample 
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from the population. Therefore, the bootstrap method is used to study the performance of DA and 

related inferential procedures when only one random sample is obtained from the population. The 

number of bootstrap samples was determined based on empirical considerations. A subset of the 

simulation conditions was run with both larger and smaller number of bootstraps and it was 

determined that 300 subsamples produced sufficiently accurate results.  In order to evaluate the 

confidence intervals created by the bootstrap procedure, S=100 replications of the bootstrapping 

method were performed and averages or proportions across all replications were calculated. 

Pseudo-population generation, the two sampling methods, and the evaluation methods are 

described next.    

 

 Generating the pseudo-population. Model complexity, predictor effects, and collinearity 

conditions were used to generate a pseudo-population with number of level-1 and level-2 units 

equal to 𝑁𝐿1= 4 or 8 (number of measurement occasions) and 𝑁𝐿2 = 100,000 (number of cases or 

individuals), respectively. The number of measurement occasions in the sample is the same as in 

the population. The model used to generate the data follows from equations (5) to (7), which are 

repeated below: 

𝒚𝒊 = 𝑿𝒊 𝜷 + 𝒁𝒊 𝒖𝒊 + 𝒆𝒊

(𝑛𝑖 × 1) (𝑛𝑖 × (𝑝 + 1)) ((𝑝 + 1) × 1) (𝑛𝑖 × (𝑞 + 1)) ((𝑞 + 1) × 1) (𝑛𝑖 × 1)
  (5) 

 (
𝒖𝒊

𝒆𝒊
)~𝑁 [(

𝟎
𝟎
) , (

𝑮 𝟎
𝟎 𝑹𝒊

)] (6) 

 𝑉𝑎𝑟(𝒚𝒊) = 𝑽𝒊 = 𝒁𝒊𝑮𝒁𝒊
′ + 𝑹𝒊 (7) 

  In these equations, 1 ≤ 𝑖 ≤ 𝑁𝐿2 and 𝑡 = 1,… , (𝑛𝑖 = 𝑛𝐿1). The simulation conditions 

described previously determined the parameters corresponding to the elements in Xi, β, Zi, G, and 
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Ri. Matrix Xi contains the values of all fixed predictors, matrix β contains the fixed coefficients 

obtained from the predictor effects conditions (i.e., γ values in Table 5), matrix Zi, contains the 

design matrix of the random effects (in this case the random intercept and the random slope of 

Time), G is the covariance matrix of the (level-2) random effects, and Ri is the covariance matrix 

of the level-1 residuals. Data for all models were generated with a first-order autoregressive 

covariance structure for the level-1 residuals to reflect the realistic scenario where measurements 

that are closer to each other in time are more correlated than measurements that are farther apart 

in time. For each of the models in Table 3, data for a continuous outcome y for student i was 

generated using the configurations detailed below, shown using the configuration for the lowest 

level-1 sample size condition (𝑛𝐿1 = 4). That is, for model 1 (growth model with predictors of the 

random intercept), with 4 level-2 predictors and 4 measurement occasions, the matrices would be: 

 𝑿𝒊 = [

1 𝑇𝑖𝑚𝑒1 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒2 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒3 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒4 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

];  𝜷 =

[
 
 
 
 
 
𝛾00

𝛾10

𝛾01

𝛾02

𝛾03

𝛾04]
 
 
 
 
 

 

 𝒁𝒊 = [

1 𝑇𝑖𝑚𝑒1𝑖

1 𝑇𝑖𝑚𝑒2𝑖

1 𝑇𝑖𝑚𝑒3𝑖

1 𝑇𝑖𝑚𝑒4𝑖

];  𝒖𝒊 = [
𝑢0𝑖

𝑢1𝑖
];  𝒆𝒊 = [

𝑒1𝑖

𝑒2𝑖

𝑒3𝑖

𝑒4𝑖

] 

 𝑮 = [
𝜏0

2 𝜏01

𝜏01 𝜏1
2 ]; 𝑹𝒊 = 𝜎2

[
 
 
 
 
1 𝜙 𝜙2 𝜙3

𝜙 1 𝜙 𝜙2

𝜙2 𝜙 1 𝜙

𝜙3 𝜙2 𝜙 1 ]
 
 
 
 

 

The w1, w2, w3, w4  predictors were generated from a multivariate normal distribution with 

mean zero, standard deviation of one and correlation among predictors equal to the collinearity 

condition values 𝜌(𝑤𝑗, 𝑤𝑘) = (0, 0.5, 0.8), ∀ 𝑗, 𝑘 ∈ 1, 2, 3, 4 𝑤𝑖𝑡ℎ 𝑗 ≠ 𝑘. The 𝑇𝑖𝑚𝑒𝑡𝑖 variables 
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were generated by setting 𝑇𝑖𝑚𝑒𝑡𝑖 = 𝑡 − 1 for t = 1, 2, …,𝑛𝐿1 for all i. The level-1 residuals, 𝑒𝑡𝑖, 

were generated following a first-order autoregressive process, 𝑒𝑡𝑖 = 𝜙𝑖𝑒(𝑡−1)𝑖 + 𝑣𝑡𝑖 , where 

𝑣𝑡𝑖~𝑁(0, 𝜎2), corresponding to  𝑹𝒊 = 𝑉𝑎𝑟(𝑒𝑡𝑖) = 𝜎2[𝑨𝑹(𝟏)] with σ2 =1 and autoregressive 

parameter ϕ = 0.3. The random effects 𝒖𝒊 were generated from a multivariate normal distribution 

with mean zero and covariance matrix G: 

[
𝑢0𝑖

𝑢1𝑖
] ~𝑁 (𝟎, [

𝜏0
2 = .4 𝜏01 = .1

𝜏01 = .1 𝜏1
2 = .2

]) 

 Similarly, for model 2 (growth-model with predictors of the random intercept and of the 

time effect), the matrices would be: 

 𝑿𝒊 = [

1 𝑇𝑖𝑚𝑒1 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖 𝑤1𝑖𝑇𝑖𝑚𝑒1 𝑤2𝑖𝑇𝑖𝑚𝑒1 𝑤3𝑖𝑇𝑖𝑚𝑒1 𝑤4𝑖𝑇𝑖𝑚𝑒1

1 𝑇𝑖𝑚𝑒2 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖 𝑤1𝑖𝑇𝑖𝑚𝑒2 𝑤2𝑖𝑇𝑖𝑚𝑒2 𝑤3𝑖𝑇𝑖𝑚𝑒2 𝑤4𝑖𝑇𝑖𝑚𝑒2

1 𝑇𝑖𝑚𝑒3 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖 𝑤1𝑖𝑇𝑖𝑚𝑒3 𝑤2𝑖𝑇𝑖𝑚𝑒3 𝑤3𝑖𝑇𝑖𝑚𝑒3 𝑤4𝑖𝑇𝑖𝑚𝑒3

1 𝑇𝑖𝑚𝑒4 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖 𝑤1𝑖𝑇𝑖𝑚𝑒4 𝑤2𝑖𝑇𝑖𝑚𝑒4 𝑤3𝑖𝑇𝑖𝑚𝑒4 𝑤4𝑖𝑇𝑖𝑚𝑒4

] 

 𝜷 =

[
 
 
 
 
 
 
 
 
 
𝛾00

𝛾10

𝛾01

𝛾02

𝛾03

𝛾04

𝛾11

𝛾12

𝛾13

𝛾14]
 
 
 
 
 
 
 
 
 

 

 The w1,…, w4, Timeti predictors, Zi, ui, ei, matrices and the G and Ri covariance structures 

were generated as the previous model. The w1Time,…, w4Time predictors were generated by 

multiplying the w1,…, w4 and Time variables.  

  Finally, for model 3 (growth-model with time-varying predictors), the matrices are: 

𝑿𝒊 = [

1 𝑇𝑖𝑚𝑒1 𝑥11𝑖 𝑥21𝑖 𝑥31𝑖 𝑥41𝑖 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒2 𝑥12𝑖 𝑥22𝑖 𝑥32𝑖 𝑥42𝑖 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒3 𝑥13𝑖 𝑥23𝑖 𝑥33𝑖 𝑥43𝑖 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

1 𝑇𝑖𝑚𝑒4 𝑥14𝑖 𝑥24𝑖 𝑥34𝑖 𝑥44 𝑤1𝑖 𝑤2𝑖 𝑤3𝑖 𝑤4𝑖

] 
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 𝜷 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛾00

𝛾10

𝛾20

𝛾30

𝛾40

𝛾50

𝛾01

𝛾02

𝛾03

𝛾04

𝛾11

𝛾12

𝛾13

𝛾14]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 The w1,…, w4, Timeti predictors, Zi, ui, ei, matrices and the G and Ri covariance structures 

were generated as in model 1. The 𝑥𝑗𝑡𝑖  predictors were generated from a multivariate normal 

distribution with mean zero, standard deviation of one and correlation among predictors equal to 

𝜌(𝑥𝑗𝑡𝑖 , 𝑥𝑘𝑡𝑖) = (0, 0.5, 0.8), ∀ 𝑗, 𝑘 ∈ 1, 2, 3, 4 𝑤𝑖𝑡ℎ 𝑗 ≠ 𝑘. 

 Note that, since in this study the lower level of the model (level-1) corresponds to time 

points, the number of level-1 measurements in the sample can be assumed to be the same as the 

number in the population (except for missing values). This is consistent with van der Leeden et al. 

(2008), who do not consider repeated measures as being random for purposes of bootstrapping. 

Once the data were generated, parameter values and population, or “true”, dominance results (G𝑖𝑗 

and D𝑖𝑗 values for each pair of predictors) were obtained from the pseudo-population. 

 Simple random sampling. For each pseudo-population, S=100 simple random samples 

(SRS) were obtained with level-1 and level-2 sample sizes determined by the 𝑛𝐿1 and 𝑛𝐿2 sample 

size conditions, respectively. To start, 𝑛𝐿2 persons were randomly drawn from the pseudo-

population and then all corresponding 𝑛𝐿1 measurements were obtained for these individuals. The 

samples were drawn without replacement. In these samples, all (
𝑁𝐿2

𝑛𝐿2
) samples have an equal 
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probability of being selected from the population. For each SRS sample s, the dominance measures 

G𝑖𝑗
𝑠  and D𝑖𝑗

𝑠 , were computed for each pair (𝑖 ≠ 𝑗 = 1, 2, … , 𝑝) of predictors so they can be compared 

to those obtained in the population.  

 Bootstrap sampling. Since in real-world settings researchers do not have access to the 

population data, the use of bootstrap methods was investigated for making inferences regarding 

dominance analysis measures based on one random “parent” sample. However, in this study, since 

we want to evaluate the performance of bootstrap-based inferential procedures, this step was 

replicated S=100 times.  

 The bootstrap is a nonparametric approach for statistical estimation and inference based on 

intensive computer-based resampling that does not make any assumptions regarding the 

distribution of the data (Efron, 1979). In this study, the parent sample for each condition was 

created by following the SRS procedure described above to draw one simple random sample from 

the pseudo-population according to the sample sizes specified by 𝑛𝐿1 and 𝑛𝐿2. Subsequently, 

B=300 bootstrap samples were drawn randomly and with replacement from the parent sample, 

treating person as random. The lowest level, level-1, is not considered random since in this study 

this level corresponds to repeated measurements (van der Leeden et al., 2008). Therefore, once a 

level-2 unit (person) was sampled, all corresponding level-1 units (measurement occasions for that 

person) were also included in the bootstrap sample.  

 The case-resampling bootstrap method was used for all simulation conditions; that is, the 

entire response vector (outcome and predictor values) was drawn with replacement from the level-

2 units. In each bootstrap sample b (corresponding to a given parent sample), the sample estimate 

values of G𝑖𝑗
𝑏  and D𝑖𝑗

𝑏  were computed for each pair (𝑖 ≠ 𝑗 = 1, 2, … , 𝑝) of predictors.  
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 Estimation. For each generated data set (pseudo-population, SRS, or bootstrap sample), 

all subset multilevel models were fit using SAS PROC MIXED to obtain model estimates and 

measures of fit. The models were estimated using the FIML method (METHOD=ML in SAS) 

since the DA procedure is comparing the fit of models with different fixed parameters.  

  Measures of fit.  The dominance relationships among predictors (i.e., the G𝑖𝑗 and D𝑖𝑗 

values) were determined using four R2 analogue measures: Nakagawa and Schielzeth’s (2013) 

marginal R² (henceforth N&S R²), Edwards et. al.’s (2008) 𝑅𝛽
2 (henceforth R² Beta), McFadden’s 

(1974) 𝑅𝑀
2  (henceforth McFadden R²), and the proportion change in variance (PCV) proposed by 

Raudenbush and Bryk (2002). Since the PCV is calculated separately for each random component, 

the random intercept PCV(u0i) is used for the models with predictors of the random intercept and 

the cross-level interaction (models 1 and 2; henceforth R&B2 R²), and the level-1 residual PCV(σ2) 

is used for the time-varying predictors model (model 3; henceforth R&B1 R²).  

 Relative importance results for person-level (level-2) predictors of the random intercept 

should be adequate when using proportional change in variance of the random intercept, i.e., 

R&B2 R². The use of this measure for time-varying and cross-level comparisons might be more 

problematic unless these predictors also help explain part of the variability in the random intercept. 

For the model with time-varying predictors, global R2 measures such as the N&S R² and the 

likelihood-based McFadden R² might provide more relevant information and more accurate and 

precise dominance results. 

Dominance analysis evaluation measures. The performance of DA was evaluated by 

calculating ranking accuracy, bias, 95% confidence intervals, and reproducibility, as described 
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below. These measures were evaluated for samples obtained under both the simple random and 

(replicated) bootstrap sampling methods.  

Ranking accuracy. Evaluation of whether dominance analysis accurately rank-orders 

predictors in terms of relative importance was determined by computing: 

1) the proportion of samples where there is agreement between the population and simple 

random or bootstrap samples as to:  

i. the predictor identified by DA as most important, and  

ii. the predictor identified by DA as the least important. 

These outcomes were calculated using the general dominance measure Gi for each 

predictor in each bootstrap and simple random sample. First, the predictors were rank 

ordered by the value of Gi in each sample. The predictor with the highest Gi value was 

considered the most important predictor, and the predictor with the lowest Gi value was 

considered the least important predictor. Two or more predictors could be tied as most or 

least important. In this case they were saved as a set of most or least important predictors 

for that sample. These predictors were then compared to the predictor(s) rank ordered by 

the Gi measure as most or least important in the population. If the predictor ranked as 

most/least important in the bootstrap sample was the same as in the population, or, in the 

case of a tie, at least one of the predictors in the most/least important set in the bootstrap 

or SRS matched one or more predictors in the population most/least important set, the 

agreement outcome for most/least important predictor was recorded as 1 for that sample, 

otherwise it was recorded as zero. The overall agreement measures in terms of most/least 

important predictors were then calculated as the proportion of bootstrap and SRS samples 

that agreed with the population ranking. For bootstrap samples these values were calculated 
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for each parent sample as well as averaged across all parent samples. These agreement 

values ranged from 0%, when none of the samples agreed with the population result, to 

100%, when all samples agreed with the population result.  

2) Kendall rank correlation coefficient (Kendall’s tau-b) between the predictor ranking 

produced by DA in the bootstrap or SRS sample and the population ranking. 

Kendall’s tau (Kendall’s τ; Kendall, 1938) is a nonparametric measure of ordinal 

association based on the number of concordances and discordances in paired observations 

or rankings. Kendall (1945) proposed an adjustment for ties, usually called tau-b, which is 

the statistic used here. To define this coefficient, let (X1, Y1), (X2, Y2), …, (Xn, Yn) be a set 

of observations of the joint random variables X and Y respectively. Two pairs of 

observations (Xi , Yi) and (Xj , Yj), where i ≠ j, are concordant if they are in the same order 

with respect to each variable, that is, if Xi < Yi and Xj < Yj; or if Xi > Yi and Xj > Yj. The pairs 

are discordant if they are in the reverse ordering for X and Y, that is, if Xi < Yi and Xj > Yj; 

or if Xi > Yi and Xj < Yj. The pair is tied if Xi = Xj and/or Yi = Yj. The total number of pairs 

that can be constructed for a sample size of n is (
𝑛
2
) = 𝑛(𝑛 − 1)/2. 

Kendall’s tau-b is calculated by: 

 𝜏𝑏 =
𝐶−𝐷

√(𝐶+𝐷+𝑇)×(𝐶+𝐷+𝑈)
  (51) 

where C is the number of concordant pairs, D the number of discordant pairs, T the number 

of ties only in X, and U the number of ties only in Y. If a tie occurs for the same pair in 

both X and Y, it is not added to either T or U. Values of tau-b close to 1 indicate strong 

agreement, values close to -1 indicate strong disagreement, and a value of zero indicates 

lack of association.  



 

81 

 

Kendall’s tau-b was calculated for each bootstrap and SRS sample. In this study, X 

would be the general dominance value G𝑖
𝑏 or G𝑖

𝑠 for each variable Xi in each bootstrap 

sample or SRS, respectively, and Y would be the general dominance value Gi in the 

population. The data is double sorted by ranking observations according to values of the 

first variable (X) and reranking the observations according to values of the second variable 

(Y). Kendall’s tau-b is computed from the number of interchanges of the first variable and 

corrects for tied pairs (pairs of observations with equal values of X or equal values of Y). 

Let X be the values of the general dominance measures for all predictors in a bootstrap 

sample, noted as G𝑖
𝑏, and Y be the general dominance values in the population, noted as G𝑖. 

If the observation (in this case predictors) with the smallest and second smallest dominance 

values in the bootstrap sample is in the same order as the predictors in the population (e.g., 

G1
𝑏 < G2

𝑏 and G1 < G2), then the pair is counted as concordant. If the ordering is reversed, 

i.e., either G1
𝑏 < G2

𝑏 and G1 > G2, or G1
𝑏 > G2

𝑏 and G1 < G2, the pair is counted as 

discordant. If G1
𝑏 = G2

𝑏, but G1 ≠ G2, then the pair is counted as a tie for X (the bootstrap), 

if the variables are reversed (G1
𝑏 ≠ G2

𝑏, but G1 = G2), it would count as a tie for Y (the 

population). For models with four predictors, the total number of pairs is 𝑛(𝑛 − 1)/2 =

4(4 − 1)/2 = 6. 

For bootstrap samples, the ranking accuracy evaluation also consisted of how often the DA 

results across bootstrap samples agreed with the parent sample. Specifically, the indices above 

were calculated by comparing the bootstrap rankings to the parent sample rankings instead of the 

population. Average agreement values across all S=100 replications were also calculated. 

Agreement in the rank-ordering of predictors is expected to improve with larger sample sizes and 
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larger differences between predictor fixed effects (presuming these factors lead to larger general 

dominance differences, or Gij values).  

Bias. To examine the accuracy of the general dominance estimates, standardized bias was 

calculated as the difference between a parameter and its sample estimate, standardized by an 

appropriate standard deviation measure. For the population parameter, G𝑖𝑗, or the parent sample 

estimate, G𝑖𝑗
𝑃𝑆, standardized bias was calculated as: 

 𝐵𝑖𝑎𝑠𝑆𝑅𝑆,𝑃𝑜𝑝 =
G𝑖𝑗

𝑠̅̅ ̅̅̅−G𝑖𝑗

𝑠𝑑(G𝑖𝑗
𝑠 )

 (59) 

 𝐵𝑖𝑎𝑠𝐵𝑜𝑜𝑡,𝑃𝑜𝑝
𝑟 =

G𝑖𝑗
𝑏̅̅ ̅̅̅−G𝑖𝑗

𝑠𝑑(G𝑖𝑗
𝑏 )

  (60) 

 𝐵𝑖𝑎𝑠𝐵𝑜𝑜𝑡,𝑃𝑆
𝑟 =

G𝑖𝑗
𝑏̅̅ ̅̅̅−G𝑖𝑗

𝑃𝑆

𝑠𝑑(G𝑖𝑗
𝑏 )

 (61) 

where G𝑖𝑗
𝑠̅̅ ̅̅  or G𝑖𝑗

𝑏̅̅ ̅̅  represent the average of the general dominance estimates across all relevant 

simple random or bootstrap samples, respectively, and sd(Gij) is the corresponding standard 

deviation of the estimates. More formally: 

  G𝑖𝑗
𝑠̅̅ ̅̅ =

1

𝑆
∑ G𝑖𝑗

𝑠𝑆
𝑠=1   and  𝑠𝑑(G𝑖𝑗

𝑠 ) = √
1

𝑆−1
∑ (G𝑖𝑗

𝑠 − G𝑖𝑗
𝑠̅̅ ̅̅ )2𝑆

𝑠=1  (62) 

 G𝑖𝑗
𝑏̅̅ ̅̅ =

1

𝐵
∑ G𝑖𝑗

𝑏𝐵
𝑏=1  and  𝑠𝑑(G𝑖𝑗

𝑏 ) = √
1

𝐵−1
∑ (G𝑖𝑗

𝑏 − G𝑖𝑗
𝑏̅̅ ̅̅ )2𝐵

𝑏=1  (63) 

For the bootstrap samples, the bias measures were averaged across all S=100 replications: 

 𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅
𝐵𝑜𝑜𝑡,𝑃𝑜𝑝
𝑟 =

1

𝑅
∑ 𝐵𝑖𝑎𝑠𝐵𝑜𝑜𝑡,𝑃𝑜𝑝

𝑟𝑅
𝑟=1   (52) 

 𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅
𝐵𝑜𝑜𝑡,𝑃𝑆
𝑟 =

1

𝑅
∑ 𝐵𝑖𝑎𝑠𝐵𝑜𝑜𝑡,𝑃𝑆

𝑟𝑅
𝑟=1   (53) 
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 The standardized bias is used here to determine if the dominance values produced by the 

bootstrap procedure are close to their corresponding population parameters. This measure was 

proposed by Rosenbaum and Rubin (1985) in the context of propensity score methodology and is 

similar to Cohen’s d because it calculates the standardized mean difference between estimates of 

general dominance produced by the bootstrap procedure or simple random sampling and the 

population parameter. Bias values were compared across simulation conditions. When bias is 

small, we can assume the dominance results adequately reflect the population and/or parent sample 

values.  

Inference. Statistical inference for the estimated difference between the general dominance 

measures (i.e., 𝐺𝑖𝑗 values) was carried out by using both asymptotic normal (standard error) and 

percentile confidence intervals (CI). For the purposes of this study, the SRS CIs were used only as 

a check on the bootstrap CI. Only the bootstrap CIs were evaluated in terms of coverage, width, 

type I error, and power rates across all S=100 replications. 

Asymptotic normal confidence intervals (ANCI) are usually adequate when the distribution 

of the parameter of interest is normal or the sample size is sufficiently large. Since this method is 

straightforward, requiring minimal computation, its suitability for making inferences regarding the 

difference in magnitude of two general dominance measures was investigated. The asymptotic 

normal 95% CI for the 𝐺𝑖𝑗 parameter was constructed for each sample as: 

 𝐶𝐼95% = �̂�𝑖𝑗 ± 𝑍.05𝑠 (54) 

where �̂�𝑖𝑗 is the general dominance difference estimate for each pair of predictors averaged 

across all (SRS or bootstrap) samples (i.e., either G𝑖𝑗
𝑠̅̅ ̅̅  or G𝑖𝑗

𝑏̅̅ ̅̅ ), 𝑍.05 is the value from the standard 

normal distribution corresponding to the 95% confidence level (i.e., 𝑍.05 = 1.96), and s is the 
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standard deviation of all �̂�𝑖𝑗 (i.e., either 𝑠𝑑(G𝑖𝑗
𝑠 ) or 𝑠𝑑(G𝑖𝑗

𝑏 )). This method assumes that the studied 

statistic, general dominance difference in this case, is normally distributed. Therefore, if the 

general dominance measures cannot be assumed to be normally distributed, it might not be 

appropriate (and not perform well) for making inferences about these measures.  

The percentile confidence interval (PCI) estimates the percentile points of the confidence 

interval empirically from the observed distribution of the statistic. Percentile 95% confidence 

intervals were constructed by ranking the estimated general dominance values, G𝑖𝑗
𝑠  or G𝑖𝑗

𝑏  , obtained 

from all samples (either SRS or bootstrap) and selecting the values corresponding to the 2.5th and 

97.5th percentiles as the end points of the confidence interval. This method does not assume that 

the studied statistic is normally distributed. Bootstrap-based percentile confidence intervals 

estimate the percentile points of the confidence interval empirically from the observed bootstrap 

distribution of the statistic, and SRS percentile confidence intervals estimate the percentile points 

from the observed SRS distribution. 

Each of the two types of confidence intervals were used to evaluate the following indicators 

of estimation accuracy and inferential performance for the bootstrap samples: 

1. CI Coverage. Confidence interval coverage evaluates whether the constructed 95% CI 

actually contains the population value about 95% of the time. Coverage was calculated 

by the proportion of S=100 replications in which the 95% confidence interval for the 

dominance difference included the true (population) value; that is, 𝐶𝐼𝑢𝑝𝑝𝑒𝑟 < 𝐺𝑖𝑗 <

𝐶𝐼𝑙𝑜𝑤𝑒𝑟. A confidence interval is first-order accurate if the actual one-sided rejection 

probabilities differ from the nominal values by O(n−1/2); that is, it covers the true 

parameter with probability (100 − 𝛼)% + O(𝑛−1/2). It is second-order accurate if the 

differences are O(n−1). The confidence intervals should be at least first-order accurate 
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(Efron, & Tibshirani, 1993). A second-order accurate interval means that the error in 

the probability (α/2) of not covering the true value of the parameter from above or 

below tends to zero at a rate that is inversely proportional to the sample size. On the 

other hand, first-order accuracy means that the error tends to zero more slowly, at a rate 

inversely proportional to the square root of the sample size. 

2. CI Width. The confidence interval width was computed for all simulation conditions 

by subtracting the lower bound of the confidence interval from its upper bound for each 

replication and averaging across all S=100 replications: 

 𝑊𝑖𝑑𝑡ℎ𝐶𝐼
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

𝑅
∑ (𝐶𝐼𝑈𝑝𝑝𝑒𝑟 − 𝐶𝐼𝐿𝑜𝑤𝑒𝑟)

𝑅
𝑟=1  (55) 

Even if the intervals contain the population 𝐺𝑖𝑗 value 95% of the time, the method 

might not be useful if intervals are very wide. It is desirable that the width of a 

confidence interval be as narrow as possible for a given level of coverage (e.g., 95%). 

If CI coverage is above (100 − 𝛼)% + O(𝑛−1/2), then the CI is too wide. 

3. Type I Error. Type I error was calculated as the percentage of the S=100 bootstrap 

confidence intervals that did not contain zero when the population 𝐺𝑖𝑗 value was zero. 

Since 95% confidence intervals were constructed, it is expected that about 5% or the 

intervals will not include zero when the true value is zero (which is the case for some 

of the simulation conditions). Type I error should be close to nominal rates but is 

expected to deviate from it most under the lowest sample size conditions. 

4. Power. The power of the inferential procedure was calculated as the percentage of the 

S=100 bootstrap confidence intervals that did not contain zero when the population 𝐺𝑖𝑗 

value was non-zero. Generally, power rates greater than 0.8 are considered adequate. 

Small sample sizes and small predictor effect differences are expected to result in lower 
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power (everything else being equal). General dominance difference values (Gij) that are 

non-zero but small in the population might not be accurately detected by the CI 

procedures. Bootstrap results was also expected to be impacted by sampling error, 

especially when the bootstrap parent sample is small and/or differs substantially from 

the population. 

Reproducibility. The SRS reproducibility rate was calculated as the proportion of SRS in which 

the sample qualitative dominance relationship result, 𝐷𝑖𝑗
𝑠 , agreed with the population value of 𝐷𝑖𝑗 

for each pair of predictors. Similarly, bootstrap reproducibility was calculated as the proportion of 

bootstrap samples in which the sample qualitative dominance relationship result, 𝐷𝑖𝑗
𝑏 , agreed with 

the parent sample 𝐷𝑖𝑗
𝑃𝑆 and/or the population 𝐷𝑖𝑗. For both sampling methods, the higher the 

reproducibility the stronger the evidence for the stability and robustness of the dominance 

relationship result. The reproducibility rates under the no dominance conditions (i.e., when effects 

are the same for the two predictors being compared, or 𝐷𝑖𝑗 = 0) were used as a baseline to evaluate 

the conditions of known dominance effects. Reproducibility of the (non-zero) population 

dominance relationship (i.e., Dij = 1 or -1) should be adequate (i.e., above baseline rates) under the 

bootstrap procedure. Larger sample sizes and larger differences in predictor effects should translate 

into higher reproducibility. Level of collinearity may also impact reproducibility but perhaps not 

as severely as it impacts regression coefficients. Reproducibility results under SRS were used as a 

check for the bootstrap results because, as with CI measures, reproducibility results for bootstrap 

samples might be negatively impacted if the parent sample does not accurately reflect the 

population.  
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CHAPTER 4. RESULTS 

Results from the simulation study are presented in this chapter. First, DA results for the 

pseudo-populations are presented in order to inform the remaining analyses. Since dominance 

effects cannot be derived directly from the simulation conditions in multilevel models, the 

population DA results are the actual parameters evaluated in this study. Second, an example of the 

DA procedure is presented to demonstrate the application of dominance analysis with longitudinal 

multilevel models in practice. Finally, results from analyzing the simulation data are presented and 

summarized. The simulation results section includes an examination of the rate of non-positive 

definite (also referred to in this paper as “npd”) random effects covariance matrices (i.e., the G-

matrix containing the variances and covariances of the random intercept and random slopes) across 

conditions. A non-positive definite covariance matrix occurs when the variances within these 

matrices are estimated to be zero or negative, signaling that there was not enough variation in the 

response to attribute any variation to the random effect after controlling for all other effects in the 

model. In instances when npd G-matrices are found, the resulting variance component estimates 

are not reliable and, therefore, the measures of model fit that depend on these estimates should not 

be used. Simulation factors that impact the rates of npd G-matrices were also examined.  

Analyses of variance (ANOVAs) were conducted to examine the effects of the design 

factors (simulation conditions) on outcome measures that were produced at the replication level 

(ranking accuracy, bias, and reproducibility). For each of these outcome measures, an overall 

factorial ANOVA was conducted for factors that were fully crossed across models (nSubjects=50, 

200; nTimePoints=4, 8; Collinearity=0.0, 0.5; Predictor Effects=Baseline, Small, Large; Measures 

of Fit (R²)=McFadden, N&S, Beta, R&B). Note that throughout the results section, “nSubjects” 
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will be used as shorthand for number of level-2 units and “nTimePoints” as shorthand for the 

number of level-1 units. Since some design factors included in model 1 were not included in 

models 2 and 3, a separate ANOVA was conducted only for the factors within this model. The 

effect size (η2) of each combination of the design factors, representing the proportion of outcome 

variance explained by each factor combination, was used to determine practical significance. The 

statistical significance of the ANOVA tests was not used because the sample sizes were large and 

therefore all effects were significant. The effect size is defined here as 𝜂2 = 𝑆𝑆𝑓𝑎𝑐𝑡𝑜𝑟 𝑆𝑆𝑡𝑜𝑡𝑎𝑙⁄  , 

where SSfactor is the variation corresponding to the factor of interest and SStotal is the total variation 

in the outcome variable (Maxwell & Delaney, 2004). Combinations of factors (i.e., effects) that 

explained five percent or more of the total outcome variance were further investigated, as this 

value corresponds to a moderate effect size as suggested by Cohen (1988). Outcome measures 

related to inferential analyses (confidence interval coverage, width, type I error rates, and power) 

were analyzed descriptively as these results were reported as proportions or averages of the number 

of occurrences across replications. Specifically, only one CI was computed per replication. 

Therefore, the rates of coverage, type I error and power were calculated as the proportion of all S 

replications where these occurred. For instance, the type I error rate for each (population) zero-

valued Dij measure was the proportion of all S=100 CIs where the CI erroneously rejected the null 

hypothesis of no dominance. 
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Population DA parameters 

To put the simulation results into context, the pseudo-population general dominance results 

are presented first. The pseudo-populations were generated according to model complexity, sample 

size at level-1 (number of time points), collinearity and fixed effects conditions.  

Model 1 included four level-2 explanatory variables as predictors of the random intercept 

(denoted w1 - w4). This model was crossed with three levels of collinearity, i.e., the correlation 

among predictors: no collinearity (ρ = 0); medium collinearity (ρ = 0.5); and high collinearity (ρ 

= 0.8). Model 1 was also crossed with three levels of the predictor fixed-effects condition: a 

“baseline” level where the first two predictors (w1 and w2) and the last two predictors (w3 and w4) 

had the same regression coefficients and was theorized to produce similar general dominance for 

these pairs of predictors (γw1 =.3, γw2 =.3, γw1 =.1, γw4 =.1); a “small effects” level where coefficients 

had an ordering from large to small but differed by small values (γw1 =.5, γw2 =.45, γw1 =.4, γw4 =.3); 

and a “large effects” level where coefficients had a larger magnitude and differed by larger values 

(γw1 =.8, γw2 =.6, γw1 =.4, γw4 =.2).  

Model 2 contained 8 fixed effects: four person-level variables as predictors of the random 

intercept (similarly to model 1, denoted w1 - w4), and the same variables as predictors of the effect 

of time, i.e. cross-level interactions between the person-level predictors and time (denoted w1T - 

w4T). Model 2 was also crossed with three levels of predictor fixed-effects, a baseline level 

(denoted base-base) where each of the four main effects (wi) and the cross-level interactions (wiT) 

had coefficients as in the baseline level for model 1; a base-large effects level where the four main 

effects had baseline coefficients but the four cross-level interactions had coefficients as the “large 
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effects” level in model 1; and a large-large level where both the main effects and cross-level 

interactions had “large effects” coefficients.  

Model 3 also contained eight fixed effects: the same four time-invariant predictors of the 

random intercept seen in models 1 and 2 (w1 - w4) and four time-varying predictors at level-1 

(denoted x1 - x4). The levels of the predictor fixed effects condition for model 3 was similar to 

model 2, with base-base, base-large and large-large effects, however the first set of effects (before 

the hyphen) refers to the level-2 predictor coefficients and the second set of effects refers to the 

level-1 predictor coefficients. Models 2 and 3 were crossed with two levels of collinearity: no 

collinearity (ρ = 0) and medium collinearity (ρ = 0.5). All models were generated for each of the 

two level-1 sample size conditions, nTimePoints=4 and nTimePoints=8, and included fixed and 

random slopes for the effect of time on the outcome. Therefore, a total of 42 pseudo-populations 

were generated, 18 for model 1, 12 for model 2 and 12 for model 3.  

Table 7 lists the overall maximum, minimum and average values of the measures of fit and 

general dominance differences across conditions based on the population data. The general 

dominance difference (Gij) produced using the McFadden R² had the narrowest range among all 

measures, varying from a minimum of -0.11 to a maximum of 0.09, followed by the Gij produced 

using the N&S R² with a range between -0.22 and 0.14. The general dominance comparisons based 

on R² Beta and R&B1 R² measures had similar Gij ranges, with minimums around -0.30 and 

maximums around 0.30. The dominance measures using the R&B2 R² measure had the widest 

range, going from a minimum of -0.84 to a maximum of 0.37. Also listed in Table 7 are the 

maximum and minimum values that each of the R² measures obtained when fitting all subset 

models to the pseudo-population data. These results indicate that both R&B R² measures are not 

bounded between 0 and 1, which is an undesirable feature for an R² measure. 
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Table 7 Values of population parameters for the model fit (R²) and general dominance difference 

measures (Gij) across simulation conditions. 

 Statistic McFadden Beta N&S R&B 1 R&B 2 

R² Avg 0.09 0.34 0.31 0.23 0.36 

 Min 0.00 0.00 0.02 -0.01 -2.97 
 
Max 0.29 0.87 0.93 0.72 0.89 

Gij Avg(Abs) 0.02 0.06 0.05 0.09 0.10 

 Min -0.11 -0.31 -0.22 -0.29 -0.84 

 Max 0.09 0.30 0.14 0.27 0.37 

  

 Population general dominance values for each predictor (Gi) in model 1 are displayed in 

Figure 1. The exact Gi values and the corresponding population rank ordering of predictors by 

relative importance for model 1 are listed in Table 23 and Table 25 of the Appendix, respectively. 

Model 1 contains only predictors of the random intercept, which vary between subjects. According 

to the results presented in Figure 1, the Gi values seem to reflect the rank ordering that would be 

expected based on the fixed effects condition (i.e., regression coefficients), although the 

differential additional contribution of predictors gets smaller as collinearity increases; that is, the 

Gi values become closer to each other. The Gi values produced with the R&B2 R², which is the 

proportional change in variance of the random intercept, have the largest magnitude of all measures 

for this model. The Gi values using McFadden’s R² have the smallest magnitude among all 

measures of fit and do not vary much among predictors, even when fixed effects are large and 

collinearity is zero, indicating that this measure might not be able to detect much variability at 

level-2, but it still produced rankings consistent with what would be expected based on the fixed-

effects and collinearity conditions. The Gi values using N&S R² also seem to display the low level-

2 variability issue, but to a lesser extent. The number of time points did not seem to have a large 

influence on the pattern of dominance for this model.  
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Figure 1 Model 1 population general dominance (Gi) values for all conditions.
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Population general dominance values for each predictor (Gi) in model 2 are displayed in 

Figure 2. The exact Gi values and the corresponding population rank ordering of predictors by 

relative importance for model 2 are listed in Table 26 and Table 27 of the Appendix, respectively. 

This model, which contains interaction terms between the level-2 predictors and the time trend 

variable, shows a more pronounced effect of collinearity on the dominance values, especially for 

Gi values using the N&S and R&B2 R² measures. Here again the effect of collinearity was to 

flatten the distribution of Gi values. Additionally, in model 2 some Gi measures using the R&B2 

R² had negative values (these negative values are outside of the chart area in Figure 2 but are listed 

in Table 26 of the Appendix). This is not a desirable outcome but is in line with what is known 

about this measure; namely, that it might decrease when level-1 predictors that explain variability 

at level-2 are added to the model (Snijders & Bosker, 1994). Unlike model 1, in model 2 the 

number of time points seemed to influence the pattern of dominance, especially for Gi values using 

the R&B2 and the Beta R². As number of time points increase, the magnitude of the additional 

contribution of the predictors seem to get dampened. Since this model contains interaction terms 

between the level-2 predictors and the time trend variable, and time trend arguably has the largest 

effect on the measures of fit, it is likely that as number of time points increase the total variance to 

be explained after accounting for the effect of time and some of the interactions is lower for 

conditions with more time points. 
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Figure 2 Model 2 population general dominance (Gi) values for all conditions. 
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Population general dominance values for each predictor (Gi) in model 3 are displayed in 

Figure 3. The exact Gi values and the corresponding population rank ordering of predictors by 

relative importance for model 3 are listed in Table 28 and Table 29 of the Appendix, respectively. 

From Figure 3, we can see that the Gi values distribution using the R&B1 R² is flat for all level-2 

predictors in model 3 (i.e., w1-w4), indicating that this measure is not able to detect additional 

contributions of level-2 predictors. This result is expected since the R&B1 R² measure is the 

proportional change in variance at the residual level and can only detect variation at level-1. 

Therefore, the R&B1 R² should not be used to compare level-2 predictors. The Gi values using the 

other measures are mostly consistent with the patterns that would be expected based on fixed effect 

condition for this model and are not affected by collinearity. The number of time points does not 

seem to influence the pattern of dominance in this model.  

In general, across models, the dominance values for the predictors became closer to each 

other as collinearity increased. Additionally, the dominance values calculated using McFadden’s 

R² were much lower in magnitude than the other measures. Inspection of the complete dominance 

results for these models (not shown) indicate that the McFadden and N&S R² did not decrease as 

additional predictors were added to the model (i.e., these measures seem to be monotonic with 

model complexity based on these results). However, the R² Beta and the R&B R² did decrease with 

more predictors for some models, indicating that monotonicity does not hold for these measures. 

Specifically, these measures decreased in model 2 when cross-level interaction terms were added 

to models with main effects (level-2 predictors). The complete dominance results from model 3 

also showed that R² Beta decreased when time varying predictors (level-1) were added to subset 

models with level-2 predictors. Therefore, R² Beta is only adequate for comparing predictors 

within the same level of analysis. 
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Figure 3 Model 3 population general dominance (Gi) values for all conditions. 
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The population general dominance difference measures (Gij) can be derived from the Gi 

values by subtracting the additional contribution of one predictor from that of another, i.e., Gij = 

Gi – Gj. Pairs of predictors in conditions and measures where the Gi values are the same, and thus 

Gij = 0, were used for calculating type I error rates. All non-zero Gij measures were used for 

calculating power. Exact values of population Gij for model 1 are listed in Table 24 of the 

Appendix. For models 2 and 3, the number of Gij measures in each pseudo-population is large and 

therefore are not shown, but can be derived from the Gi values listed in Table 26 and Table 28 of 

the Appendix respectively. Values of Gij = 0 (i.e., equally important predictors) in the population 

occurred for the most part in conditions where predictors had the same regression coefficients. 

Specifically, this was the case for G12 and G34 in the baseline effect condition for model 1 as well 

as the base-base and base-large effects for models 2 and 3. However, not all predictors with the 

same fixed effects had zero population dominance difference values and not all predictor 

comparisons with zero-valued population dominance measures had the same fixed effects, which 

goes to show that predictor coefficients should not be confused with dominance effects, 

particularly when predictors are correlated. Table 8 shows the number of dominance measures 

considered for the calculation of type I error and power across conditions. 
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Table 8 Number of population general dominance difference measures (Gij) used for Type I (T1) 

and Power (P) rates evaluation across conditions summed over level-1 sample size. 

 Effect 

Baseline/ 

Base-Base 

Small/ 

Base-Large 

Large/ 

Large-Large 

 Collinearity 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 

Model R² T1 P  T1 P  T1 P  T1 P  T1 P  T1 P  T1 P  T1 P  P  

1 McFadden 3 9 4 8 4 8  12  12 1 11  12  12 12 

 Beta 1 11 1 11  12  12  12  12  12  12 12 

 N&S 2 10 3 9 2 10  12  12  12  12  12 12  
R&B 2 

 
12 

 
12 1 11 

 
12 

 
12 

 
12 

 
12 

 
12 12 

2 McFadden 7 41 12 36   2 46 2 46   1 47 1 47  

 Beta 2 46 3 45    48  48   1 47  48  

 N&S 3 45 4 44   1 47 3 45    48  48   
R&B 2 3 45 2 46 

   
48 2 46 

   
48 1 47 

 

3 McFadden 7 49 7 49   4 52 3 53    56  56  

 Beta 6 50 3 53   2 54 4 52    56  56  

 N&S 15 41 11 45   2 54 3 53   3 53 1 55  

 R&B 1 14 42 8 48   12 44 9 47   7 49 8 48  
 

 

DA Example 

To illustrate the application of dominance analysis with longitudinal multilevel models, an 

example is presented based on one simulation parent sample. This parent sample is drawn from a 

population created with model 1; therefore, there are four predictors of the random intercept at 

level-2. The sample has 200 subjects with 4 time points and a medium level of collinearity among 

predictors (ρ = 0.5). For this specific example, the sample was estimated with the SGR covariance 

structure.  

Table 9 shows the dominance analysis results using both the McFadden’s (the shorthand 

MF is used here) and N&S R² measures. The columns labeled with the R² measure show the values 
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of these measures associated with each subset model, and the remaining columns show the 

additional contribution of each predictor to each subset model. For example, the model containing 

w1 produces MF R² = .050 and N&S R² = .359 (see entry in the w1 row under the McFadden and 

N&S columns). If w3 is added to this model, the MF R² increases by .010 and the N&S R² increases 

by .044, and this increase is the entry in the w1 row and w3 column in the table for each measure. 

This means that the model w1 w3 will result in a MF R² = .050 + .010 = .060 and in a N&S R² = 

.359 + .044 = .403, which are the values under each R² measures in the w1, w3 row. If w4 is added 

to the w1 model, the MF R² increases by .006 and the N&S R² increases by .030, as shown in the 

w1 row and w4 column of the table. Therefore, the model w1 w4 will result in a MF R² = .050 + .006 

= .056 and in a N&S R² = .359 + .030 = .389, which are the values in the w1, w4 row under the 

respective measure. According to these results, w3 dominates w4 when added to the w1 subset 

model because the additional contribution of w3 to this model (MF=.010, N&S=.044) is larger than 

the additional contribution of w4 to the same model (MF=.006, N&S=.030). If the additional 

contribution of w3 was larger than the additional contributions of w4 to all subset models (i.e., in 

every row in this table), we would say that w3 completely dominates w4. However, we can see that 

for the subset model containing only w2, the additional contribution of w3 (MF=.003, N&S=.015) 

is actually smaller than that of w4 (MF=.007, N&S=.034), thus we say that complete dominance 

cannot be established between w3 and w4. When this occurs, the "average" rows of the table can 

be used to determine conditional dominance. For instance, the average additional contribution of 

w3 to models of size 1 is computed as (.010 + .003 + .009) / 3 =.007 for MF R² and as (.044 + .015 

+ .053) / 3 = .037 for N&S R². + .003)/3 = .004. Conditional dominance is established by 

comparing the average additional contribution across all model sizes. In the case of w3 and w4, we 

can see that for models of size 3 (k = 3), the average additional contribution of w3 (MF=.001, 
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N&S=.002) is the same as that of w4; therefore, conditional dominance also cannot be established 

between these two predictors. Hence, the last and least restrictive form of dominance is 

investigated, namely general dominance. General dominance corresponds to the “Overall 

Average” row in Table 9 and is computed by averaging all the conditional dominance measures, 

or all the “k = n Average” rows in the table. For example, in Table 9 the general dominance 

measure for w4 is computed as G4 = (.028 + .008 + .003 + .001) / 4 = .010 for MF and G4 = (.249+ 

.046+ .012+ .002) / 4 = .077 for N&S. In this example, w4 is said to generally dominance w3 

because the overall average for w4 (MF G4 =.010, N&S G4 =.077) is greater than the overall 

average for w3 (MF G3 =.009, N&S G3 =.069).  

The example presented in Table 9 also demonstrates a desirable characteristic of the 

general dominance measures, namely, that they add up to the given measure of model fit of the 

full model (which contains all predictors, w1 w2 w3 w4 in this example), allowing for a direct 

decomposition of the full model’s measure of fit across all predictors. In this example, we can see 

that ∑ 𝐺𝑖
𝑝
𝑖=1 = .031 + .027 + .009 + .010 = .077 for MF R², and ∑ 𝐺𝑖

𝑝
𝑖=1 = .165 + .161 +

 .069 + .077 = .472 for N&S R².  

The general dominance (Gi) results shown in Table 9 are used to calculate the general 

dominance difference values between pairs of predictors: 𝐺𝑖𝑗 = 𝐺𝑖 − 𝐺𝑗 . Here, for w3 and w4, the 

measure would be 𝐺34 = 𝐺3 − 𝐺4 = .009 − .010 = −.001 for MF R² and 𝐺34 = 𝐺3 − 𝐺4 =

.069 − .077 = −.008 for N&S R². The negative values indicate that the dominance relationship 

is in the opposite direction of how the predictors are listed in the measure, so in this example a 

negative G34 indicates that w4 dominates w3 at the general level.  
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Table 9 Dominance Analysis example for a parent sample from condition: nSubjects=200, 

nTimePoints=4, Fixed Effects=Large, Collinearity=0.5, Covariance Structure=SGR. 

  Additional Contribution of   Additional Contribution of 

Subset model McFadden R² w1 w2 w3 w4  N&S R² w1 w2 w3 w4 

k = 0 Average 0 .050 .047 .025 .028  0 .359 .365 .228 .249 

 w1 .050 
 

.025 .010 .006  .359 
 

.107 .044 .030 

 w2 .047 .028 
 

.003 .007  .365 .101 
 

.015 .034 

 w3 .025 .035 .026 
 

.012  .228 .176 .152 
 

.074 

 w4 .028 .028 .027 .009 
 

 .249 .140 .150 .053 
 

k = 1 Average 
 

.030 .026 .007 .008  
 

.139 .137 .037 .046 

 w1, w2 .075 
  

.001 .001  .467 
  

.004 .004 

 w1, w3 .060 
 

.016 
 

.002  .403 
 

.067 
 

.010 

 w1, w4 .056 
 

.020 .006 
 

 .389 
 

.082 .024 
 

 w2, w3 .051 .025 
  

.005  .380 .090 
  

.023 

 w2, w4 .055 .021 
 

.001 
 

 .399 .072 
 

.005 
 

 w3, w4 .037 .025 .019 
  

 .302 .112 .102 
  

k = 2 Average 
 

.024 .018 .003 .003  
 

.091 .083 .011 .012 

 w1, w2, w3 .076 
   

.001  .470 
   

.002 

 w1, w2, w4 .076 
  

.001 
 

 .470 
  

.002 
 

 w1, w3, w4 .062 
 

.015 
  

 .413 
 

.059 
  

 w2, w3, w4 .056 .021 
   

 .403 .069 
   

k = 3 Average 
 

.021 .015 .001 .001  
 

.069 .059 .002 .002 

 w1, w2, w3, w4 .077 
    

 .472 
    

Overall  

Average (𝐺𝑖
𝑠) 

  

.031 .027 .009 .010   .165 .161 .069 .077 

Population 

Parameter (Gi) 

 

.026 .019 .013 .009   .173 .137 .107 .082 

 

Table 10 shows all the Gij values for this specific parent sample, the corresponding 

population parameters and their bootstrap estimates, and the percentile and asymptotic confidence 

intervals obtained using the bootstrap samples. For example, for the MF R², G14 = .017 in the 

population. In the parent sample, and, in this case, when estimated as an average across bootstrap 

samples, G14 = .021. The positive values indicate that w1 dominates w4 in both the population and 
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parent sample. On the other hand, G34 = .004 in the population but G34 = -.001 in the parent sample, 

indicating that while in the population w4 dominates w3, in the parent sample the opposite is true. 

In general, the bootstrap Gij estimates will be closer in value to the parent sample than to the 

population, and since there is a mismatch between the parent sample and the population, the 

bootstrap estimates will likely also display a similar discrepancy. In this example in particular, the 

bootstrap estimates with the MF measure are exact estimates of the parent sample, so they will 

reflect the same bias in relation to the population that was present in their corresponding parent 

sample.  

The last part of Table 10 shows the qualitative dominance measures, Dij, obtained from the 

population and the parent sample, as well as the reproducibility of these values over the B=300 

bootstrap samples. For example, in the parent sample D14 = 1 since G1 > G4 and therefore G14 is 

positive. Conversely, D34 = -1 since G3 < G4 and therefore G34 is negative. If there were any 

measures for which Gi = Gj, Dij would be 0. The last two rows of Table 10 show the reproducibility 

of the population and of the parent sample Dij values over the bootstrap samples. The second to 

last row shows the reproducibility values corresponding to the proportion of bootstrap samples 

that replicated the Dij values found in the population, and the last row indicates the proportion of 

bootstrap samples that replicated the Dij values found in the parent sample. These values will match 

if the Dij values are the same between the population and parent sample, but they will be different 

if there is a mismatch, as is the case with D34. In the case of D34, 55.3% of the bootstrap samples 

agreed with the parent sample dominance pattern (D34 = -1), 32.3% of the bootstrap samples agreed 

with the population dominance pattern (D34 = 1), and the remaining 12.4% of bootstrap samples 

found an indeterminate dominance pattern (D34 = 0). In general, the magnitude of the 

reproducibility will be proportional to the magnitude of the Gij values. In this example we can see 
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this is the case with D12 and D34 having much lower reproducibility than the other pairs of 

predictors. In particular, when comparing the measures of fit, we can see that D34 had a mismatch 

between population and parent sample for both measures, but for the N&S R² the absolute 

magnitude of the G34 measure was higher than that of G12, so the D34 reproducibility was higher 

than that of D12, while for the MF R² the G12 value was larger in absolute terms than the G34 value, 

and thus D34 showed a smaller reproducibility value than D12. It is worth noting that reproducibility 

values for the dominance relationships other than D12 and D34 were either 1 or very close to 1, 

indicating that all bootstrap samples replicated the dominance patterns found in the population and 

parent sample for these dominance relationships.  

Table 10 also presents the percentile and asymptotic normal confidence intervals for the 

parent sample Gij measures. We can see that the upper and lower bounds are very similar between 

the two CI types. Additionally, the CIs for G13, G14, G23 and G24 do not contain 0, indicating that 

general dominance is well established (and null hypothesis of no dominance is rejected) between 

the predictors in these pairs. The inferential results also mirrored the reproducibility results, where 

a larger magnitude of the dominance general difference was linked to a higher degree of confidence 

that the sample dominance relationship was actually present in the population. In this example 

both G12 and G34 are very small in the population and in the parent samples, and both the 

reproducibility and CI results indicate that we should not place much certainty in the fact that w1 

is more (or less) important than w2 and that w3 is more (or less) important than w4 in explaining 

the outcome. On the other hand, based on these results we can be fairly certain that w1 and w2 are 

relatively more important than both w3 and w4. 
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Table 10 Population general dominance measures, estimates and CIs (using McFadden R²) for 

condition: nSubjects=200, nTimePoints=4, Fixed Effects=Large, Collinearity=0.5, Covariance 

Structure=SGR. 

 McFadden R²  N&S R² 

Result G12 G13 G14 G23 G24 G34  G12 G13 G14 G23 G24 G34 

Population 

parameter 

.007 .013 .017 .006 .010 .004  .036 .066 .091 .030 .055 .025 

Parent sample 

estimate 

.004 .022 .021 .018 .017 -.001  .004 .096 .088 .092 .084 -.008 

Bias (parameter-

parent sample 

estimate) 

.003 -.009 -.004 -.012 -.007 .005  .032 -.030 .003 -.062 -.029 .033 

Bootstrap samples 

average estimate 

.004 .022 .021 .018 .017 -.001  .004 .093 .085 .090 .082 -.008 

Bias (parameter-

bootstrap estimate) 

.003 -.009 -.004 -.012 -.007 .005  .032 -.027 .006 -.060 -.027 .033 

Bias (parent-

bootstrap estimate) 

.000 .000 .000 .000 .000 .000  .000 .003 .003 .002 .002 .000 

Percentile CI -.009, 

.017 

.010, 

.032 

.011, 

.032 

.006, 

.030 

.006, 

.027 

-.008, 

.008 

 -.054, 

.062 

.042, 

.144 

.039, 

.133 

.037, 

.144 

.027, 

.131 

-.045, 

.039 

Asymptotic  

Normal CI 

-.009, 

.017 

.011, 

.033 

.011, 

.031 

.006, 

.030 

.007, 

.027 

-.009, 

.007 

 -.054, 

.062 

.045, 

.147 

.039, 

.137 

.040, 

.144 

.034, 

.134 

-.050, 

.034 

Result D12 D13 D14 D23 D24 D34  D12 D13 D14 D23 D24 D34 

Population Dij 1 1 1 1 1 1  1 1 1 1 1 1 

Parent sample Dij 1 1 1 1 1 -1  1 1 1 1 1 -1 

Reproducibility of 

population Dij 

.737 .997 1.0 .997 1.0 .323  .557 .997 1.0 1.0 1.0 .360 

Reproducibility of 

parent sample Dij 

.737 .997 1.0 .997 1.0 .553  .557 .997 1.0 1.0 1.0 .630 
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Simulation Results 

Rate of non-positive definite (npd) random components covariance matrices  

Due to the complexity of the models estimated here, the proportion of non-positive definite 

G-matrices was very high for some combinations of the design factors (i.e., simulation conditions). 

In instances when non-positive definite G-matrices are present, the resulting variance component 

estimates are questionable and may not be used (Schoeneberger, 2016). These estimation issues 

impacted the choice of measures of model fit that were used for further analyses. Of the measures 

of model fit considered in this study - Nakagawa and Schielzeth’s marginal R² (N&S), Edwards et 

al.’s 𝑅𝛽
2 (Beta), McFadden’s R² (McFadden), and Raudenbush and Bryk’s pseudo-R² measures 

representing the proportional change in variance of the residual (R&B 1) and of the random 

intercept (R&B 2) - the first (N&S) and the last (R&B 2) measures rely on level-2 random effects 

estimates and should not be used for conditions where the covariance matrices were found to be 

non-positive definite. 

 For models estimated using the GAR covariance structure, an average of 38% of the 

bootstrap samples per replication across simulation conditions had at least one subset model 

estimate that resulted in a npd covariance matrix. This rate decreases to just under 7% for models 

estimated using the SGR covariance structure. At the model level, model 1 had the lowest rate of 

npd matrices, with an average of just under 14% of bootstrap sample estimates having a npd G-

matrix. This rate went up to 21% for model 2 and 43% for model 3.  

In order to investigate what combination of factors were most strongly related to non-

positive definite random effect covariance matrices, a factorial ANOVA was conducted. As 

expected, the covariance matrix specification was the factor with the largest effect size (η2 = .30), 
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followed by model complexity (η2 = .10), sample size at level-2 (η2 = .09), and sample size at level-

1 (η2 = .07). None of the other studied factors or their interactions were found to have a relevant 

effect on the rate of non-positive definite matrices. Figure 4 shows how these factors impact the 

rate of npd G-matrices in bootstrap samples. From this figure we see that the GAR covariance 

structure produced npd G-matrices for every condition, even at the highest sample sizes. The 

problem is considerably less severe for the SGR covariance structure, since it is a simpler structure 

that estimates a smaller number of parameters. However, the simulation data were generated using 

the GAR structure. Figure 5 shows the rate of non-positive definite G-matrices in the simple 

random (parent) samples. The problem is less severe in general for SRS, implying that the 

bootstrapping procedure aggravated this issue. 

Due to the high rate of non-positive definite covariance matrices found when estimating 

models with the GAR covariance structure, the remaining analyses presented here will focus on 

results estimated with the SGR structure. For the conditions where this problem was not as severe 

(i.e., Model=1, nSubjects=1000, nTimePoints=8), a comparison of the results between these two 

covariance structures was performed to determine whether this factor was indeed influential. 
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Figure 4 Distribution of rate of non-positive definite G-matrices for bootstrap samples across 

simulation conditions and replications. 

 

  

Figure 5 Distribution of rate of non-positive definite G-matrices for simple random (parent) 

samples. 
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Ranking accuracy  

To evaluate the factors associated with an accurate rank-ordering of predictors (by relative 

importance) using dominance analysis, ANOVAs were conducted using the simulation conditions 

as design factors. Results from the overall factorial ANOVA using factors that were fully crossed 

will be presented first, followed by results of the ANOVA conducted for model 1 only, which 

included additional levels of sample size and collinearity factors. The results for any combination 

of factors found to have a moderate effect (η2 ≥ .05) on the outcome will be emphasized. 

Predictor identified by DA as most important 

The proportion of bootstrap samples that agreed with the population on the predictor 

identified as most important by DA was computed for each condition.  An examination of the 

factors related to this outcome indicated that the most influential factors were sample size at level-

2 (η2 = .05), the interaction between model complexity and measure of fit (η2 = .06), and the 

interaction between model complexity and predictor fixed effects condition (η2 = .05).  

Results from the ANOVA of model 1 results indicated that, within this model, the most 

influential factors associated with top predictor agreement were the predictor fixed effects (η2 = 

.13) and the sample size at level-2 (η2 = .13). Based on the descriptive data, provided in Table 11, 

we see that rates of agreement increased with an increase in level-2 sample size. Additionally, for 

model 1, when data were simulated using small effect sizes the rates of agreements were lower 

than with the baseline effects and the large effects. This is expected given the population values 

presented in Figure 1. The general dominance values were very close to each other for this 

condition which might result in unstable rank orderings due to sampling error. On average, the 

McFadden R² measure seemed to produce the highest rates of agreement, followed by the R² Beta 

and the N&S R² respectively. The N&S R² seems to have performed especially poorly in model 3 
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under the baseline and large effect conditions even though it performed comparably with other 

measures in models 1 and 2. This measure is constructed based on variance components estimates 

and was most severely affected by rates of non-positive definite matrices, which may help explain 

its poor performance in model 3 (the model with the highest rates of non-positive definite 

matrices). 

Table 11 Percentage of bootstrap samples that agree with the population on the predictor ranked 

most important by DA.  

% 

Agree 

Top 

Predictor 

Baseline/ 

Base-Base 

Small/ 

Base-Large 

Large/ 

Large-Large All 

Model 

R² / 

nSubjects 50 200 1000 50 200 1000 50 200 1000  

1 McFadden 64 80 94 36 47 63 56 78 96 68 

 Beta 35 41 50 34 43 57 55 75 95 54 

 N&S 56 71 83 34 43 58 55 75 94 63 
 

R&B 2 39 46 58 33 42 55 53 73 94 55 

2 McFadden 44 70  57 78  55 75  63 

 Beta 67 81  46 73  57 78  67 

 N&S 46 67  56 71  47 64  58 
 

R&B 2 31 48 
 

33 54 
 

38 57 
 

43 

3 McFadden 92 100  88 99  88 99  94 

 Beta 57 75  88 99  86 99  84 

 N&S 35 43  65 88  34 44  51 

 R&B 1 59 64  86 98  85 98  82 

 

 Figure 6 compares the rates of agreement in terms of the predictor ranked as most important 

between (1) the bootstrap samples and population or (2) the bootstrap samples with their parent 

sample. The agreement between SRS and population is also shown and used as a check on the 

sampling procedure. We can see from this figure that the pattern of results among comparison 

types is similar, indicating that results obtained with the bootstrap samples accurately reflect the 
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patterns in the population. In general, the agreement rates between bootstrap and population were 

of an order of magnitude smaller than the agreement between the bootstrap and their parent sample 

rankings. On average, the true rate of agreement between bootstrap and population was about 20 

percentage points lower than the observed agreement between bootstrap and parent sample.   

  

 

Figure 6 Average agreement rates in terms of the predictor ranked most important by DA when 

compared between bootstrap sample and population (left), bootstrap and parent sample (middle), 

and SRS and population (right). 
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Predictor identified by DA as the least important 

The proportion of bootstrap samples that agreed with the population on the predictor 

identified as least important by DA was analyzed by simulation condition. An examination of the 

factors related to this outcome indicated that the most influential factors were measure of fit (η2 = 

.16) and the sample size at level-2 (η2 = .09). Results from the ANOVA of model 1 results indicated 

that, within this model, the most influential factors associated with least important predictor 

agreement were sample size at level-2 (η2 = .19), measure of fit (η2 = .07), and the predictor fixed 

effects condition (η2 = .06).  

Based on the descriptive data presented in Table 12, we see that rates of agreement 

increased with an increase in level-2 sample size across all models and measures of fit. 

Additionally, for model 1, as was the case for the agreement of the top predictor, when data were 

simulated using small effect sizes the rates of agreements were lower than with the baseline effects 

and the large effects. The same explanation applies here, where population dominance measures 

that are too close (but not zero) might create instability in the samples and a decreased likelihood 

of good agreement with the population. On average, the McFadden R² measure seemed to produce 

the highest rates of agreement, followed by the N&S R² and the R² Beta respectively, except for 

model 3 where the R&B1 R² (proportion change in variance of the level-1 residual) performed 

better than all the other measures.  

Figure 7 compares the rates of agreement in terms of the predictor ranked as least important 

when the comparison is done between the bootstrap samples and population, as well as the rates 

produced when comparing the bootstrap with its parent sample. The comparison between SRS and 

population is again used as a check on the sampling procedure. We can see from this figure that 

the pattern of results is very similar across the comparison types, indicating that results obtained 
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with the bootstrap samples accurately reflect the patterns in the data. On average, as expected, the 

agreement rates between bootstrap and population were of an order of magnitude smaller than the 

agreement between the bootstrap and their parent sample rankings, although not as far apart as was 

the case for the most important predictor. On average, the agreement proportion for the least 

important predictor was about 5-15% points lower when comparing the bootstrap with the 

population than when comparing the bootstrap with their parent sample. 

Table 12 Percentage of bootstrap samples that agree with the population on the predictor ranked 

last by DA. 

% Agree 

Last 

Predictor 

Baseline/ 

Base-Base 

Small/ 

Base-Large 

Large/ 

Large-Large All 

Model 

R² / 

nSubjects 50 200 1000 50 200 1000 50 200 1000  

1 McFadden 74 90 99 44 60 82 55 79 96 75 

 Beta 45 57 69 36 49 71 51 74 94 61 

 N&S 52 65 77 36 50 72 51 74 93 63 
 

R&B 2 32 41 51 35 49 70 49 72 92 55 

2 McFadden 78 96 
 

68 85 
 

65 85 
 

79 

 Beta 54 69 
 

40 58 
 

70 84 
 

62 

 N&S 77 96 
 

63 80 
 

70 89 
 

79 
 

R&B 2 24 36 
 

42 63 
 

29 45 
 

40 

3 McFadden 68 90 
 

76 93 
 

58 85 
 

78 

 Beta 26 47 
 

50 72 
 

43 63 
 

50 

 N&S 54 77 
 

51 81 
 

52 76 
 

65 

 R&B 1 79 95 
 

87 97 
 

77 96 
 

89 
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Figure 7 Average agreement rates in terms of the predictor ranked least important by DA when 

compared between bootstrap sample and population (left), bootstrap and parent sample (middle), 

and SRS and population (right). 
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Kendall’s tau-b 

The Kendall rank correlation coefficient (Kendall tau) for the correlation between the 

population and bootstrap DA predictor rankings was computed for each condition. Examination 

of the factors related to this outcome indicated that the most influential factors were model 

complexity (η2 = .13), sample size at level-2 (η2 = .11), measure of fit (η2 = .08), the predictor fixed 

effects condition (η2 = .07), the interaction between model complexity and predictor fixed effects 

condition (η2 = .06), and the interaction between model complexity and measure of fit (η2 = .06). 

The ANOVA results for model 1 indicate that, within this model, the most influential factors 

associated with predictor ranking agreement were the sample size at level-2 (η2 = .28), the predictor 

fixed effects (η2 = .18), and the level of collinearity (η2 = .07).  

Descriptive results from the factors that seemed to more strongly impact the rank 

correlations are listed in Table 13. Correlations below .3, considered a low correlation value, were 

highlighted in red; correlations above .5, indicating moderate to strong correlations, were 

highlighted in green. Based on the descriptive data presented in Table 13, we see that Kendall tau 

correlations increased with an increase in level-2 sample size. The lowest correlations occurred 

when sample size at level-2 was 50. For model 1, correlations above .5 were only reached when 

sample size at level-2 was 1000 for the baseline and small effects conditions. Additionally, for 

model 1, when data were simulated using small effect sizes, the Kendall tau correlations were 

lower than with the baseline effects and the large effects. For models 2 and 3, the large fixed effect 

condition was not consistently associated with higher Kendall tau correlations. The instability of 

the rankings for these conditions might be related to population general dominance values that are 

too close for some measures (see Figure 2 and Figure 3). For model 1, all measures of model fit 

performed similarly well in terms of Kendall tau correlation. For model 2, the N&S R² measure 
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was the best performing followed by McFadden’s R². For model 3, the R&B1 R² (proportion 

change in variance of the level-1 residual) performed better than all the other measures, with 

McFadden’s R² performing second best. Table 14 contains the model 1 Kendall tau averages by 

factors in this model. We can see that there is a noticeable increase in average correlations with an 

increase in sample size. Conversely, the increase in collinearity negatively impacts the Kendall tau 

correlations. At the highest collinearity level (0.8), the average tau correlation is above .5 only for 

the highest sample size and fixed effects conditions.  

Table 13 Kendall’s tau rank correlation between population and bootstrap DA predictor 

rankings. 

 Effect 

Baseline/ 

Base-Base 

Small/ 

Base-Large 

Large/ 

Large-Large All 

Model R² / nSubjects 50 200 1000 50 200 1000 50 200 1000  

1 McFadden .21 .47 .75 .16 .34 .57 .45 .73 .94 .51 

 Beta .19 .39 .63 .16 .33 .55 .44 .72 .94 .48 

 N&S .20 .43 .69 .16 .33 .56 .44 .72 .94 .49 
 

R&B 2 .17 .36 .60 .15 .31 .54 .41 .69 .92 .46 

2 McFadden .51 .74 
 

.71 .87 
 

.68 .86 
 

.73 

 Beta .50 .72 
 

.51 .75 
 

.66 .83 
 

.66 

 N&S .66 .83 
 

.77 .88 
 

.79 .90 
 

.80 
 

R&B 2 .25 .49 
 

.41 .66 
 

.36 .61 
 

.46 

3 McFadden .61 .78 
 

.80 .91 
 

.80 .93 
 

.80 

 Beta .40 .65 
 

.72 .85 
 

.68 .85 
 

.69 

 N&S .24 .49 
 

.57 .79 
 

.44 .68 
 

.54 

 R&B 1 .77 .88 
 

.89 .97 
 

.86 .94 
 

.89 
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Table 14 Kendall’s tau rank correlation between population and bootstrap DA predictor rankings 

for model 1 by collinearity, level-2 sample size and predictor fixed effect conditions. 

Effect Baseline Small Effect Large Effect All 

Collinearity 50 200 1000 50 200 1000 50 200 1000  

0 .22 .54 .75 .23 .42 .76 .56 .84 .99 .59 

0.5 .19 .44 .70 .16 .36 .60 .43 .73 .95 .51 

0.8 .16 .26 .55 .09 .20 .30 .31 .58 .87 .37 

 

The Kendall tau correlations between bootstrap and population rankings are compared to 

the correlations between the bootstrap and parent sample rankings in Figure 8. The agreement 

levels between SRS and population is again used as a check on the sampling procedure. As was 

the case with the previous ranking outcome measures, the pattern of results is effectively the same 

across comparison types, indicating that results obtained with the bootstrap samples accurately 

reflect the patterns in the data. On average, Kendall tau correlations for the agreement between 

bootstrap and the (true) population predictor rankings were about .20 points (20 percentage points) 

lower than between bootstrap and parent sample. Model complexity seemed to have a positive 

effect on Kendall tau; that is, holding sample size constant, the more complex the model (larger 

number of predictors) the larger the Kendall tau correlation values. 
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Figure 8 Average agreement rates in terms of the Kendall tau rank order correlation between 

bootstrap sample and population (left), bootstrap and parent sample (middle), and SRS and 

population (right). 
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Bias  

Standardized bias was computed to compare the bootstrap DA estimates to their 

corresponding population parameters by condition. Examination of the factors related to bias 

indicated that the most influential factors were measure of fit (η2 = .08) and model complexity (η2 

= .05). Results from the ANOVA of model 1 results did not find any factors with a meaningful 

effect on standardized bias; any individual factor or interaction explained no more than 3% of the 

variance in standardized bias. Of special interest, the covariance structure factor had only a small 

effect on standardized bias. 

Average bootstrap standardized bias values are shown in Table 15 and Figure 9 for the 

factors deemed influential by the ANOVA. On average, standardized bias values were low for all 

but the R&B measures, indicating that bootstrap DA measures did not deviate much from their 

corresponding population values.  

Table 15 Average standardized bias between bootstrap and population DA measures. 

         Model 1        Model 2         Model 3  

R² / nSubjects 50 200 1000 50 200 50 200 All 

McFadden -0.09 -0.10 -0.13 -0.05 -0.03 0.06 0.08 -0.05 

Beta -0.09 -0.06 -0.05 0.18 0.08 0.21 0.12 0.03 

N&S -0.20 -0.21 -0.36 0.01 0.12 0.08 0.03 -0.11 

R&B 1      -0.31 -0.53 -0.42 

R&B 2 -0.24 -0.43 -0.87 -0.10 -0.05   -0.38 
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Figure 9 Average standardized bias for bootstrap vs population DA measures. 

 

Figure 10 shows the distribution of the standardized bias values of the general dominance 

measures estimated in the bootstrap samples compared to the corresponding population and parent 

sample values. The bias between the SRS and population measures is again used as a check on the 

sampling procedure. As expected, bias between the population DA measures and bootstrap sample 

estimates were larger on average than between bootstrap and parent samples. The pattern of bias 

comparing SRS and population values matches that of the bias comparing bootstrap and population 
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values, indicating that the bootstrapping procedure did not introduce a significant amount of bias 

in the measures. Overall, except for R&B R² measures, standardized bias was small (within 0.2 

standard deviations of the population values).  

 

Figure 10 Average standardized bias values for the general dominance measures estimated by the 

bootstrap vs parent sample (left), bootstrap sample vs population (middle) and SRS vs population 

(right). 
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Inference  

Statistical inference for the estimated difference between the general dominance measures 

(i.e., 𝐺𝑖𝑗 values) was carried out by using two types of confidence intervals: asymptotic normal 

(ANCI) and percentile (PCI). The asymptotic normal 95% CI for the 𝐺𝑖𝑗 parameter is constructed 

for each sample as: 𝐶𝐼95% = �̂�𝑖𝑗 ± 𝑍.05𝑠, where �̂�𝑖𝑗 is the general dominance difference estimate 

for each pair of predictors averaged across all samples (SRS or bootstrap), 𝑍.05 = 1.96, and s is the 

standard deviation of all �̂�𝑖𝑗 from all (SRS or bootstrap) samples. Percentile 95% confidence 

intervals are constructed by ranking the estimated general dominance values, G𝑖𝑗
𝑠  or G𝑖𝑗

𝑏  , obtained 

from all samples (either SRS or bootstrap) and selecting the values corresponding to the 2.5th and 

97.5th percentiles as the end points of the confidence interval. 

1. CI Coverage.  

Confidence interval coverage was averaged across all Gij dominance measures by 

simulation condition and measure of fit to obtain an overall coverage rate per condition. The 

coverage rate is the number of intervals that contained the corresponding population parameter, 

converted to a proportion out of the S=100 replications. Additionally, since coverage is calculated 

for each Gij measure, to obtain a single rate per condition the coverage for all Gij measures were 

averaged within each condition. For instance, model 3 has 28 Gij dominance pairs since it has 8 

predictors; therefore, the average coverage rate for each simulation condition combination within 

model 3 will be an average of the 28 Gij coverage rates produced by that condition. Average 

confidence interval coverage was close to the .95 (95%) nominal rate for most conditions for both 

the asymptotic normal (ANCI) and the percentile (PCI) confidence intervals (Table 16). Since both 

CI methods produced very similar results in terms of coverage, only the asymptotic normal CI is 

analyzed in depth. Figure 11 shows the coverage rates by model, sample size and measures of fit, 
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averaged over the other simulation conditions. Coverage rates were close to the 95% nominal 

levels across sample size and model complexity conditions for all but the R&B R² measures.  

Table 16 Confidence interval coverage rates for general dominance measures by sample size 

combination, confidence interval type, and measure of model fit. 

Coverage (%)  nSubjects - nTimePoints 

CI Type  R²  50 - 4 50 - 8 200 - 4 200 - 8 1000 - 4 1000 - 8 Mean 

Percentile McFadden 95 95 95 96 96 97 95 

 Beta 94 93 94 94 94 94 94 

 N&S 93 94 92 94 90 94 93 

 R&B 93 93 79 89 78 83 88 

         

Asymptotic  McFadden 96 95 95 94 94 94 95 

Normal Beta 94 94 95 94 95 95 94 

 N&S 94 94 92 94 90 93 93 

 R&B 94 94 79 89 77 84 88 
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Figure 11 Asymptotic normal confidence interval coverage averaged across collinearity and 

predictor effects condition. 

 

2. CI Width. 

 The width of the confidence interval was computed as the range of the CI, averaged across 

all bootstrap or SRS samples for each condition. Additionally, the CI width for the Gij measures 

were averaged within each condition. The mean estimates for 95% confidence interval widths for 
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the general dominance measures appeared to be reasonable when considering the population range 

of the Gij measures (see Table 7) and were very similar (within .005) of SRS CI width results (not 

shown). CI width values yielded intuitive results as they related to the factors explored in this 

study. That is, as expected, CI width generally decreased with an increase in sample size at both 

the subject and the observation (time) levels. For models 2 and 3, the R&B2 R² measure, which 

corresponds to the proportional change in variance in the random intercept variance component, 

produced extreme values of confidence interval width and were removed from the analysis. This 

issue might be related to the presence of non-positive definite matrices in some models. The 

average confidence interval width results for the other measures of model fit (R²) are presented in 

Table 17. Confidence interval width results are consistent across the percentile and asymptotic 

normal methods, showing minimal variation across these methods.  

Table 17 Average confidence interval width for the general dominance measures by sample size 

combination, confidence interval type and measure of model fit. 

CI Width  nSubjects - nTimePoints 

CI Type  R²  50 - 4 50 - 8 200 - 4 200 - 8 1000 - 4 1000 - 8 Mean 

Percentile McFadden .036 .021 .017 .010 .007 .005 .018 

 Beta .226 .209 .111 .102 .062 .068 .145 

 N&S .141 .076 .068 .038 .034 .019 .071 
 
R&B 1 .134 .078 .068 .039 

  
.080 

Asymptotic  McFadden .036 .021 .017 .010 .007 .005 .018 

Normal Beta .224 .208 .111 .102 .062 .069 .144 

 N&S .140 .076 .068 .038 .034 .019 .071 

 R&B 1 .134 .078 .068 .040 
  

.080 
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3. Type I Error.  

Type I error in this study refers to the (false) detection of a general dominance relationship 

between two predictors when the population dominance difference Gij is zero (i.e., the null 

hypothesis of no dominance is true but is rejected). False detection rates were evaluated at the 0.05 

alpha level (5% rate) and were averaged across all the null dominance measures, which are the 

population Gij measures formed by Gi values that are equal to each other in Figure 1 (model 1), 

Figure 2 (model 2), and Figure 3 (model 3). If the 95% CI in any of these cases did not include 0 

then the null hypothesis was considered to be (falsely) rejected.  

 Using Bradley’s (1978) liberal criterion of robustness, a test can be considered robust, and 

thus acceptable, if the empirical type I error rate is within the interval α ± 0.5α, which, for α = .05, 

implies a range between 2.5 and 7.5%. Table 18 lists the average type I error rates by CI type, 

measure of fit, and leve-2 sample size. A large proportion of type I error values were below the 

nominal 5% level, especially under the lower level-2 sample size condition. As sample size at 

level-2 increased, type I error rates approached the nominal level with a few exceptions, most 

notably under the McFadden measure, which got more conservative as sample size increased in 

the percentile CI type. As can be seen in Figure 12, very few instances went over the upper limit 

of the acceptable range. For the asymptotic standard error interval, dominance measures using the 

N&S R² and the R&B R² were overly conservative when the sample size at level-2 was 50. 
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Table 18 Average type I error rate by CI type, R² measure and level-2 sample size. 

 nSubjects   50 200 1000 

CI R² Average Type I Error 

PCI McFadden 3.2 2.7 1.3 

 Beta 3.6 4.5 7.5 

 N&S 3.6 3.9 5.1  
R&B 2 3.0 3.7 3.0 

ANCI   McFadden 2.7 3.9 4.7 

 Beta 3.3 3.5 5.0 

 N&S 2.1 3.4 5.0 

 R&B 2 1.3 2.8 4.0 

  

  

Figure 12 Type I error rate across all Gij measures with a population value of zero.  

[Note: The straight, horizontal black dashed lines represent acceptable Type I errors rates between 

2.5% and 7.5%. The red line represents the nominal 5% rate.] 
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4.  Power.  

 The power of the inferential procedure was calculated as the proportion of replications 

where the non-null population dominance relationships (𝐺𝑖𝑗 ≠ 0, rounded to two decimal points) 

was detected by the 95% confidence interval (i.e., zero was not included in the interval so the null 

hypothesis of zero dominance was rejected). In general, power rates of 80% or above are 

considered adequate.  

Figure 13 shows the power rates by values of the population dominance absolute effect Gij 

for each sample size and predictor level combination. The collinearity factor did not seem to impact 

power as much as the predictor level (related to model complexity) and sample size, so the results 

here were averaged across the collinearity factor. Since the results from the asymptotic normal and 

the percentile confidence intervals were very similar, here only the former (ANCI) is presented. It 

can be seen from Figure 13 that, when comparing the relative importance of level-2 predictors, a 

sample size of at least 200 subjects is needed to obtain adequate power. Additionally, the 

McFadden and N&S R² measures seem to result in higher power for these comparisons. A list of 

the minimum effect size of the general dominance difference (Gij) needed to obtain 80% power by 

sample size, predictor type and measure of fit is provided in Table 19.  
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Figure 13 Power rates obtained with the asymptotic standard error CI by the absolute value of the 

population general dominance difference (Gij) across sample sizes (columns), predictor level 

(rows), and measure of fit (lines). 
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Table 19 Minimum general dominance (Gij) effect size to achieve 80% power per measure of fit, 

sample size and predictor level. 

nSub-nTimePts: 50 - 4 50 - 8 200 - 4 200 - 8 1000 - 4 1000 - 8 

R2 Preditor Level       
McFadden IN-IN 0.01 0.01 0.01 0.004   

 L1-L1 0.05 0.03 0.02 0.02   

 L2-IN 0.02 0.01 0.01 0.003   

 L2-L1 0.03 0.01 0.01 0.01    
L2-L2 

  
0.01 0.004 0.004 0.002 

Beta IN-IN 0.05 0.05 0.02 0.02   

 L1-L1 0.14 0.08 0.06 0.04   

 L2-IN 0.19 0.09 0.05 0.04   

 L2-L1 0.09 0.07 0.06 0.05    
L2-L2 0.27 

 
0.07 0.06 0.03 0.04 

N&S IN-IN  0.14 0.03 0.04   

 L1-L1  0.06 0.07 0.01   

 L2-IN 0.07 0.04 0.03 0.04   

 L2-L1  0.06 0.05 0.02    
L2-L2 

  
0.02 0.01 0.02 0.01 

R&B 1 L1-L1  0.14 0.26 0.05    
L2-L1 0.2 0.11 0.11 0.05 

  

R&B 2 IN-IN    0.04   

 L2-IN    0.19   

 L2-L2    0.18 0.11 0.04 

Note: The predictor level refers to the level of predictors in the pair, where L2 represents a person-

level predictor, L1 represents a time-varying predictor, and IN represents the cross-level 

interaction between a level-2 predictor and the Time trend effect. 

 

Figure 14 shows a comparison of the power rates for the different measures of fit, for both 

confidence interval types, disaggregated by model and sample size. This figure shows that for 

model 1, only the McFadden R² is able to achieve reasonable power and only for 200 subjects and 

8 time points, or 1000 subjects. For model 2, 80% power was only achieved by the McFadden and 

the N&S R² measures at the highest sample size combination (nSubjects=200 and nTimePoints=8). 
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For model 3, which contains more predictors and a wider range of effects, 80% power was 

achieved by the McFadden and the R&B R² (change in variance of the level-1 residuals) with 4 

time points when the number of subjects was 200 and, with 8 time points, for both 50 and 200 

subjects. 

    

Figure 14 Average power rates (%) of the non-null dominance measures by sample size and 

model for each measure of fit averaged across all dominance measures and collinearity 

conditions. 

 



 

131 

 

Reproducibility  

In order to investigate the factors associated with bootstrap reproducibility rates 

(proportion of bootstrap samples where the qualitative dominance measure Dij agreed with its 

corresponding population value), reproducibility of all Dij values were averaged across simulation 

conditions. Then the relationship between average reproducibility and the magnitude of the 

population general dominance relationship Gij was also investigated.  

Examination of the factors related to the proportion of bootstrap samples that reproduced 

the population dominance relationship indicated that the most influential factors were the predictor 

fixed effects condition (η2 = .15), the model complexity (η2 = .11), sample size at level-2 (η2 = 

.10), and the interaction between measure of fit and model complexity (η2 = .08). The ANOVA of 

model 1 results indicated that, within this model, the most influential factors associated with 

average reproducibility were the predictor fixed effects condition (η2 = .25), sample size at level-

2 (η2 = .24), and the level of collinearity (η2 = .06).  

Reproducibility rates for the factors deemed influential are presented descriptively in Table 

20. Reproducibility was on average greater than .70 across measures of fit and sample size 

conditions. Reproducibility increased with an increase in level-2 sample size and with an increase 

in effect size. For model 1, all measures of model fit performed similarly well in terms of 

reproducibility. For model 2, the N&S R² measure was the best performing, and for model 3, the 

R&B R² (proportion change in variance of the level-1 residual) performed better than all the other 

measures, with McFadden R² being second best. Table 21 contains the model 1 reproducibility 

averages for factors deemed influential in this model’s ANOVA results. There is a noticeable 

increase in average reproducibility with an increase in sample size. On the other hand, the increase 

in collinearity between predictors negatively impacts reproducibility. 
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 The relationship between reproducibility and the magnitude of the general dominance 

measures in the population can be visualized in Figure 15. When parent sample reproducibility 

was lower than 0.8, it seems to indicate that the magnitude of the dominance relationship in the 

population is very low or zero. 

Table 20 Average reproducibility rates of the population general dominance relationship. 

  

Baseline/ 

Base-Base 

Small Effect/ 

Base-Large 

Large Effect/ 

Large-Large  

Model R² /nLvl2 50 200 1000 50 200 1000 50 200 1000 All 

1 McFadden .43 .55 .70 .54 .61 .70 .70 .84 .95 .67 

 Beta .56 .66 .77 .58 .66 .77 .72 .86 .97 .73 

 N&S .48 .58 .70 .57 .65 .76 .71 .85 .96 .70 
 

R&B 2 .56 .66 .78 .57 .65 .76 .70 .84 .96 .72 

2 McFadden .63 .75  .81 .89  .81 .89  .80 

 Beta .72 .82  .75 .87  .81 .90  .81 

 N&S .78 .87  .85 .91  .89 .95  .87 
 

R&B 2 .59 .71  .69 .82  .67 .80  .71 

3 McFadden .71 .79  .82 .90  .89 .95  .84 

 Beta .65 .77  .79 .88  .83 .92  .81 

 N&S .48 .60  .73 .86  .69 .81  .70 

 R&B 1 .82 .89  .87 .97  .89 .92  .89 

 

Table 21 Model 1 average reproducibility rate of the population general dominance relationship. 

Reproducibility Baseline Small Effect Large Effect All 

Collinearity 50 200 1000 50 200 1000 50 200 1000  

0 .53 .68 .79 .60 .69 .86 .77 .91 .99 .76 

0.5 .50 .62 .75 .57 .66 .78 .71 .86 .97 .71 

0.8 .49 .54 .67 .53 .57 .61 .65 .78 .91 .64 
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Figure 15 Reproducibility rate of parent sample (left) and population (right) qualitative general 

dominance relationship (Dij) in the bootstrap samples according to population quantitative 

dominance effect (Gij).  
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In practice, applied researchers will only be able to obtain the reproducibility rates of the 

parent sample dominance relationships; that is, the proportion of bootstrap samples that agreed 

with the parent sample qualitative dominance values for each pairwise qualitative dominance 

measure Dij. Figure 16 shows a comparison of the average reproducibility rates by model, measure 

of fit, and (level-2) sample sizes. Figure 16 also shows the reproducibility rates of the population 

qualitative dominance relationships Dij in the simple random samples, which is used as a check on 

the performance of the bootstrap reproducibility results. 

The pattern and magnitude of reproducibility rates achieved by the bootstrap and SRS 

samples are very similar, indicating that the bootstrapping procedure worked appropriately to 

replicate the sampling distribution of these dominance measures. The pattern of reproducibility of 

the population values by the bootstrap samples was very similar to the reproducibility of the parent 

sample values, indicating that reproducibility of the parent sample computed by the bootstrap 

procedure can be used as an approximation of the reproducibility of the population values after 

adjusting the magnitude of the rate. Results from the bootstrap procedure indicate that when 

number of subjects is 50 the reported reproducibility (of the parent sample result) overestimates 

the reproducibility of the population result by about .15 points, when number of subjects is 200 

the overestimation is of about .10 points, and with 1000 subjects it is less than .05. 
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Figure 16 Average reproducibility rates of the parent sample (left) and population (middle) 

dominance relationships in the bootstrap and simple random samples (right) across models and 

sample sizes. 
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Summary 

Table 22 Key study results per outcome measure. 

Outcome Measure Key Results 

Agreement in most 

important predictor 

- Rates of agreement increased with an increase in level-2 sample size. 

- McFadden R² measure produced the highest rates of agreement 

followed by R² Beta.  

- R² Beta performed better in models with a cross-level interaction. 

- N&S R² performed poorly in models with time-varying predictors 

(model 3) under the baseline and large effect conditions. 

- True rate of agreement between bootstrap and population was about 

20% lower than the observed agreement between bootstrap and parent 

sample. 

Agreement in least 

important predictor 

- Rates of agreement increased with an increase in level-2 sample size. 

- Conditions of small effect sizes produced lower agreement rate than 

baseline effects, probably due to sampling error since population Gij 

values are very close to zero in this condition (see Population DA 

section). 

- McFadden R² measure produced the highest rates of agreement on 

average for models 1 and 2, followed by the N&S R². 

- For the high model complexity condition (model 3), R&B1 R² 

(proportion change in variance of the level-1 residual) performed better 

than all the other measures and R² Beta was the worst performing 

measure.  

- True rate of agreement between bootstrap and population was between 

5-15% lower than the observed agreement between bootstrap and 

parent sample. 
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Overall rank order 

correlation 

(Kendall's tau) 

- As expected, Kendall tau correlations increased with level-2 sample 

size and model complexity and decreased with higher collinearity 

among predictors. 

- In the low model complexity condition (model 1), correlations were too 

low when level-2 sample size was only 50. 

- All R² measure performed comparably well when ranking level-2 

predictors only (model 1), but the N&S R² produced the highest 

average correlations for models with cross-level interactions (model 2), 

and the R&B1 R² performed better in models with both level-1 and 

level-2 predictors (model 3). 

- Against expectations, higher predictor fixed effect was not consistently 

associated with higher tau correlations. 

- Patterns of correlation (agreement) between bootstrap and population 

matched the patterns between bootstrap and parent samples. The true 

correlation between population and bootstrap was about .2 points lower 

than the observed correlation between bootstrap and parent sample. 

 

Bias - Standardized bias values were low (within 0.2 standard deviations from 

the population values) for all but the R&B measures. 

- Pattern of bias between the bootstrap and parent samples matched the 

pattern between bootstrap samples and population as well as between 

SRS and population. 

CI Coverage - Average confidence interval coverage was close to the 95% nominal 

rate across sample size and model complexity conditions for all but the 

R&B R² measures. 

- Asymptotic normal and the percentile confidence intervals performed 

similarly well in terms of coverage. 

CI Width - Average CI width estimates were reasonable given the population 

range of the Gij measures for each measure of fit. 

- The R&B 2 R² measure produced extreme values of confidence interval 

width for the more complex models (models 2 and 3). 

- CI width decreased with an increase in sample size at both the subject 

and time levels.  

- CI width results were consistent across the percentile and asymptotic 

normal methods. 
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Type I error rate - Type I error rates were below the nominal 5% level for most conditions, 

especially under the lower sample size conditions. 

- Type I error rates approached the nominal level as level-2 sample size 

increased except for the McFadden measure under the percentile CI 

method. 

Power - Power was low for making inferences about the relative importance of 

level-2 predictors (model 1) when sample size at level-2 was 50 

subjects. 

- As expected, power increased with an increase in sample size at both 

levels. 

- A puzzling finding was that the relationship between power and 

population dominance effect size was non-monotonic in certain 

instances, particularly at lower sample sizes and at the lower range of 

the population general dominance (Gij) effect.  

- R² Beta was particularly problematic in the sense of resulting in a non-

monotonic relationship between power and dominance effect size. 

- For comparing level-2 predictors (model 1), only McFadden attained 

80% power and only when level-2 sample size was 200 and level-1 

sample size was 8, or level-2 sample size was 1000.  

- When comparing level-2 and cross-level interactions, 80% power was 

attained by McFadden and N&S R² at the highest sample size 

combination (200 at level-2 and 8 at level-1). 

- When comparing predictors of the random intercept and type-varying 

predictors, the R&B 1 (model 3) and McFadden measures were able to 

attain adequate power when sample size was 200 at level-2 or 8 at level-

1. 

Reproducibility - Reproducibility increased with an increase in level-2 sample size and 

with an increase in effect size, and decreased with an increase in 

collinearity between predictors. 

- Reproducibility was lower for the baseline fixed effects condition, as 

expected. 

- When comparing level-2 predictors only (model 1), R² Beta produced 

the highest level of reproducibility. 

- When number of subjects is 50, the observed reproducibility rate (of 

the parent sample result) overestimates the reproducibility rate of the 

population result by about .15 points; when number of subjects is 200 

the overestimation is of about .10 points; and with 1000 subjects it is 

less than .05. 
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CHAPTER 5. DISCUSSION 

 The purpose of this study was to evaluate the use of dominance analysis for determining 

the relative importance of predictors in multilevel models for longitudinal data with continuous 

outcomes. A simulation study was conducted to investigate the impact of model complexity, 

sample size, collinearity, and covariance misspecification on the accuracy of dominance analysis 

results in terms of the rank-ordering of predictors by relative importance, the performance of 

bootstrap-based inferential procedures for the quantitative general dominance measure, and the 

reproducibility rates of the qualitative general dominance measure over many bootstrap samples. 

The effect of using different measures of model fit for computing general dominance was also 

investigated.  

 One issue identified in this study that was not part of the original study design was the 

prevalence of non-positive definite random-effect covariance matrices under small sample sizes 

and higher model complexity. Researchers using multilevel models for longitudinal analysis must 

be mindful of this issue since there is a potentially large number of parameters to be estimated in 

models with random slopes and unstructured covariance matrices, which, when coupled with a 

large number of fixed effects parameters and the usually small number of observations at level-1 

(time points), can create problems for algorithms searching for a positive-definite solution and 

might produce unreliable estimates of the random effects components. Simulation results indicated 

that the use of an unstructured covariance structure with autoregressive residuals was unfeasible 

for sample sizes with 50 subjects even when there were only four predictors in the model, and 

might not produce reliable estimates unless the number of subjects is at least 1000. A solution to 

this problem was to simplify the covariance structure by relaxing the assumption of autoregressive 
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errors and use what has been referred to in the longitudinal literature as the “standard” multilevel 

model for change (Singer & Willett, 2003). This covariance structure specification includes a 

random intercept for the subjects, a random slope for the effect of time, and a covariance between 

these two components, but assumes that the errors at level-1 are i.i.d. In terms of the current study, 

the prevalence of non-positive definite matrices was potentially problematic because it impacted 

the calculation of measures of model fit that depend on the random-effects estimates. Therefore, 

the data analysis was conducted assuming a misspecified covariance structure. However, 

comparative analyses conducted for simulation conditions where the covariance specification was 

correct indicated that this misspecification of the covariance structure did not have a noticeable 

impact on the outcome measures analyzed here.   

Main findings 

Ranking accuracy. Accurate ranking of predictors (compared to the population ranking) 

was impacted mostly by sample size at level-2 and model complexity. The higher the number of 

subjects the more accurate the bootstrap results are in reflecting the population predictor rankings. 

The simulation results indicate that at least 200 subjects might be necessary to adequately 

reproduce the population rankings. Model complexity also impacted the rankings such that the 

more predictors in the model, the higher the agreement rates. Having a larger number of predictors 

increases the sample size of the correlation coefficient for the agreement between the rank 

orderings of predictors.  

As expected, predictor effect sizes impacted ranking accuracy through their effect on the 

population general dominance effect. As shown in Figure 1, in model 1 the values of the general 

dominance effects followed a pattern similar to the predictor coefficients, even though collinearity 



 

141 

 

attenuated the effects in the large effect condition. In model 2 (Figure 2), the effects differed by 

measure of fit. The McFadden and N&S R² tended to favor (i.e., assign higher Gi values to) the 

cross-level interaction terms and the R² Beta and R&B2 R² tended to assign higher dominance 

weights to the level-2 predictors. This is likely related to how these measures are computed since, 

for example, R&B2 R² measures proportional change in variability in the random intercept, which 

is more strongly impacted by level-2 variables. However, the R&B2 R² measure did not work well 

for this model as it produced negative dominance weights for some conditions. For model 3 (Figure 

3), which compared time-varying and person-level predictors, all measures assigned higher 

dominance weights to the level-1 predictors. The R&B1 R² measure, which is the proportion 

change in variance of the level-1 residuals, was not able to differentiate between level-2 predictors 

but worked well for the level-1 predictor comparisons. Therefore, this measure should only be 

used when the goal is to compare pure level-1 predictors.   

When general dominance effects are small, the DA procedure might not be able to 

differentiate among predictors very well, and collinearity pulled the dominance effects closer to 

each other, making ranking estimates less clear-cut. Measures of fit that assigned similar 

dominance weights to predictors, such as the N&S and Beta R² measures in certain conditions of 

models 2 and 3, produced lower agreement values because sampling error produced samples that 

did not replicate these small differences. The effects of collinearity on ranking accuracy was not 

as problematic with the moderate collinearity of 0.5, but ranking accuracy did suffer when 

collinearity was as high as 0.8. Therefore, predictor importance rankings produced by DA seem to 

be robust to the presence of moderate collinearity.  

Overall, the agreement results between bootstrap and population rankings were consistent 

with what would be observed between the bootstrap and parent samples, but at an order of 
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magnitude lower. Therefore, in practice, measures of agreement (Kendall tau correlations) 

obtained with a single sample using the bootstrapping procedure should be attenuated by about .2 

points if the number of subjects (sample size at level-2) is 50, .1 point for 200 subjects, and .05 

points for 1000 subjects.  

Bias. Standardized bias between the population general dominance measures and their 

bootstrap estimates were generally low, not surpassing .2 standard deviations on average for most 

conditions and measures of fit. The only factors identified as having a moderate effect on bias were 

measure of fit and model complexity. Patterns of bias did not vary between the SRS and 

bootstrapping sampling procedures, indicating that the bootstrapping procedure did not introduce 

a large amount of bias in the estimation of general dominance measures. The high standardized 

biases found in dominance measures using the R&B R² may be explained by three different factors. 

The first is the fact that the models were estimated using full maximum likelihood, which is known 

to underestimate the variance of the random effects (Gurka, Kelley & Edwards, 2012). The second 

issue is the fact that these measures, in particular the R&B 2 measure, were more impacted by the 

npd issue and therefore their estimates are less reliable. The third possible explanation is the fact 

that the standard deviation of the dominance measures decreased more rapidly than the decrease 

in bias as sample size increased, therefore causing the standardized values to decrease. Indeed, the 

average raw bias values (not shown) showed a decrease with sample size. 

Inference. Two bootstrap-based methods, namely the percentile and the asymptotic normal 

methods, were evaluated for making inferences about the significance of the difference between 

the general dominance measures. These methods were evaluated by calculating confidence interval 

coverage (the proportion of replications where the constructed CI included the population 

parameter), average width, type I error rates (proportion of replications in which the confidence 
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interval did not contain zero even though the population general dominance measure was zero), 

and power (proportion of samples where the population Gij parameter was non-zero and the 

confidence interval did not contain zero). Overall, the percentile confidence interval produced 

similar results to the asymptotic normal CI. Coverage rates were close to the nominal 95% rate 

across simulation conditions and measures of fit, indicating that the confidence intervals worked 

as expected. However, the data were generated from a multivariate normal distribution; therefore, 

these results are not surprising. In terms of confidence interval width, CI width shrunk with an 

increase in sample size and was generally not problematic.  

However, the confidence intervals may not work properly for making inferential claims 

about the dominance measures. Type I error rates were well below the 5% nominal levels for most 

of the dominance measures in this study. In general, type I error tended to increase with an increase 

in level-2 sample size but remained below the nominal 5% rate, indicating that the inferential 

procedure might be overly conservative. Type I error rates approached the nominal level only when 

level-2 sample size was 1000. The results from analyzing the power of the inferential procedure 

corroborates the hypothesis of an overly conservative procedure, with few conditions being able 

to achieve the usual 80% power rate. One design factor that may have impacted the type I and 

power rates was the fact that some Gij measures, while not exactly zero in the population, were 

very small (near zero). Therefore, the near-zero differences in the population (i.e., presence of very 

small effects) might have lowered the average power rate. Overall, the results suggest that to use 

either the percentile or the asymptotic normal confidence interval procedures, either a large sample 

size or a large effect size is needed. The values in Table 19 could provide some guidelines for the 

minimum effect sizes and sample sizes needed to achieve appropriate power with these procedures 

for different predictor types and measures of fit.  
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Reproducibility. The proportion of bootstrap samples where the sample Dij measure 

matched the population Dij measure was used to evaluate whether the sample dominance 

relationship was likely to reflect the population dominance relationship. The factors that seemed 

to most strongly impact the rates of reproducibility were the magnitude of the fixed effects, the 

model complexity, and sample size at level-2. Reproducibility increased with an increase in level-

2 sample size and dominance effect size and decreased with the increase in collinearity between 

predictors. As a guideline for applied researchers, the simulation results indicate that when sample 

reproducibility was lower than 0.8 the magnitude of the dominance relationship in the population 

is likely to be zero or very small. Because reproducibility is calculated based on the qualitative 

dominance measure Dij, which only indicates whether the general dominance measure of one 

predictor is greater than that of another and does not take into account the magnitude of the 

dominance difference, it can detect small differences in the population which may not hold in the 

sample (and cause mismatches between the sample and the population). In the same vein, if the 

true population Dij value is zero, DA using sample data might detect a small dominance difference 

due to sampling error. Both situations would produce poor reproducibility rates. One potential way 

to remedy this issue is to round the dominance values appropriately according to the measure of 

fit. In this study it was found that the McFadden R² produced small dominance values, and 

therefore rounding to three decimal points should be used for this measure. For all other measures, 

rounding to two decimal points is recommended to avoid detecting spurious dominance 

differences.  

Summary. Overall, results from this study indicate that dominance analysis can be 

extended to longitudinal multilevel models as an additional tool for researchers wishing to 

determine the relative contribution of person and time-level predictors of outcomes that change 
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over time. As expected, among the conditions studied here, sample size at level-2, usually the 

number of subjects in a longitudinal study, was consistently one of the factors identified as having 

the largest effect on the outcome measures. A sample size of 50 subjects was found to be 

insufficient to produce adequate agreement, power, and reproducibility rates. In this study, a 

minimum sample size of 200 subjects was needed to avoid issues with non-positive definite 

matrices, especially when the model had more than 4 predictors. General sample size 

recommendation for longitudinal analyses was not in the scope of this paper, but the results 

indicate that models with 4 predictors and 50 subjects can be estimated using the SGR covariance 

structure. However, if more predictors are added to the models, a larger number of subjects might 

be needed to avoid issues with non-positive definite matrices.  

In terms of measures of model fit, DA computed using the McFadden R² measure produced 

the most consistent results across outcome measures unless the dominance effect was very small 

in the population. The McFadden measure, which is calculated from the deviance readily provided 

in software output, performs reasonably well and might be used as the standard measure for DA 

in multilevel models. However, due to the small magnitude of this measure, the power to detect 

true population relationships can be low unless dominance effects and/or sample size are 

sufficiently large. For inference purposes, at least 200 subjects and 8 time points may be needed 

to detect a true (non-zero) relationship using this measure. In general, the adequacy of the measures 

of fit evaluated in this study varied according to the types of predictors being compared by the DA 

procedure; therefore, recommendations are made accordingly. If interest is in comparing only 

predictors of the random intercept (i.e., person-level or level-2), all measures of fit studied here 

would be adequate as they produced consistent rankings. If the goal is to compare the relative 

importance of cross-level interactions, such as predictors of the linear effect of time, or to compare 



 

146 

 

predictors at both the subject (level-2) and measurement (level-1, or time-varying predictors) 

levels, the McFadden and N&S R² tend to perform well as these measures are sensitive to variation 

at both level-1 and level-2. If interest is in comparing only level-1 predictors, both the R&B1 and   

McFadden’s R² produced adequate results. The R² Beta performed well in some conditions but is 

deemed inadequate due to the lack of monotonicity. 

It was also demonstrated that bootstrapping can be utilized to construct percentile and 

asymptotic confidence intervals and to measure the reproducibility of sample results, and that these 

procedures can provide reliable information regarding the generalizability of the dominance 

relationships found in the sample. The bootstrap and asymptotic normal confidence intervals 

seemed to perform similarly; therefore, the simpler asymptotic normal CI is recommended for 

inference and reproducibility calculations. A reproducibility rate of 80% between bootstrap and 

parent samples seems to be considered a minimum threshold to deem a sample dominance 

relationship likely to reflect its corresponding population dominance relationship.  

The main contribution of this study was to provide evidence that dominance analysis can 

be successfully conducted on longitudinal data using multilevel models under some specific 

conditions. This research provided guidance to applied researchers on appropriate sample sizes to 

target when wishing to conduct longitudinal analysis in general and dominance analysis in 

particular. The main considerations for using the DA method in applied settings are the number of 

subjects and the number and types of predictors that one wishes to rank order in terms of relative 

importance. When resources are limited, it might be more beneficial to obtain a larger number of 

subjects than a larger number of measurement occasions, especially if the focus is on subject-level 

outcomes and predictors. This study also provided a comparison of pseudo-R² measures that have 

been recently proposed for multilevel models and found that some measures are more appropriate 
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than others for comparing predictors at the different levels of analysis. A relevant finding was that 

a simple measure of model fit based on the deviance might be adequate for determining relative 

importance in longitudinal multilevel models of varied complexities and among different types of 

predictors, which might facilitate the use of the procedure in applied settings. Finally, this study 

demonstrated that dominance analysis is robust to minor misspecifications of the covariance 

structure, a situation that might occur in practice, especially when the number of subjects and or 

measurement occasions is not large.   

Limitations and Future Directions 

As with any simulation study, the main limitation of this research is that results are only 

generalizable to the factors manipulated here. Therefore, researchers wishing to apply these 

methods must determine how closely the conditions they want to investigate match the conditions 

evaluated in this study. Indeed, this study only analyzed a small variety of longitudinal multilevel 

models, focusing on continuous predictors. Additionally, it must be emphasized that dominance 

analysis is intended for comparing predictors once a model has been selected; it is not intended to 

inform decisions about model selection and its results are dependent on having a valid set of 

predictors. Another important caveat is that the measures of model fit included in this study are 

just a small sample of the different measures available, and the use of different measures might 

produce different dominance relationship results. The choice of measure must be determined by 

researchers based on their research question.  

Another limitation of this study relates to the fact that the inferential procedures evaluated 

here are based on the bootstrap method, and, as such, depend on the parent sample being 

representative of the population of interest in order for results to be meaningful. Finally, it must 

be noted that the computing time required for performing dominance analysis on longitudinal 
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multilevel models can be long if the sample size is large and there are a large number of predictors. 

Since DA requires fitting all subset models, and bootstrapping procedures add even more 

computing demands, this procedure might not be ideal for models with more than 8 predictors.  

 Several opportunities exist for further exploration of dominance analysis for longitudinal 

models as proposed in this dissertation. The current study focused on evaluating DA for multilevel 

longitudinal models with continuous outcomes, so an obvious extension would be to investigate 

the procedure for similar models with categorical responses. Several of the measures of fit 

analyzed in this study are applicable to generalized linear mixed models and could be used in 

future research focusing on categorical responses. Another area of future exploration would be the 

evaluation of more sophisticated inferential procedures, such as bias corrected and accelerated bias 

corrected confidence intervals, which could improve the inferential power for dominance 

measures. Additionally, while this study incorporated a random predictor in the form of the linear 

effect of time, this predictor was not evaluated in terms of relative importance. Future research 

could look into employing dominance analysis for determining the relative importance of 

predictors with random slopes.  

This study focused on the general dominance measure because it is the most 

straightforward to calculate and provides a quantitative value for inferential analyses, but the 

results may not fully apply to conditional and complete dominance. It is reasonable to expect that 

conditional and complete dominance might require higher levels of sample and effect sizes. Future 

studies could evaluate the conditions under which these two stronger levels of dominance can be 

achieved for multilevel longitudinal models. 

The sample size at level-2, frequently the number of subjects in a longitudinal setting, was 

found to be one of the most important factors influencing the results of dominance analysis for 
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multilevel longitudinal models. Since this study looked at only a limited range of sample sizes at 

the subject level, future research should investigate more values of level-2 sample size to provide 

more precise recommendations regarding the minimum sample size needed for dominance analysis 

in these models. This study also employed the cases bootstrap method as it was simple to 

implement and was deemed to produce appropriate results, but an investigation of the other two 

commonly used bootstrap methods for multilevel data, namely parametric bootstrap and the 

residual bootstrap (Carpenter et al., 2003), might be of interest as well, especially if assumptions 

about the normality of residuals is violated. Finally, this study assumed complete data since 

multilevel models are known to be able to handle missing at random data. However, in many 

longitudinal study designs missingness cannot be assumed to occur at random. Therefore, the 

impact of missing not at random data on DA results and an evaluation of methods to handle it 

would be a worthy topic for future investigation.   
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Table 23 Model 1 population general dominance effect (Gi) by simulation condition. 

   McFadden R² Beta R² N&S R² R&B 2 R² 

nL1 Coll Effect w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

4 0 Base .004 .004 .000 .000 .048 .049 .006 .005 .049 .049 .026 .026 .146 .151 .019 .018 

  Small .009 .008 .006 .003 .107 .088 .070 .036 .084 .073 .062 .042 .227 .193 .151 .077 

  Large .021 .012 .005 .001 .221 .126 .054 .015 .160 .099 .053 .027 .394 .227 .097 .027 

                   

 .5 Base .006 .006 .003 .003 .069 .068 .034 .032 .060 .060 .041 .040 .173 .171 .088 .083 

  Small .015 .014 .012 .010 .145 .134 .124 .104 .115 .107 .101 .087 .229 .212 .196 .165 

  Large .026 .019 .013 .009 .218 .170 .128 .094 .173 .137 .107 .082 .312 .240 .181 .134 

                   

 .8 Base .006 .006 .005 .005 .071 .070 .054 .055 .063 .062 .053 .054 .171 .164 .136 .135 

  Small .017 .016 .015 .014 .154 .148 .143 .136 .126 .122 .119 .113 .229 .220 .215 .201 

  Large .025 .021 .018 .015 .197 .175 .159 .143 .163 .146 .133 .121 .262 .232 .210 .189 

                   

8 0 Base .003 .002 .000 .000 .064 .059 .007 .007 .053 .052 .042 .043 .155 .144 .016 .017 

  Small .006 .005 .004 .002 .129 .103 .080 .045 .068 .062 .056 .048 .231 .183 .142 .081 

  Large .013 .008 .004 .001 .259 .147 .068 .017 .107 .076 .055 .041 .396 .226 .104 .026 

                   

 .5 Base .004 .004 .002 .002 .084 .081 .041 .041 .057 .057 .049 .049 .170 .165 .084 .085 

  Small .010 .009 .008 .006 .168 .153 .139 .115 .087 .082 .078 .070 .237 .217 .197 .163 

  Large .016 .012 .008 .005 .245 .186 .140 .103 .123 .101 .084 .070 .315 .239 .180 .132 

                   

 .8 Base .004 .004 .003 .003 .084 .085 .067 .065 .058 .058 .054 .054 .162 .162 .128 .125 

  Small .011 .010 .009 .009 .171 .168 .159 .151 .093 .092 .089 .086 .225 .221 .210 .199 

  Large .015 .013 .011 .009 .212 .190 .171 .154 .117 .108 .100 .093 .260 .233 .209 .189 
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Table 24 Model 1 population general dominance difference measures (Gij) by simulation condition. 

   McFadden R² Beta R² N&S R² R&B 2 R² 

nL1 Coll Effect G12 G13 G14 G23 G24 G34 G12 G13 G14 G23 G24 G34 G12 G13 G14 G23 G24 G34 G12 G13 G14 G23 G24 G34 

4 0 Base 0 .004 .004 .004 .004 0 -.001 .042 .043 .043 .044 .001 0 .023 .023 .023 .023 0 -.005 .127 .128 .132 .133 .001 

  Small .001 .003 .006 .002 .005 .003 .019 .037 .071 .018 .052 .034 .011 .022 .042 .011 .031 .020 .034 .076 .150 .042 .116 .074 

  Large .009 .016 .020 .007 .011 .004 .095 .167 .206 .072 .111 .039 .061 .107 .133 .046 .072 .026 .167 .297 .367 .130 .200 .070 

                           

 .5 Base 0 .003 .003 .003 .003 0 .001 .035 .037 .034 .036 .002 0 .019 .020 .019 .020 .001 .002 .085 .090 .083 .088 .005 

  Small .001 .003 .005 .002 .004 .002 .011 .021 .041 .010 .030 .020 .008 .014 .028 .006 .020 .014 .017 .033 .064 .016 .047 .031 

  Large .007 .013 .017 .006 .010 .004 .048 .090 .124 .042 .076 .034 .036 .066 .091 .030 .055 .025 .072 .131 .178 .059 .106 .047 

                           

 .8 Base 0 .001 .001 .001 .001 0 .001 .017 .016 .016 .015 -.001 .001 .010 .009 .009 .008 -.001 .007 .035 .036 .028 .029 .001 

  Small .001 .002 .003 .001 .002 .001 .006 .011 .018 .005 .012 .007 .004 .007 .013 .003 .009 .006 .009 .014 .028 .005 .019 .014 

  Large .004 .007 .010 .003 .006 .003 .022 .038 .054 .016 .032 .016 .017 .030 .042 .013 .025 .012 .030 .052 .073 .022 .043 .021 

                           

8 0 Base .001 .003 .003 .002 .002 0 .005 .057 .057 .052 .052 0 .001 .011 .010 .010 .009 -.001 .011 .139 .138 .128 .127 -.001 

  Small .001 .002 .004 .001 .003 .002 .026 .049 .084 .023 .058 .035 .006 .012 .020 .006 .014 .008 .048 .089 .150 .041 .102 .061 

  Large .005 .009 .012 .004 .007 .003 .112 .191 .242 .079 .130 .051 .031 .052 .066 .021 .035 .014 .170 .292 .370 .122 .200 .078 

                           

 .5 Base 0 .002 .002 .002 .002 0 .003 .043 .043 .040 .040 0 0 .008 .008 .008 .008 0 .005 .086 .085 .081 .080 -.001 

  Small .001 .002 .004 .001 .003 .002 .015 .029 .053 .014 .038 .024 .005 .009 .017 .004 .012 .008 .020 .040 .074 .020 .054 .034 

  Large .004 .008 .011 .004 .007 .003 .059 .105 .142 .046 .083 .037 .022 .039 .053 .017 .031 .014 .076 .135 .183 .059 .107 .048 

                           

 .8 Base 0 .001 .001 .001 .001 0 -.001 .017 .019 .018 .020 .002 0 .004 .004 .004 .004 0 0 .034 .037 .034 .037 .003 

  Small .001 .002 .002 .001 .001 0 .003 .012 .020 .009 .017 .008 .001 .004 .007 .003 .006 .003 .004 .015 .026 .011 .022 .011 

  Large .002 .004 .006 .002 .004 .002 .022 .041 .058 .019 .036 .017 .009 .017 .024 .008 .015 .007 .027 .051 .071 .024 .044 .020 
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Table 25 Model 1 population rank ordering of predictors by relative importance Gi. 

   McFadden R² Beta R² N&S R² R&B 2 R² 

nL1 Coll Effect w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

4 0 Base 1 1 2 2 2 1 3 4 1 1 2 2 2 1 3 4 

  Small 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

 .5 Base 1 1 2 2 1 2 3 4 1 1 2 3 1 2 3 4 

  Small 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

 .8 Base 1 1 2 2 1 2 4 3 1 2 4 3 1 2 3 4 

  Small 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

8 0 Base 1 2 3 3 1 2 3 3 1 2 4 3 1 2 4 3 

  Small 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

 .5 Base 1 1 2 2 1 2 3 3 1 1 2 2 1 2 4 3 

  Small 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

 .8 Base 1 1 2 2 2 1 3 4 1 1 2 2 1 1 2 3 

  Small 1 2 3 3 1 2 3 4 1 2 3 4 1 2 3 4 

  Large 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
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Table 26 Model 2 population general dominance effect (Gi) by simulation condition. 

   McFadden R² Beta R² 

nL1 Coll Effect w1 w2 w3 w4 w1T w2T w3T w4T w1 w2 w3 w4 w1T w2T w3T w4T 

4 0 B-B .010 .010 .001 .001 .008 .009 .003 .003 .097 .097 .011 .012 .028 .023 -.003 -.005 

  B-L .011 .010 .004 .002 .026 .020 .013 .008 .192 .150 .056 .022 .102 .068 .037 .015 

  L-L .020 .015 .009 .003 .027 .020 .014 .008 .294 .193 .099 .027 .093 .056 .028 .006 

 .5 B-B .010 .010 .003 .003 .011 .014 .010 .010 .124 .124 .042 .043 .046 .038 .013 .008 

  B-L .011 .009 .004 .002 .028 .027 .023 .019 .223 .161 .070 .043 .098 .079 .060 .046 

  L-L .019 .014 .008 .003 .030 .027 .024 .019 .299 .191 .107 .052 .091 .067 .048 .031 

8 0 B-B .002 .002 .000 .000 .006 .007 .003 .002 .037 .034 .004 .004 .020 .019 .001 -.001 

  B-L .001 .001 .000 .000 .017 .013 .009 .005 .035 .037 .011 .007 .097 .073 .047 .024 

  L-L .004 .003 .002 .001 .017 .013 .009 .005 .116 .088 .050 .016 .088 .059 .034 .012 

 .5 B-B .002 .002 .001 .001 .007 .009 .007 .007 .063 .063 .019 .019 .032 .029 .008 .005 

  B-L .001 .001 .000 .000 .018 .017 .015 .012 .061 .062 .017 .014 .120 .100 .079 .058 

  L-L .004 .003 .002 .001 .019 .018 .015 .012 .178 .122 .069 .030 .100 .075 .052 .030 

   N&S R² R&B 2 R² 

nL1 Coll Effect w1 w2 w3 w4 w1T w2T w3T w4T w1 w2 w3 w4 w1T w2T w3T w4T 

4 0 B-B .062 .062 .015 .015 .092 .108 .051 .044 .023 .023 .001 .001 .069 .079 .031 .025 

  B-L .048 .035 .011 .007 .193 .162 .113 .074 -.604 -.392 -.265 -.078 .236 .183 .109 .063 

  L-L .091 .053 .024 .008 .192 .163 .119 .077 .143 .016 -.030 -.023 .140 .094 .051 .027 

 .5 B-B .048 .048 .021 .021 .094 .124 .104 .107 -.007 .001 .025 .031 .093 .113 .085 .078 

  B-L .025 .019 .009 .007 .143 .168 .170 .162 -.583 -.417 -.198 -.050 .240 .259 .215 .174 

  L-L .052 .034 .019 .010 .134 .163 .170 .165 .103 .061 .047 .052 .129 .115 .096 .079 

8 0 B-B .023 .022 .015 .015 .116 .138 .067 .058 .149 .136 .014 .014 .029 .022 .005 .004 

  B-L .008 .008 .006 .005 .218 .182 .126 .082 .120 .140 -.006 .007 .039 .033 .013 .010 

  L-L .018 .014 .009 .006 .222 .184 .133 .086 .371 .214 .084 .018 .086 .061 .038 .022 

 .5 B-B .017 .017 .012 .012 .108 .150 .126 .131 .135 .135 .052 .052 .053 .048 .036 .034 

  B-L .004 .004 .003 .003 .155 .183 .183 .173 .118 .133 .019 .038 .054 .054 .045 .045 

  L-L .011 .008 .006 .004 .151 .183 .187 .178 .258 .162 .091 .052 .083 .083 .080 .075 
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Table 27 Model 2 population rank ordering of predictors by relative importance Gi.  

   McFadden R² Beta R² N&S R² R&B 2 R² 

nL1 Coll Effect w1 w2 w3 w4 w1T w2T w3T w4T w1 w2 w3 w4 w1T w2T w3T w4T w1 w2 w3 w4 w1T w2T w3T w4T w1 w2 w3 w4 w1T w2T w3T w4T 

4 0 B-B 1 1 5 5 3 2 4 4 1 1 5 4 2 3 6 7 3 3 6 6 2 1 4 5 5 5 6 6 2 1 3 4 

  B-L 4 5 7 8 1 2 3 6 1 2 5 7 3 4 6 8 5 6 7 8 1 2 3 4 8 7 6 5 1 2 3 4 

  L-L 2 3 5 7 1 2 4 6 1 2 3 7 4 5 6 8 4 6 7 8 1 2 3 5 1 6 8 7 2 3 4 5 

 .5 B-B 3 3 4 4 2 1 3 3 1 1 4 3 2 5 6 7 5 5 6 6 4 1 3 2 8 7 6 5 2 1 3 4 

  B-L 5 6 7 8 1 2 3 4 1 2 5 8 3 4 6 7 5 6 7 8 4 2 1 3 8 7 6 5 2 1 3 4 

  L-L 4 5 6 7 1 2 3 4 1 2 3 6 4 5 7 8 5 6 7 8 4 3 1 2 3 6 8 7 1 2 4 5 

8 0 B-B 4 4 5 5 2 1 3 4 1 2 5 5 3 4 6 7 5 6 7 7 2 1 3 4 1 2 5 5 3 4 6 7 

  B-L 5 5 6 6 1 2 3 4 5 4 7 8 1 2 3 6 5 5 6 7 1 2 3 4 2 1 8 7 3 4 5 6 

  L-L 5 6 7 8 1 2 3 4 1 2 4 6 2 3 5 7 5 6 7 8 1 2 3 4 1 2 4 8 3 5 6 7 

 .5 B-B 3 3 4 4 2 1 2 2 1 1 4 4 2 3 5 6 5 5 6 6 4 1 3 2 1 1 3 3 2 4 5 6 

  B-L 5 5 6 6 1 2 3 4 5 4 7 8 1 2 3 6 4 4 5 5 3 1 1 2 2 1 6 5 3 3 4 4 

  L-L 5 6 7 8 1 2 3 4 1 2 5 7 3 4 6 7 5 6 7 8 4 2 1 3 1 2 3 7 4 4 5 6 
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Table 28 Model 3 population general dominance effect (Gi) by simulation condition. 

   McFadden R² Beta R² 

nL1 Coll Effect w1 w2 w3 w4 x1 x2 x3 x4 w1 w2 w3 w4 x1 x2 x3 x4 

4 0 B-B .003 .004 .000 .000 .022 .022 .002 .002 .019 .020 .002 .002 .085 .086 .007 .007 

  B-L .003 .003 .000 .000 .091 .053 .024 .006 .013 .013 .002 .002 .313 .177 .077 .017 

  L-L .015 .009 .004 .001 .088 .051 .023 .006 .072 .041 .018 .005 .282 .154 .064 .008 

 .5 B-B .005 .005 .002 .002 .030 .030 .013 .014 .031 .030 .016 .017 .102 .101 .044 .045 

  B-L .004 .003 .002 .002 .099 .071 .048 .031 .018 .018 .011 .011 .261 .200 .148 .107 

  L-L .017 .012 .009 .006 .094 .067 .046 .030 .075 .061 .048 .037 .217 .161 .117 .080 

8 0 B-B .002 .002 .000 .000 .025 .025 .003 .003 .018 .018 .002 .002 .081 .081 .004 .004 

  B-L .002 .002 .000 .000 .100 .058 .027 .007 .013 .011 .001 .002 .308 .173 .075 .016 

  L-L .009 .005 .003 .001 .098 .057 .026 .007 .062 .035 .016 .004 .285 .152 .060 .003 

 .5 B-B .003 .003 .001 .001 .034 .034 .015 .015 .030 .030 .017 .017 .095 .095 .037 .038 

  B-L .002 .002 .001 .001 .108 .077 .052 .033 .018 .018 .011 .011 .262 .198 .144 .102 

  L-L .010 .007 .005 .003 .105 .075 .051 .032 .072 .059 .047 .037 .221 .160 .110 .070 

   N&S R² R&B 1 R² 

nL1 Coll Effect w1 w2 w3 w4 x1 x2 x3 x4 w1 w2 w3 w4 x1 x2 x3 x4 

4 0 B-B .035 .036 .013 .013 .037 .036 .014 .014 .000 .000 .000 .000 .060 .064 .007 .007 

  B-L .026 .027 .010 .010 .148 .086 .042 .017 .000 .000 .000 .000 .277 .163 .071 .016 

  L-L .119 .071 .035 .014 .124 .072 .037 .014 .000 -.002 .000 -.001 .282 .157 .067 .016 

 .5 B-B .044 .043 .026 .026 .047 .046 .026 .027 .000 -.001 .000 .001 .082 .090 .047 .042 

  B-L .029 .028 .017 .017 .160 .122 .093 .069 -.001 .000 .000 .000 .252 .197 .148 .111 

  L-L .113 .088 .068 .050 .126 .094 .071 .051 .000 -.001 -.001 .000 .249 .196 .151 .114 

8 0 B-B .031 .031 .021 .021 .031 .031 .021 .021 .000 .000 .000 .000 .068 .068 .008 .007 

  B-L .028 .027 .019 .019 .088 .057 .035 .022 .000 .000 .000 .000 .285 .161 .071 .018 

  L-L .078 .051 .032 .020 .080 .052 .032 .020 .000 .000 .000 .000 .288 .160 .071 .018 

 .5 B-B .035 .035 .027 .027 .036 .036 .027 .027 .000 .000 .000 .000 .094 .092 .047 .047 

  B-L .028 .028 .021 .021 .103 .082 .065 .051 .000 .000 .000 .000 .258 .199 .150 .110 

  L-L .084 .068 .054 .043 .086 .069 .055 .043 .000 .000 .000 .000 .259 .201 .149 .110 
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Table 29 Model 3 population rank ordering of predictors by relative importance Gi. 

   McFadden R² Beta R² N&S R² R&B 1 R² 

nL1 Coll Effect w1 w2 w3 w4 x1 x2 x3 x4 w1 w2 w3 w4 x1 x2 x3 x4 w1 w2 w3 w4 x1 x2 x3 x4 w1 w2 w3 w4 x1 x2 x3 x4 

4 0 B-B 3 2 5 5 1 1 4 4 4 3 6 6 2 1 5 5 3 2 5 5 1 2 4 4 4 4 4 4 2 1 3 3 

  B-L 5 5 6 6 1 2 3 4 5 5 6 6 1 2 3 4 5 4 7 7 1 2 3 6 5 5 5 5 1 2 3 4 

  L-L 4 5 7 8 1 2 3 6 3 5 6 8 1 2 4 7 2 4 6 7 1 3 5 7 5 7 5 6 1 2 3 4 

 .5 B-B 4 4 5 5 1 1 3 2 5 6 8 7 1 2 4 3 3 4 6 6 1 2 6 5 6 7 6 5 2 1 3 4 

  B-L 5 6 7 7 1 2 3 4 5 5 6 6 1 2 3 4 5 6 7 7 1 2 3 4 6 5 5 5 1 2 3 4 

  L-L 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 2 4 6 8 1 3 5 7 5 6 6 5 1 2 3 4 

8 0 B-B 3 3 4 4 1 1 2 2 2 2 4 4 1 1 3 3 1 1 2 2 1 1 2 2 4 4 4 4 1 1 2 3 

  B-L 5 5 6 6 1 2 3 4 5 6 8 7 1 2 3 4 4 5 7 7 1 2 3 6 5 5 5 5 1 2 3 4 

  L-L 4 6 7 8 1 2 3 5 3 5 6 7 1 2 4 8 2 4 5 6 1 3 5 6 5 5 5 5 1 2 3 4 

 .5 B-B 3 3 4 4 1 1 2 2 4 4 5 5 1 1 3 2 2 2 3 3 1 1 3 3 4 4 4 4 1 2 3 3 

  B-L 5 5 6 6 1 2 3 4 5 5 6 6 1 2 3 4 5 5 6 6 1 2 3 4 5 5 5 5 1 2 3 4 

  L-L 5 6 7 8 1 2 3 4 4 6 7 8 1 2 3 5 2 4 6 7 1 3 5 7 5 5 5 5 1 2 3 4 
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