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ABSTRACT ARTICLE HISTORY

We consider a system of non-linear differential equations describ- Received 25 May 2018
ing the spread of an epidemic in two interacting populations. The Accepted 16 November 2018
model assumes that the epidemic spreads within the first population, KEYWORDS

vyhlch in turn acts as a reservoir of lnfec'glon for th_e sec_oryd populga— Monkeypox; Lyapunov
tion. We explore the conditions under which the epidemicis endemic function; epidemic model;
in both populations and discuss the global asymptotic stability of the systems of ODEs; global
endemic equilibrium using a Lyapunov function and results estab- stability

lished for asymptotically autonomous systems. We discuss monkey-

pox as an example of an emerging disease that can be modelled in

this way and present some numerical results representing the model

and its extensions.

1. Introduction

In this paper we consider an epidemic model motivated by monkeypox, an emerg-
ing disease that has become more prevalent recently in several areas of Africa (Bhunu
& Mushayabasa, 2011; Bhunu, Mushayabasa, & Hyman, 2012; Damon, 2011; Hammar-
lund et al., 2005; Hutin et al., 2001; Kantele, Chickering, Vapalahti, & Rimoin, 2016; Levine,
Townsend, Carroll, Damon, & Reynolds, 2007; McCollum & Damon, 2014; The Center for
Food Security and Public Health, 2013). It is believed that the noticeable increase in mon-
keypox (Nolen et al., 2016) is linked to the decrease in herd immunity to smallpox (Hutin
et al., 2001; Levine et al., 2007; Lloyd-Smith et al., 2009; McCollum & Damon, 2014)
due to the phasing out of smallpox vaccinations (Nolen et al.,, 2016; Rimoin & Gra-
ham, 2011; Rimoin et al., 2007, 2010). Hosts of the monkeypox virus include prairie dogs,
tree squirrels, chimpanzees, and baboons, but the complete list of pathogen hosts is not
known (Centers for Disease Control and Prevention, 2015; Reynolds et al., 2013; The
Center for Food Security and Public Health, 2013; World Health Organization, 2016).
Monkeypox infects both humans and animals, and is generally considered impossible
to eradicate (Damon, 2011; Kantele et al., 2016; McCollum & Damon, 2014; Reynolds
et al,, 2013; Rimoin & Graham, 2011). Humans become infected with the monkeypox
virus when they come into direct contact with infected animals or other humans (Cen-
ters for Disease Control and Prevention, 2015; Hammarlund et al., 2005; Jezek, Arita,
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Mutombo, & Szczeniowski, 1986; Jezek, Grab, Szczeniowski, Paluku, & Mutombo, 1988;
The Center for Food Security and Public Health, 2013; Weaver & Isaacs, 2009; World
Health Organization, 2016). Since human-animal cross-infection usually occurs when
humans hunt and eat animals, we can assume that animals do not become infected
via contact with the human population, but that animals can infect humans (Reynolds
et al., 2013). This creates an asymmetric disease transmission between the animal and
human populations, and we can effectively treat the animal population as a reservoir for
the disease within which disease dynamics are independent from the disease’s course in
the human population. Monkeypox was explicitly modelled by Bhunu and Mushayabasa
and Bhunu, Mushayabasa and Hyman with traditional SIR models in both the animal
and human population, and with standard incidence for disease transmission (Bhunu
& Mushayabasa, 2011; Bhunu et al., 2012). However, the analysis presented in Bhunu
and Mushayabasa (2011) and Bhunu et al. (2012) is not complete, and here we present
an alternative full equilibrium analysis for the first model by Bhunu and Mushayabasa,
and establish global stability of the endemic equilibrium in both populations under suit-
able conditions on the parameters (Bhunu & Mushayabasa, 2011). We utilize the theory
developed by Markus (1956) and later by Thieme and Castillo-Chavez (Castillo-Chavez
& Thieme, 1994; Thieme, 1992) for asymptotically autonomous systems together with
the techniques of identifying suitable Lyapunov functions for SIR models with standard
incidence described by Vargas-De-Leén (2011).

We note that these ideas can be readily generalized for multiple reservoir (and human)
populations, and are more widely applicable than the special case of monkeypox. In partic-
ular, birds can harbour avian flu viruses that can adapt to and spread in human populations
(Centers for Disease Control and Prevention, 2017a), bats are a reservoir for rabies (Gilbert
etal., 2015), and ebola viruses are also thought to have a natural animal reservoir (Centers
for Disease Control and Prevention, 2017b). The model considered in this paper would
suggest that once the disease becomes endemic in the reservoir population, endemic dis-
ease in the human population is inevitable. Thus it could be suggested that an effective
control measure would be the mass culling of animals that harbour the disease causing
pathogens to prevent the establishment of an endemic disease in the animal population.
While this strategy is widely used for controlling avian flu within domestic bird populations
(Centers for Disease Control and Prevention, 2017a), it is not practical or even possible
for the cases of monkeypox, rabies, or ebola within wild populations. The prediction of
endemic levels of the disease in the human population (while it may be a good approxi-
mation at times) are not wholly realistic, due to fluctuations in incidence of monkeypox in
the human population (Nolen et al., 2016).

2. Description of the model

We consider two populations, denoted by A and H, in which a disease spreads. Both popu-
lations are divided into susceptible, infectious and recovered individuals, denoted by S, I,
and R,, and Sy, I, and Ry, respectively. The total number of individuals in each population
is given as N, (t) = Sa(t) + I,(t) + R, () and Ny () = Sp(¢) + I (t) + Ry(t). Susceptible
individuals in A are recruited through migration and birth at the rate A, and susceptible
individuals in H are recruited at a rate of A; (Bhunu & Mushayabasa, 2011). Let d,, dj,
be the death rates by the disease for A and H, respectively, (4, tj, be the natural death
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rates for A and H, respectively, and pg, oy, be the recovery rates with permanent immunity
for A and H, respectively. It is assumed that no one in population H can infect any indi-
vidual in population A, while individuals in A can infect those in H on suitable contact.
Although this model can be used to describe epidemics of different diseases, in the case
of monkeypox population A is the animal population and H represents the human pop-
ulation. Disease transmission is modelled using standard incidence, assuming a constant
(density-independent) contact rate both within and across the two populations resulting
in infection rates

IBtllla

a

fa(sm Ia) Ra) = Na Nh

I I
Sar and fi(Sas Tar Rar St I R) = (’3— o h) S
where 8,,, B4, and B, are the effective contact rates in population A, between populations
A and H, and in population H, respectively. We assume that A,, Ay, (g, (Ln, Pa> Ph are pos-
itive, while dg, dy, Ba, > Ba, and B, are non-negative parameters. Thus we have the following
system of non-linear differential equations (1a)-(1f) (Bhunu & Mushayabasa, 2011)

% = A paSa " NI Sa» (1a)

T = P, — (pat put ol (1b)

di" = pala — 1taRas (1¢)

% = Ap — unSh — <ﬂ%u[a + %) Sh> (1d)
% = ('BXI—ZQI“ + ﬂ;—?) Sn — (un + pn + dw)ln, (le)
% = puln — wnRp. (1f)

Since
N, = Ay — 1aNg — dgl, and  Nj = Aj — Ny — dpls
the set Q = Q, x Qj, where

a

A
Q, = {(Sa’ImRa) €R3_3Sa >0, I,b>20,R; >0, Sg+ 1, +Ry < _}
Ha
and
3 Ap
Qp=1nInRy) eRL 15, >0, 1 =20, Ry >0, Sp+In +Rp < — 1,
H“h

is positively invariant under the dynamics of (1a)-(1f), and solutions with initial conditions
in  exist globally.
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3. Equilibrium analysis

System (1la)-(1f) has several different types of potential equilibria: disease-free, endemic
disease in only one of the populations and endemic disease in both populations. Using
the method of van der Driessche and Watmough (Bhunu & Mushayabasa, 2011; Castillo-
Chavez, Feng, & Huang, 2001; van den Driessche & Watmough, 2002), the basic reproduc-
tion numbers of the model are R, and Ry, where

_ Ba
et patdg

B

Ro _—
Wh 4 pp + dp

and Ry, =

In the following we address the feasibility and stability properties of each of the different
equilibria of the system (1a)-(1f). Our analysis relies heavily on the results of Vargas-De-
Ledn given below (Vargas-De-Ledn, 2011).

Consider the dynamics of the disease in the reservoir population A given by (1a)-(1c).
The system has a disease-free equilibrium Eg, = (As/tt4,0,0) and a unique endemic
equilibrium E} with coordinates

S — Ag(pa + o) _ ﬁ _ Ma+Pa+daI* (2a)
“ Ma(pa + ,U«u),RIOQ + daﬂa(ROa -1 Ma Ma @
I = AalLa(ROg —-1) _ Aa(,Bal — (g + pa + da)) (2b)
¢ Ha(pq + ,ua)ROa + duﬂa(ROu -1 (Ba; — da) (g + pa + da) ’
* Aupa(Rou -1 _ &I* (20)

R = = .
¢ ma(0a + Ma)Roa + daﬂa(ROa —-1) MHa 4

We note that I; > 0 whenever R, > 1or f;, < d,, butin thelatter case the resulting S, is
negative. Thus the endemic equilibrium is feasible, that is, E} € €2,, ifand onlyif R, > 1.
The following theorems are proved by Vargas-De-Le6n by the construction of appropriate
Lyapunov functions (Vargas-De-Leon, 2011).

Theorem 3.1: If Ro, < 1, then the disease-free equilibrium E, of (1a)-(1c) is globally
asymptotically stable in Q.

Theorem 3.2: Assume that (1, > dg and Ro, > 1, then the unique endemic equilibrium E};
of (1a)-(1c) is globally asymptotically stable in the interior of Q.

Once we know the dynamics of the disease in population A from the theorems above,
we can consider how this affects disease propagation in population H. Here our analysis
diverges from what was done previously in Bhunu and Mushayabasa (2011). Individuals in
H can get infected by contact with infectious individuals in population A or H. However,
we know that if Rg, < 1, then I,(f) — 0, Ny(t) = Ay/pqa ast — oo, while if Rg, > 1
and p, > dg, then I,(t) — I¥ > 0, Ny(t) - Ni =S} + I + R ast — 00. Thus we can
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think of (1d)-(1f) as a non-autonomous system

dsy, _ Bnln
E - Ah - Mhsh - (ﬂazg(t) + Nh ) Sha (38)
dI 1
d—h = (ﬁazg(t) + M) Sp — (p + on + dp)Ip, (3b)
t Ny,
dR
= = puly — R, (3¢c)

dt
where g(¢) := I,(t)/N,(t). By Theorems 3.1 and 3.2, we have that

limg(t) = ——M—M——— = —,
t—o0 limy s oo Na(t) N;

where the limits I and N¢ depend on R, and the corresponding parameters. That is,
I! = 0when Ry, < land I{ = I’ when R, > 1. This makes (1d)-(1f) an asymptotically
autonomous system with limit system

dsy I; Buly
=R A= Sy — ( Bay = + 2 s, 4
i h — MASh <,3a2 §+ N, h (4a)
dIy I Buln
— = - 4+ — )8, - dyl, 4b
" (,BazNg + N, n— (Un + pp +dp)ly (4b)
dRy,
— = popl;, — Ry, 4
G = Puln— Ry (4¢)

and we can use the theory developed for such systems (Castillo-Chavez & Thieme, 1994;
Thieme, 1992) to address the stability properties of our model in all possible cases. In par-
ticular, we repeatedly make use of the following corollary (Thieme, 1992) applied to our
systems:

Corollary 3.3: Ifsolutions of the system (3a)-(3c) are bounded, and the equilibrium E of the
limit system (4a)-(4c) is globally asymptotically stable, then any solution (S,(t), I, (t), Ry (¢))
of the system (3a)-(3c) satisfies (Sp(t), In(t), Ry (t)) — East — oo.

3.1. Endemic equilibrium in both populations
We start with the following claim:
Proposition 3.4: Assume that Ro, > 1, B4, > 0 and j1, > dg, so the disease in the reser-

voir population tends to the endemic equilibrium E}. Then (1d)-(1f) has a unique endemic
equilibrium E; € Qp, and &, = (E};, Ey}) is the unique endemic equilibrium of (1a)—(1f) in Q.
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Proof: To calculate E; = (Sj, I}, R}), we follow the steps in (Bhunu & Mushayabasa, 2011),
and set the right sides of Equations (1d)-(1f) equal to zero to obtain

ﬂﬂzlz 'BhIZ *
Ah= (Mh+N_:+ N;: Sh’ (5)
:BazIZ ﬂhI;:
R AN + pop +dy) I, 6
< N: N? n = (un+pn+dpl, (6)
puly = unR;. (7)

In Bhunu and Mushayabasa (2011), the unique endemic equilibrium was found subject to
Brn > dn(1 + Ba, I/ unNy). Instead, we show the existence of the unique endemic equi-
librium using a method similar to Afassinou, Chirove, and Govinder (2017) that holds
regardless of the stated inequality.

For simplification, define

Ba, I Buly;

M= mp=up+pnt+dpn A= ,

«= N h= M+ ontdn A N

Apr* A a b

a="Mta gy Dh PR PR Apdadc f=bdd
my, mp M K

Using (5),
A
Sf=——1 (8)

T omn AL AL
From (6) and using (8),

I*:sz(x:JrA;):( Ap )(A;H;): a+ bij
" my R R AN b+ 2+ A

(9)

Clearly, by (7) and (9),

br* arx
R = Phopx _ (H—h> <&> __crah (10)

[y " pwn+AE+ ) \wn ) w2 A
Then it follows that
£_< a+ bis )( o+ A+ )_a+b/\;
Ny Wh + AE+ Ay Ap+a+br) 4 c+dry e+fAg
so that
. B (a + b)»z)
h= Terfar (11)
Rearranging (11), we obtain
AT+ 0% (e — Brb) — Bra = 0. (12)

The above quadratic equation in A} has one positive root. Now (8), (9) and (10) imply that
the corresponding E; = (S, I}, RY) is feasible. [ |
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Consider now the endemic equilibrium &; = (E}, E;) € Q2. We prove the following
theorem.

Theorem 3.5: If Rg, > 1, na > dg, Ba, > 0 and py, > dy, then the unique endemic equi-
librium &, = (E, E}) of (1a)-(1f) is globally asymptotically stable in the interior of .

Proof: Since Rg, > 1 and p, > d, Theorem 3.2 implies that E} is a globally asymp-
totically stable equilibrium of (1a)-(1c) in the interior of ©,. Using this result, and the
assumption that 8,, > 0 we have that the system

dsy, ,BhIh
— =Ap— upSp — (ﬂaz Sh>

dt Np
dip, ,BhIh

Sp— dp i,
I (:3(12 N TN ) (h + o+ dn)1p
dR;, I R
5 = Prlh = Ry

is the asymptotic limit of system (1d)-(1f), and Ej; is its unique equilibrium. We claim that
Ej is a globally asymptotically stable equilibrium of (4a)-(4c).
Consider the function L : {(Sp, I, Rp) € Q4 : Sy, >0, I, > 0, R, > 0} - R

Np\ NPy +2 I
L=N,—N; —N/In ( ’“)+M[Ik I — I In (h)]
Ny Bn (I + R}) L

(d + 2un) St (R — )’ 2 2

where D,E > 0 are yet to be determined. L € C'(y,), L(S;, I, Ry) = 0 and L is positive
semi-definite. Calculating the derivative of L along solutions of (4a) (4c) and using the
relationships

ﬂ(lzIZ ﬂ I* :3021* IBhIZ
Ay = + =% 4+ S, —f 4+ —1§ = + pn +dp) I},
h (Mh N N h N NF n = (un+pn+dpl,

onl; = unRy,
we obtain
N, — Nf
I = (Mh (SZ + IZ + RZ) + thZ — 1y (Sh+ I+ Ry) — dhlh) <N—h>
h
N;: (dn + 2pup) lgaz ShIh ( h — Ih) ,3,12[*8* ( h— I;:)
B (I + Ry) NI NI

BrSuN;: (In — IF) _ BuSiN (In — If)
N;Nh N;:Nh
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n (dp + 2un) ) Sh 2(onn — ) — un(Ry — RY)) (Ry — RY)
20n I + R N,

N, (R = R})
N;

+ 2E (puln — iRy — puly; + wnRy) (Rn — R}) .

) + 2DN,, (Ny — Ny)

Since

BuSuNy; (In — Iy) — BuSiNw (In — I) = B (In — I;) (SuNj; — S;Np)
= B (In — 1;) ((Sn — S3) (I + Ry) = Sj; (In — I) — Sj; (Rn — Ry,))

and
BarLaSully (In = 1) = Baa Ty Sl (In = 1) =Bao 1 (In = Ii) (I (Sn = $3) = S (In = I;)) »

we have

Nh_NZ)

I = (,U«h (SZ + IZ + RZ) + thZ — un S+ I+ Ry) — dhlh) ( N,

N; i+ 2mn) [ Baols (= 1) (= $5)  BarliSh (I — 1)’
B (I} +R}) NiI¥ NI

O (=) (Sn = 8) (G + R) S (1 — 1)
N;iNy NNy

~ BuS;, (In — ;) (Rn — RZ)]

NiNy

N (dn+2m) (| N S; 20n (In — I¥) (Ry — RY)
20n IZ + RZ Ny,

2w (Ry = RY)* N (R —R;)
Np Nﬁ

+ 2DN}, (Ni, = NjY) + 2Epy, (I — If) (R — RY) — 2By (Ry — RY)®

Notice that the first term in L’ can be written as

((Sh — 8+ (In—I) + (Ry — RY)

N, )(—/,Lh(Sh—SZ-i-Ih—I;;-‘rRh—R;)

—dp (In — Ij))
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i ((Sh = $5) = (Ru = RY)”  (dn+ ) (In — 1)’

Ny, Ny,
 (dp 20 (S = S3) (In — I)
Ny,
(dn + 2un) (In — I}) (Rp — RY)
Ny,

SO we can write

i ((Sn = 7) = (Ru = R)))® i+ ) (1 — I3)°
Ny, Nj

N} (dh + 2u) (ﬁazlz'; (In — 1) (Sn — SZ))

I'=-—

Bu (I + R}) NZL

2 2
Nk @A 20) \ ([ Bay S (In — I}}) L BrS; (In — I)
B (I + Ry) NI} N;:Ny

2 2

(dn + 2u1) S; 2un (R —RE)”  N; (Ry — R})

-1+ = + 5
2pn Ih +Rh Ny, Nh

+ 2DN, (Nj, = N}Y) + 2Epy, (I — If) (Ri — Rf) — 2By (Ry — RY)® .
Now rearranging the terms as in (13), we obtain
i ((Sh = $5) = (R = RY)* (@ + ) (In — 1)’
Ny, Np
Njr (dn +2p) ( Ba Iy (In — 1) (Sn = S3)
Au (I + Ry) NaT;
(Vi 2\ (BadiSi Oh =5 A (0= 1)
B (17 + K;) NI NiN

2 2

(dn 4 24ep) S; 2un (Rp—R;)” N, (Rw — R})

- 1+ + 5
201 I, + R, Ny, N;,

I'=-—

— 2Dy, ((Sn = SE) = (R — RE))? = 2D (dy + 2) (In — I;)°
— 2D (dp + 2pn) (S — S3) (In — ) — 2D (dp + 2p) (In — I}) (Rw — R}))
+ 2Ep;, (In — If) (Rw — RY) — 2Euy, (R, — R}).
At this point we can see that most terms of L are negative semi-definite in Qj, except for

the third term, some of the ones involving parameters D and E, and potentially the fifth
term involving N;,. To deal with this term we utilize the assumption that uj, > dj, and
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obtain

21 (Ry — RY)’ LN (Ri—R:)*  (2unNy + N;) (R, — R})’

2 - 2
Np, Nj, Nj
2
Qo (Sp A+ In+ Rp) + Ap — ppn (Sp + In + Ry) — dplp) (Rn — R})
= NE
h
2
_ (i Sn+ R + A+ (i — di) Tn) (R — Rf)™

2
Nh

Now we can choose the values of D and E in such a way that all the remaining terms that
may not be negative semi-definite cancel out. In particular, let

Ny (dp + 2un) (,BaZI;k
B (I; +Ry) \NGI;
— 2D (dp + 2pp) + 2Epp = 0.

) —2D(dp +2up) =0 and

This implies
_ N} Ba, Iy
2BpNAL (IF + RY)
_ NiBaly G+ 20
2onPaN3 T} (1 + )

>0 and

and with these parameters L’ is negative semi-definite in Qj, with L’ = 0 ifand only if S, =
Sy>In = I, Ry = R;. Thus the largest compact invariant set in {(Sy, In, Rp) € Q2 : L' =0}
is {E}}, therefore, by the LaSalle invariance principle {E}} is globally asymptotically stable
in Qj, (LaSalle, 1976; LaSalle & Lefschetz, 1961). Now Corollary 3.3 implies that &, is a
globally asymptotically stable equilibrium of (1a)-(1f). |

Note that our theorem shows that if the disease is endemic in the reservoir popula-
tion, and B,, > 0, then irrespective of the reproductive number R, the disease becomes
endemic in the human population (if up, > dp).

3.2. Disease-free equilibrium in the reservoir population

The other equilibrium of the reservoir system (la)-(1c) is the disease-free equilibrium
given by E, = (82, 12, Rg) = (Aq/Ma,0,0). By Theorem 3.1 we know that this equilibrium
is globally asymptotically stable if Ro, < 1. In this case, I,(t) — 0 as t — 00, so in the
limit there is no infection in population H coming from the reservoir population A. Thus,
in the limit, dynamics in population H become exactly the same as the general dynamics
in the reservoir population, and Corollary 3.3 applies. Thus we have the following results.

Proposition 3.6: Assume that Ro, < 1, so the disease dies out in the reservoir population.
Additionally, let R, < 1. Then the disease-free equilibrium &y = (Aa/ a0, 0, Ap/p, 0,0)

of (1a)-(1f) is globally asymptotically stable in 2.



LETTERS IN BIOMATHEMATICS (&) 265

Proposition 3.7: Assume that Ro, <1, Ro, > 1 and up > dy. Then the equilibrium
& = (Ma/1a> 0,0, 87, IF, RY) of (1a)-(1f) is globally asymptotically stable in Q. (Note that
(S5, Iy, R},) are given by the same expressions as (2a)-(2c) with the parameters corresponding
to population H.)

4. Numerical results and possible modifications to the model

In this section we present some numerical results related to the model (1a)-(1f) with ani-
mals as the reservoir population A and humans represented as population H. Figure 1
shows the results of a numerical simulation of (1a)-(1f) using MATLAB’s ode45 and
the parameters A, = 152500/3, u, = 1/8, p, = 1/20, d, = 1/30, Ay = 2900/6, up =
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Figure 1. The above shows the results for a simulation with all parameters constant and the criteria for
Theorem 3.5 met.
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1/6, p, = 17/24, dy = 1/8 individuals per month and 8, = 31/24, B, = 3/8 and B, =
41/120 as the contact rates. The initial values used were 82 = 2000, I) = RZ =Rl =
0, % = 30000 and I? = 1000. These are artificial values and are used only for illustra-
tion purposes. Under these conditions, the endemic equilibrium of (1a)-(1f) is globally
asymptotically stable.

We used monkeypox as a motivating example for our next simulation. Since there is
no longer any vaccination against smallpox and this vaccine provided some immunity
against monkeypox, there is waning herd immunity against monkeypox (Hutin et al., 2001;
Levine et al., 2007; Lloyd-Smith et al., 2009; McCollum & Damon, 2014; Nolen et al., 2016;
Rimoin & Graham, 2011; Rimoin et al., 2007, 2010). Thus, for the next simulation, we
assume that as time goes on there is an increasing likelihood that a human will get
infected when they come into contact with an infected animal. For this simulation, we
use By, (t) = 1/(1 4+ 9e™"). Figure 2 shows the results of a numerical simulation with this
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Figure 2. The results for a simulation with all parameters constant except g, (t) which is an increasing
function of time.
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Ba, (t) and all other parameters the same as for Figure 1. The analysis for our asymptot-
ically autonomous system is still valid because B4, (t) — 1 as t — oo and so if we define
g(t) := Ba,(®)1,(t) /N4(2), then g(t) — IS/N: as t — oo. Since B, — 1, it makes sense
that Figure 2 shows the system approaching a higher I;® value than in Figure 1.

In the proof of the global asymptotic stability for the co-existence equilibrium, we
assumed that u, > d; and uy, > dj. However, even if we break both of those conditions,
the numerical results still seem to indicate that the co-existence endemic equilibrium
of (1a)-(1f) is globally asymptotically stable. Figure 3 shows the results of a simulation of
this kind, with A, = 152500/3, 1a = 1/25, pa = 1/20, da = 1/10, Ay = 2900/6, jup =
1/9, pn = 17/24, dy = 1/6 individuals per month and g = 31/24, 8, = 3/8 and B, =

x 10
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Figure 3. The results of a simulation with all parameters constant, but with u, < dg and up < dp.
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41/120 as the contact rates. The initial values used are the same as those in the previous
two sets of results.

We also simulate a more complicated scenario where there are multiple reservoir popu-
lations. Suppose there are # such reservoir populations, A, A;, . . ., A, and one population
H as in the previous model. Sy, I, Ry and Ny, are defined as before with S, I, and
R, representing the susceptible, infected and recovered individuals in population A;, for
i=1,2,...,n, with the total number of individuals in population A; being given as Nj,.
Susceptible individuals in A; are recruited through migration and birth at the rate A4, and
susceptible individuals in H are recruited at a rate of Aj,. We represent the death rates from
disease in population A; by d,;, and the death rate by disease in population H as dj,. Further,
we assume (g, by, are the natural death rates for A; and H, respectively, and pg;, o, be the
recovery rates with permanent immunity for A; and H, respectively. It is assumed that no
one in population H can infect any individual in any A; population, while individuals in
any A; population can infect those in H on suitable contact. We assume there is no cross-
infection between A; and Aj when i # j. Disease transmission is modelled using standard
incidence, assuming a constant (density-independent) contact rate both within and across
the two populations resulting in infection rates

,3(1,'11(1,‘

ai

Baila; Buln
fh(sal’Ial’Rup-- Sun’Ian’Ran’Sh’Ih’Rh)—<(Z az’a +Th S,

i=1

fa,- (Sap Ia,-y Ra,-) =

Sapp fori=1,2,...,n, and

where B, is the effective contact rate within population A;, B, is the effective contact
rate between populations A; and H and §j, is the effective contact rate within population
H. We assume that, fori = 1,2,...,n, Ag,, Ay, [a;» bhs Pa;» Ph are positive parameters and
da;> Ans Bay;» Bay; and B, are non-negative parameters. Specifically, this leads to the following
model. Fori=1,2,...,n,

ds i IB i I i
d: = Ng; — Ua;Sa; — ;\;a_ia Sa;» (14a)
dI 1 ﬁ 1 1
d_: ;\}a’a Sa; — (a; + Pa; + da,')laia (14b)
dR,.
d:l = pailai - Ma,-Rap (14C)

dsy Bain1a; Bnln
= Ap — upSp — : — | Su, 14d
a4 = An— HnSh <(Z N, )+ N, |5 (14d)

dIy, " Banls, Bunln
— = — — 1S, — d) i, 14
" ((?:1 N, + N, b — (n + pn + dp)ly (14e)

1
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dRy,
T onln — wnRp. (14f)
t
Let
3 Ag,
Qai = (Saia Iai’Rai) € R+ : Sa,- > 0) Ia,- = 09 Rai = 0) Su,' + Ia,' + Ra,- =—
ai
and
3 Ap
Qp=1SpInRp) €RY 18, >0, I, >0, Rp >0, Sp+ I, + R, < — ¢
Mk
Then fori = 1,2,...,n, the set Q = Qg X Qg, X -+ X Qg X Q is positively invariant

under the dynamics of (14a)-(14f) and solutions with initial conditions in Q exist globally.
Define Eg) = (Sé?,[é?,Rfl?) and B == (8, I;, R}) fori=1,2,...,n. Depending on
the parameters, E, is either the disease-free equilibrium or the endemic equilibrium. By
the structure of the model in (14a)-(14f) — with animals uninfected by humans and each
animal population independent, that is, unable to infect any other animal population — we
have that Eé? — Ej fori=1,2,...,n, and each E is globally asymptotically stable by
Theorems 3.1 and 3.2 under appropriate conditions. Thus, it is straightforward to extend
the results of the equilibrium analysis for (1a)-(1f) and we have the following corollary.

Corollary 4.1: Ifthereexistsani € 1,2,...,nsuch that Ro, > 1, jta; > da; and B, > 0,
and uy, > dy, then the unique endemic equilibrium &= (Eg,>- - ,EZH,EZ) of (14a)-(14f) is
globally asymptotically stable in the interior of Q.

In the simplest scenario for this model, we assume i = 2. Figure 4 shows the results of an
epidemic simulation with two animal populations and one human population. The initial
values used for this simulation are Sgl = 3000, 121 = 100, 822 = 2500, 122 = 40, Sg =
2000, I) =100 and Rgl = Rgz =R} = 0. The contact rates are Ba, = 1/4, Ba, =
1/9, Ba, =1/8, Bay, =1/11 and B, = 31/24. The parameter values, with units of
individuals per month, are A, =2900/6, up =1/6, py, =17/24, dy, =1/8, Ag =
152500/2, ptq, = 1/8, pay = 1/20, dgy = 1/30, Ay, = 500, g, = 1/25, pg, = 1/10and
da, = 1/30.

Looking at the system (la)-(1f) and revisiting our assumptions, the infection in the
human population depends on infection in both populations. In Figure 5 we see the change
in I} /Ny as Ro, changes. The values used for this figure were A, = 152500/3, 1, =
1/25, pa = 1/20, d, = 1/10, Aj, = 2900/6, p, = 1/9, pp = 17/24, dj, = 1/6 individu-
als per month and 8,;, = 0.3. In order to get the change in ‘R, we use a range of B, values,
namely 0 < B, < 1.9. The initial values used were Sg = 2000, 12 e RZ =RV=0, &X' =
3000 and 1% = 1000. (These values are simply for illustration purposes.) We notice that
I /N, increases after Ro, = 1. When ), = 1/3 we have R, ~ 0.338 and when g}, = 1/9
we have R, ~ 0.113. Even if B, = 0, when R, > 1, we see there is infection in the
human population so limiting infection from humans to humans is not enough to fully
mitigate this disease in humans. In all three curves there is a sharp increase in I /N;' for
1 <Ry, < 2 so that the differences between the different IZ /N,f curves are nearly indis-
tinguishable the closer g, is to 1. While we do not know what B, is in reality, this shows
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Figure 4. The results of a simulation with two animal populations as in (14a)—(14f) for i = 2. The first
two columns show the results for populations A1 and Ay, respectively. The last column shows the results
for the human population.

that if it is high enough for there to be endemic infection in the animal population, there
will be some level of infection in the human population. Figure 6 uses the same parame-
ters as in 5, but with B, > 1. Specifically, B, = 1 where Ry, ~ 1.014, B, = 1.5 when we
have R, ~ 1.521 and B, = 2 when R, ~ 2.028. As expected, the increase in B}, results
in higher values for I} /Ny than in Figure 5. While difficult, it is important to continue
studying monkeypox in both human and animal populations since infection in the animal
population has a substantial impact on infection in the human population.

In Figure 7, we use the same parameters as in Figure 5, but we consider IZ /N;" as a
function of R,. Since we changed fj, to obtain three curves in Figure 5 but £ has no
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Figure 5. The above illustrates the ratio f} /N} as a function of Ro,. The lowest curve represents the case
when B, = 0 so we see that there is still infection in the human population as long as R, > 1.
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Figure 6. The above illustrates the ratio /}' /Ny as a function of Ry, for R, > 1.
role in the value of I’ /N7, the curve in Figure 7 is the same regardless of Bj,. We note that,

as would be expected, changing R, has a greater effect on I} /N; than it did on I;//N;
reflected in Figure 5.



272 I. LAUKO ET AL.

0.5 T T T T

0.45 b

0.4

0.35f

0.3

* *
r)/Nu

I

0.2f

0.1

0.05f

R,

Figure 7. The above illustrates I /N7 as a function of Ry, .

0.3 T T T T

*
a

Bun 15/ N

Figure 8. The above illustrates Bg, /% /N; as a function of Ry, for three different values of ,, with
Bn=0.

We also know that changes in ,, impact the animal-to-human cross-infection. Figure 8
shows B,,I% /N as a function of R, for the same values as in Figure 5 with g, = 0.
These results indicate that controlling the disease in the human population also depends
on reducing the value of f,,, as would be expected. Continuing to educate people in areas
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affected by monkeypox on recognizing the symptoms and proper handling of infected
animals is crucial in limiting the spread of this disease among humans.

Future modifications to the model include possibly making the migration and birth rates
functions of time, A,(f) and Aj(¢), in addition to experimenting with different functions
for B, (). These adjustments may more accurately convey seasonal influences as well as
other environmental influences and trends.
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