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ABSTRACT 

NEW APPROACHES TO MULTI-FUNCTIONAL SOFT MATERIALS 

by 

Seyedali Banisadr 

 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Jian Chen 

 

Soft robotics is a relatively new, but fast-developing field of science and technology that 

utilizes soft materials such as polymers in their body structure. Despite significant 

progress in soft robotic devices, robots that can sense their environments are still very 

rare. Although some soft robots have exhibited sensing capabilities, they still have not 

demonstrated synergistic coupling of sensing and actuation. From our perspective, this 

type of coupling may take us one step closer to fabricate soft robots with autonomous 

feedback dynamics. In this work, we present new approaches to soft robotic devices, 

which are fabricated from responsive soft materials and are able to exhibit synergistic 

coupling of structural color-based sensing and actuation in response to environmental 

stimuli.  

Cephalopods, such as cuttlefish, are excellent models of coupled sensing and actuation. 

They demonstrate remarkable adaptability to the coloration and texture of their 

surroundings by modulating their skin color and surface morphology simultaneously and 

reversibly, for adaptive camouflage and signal communication. Inspired by this unique 

feature of cuttlefish skins, we present a general approach to remote-controlled, smart 

films that undergo simultaneous changes of surface color and morphology upon infrared 

(IR) actuation. The smart film has a reconfigurable laminated structure that comprises an 

IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric 



iii 
 

photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits 

fast, large, and reversible strain in the irradiated region, which causes a synergistically 

coupled change in the shape of the laminated film and color of the mechanochromic 

elastomeric photonic crystal layer in the same region. Complex 3D shapes, such as 

bending and twisting deformations, can be created under IR irradiation, by modulating the 

strain direction in the actuator layer of the laminated film. Finally, the laminated film has 

been used in a remote-controlled inchworm walker that can directly couple a color-

changing skin with the robotic movements. Such IR-actuated, reconfigurable films could 

enable new functions in soft robots and wearable devices. 

A crucial aspect of soft robotics is the sensing capabilities of the robot. Colorimetric 

sensing based on structural colors, mostly photonic crystals, has been explored. A major 

challenge is overcoming the problems of limited scalability and time-consuming 

fabrication process, which affect the real-world applications of photonic crystals. Herein, 

we have developed a new scalable and affordable platform technology for fabrication of 

stimuli-responsive, interference colored films. Our system is composed of a thin film of a 

transparent polymer deposited on a metal-coated substrate. The facile fabrication 

process allows us to create full spectrum of interference colors on both rigid and soft 

substrates by simply adjusting the thickness of the polymer layer. Furthermore, our films 

have been used as colorimetric sensors which undergo fast and reversible change of 

surface color upon changes in environmental humidity. Such polymer-based, responsive 

interference coloration could empower colorimetric sensing of various environmental 

stimuli (e.g. humidity, chemicals, heat, and mechanical forces), which could enable a wide 

range of applications. 
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Chapter 1: Introduction 

1.1. Introduction 

Robotics is an important and fast-growing field of science and engineering. Robots 

have a broad impact on industries as diverse as manufacturing, medicine, healthcare, 

military, agriculture, and consumer products. Robots are developed to increase range of 

motions and functions of machines, and to incorporate some key features into them such 

as adaptability to environment, ability of decision making, and autonomous operation.1-3 

Unlike biological systems, traditional robots have rigid body structures that are usually 

made of metals, which limits their ability to interact with the environment and handle fragile 

or irregular objects of various shapes and sizes. 

Recently, there has been a growing interest in the field of bioinspired soft robotics.3-

7 Inspired by softness and body compliance features found in animals and marine 

organisms, including starfish, various methods have been developed to fabricate soft 

robots from stretchable and flexible materials. Due to their soft nature, soft robots offer 

several advantages compared with robots built with hard materials; therefore, they may 

find applications where the conventional hard robots are unsuitable. Soft robots are 

capable of handling objects that are fragile or complex in shape. Since they have a wide 

range of motion, they are highly adaptive to sophisticated environments and can maintain 

their stability when moving in complex terrains. Moreover, due to their soft and deformable 

body structure, soft robots are less dangerous to work alongside humans in future 

applications compared with their hard counterparts. 
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Actuation is a key component of soft robotics. Actuators can convert various forms 

of stimulation into mechanical deformation and perform mechanical work on the macro-, 

micro-, and nanoscale. Most soft robots are actuated by pneumatic systems, or electric 

motors.1-3 To make soft robotic devices smart, responsive soft materials (so-called “smart 

materials”) have been developed as actuators over the past few decades. Compared with 

other smart materials, stimuli-responsive polymers have many advantages, such as good 

processability, excellent corrosion resistance, light-weight, biocompatibility, and the 

potential to mimic the movements of natural creatures. These smart materials are 

actuated in response to external environmental stimuli (e.g., heat, chemicals, light or 

humidity).8,9 

Another crucial aspect of robotics is the ability of robots to sense their 

environments. The softness and morphology of soft robots hinder the use of many 

conventional sensors, including encoders and metal or semiconductor strain gauges. 

Among all types of sensors, colorimetric sensing, which transduces environmental 

changes into visible color changes, provides a simple and powerful detection tool for 

development of low-cost and low-power sensors.10,11  

A promising new strategy towards sensing capabilities in soft robotic devices is to 

utilize soft materials with structural coloration as sensors.10 In contrast to chemical dyes, 

structural colorations are widely found in nature, including cuttlefish, where colors 

originate from micro- or nanostructures.10-14 One main advantage of structural colors is 

that they are not easily degraded by environmental conditions such as ultraviolet (UV) 

light, heat, oxygen, and moisture. Recently, there has been great interest in fabricating 

materials with responsive structural colors, which can reversibly change their color upon 
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exposure to an external stimulus (e.g., heat, chemicals, mechanical strains or light).10,15,16 

For instance, Asher et al. developed a colorimetric glucose sensor for patients with 

diabetes, which consists of a polyacrylamide hydrogel with pendent boronic acid groups. 

Their sensor responds to sugars in low ionic strength aqueous solutions by red shifting 

its diffraction as the sugar concentration increases.17 

Despite significant progress in soft robotic devices, robots that can sense their 

environments are still very rare. For instance, Morin and coworkers developed a 

locomotive soft robot which exhibits adaptive camouflage by pneumatic pumping of dye 

fluids in the microfluidic networks, however their system lacks sensing functionality.18 

Although, some soft robotic devices have exhibited sensing capabilities, they still have 

not demonstrated synergistic coupling of sensing and actuation. Mimicking the 

intelligence of natural species in soft robotic systems, that is, realization of soft robots 

that act autonomously and can adapt to environmental changes, is a long-standing 

challenge. 

1.2. Our Vision 

Our perspective for the field of soft robotics is to create robots that are almost 

entirely created with soft materials and possess coupled sensing and actuation 

functionalities. This coupling may take us one step closer to fabricate soft robots with 

autonomous feedback dynamics. Nature has provided us with numerous fascinating 

examples of coupled sensing and actuation. For instance, cuttlefish has an extraordinary 

capability to instantly and reversibly change its skin color and morphology in response to 

environmental stimuli. They use such modulation of their appearance for camouflage and 
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communication.19 Another fascinating example can be found in the Venus Flytrap, which 

has inspired scientists due to its unique features such as automatic closure of leaf upon 

mechanical stimulation, sub-second-scale actuation, and ability to distinguish insects 

and other prey from random particles like dust.20 

Herein, we report new approaches to soft robotic devices, that are fabricated from 

stimuli-responsive soft materials and are able to exhibit synergistic coupling of structural 

color-based sensing and actuation in response to environmental stimuli. Such soft robotic 

devices may open up new application possibilities as smart artificial skins in soft robotics, 

wearable devices, sensors, and dynamic camouflage. 
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Chapter 2: Simultaneous Reconfiguration of Surface 

Color and Morphology 

2.1. Introduction 

Cephalopods, such as cuttlefish, are excellent models of coupled sensing and 

actuation. They demonstrate remarkable adaptability to the coloration and texture of 

their surroundings by modulating their skin color and surface morphology simultaneously 

and reversibly, for the purpose of adaptive camouflage and signal communication.1-3 

Inspired by this unique feature of cuttlefish skins, we present a general approach to 

remote-controlled, soft robots that undergo simultaneous changes of surface color and 

morphology upon infrared (IR) actuation. The colorimetric sensing in this soft robot is 

based on structural color materials that are responsive to mechanical forces. 

The coloration in cuttlefish skins is due to the chromatophores embedded in sacs 

which are controlled by multiple radial muscles, as well as the structural colors 

(iridophores, and leucophores).3,4 Cuttlefish also can rapidly change the surface 

morphology of their skins from smooth to spiky, which is unique in the animal kingdom. 

This physical change relies on the papillae, a network of dermal erector muscles.5 

Cephalopods, including cuttlefish, commonly swim in large schools. It is clear that the 

coordination of the movements of members in a school plays a crucial role for preserving 

the integrity of the school. Iridophores of their skins provide them with an exceptional 

means of communication.3 One distinct optical feature of the iridophores is the 
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dependence of the peak wavelength of the reflected light on the angle of 

observation/incidence, which is used by members of a school for coordination of their 

swimming direction. Moreover, the polarized light reflected from the iridophores enable 

them to communicate with the other members of the group in a hidden way, since 

cephalopods are especially sensitive to polarized light.3 These unique features of their 

skins have attracted growing interest in recent years to develop soft material systems and 

devices to mimic such functions for potential applications in soft robotics and wearable 

devices.6-19  

Significant progress has been made recently in engineering some of the key 

functions inspired by cuttlefish skins.6-14 For instance, Morin and coworkers utilized soft 

robots equipped with microfluidic networks to exhibit active camouflage and displays by 

pneumatic pumping of chemical dye fluids through the network.6 Yu and coworkers 

developed adaptive optoelectronic camouflage systems that can autonomously sense 

and adapt to the coloration of their surroundings.7 Wang and coworkers demonstrated an 

electro-mechano-chemically responsive elastomer system that can produce voltage-

controlled on-demand fluorescent patterns.8 The fluorescent signals result from large 

deformation of a stretchable elastomer covalently coupled with spiropyran-based 

mechanochromic molecules under the control of electric fields. More recently, Larson and 

coworkers reported a highly stretchable electroluminescent material composed of a ZnS 

phosphor-doped dielectric elastomer layer sandwiched between layers of hydrogel 

electrodes, which can change illuminance and capacitance under voltage-induced 

deformation.12 
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The colorations in the aforementioned studies were based on chemical dyes and 

phosphors. In contrast, structural colorations are widely found in nature, including 

cephalopods, where colors originate from micro- or nanostructures.20-22 As mentioned 

earlier, one main advantage of structural colors is that they are not easily degraded by 

environmental conditions such as ultraviolet (UV) light, heat, oxygen, and moisture. An 

important source of structural colorations is from photonic crystals, which are 1-D, 2-D, or 

3-D ordered nanostructures of two or more media with different refractive indices 

arranged in a spatially periodic fashion. Due to the periodic arrangement of materials with 

different refractive indices, a photonic bandgap appears, which leads to selective 

prohibition of the light of certain wavelength from propagating through the photonic 

crystal. A 3D photonic crystal diffracts light of a specific wavelength as determined by 

Bragg’s law (Equation 2.1): 

                                                     𝑚𝜆 = 2𝑛𝑑 sin𝜃                                                                   (2.1) 

Where m is the order of diffraction, λ is the diffracted wavelength of the incident 

light, n is the effective refractive index of the system, d is the spacing between the 

diffracting planes, and θ is the Bragg glancing angle between the incident light and 

diffracting planes.23  

3D photonic crystals, long-range-ordered lattices assembled from nanospheres, 

may represent a class of ideal candidates for fabricating optical sensors that can be used 

to monitor, measure, and display environmental variations in terms of color changes, 

which can be easily visualized by naked eye. There has been great interest in responsive 

photonic crystals, which can change the photonic bandgaps upon exposure to external 
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stimuli such as heat, chemicals, mechanical strains, light, electric fields, and magnetic 

fields.20-27 The approaches to stimulus-responsive photonic crystals include changing the 

lattice spacing of the photonic crystal and the refractive indices of the constituent 

materials.23 For instance, Asher et al. have demonstrated the fabrication of temperature-

, pH-, and ion-responsive optical sensors by embedding colloidal crystals in polymer 

hydrogels; these are referred to as intelligent sensors.27 

A promising new strategy towards cuttlefish-inspired smart films is to integrate an 

elastomeric photonic crystal28-40 with a mechanical actuator41-44, where the actuator 

provides mechanical strains that can induce the out-of-plane deformation and change the 

photonic bandgap of the elastomeric photonic crystal. Liquid crystalline elastomers 

(LCEs) are excellent candidates for mechanical actuators because they can translate 

small molecular movements triggered by an external stimulus such as heat or light into 

large, fast, and reversible mechanical motions.45-57 However, this new strategy for bio-

inspired smart films has been underexplored so far in the literature. 

Nematic LCEs have fascinated scientists since 1981 when they were first 

synthesized by Finkelmann et al.45 LCEs possess three important features: orientational 

order exhibited by the mesogenic units in amorphous soft materials, topological 

constraints via the crosslinks, and a responsive molecular shape due to the coupling 

between the orientational order and mechanical strain.47 These three features have made 

LCEs excellent actuators.48-53 Nematic LCEs can exhibit large and reversible elongation 

or contraction in response to temperature changes. Due to the low thermal-conductivity 

of LCEs, these types of LCE actuators have a slow response time and cannot be actuated 

remotely which limits their potential applications.  
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Carbon nanotubes (CNTs) have high thermal conductivities and excellent 

mechanical properties, which make them ideal fillers for LCE actuators. Both the multi-

walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) exhibit 

a photomechanical response.58-61 We have previously demonstrated that the IR light-

driven LCE composite films based on near IR absorbing fillers, such as single-wall carbon 

nanotubes (SWNTs) and near IR (NIR) dyes, are suitable candidates for soft robotics 

applications.62,63 

Light-driven actuation is highly desirable for various applications, because it not 

only offers remote, spatial, and temporal control over the actuators, but also permits 

sophisticated control over light direction, wavelength, intensity, and polarization.43,44 

Hence the light allows for complicated actuation movements without using additional 

energy sources and complex components, which can considerably simplify the design of 

actuator devices and reduce their sizes and weights. Infrared (IR) light is usually better 

than either UV or visible light for light-driven actuation, because IR light can penetrate 

much deeper in most polymeric materials48,61 and it generally causes little material 

damage compared with UV or visible light. In addition, numerous near IR absorbing 

materials and IR lasers with different wavelengths are available for different target 

applications.   

In the present study, we report a general approach to remote-controlled, smart 

films that undergo simultaneous changes of surface color and morphology upon IR 

actuation. The smart film has a reconfigurable laminated structure that comprises an IR-

responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic 

crystal layer, which can be disassembled with appropriate tools and reassembled based 
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on various needs. Upon global or localized IR irradiation, the nanocomposite actuator 

layer exhibits fast, large, and reversible strain in the irradiated region, which causes a 

synergistically coupled out-of-plane deformation of the laminated film and structural color 

change in the mechanochromic elastomer layer in the same region.  

Our IR-actuated laminated film design has brought together several important 

features: i) Large, fast, and reversible remote-controlled actuation that is suitable for soft 

robotic applications; ii) Intrinsically coupled change of both surface color and morphology 

that is inspired by cuttlefish skins; iii) IR laser-induced localized actuation that enables 

generation of different patterns of surface color and morphology; iv) Reconfigurability of 

the laminated film through disassembly with appropriate tools and reassembly that can 

repurpose the film for different uses and reduce the materials cost and waste.    

 

2.2. Experimental 

2.2.1. Materials 

2,5-Dihydroxybenzoic acid, benzyl bromide, 1,6-hexanediol diacrylate, N,N-

dicyclohexylcarbodiimide, palladium (5% on carbon), styrene, and divinylbenzene were 

purchased from Alfa Aesar. Styrene and divinylbenzene were further purified separately 

by washing with aqueous NaOH (5 wt%) solution three times to remove polymerization 

inhibitors, followed by washing with deionized water, and drying over anhydrous calcium 

chloride. N,N-dimethylformamide, dichloromethane, chloroform, Irgacure 369 and 

silicone oil (viscosity: 10 cSt) were purchased from Sigma-Aldrich. Potassium persulfate 
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was purchased from Mallinckrodt. 4-Pentylcyclohexylcarboxylic acid, 4-

pyrrolidinopyridine, 4-hydroxybutyl acrylate, and sodium dodecylbenzenesulfonate were 

purchased from TCI America. Standard poly(p-phenyleneethynylene)s (PPEs) were 

synthesized and characterized based on literature.64,65 Purified HiPco-SWNTs were 

purchased from Carbon Nanotechnologies, Inc. Polydimethylsiloxane (PDMS) precursors 

(Sylgard 184) were purchased from Dow Corning.  Hexamethyldisiloxane was purchased 

from Acros Organics.  

 

2.2.2. Preparation and Characterization of liquid crystalline monomers 

(4"-Acryloyloxybutyl) 2,5-di(4'-butyloxybenzoyloxy) benzoate (monomer A) and 

(4"-acryloyloxybutyl)2,5-di(4'-pentylcyclohexylcarboxyloxy) benzoate (monomer B), were 

synthesized, purified, and characterized according to literature (schemes 2.1, and 2.2).66 

The 300 MHz 1H NMR spectra were recorded on a Bruker DPX-300 spectrometer. All 

spectra were run in CDCl3 solution.  
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Scheme 2.1. Liquid crystal monomer synthesis, (4"-Acryloyloxybutyl) 2,5-di(4'-
butyloxybenzoyloxy) benzoate (monomer A).66  
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Scheme 2.2. Liquid crystal monomer synthesis, (4"-acryloyloxybutyl)2,5-di(4'-
pentylcyclohexylcarboxyloxy) benzoate (monomer B).66 
 

Typical procedures of the synthesis of compounds 1, 2a, 3a, 4a, 2b, 3b, and 4b 

are described below, respectively. 1H-NMR spectra of these compounds can be found in 

Appendix. 

Benzyl 2,5-Dihydroxybenzoate (1). 2,5-dihydroxybenzoic acid (10 g, 65 mmol), 

NaHCO3 (15.8 g, 188.5 mmol) and DMF (97 mL) were added to a three-necked flask 

equipped with a reflux condenser. The mixture was stirred and heated at 70 °C for 1 h 

using a heating oil bath. Subsequently, benzyl bromide (11.12 g, 65 mmol) was added, 
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and the mixture was heated for 7 h. The reaction mixture was then cooled, diluted with 

deionized water (300 mL), followed by extraction twice with 150 mL of a 50:50 

hexane/ethyl acetate mixture. The organic phases were collected and washed twice with 

deionized water (150 mL) and dried over Na2SO4. After evaporation of the solvents, the 

residue was recrystallized from hexane (3x) to yield 10.2 g (64%). 1H NMR (CDCl3) 𝛿 

(ppm): 4.7 (s, 1H, OH), 5.39 (s, 2H, CH2-O), 6.89-7.10 (m, 2H, ArH), 7.4 (s, 1H, ArH), 

7.42-7.5 (m, 5H, ArH), 10.35 (s, 1H, OH). 

Benzyl 2,5-Di(4'-butyloxybenzoyloxy) benzoate (2a). Benzyl 2,5-dihydroxybenzoate 

(1) (10 g, 41 mmol), 4-butyloxybenzoic acid (17.5 g, 90.2 mmol), N,N-

dicyclohexylcarbodiimide (18.61 g, 90.2 mmol), and 4-pyrrolidinopyridine (1.3 g, 9 mmol) 

and dichloromethane (667 mL) were added to a three-necked flask and stirred at room 

temperature for 12 h. Subsequently, the N,N-dicyclohexyl urea was filtered and the filtrate 

was washed with water (250 mL), 5% acetic acid solution (250 mL), and water (250 mL) 

and dried over Na2SO4. After evaporation of the solvent, it was recrystallized (3x) from 

ethanol to yield 17.8 g (73%). 1H NMR (CDCl3) 𝛿 (ppm): 1.0 (t, 6H, -CH3), 1.5 (m, 4H, -

CH2-), 1.8 (m, 4H, -CH2-), 4.01 (t, 4H, -CH2-O), 5.2 (s, 2H, -CH2-O), 7.0-7.1 (m, 4H, ArH), 

7.3-7.45 (m, 7H, ArH), 7.9 (s, 1H, ArH), 8.14-8.18 (m, 4, ArH). 

 

2,5-Di(4'-butyloxybenzoyloxy) benzoic Acid (3a). 5% palladium on carbon (3.5 g) and 

475 mL of dichloromethane were added to a three-necked flask, and the hydrogen was 

allowed to bubble through the suspension at room temperature. After 15 min, 7.3 g (12 

mmol) of the benzyl ether 2a was added to the reaction flask, and the mixture was stirred 
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overnight under hydrogen. The progress of the reaction was monitored by TLC (50:50 

hexane/ethyl acetate). Subsequently, the reaction mixture was filtered on Celite pad, and 

then solvent was evaporated to yield 5.6 g (90%) of the product. 1H NMR (CDCl3) 𝛿 (ppm): 

1.02 (t, 6H, -CH3), 1.52 (m, 4H, -CH2), 1.84 (m, 4H, -CH2-), 4.02 (m, 4H, -O-CH2), 7.0-7.2 

(m, 4H, ArH), 7.3-7.5 (m, 2H, ArH), 7.9 (s, 1H, ArH), 8.12-8.17 (m, 4H, ArH). 

 

(4''-Acryloyloxybutyl) 2,5-Di(4'-butyloxybenzoyloxy) benzoate (4a). A solution of 2,5-

di(4'-butyloxybenzoyloxy) benzoic acid (3a) (7.6 g, 15 mmol), 4-hydroxybutyl acrylate (2.4 

g, 16.5 mmol), N,N-dicyclohexylcarbodiimide (3.4 g, 16.5 mmol), and 4-

pyrrolidinopyridine (0.2 g, 1.6 mmol) and 238 mL of dichloromethane were added to a 

three-necked flask and stirred overnight at room temperature. After the N,N-

dicyclohexylurea was filtered, the filtrate was washed with water (80 mL), 5% acetic acid 

solution (80 mL), and water (80 mL) and dried over Na2SO4. After solvent evaporation, 

the crude product was recrystallized (3x) from ethanol. Yield: 6.9 g, 73%. 1H NMR (CDCl3) 

𝛿 (ppm): 1.0 (t, 6H, -CH3), 1.5-1.7 (m, 8H, -CH2-), 1.82 (m, 4H, -CH2-), 4.02-4.15 (m, 6H, 

-OCH2), 4.2 (t, 2H, OCO-CH2), 5.8 (m, 1H, CH2=C), 6.1 (m, 1H, C=CH-), 6.35 (m, 1H, 

CH2=C), 7.0-7.2 (m, 4H, ArH), 7.3-7.5 (m, 2H, ArH), 7.9 (s, 1H, ArH), 8.15-8.2 (m, 4H, 

ArH). 

 

Benzyl 2,5-Di(4'-pentylcyclohexylcarboxyloxy) benzoate (2b). Benzyl 2,5-

dihydroxybenzoate (1) (9.68 g, 39 mmol), 4-pentylcyclohexylcarboxylic acid (17 g, 86 

mmol), N,N-dicyclohexylcarbodiimide (17.7 g, 86 mmol), and 4-pyrrolidinopyridine (1.27 

g, 8.6 mmol) and 390 mL of dichloromethane were added to a three-necked flask and 
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stirred for 12 h at room temperature. After the N,N-dicyclohexylurea was filtered, the 

filtrate was washed with deionized water (250 mL), 5% acetic acid solution (250 mL), and 

deionized water (250 mL) and dried over Na2SO4. After the solvent evaporation, the crude 

product was recrystallized (2x) from ethanol. Yield: 14.1 g, 60%. 1H NMR (CDCl3) 𝛿 (ppm): 

0.93 (t, 6H, -CH3), 1.05 (m, 4H, -CH (EQ)), 1.19 (m, 16H, -CH2), 1.2 (m, 2H, -CH (AX)), 

1.3 (m, 4H, -CH (EQ)), 1.95 (m, 4H, -CH (EQ)), 2.2 (m, 4H, -CH (AX)), 2.51 (m, 2H, -CH 

(AX)), 5.3 (s, 2H, -OCH2), 7.1 (m, 1H, ArH), 7.28 (m, 1H, ArH), 7.4 (m, 5H, ArH), 7.72 (s, 

1H, ArH). 

 

2,5-Di(4'-pentylcyclohexylcarboxyloxy) benzoic Acid (3b). 5% palladium on carbon 

(1.36 g) and 409 mL of dichloromethane were added to a three-necked flask, and the 

hydrogen was allowed to bubble through the suspension at room temperature. After 15 

min, 6.55 g (10.8 mmol) of the benzyl ether 2b was added to the reaction flask, and the 

mixture was stirred overnight under hydrogen. The progress of the reaction was 

monitored by TLC (50:50 hexane/ethyl acetate). Subsequently, the reaction mixture was 

filtered on Celite pad, and then solvent was evaporated to yield 5.4 g (97%) of the product.  

1H NMR (CDCl3) 𝛿 (ppm): 0.9 (t, 6H, -CH3), 1.0 (m, 4H, -CH (EQ)), 1.18 (m, 16H, -CH2), 

1.2 (m, 2H, -CH (AX)), 1.3 (m, 4H, -CH (EQ)), 1.9 (m, 4H, -CH (EQ)), 2.2 (m, 4H, -CH 

(AX)), 2.52 (m, 2H, -CH (AX)), 7.1 (m, 1H, ArH), 7.3 (m, 1H, ArH), 7.8 (s, 1H, ArH). 

 

(4''-Acryloyloxybutyl) 2,5-Di(4'-pentylcyclohexylcarboxyloxy) benzoate (4b). A 

solution of 3b (10.7 g, 20.8 mmol), 4-hydroxybutyl acrylate (3.17 g, 22 mmol), N,N-

dicyclohexylcarbodiimide (4.54 g, 22 mmol), and 4-pyrrolidinopyridine (0.33 g, 2.2 mmol) 
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and 425 mL of dichloromethane were added to a three-necked flask and stirred overnight 

at room temperature. Subsequently, the N,N-dicyclohexylurea was filtered, and the filtrate 

was then washed with deionized water (300 mL), 5% acetic acid solution (300 mL), and 

deionized water (300 mL) and dried over Na2SO4. After solvent evaporation, the residue 

was a very viscous oil. Finally, the crude product was purified by crystallization from 

ethanol (3x) to yield 4.2 g (33%) of the product. 1H NMR (CDCl3) 𝛿 (ppm): 0.93-1.1 (m, 

10H, -CH (EQ)), -CH3), 1.2-1.4 (m, 14H, -CH (AX)), -CH2-), 1.5-1.6 (m, 8H, -CH2-), 1.75-

1.9 (m, 8H, -CH (AX, EQ)), 2.1 (m, 4H, -CH (AX)), 2.18 (m, 4H, -CH (AX)), 2.51 (m, 2H, -

CH (AX)), 4.2 (t, 2H, -CH2-OCO), 4.3 (t, 2H, OCOCH2), 5.8 (m, 1H, CH2=C), 6.12 (m, 1H, 

C=CH-), 6.4 (m, 1H, CH2=C), 7.1 (m, 1H, ArH), 7.3 (m, 1H, ArH), 7.67 (s, 1H, ArH). 

 

2.2.3. Preparation and Characterization of 0.1 wt% SWNT-LCE 

Nanocomposite Films 

The preparation of 0.1 wt% SWNT-LCE nanocomposite films was based on our 

previous report.63 A 0.25 mg/mL solution of PPE-SWNTs in chloroform was prepared 

according to literature. The SWNT solution concentration and nanotube loading-level in 

the film were based only on purified SWNT material and excluded the PPE material. 

Monomer A (45.5 mg, 0.072 mmol), monomer B (69.1 mg, 0.108 mmol), 1,6-hexanediol 

diacrylate (3.3 mg, 0.0146 mmol) and Irgacure 369 (0.33 mg, 0.00090 mmol) were 

transferred into a vial, mixed together. Next, 0.46 mL of 0.25 mg/mL PPE-SWNT solution 

in chloroform was added. After most of the chloroform was removed by evaporation, the 
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resulting viscous solution was cast onto a PTFE dish and was heated on a hot plate at 90 

°C to remove solvent and air bubbles and then cooled down.  

The resulting film was dried under vacuum at 40 °C for 10 min, followed by 10 min 

of N2 purging at 40 °C. A Long Wave (365 nm) Ultraviolet (UV) Lamp was used for 

photopolymerization. The top side of the film was first partially photopolymerized at 40 °C 

under N2 with 8 min of 0.97 mW/cm2 UV light irradiation. The film was peeled from the 

PTFE dish and flipped upside down. The film was vacuum-dried at 40 °C for 10 min, 

followed by 10 min of N2 purging at 40 °C. The previous bottom side (now top side) of the 

film was then partially photopolymerized at 40 °C under N2 with 8 min of 0.97 mW/cm2 

UV light irradiation. The partially cured film was clamped on both ends with clips and 

placed in an oven. The film was stretched to a certain length in oven at ~ 40 °C by hanging 

a weight of 70 g onto the bottom clip. The film was then cooled down and left overnight 

at room temperature while under tension. Final curing was done by subjecting each side 

of the film to 10 min of 21 mW/cm2 UV light irradiation. After final curing, the film was 

annealed at 40 °C for 2h to reach an equilibrated state. The stretching ratio of the 

annealed films for this study was approximately 150%. The stretching ratio of the film is 

defined by Equation 2.2.63  

 

                                                 Stretching Ratio = (L/Lo)(100%)                                 (2.2)         

Where Lo is the initial length of the film and L is the final length of the film after 

annealing. The intensity of UV irradiation for photopolymerization was measured using a 

Newport power meter (model 1918-C) with a UV detector (918D-UV-OD3). The nematic-
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isotropic (N-I) phase transition temperature of a representative 0.1 wt% SWNT-LCE film 

is ~ 64.6 °C, which was acquired using a TA Instrument differential scanning calorimeter 

Q10 under Ar.63 The film thickness was measured with a Mitutoyo Digital Micrometer. 

Scanning electron microscopy (SEM) was performed using a Hitachi S-4800 field 

emission scanning electron microscope. 

 

2.2.4. Preparation and Characterization of Crosslinked Polystyrene 

(PS) Nanospheres 

Monodisperse crosslinked PS nanospheres were synthesized by emulsion 

polymerization, according to a modified literature procedure.67 Divinylbenzene, potassium 

persulfate, and sodium dodecylbenzenesulfonate were used for emulsion polymerization 

of crosslinked PS particles as crosslinker, initiator and emulsifier, respectively. Initially, 

styrene monomer (10.0 g) was magnetically stirred with a mixture of divinylbenzene (0.50 

g), sodium dodecylbenzenesulfonate (0.084 g) in 120 mL of deionized water at 300 rpm 

for 15 min in a 250 mL three-necked flask equipped with a reflux condenser. 

Subsequently, the reaction flask was purged by nitrogen bubbling at room temperature 

for 15 min, followed by increasing the reaction temperature to 80 °C using a heated oil 

bath. After keeping the reaction temperature stable for 45 min, potassium persulfate (0.10 

g) was introduced into the reaction mixture. The polymerization was terminated after 5 h, 

followed by cooling down to room temperature. Finally, the residual styrene and sodium 

dodecylbenzenesulfonate were removed by repeated cycles of washing, centrifugation, 

and redispersing in deionized water. 
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The morphology, diameter, and monodispersity of the synthesized PS 

nanospheres were characterized by SEM. The average diameter (Dn) and the coefficient 

of variation (Cv) of the particles were determined from SEM observations of 100 particles 

to ensure the accuracy of measurements according to Equations 2.3 and 2.4, 

respectively.  

                                                 𝐷𝑛 = (Σ𝑛𝑖𝑑𝑖)/(Σ𝑛𝑖)                                   (2.3)                             

𝐶𝑣 =
(Σ(𝑑𝑖 − (

Σ𝑛𝑖𝑑𝑖

Σ𝑛𝑖
))2/Σ𝑛𝑖)

1
2

(
Σ𝑛𝑖𝑑𝑖

Σ𝑛𝑖
)

(100%) 

Where ni is the number of nanospheres with a diameter of di.68 

 

2.2.5. Preparation and Characterization of Elastomeric Photonic Crystal 

Films 

First, a thin film of PDMS precursors (base to curing agent ratio = 10:1) was spin-

coated on a clean glass substrate, followed by curing at 80 °C for 4 h. Subsequently, the 

surface of PDMS thin film was rendered hydrophilic by treating with oxygen plasma for 1 

min (Zepto, Diener Electronic). To obtain a well-ordered close-packed crystal structure of 

the PS nanospheres on the plasma-treated PDMS substrate, the silicone oil-covering self-

assembly technique was employed.69,70 After self-assembly, the silicone oil was carefully 

removed using Kim wipe, followed by rinsing the film with isopropyl alcohol. 

Subsequently, the interstitial voids among the PS particles were infiltrated with the PDMS 

(2.4) 
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precursors diluted with hexamethyldisiloxane to reduce the viscosity. The ratio of 

base:curing agent:hexamethyl disiloxane is 10:1:10. The PDMS precursors were then 

partially cured at room temperature overnight, followed by removing the excess PDMS 

precursors, and then fully cured at 70 °C for 3 h. The resulting elastomeric photonic crystal 

film was then carefully peeled off the substrate using a razor.  

Both PS photonic crystal assemblies and corresponding elastomeric photonic 

crystal films were characterized by SEM and reflection spectroscopy. The reflection 

spectra were acquired using a fiber optic VIS-NIR spectrometer (USB2000, Ocean 

Optics).  

 

2.2.6. Preparation and IR Actuation of the Laminated Films 

The preparation procedure for the laminated films is schematically illustrated in 

Figure 2.1. First, a thin layer of PDMS precursors (base:curing agent mixing ratio = 10:1) 

was applied to a 0.1 wt% SWNT-LCE nanocomposite film as glue, and the resulting film 

was then placed onto the elastomeric photonic crystal film. The silicone glue was allowed 

to fully cure at room temperature for 48 h. The thickness of silicone glue layer was 

measured by digital optical microscopy. Mechanical properties of the 0.1 wt% SWNT-LCE 

and laminated films were characterized using a Shimadzu Autograph AGS‐J universal 

tester with a 500 N cell load and pneumatic side‐action grips. Tensile tests were carried 

out along the strain direction of SWNT-LCE films at a strain rate of 0.5 mm/min at room 

temperature.  
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For global IR actuation, where the whole film was exposed to IR irradiation, the 

Torch flashlight (Wicked Lasers), which provides >90% of the light in the NIR region, was 

used as a NIR light source at a light intensity of 11 mW mm-2. For localized IR actuation, 

where only selected film region was exposed to IR irradiation, the 808 nm IR laser was 

used as a NIR light source at a light intensity of 45 mW mm-2. The light intensities of NIR 

light sources were measured using a Newport power meter (model 1918-C) with an IR 

detector (918D-IR-OD3). Temperatures of the laminated films during IR actuation 

experiments were measured with a non-contact infrared thermometer (MICRO-EPSILON 

thermoMETER LS), which was found to be in good agreement (within ± 2 °C) with a 

traditional thermometer.  

 

 

Figure 2.1. Schematic illustration of the preparation of the laminated film. 

 

2.2.7. Conversion of Image Signals to Audio Signals 

To demonstrate the feasibility of audio communications, the photographs of cyan 

unbent and blue bent configurations of the laminated film excluding backgrounds were 
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converted to audio signals. The sound waves were generated using an image-to-sound 

converter software (AudioPaint, version 3.0). The software employs a frequency-time grid 

to process a picture, in which each line of an image correlates with an oscillator. The 

frequency and amplitude of this oscillator at a given time are determined by the vertical 

position and color of each pixel, respectively. Fast Fourier transforms of the synthesized 

sounds on a logarithmic scale were obtained using a sound analyzer software (Sonic 

Visualiser, version 3.0). 

 

2.3. Results and Discussion 

2.3.1. SWNT-LCE Nanocomposite Films 

The effective use of SWNTs in polymer-composite applications strongly depends 

on the ability to disperse them homogeneously throughout a polymer matrix without 

destroying their integrity. Pristine SWNTs are incompatible with most solvents and 

polymers, which leads to poor dispersion of the nanotubes in solvents and polymer 

matrices. Rigid, conjugated macromolecules such as PPE can be used to non-covalently 

functionalize and solubilize carbon nanotubes while preserving their intrinsic properties 

and disperse carbon nanotubes uniformly in polymer matrices.62-65,71  

The 0.1 wt% SWNT-LCE nanocomposite films were prepared from a mixture of 

PPE-SWNTs and LCE precursors through a two-stage photopolymerization process 

coupled with a hot-drawing technique.62,63 This method allows us to make relatively thick 

films where the mesogenic units in the nanocomposite film are well aligned along the hot-
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drawing direction.62 The typical thickness of a 0.1 wt% SWNT-LCE film used in this study 

is around 252 μm. The SWNT loading value is based on purified SWNT material only, 

and excludes the PPE material. Chemical structures of the monomers, crosslinker, and 

UV initiator that were used to synthesize the side-on LCE matrix are shown in Figure 2.2. 

We chose this particular type of LCE with side-on mesogenic units because it exhibits 

muscle-like physical properties; and its N-I phase transition temperature is tunable by 

controlling the monomer ratio.  

The coupling between liquid crystal side chain and backbone is critical to the 

thermoresponsive behavior of LCE materials. This coupling is strong when the length of 

the spacer between the liquid crystalline mesogen and the polymer backbone is short. In 

LCEs, the orientational order of the mesogens induces backbone anisotropy. The radius 

of gyration has a prolate extended shape in the nematic phase. In contrast, the radius of 

gyration is spherical in the isotropic phase. The polymer chains between cross-links in an 

elastomer can undergo similar conformational changes, leading to a shape change that 

is thermally reversible.66 

The excellent dispersion of SWNTs in the LCE matrix was confirmed by 

photography (Figure 2.3a) and SEM (Figure 2.3b). In addition, SEM shows that SWNTs 

are partially orientated along the hot-drawing direction. The diameters of SWNTs shown 

in Figure 2.3b are significantly inflated because the SEM image contrast stems from local 

potential differences between conductive nanotubes and insulating polymer matrix.62   

Upon IR irradiation, well-dispersed SWNTs can efficiently absorb and transform IR 

light into thermal energy, thereby serving as numerous nanoscale heaters uniformly 
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embedded in the LCE matrix. The absorbed thermal energy, if sufficient, then induces the 

LCE N–I phase transition, leading to a shape change of the SWNT-LCE nanocomposite 

film.62,63 

 

Figure 2.2. Chemical structures of monomers, crosslinker, and initiator used in the 
preparation of LCE composites.  
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Figure 2.3. (a) Photograph of the 0.1 wt% SWNT-LCE film. Scale bar: 5 mm. (b) SEM 
image of SWNTs in the 0.1 wt% SWNT-LCE film. The hot-drawing direction is roughly 
50° relative to the scale bar. Scale bar: 5 µm. 
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2.3.2. Elastomeric Photonic Crystal Films 

Crosslinked PS nanospheres were prepared using emulsion polymerization, as 

described in the experimental section. The Dn and Cv of synthesized PS particles are 

approximately 180 nm and 3.5%, respectively, and the latter clearly indicates highly 

monodisperse nature of these nanospheres (Figure 2.4).  

In all emulsion polymerizations, there are three stages (I, II, III) based on the 

number of particles and the existence of monomer droplets.72 Initially, monomers and 

surfactants dispersed in water creates relatively large droplets of monomers, and excess 

surfactants form micelles. During phase I, small amounts of monomers diffuse into the 

micelles through the water. Subsequently, a water-soluble initiator reacts with monomers 

in the micelles. In phase II, monomers inside the micelles rapidly undergo polymerization 

to form polymer particles. At this stage, both monomer droplets and polymer particles 

exist in the system. As the monomer droplets decrease, the size of polymer particles 

increases. Eventually the monomer droplets disappear. In stage III, the polymer particles 

become monomer-starved and the concentration of monomers in the system decrease 

continuously till the end of polymerization reaction.  

The size of the polymer particles can be adjusted by controlling the amounts of 

emulsifier, initiator, monomer or reaction temperature.73 The polymer particle size is 

greatly affected by the number of primary nuclei formed in the early stage of emulsion 

polymerization. The higher amounts of primary nuclei lead to smaller polymer particles. 

For instance, when the reaction temperature increases, many free radicals are created in 

a short amount of time resulting in more primary nuclei compared to lower temperatures, 
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which leads to smaller polymer particles. Emulsifier has also a key role in the emulsion 

stability and controlling the size of particles. A higher concentration of emulsifier results 

in a large number of primary nuclei, which leads to smaller polymer particles. 

In the past decade, fabrication methods of 3D photonic crystal films have been 

extensively investigated. Dipping and vertical deposition methods are the common 

techniques for forming a photonic crystal film on a solid substrate. However, the difficulty 

in developing a photonic crystal film with a large area is an important issue from an 

industrial aspect.74 In conventional drying, photonic crystal films are self-assembled on a 

substrate through drying a colloidal suspension covering on a hydrophilic substrate. A 

ring-shaped film forms at the contact line of the suspension on the substrate, due to the 

capillary flow from the inner to the outer region of the suspension. To form high quality 

photonic crystal films from the colloidal suspension on the hydrophilic substrate, silicon 

oil-covering self-assembly method was used.69,70 The surface of the aqueous colloidal 

suspension was fully covered with a thin layer of hydrophobic silicone oil. In the 

crystallization process, the capillary flow of the water from the center to the edge was 

suppressed; therefore, the nanospheres self-assembled into a close-packed colloidal 

crystal due to the electrostatic interactions between the spheres.  
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Figure 2.4. SEM image of crosslinked PS nanospheres with diameter ~ 180 nm. Scale 
bar: 500 nm.  

 

The 180 nm particles formed close-packed photonic crystal assembly (Figure 2.4), 

which has a bright blue color under normal light incidence (θ = 90°) (Figure 2.5a). As 

shown in Figure 2.5b, the photonic bandgap corresponding to (111)-crystalline planes 

generates a Bragg reflection peak at λ = 429 nm, which was in reasonable agreement 

with the calculated peak wavelength of 423 nm for 180 nm nanospheres in a face-

centered cubic structure using Equation 2.1. 



31 
 

 

 

Figure 2.5. (a) Photograph and (b) Reflection spectrum (θ = 90°) of the self-assembled 
photonic crystal film. Scale bar: 1 cm.  
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Figure 2.6. SEM image of crosslinked PS nanospheres embedded in PDMS matrix. Scale 
bar: 2 µm. 

 

The elastomeric photonic crystal film was produced by infiltrating the 

aforementioned PS photonic crystal assembly with diluted PDMS precursors followed by 

curing, which leads to a change in the structural color of the film from blue to cyan (Figure 

2.7a). The typical thickness of the elastomeric photonic crystal film used in this study is 

around 23 μm. SEM reveals that the interstitial voids among the PS nanospheres are 

filled with PDMS (Figure 2.6). Reflection spectroscopy (θ = 90°) confirms that the PDMS 

infiltration results in a redshift in the photonic bandgap from 429 nm to 507 nm (Figure 

2.7b), which is mainly due to an increase in the lattice constant d, as defined in Figure 

2.1, from d1 = 149 nm in the PS photonic crystal assembly to d2 = 164 nm in the 
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elastomeric photonic crystal film. This nanoscale increment in the lattice constant, 

calculated from the reflection spectra of the films using Equation 2.1, is basically in 

agreement with the measurements from their corresponding SEM images. The observed 

increment in distance between the colloidal nanospheres allows the reversible color 

change of the film.  

 

 

Figure 2.7. (a) Photograph and (b) Reflection spectrum (θ = 90°) of the elastomeric 
photonic crystal film. Scale bar: 5 mm. 
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As with other 3D photonic crystals, our elastomeric photonic crystal film exhibits 

the iridescent reflection color that depends on the viewing angle. The top view, and side 

view photographs of the elastomeric opal film are shown in Figure 2.8a and 2.8b, 

respectively.  

 

 

Figure 2.8. Photographs of (a) top view and (b) side view of the elastomeric photonic 
crystal film. Scale bar: 1 cm. 
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Furthermore, when the elastomeric photonic crystal film is sufficiently deformed by 

mechanical stress, the reflected color shifts to a shorter wavelength. Such mechanical 

deformation and color change are fully reversible. Figures 2.9a and 2.9b show that the 

structural color of the elastomeric photonic crystal film changes from cyan to blue upon 

in-plane and out-of-plane mechanical deformations, respectively. 

 

 

Figure 2.9. (a) Photographs of the elastomeric photonic crystal film before and after being 
stretched. Scale bar: 5 mm. (b) Photographs of the elastomeric photonic crystal film 
before and after being deformed with a wooden stick. Scale bar: 1 cm. 

 

There are three color-changing mechanisms in the elastomeric photonic crystal 

film upon mechanical deformations: i) Decrease in the lattice constant d of the elastomeric 

opal film, which causes a blueshift in the reflection color of the film; ii) Change in the angle 

of observation θ, originating from intrinsic viewing-angle dependence of 3D photonic 

crystal structures; iii) A combination of a decrease in d and θ, which occurs when the 

elastomeric photonic crystal film experiences out-of-plane mechanical deformation. 
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2.3.3. The Laminated Films  

Mechanical properties of the 0.1 wt% SWNT-LCE and laminated films at room 

temperature are shown in Table 2.1. These values of Young’s moduli are characteristic 

of elastomers. Compared with the 0.1 wt% SWNT-LCE film, the laminated film exhibits 

roughly comparable Young's modulus and tensile strength but nearly 40% increase in 

elongation at break.  

In the laminated films, good adhesion between the actuator and structural color 

layers is crucial for the reversible and steady actuation. Herein, the PDMS silicone resin 

with a thickness of ~ 15 µm has been employed as the adhesive interlayer to supply 

sufficient bond strength for restricting the negative in-plane strain-induced contraction of 

the SWNT-LCE layer. We have never observed any delamination of well-cured laminated 

films during IR actuation experiments. One additional advantage of using the PDMS 

silicone glue is that it allows for the disassembly of the laminated film with appropriate 

tools. We have found that the SWNT-LCE layer can be peeled off intact with tweezers. 

There is no visible silicone glue residue left on the SWNT-LCE film. Moreover, most of 

the silicone glue residue left on the elastomeric photonic crystal film can be readily 

removed using a razor. The facile disassembly of the laminated films with appropriate 

tools not only allows for full recovery of SWNT-LCE and elastomeric photonic crystal films, 

but also enables the reconfiguration of laminated films by, for example, recoupling the 

SWNT-LCE film with another elastomeric photonic crystal film that has different color, or 

pairing the elastomeric photonic crystal film with another SWNT-LCE film that has 

different nematic director orientation. 
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Table 2.1. Mechanical properties of the 0.1 wt% SWNT-LCE and laminated films at 
room temperature. 

Materials Tensile modulus 
(MPa) 

Tensile strength 
(MPa) 

Elongation at break 
(%) 

0.1 wt% 
SWNT-LCE 

film 

0.68 ± 0.04 5.5 ± 1.0 41.0 ± 4.9 

Laminated film 0.70 ± 0.09 6.3 ± 1.3 57.3 ± 4.9 

 

2.3.4. IR Actuation of the Laminated Films 

A schematic diagram of the laminated film is illustrated in Figure 2.10. Upon global 

IR irradiation using a Torch NIR light source, the SWNT-LCE layer in the laminated film 

undergoes a significant in-plane negative strain, originating from the bulk N-I phase 

transition. Due to the PDMS glue-mediated strong mechanical coupling of the SWNT-

LCE layer with the elastomeric photonic crystal layer, the in-plane contraction of the 

SWNT-LCE layer is impossible and instead the in-plane negative strain bends the 

elastomeric photonic crystal layer towards the SWNT-LCE side (Figure 2.10). The IR-

induced bending actuation of the laminated film is large, fast, and reversible, which 

causes a simultaneous color change of the elastomeric photonic crystal film from cyan to 

blue (Figure 2.11a). Figure 2.11b shows the side-view image of the IR-induced bent 

laminated film, which indicates the curvature of the film reaches 0.28 mm-1 only after 15 

seconds of global IR irradiation. The IR-induced bending curvature of the laminated film 

can be controlled by tuning the IR light intensity or the film thickness.62 The IR-induced 
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curvature of a laminated film increases with higher IR light intensity and thinner 

mechanochromic layer. 

 

Figure 2.10. Scheme of the laminated film undergoing bending towards the SWNT-LCE 
side upon IR irradiation. 

 

 

 

 

Figure 2.11. (a) Photographs (top view) of reversible bending and unbending of the 
laminated film in response to global IR irradiation. (b) Photograph (side view) of bent 
laminated film upon global IR irradiation. Scale bar: 5 mm. 
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In the LCE nanocomposite, the IR-active fillers can efficiently absorb and transform 

IR light into thermal energy, thereby serving as nanoscale heaters uniformly embedded 

in the LCE matrix. The absorbed thermal energy, if sufficient, leads to a shape change of 

the nanocomposite film. As shown in Figure 2.12, the temperature of the laminated film 

reaches about 70 °C soon after the IR light is turned on, which is well above the N-I phase 

transition temperature of the SWNT-LCE layer (~ 64.6 °C).  

The maximum temperature of the LCE layer can be tuned by adjusting the loading 

level of SWNTs or IR light intensity.62,63 SWNTs, due to their high thermal conductivity, 

can serve as nanoscale heaters to increase the temperature of the LCE matrix uniformly 

and rapidly. In our previous work, we reported that SWNTs can form a percolation network 

in a polymer matrix at loading levels of 0.05-0.1 wt% SWNT.71 The absorbed thermal 

energy then induces the LCE N-I phase transition and the shape change in the 

nanocomposite film. 
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Figure 2.12. Temperature of the laminated film as a function of on and off cycles of global 
IR irradiation. 

 

The observed color change of the laminated film is due to a combination of a 

decrease in lattice constant d of the elastomeric photonic crystal layer in the highly 

deformed region, represented by encircled area A, and a change of viewing angle  in 

the less deformed regions, represented by encircled area B (Figure 2.11).  

Upon IR-induced bending of the laminated film, the photonic bandgap of highly 

deformed area A of the mechanochromic layer undergoes a blueshift from 507 nm to 486 

nm (θ = 90°) due to a decrease of d in the vertical direction, while the reflectance intensity 

in the same area only decreases slightly (Figure 2.13a). In contrast, the photonic bandgap 
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of area B remains unchanged at 504 nm (θ = 90°) upon IR irradiation (Figure 2.13b). 

Since the laminated film is elastomeric by nature, it can rapidly revert to its original shape 

and color upon turning off the IR light (Figure 2.14).  
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Figure 2.13. (a) Reflection spectra (θ = 90°) of the highly deformed region of the 
laminated film, represented by the encircled area A in Figure 2.11a, before and upon 
global IR irradiation, respectively. Inset images are corresponding photographs. (b) 
Reflection spectra (θ = 90°) of the less deformed region of the laminated film, represented 
by the encircled area B in Figure 2.11a, before and upon global IR irradiation, 
respectively. Scale bar: 5 mm. 
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Figure 2.14. Reflection spectra (θ = 90°) of the unbent laminated film before (IR off, 0 s) 
and after (IR off, 60 s) global IR irradiation.  
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IR light-induced actuation brings together four important features: i) remote 

actuation through introducing IR-active fillers into the matrix; ii) wavelength selectivity 

which could enable precise and independent tuning of each individual active layer using 

a predetermined specific IR laser wavelength within a single system; iii) localized 

actuation, in contrast to global actuation, induced by IR light lasers owing to IR-active 

fillers; and iv) pattern generation through structured light systems, such as digital light 

processing (DLP) devices. Therefore, selective IR laser irradiation offers the localized 

actuation capability, which is particularly useful for generation of different patterns of 

surface color and morphology in the same laminated film. 

To demonstrate the feasibility of localized bending actuation, the 808 nm IR laser 

was pointed to a selected region such as area A or B one at a time (Figure 2.15). The 

pattern of irradiation and no irradiation intervals was exactly the same as that for the IR 

actuation test shown in global irradiation. As a result of localized heating, the laminated 

film can exhibit coupled bending and color change at a desired region. Similar to global 

IR actuation (Figure 2.11), the photonic bandgap of highly deformed region in the 

laminated film undergoes a blueshift of 15-17 nm (θ = 90°) in localized IR actuation 

(Figure 2.16). These observations indicate that the laminated films have large, fast, and 

reversible response to IR stimuli, both global and localized irradiation. 
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Figure 2.15. Photographs of localized IR actuation in the encircled area A of the 
laminated film at (a) top view and (b) side view, respectively. Photographs of localized IR 
actuation in the encircled area B of the laminated film at (c) top view and (d) side view, 
respectively. Scale bar: 5 mm.  
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Figure 2.16. (a) Reflection spectra (θ = 90°) of the encircled area A (Figure 2.15a) of the 
laminated film before and upon localized IR irradiation, respectively. (b) Reflection 
spectra (θ = 90°) of the encircled area B (Figure 2.15c) of the laminated film before and 
upon localized IR irradiation, respectively.  
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In aforementioned laminated films, both the mesogenic units and IR-induced 

negative strain are oriented along the long axis of the SWNT-LCE film, which leads to 

bending actuation. In contrast, a twisted actuation can be achieved by cutting the SWNT-

LCE nanocomposite film at 45° angle relative to the nematic director (i.e. the hot-drawing 

direction) (Figure 2.17a). In response to global IR irradiation, the generated negative 

strain is 45° relative to the long axis of the SWNT-LCE film, which produces the twisting 

deformation of the laminated film when its temperature reaches above the N-I phase 

transition temperature (Figure 2.17b). 

 

 

Figure 2.17. (a) Schematic illustration of the SWNT-LCE film subjected to a cutting angle 
of 45° relative to the nematic director. (b) Scheme of the laminated film undergoing 
twisting upon IR irradiation.  
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 This twisting deformation causes a change in the side-view reflection color of the 

laminated film from blue to cyan, which is mainly attributed to the change of viewing angle 

(Figure 2.18a). As shown in Figure 2.18b, the photonic bandgap of area A remains 

unchanged at 510 nm (θ = 90°) upon global IR irradiation. Like the bending deformation, 

the twisted laminated film returns to its original shape upon turning off the IR light (Figure 

2.18a).  

To clearly show the twisted deformation behavior, both top-view and side-view 

photo images are recorded. The top view photographs of the laminated film before and 

upon twisting deformation are shown in Figure 2.19. These photographs demonstrate the 

color change upon twisting deformation, mainly due to the change of viewing angle 

originating from the twisting. Although, we demonstrated bending and twisting 

deformations in this study, other complex out-of-plane deformations can be created by 

simply altering the cutting angle of the SWNT-LCE films. 
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Figure 2.18. (a) Photographs (side view) of reversible twisting and untwisting of the 
laminated film in response to global IR irradiation. Scale bar: 5 mm. (b) Reflection spectra 
(θ = 90°) of the encircled area A (Figure 2.18a) of the laminated film before and upon 
global IR irradiation, respectively. In order to acquire the reflection spectra (θ = 90°) of 
the laminated film, the fiber optic probe is oriented perpendicular to the plane of the area 
A of the laminated film for both untwisted and twisted shapes. 
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Figure 2.19. Photographs (top view) of reversible twisting and untwisting of the laminated 
film in response to global IR irradiation. The top-view photographs are taken at the fixed 
angle that is perpendicular to the substrate. Scale bar: 5 mm. 

 

Despite recent growing interests in bio-inspired soft robotics, soft robotic devices 

that can exhibit synergistic coupling of color change and out-of-plane deformation in 

motion are still very rare and require air pressure tubings.11,12 In this study, we show that 

the laminated film-based inchworm walkers are capable of IR-induced simultaneous 

reconfiguration of surface color and morphology during the movement.  

As seen in Figure 2.20a, the laminated film moves on glass from left to right like 

an inchworm in response to on and off cycles of Torch NIR light. In the beginning of each 

actuation cycle (i.e., IR is turned on), the front part of the film forms the stationary point 

on glass while the back part of the film slides forward. In the end of each actuation cycle 

(i.e., IR is turned off), the back part of the film forms the stationary point on glass while 

the front part of the film pushes forward. The directional inchworm-like movements of the 

laminated film are due to the asymmetric bending of the film under global IR irradiation, 

which is evident from close inspection of the side view image of the bent film (Figure 

2.20b). The front part (Thickness: ~ 290 m) of the laminated film is slightly thinner than 
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the back part (Thickness: ~ 302 m). As a result, the front part of the film bends more 

than the back part upon global IR irradiation (Figure 2.20b). We have previously found 

that the bending curvature of a bilayer film decreases with increase in film thickness.63 

We have also discovered that the same laminated film changes the moving direction to 

the opposite when it is turned 180° horizontally along the long axis. This observation 

further confirms that the thinner end of the film always serves as the front moving end 

during the IR actuation cycles. 

  The friction between the laminated film and substrate is crucial for inchworm 

walker’s movements. We have found that the same laminated film moves much faster 

with more constant speed on glass (0.036 mms-1) than on paper (0.022 mms-1) under 

same global IR actuation conditions. Since the paper substrate provides lower friction for 

the laminated film than the glass substrate, it is difficult for one end of the asymmetrically 

bent laminated film to form an effective stationary point on paper during some actuation 

cycles. Therefore, the moving speed of the laminated film on paper is considerably lower 

and fluctuating compared with that on glass, while the moving direction remains the same 

as on glass due to the formation of similar asymmetric bending upon global IR irradiation 

(Figure 2.20b). The walking velocity of the inchworm walker could be significantly 

enhanced by further optimization of the thicknesses at front and back parts of the 

laminated film, and friction between the film and substrate. The fact that the inchworm 

walker exhibits reversible and coupled reconfiguration of color and shape for repeated 

actuation cycles confirms the flexibility and durability of the laminated films, which are 

highly desirable for soft robotics applications. We have conducted over 60 IR actuation 

cycles for each laminated film and ~ 250 IR actuation cycles for all laminated films in total, 
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and we have never observed any delamination of the laminated films during these 

experiments.        

 

Figure 2.20. (a) Photographs (top view) of the laminated film-based inchworm walker 
movements on glass in response to on and off cycles of global IR irradiation. (b) 
Photograph (side view) of the laminated film-based inchworm walker movement from left 
to right on paper in response to global IR irradiation during the first on and off cycle.  
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How teams of multiple robots and multiple humans can interact and collaborate 

effectively represents a great challenge. Lessons from nature could help researchers to 

address such technical challenge. Mäthger and coworkers have recently illustrated how 

change of skin color and pattern plays a crucial role during cephalopods’ intra- and 

interspecific behavioral interactions such as signaling and communication.3 For example, 

viewing angle-dependent iridescence provides swimming location and direction 

information of an individual squid, which may be used by squid to coordinate the 

movements of individuals of a school. Smart artificial skins such as the laminated films 

presented in this study offer a new communication approach, which is based on change 

of skin color, morphology, and pattern, for interactions and collaborations among teams 

of robots and humans. Direct recognition of image patterns, however, could be 

challenging in environments with low visibility conditions, or among teams of robots and 

humans who sometimes do not always see everyone else for various reasons. To 

address these limitations, we demonstrate the feasibility of converting image signals to 

audio signals, which provides an alternative way of interactions among robots and 

humans. In addition, audio-based communications may help humans/robots identify 

hidden patterns in their image data that are otherwise too delicate or fast to be recognized 

by vision. Furthermore, the audio files are more compact compared with image files, 

which allow for faster transmission and sharing of information.  

The photo images of cyan unbent and blue bent films excluding backgrounds were 

first converted to sound waves using commercial software AudioPaint, which were then 

transformed into audio frequency spectra by fast Fourier transform (Figure 2.21). Most of 

sound frequencies are within the range of human hearing, which is 20 Hz to 20 kHz, 
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indicating the audibility of the generated sounds. Upon close inspection of audio spectra 

(Figure 2.21 b,d), we have noticed that the frequencies corresponding to the bent 

configuration are significantly different from those of the unbent configuration. Therefore, 

the differences in the observed frequencies of the generated sound waves can be utilized 

to differentiate between the relaxed and actuated configurations of the laminated film. 

Further selection and optimization of image-to-sound software could maximize the sound 

differences corresponding to different configurations of surface color and morphology.  

 

Figure 2.21. (a) Photograph and (b) audio frequency spectrum of cyan unbent laminated 
film. (c) Photograph and (d) audio frequency spectrum of blue bent laminated film upon 
global IR irradiation. Scale bar: 5 mm. 
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As mentioned earlier, one advantage of using the PDMS glue in our laminated 

structure is that it allows for the disassembly of the laminated film with appropriate tools. 

This feature enables us to reconfigure the laminated films by, for example, recoupling the 

SWNT-LCE film with another elastomeric photonic crystal film that has a different color. 

The color of elastomeric photonic crystal films can be readily tuned by controlling a 

number of parameters such as the size of the nanospheres, refractive index contrast 

between the nanospheres and the surrounding medium, and lattice constant. Although 

we chose elastomeric photonic crystal films with cyan color in this report, our approach 

can be easily extended to elastomeric films having a different color.  

To prepare elastomeric photonic crystal films having red color, crosslinked PS 

nanospheres with larger diameter have been synthesized. As mentioned earlier, one way 

to control the diameter of nanospheres in emulsion polymerization is to adjust the 

concentration of emulsifier. As the amount of emulsifier decreases, the size of crosslinked 

PS nanospheres tends to increase due to a decreased number of primary nuclei formed 

in the early stage of polymerization.   

The Dn and Cv of newly synthesized crosslinked PS nanospheres are 

approximately 236 nm and 3.8%, respectively. The Cv had a slight increase with 

decreasing the amount of emulsifier. The 236 nm nanospheres were highly monodisperse 

and formed close-packed photonic crystal assembly (Figure 2.22a), which has a bright 

green structural color under normal light incidence (Figure 2.22b).  
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Figure 2.22. (a) SEM image of crosslinked PS nanospheres with diameter ~ 236 nm. 
Scale bar: 500 nm, and (b) photograph of the self-assembled photonic crystal film. Scale 
bar: 1 cm.   
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Similar to the previous elastomeric photonic crystal film with cyan color, the self-

assembled film of crosslinked PS nanospheres with diameter of 236 nm was infiltrated 

with diluted PDMS precursors followed by curing. The PDMS infiltration results in a 

change in the structural color of the film from green to red. Similar to other 3D photonic 

crystal films, our elastomeric photonic crystal film displays the iridescent color that varies 

with the viewing angle. The top view, and side view photographs of the elastomeric 

photonic crystal film are shown in Figure 2.23a and 2.23b, respectively.  

As shown in Figure 2.23c, the photonic bandgap corresponding to (111)-crystalline 

planes exhibits a Bragg reflection peak at λ = 548 nm, which was in reasonable 

agreement with the calculated peak wavelength of 555 nm for 236 nm nanospheres in a 

face-centered cubic structure using Equation 2.1. Reflection spectrum in Figure 2.23d 

shows that the PDMS infiltration results in a redshift in the photonic bandgap from 548 

nm to 617 nm, which is mainly due to an increase in the lattice constant d. 
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Figure 2.23. Photographs of (a) top view and (b) side view of the elastomeric photonic 
crystal film comprising crosslinked PS nanospheres with diameter of 236 nm embedded 
in PDMS matrix. Reflection spectra (θ= 90°) of (c) self-assembled photonic crystal film 
and (d) elastomeric photonic crystal film, respectively. Inset images are the corresponding 
photographs. Scale bar: 1 cm. 
 
 
 

2.4. Conclusion 

In conclusion, we have demonstrated the first remote-controlled soft robot that 

exhibits coupled sensing and actuation. In this study, we have developed a bio-inspired 

general approach to remote-controlled, smart films that undergo simultaneous changes 

of surface color and morphology upon IR actuation. Our approach is based on a laminated 

structure that directly couples an IR-responsive nanocomposite actuator layer with a 
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mechanochromic elastomeric photonic crystal layer. The facile disassembly of the 

laminated films with appropriate tools not only allows for full recovery of actuator and 

mechanochromic films, but also enables the reconfiguration of laminated films by 

reassembly of different layers.  

Upon global or localized IR irradiation, the actuator layer displays fast, large, and 

reversible strain in the irradiated region, which causes a synergistically coupled change 

in the shape of the laminated film and color of the mechanochromic layer in the same 

region. Out-of-plane deformations, such as bending and twisting, can be induced under 

IR irradiation, via modulating the strain direction in the actuator layer of the laminated film. 

We have shown that the laminated films can be incorporated into soft robotic devices 

such as inchworm walkers, which are capable of remote-controlled coupled 

reconfiguration of surface color and morphology during the movement. The flexibility and 

durability of the laminated films are essential for repeated IR actuation cycles that enable 

soft robotic motion. We have also demonstrated the feasibility of converting image signals 

of the laminated film in motion into corresponding distinct audio signals, which could lead 

to audio-based interactions and collaborations among teams of robots and humans. 

Although we have focused on using SWNT-LCE nanocomposites as IR-

responsive actuators and elastomeric photonic crystals as mechanochromic materials in 

this study, our approach can be easily extended to other types of IR-absorbing fillers, 

thermo-responsive shape-changing polymers, and mechanochromic elastomers. Such 

IR-actuated, reconfigurable films could enable new functions in soft robots and wearable 

devices.  
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Chapter 3: Soft Films for Responsive Interference 

Coloration      

3.1. Introduction  

A crucial aspect of soft robotics is the ability of robots to sense their environments. 

In comparison with other sensing mechanisms, colorimetric sensing provides a simple 

yet powerful detection tool for development of low-power and low-cost sensors. The 

optical signal from a colorimetric sensor can be readily monitored by the naked eye 

without the need of complicated and expensive tools to read the outputs.  

Recently, there has been a growing interest in utilizing structural colors to create 

stimuli-responsive color-changing materials.1-4 As mentioned in Chapter 2, structural 

colors are produced by micro- or nano-structures, therefore they are non-fading colors in 

contrast to conventional chemical dyes. Structural colors can be found in species of birds, 

butterflies, insects, and marine organisms. Many natural species can tune their structural 

colors in response to their surroundings for camouflage, or signal communication. 

Inspired by the natural creatures, many photonic materials with structural colors have 

been developed. These materials have found applications ranging from switches and 

display devices to sensors.5-8 The structural color-based sensors are responsive to 

external stimuli such as solvents, vapors, heat, pH, biomolecules, and mechanical force.7-

19 

Most of the structural colors found in nature are considered to stem from the 

following five fundamental optical processes and their combinations: i) thin-film 



66 
 

interference; ii) multilayer interference; iii) a diffraction grating effect; iv) photonic crystals; 

and v) light scattering.2 There has been great interest in responsive photonic crystals due 

to their many potential applications.7-9 A major challenge is overcoming the problems of 

limited scalability and time-consuming fabrication process, which affect the real-world 

applications of the photonic crystals.20,21 It is therefore highly desirable to investigate new 

approaches that can transform these initial breakthroughs into real-world applications. 

Herein, we report a new scalable and affordable platform technology for fabrication of 

stimuli-responsive structural colored films. The coloration in our system is based on thin-

film interference, the most common cause of structural color in nature. 

Thin-film interference is one of the simplest structural colors, responsible for the 

colorful, iridescent reflections that can be seen in oil films on water, and soap bubbles.22-

26 This optical process occurs in structures composed of one or more transparent thin 

films, whose typical thickness is comparable to the wavelength of light.24 The reflectivity 

of a thin, non-absorbing layer of thickness d1 with refractive index n1, bound by two semi-

infinite media with refractive indices of n0 and n2, can be determined by addition of the 

amplitudes of all the light beams which leave the thin layer in reflection, and those beams 

which might have been subjected to multiple reflections within the thin layer (scheme 

3.1).2,4,24 The conditions for constructive interference of a thin film are determined by 

Equation 3.1: 

                                                          mλ = 2n1d1 cosθ1                                                                   (3.1) 

where λ is the wavelength giving the maximum reflectivity, m is a positive integer, d1 is 

the thin-film thickness, n1 is the refractive index of the thin film and θ1 is the angle of 



67 
 

refraction.2 Therefore, the interference colors depend on the refractive indices of the film 

and surrounding regions, the thin-film thickness, and the viewing angle. 

 

Scheme 3.1. Physical mechanism of the thin-film interference.2 

 

Most thin-film optical coatings have two important characteristics: i) they utilize low-

loss dielectric materials; and ii) their film thicknesses are similar to the wavelength of 

light.24 The quarter-wave thickness (λ/4n, where λ and n are maximum reflection 

wavelength and refractive index of the material, respectively) is often considered to be 

the thinnest useful interference coating. The optical losses in these dielectrics are usually 

small, and therefore the reflection and transmission phase changes at the interfaces 

between the dielectric films can be assumed to be either 0 or π depending on the 

refractive index contrast.4,24  

A well-known example of the thin-film coatings on metals is the metal anodization, 

an electrolytic method that forms a thin layer of metal oxide with controllable thickness on 

a metal substrate.24 For instance, anodizing titanium forms a thin film of titanium oxide (a 
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transparent dielectric) on the surface of the titanium metal. By controlling the thickness of 

the titanium oxide layer, different interference colors will emerge.27 

Recently, Kats et al. presented a new technique based on thin-film interference in 

ultrathin, highly absorbing dielectrics on metals.28,29 A combination of a large absorption 

in the dielectric film and the non-trivial phase-shift at the interface between metal and 

dielectric allows the significant reduction of the film thickness. A non-trivial phase-shift is 

not limited to 0 or π as for transparent thin-films. The resulting strong absorption 

resonance generates various colors depending on the thickness of the film. However, 

these thin-film coatings lack sensing capabilities which renders them impractical for 

colorimetric sensing applications. 

The materials used for thin-film interference colorations in the aforementioned 

studies, were based on inorganic materials (e.g. Ge, Si). Moreover, the coloration is not 

responsive to external stimuli and therefore lacks the sensing capability. A promising new 

strategy towards sensing function in thin-film optical coatings is to employ stimuli-

responsive polymeric materials in their design that induce color change in response to 

environmental stimuli. However, this new strategy for thin-film interference coloration has 

not been explored so far in the literature.  

Compared with most inorganic materials, polymers have many advantages such 

as flexibility, good processability, excellent corrosion resistance, light-weight, and 

biocompatibility. Moreover, a new class of polymers known as “smart materials” are able 

to sense their environment (e.g., humidity, temperature, chemicals, light or mechanical 

forces), and respond accordingly.30,31 
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Here, we demonstrate a new platform technology for colorimetric sensing which is 

based on responsive interference coloration. Our system is composed of a thin film of a 

transparent polymer deposited on a metal-coated substrate. A full spectrum of bright 

interference colors can be generated on both rigid and soft substrates through a facile 

fabrication method. Moreover, our thin-film interference colors exhibit fast and reversible 

color changes upon variations in the environmental humidity. Such polymer-based, 

responsive interference coloration could empower colorimetric sensing of various 

environmental stimuli (e.g., humidity, chemicals, heat, biomolecules, and mechanical 

forces), which could enable a wide range of applications. 

Our responsive interference coloration has brought together several important 

features: i) scalable and affordable approach to generate polymer-based, responsive 

interference coloration on both rigid and soft substrates; ii) color-tunability by simply 

changing the thickness of the polymer layer; iii) fast, and reversible color-change in 

response to changes in humidity. 

 

 

3.2. Experimental 

3.2.1. Materials 

Polyvinylpyrrolidone (PVP) powder was purchased from Alfa Aesar. Polycarbonate 

(PC) pellets was purchased from Sigma-Aldrich. PVP solutions in ethanol with PVP 

loadings from 6 to 9 wt%, and PC solutions in chloroform with PC loading of 2 wt% were 
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prepared. Ethanol (200 proof) was purchased from Koptec. Chloroform was acquired from 

Sigma-Aldrich.  

Glass substrates (Micro Slides), were purchased from Corning. Glass microscopic 

slides were rinsed with acetone and isopropanol and then dried with nitrogen prior to use. 

PDMS precursors (Sylgard 184) were purchased from Dow Corning. PDMS films were 

fabricated based on the manufacturer’s recommended base to crosslinker mix ratio of 

10:1. Chemical structures of PVP, PC, and PDMS are shown in Figure 3.1.  

 

 

Figure 3.1. Chemical structures of PVP (polyvinylpyrrolidone), PC (polycarbonate), and 
PDMS (polydimethylsiloxane) used in fabrication of the thin-film interference coloration.  
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3.2.2. Preparation of Thin Films of Metal 

The preparation procedure for thin-films of polymers deposited on metal-coated 

substrates is schematically illustrated in Figure 3.2. Very thin films of iridium are deposited 

on the substrates in a sputter coating system (model K150X, Quorum Emitech) using a 

high purity iridium target (Ted Pella, Inc.). The sputter’s chamber pressure is first brought 

to ~ 2x10-3 mbar, then iridium deposition is performed under 2x10-3 mbar pressure with a 

constant Ar flow. 150 mA current is used for sputtering. 

 

3.2.3. Preparation and Characterization of Thin Films of Polymer on 

Metal-Coated Substrates 

Once the thin film of iridium has been deposited on the substrate using sputter 

coating, an appropriate amount of the polymer solution is placed on top of the iridium 

coated substrate and then spin-coated at a specific spinning speed (2500-8000 rpm) for 

30 seconds using a spin coater (model P6700, Specialty Coating Systems, Inc.). Finally, 

the polymer film was baked in air at room temperature to evaporate residual solvent.  

The generated thin-film interference coloration was characterized by scanning 

electron microscopy (SEM) and spectrophotometry. The reflection spectra were acquired 

using a fiber optic Vis-NIR spectrometer (USB2000, Ocean Optics). The absorption 

spectra were recorded with a Cary 5000 UV-Vis-NIR spectrophotometer. The average 

thickness of the thin-film was determined from SEM observations of 50 points of the thin-

film to ensure the accuracy of measurements. SEM was performed using a Hitachi S-
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4800 field emission scanning electron microscope at accelerating voltages of between 1 

kV and 2 kV. 

 

Figure 3.2. Schematic illustration of the preparation of the thin films of polymer on metal-
coated substrates. 

 

3.3. Results and Discussion 

3.3.1. Metal Coating 

In this study, iridium was chosen as the metal to be coated on the desired 

substrates, mainly due to its availability. The amount of iridium used for a 5 nm-thick 

coating is 11.3 μg per cm2, which results in material cost of around 0.04 Ȼ per cm2. Thin 

films of iridium were coated on the substrates using a sputter coating system. Film 

thickness monitor (FTM) quartz crystals are used to determine the thickness of the coated 

iridium and terminate the deposition at a pre-set thickness. The FTM controller operates 

by monitoring the frequency shift of an oscillating quartz crystal as iridium is deposited on 

the crystal. The frequency shift is the related to the mass of the deposited iridium. The 

quartz crystal is placed in the vacuum chamber. One face of the crystal is exposed 

towards the iridium target, such that as iridium is deposited, it will coat the crystal. The 

system functions as an oscillator, whose output is controlled by the frequency of crystal 
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oscillation. As iridium is deposited on the crystal, so its frequency is modified, and this 

modification is used to determine the thickness of the deposited iridium.32 

The iridium-coated substrates are silvery-white and appear shiny as mirror (Figure 

3.3 a, b). The reflection and absorption spectra of the iridium-coated glass substrates are 

shown in Figure 3.3c and 3.3d. It should be noted that although iridium was chosen as 

the metal mirror in this report, this approach can be easily extended to other metal mirrors 

with appropriate metal thickness. 

 

Figure 3.3. (a) Photograph of a glass substrate coated with a thin film of iridium (5 nm 
thick). (b) Photograph of a PDMS substrate (~750 μm thick) coated with a thin film of 

iridium (5 nm thick). (c) Reflection spectra of the glass substrate and iridium-coated glass, 
respectively. (d) Absorption spectra of the glass substrate and iridium-coated glass, 
respectively. Scale bar: 1 cm. 
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3.3.2. Polymer Deposition 

Both PVP and PC are optically transparent polymers. As for the solubility, PVP can 

be readily dissolved in alcohols and water, and PC is soluble in chlorinated solvents. As 

described in the experimental section, small amounts of polymer solution were spin 

coated on the substrates at high speeds to form thin films of polymer. Spin-coating is one 

of the simplest and widely used methods to fabricate thin films of polymers.33 By 

subjecting the substrate to a particular spinning program, the centrifugal forces drive the 

polymer solution horizontally and at a controlled rate across the surface of the substrate. 

These forces will cause the polymer solution to spread to, and eventually off, the edge of 

the substrate forming a thin film of polymer on the surface. Final film thickness will depend 

on the nature of the polymer solution (viscosity, drying rate, concentration, surface 

tension, etc.) and the parameters selected for the spin process such as rotational speed 

and spinning time. In general, higher spin speeds and longer spin times create thinner 

films. 

Film thickness is mainly a balance between the shear force applied to the polymer 

solution across the surface of the substrate and the drying rate which affects the viscosity 

of the polymer. As the thin film of polymer dries, the viscosity increases until the shear 

force can no longer remarkably move the polymer over the surface. At this point, the 

thickness of the film will not decrease considerably with increased spin time. 
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3.3.3. Thin-Film Interference Coloration 

Thickness of the thin film of polymer deposited on the iridium-coated substrate 

determines the reflection color. Appropriate rotational speeds and concentrations of 

polymer solutions were used in order to achieve the desired thicknesses via spin coating. 

Figure 3.4 shows photographs of thin films of PVP/iridium coated on glass substrates, 

creating a spectrum of bright interference colors including purple, blue, green, yellow and 

red.  

Similar to PVP samples, thin films of PC/iridium coated on glass substrates display 

a range of interference colors as shown in Figure 3.5. As it can be observed from PVP 

and PC samples, the generated interference coloration is tunable by simply changing the 

thickness of the polymer layer. It is noteworthy that the current approach for generating 

interference colors can be readily extended to other transparent polymers. 

 



76 
 

 

Figure 3.4. Top view photographs of different colors generated by thin films of PVP 
deposited on iridium-coated glass substrates (thickness of the iridium film= 5 nm). Scale 
bar: 1 cm. 
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Figure 3.5. Photographs (top view) of different interference colors created by thin films of 
PC deposited on iridium-coated glass substrates (thickness of the iridium film= 5 nm). 
Scale bar: 1 cm. 
 
 

Flexible devices are emerging as important tools for various applications such as 

wearable electronics, and soft robotics. To demonstrate the feasibility of extending our 

approach to soft and flexible materials, we fabricated thin films of polymer on top of 

iridium-coated PDMS substrates in similar fashion. In this study, PDMS was used as the 

soft and flexible substrate due to its elasticity, transparency and ease of fabrication. PVP 

was chosen as the polymer layer because its solutions in alcohols do not swell or deform 

the PDMS substrate during the spin coating stage. In contrast to PVP, the PC solutions 

in chloroform significantly swell the PDMS substrates and therefore did not lead to high 
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quality films. Figure 3.6 displays the thin films of PVP deposited on iridium-coated PDMS 

substrates, creating a spectrum of bright interference colors including purple, blue, green, 

yellow, and red.  

 

 

Figure 3.6. Top view images of different colors generated by thin films of PVP deposited 
on iridium-coated PDMS substrates. Thickness of the iridium film is 5 nm. PDMS 
substrates are ~ 750 μm thick. Scale bar: 1 cm. 
 

 

As with other conventional interference colors, our thin films of polymer on iridium-

coated substrates exhibit iridescent reflection colors that depend on the viewing angle. 

The top view, and side view photographs of all generated interference colors are shown 

in Figure 3.7 (a-f).  
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Figure 3.7. Photographs of different interference color coatings generated by thin films of 
PVP deposited on iridium-coated glass substrates at (a) top view (b) side view, 
respectively. Images of various interference colors created by thin films of PC deposited 
on iridium-coated glass substrates at (c) top view (d) side view, respectively. Photographs 
of different interference colors produced by thin films of PVP deposited on iridium-coated 
PDMS substrates at (e) top view (f) side view, respectively. Thickness of the iridium film 
is 5 nm. Scale bar: 1 cm. 
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To verify the agreement between the thin-film interference theory and our 

experimental results, we characterized the interference colors generated by thin films of 

PVP on iridium-coated glass substrates. The reflected light created by thin-film 

interference is determined by Equation 3.1, where λ is the reflection peak wavelength, m 

is the order of reflection (a positive integer), d1 is the thickness of the thin film of PVP, n1= 

1.53 is the refractive index of PVP and θ1=0° is the angle of refraction.  

Figure 3.8a shows the cross-sectional SEM image of the thin film of PVP on 

iridium-coated glass substrate and its corresponding photograph (inset image). The 

thickness of PVP film measured from the SEM image was 268 nm with a variation in film 

thickness of 5 nm. According to Equation 3.1, the calculated peak wavelengths for the 

first- and second-order of reflection were 820, and 410 nm, respectively, which were in 

reasonable agreement with the experimental peak positions of 801 and 414 nm (Figure 

3.8b). This observation reveals that the perceived purple coloration originates from the 

second-order of reflection. 
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Figure 3.8. (a) Cross-sectional SEM image of the thin film of PVP deposited on iridium-
coated glass substrate. Scale bar: 500 nm. Inset image is the corresponding photograph 
taken at top view. Scale bar: 1 cm. (b) Corresponding reflection spectrum (θ1= 0˚). The 
fiber optic is oriented perpendicular to the plane of the glass substrate. The arrows on the 
spectrum show the calculated peak wavelengths for first-order (m1) and second-order 
(m2) reflections, respectively. Thickness of the iridium film is 5 nm. 
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In a similar fashion to the purple color, we characterized the other interference 

colors to confirm the agreement between the theory and experimental measurements. 

The cross-sectional SEM image of the sample corresponding to the blue interference 

color is shown in Figure 3.9a. The thickness of the PVP film measured from the SEM 

image was 303 nm with a variation of 4 nm. According to Equation 3.1, the calculated 

peak wavelengths for the first- and second-order of reflection were 927, and 464 nm, 

respectively, which were in good agreement with the experimental peak positions of 954 

and 458 nm (Figure 3.9b). This observation indicates that the perceived blue coloration 

emanates from the second-order of reflection.  
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Figure 3.9. (a) Cross-sectional SEM image of the thin film of PVP deposited on iridium-
coated glass substrate. Scale bar: 1 μm. Inset image is the corresponding photograph 
taken at top view. Scale bar: 1 cm. (b) Corresponding reflection spectrum (θ1=0°). The 
fiber optic is oriented perpendicular to the plane of the glass substrate. The arrows on the 
spectrum show the calculated peak wavelengths for first-order (m1) and second-order 
(m2) reflections, respectively. Thickness of the iridium film is 5 nm. 
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Figure 3.10a shows the cross-sectional SEM image of the sample corresponding 

to the green interference color. The thickness of the PVP film measured from the SEM 

image was 342 nm with a film thickness variation of 3 nm. According to Equation 3.1, the 

calculated peak wavelengths for the first-, second- and third-order of reflection were 1047, 

523 and 349 nm, respectively, which were in rough agreement with the experimental peak 

positions of 967, 518 and 367 nm (Figure 3.10b). This finding reveals that the perceived 

green coloration stems from the second-order of reflection. 
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Figure 3.10. (a) Cross-sectional SEM image of the thin film of PVP deposited on iridium-
coated glass substrate. Scale bar: 1 μm. Inset image is the corresponding photograph 
taken at top view. Scale bar: 1 cm. (b) Corresponding reflection spectrum (θ1= 0°). The 
fiber optic is oriented perpendicular to the plane of the glass substrate. The arrows on the 
spectrum show the calculated peak wavelengths for second-order (m2) and third-order 
(m3) reflections, respectively. Thickness of the iridium film is 5 nm. 
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The cross-sectional SEM image of sample corresponding to the yellow 

interference color is shown in Figure 3.11a. The thickness of the PVP film measured from 

the SEM image was 386 nm with a variation of 6 nm. According to Equation 3.1, the 

calculated peak wavelengths for the second- and third-order of reflection were 591 and 

394 nm, respectively, which were in good agreement with the experimental peak positions 

of 585 and 393 nm (Figure 3.11b). This observation confirms that the perceived yellow 

coloration originates from the second-order of reflection. The calculated peak for the first-

order of reflection at 1181 nm was beyond the detection limits of our spectrometer.  
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Figure 3.11. (a) Cross-sectional SEM image of the thin film of PVP deposited on iridium-
coated glass substrate. Scale bar: 1 μm. Inset image is the corresponding photograph 
taken at top view. Scale bar: 1 cm. (b) Corresponding reflection spectrum (θ1= 0°). The 
fiber optic is oriented perpendicular to the plane of the glass substrate. The arrows on the 
spectrum show the calculated peak wavelengths for second-order (m2) and third-order 
(m3) reflections, respectively. Thickness of the iridium film is 5 nm. 
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Figure 3.12a shows the cross-sectional SEM image of the sample corresponding 

to the red interference color. The thickness of the PVP film measured from the SEM image 

was 481 nm with a variation in film thickness of 5 nm. According to Equation 3.1, the 

calculated peak wavelengths for the second-, third- and fourth-order of reflection were 

736, 491 and 368 nm, respectively. Similar to the sample with yellow color, the calculated 

peak for the first-order of reflection at 1471 nm was out of the detection limits of our 

spectrometer. Although, the calculated second- and fourth-order of reflection were in 

reasonable agreement with the experimental peaks of 727 and 381 nm, respectively, the 

third-order of reflection was absent in the spectrum (Figure 3.12b). These observations 

confirm that the perceived red coloration emanates from the second-order of reflection.  

Moreover, absorption spectrum of the red interference color was recorded. As it 

can be seen in Figure 3.13, the red color does not show any absorption peak in the region 

of interest (wavelengths of around 491 nm). A deeper understanding of the absence of 

m3 reflection peak for the samples having red interference color requires further 

experimental and theoretical studies. 
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Figure 3.12. (a) Cross-sectional SEM image of the thin film of PVP deposited on iridium-
coated glass substrate. Scale bar: 1μm. Inset image is the corresponding photograph 
taken at top view. Scale bar: 1 cm. (b) Corresponding reflection spectrum (θ1= 0°). The 
fiber optic is oriented perpendicular to the plane of the glass substrate. The arrows on the 
spectrum show the calculated peak wavelengths for second-order (m2), third-order (m3), 
and fourth-order (m4) reflections, respectively. Thickness of the iridium film is 5 nm.  
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Figure 3.13. Absorption spectrum of the thin film of PVP deposited on iridium-coated 
glass substrate. Inset image is the corresponding photograph at top view. Thickness of 
the iridium film is 5 nm. Scale bar: 1 cm. 

 

In addition to continuous coatings, patterned interference coloration can be 

produced by combining the deposition of thin films of polymer with conventional stenciling 

techniques. As an example, we generated interference color patterns by placing a pre-

cut plastic stencil mask on top of a glass substrate prior to metal deposition. After sputter 

coating the iridium through the mask, the PVP solution was spin-coated at specific speeds 

on the substrate. Figure 3.14 shows the three primary color patterns (blue, yellow, and 
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red) created by varying the spinning speed. Diverse color patterns with versatile size and 

shape can be produced through careful choice of mask. 

 

 

Figure 3.14. Photographs (top view) of the interference color patterns generated by thin 
films of PVP deposited on iridium-coated glass substrate. To form patterns, a pre-cut 
plastic stencil mask was used during the sputter coating of iridium. Thickness of the 
iridium film is 5 nm. Scale bar: 1 cm. 

 

To create bright interference coloration, the metal thickness plays an important 

role. Figure 3.15 shows the photo images of interference coloration generated by thin 

films of PVP on glass substrates coated with different thicknesses of iridium. As seen in 

Figure 3.15, a balance between reflection and transmission has to be struck in order to 

create bright interference coloration. 
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Figure 3.15. Effect of the thickness of metal coating on the interference coloration. (a) 
Photo images (top view), and (b) reflection spectra (θ1= 0°) of the interference coloration 
generated by thin films of PVP on the glass substrates coated with various thicknesses 
of iridium (from left to right: 1 nm, 5 nm, and 50 nm). Scale bar: 1 cm. 

 

 

3.3.4. Responsive Interference Coloration 

Recently, there has been a growing interest in humidity-responsive colorimetric 

sensors for health, industrial and technological applications.34-41 Although these sensors 

have realized colorimetric detection of humidity, there is still a great need to develop low-

cost and low-power sensors with a fast response time. 

Here, we demonstrated a colorimetric sensor that has an excellent sensitivity to 

humidity, since the PVP will swell in a high humidity environment and shrink in a low 

humidity environment, which will lead to visual color changes. Our observations show that 

the thickness of the polymer film is the dominant reason for the color changes of our PVP 
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samples. Due to using PVP as the stimuli responsive polymer, when the sample is 

subjected to mist, it will absorb microparticles of water and swell which leads to an 

increase in the thickness of the PVP film (from d1 to d1+Δd1) further resulting in red-shift 

of the interference color (Figure 3.16a).  

Figure 3.16b shows top-view photographs of thin film of PVP deposited on iridium-

coated glass slide when it is subjected to mist generated by a commercial humidifier 

(Radha Beauty Co.). As seen in Figure 3.16b, the interference coloration shifts from blue 

to red upon exposure to mist. The experiment was performed at room temperature (23 ± 

1°C). When the humidity varies, the color changes from blue to red and returns to its 

original color upon turning off the humidifier. We have conducted over 30 cycles of 

humidity test on each sample and have not observed any visible damage to the quality of 

the thin PVP films. Response time is another important factor to evaluate sensitivity of a 

sensor. As seen in Figure 3.16c, the initial response of the interference coloration occurs 

within 0.23 seconds of exposure to mist. This observation indicates that the photonic 

humidity sensor is very sensitive to the changes in the humidity. 

The reason why our humidity sensor has such excellent sensitivity behavior could 

be explained by the properties of the thin polymeric film used in the preparation of the 

interference colors. The properties of the polymer are found to be critical to the 

performance of the humidity sensor. In our system, we select PVP as the stimuli- 

responsive polymer which is hygroscopic and has a fast response to the changes in 

humidity. To confirm the role of polymer layer in our humidity sensor, we conducted the 

humidity test on interference color created by thin film of PC deposited on iridium coated 
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glass substrate in similar fashion, and we have never observed any color change upon 

exposure to mist (Figure 3.17). 

It is noteworthy that although we have demonstrated the responsiveness of our 

interference coloration to the humidity changes, the current approach can be easily 

extended to other environmental stimuli such as chemicals, mechanical forces, 

biomolecules, and heat by careful choice of polymer. 
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Figure 3.16. (a) A schematic illustration of the mechanism of color change in the thin film 
of PVP deposited on iridium-coated glass substrate between high and low humidity 
environments. (b) Photographs (top view) of the thin film of PVP deposited on iridium-
coated glass substrate in response to mist created by a humidifier. (c) Photo images (top 
view) of the initial response of the thin film of PVP deposited on iridium-coated glass 
substrate to mist generated by a humidifier. Thicknesses of the PVP and iridium films are 
~ 300 nm and 5 nm, respectively. Scale bar: 1 cm. 
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Figure 3.17. Photographs (top view) of the thin film of PC deposited on iridium-coated 
glass substrate in response to mist created by a humidifier. Thickness of the iridium film 
is 5 nm. Scale bar: 1 cm. 

 

 

3.4. Conclusion 

In summary, we have developed a new scalable and affordable platform 

technology for fabrication of polymer-based, stimuli-responsive interference colored films. 

Our approach is based on a laminated structure in which a thin film of a transparent 

polymer is deposited on a metal-coated substrate. The facile fabrication process not only 

allows us to create full spectrum of interference colors on rigid substrates by simply 

adjusting the thickness of the polymer layer, but also enables us to form a wide range of 

colors on soft and flexible substrates. The thickness of the transparent polymer layer 

determines the reflected color, whereas the thickness of the metal layer controls the 

intensity of the reflected color. 

Moreover, various color patterns with different shapes and sizes can be created 

by choosing the appropriate mask. Furthermore, we have demonstrated the 

responsiveness of our interference colored films to an environmental stimulus where the 
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film undergoes fast and reversible changes of surface color upon changes in 

environmental humidity.  

Although we have focused on using spin-coating and sputter deposition methods 

to form the laminated structures in this study, our approach can be easily extended to 

other fabrication techniques to create thin films of polymers and metals on desired 

substrates. Such polymer-based, responsive interference coloration could empower 

colorimetric sensing of various environmental stimuli (e.g. humidity, chemicals, heat, 

biomolecules, and mechanical forces), which could enable a wide range of applications. 
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APPENDIX: 1H-NMR spectra of compounds 1, 2a, 3a, 4a, 2b, 3b, and 4b. 
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