
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2018

Orthogonal Abelian Cartan Subalgebra
Decompositions of Classical Lie Algebras Over
Finite Commutative Rings
Songpon Sriwongsa
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Sriwongsa, Songpon, "Orthogonal Abelian Cartan Subalgebra Decompositions of Classical Lie Algebras Over Finite Commutative
Rings" (2018). Theses and Dissertations. 1924.
https://dc.uwm.edu/etd/1924

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217194957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1924?utm_source=dc.uwm.edu%2Fetd%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


Orthogonal abelian Cartan
subalgebra decompositions of

classical Lie algebras
over finite commutative rings

by

Songpon Sriwongsa

A Dissertation Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
in

Mathematics

at

The University of Wisconsin-Milwaukee
May 2018



ABSTRACT

Orthogonal abelian Cartan
subalgebra decompositions of

classical Lie algebras
over finite commutative rings

by

Songpon Sriwongsa

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Dr. Yi Ming Zou

Orthogonal decompositions of classical Lie algebras over the complex numbers of types

A,B,C and D were studied in the early 1980s and attracted further attention in the past

decade, especially in the type A case, due to its application in quantum information theory.

In this dissertation, we consider the orthogonal decomposition problem of Lie algebras of

type A,B,C and D over a finite commutative ring with identity. We first establish the

appropriate definition of orthogonal decomposition under our setting, and then derive some

general properties that rely on the finite commutative rings theory. Our goal is to construct

interesting orthogonal decompositions of these Lie algebras. We begin with Lie algebras of

type A by searching for sufficient conditions for the existence of such an orthogonal decom-

position. Our study in the special case when the ring is a finite field provides us important

information that leads to the approach we develop in this dissertation. We then apply our

results on the orthogonal decomposition of type A Lie algebras to obtain a construction

of the orthogonal decomposition of Lie algebras of type C. We also provide methods of

constructing orthogonal decompositions for Lie algebras of types B and D.
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Chapter 1

Background information

1.1 Introduction

Let L be a Lie algebra over C. An orthogonal decomposition (OD) of L is a decomposition

of L into a direct sum of Cartan subalgebras which are pairwise orthogonal with respect to

the Killing form. Orthogonal decompositions of Lie algebras were studied as early as in [19]

by Thompson and used for the construction of a special finite simple group. The theory of

such decompositions of simple Lie algebras of types A,B,C and D over C was developed

by Kostrikin et al. in the 1980s [11, 12, 13]. The OD problem of the Lie algebras of type

An−1 is related to other fields such as mutually unbiased bases (MUBs) in Cn which have

applications in information theory [6, 15]. Boykin et al. established a connection between

the problem of constructing maximal collections of MUBs and the existence problem of OD

of the Lie algebras of type An−1 [3]. They showed that a collection of n + 1 MUBs in

Cn gives rise to an OD of the Lie algebras of type An−1 with the converse holding if the

Cartan subalgebras in an OD of the Lie algebras of type An−1 are stable with respect to

the ∗-operation, where X∗ = X
T

. It was conjectured in [11], the so-called Winnie-the-Pooh

conjecture, that Lie algebras of type An−1 have an OD if and only if n is a power of a prime

integer. This would imply the nonexistence of n + 1 MUBs in the n-dimensional complex
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space when n is not a prime power. The only if part of the conjecture is still open. On the

other hand, if n is a composite number which is not a prime power, the maximum collection

of pairwise orthogonal Cartan subalgebras of the Lie algebras of type An−1 is unknown. This

is the case even when n is the first positive non-prime power integer 6. For some more recent

developments when n = 6, see [2]. Note that the Lie algebra of type C3 is a subalgebra of

A5. There exists a study of the OD problem of the Lie algebra of type C3 [20]. The OD

problem for some semisimple algebras has also been studied [10].

Our main object in this dissertation is to study the problem of orthogonal decomposition

of Lie algebras over finite commutative rings with identity. We will consider the Lie algebras

of types A,B,C and D, since these are matrix Lie algebras and they have been the focus

of study when the base ring is the field of complex numbers. Since the structure of a Lie

algebra over a finite commutative ring is drastically different from the structures of those

over the complex numbers, it is necessary to generalize the definition of OD to our setting.

Thus we begin by introducing the needed concepts and properties.

1.2 Modular Lie algebras

In this section, we will present some elementary definitions and properties of the theory of

Lie algebras over a commutative ring with identity. These Lie algebras are called modular

Lie algebras. For detailed discussions on these Lie algebras, see [9, 17].

For both this section and Section 1.3, we will consider Lie algebras over a general com-

mutative ring R with identity. For the rest of this thesis, the ring is assumed to be finite.

Definition 1.2.1. A Lie algebra over R is an R-module L with a bilinear operation

[·, ·] : L× L→ L

called a Lie bracket, which satisfies the following axioms:
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(i) Anticommutativity: [x, x] = 0 for all x ∈ L;

(ii) Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L.

An R-submodule h of L is a Lie subalgebra if it is also a Lie algebra with the same Lie

bracket of L.

Clearly anticommutativity implies

[x, y] = −[y, x]

for all x, y ∈ L and the converse holds if char(R) 6= 2.

Any associative algebra A over R can become a Lie algebra with the following Lie bracket

(called the commutator:)

[x, y] := xy − yx.

Example 1.2.2. Let V be a free R-module of rank n and let End(V ) be the set of R-module

homomorphisms V → V , which is an associative algebra. With a fixed basis for V , End(V )

can be regarded as the set of n×n matrices over R, sometimes denoted by Mn(R). Equipped

with the commutator, End(V ) becomes a Lie algebra called the general linear Lie algebra

over R, denoted by gln(R). Any subalgebra of gln(R) is called a linear Lie algebra.

The linear Lie algebras that we are interested in will be defined in Section 1.3. In order

to define an orthogonal decomposition in our setting, the following concept is needed.

Definition 1.2.3. Let L be a Lie algebra over R.

(1) L is said to be abelian if [x, y] = 0 for all x, y ∈ L.

(2) [L,L] :=
{∑

[xi, yi] : xi, yi ∈ L
}

is called the derived algebra of L.

(3) Z(L) := {z ∈ L : [x, z] = 0 for all x ∈ L} is called the center of L.
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(4) The normalizer of a subalgebra K of L is defined by NL(K) := {x ∈ L : [x,K] ⊆ K}.

If K = NL(K), then K is called a self-normalizer.

(5) Set L1 = L, L2 = [L,L] and in general, Lk = [Lk−1,L] for k ≥ 2. Then L is called

nilpotent if Lk = 0 for some k ≥ 1.

Remark 1.2.4. Obviously, any abelian Lie algebra is nilpotent.

Cartan subalgebras of Lie algebras play a central role in our study; we define them next.

Definition 1.2.5. Let L be a Lie algebra over R. A Cartan subalgebra H of L is a

nilpotent subalgebra which is self-normalizing.

We also need the following definition.

Definition 1.2.6. If L is a Lie algebra over R, then for any x ∈ L, the map y 7→ [x, y], y ∈ L,

is an R-homomorphism of L into L, which is denoted by adx and is called the adjoint

representation. Let x, y ∈ L, and define K(x, y) := Tr(adx · ad y), where Tr is the trace

of a matrix, then K is a symmetric bilinear form on L, called the Killing form.

Definition 1.2.7. Let L and M be Lie algebras over R. A Lie algebra homomorphism

of L into M is a mapping ϕ : L → M which is a homomorphism of R-modules and that

satisfies

ϕ([x, y]) = [ϕ(x), ϕ(y)]

for all x, y ∈ L. If the mapping ϕ is also a bijection, then it is called an isomorphism. An

isomorphism from L onto itself is called an automorphism. The set of all automorphisms

in L forms a group denoted by Aut(L). We say that a subalgebra H1 is conjugate to a

subalgebra H2 if there exist φ ∈ Aut(L) such that φ(H1) = H2

The following simple observation of the Killing form is useful for the study of orthogonal

decomposition of Lie algebras.
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Proposition 1.2.8. The Killing form is invariant under any automorphism φ of a Lie

algebra L over R.

Proof. For x, y ∈ L, let z = φ(y). Then φ([x, φ−1(z)] = [φ(x), z]), equivalently,

adφ(x) = φ ◦ adx ◦ φ−1.

Therefore,

K(φ(x), φ(y)) = Tr(adφ(x) adφ(y))

= Tr(φ ◦ adx ad y ◦ φ−1)

= Tr(adx ad y)

= K(x, y),

as desired.

1.3 Linear Lie algebras

We now recall the definitions of the linear Lie algebras that will be studied and some formulas

for their Killing forms.

Let eij be the n×n matrix having 1 in the (i, j) position and 0 elsewhere. Since eijekl =

δjkeil, where δjk is the Kronecker delta, it follows that:

[eij, ekl] = δjkeil − δliekj.

We note that the Killing form formulas presented below hold in any commutative ring with

identity case.

Type A: Let sln(R) be the set of n × n matrices over R having trace zero. Since the

trace satisfies Tr(xy) = Tr(yx) and Tr(x+ y) = Tr(x) + Tr(y), sln(R) is a Lie subalgebra of
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gln(R), called the special linear Lie algebra. It is also a free R-module of rank n2 − 1

generated by eij (i 6= j) along with eii − ei+1,i+1 (1 ≤ i ≤ n− 1). The Killing form is equal

to

K(A,B) = 2nTr(AB)

for all A,B ∈ sln(R).

Type C: Let

K =

 0 In

−In 0

 .

Let sp2n(R) be the set

{X ∈M2n(R) : XK +KXT = 0}.

This is a Lie subalgebra of gl2n(R) which is called the symplectic Lie algebra. For

x ∈ sp2n(R), write

x =

s t

u v


for some s, t, u, v ∈ gln(R). From the definition, tT = t, uT = u and sT = −v. Thus, it

is a Lie subalgebra of sl2n(R) generated by eii − en+i,n+i (1 ≤ i ≤ n), eij − en+j,n+i (1 ≤

i 6= j ≤ n), ei,n+i (1 ≤ i ≤ n), ei,n+j + ej,n+i (1 ≤ i < j ≤ n), en+i,i (1 ≤ i ≤ n) and

en+i,j + en+j,i (1 ≤ i < k ≤ n). The Killing form is equal to

K(A,B) = (4n+ 2)Tr(AB)

for all A,B ∈ sp2n(R).

Type B: Assume that char(R) is odd or 0. Recall that a matrix A is skew-symmetric

if AT = −A. Denoted by so2n−1(R), the set of (2n− 1)× (2n− 1) skew-symmetric matrices

over R. Obviously, this is a linear Lie algebra, called the special orthogonal Lie algebra,

and a free R-module of rank (n− 1)(2n− 1) generated by eij − eji, i 6= j. The Killing form
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is equal to

K(A,B) = (2n− 3)Tr(AB)

for all A,B ∈ so2n−1(R).

Type D: Assume that char(R) is odd or 0. Denoted by so2n(R), the set of 2n × 2n

skew-symmetric matrices over R. Obviously, this is a linear Lie algebra and a free R-module

of rank n(2n− 1) generated by eij − eji, i 6= j. The Killing form is equal to

K(A,B) = (2n− 2)Tr(AB)

for all A,B ∈ so2n(R).

1.4 Finite commutative rings

From now on, we assume that our ring R is finite. We will investigate sufficient conditions

on a given ring for the existence of orthogonal decompositions of considered Lie algebras,

especially the special linear algebra in Chapter 3. We will need some basic properties of a

finite commutative ring with identity, and we will briefly describe these properties next. For

more details about finite commutative rings theory, we refer the reader to [1, 14]. Here, we

begin by recalling the definition of a finite local ring.

Definition 1.4.1. A finite commutative ring R with identity is called local if R has a unique

maximal ideal.

Remark 1.4.2. The characteristic of a finite local ring is a prime power integer.

Example 1.4.3. Any finite field is local. For a prime integer p and a positive integer s, Zps

is local.

We have the following structure theorem of finite commutative rings ( Theorem VI. 2 of

[14]).
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Theorem 1.4.4. Let R be a finite commutative ring with identity. Then R decomposes

uniquely (up to order of summands) as a direct sum of finite local rings, i.e.

R = R1 ×R2 × · · · ×Rt

where all R′is are finite local rings.

We can use this theorem to study the unit group group of R denoted by R×. We recall

the unit group of a finite local ring and also the unit group of a finite commutative ring as

direct product of unit group of each summand. First, recall the following result about the

unit group of a finite field.

Theorem 1.4.5. [1] Let Fq be a finite field with q elements. Then F×q is a cyclic group of

order q − 1.

For a finite local ring, the unit group can be described by the following theorem.

Theorem 1.4.6. [14] Let R be a finite local ring with the maximal ideal M and residue field

k = R/M . Then

R× ∼= (1 +M)× k×.

For a general finite commutative ring with identity, the unit group can be described by:

Theorem 1.4.7. [14] Let R = R1 × R2 × · · · × Rt be a direct product of finite local rings.

Then R× is the direct product of groups

R× ∼= R×1 ×R×2 × · · · ×R×t .

1.5 Symplectic spaces and quadratic spaces

We now recall some basics about symplectic spaces and quadratic spaces, for more details, see

[5, 21]. These materials will be needed in the construction of the orthogonal decomposition
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of sp2m+1 in Chapter 4.

Definition 1.5.1. Let V be a vector space over a field F . A symplectic form is a

nondegenerate bilinear map 〈·, ·〉 : V × V → F such that 〈v, v〉 = 0 for all v ∈ V . We call

the order pair (V, 〈·, ·〉) a symplectic space.

The following subspace will be considered.

Definition 1.5.2. Let (V, 〈·, ·〉) be a symplectic space over a field F and let W be a linear

subspace of V . Then W is called totally isotropic if 〈u, v〉 = 0 for all u, v ∈ W .

We will only work with symplectic form over a finite fields, especially over Z2. The

following fact about the dimension of a totally isotropic subspace over a finite field is well-

known (see for example [21])

Theorem 1.5.3. Let Fq be a finite field. Totally isotropic subspaces of F2m
q are of dimension

≤ m, and there exist totally isotropic subspaces of dimension m. Hence, maximal totally

isotropic subspaces are of dimension m. Moreover, any totally isotropic subspace is contained

in a maximal totally isotropic subspace.

In what follows, we introduce a quadratic space over a field and its special subspaces, the

so-called totally singular subspaces.

Definition 1.5.4. Let V be a vector space over a field F . A map q : V → F is a quadratic

form if:

• q(cv) = c2q(v) for all c ∈ F, v ∈ V ;

• the map β(u, v) := q(u+ v)− q(u)− q(v) for all u, v ∈ V , is a symmetric bilinear form

on V .

The ordered pair (V, q) is called a quadratic space. Moreover, q is said to be nondegen-

erate if β is nondegenerate.
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Definition 1.5.5. Let q be a quadratic form on V . A subspace W of V is totally singular

if q(w) = 0 for all w ∈ W . The maximum dimension of a totally singular subspace of V is

called the Witt index of V .

1.6 Thesis outline

The remainder of this dissertation is organized as follows.

In Chapter 2, we precisely define an orthogonal decomposition of Lie algebras that will be

considered in this dissertation and provide some simple examples. Since a finite commutative

ring with identity is a direct sum of local rings, we describe a relationship between an

orthogonal decomposition and the decomposition of the ring.

In Chapter 3, we begin with the investigation of a special type of orthogonal decomposi-

tion (we call it classical) of sln, n = 2, 3, over a finite field. These small cases provide insight

to some sufficient conditions on the ring that will permit an orthogonal decomposition of sln

over that ring. On the other hand, the results of Chapter 2 lead us to necessary conditions

on rings to admit an orthogonal decomposition of sln. We will also write a Magma code for

the purpose of finding the maximum number of classical components for some small cases.

Another special type of orthogonal decompositions that we construct in this chapter is called

the J-decomposition. We will finish this chapter by computing the number of orbits of this

type of decompositions under conjugacy for n = 2, 3 over a finite field.

In Chapter 4, we construct an orthogonal decomposition of sp2m+1 over a finite commu-

tative ring of odd characteristic with identity through the restriction of the decomposition

of sln given in Chapter 3. To do this, we need to use tools from the theories of symplectic

spaces and quadratic spaces we discussed earlier.

In Chapter 5, we describe an orthogonal decomposition of son over a finite commutative

ring of odd characteristic with identity. We show that standard basis elements of this algebra

form an orthogonal decomposition.
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Chapter 2

Orthogonal decompositions of Lie

algebras over finite commutative rings

In an orthogonal decomposition of a Lie algebra, the components are Cartan subalgebras.

Over the complex numbers, Cartan subalgebras are abelian subalgebras [7]. However, for

a modular Lie algebra over a general commutative ring, a Cartan subalgebra is not neces-

sary abelian, thus, we will only consider decomposition that is formed by abelian Cartan

subalgebras. Therefore, we will introduce the orthogonal decomposition into abelian Cartan

subalgebras of Lie algebras over a finite commutative ring R with identity in this chapter.

We use the abbreviation ODAC for this type of orthogonal decompositions (AC for “abelian

Cartan”). We will begin with the definition of ODAC and some simple examples.

2.1 Definitions and examples

Definition 2.1.1. Let L be a Lie algebra over a finite commutative ring R with 1. An

orthogonal decomposition into abelian Cartan subalgebras (abbreviated as ODAC)

of L is a direct sum R-module decomposition

L = H0 ⊕H1 ⊕ . . .⊕Hk, k ∈ N,

11



where the Hi’s are pairwise orthogonal abelian Cartan subalgebras of L with respect to the

Killing form.

Example 2.1.2. Any abelian Lie algebra obviously has an ODAC with one component

which is itself.

We give an ODAC for L = sl2(R) whose verification is straightforward in the next

example.

Example 2.1.3. Assume that 2 - char(R). Then sl2(R) has an ODAC

sl2(R) =

〈(
1 0

0 −1

)〉
R

⊕
〈(

0 1

−1 0

)〉
R

⊕
〈(

0 1

1 0

)〉
R

.

In this example, the assumption that 2 does not divide the characteristic of R is necessary

for the sum being direct.

Definition 2.1.4. Suppose that

L = H1 ⊕H2 ⊕ · · · ⊕Hk

and

L = H ′1 ⊕H ′2 ⊕ · · · ⊕H ′k′ .

are two ODACs of L. We say that these two ODACs are conjugate if k = k′ and there

exists an automorphism φ ∈ Aut(L) such that for all i ∈ {1, 2, . . . , k}, there exists a unique

j ∈ {1, 2, . . . , k} such that φ(Hi) = H ′j, i.e., Hi is conjugate to Hj.

The notion of ODAC conjugation will be helpful for the discussion of the ODAC problem

of sln over finite fields in Section 3.1 which will provide us significant information that leads

us to the main results in Section 3.2.
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2.2 Orthogonal decompositions over finite direct prod-

ucts of finite local rings

We will use the fact that a finite commutative ring R with identity is a direct product of

a finite number of finite local rings to relate the problem of ODAC of a Lie algebra over R

with that of the finite local rings. Let R = R1 × R2 × · · · × Rt, where Ri is a finite local

ring. For each i = 1, 2, . . . , t, let Li be a module over Ri. Then L = L1 ⊕ L2 ⊕ · · · ⊕ Lt is

an R-module by defining the scalar multiplication as follows: for all r = (r1, r2, . . . , rt) ∈ R,

where ri ∈ Ri,

r.(x1, x2, . . . , xt) := (r1x1, r2x2, . . . , rtxt)

where (x1, x2, . . . , xt) ∈ L. If each Li is a Lie algebra over Ri, then we can naturally define

the Lie bracket on L by taking the componentwise bracket.

Lemma 2.2.1. Let Li be a Lie algebra over Ri, i = 1, 2, . . . , t. Then

L = L1 ⊕ L2 ⊕ · · · ⊕ Lt

is a Lie algebra over R with the bracket defined by

[(x1, x2, . . . , xt), (y1, y2, . . . , yt)] := ([x1, y1], [x2, y2], . . . , [xt, yt]),

where (x1, x2, . . . , xt), (y1, y2, . . . , yt) ∈ L.

Proof. It is clear that the bracket operation is bilinear and satisfies anticommutativity. For

any (x1, x2, . . . , xt), (y1, y2, . . . , yt), (z1, z2, . . . , zt) ∈ L, we have

[[(x1, x2, . . . , xt), (y1, y2, . . . , yt)], (z1, z2, . . . , zt)] = ([[x1, y1], z1], [[x2, y2], z2], . . . , [[xt, yt], zt]).
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By the Jacobi identity of each component, this bracket satisfies the Jacobi identity.

We will first prove the necessity and sufficiency for the existence of ODAC of a general

Lie algebra over R in terms of its Ri form, that is, a Lie algebra obtained by restricting the

coefficients to Ri, for each i. Then we will consider the linear Lie algebras in the latter part

of this section. We will utilize the projection maps to obtain the desired results. Let Proji

denote the projection map onto the ith coordinate. Then we have:

Lemma 2.2.2. For i ∈ {1, 2, . . . , t}, let Li be a Lie algebra over Ri and let L be a Lie

algebra over R. With the bracket in Lemma 2.2.1, assume that L ∼= L1 ⊕ L2 ⊕ · · · ⊕ Lt as

Lie algebras over R via an isomorphism φ. If H is an abelian Cartan subalgebra of L, then

Proji(φ(H)) is an abelian Cartan subalgebra of Li for all i = 1, 2, . . . , t.

Proof. It suffices to prove the case t = 2 and i = 1 since similar arguments hold for the other

cases. It is clear that Proj1(φ(H)) is an R1-submodule of L1. Let x, y ∈ Proj1(φ(H)). Using

the scalar (1, 0), we observe that (x, 0) and (y, 0) are in φ(H). Since H is abelian, so is φ(H)

and

[x, y] = Proj1([x, y], [0, 0]) = Proj1[(x, 0), (y, 0)] = Proj1(0, 0) = 0.

Thus, Proj1(φ(H)) is an abelian subalgebra of L1 and so it is nilpotent.

We show that Proj1(φ(H)) is a self-normalizer of L1. For convenience, we denote Hi :=

Proji(φ(H)) for all i = 1, 2. Let x ∈ NL1(H1). Then [x,H1] ⊆ H1. For any h ∈ H,

[(x, 0), φ(h)] = [(x, 0), (Proj1(φ(h)),Proj2(φ(h)))]

= ([x,Proj1(φ(h))], [0,Proj2(φ(h))])

= ([x,Proj1(φ(h))], 0) ∈ (H1, H2) = φ(H).

Then, [(x, 0), φ(H)] ⊆ φ(H). Since H is a self-normalizer, so is φ(H). Thus, (x, 0) ∈ φ(H).

Therefore, NL1(H1) = H1.
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Theorem 2.2.3. For i ∈ {1, 2, . . . , t}, let Li and L be as in Lemma 2.2.2. Then L has an

ODAC if and only if Li has an ODAC for all i = 1, 2, . . . , t.

Proof. Assume that L = H1 ⊕ H2 ⊕ · · · ⊕ Hk is an ODAC of L. We show that L1 has an

ODAC

L1 = Proj1(φ(H1))⊕ Proj1(φ(H2))⊕ · · · ⊕ Proj1(φ(Hk)).

Similar arguments work for the other Li’s. By Lemma 2.2.2, each Proj1(φ(Hj)) is an abelian

Cartan subalgebra of L1. Let x ∈ L1 and x0 ∈ L such that φ(x0) = (x, 0, . . . , 0). Due to the

ODAC of L, we have

x0 = x0,1 + x0,2 + · · ·+ x0,k,

for some x0,j ∈ Hj, and

x = Proj1(φ(x0)) = Proj1(φ(x0,1)) + Proj1(φ(x0,2)) + · · ·+ Proj1(φ(x0,k)).

So, L1 ⊆
∑k

j=1 Proj1(φ(Hj)). On the other hand, it is clear that L1 ⊇
∑k

j=1 Proj1(φ(Hj)).

Next, let j0 ∈ {1, 2, . . . , k} and x ∈ Proj1(φ(Hj0)) ∩
∑

j 6=j0 Proj1(φ(Hj)). Then there exist

(h2, . . . , ht), (h
′
2, . . . , h

′
t) ∈

∑t
i=2 Li such that

(x, h2, . . . , ht) ∈ φ(Hj0) and (x, h′2, . . . , h
′
t) ∈

∑
j 6=j0

φ(Hj).

Let r = (1, 0, . . . , 0) ∈ R1 ×R2 × · · · ×Rt. So,

(x, 0, . . . , 0) = r(x, h2, . . . , ht) = r(x, h′2, . . . , h
′
t) ∈ φ(Hj0) ∩

∑
j 6=j0

φ(Hj)

and hence x = 0, i.e., the sum is direct. Let Ki be the Killing form for Li. Then the Killing

form K for L is equal to

K(x, y) = K1(x1, y1) +K2(x2, y2) + · · ·+Kt(xt, yt)

15



for all x = (x1, x2, . . . , xt), y = (y1, y2, . . . , yt) ∈ L. Finally, we prove that Proj1(φ(Hj1))

is orthogonal to Proj1(φ(Hj2)) with respect to the Killing from K1 if j1 6= j2. Let x ∈

Proj1(φ(Hj1)) and y ∈ Proj1(φ(Hj2)). Then (x, 0, . . . , 0) ∈ φ(Hj1) and (y, 0, . . . , 0) ∈ φ(Hj2).

Moreover,

K1(x, y) +K2(0, 0) + . . .+Kt(0, 0) = K((x, 0, . . . , 0), (y, 0, . . . , 0)) = 0.

Therefore, K1(x, y) = 0.

Conversely, we suppose that each Li, i = 1, 2, . . . , t, has an ODAC with ki components.

We can add the zero submodules to the ODAC of each Li and assume that all direct sums

have the same number of terms, say k. For each i = 1, 2, . . . , t and j = 1, 2, . . . , k, let Hij be

the jth component of ODAC of Li if j ≤ ki and Hij = 0 if j > ki. Then L has an ODAC

L = H1 ⊕H2 ⊕ · · · ⊕Hk,

where Hj = φ−1(H1j, H2j, . . . , Htj).

We will relate the decomposition of the ring R to that of a linear Lie algebra. Note that

the multiplication

((a
(1)
ij ), (a

(2)
ij ), . . . , (a

(t)
ij )) · ((b(1)ij ), (b

(2)
ij ), . . . , (b

(t)
ij )) = ((a

(1)
ij )(b

(1)
ij ), (a

(2)
ij )(b

(2)
ij ), . . . , (a

(t)
ij )(b

(t)
ij )),

defines an R-algebra structure on gln(R1) ⊕ gln(R2) ⊕ · · · ⊕ gln(Rt). Consequently, we can

define the bracket [·, ·] on it to be the componentwise commutator and immediately see that

this bracket is a finite tuple of Lie brackets from each component. From Lemma 2.2.1, it

follows that this R-algebra is a Lie algebra over R. Note that for each a ∈ R, we can write

a = (a(1), a(2), . . . , a(t)) uniquely. Define

φ :gln(R) −→ gln(R1)⊕ gln(R2)⊕ · · · ⊕ gln(Rt)
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(aij) 7−→ ((a
(1)
ij ), (a

(2)
ij ), . . . , (a

(t)
ij ))

for all (aij) ∈ gln(R). Clearly, φ is an R-module isomorphism.

Let A = (aij), B = (bij) ∈ gln(R). Then

φ(AB) = φ((aij)(bij))

= φ((
∑
l

ailblj))

= ((
∑
l

a
(1)
il b

(1)
lj ), (

∑
l

a
(2)
il b

(2)
lj ), . . . , (

∑
l

a
(t)
il b

(t)
lj ))

= ((a
(1)
ij )(b

(1)
ij ), (a

(2)
ij )(b

(2)
ij ), . . . , (a

(t)
ij )(b

(t)
ij ))

= ((a
(1)
ij ), (a

(2)
ij ), . . . , (a

(t)
ij )) · ((b(1)ij ), (b

(2)
ij ), . . . , (b

(t)
ij ))

= φ((aij))φ((bij)) = φ(A)φ(B).

So, φ([A,B]) = φ(AB − BA) = φ(AB) − φ(BA) = φ(A)φ(B) − φ(B)φ(A) = [φ(A), φ(B)].

Thus, we have the following corollary.

Corollary 2.2.4. Let R = R1 ×R2 × · · · ×Rt be a finite direct product of finite local rings.

Then we have the following:

(i) There is a Lie algebra (over R) isomorphism

φ : gln(R) −→ gln(R1)⊕ gln(R2)⊕ · · · ⊕ gln(Rt).

(ii) If g is a Lie subalgebra of gln(R), then

g ∼= Proj1(φ(g))⊕ Proj2(φ(g))⊕ · · · ⊕ Projt(φ(g)).

Moreover, g has an ODAC if and only if Proji(φ(g)) has an ODAC for all i = 1, 2, . . . , t.
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Chapter 3

Orthogonal decompositions of Lie

algebras of type A

In this chapter, we consider the ODAC problem of the special linear Lie algebra sln(R). In

Section 3.1, due to the availability of tools for modular Lie algebras over fields of characteristic

p > 0 (see [17]), we will first explore the special type of ODAC (the so-called classical) of sln

over a finite field when n = 2, 3. The observations in these special cases will then be used in

Section 3.2 to derive the main results for n ≥ 2. These results provide sufficient conditions

for the existence of an ODAC of sln over a finite commutative ring with identity. In the

cases of a finite local ring and a finite field, the verifications of these conditions are straight

forward for the given ring and field since the needed information is readily obtained from

their structures.

3.1 Classical orthogonal decompositions of sln, n = 2, 3

over finite fields

For a prime integer p 6= 2, 3 and a positive integer m, let Fq be a finite field of q = pm

elements.

18



Definition 3.1.1. A Lie algebra L over Fq is called classical if:

1. the center of L is zero;

2. [L,L] = L;

3. L has a abelian Cartan subalgebra H, relative to which:

(a) L = ⊕Lα, where Lα := {x ∈ L : [h, x] = α(x)x for all h ∈ H};

(b) if α 6= 0 is a root, [Lα,L−α] is one-dimensional;

(c) if α and β are roots, and if β 6= 0, then not all α+kβ are roots, where 1 ≤ k ≤ p−1.

An abelian Cartan subalgebra H satisfying (a), (b) and (c) is called a classical Cartan

subalgebra.

It is known that all classical Cartan subalgebras of a classical Lie algebra L over Fq are

conjugate [17].

Suppose that L = H +
∑

α Lα the root subspace decomposition relative to a classical

Cartan subalgebra H. Let G′(L) be the group of automorphisms of L generated by all

exp(adxα) where xα ∈ Lα, α 6= 0.

Theorem 3.1.2. [17] Let H1, H2 be classical Cartan subalgebras of L. Then there exists a

σ ∈ G′(L) such that σ(H1) = H2.

We now define a classical ODAC.

Definition 3.1.3. An ODAC of a Lie algebra L over Fq is said to be classical if all of its

components are classical Cartan subalgebras.

Example 3.1.4. From Example 2.1.3, sl2(Z7) has an ODAC

sl2(Z7) =

〈(
1 0

0 −1

)〉
Z7

⊕
〈(

0 1

−1 0

)〉
Z7

⊕
〈(

0 1

1 0

)〉
Z7

.
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However, it is not classical because
√
−1 is undefined here and so the adjoint action of the

second matrix is not semisimple, i.e., sl2(Z7) does not have a root subspace decomposition

relative to the second summand.

In this section, we investigate the classical ODAC problem for a classical sln(Fq), n = 2, 3.

Since we assume that sln(Fq) is classical, char(Fq) is not equal to n. Let H0 be the classical

Cartan subalgebra of sln(Fq) consisting of the diagonal matrices. We suppose that sln(Fq)

has a classical ODAC, then by Proposition 1.2.8, we can assume that one of the components

is H0. It is clear that K is non-degenerate because char(Fq) 6= 2, 3. Since each ad(h), h ∈ H0,

has all its characteristic roots in Fq, we have:

Proposition 3.1.5. [17] Under the above hypotheses, the restriction to H0 of K is nonde-

generate.

Let H be a classical Cartan subalgebra of sln(Fq) orthogonal to H0 with respect to K.

Since H and H0 are conjugate, K|H is also non-degenerate. In the next lemma, we give a

description of H.

Lemma 3.1.6. Under the above setting, we have the following statements.

(1) If n = 2, then

H =

〈(
0 1

a 0

)〉
Fq

for some a 6= 0.

(2) If n = 3, then

H =

〈 0 1 0

0 0 a

ab 0 0

 ,

 0 0 1

ab 0 0

0 b 0

〉
Fq

for some a, b 6= 0.

Proof. We only provide the proof for n = 3 since similar arguments apply to the case n = 2.

We first prove the following assertions:
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(a) Every matrix in H has a zero diagonal.

(b) Every nonzero matrix in H has no zero row nor zero column.

(c) H admits a basis {A2, A3} satisfying the conditions below, k = 2, 3:

(i) The first row of Ak has 1 in the k-th position and 0 elsewhere.

(ii) The first position of the k-th column of Ak is the only nonzero element in that

column.

(iii) The j-th row of Ak coincides with the k-th row of Aj.

First note that (a) holds since H is orthogonal to H0 and the characteristic of the field is not

equal to 2 or 3. If we assume (b), then it follows that H has a basis {A2, A3} with property

(i). We use the commutativity of H to prove (iii). By (i), the j-th row of Ak equals the first

row of the product AjAk, but AjAk = AkAj, so it equals the k-th row of Aj. To prove (ii),

we note that for j ≥ 2, the j-th element of the k-th column of Ak is the k-th element of the

j-th row of Ak, so by (iii), it is equal to the k-th element of the k-th row of Aj, and therefore

it is zero by (a). To prove (b), we assume the contrary. Without loss of generality, we may

assume that there exists a nonzero matrix A ∈ H whose first row is zero, i.e.

A =


0 0 0

a 0 b

c d 0

 ,

where a, b, c, d are not all zero. Note that H has dimension two. Let B be a nonzero matrix

such that H =
〈
A,B

〉
Fq

. Write

B =


0 x y

u 0 z

v w 0

 ,
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where x, y, z, u, v, w are not all zero, then

[A,B] =


−ax− cy −dy −bx

bv − cz bw + ax− dz ay

du− aw cx −bw + cy + dz

 (3.1)

equals zero because H is abelian. If the product abcd is zero, then it can be verified that the

Killing form would be degenerate on H. This can be done either by considering different cases

or using computational algebra packages. Using the latter method, it is straightforward that

the determinant of the Killing form is contained in the ideal J ⊂ Z[a, b, c, d, x, y, z, u, v, w]

generated by the entries of [A,B] and abcd. Codes in both Sage and Magma are provided

in Appendix A for this purpose. Therefore, all a, b, c and d are nonzero. Now, by (3.1),

x = y = 0 and we may assume that a = 1. So, we have bv = cz, bw = dz and du = w.

These can be reduced to z = bu and v = cu. Since B 6= 0, u 6= 0. Again, we may assume

that u = 1. Then d = w, b = z and c = v, i.e., A = B, which contradicts the choice of B.

Therefore, (b) holds.

From the above discussions, H admits a basis of the form




0 1 0

x 0 a

∗ 0 0

 ,


0 0 1

∗ 0 0

y b 0




where a, b 6= 0. Since H is abelian, x = y = 0 and ∗ = ab.

The above lemma leads us to the existence of an ODAC of sln(Fq), when n = 2, 3. For

n = 2, the decomposition (some cases are classical) always exists because char(Fq) 6= 2

(see Example 2.1.3). Moreover, we note that any classical ODAC of sl2(Fq)(if one exists) is
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conjugate to

sl2(Fq) =

〈(
1 0

0 −1

)〉
Fq

⊕
〈(

0 1

a 0

)〉
Fq

⊕
〈(

0 1

−a 0

)〉
Fq

, (3.2)

for some a 6= 0. For n = 3, we state the result as a theorem.

Theorem 3.1.7. Let Fq be a finite field of q = pm elements with characteristic p 6= 2, 3.

Then sl3(Fq) has a classical ODAC if and only if 3|(q − 1). In that case, for any primitive

cube root of unity u ∈ Fq, we have the following classical ODAC:

sl3(Fq) = H0 ⊕H1 ⊕H2 ⊕H3,

where

H1 =

〈0 1 0

0 0 1

1 0 0

 ,

0 0 1

1 0 0

0 1 0

〉
Fq

,

H2 =

〈 0 1 0

0 0 u

u2 0 0

 ,

 0 0 1

u2 0 0

0 u 0

〉
Fq

,

H3 =

〈0 1 0

0 0 u2

u 0 0

 ,

0 0 1

u 0 0

0 u2 0

〉
Fq

.

Proof. Assume that 3|(q−1). Since the unit group F×q is cyclic and |F×q | = q−1, there exists

a primitive cube root of unity u ∈ Fq. The verification that the given decomposition is an

ODAC of sl3(Fq) is straightforward. Let

X =


1 1 u

u 1 1

1 u 1

 and Y =


u u 1

u 1 u

u u2 u2

 .

Then both X and Y are nonsingular. Note that conjugation by X (resp. X2), changes H2

23



(resp. H3) to H0, and conjugation by Y changes H1 to H0. Since H0 is a classical Cartan

subalgebra, so are H1, H2 and H3. Thus, this decomposition is classical.

Conversely, suppose that 3 - (q − 1) but sl3(Fq) possesses a classical ODAC. Note that

the decomposition of sl3(Fq) has 4 components. Then, up to conjugacy, we can assume that

H0 is one of the components and, by Lemma 3.1.6, all other components are of the forms

H ′1 =

〈 0 1 0

0 0 a

ab 0 0

 ,

 0 0 1

ab 0 0

0 b 0

〉
Fq

H ′2 =

〈 0 1 0

0 0 c

cd 0 0

 ,

 0 0 1

cd 0 0

0 d 0

〉
Fq

H ′3 =

〈 0 1 0

0 0 e

ef 0 0

 ,

 0 0 1

ef 0 0

0 f 0

〉
Fq

for some a, b, c, d, e, f 6= 0. By the orthogonality between H ′1 and H ′2, we have cd+ad+ab =

0 and cd + cb + ab = 0. Then d = a−1cb. Substituting d in the first equation, we get

c2 + ac + a2 = 0. However, since 3 - (q − 1), there is no primitive cube root of unity in Fq,

so the polynomial x2 + ax+ a2 has no root in Fq. This is a contradiction.

Remark 3.1.8. By the above theorem, if Fq does not have a primitive cube root of unity,

then the number of pairwise classical orthogonal Cartan subalgebras in sl3(Fq) is at most two.

If H0 and H ′1 is such a pair, then they must have the forms described in the theorem, and by

[17], H0 and H ′1 are conjugate. However, the two matrices listed in H ′1 are not diagonalizable

over Fq, so there is no orthogonal pair of classical Cartan subalgebras in sl3(Fq) in this case.

Remark 3.1.9. If sl3(Fq) has a classical ODAC, by the arguments in the proof of the above

theorem, it must be, up to conjugacy, of the form

sl3(Fq) = H0 ⊕H1 ⊕H2 ⊕H3, (3.3)
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where

H1 =

〈 0 1 0

0 0 a

ab 0 0

 ,

 0 0 1

ab 0 0

0 b 0

〉
Fq

,

H2 =

〈 0 1 0

0 0 ua

u2ab 0 0

 ,

 0 0 1

u2ab 0 0

0 ub 0

〉
Fq

,

H3 =

〈 0 1 0

0 0 u2a

uab 0 0

 ,

 0 0 1

uab 0 0

0 u2b 0

〉
Fq

,

for some nonzero a, b and a primitive cube root u of unity.

The collection of ODACs of the forms in (3.2) and (3.3) over finite fields will be considered

again in Section 3.5. We will count the number of them up to conjugacy.

3.2 Orthogonal decompositions of sln over finite com-

mutative rings

We note that every matrix described in Theorem 3.1.7 is a product of a diagonal matrix and

a permutation matrix. Let u be a primitive cube root of unity and let

D =


1 0 0

0 u 0

0 0 u2

 and P =


0 0 1

1 0 0

0 1 0

 ,

then each matrix in Theorem 3.1.7 is of the form DaP b for some a, b ∈ {0, 1, 2}. We show

that an ODAC of sln(R) can be constructed under assumptions similar to the n = 3 case

using the n× n version of matrices D and P .

The matrices D and P play a key role in the construction of OD for sln(C) when n = pm
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for a prime integer p and a positive integer m [11]. To use them in our construction here,

some of the differences must be noted. The matrix D requires the existence of a primitive

pth root u of unity, which always exists in the complex number case. But for a general finite

commutative ring, the existence of u needs to be assumed. Moreover, up−1 + . . .+ u+ 1 = 0

holds in C, but this may not hold in a general finite commutative ring unless u− 1 is a unit.

In addition, one can use Lie’s theorem to verify that the constructed decomposition is an

OD in the complex number case [11], but Lie’s theorem is not available in the general cases

considered here.

We will use the Kronecker product of matrices for the construction of ODAC in the next

theorem. Recall that the Kronecker product (denoted by ⊗) of two matrices is the matrix

obtained by multiplying each element from the left matrix by the whole right matrix e.g.

a b

c d

⊗
x y

u v

 =



a

x y

u v

 b

x y

u v



c

x y

u v

 d

x y

u v





=



ax ay bx by

au av bu bv

cx cy dx dy

cu cv du dv


.

Theorem 3.2.1. Let R be a finite commutative ring with identity. For a prime power

n = pm, if there exists a primitive pth root of unity u ∈ R× such that u − 1 ∈ R×, then

sln(R) has an ODAC

sln(R) = H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Proof. We first consider the case m = 1. For n = 2, see Example 2.1.3. Assume that p > 2.
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Let

D = diag(1, u, . . . , up−1) and P =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


.

Since up − 1 = 0 and u− 1 ∈ R×, Tr(D) = 1 + u+ u2 + . . .+ up−1 = 0. Thus, D and P are

matrices in slp(R) and p is the smallest positive integer such that Dp = P p = I. For any

a, b ∈ Zp, let J(a,b) = DaP b. We have

TrJ(a,b) = 0⇔ (a, b) 6= (0, 0) (3.4)

and

P bDa = u−abDaP b. (3.5)

The last equation implies

J(a,b)J(c,d) = u−bcJ(a+c,b+d) and (3.6)

[J(a,b), J(c,d)] = (u−bc − u−ad)J(a+c,b+d) (3.7)

for a, b, c, d ∈ Zp. For a, k ∈ Zp with a 6= 0, J(a,ka) and J(0,a) are elements of slp(R)

by (3.4). For a fixed k ∈ Zp, it follows immediately from the definitions of D and P

that J(1,k), J(2,2k), . . . , J(p−1,k(p−1)) are linearly independent. Construct the following free R-

submodules:

Hk = 〈J(a,ka)|a ∈ Z×p 〉R, k ∈ Zp and

H∞ = 〈J(0,a)|a ∈ Z×p 〉R = 〈P, P 2, . . . , P p−1〉R.
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By (3.7), H∞ and Hk are Lie subalgebras of slp(R).

Let

X =



1 u
p(p−1)

2 u
(p−1)(p−2)

2 · · · u3 u

u 1 u
p(p−1)

2 · · · u6 u3

u3 u 1 · · · u10 u6

...
...

...
. . .

...
...

u
(p−1)(p−2)

2 u
(p−2)(p−3)

2 u
(p−3)(p−4)

2 · · · 1 u
p(p−1)

2

u
p(p−1)

2 u
(p−1)(p−2)

2 u
(p−2)(p−3)

2 · · · u 1


.

Since p > 2 and 1 − u is a unit, X is invertible over R. It is straightforward to verify

that X−1DPX = D and X−1PX = P . Thus by (3.5), conjugation by the matrix X shifts

H0, H1, . . . , Hp−1 cyclically and fixes H∞. We show that

slp(R) = H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hp−1. (3.8)

It is clear from the construction that H0∩
∑

j 6=0Hj = {0}. In particular, the sum is direct for

H0 andH∞. Thus, the sums for allHi’s are also direct, and we haveH∞⊕H0⊕H1⊕· · ·⊕Hp−1,

which is a free R−submodule of slp(R). But we also have

|slp(R)| = |H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hp−1|.

Therefore, the equality (3.8) holds.

We prove that the decomposition (3.8) is pairwise orthogonal with respect to the Killing

form K(A,B) = 2pTr(AB). It is obvious that H∞ is orthogonal to all others Hi’s. Let

a, b ∈ Z×p , k1, k2 ∈ Zp with k1 6= k2. Then (a+ b, k1a+ k2b) 6= (0, 0) and so by (3.6),

K(J(a,k1a), J(b,k2b)) = 2pTr(J(a,k1a)J(b,k2b))

= 2pu−k1abTr(J(a+b,k1a+k2b))

= 0.
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Thus, Hi and Hj are orthogonal for all i, j ∈ Zp and i 6= j.

We now show that Hk, (k ∈ Zp) and H∞ are abelian Cartan subalgebras. It is clear from

the construction that both H0 and H∞ are abelian. Moreover, H0 is a Cartan subalgebra.

Since H0, H1, . . . , Hp−1 are conjugate, they are all abelian Cartan subalgebras. It remains to

verify that H∞ is self normalizing. Recall that for all k ∈ Zp and a, b ∈ Z×p , [J(a,ka), J(0,b)] =

(1 − u−ab)J(a,ka+b) is in Hc for some c ∈ Zp. Now, let A ∈ Nslp(R)(H∞). Then by (3.8), we

can write

A =

p−1∑
c=1

( p−1∑
j=0

(α(c,j)J(c,jc)) + βcJ(0,c)

)
,

where α(c,j), βc ∈ R. For any basis element J(0,a) of H∞, we have

[A, J(0,a)] =

p∑
c=1

( p∑
j=0

(α(c,j)[J(c,jc), J(0,a)]) + βc[J(0,c), J(0,a)]
)
∈ H∞.

This implies

p−1∑
c=1

p−1∑
j=0

(α(c,j)(1− u−ac)J(c,jc+a)) =

p−1∑
c=1

p−1∑
j=0

(α(c,j)[J(c,jc), J(0,a)]) ∈ H∞.

This summation is also in ⊕p−1i=0Hi. Then by (3.8), it must be zero. For any c ∈ Z×p , j ∈ Zp,

we can choose a = −c−1 so the scalar 1− u−ac = 1− u is a unit in R. So, α(c,j) = 0. Hence,

H∞ = Nslp(R)(H∞). This completes the proof for the case m = 1.

Next suppose that m ≥ 2. Let W = Fpm⊕Fpm be a 2m-dimensional vector space over Fp

equipped with a symplectic form 〈·, ·〉 : W ×W → Fp defined by the field trace as follows:

for any elements ~w = (α; β), ~w′ = (α′; β′) ∈ W ,

〈~w, ~w′〉 = TrFpm/Fp(αβ′ − α′β). (3.9)

Then, by Corollary 3.3 of [21], W possesses a symplectic basis B = {~e1, . . . , ~em, ~f1, . . . , ~fm}

where {~e1, . . . , ~em} and {~f1, . . . , ~fm} span the first and the second factor, respectively, such
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that

〈~w, ~w′〉 =
m∑
i=1

(aib
′
i − a′ibi), (3.10)

where ~w =
∑m

i=1(ai~ei + bi ~fi) and ~w′ =
∑m

i=1(a
′
i~ei + b′i

~fi). With the basis B, write each vector

~w ∈ W as

~w = (a1, . . . , am; b1, . . . , bm),

and associate it with a matrix

J~w = J(a1,b1) ⊗ J(a2,b2) ⊗ · · · ⊗ J(am,bm),

where ⊗ denotes the Kronecker product of matrices, and J(ai,bi) is given as in the case m = 1

with a given primitive pth root of unity u ∈ R× such that u− 1 ∈ R× for all i = 1, 2, . . . ,m.

Then the set {J~w : 0 6= ~w ∈ W} forms a basis of slpm(R) as a free R-module of rank pm + 1.

By the properties of Kronecker product, we have the following:

J~wJ~w′ = u−B(~w,~w′)J~w+~w′ and (3.11)

[J~w,J~w′ ] = (u−B(~w,~w′) − u−B(~w′, ~w))J~w+~w′ (3.12)

= u−B(~w′, ~w)(u〈~w,~w
′〉 − 1)J~w+~w′ ,

where

B(~w, ~w′) =
m∑
i=1

a′ibi

for all ~w = (a1, . . . , am; b1, . . . , bm), ~w′ = (a′1, . . . , a
′
m; b′1, . . . , b

′
m) ∈ W .

Write ~w = (α; β) ∈ W , where α = (a1, a2, . . . , am) and β = (b1, b2, . . . , bm). Define

H∞ = 〈J(0;λ)|λ ∈ F×pm〉R and Hα = 〈J(λ;αλ)|λ ∈ F×pm〉R,
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where α ∈ Fpm . Since the J~w’s are basis elements, we have

slpm(R) = H∞ ⊕ (⊕α∈Fpm
Hα) (3.13)

We show that all component Hi’s are pairwise orthogonal abelian Cartan subalgebras.

It is clear that 〈(λ;αλ), (λ′;αλ′)〉 = 〈(0;λ), (0;λ′)〉 = 0, so by (3.12), all Hα and H∞ are

abelian. To see that they are pairwise orthogonal, note that if (γ; δ) 6= (−α;−β), then

Tr(J(α;β)J(γ;δ)) = 0. Indeed, if λ = (a1, . . . , am), β = (b1, . . . , bm), γ = (a′1, . . . , a
′
m), δ =

(b′1, . . . , b
′
m) and ai 6= −a′i for some i ∈ {1, . . . ,m}, then ai + a′i 6= 0 and TrJ(ai+a′i,bi+b′i) = 0

(as in the case m = 1). By (3.11) and the trace property of Kronecker product,

Tr(J(α;β)J(γ;δ)) = u−B((α;β),(γ;δ))Tr(J(a1+a′1,...,am+a′m;b1+b′1,...,bm+b′m))

= u−B((α;β),(γ;δ))Tr(⊗mj=1J(aj+a′j ,bj+b′j))

= u−B((α;β),(γ;δ))

m∏
j=1

Tr(J(aj+a′j ,bj+b′j))

= 0.

Thus they are pairwise orthogonal. It remains to show that all Hα’s and H∞ are their own

normalizers. We first show that for α 6= α′ ∈ Fpm and λ′ ∈ F×pm ,

(i) there is an λ ∈ F×pm such that 〈(λ;αλ), (λ′;α′λ′)〉 = 1 and

(ii) there is an λ ∈ F×pm such that 〈(λ;αλ), (0;λ′)〉 = 1.

Since the field trace is surjective (see Exercise V.7.2 of [8]), there exists γ ∈ Fpm such that

TrFpm/Fp(γ) = 1. Thus, we can choose λ = γ(λ′(α′ − α))−1 for (i) and choose λ = (λ′)−1 for

(ii). Now, for any α ∈ Fpm and A ∈ Nslpm (R)(Hα),

A =
∑
λ′∈F×q

( ∑
α′∈Fq

a(λ′,α′)J(λ′,α′λ′) + bλ′J(0,λ′)

)
.
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For any basis element J(λ,αλ) ∈ Hα, we have

∑
λ′∈F×q

( ∑
α′∈Fq

α′ 6=α

a(λ′,α′)[J(λ′,α′λ′),J(λ,αλ)] + bλ′ [J(0,λ′),J(λ,αλ)]
)
∈ Hα. (3.14)

Note that

[J(λ′,α′λ′),J(λ,αλ)] = u−B((λ,αλ),(λ′,α′λ′))(u〈(λ
′,α′λ′),(λ,αλ)〉 − 1)J(λ′+λ,α′λ′+αλ),

[J(0,λ′),J(λ,αλ)] = u−B((λ,αλ),(0,λ′))(u〈(0,λ
′),(λ,αλ)〉 − 1)J(λ,λ′+αλ).

The summation in (3.14) is also in
∑

i 6=αHi. For any (λ′, α′), by (i), we can choose a suitable

λ for which u〈(λ
′;α′λ′),(λ;αλ)〉− 1 = u− 1 is a unit in R. This implies a(λ′,α′) is zero because the

sums in (3.13) are direct. By (ii), we can show that any bλ′ is also zero. Thus, A ∈ Hα and

so, Nslpm (R)(Hk) = Hk. By using similar arguments, we can show Nslpm (R)(H∞) = H∞.

Example 3.2.2. Assume that 2 - char(R). We will construct an ODAC of sl4(R). Recall

from Example 2.1.3 that

sl2(R) =

〈(
1 0

0 −1

)〉
R

⊕
〈(

0 1

−1 0

)〉
R

⊕
〈(

0 1

1 0

)〉
R

and we have

J(0,0) = I2, J(1,0) =

1 0

0 −1

 , J(0,1) =

 0 1

−1 0

 and J(1,1) =

0 1

1 0

 .

Let f(x) = x2 + x+ 1. This polynomial is irreducible over Z2. Thus, we can assume

F4 = Z2[x]/〈x2 + x+ 1〉 = {0, 1, x, 1 + x}.
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Let W = F4 ⊕ F4 and a symplectic form 〈·, ·〉 : W ×W → Z2 be defined by

〈~w, ~w′〉 = TrFpm/Fp(αβ′ − α′β).

for any elements ~w = (α, β), ~w′ = (α′, β′) ∈ W . For convenience in this example, we use Tr

to denote TrFpm/Fp . Then Tr(0) = 0,Tr(1) = 0,Tr(x) = 1 and Tr(1 + x) = 1. Consider the

basis

B = {(1, 0), (1 + x, 0), (0, x), (0, 1)}.

It is clear that the equation (3.10) holds. By the construction in Theorem 3.2.1,

H∞ =
〈
J(0,λ)|λ ∈ F×4

〉
=
〈
J(0,1),J(0,x),J(0,1+x)

〉
=
〈
J(0,0;0,1),J(0,0;1,0),J(0,0;1,1)

〉
=
〈
J(0,0) ⊗ J(0,1), J(0,1) ⊗ J(0,0), J(0,1) ⊗ J(0,1)

〉
= SpanR




1

1

1

1

 ,


1

1

1

1

 ,


1

1

1

1


 ,

H0 =
〈
J(λ,0)|λ ∈ F×4

〉
=
〈
J(1,0),J(x,0),J(1+x,0)

〉
=
〈
J(1,0;0,0),J(1,1;0,0),J(0,1;0,0)

〉
=
〈
J(1,0) ⊗ J(0,0), J(1,0) ⊗ J(1,0), J(0,0) ⊗ J(1,0)

〉
= SpanR




1

1

−1

−1

 ,


1

−1

−1

1

 ,


1

−1

1

−1


 ,

H1 =
〈
J(λ,λ)|λ ∈ F×4

〉
=
〈
J(1,1),J(x,x),J(1+x,1+x)

〉
=
〈
J(1,0;0,1),J(1,1;1,0),J(0,1;1,1)

〉
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=
〈
J(1,0) ⊗ J(0,1), J(1,1) ⊗ J(1,0), J(0,1) ⊗ J(1,1)

〉
= SpanR




1

1

−1

−1

 ,


1

−1

−1

1

 ,


1

−1

1

−1


 ,

Hx =
〈
J(λ,xλ)|λ ∈ F×4

〉
=
〈
J(1,x),J(x,1+x),J(1+x,1)

〉
=
〈
J(1,0;1,0),J(1,1;1,1),J(0,1;0,1)

〉
=
〈
J(1,1) ⊗ J(0,0), J(1,1) ⊗ J(1,1), J(0,0) ⊗ J(1,1)

〉
= SpanR




1

1

−1

−1

 ,


1

−1

−1

1

 ,


1

−1

1

−1


 ,

H1+x =
〈
J(λ,(1+x)λ)|λ ∈ F×4

〉
=
〈
J(1,1+x),J(x,1),J(1+x,x)

〉
=
〈
J(1,0;1,1),J(1,1;0,1),J(0,1;1,0)

〉
=
〈
J(1,1) ⊗ J(0,1), J(1,0) ⊗ J(1,1), J(0,1) ⊗ J(1,0)

〉
= SpanR




1

1

−1

−1

 ,


1

−1

−1

1

 ,


1

−1

1

−1




and an ODAC of sl4(R) is

sl4(R) = H∞ ⊕H1 ⊕Hx ⊕H1+x.

Example 3.2.3. Here, we give an example of an algebra that does not have an ODAC,

when all the conditions of Theorem 3.2.1 hold except the condition that u− 1 being a unit.

Consider sl3(Z9). There are two primitive cube roots of unity 4 and 7 in Z9, but 3 and 6 are

nonunits. Moreover, 3I3 is contained in sl3(Z9) and also in every abelian Cartan subalgebras.

Therefore, each pair of abelian Cartan subalgebras has a non-trivial intersection and thus
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sl3(Z9) does not have an ODAC since it is nonabelian.

We note that Theorem 3.2.1 relies on the existence of a primitive pth root of unity u

such that u − 1 is a unit. If R is local, i.e. it has the unique maximal ideal, we can give a

sufficient condition for the existence of such a primitive root of unity by the help of Cauchy’s

theorem for a finite group.

Theorem 3.2.4. [8](Cauchy) If G is a finite group whose order is divisible by a prime p,

then G contains an element of order p.

Thus, we have:

Theorem 3.2.5. Let R be a finite local ring with a maximal ideal M and the residue field

k = R/M . For a prime power n = pm, if p||k×|, then sln(R) has an ODAC

sln(R) = H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Proof. By Theorem 1.4.6,

R× ∼= (1 +M)× k×.

Thus p||R×| too, so by Theorem 3.2.4, there exists u ∈ R× of order p. Moreover, it follows

that p is relatively prime to the characteristic of R. Thus, p · 1 is a unit in R. Next,

we show that u − 1 is also a unit in R. Suppose that u − 1 is not a unit. Then u =

1 + x for some nonzero x ∈ M . Then 1 = up = 1 + px + (higher power terms of x), so

px+ (higher power terms of x) = 0. Let d > 1 be the smallest integer such that xd = 0 and

multiply the equation by xd−2, we have pxd−1 = 0, so xd−1 = 0 since p is a unit in R. A

contradiction to the choice of d.

Note that a finite field Fq is a finite local ring with maximal ideal {0} and |F×q | = q − 1,

so by the above theorem, we have:
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Corollary 3.2.6. Let q be a prime power and let Fq be a finite field of q elements. For

another prime power n = pm, if p|(q − 1), then sln(Fq) has an ODAC

sln(Fq) = H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Theorem 3.2.7. Let R = R1 × R2 × · · · × Rt be a finite direct product of finite local rings

and let ki be the residue field of Ri for all i ∈ {1, 2, . . . , t}. For a prime power n = pm, if

p||k×i | for all i ∈ {1, 2, . . . , t}, then sln(R) has an ODAC

sln(R) = H∞ ⊕H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Proof. By the proof of Theorem 3.2.5, there exists a primitive pth root of unity ui ∈ R×i

such that ui − 1Ri
∈ R×i for all i. Then u = (u1, u2, . . . , ut) is a primitive pth root of unity

in R such that

u− 1 = (u1, u2, . . . , ut)− (1R1 , 1R2 , . . . , 1Rt)

= (u1 − 1R1 , u2 − 1R2 , . . . , ut − 1Rt) ∈ R×

because R×1 ×R×2 × . . .×R×t = R× (Theorem 1.4.7). Thus Theorem 3.2.1 implies that sln(R)

admits an ODAC.

By the above theorem, we have the following examples.

Example 3.2.8. Let q be an odd positive integer and m a positive integer. Then all prime

factors of q are odd and sl2m(Zq) has an ODAC.

Example 3.2.9. For any positive integers s, t and m, sl3m(Z7s31t) has an ODAC.
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3.3 Necessary conditions on rings

As mentioned, the OD problem for sl6(C) is still unsolved. This motivates the following

problem: searching for some necessary conditions on finite commutative rings with identity

for which sln over these rings have an ODAC, in particular, when n = 6. We will be able to

find a necessary condition on the characteristics of the rings by using the ingredients from

Section 2.2.

Let R = R1 × R2 × . . .× Rt be a finite direct product of finite local rings. By Corollary

2.2.4,

sln(R) ∼= Proj1(φ(sln(R)))⊕ Proj2(φ(sln(R)))⊕ · · · ⊕ Projt(φ(sln(R))).

Lemma 3.3.1. Under the above setting, sln(R) has an ODAC if and only if sln(Ri) has an

ODAC for all i = 1, 2, . . . , t.

Proof. Let i ∈ {1, 2, . . . , t}. We show that Proji(φ(sln(R))) = sln(Ri). Then the re-

sult follows from Corollary 2.2.4 directly. It suffices to prove the case i = 1. Let x ∈

Proj1(φ(sln(R))). Then (x, 0, . . . , 0) ∈ φ(sln(R)). By the definition of the map φ (see

the proof of Corollary 2.2.4), Tr(x) = 0. Conversely, if x ∈ sln(R1), then (x, 0, . . . , 0) ∈

φ(sln(R)), i.e. x ∈ Proj1(φ(sln(R))).

Using the above lemma, we can derive a necessary condition on the characteristic of R

and n for the existence of ODAC.

Theorem 3.3.2. Let R be a finite commutative ring with identity. If sln(R) admits an

ODAC, then char(R) is relatively prime to n.

Proof. Suppose that char(R) is not relatively prime to n. Then char(R) = paps11 p
s2
2 · · · p

sl
l and

n = pbpt11 p
t2
2 · · · p

tl′
l′ where p and pi’s are all distinct prime integers and a, s1, . . . , st, b, t1, . . . , tl′

are non negative integers. Let R = R1 × R2 × . . . × Rt. Then there exists i0 ∈ {1, 2, . . . , t}

such that char(Ri0) = pa. Consider sln(Ri0) and we have two different cases.
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Case 1: b ≥ a. Then n is divisible by pa and so the trace of the identity matrix In is

0. Thus, sln(Ri0) contains In and so does every abelian Cartan subalgebra. Thus, any two

abelian Cartan subalgebras have a nontrivial intersection. Since sln(Ri0) is not abelian, it

does not have an ODAC.

Case 2: b < a. Then pa−bIn is in sln(Ri0). By the similar reason to case 1, there is no

ODAC for sln(Ri0).

Hence, by Lemma 3.3.1, sln(R) does not have an ODAC.

We next provide some nonexistence examples of ODAC of sl6.

Example 3.3.3. When R = Z2k,Z3l, k, l ∈ Z+, sl6(R) does not have an ODAC.

3.4 Maximum number of classical components

Consider the classical ODAC of sln(Fq), n = 2, 3 again, we will build Magma codes to

determine characteristic of Fq for which sln(Fq) has a classical ODAC. If not, we will look

for the maximum number of classical Cartan subalgebras that are pairwise orthogonal with

respect to the killing form.

Let Fq be a finite field of characteristic p 6= 2, 3. Assume further that the characteristic p

does not divide n. By Chapter III §6 in [17], sln(Fq) is classical and so, all classical Cartan

subalgebras are conjugate under the matrix conjugation provided by the special linear group

SLn(Fq), the set of all n× n matrices over Fq having determinant 1.

Now, we describe how to build our codes in Magma. We will do this for sl3(Fq) because the

same process can be applied for sl2(Fq). Since all classical Cartan subalgebras are conjugate,

we can choose the first classical Cartan subalgebra H0, so it consists of diagonal matrices

H0 = 〈diag{1,−1, 0}, diag{0, 1,−1}〉Fq
.

Let X1 = diag{1,−1, 0} and X2 = diag{0, 1,−1}. The fact that the Killing form is non-
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degenerate on any classical Cartan subalgebra implies that a sum of orthogonal Cartan

subalgebras is always direct. To find the next classical Cartan subalgebra that is orthog-

onal to H0, it suffices to find a matrix M1 ∈ SLn(Fq) such that Tr(XiM1XjM
−1
1 ) = 0 for

i, j = 1, 2. If there exists such a matrix M1, we will then try to find another matrix M2 that

satisfies Tr(XiM2XjM
−1
2 ) = Tr(M1XiM

−1
1 M2XjM

−1
2 ) = 0 for i, j = 1, 2. We will present

the Magma codes in Appendix B. Results for the maximum number of classical components

for some cases are exhibited in the following table.

n = 5 n = 7 n = 11 n = 13 n = 17

sl2(Zn) 3 2 2 3 3

sl3(Zn) 1 4 1 4 1

Remark 3.4.1. From the above table, we conclude that sl2(Zn) has a classical ODAC when

n = 5, 13, 17 while sl2(Zn), n = 7, 11, does not. Moreover, sl3(Zn) has a classical ODAC

when n = 7, 13 while sl3(Zn), n = 5, 11, 17, does not.

3.5 Enumeration of J-decompositions of sln, n = 2, 3 over

finite fields

In Section 3.1 and Section 3.2, we gave some sufficient conditions for the existence of ODAC

under the assumptions there. One may ask about the following question.

Question 1. If sln(R) possesses an ODAC, how many are there up to Aut(sln(R))-conjugacy?

In the complex case, it is known there exists a unique OD for sln(C) for all n ≤ 5

up to conjugacy [12]. Consider the case sl2(R). If R = C, then all Cartan subalgebras

are conjugate [7]. Thus, we can assume that an OD of sl2(C) has the Cartan subalgebra

consisting of diagonal matrices as a component, so up to conjugacy, the OD looks as follows

〈(
1 0

0 −1

)〉
C
⊕
〈(

0 1

a 0

)〉
C
⊕
〈(

0 1

b 0

)〉
C
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for some a, b 6= 0. By using orthogonality with respect to the Killing form, we derive b = −a.

Note that conjugation by √a 0

0 1


stabilizes the first component and maps

0 1

a 0

 7−→ √a
0 1

1 0

 .

Therefore, sl2(C) has a unique OD up to conjugacy. For a comparison, consider R = Fpm ,

where p 6= 2 and the following ODAC of sl2(Fpm)

〈(
1 0

0 −1

)〉
Fpm

⊕
〈(

0 1

a 0

)〉
Fpm

⊕
〈(

0 1

−a 0

)〉
Fpm

(3.15)

for some a 6= 0. In contrast to the complex case, the element a ∈ Fpm may not have a square

root in Fpm . Consequently, we may not have an automorphism of Aut(sl2(Fpm)) mapping

this decompostion to

〈(
1 0

0 −1

)〉
Fpm

⊕
〈(

0 1

1 0

)〉
Fpm

⊕
〈(

0 1

−1 0

)〉
Fpm

.

For example, sl2(Z7) has an ODAC

〈(
1 0

0 −1

)〉
Z7

⊕
〈(

0 1

3 0

)〉
Z7

⊕
〈(

0 1

−3 0

)〉
Z7

.

Since 3 and −3 are non square units in Z7, we can show that this ODAC is not conjugate

to the ODAC 〈(
1 0

0 −1

)〉
Z7

⊕
〈(

0 1

1 0

)〉
Z7

⊕
〈(

0 1

−1 0

)〉
Z7

.

The verification of this example is similar to the detailed computation in the proof of Theorem

3.5.4 below.
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For this section, we will consider a weaker version of Question 1 as follows. For n = 2, 3,

we will consider the collection of ODCAs described in (3.2) and (3.3). An element in such

collections is called a J-decomposition. This is the generalization of the J-decomposition

in the complex numbers case when n = 2, 3. Note that J-decompositions play an important

role in the OD theory over the complex number case [13]. As examples, we will find the

number of J-decompositions of sl2(Fpm) if p is odd prime and of sl3(Fpm) if 3|(pm − 1).

Definition 3.5.1. (1) Assume that p is an odd prime integer. For a 6= 0, a J-decomposition

sl2(Fpm) =

〈(
1 0

0 −1

)〉
Fpm

⊕
〈(

0 1

a 0

)〉
Fpm

⊕
〈(

0 1

−a 0

)〉
Fpm

is said to be a J2(a)-decomposition (J2(a) for short).

(2) Assume that 3|(pm − 1). For a, b 6= 0 and a primitive root of unity u ∈ Fpm , a J-

decomposition

sl3(Fpm) = H0 ⊕H1 ⊕H2 ⊕H3,

where

H1 =

〈 0 1 0

0 0 a

ab 0 0

 ,

 0 0 1

ab 0 0

0 b 0

〉
Fpm

,

H2 =

〈 0 1 0

0 0 ua

u2ab 0 0

 ,

 0 0 1

u2ab 0 0

0 ub 0

〉
Fpm

,

H3 =

〈 0 1 0

0 0 u2a

uab 0 0

 ,

 0 0 1

uab 0 0

0 u2b 0

〉
Fpm

,

is said to be a J3(a, b)-decomposition (J3(a, b) for short).

Remark 3.5.2. For (2) in this definition, if 3|(pm − 1), then J3(a, b) is independent from

the choice of a primitive root of unity because there are only two such roots, namely u and
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u2, in Fpm , moreover, H2 and H3 are interchangeable.

We begin with n = 2. There are two scenarios to be considered for sl2(Fpm) depending

on the congruency of p modulo 4. We first observe that:

Lemma 3.5.3. Let p be an odd prime integer and m a positive integer. Then −1 is a square

in Fpm if and only if pm ≡ 1 (mod 4).

Proof. Recall that the unit group of Fpm is cyclic of order pm − 1. Let a be its generator.

Since (a
pm−1

2 )2 = 1, a
pm−1

2 = 1 or −1. But a has order pm − 1. Then a
pm−1

2 = −1. Now, −1

is the square of a unit in Fpm if and only if it is an even power of a. Finally, we note that

the later condition is equivalent to pm ≡ 1 (mod 4).

We will see in the next theorem that there are at most two J-decompositions of sl2(Fpm):

one is represented by J2(1) and the other one is represented by J2(a), where a is a non square

unit in Fpm .

Theorem 3.5.4. Let p be an odd prime integer and m a positive integer. Suppose that a is

a non square unit in Fpm.

(1) If pm ≡ 3 (mod 4), then J2(1) and J2(a) are conjugate and sl2(Fpm) has a unique J-

decomposition up to conjugacy.

(2) If pm ≡ 1 (mod 4), then J2(1) and J2(a) are not conjugate and sl2(Fpm) has two J-

decompositions up to conjugacy.

Proof. Let x be a square unit in Fpm . Conjugating by

√x 0

0 1


leads to the conjugation between J2(x) and J2(1). Now, let y, z be two non square units in

Fpm . Then y = zx for some square unit x. Using the same matrix, we have conjugation

between J2(y) and J2(z).
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To prove (1), assume that pm ≡ 3 (mod 4). By Lemma 3.5.3, −1 is not a square. Thus,

−a is a square unit. Again conjugating by

√−a 0

0 1

 ,

we obtain a conjugation between J2(1) and J2(a).

Next, we assume that pm ≡ 1 (mod 4). By Lemma 3.5.3, −1 is a square. Thus, −a is

a non square unit. We will show that J2(1) and J2(a) are not conjugate. Suppose, to the

contrary, that there exists an automorphism φ ∈ Aut(sl2(Fpm)) sending each component of

J2(a) to a component of J2(1). Since J2(a) is

〈(
1 0

0 −1

)〉
Fpm

⊕
〈(

0 1

a 0

)〉
Fpm

⊕
〈(

0 1

−a 0

)〉
Fpm

and J2(1) is 〈(
1 0

0 −1

)〉
Fpm

⊕
〈(

0 1

1 0

)〉
Fpm

⊕
〈(

0 1

−1 0

)〉
Fpm

,

we have the following cases.

Case 1: φ

1 0

0 −1

 =

x 0

0 −x

 and φ

0 1

a 0

 =

0 y

y 0

 for some x, y 6= 0. Then

2φ

 0 1

−a 0

 = φ


1 0

0 −1

 ,

0 1

a 0




=

φ
1 0

0 −1

 , φ

0 1

a 0




=


x 0

0 −x

 ,

0 y

y 0



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= 2xy

 0 1

−1 0

 .

So,

φ

 0 1

−a 0

 = xy

 0 1

−1 0

 .

Thus,

−2ax

1 0

0 −1

 = −2aφ

1 0

0 −1


= φ


0 1

a 0

 ,

 0 1

−a 0




=

φ
0 1

a 0

 , φ

 0 1

−a 0




=


0 y

y 0

 ,

 0 xy

−xy 0




= −2xy2

1 0

0 −1

 .

This implies that a = y2, which is a contradiction.

Case 2: φ

1 0

0 −1

 =

x 0

0 −x

 and φ

 0 1

−a 0

 =

0 y

y 0

 for some x, y 6= 0. Let

b = −a. Then b is a non square unit and we can use the argument in Case 1 to obtain a

contradiction.
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Case 3: φ

1 0

0 −1

 =

0 y

y 0

 and φ

0 1

a 0

 =

x 0

0 −x

 for some x, y 6= 0. Then

2φ

 0 1

−a 0

 = φ


1 0

0 −1

 ,

0 1

a 0




=

φ
1 0

0 −1

 , φ

0 1

a 0




=


0 y

y 0

 ,

x 0

0 −x




= −2xy

 0 1

−1 0

 .

So,

φ

 0 1

−a 0

 = −xy

 0 1

−1 0

 .

Thus,

−2ay

0 1

1 0

 = −2aφ

1 0

0 −1


= φ


0 1

a 0

 ,

 0 1

−a 0




=

φ
0 1

a 0

 , φ

 0 1

−a 0




=


x 0

0 −x

 ,

 0 −xy

xy 0



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= −2x2y

0 1

1 0

 .

This implies that a = x2, which is a contradiction.

Case 4: φ

1 0

0 −1

 =

0 y

y 0

 and φ

 0 1

−a 0

 =

x 0

0 −x

 for some x, y 6= 0. Let

b = −a. Then b is a non square unit and we can use the same argument in Case 3 to obtain

a contradiction.

Case 5: φ

1 0

0 −1

 =

 0 y

−y 0

 and φ

0 1

a 0

 =

x 0

0 −x

 for some x, y 6= 0. Then

2φ

 0 1

−a 0

 = φ


1 0

0 −1

 ,

0 1

a 0




=

φ
1 0

0 −1

 , φ

0 1

a 0




=


 0 y

−y 0

 ,

x 0

0 −x




= −2xy

0 1

1 0

 .

So,

φ

 0 1

−a 0

 = −xy

0 1

1 0

 .

Thus,

−2ay

 0 1

−1 0

 = −2aφ

1 0

0 −1


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= φ


0 1

a 0

 ,

 0 1

−a 0




=

φ
0 1

a 0

 , φ

 0 1

−a 0




=


x 0

0 −x

 ,

 0 −xy

−xy 0




= −2x2y

 0 1

−1 0

 .

This implies that a = x2, which is a contradiction.

Case 6: φ

1 0

0 −1

 =

 0 y

−y 0

 and φ

 0 1

−a 0

 =

x 0

0 −x

 for some x, y 6= 0. Let

b = −a. Then b is a non square unit and we can use the argument in Case 5 to obtain a

contradiction.

We now consider the case n = 3. If 3|(pm−1), then a J-decomposition exists for sl3(Fpm).

With this condition, we will have three certain cosets derived as follows. Assume that

3|(pm−1). Then pm−1 = 3l for some l ∈ Z>0. Let x be a generator of F×pm . Then | 〈x3〉 | = l

and the index [F×pm : 〈x3〉] = 3. Let z ∈ F×pm \ 〈x3〉. We are focusing on these three distinct

cosets: 〈x3〉 , z 〈x3〉 and z2 〈x3〉. We will use them to find the number of J-decompositions of

sl3(Fpm). For n = 2, there was a case with multiple J-decompositions. So, one may expect

that we have more than one J-decompositions up to conjugacy for n = 3 at least in some

cases as well.

Our goal is to show that there are exactly two J-decompositions of sl3(Fpm), where

3|(pm − 1). For the sake of convenience, we define a relation

J3(a, b) ≈ J3(c, d)⇐⇒ J3(a, b) is conjugate to J3(c, d)
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for all a, b, c, d 6= 0. Obviously, this is an equivalence relation.

The following lemma provides a sufficient condition for two J-decompositions to be con-

jugate to one another.

Lemma 3.5.5. Suppose that 3|(pm − 1). For nonzero a, b, c, d ∈ Fpm, if a−1c and b−1d are

in the same left coset defined by 〈x3〉, then J3(a, b) ≈ J3(c, d).

Proof. Assume that a−1c and b−1d are in the same coset. Then (a−1c)2b−1d and a−1c(b−1d)2

have the cube roots. Thus, we can use the matrix conjugation defined by


1

3
√

(a−1c)2b−1d

3
√
a−1c(b−1d)2


to map J3(a, b) to J3(c, d).

Similarly to the case n = 2, we will use the J3(1, 1) to represent one of J-decompositions

for this case. From the above lemma, it follows that if a and b are in the same coset defined

by 〈x3〉, then J3(a, b) ≈ J3(1, 1). On the other hand, if they are in different cosets, we will

show that J3(a, b) is conjugate to either J3(1, z) or J3(1, z2). As a result, we will have at

most three J-decompositions of sl3(Fpm) up to conjugacy where 3|(pm − 1).

Proposition 3.5.6. Under the above setting, we have:

(1) If a and b are in the same coset, then J3(a, b) ≈ J3(1, 1).

(2) If a and b are in the different cosets, then J3(a, b) ≈ J3(1, z) or J3(a, b) ≈ J3(1, z2).

Proof. We only need to prove (2). Since F×pm/ 〈x3〉 ' Z3, let ϕ : F×pm → (Z3,+) be the

isomorphism that sends zi 〈x3〉 to i. For i = 0, 1, 2, let zi denote the coset zi(F×pm)3. Now,

assume that a and b are in two distinct cosets, say a ∈ zi and b ∈ zj, we write (a, b) ∈ (zi, zj).

Thus, if (c, d) ∈ (zs, zt), then (a + c, b + d) ∈ (zi+s, zj+t). Note that (1, z) ∈ (z0, z1)
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and so (1, z−1) ∈ (z0, z2). By Lemma 3.5.5, for any (a, b) in (z0, z1), (z2, z0) and (z1, z2),

J3(a, b) ≈ J3(1, z). Finally, (1, z2) ∈ (z0, z2) and so (1, z−2) ∈ (z0, z1). By Lemma 3.5.5

again, for any (a, b) in (z1, z0), (z0, z2) and (z2, z1), J3(a, b) ≈ J3(1, z2).

To conclude that there are exactly two J-decompositions of sl3(Fpm) up to conjugacy

when 3|(pm − 1), we will prove that J3(1, z) is conjugate to J3(1, z2) but not to J3(1, 1).

Theorem 3.5.7. Let p be an odd prime integer and m a positive integer such that 3|(pm−1).

Then sl3(Fpm) has two J-decompositions up to conjugacy, which are represented by J3(1, 1)

and J3(1, z).

Proof. The J3(1, 1) of sl3(Fpm) is

sl3(Fpm) = 〈J(1,0), J(2,0)〉 ⊕ 〈J(0,1), J(0,2)〉 ⊕ 〈J(1,1), J(2,2)〉 ⊕ 〈J(2,1), J(1,2)〉 ,

where J(a,b) = DaP b and

D = diag{1, u, u2}, P =


0 0 1

1 0 0

0 1 0

 .

Note that [J(a,b), J(c,d)] = (u−bc − u−ad)J(a+c,b+d) for all a, b ∈ {0, 1, 2} (cf. eq. (3.7)).

The following description is for J3(1, z). Let

P0 = I3, P1 =


0 0 1

z 0 0

0 z 0

 and P2 =


0 1 0

0 0 1

z 0 0

 .

Define J ′(a,b) = DaPb for a, b ∈ {0, 1, 2}. Let mbd = min{b, d} (mod 2). Then

[J ′(a,b), J
′
(c,d)] = zmbd(u−bc − u−ad)J ′(a+c,b+d). (3.16)
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The J3(1, z) of sl3(Fpm) is

sl3(Fpm) = 〈J ′(1,0), J ′(2,0)〉 ⊕ 〈J ′(0,1), J ′(0,2)〉 ⊕ 〈J ′(1,1), J ′(2,2)〉 ⊕ 〈J ′(2,1), J ′(1,2)〉 .

Suppose that J3(1, z) ≈ J3(1, 1) by an automorphism ϕ. We will show that this leads to a

contradiction. Since ϕ sends one component of J3(1, z) to exactly one component of J3(1, 1),

for each (a, b), by (3.16) there exists a unique (a′, b′) such that ϕ(J ′(a,b)) = αa,bJ(a′,b′) where

αa,b ∈ F×pm . We will consider all possible cases. Here, we provide the details of two cases.

For the remaining cases, we refer the reader to Appendix C.1 for Mathematica code to verify

that z would be a cube unit in Fpm and thus have a contradiction.

Case 1

ϕ :J ′(1,0) 7→ aJ(1,0), J
′
(0,1) 7→ cJ(0,1)

J ′(2,0) 7→ bJ(2,0), J
′
(0,2) 7→ dJ(0,2)

for some a, b, c, d ∈ F×pm . Using (3.16), we obtain

(i) ϕ(J ′(1,1)) = acJ(1,1),

(ii) ϕ(J ′(2,2)) = bdJ(2,2),

(iii) ϕ(J ′(1,2)) = adJ(1,2).

Since ϕ([J ′(0,1), J
′
(1,1)]) = [ϕ(J ′(0,1)), ϕ(J ′(1,1))] and ϕ([J ′(0,1), J

′
(2,2)]) = [ϕ(J ′(0,1)), ϕ(J ′(2,2))], by (i),

(ii) and (iii), we have zd = c2 and z = cd, accordingly. This forces z = d3 which contradicts

the choice of z.

Case 2

ϕ :J ′(2,0) 7→ aJ(1,0), J
′
(0,1) 7→ cJ(0,1)

J ′(1,0) 7→ bJ(2,0), J
′
(0,2) 7→ dJ(0,2)
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for some a, b, c, d ∈ F×pm . Using (3.16), we obtain

(i) ϕ(J ′(1,1)) = ( bc
1+u

)J(2,1),

(ii) ϕ(J ′(2,2)) = ( ad
1+u

)J(1,2),

(iii) ϕ(J ′(1,2)) = bd(1 + u)J(2,2).

Since ϕ([J ′(0,1), J
′
(1,1)]) = [ϕ(J ′(0,1)), ϕ(J ′(1,1))] and ϕ([J ′(0,1), J

′
(2,2)]) = [ϕ(J ′(0,1)), ϕ(J ′(2,2))], by (i),

(ii) and (iii), we have zd(1 + u)3 = c2 and z = cd, accordingly. This forces z = d3(1 + u)3

which contradicts the choice of z.

Finally, let

Q0 = I3, Q1 =


0 0 1

z2 0 0

0 z2 0

 and Q2 =


0 1 0

0 0 1

z2 0 0

 .

Define J ′′(a,b) = DaPb for a, b ∈ {0, 1, 2}. Let mbd = min{b, d} (mod 2). Then

[J ′′(a,b), J
′′
(c,d)] = z2mbd(u−bc − u−ad)J ′′(a+c,b+d). (3.17)

The J3(1, z2) of sl3(Fpm) is

sl3(Fpm) = 〈J ′′(1,0), J ′′(2,0)〉 ⊕ 〈J ′′(0,1), J ′′(0,2)〉 ⊕ 〈J ′′(1,1), J ′′(2,2)〉 ⊕ 〈J ′′(2,1), J ′′(1,2)〉 .

We will find an automorphism in sl3(Fpm) that maps J3(1, z2) to J3(1, z). To construct such

an automorphism, we define a map ψ on the basis of J3(1, z2) as follows:

J ′′(1, 0) 7→ −J ′(1, 0), J ′′(2, 0) 7→ −J ′(2, 0),

J ′′(0, 1) 7→ −zJ ′(0, 2), J ′′(0, 2) 7→ −J ′(0, 1),

J ′′(1, 1) 7→ z

1 + u
J ′(1, 2), J ′′(2, 2) 7→ 1

1 + u
J ′(2, 1)

J ′′(1, 2) 7→ (1 + u)J ′(1, 1) J ′′(2, 1) 7→ z(1 + u)J ′(2, 2).
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We extend ψ linearly to the entire J3(1, z2). Then by using the fact that u is a primitive

cube root of unity together with (3.16) and (3.17), we see that ψ is an automorphism in

sl3(Fpm). For the details of this part, we refer the reader to Appendix C.2.
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Chapter 4

Orthogonal decompositions of Lie

algebras of type C

In this chapter, we will consider the ODAC problem of the symplectic Lie algebra spn over

a finite commutative ring R with identity. Since spn(R) is a subalgebra of sln(R), the

construction in Chapter 3 will be used throughout this chapter. As we see in the complex

case [13], the OD problem of Lie algebra type C has the same difficulty as type A. However,

in the special case of a Lie algebra of type C2m , it is manageable because C2m is a subalgebra

of the Lie algebra of type A2m+1 and we know that there is an OD for A2m+1 . We will consider

the problem when the characteristic of R is odd and show that this Lie algebra has an ODAC

obtained by restricting an ODAC of Lie algebra sl2m+1(R) constructed in Section 3.2.

We assume that R has odd characteristic in this chapter.

4.1 Special basis elements of sp2m+1

We recall that

sp2m+1(R) = {X ∈M2m+1(R) : XK +KXT = 0},
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where K =

 0 I2m

−I2m 0

. Let

D =

1 0

0 −1

 and P =

0 1

1 0

 .

From the proof of Theorem 3.2.1, we can fix a suitable basis {~e1, . . . , ~em, ~f1, . . . , ~fm} in the

space W = F2m+1 ⊕ F2m+1 , and set

J~w = J(a1,b1) ⊗ J(a2,b2) ⊗ · · · ⊗ J(am+1,bm+1)

for ~w = (a1, . . . , am+1; b1, . . . , bm+1) ∈ W , where J(a, b) = DaP b. Moreover, we define

q(~w) =
m+1∑
i=1

aibi + (a1 + b1).

Then the symplectic form (3.9) is equal to

〈~w, ~w′〉 = q(~w) + q(~w′) + q(~w + ~w′)

for all ~w, ~w′ ∈ W and (W, q) is a nondegenerate quadratic space with Witt index m (Proposi-

tion 1.5.42 in [5]). To be used later in this section, we note that (W, 〈·, ·〉), which is defined in

Theorem 3.2.1, is a symplectic space with maximum totally isotropic subspaces of dimension

m+ 1.

Let Q = {~w ∈ W : q(~w) = 1}. We will describe a special basis of sp2m+1(R) by using

Q in the next theorem. This special basis will be used for the construction of an ODAC of

sp2m+1(R).

Theorem 4.1.1. The Lie algebra sp2m+1(R) has {J~w : ~w ∈ Q} as a basis.

Proof. Write J~w = J(a1,b1) ⊗ J~v, where ~v = (a2, . . . , am+1; b1, . . . , bm+1). Note that K =
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DP ⊗ I2m . We show that if ~w ∈ Q, then J~w ∈ sp2m+1(R). Recall the notation

B(~w, ~w) =
m+1∑
i=1

aibi.

Now, consider

KJ T
~w = (−1)−B(~w,~w)KJ~w

= (−1)−B(~w,~w)(DP ⊗ I2m)(J(a1,b1) ⊗ J~v)

= (−1)−B(~w,~w)(DPJ(a1,b1))⊗ J~v

= (−1)−B(~w,~w)(DPDa1P b1)⊗ J~v

= (−1)−B(~w,~w)+a1+b1(Da1P b1DP )⊗ J~v (by (3.5))

= (−1)−B(~w,~w)+a1+b1(J(a1,b1)DP )⊗ J~v

= (−1)−B(~w,~w)+a1+b1(J(a1,b1)DP )⊗ J~vI2m

= (−1)−B(~w,~w)+a1+b1(J(a1,b1) ⊗ J~v)(DP ⊗ I2m)

= (−1)−B(~w,~w)+a1+b1J~wK

= (−1)q(~w)J~wK (because W is over Z2) .

Since ~w ∈ Q, KJ T
~w = −J~wK, i.e. J~w ∈ sp2m+1(R).

It is clear from the definition that all J~w, ~w ∈ Q are linearly independent. To com-

plete the proof, we show that |Q| = 2m(2m+1 + 1) which is the rank of sp2m+1(R) as a

free R-module. Then SpanR({J~w : ~w ∈ Q}) = sp2m+1(R) since R is finite. Let ~w =

(a1, . . . , am+1; b1, . . . , bm+1) ∈ Q. Then

a1b1 + a1 + b1 = 1 +
m+1∑
i=2

aibi.
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Case 1: a1 = 0. Then b1 = 1 +
∑m+1

i=2 aibi. Hence,

Ω0 = {~w ∈ Q : ~w = (0, a2, . . . , am+1; b1, . . . , bm+1)}

has 22m elements.

Case 2: a1 = 1. Then
∑m+1

i=2 aibi = 0 and b1 is 0 or 1. Let

Ωj =


{~w ∈ Q : ~w = (1, 0, . . . , 0; b1, . . . , bm+1)} if j = 1,

{~w ∈ Q : ~w = (1, 0, . . . , 0, 1, aj+1, . . . , am+1; b1, . . . , bm+1)} if 2 ≤ j ≤ m+ 1.

Then |Ω1| = 2m+1. For 2 ≤ j ≤ m + 1, if a2 = . . . = aj−1 = 0 and aj = 1, then b2, . . . , bj−1

are 0 or 1 and bj =
∑m+1

i=j+1 aibi. Thus, |Ωj| = 22m−j+1. If a2 = . . . = am = 0 and am+1 = 1,

then b2, . . . , bm are 0 or 1 and am+1 = bm+1 = 1. Thus, |Ωm+1| = 2m.

Note that {Ω0,Ω1, . . . ,Ωm+1} is a partition of Q. Therefore,

|Q| =
m+1∑
j=0

|Ωj| = 22m + 2m+1 +
m+1∑
j=2

22m−j+1 = 2m(2m+1 + 1)

as desired.

4.2 Orthogonal decomposition of sp2m+1

In this section, we will present the construction of an ODAC of sp2m+1(R) by using the basis

in Theorem 4.1.1. Note that sp2m+1(R) is a Lie supalgebra of sl2m+1(R) and we saw that an

ODAC of sl2m+1(R) is

sl2m+1(R) = H∞ ⊕ (⊕α∈F2m+1Hα),

where H∞ = 〈J(0;λ)|λ ∈ F×2m+1〉F2m+1
and Hα = 〈J(α;λα)|λ ∈ F×2m+1〉F2m+1

for all α ∈ F2m+1 .

The basis in Theorem 4.1.1 is the union of some subsets of these Hj’s. We will see that

the components of an ODAC of sp2m+1(R) can be obtained from the Hi’s by picking up the
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elements whose index belongs to Q. We will use the following lemma to verify the constructed

decomposition is an ODAC.

Lemma 4.2.1. For each α ∈ F2m+1, let Wα = {(λ, αλ) ∈ W : λ ∈ F×2m+1}, and let W∞ =

{(0, λ) ∈ W : λ ∈ F×2m+1}. Then

(1) W =
(⋃

α∈F2m+1
Ẇα

)
∪ Ẇ∞ where Ẇα = Wα ∪ {(0, 0)}, Ẇ∞ = W∞ ∪ {(0, 0)} are

subspaces of W .

(2) For α ∈ F2m+1 ∪ {∞}, if Qα = Wα ∩Q, then Ẇα = 〈Qα〉Z2
.

Proof. It is clear that the Ẇα’s are subspaces of W and (1) holds. To prove (2), we first note

that Qc = W \Q = {~w ∈ W : q(~w) = 0} and

|Qc \ {(0, 0)}| = |W | − |Q|

= (22(m+1) − 1)− 2m(2m+1 + 1)

= (2m − 1)(2m+1 − 1). (4.1)

We show that for all α ∈ F2m+1 ∪ {∞}, |Wα ∩ (Qc \ {(0, 0)})| ≥ 2m − 1. Suppose, to

the contrary, that there exists an α such that |Wα ∩ (Qc \ {(0, 0)})| < 2m − 1. Then by

(4.1), there exists an α′ such that |Wα′ ∩ (Qc \ {(0, 0)})| ≥ 2m. So |Ẇα′ ∩ Qc| ≥ 2m + 1.

But Ẇα′ ∩ Qc is a totally isotopic subspace of (W, q). Indeed, if ~w1, ~w2 ∈ Ẇα′ ∩ Qc, then

q(~w1 + ~w2) = q(~w1) + q(~w2) + 〈~w1, ~w2〉 = 0. Thus, dim(Ẇα′ ∩ Qc) ≤ m and as a subspace

over Z2, |Ẇα′ ∩Qc| ≤ 2m. This is a contradiction.

Now, for each α ∈ F2m+1 ∪ {∞}, by (4.1), |Wα ∩ (Qc \ {(0, 0)})| = 2m − 1, and hence,

|Wα ∩Q| = (2m+1 − 1)− (2m − 1) = 2m.

Let Qα = Wα∩Q. Then 〈Qα〉Z2
is a totally isotopic subspace of (W, 〈·, ·〉) and Wα ⊇ 〈Qα〉Z2

.

We have dim(〈Qα〉Z2
) ≤ m+1. But since | 〈Qα〉Z2

| ≥ |Qα|+1 = 2m+1, dim(〈Qα〉Z2
) ≥ m+1

which forces dim(〈Qα〉Z2
) = m+1. Thus, | 〈Qα〉Z2

| = 2m+1 = |Ẇα|, and so Ẇα = 〈Qα〉Z2
.
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Using the above lemma and Theorem 4.1.1, we have the following theorem.

Theorem 4.2.2. For a positive integer m, sp2m+1(R) has an ODAC obtained by restricting

an ODAC of sl2m+1(R) constructed in Theorem 3.2.1.

Proof. For each α ∈ F2m+1 , let

H ′α = 〈J(λ,αλ)|λ ∈ F×2m+1 and (λ, αλ) ∈ Q〉
R
,

and let

H ′∞ = 〈J(0,λ)|λ ∈ F×2m+1 and (0, λ) ∈ Q〉
R
.

It follows from the proof of Theorem 3.2.1 and Theorem 4.1.1 that all H ′α’s, α ∈ F2m+1∪{∞}

are orthogonal abelian subalgebras of sp2m+1(R) and the sum of all these H ′α’s is direct. Thus,

spm+1(R) = H ′∞ ⊕ (⊕α∈F2m+1H
′
α).

To show that each H ′α is a self-normalizer, let α ∈ F2m+1 and A ∈ Nsp2m+1 (R)(H
′
α). Then

A =
∑
β′∈Fq

( ∑
λ′∈F×q

(λ′,β′λ′)∈Q

a(λ′,β′)J(λ′,β′λ′)

)
+

∑
λ′∈F×q

(0,λ′)∈Q

bλ′J(0,λ′)

where a(λ′,β′) and bλ′ are elements in R. For any J(λ,αλ) ∈ H ′α,

[A,J(λ,αλ)] =
∑
β′∈Fq

( ∑
λ′∈F×q

(λ′,β′λ′)∈Q

a(λ′,β′)[J(λ′,β′λ′),J(λ,αλ)]

)
+

∑
λ′∈F×q

(0,λ′)∈Q

bλ′ [J(0,λ′),J(λ,αλ)] ∈ H ′α.
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This implies

∑
β′∈Fq

β′ 6=α

( ∑
λ′∈F×q

(λ′,β′λ′)∈Q

a(λ′,β′)[J(λ′,β′λ′),J(λ,αλ)]

)
+

∑
λ′∈F×q

(0,λ′)∈Q

bλ′ [J(0,λ′),J(λ,αλ)] ∈ H ′α.

For each (λ′, β′), if for all (λ, αλ) ∈ Q, 〈(λ, αλ), (λ′, β′λ′)〉 = 0, then by Lemma 4.2.1, J(λ′,β′λ′)

would be in Nsl2m+1 (R)(Hα) = Hα. So, we may assume that we can choose (λ, αλ) ∈ Q such

that 〈(λ, αλ), (λ′, β′λ′)〉 = 1. Argue as in the proof of Theorem 3.2.1, we obtain a(λ′,β′) = 0.

Similarly, bλ′ = 0. Thus, A ∈ H ′α, and so Nsp2m+1 (R)(H
′
α) = H ′α. By analogous arguments,

we also have Nsp2m+1 (R)(H
′
∞) = H ′∞. Hence, sp2m+1(R) has an ODAC.

Example 4.2.3. We will present an ODAC of sp4(R) which is obtained by restricting the

ODAC in Example 3.2.2 as described in the proof of the theorem above. Consider the basis

B = {(1, 0), (1 + x, 0), (0, x), (0, 1)}

of the symplectic space W . We have

H ′∞ =
〈
J(0,λ)|λ ∈ F×4 and (0, λ) ∈ Q

〉
R

=
〈
J(0,x),J(0,1+x)

〉
R

=
〈
J(0,0;1,0),J(0,0;1,1)

〉
R

=
〈
J(0,1) ⊗ J(0,0), J(0,1) ⊗ J(0,1)

〉
R

= SpanR




1

1

1

1

 ,


1

1

1

1


 ,

H ′0 =
〈
J(λ,0)|λ ∈ F×4 and (λ, 0) ∈ Q

〉
R

=
〈
J(1,0),J(x,0)

〉
R

=
〈
J(1,0;0,0),J(1,1;0,0)

〉
R

=
〈
J(1,0) ⊗ J(0,0), J(1,0) ⊗ J(1,0)

〉
R
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= SpanR




1

1

−1

−1

 ,


1

−1

−1

1


 ,

H ′1 =
〈
J(λ,λ)|λ ∈ F×4 and (λ, xλ) ∈ Q

〉
R

=
〈
J(1,1),J(x,x)

〉
R

=
〈
J(1,0;0,1),J(1,1;1,0)

〉
R

=
〈
J(1,0) ⊗ J(0,1), J(1,1) ⊗ J(1,0)

〉
R

= SpanR




1

1

−1

−1

 ,


1

−1

−1

1


 ,

H ′x =
〈
J(λ,xλ)|λ ∈ F×4 and (λ, xλ) ∈ Q

〉
R

=
〈
J(1,x),J(1+x,1)

〉
R

=
〈
J(1,0;1,0),J(0,1;0,1)

〉
R

=
〈
J(1,1) ⊗ J(0,0), J(0,0) ⊗ J(1,1)

〉
R

= SpanR




1

1

−1

−1

 ,


1

−1

1

−1


 ,

H ′1+x =
〈
J(λ,(1+x)λ)|λ ∈ F×4 and (λ, (1 + x)λ) ∈ Q

〉
R

=
〈
J(1,1+x),J(1+x,x)

〉
R

=
〈
J(1,0;1,1),J(0,1;1,0)

〉
R

=
〈
J(1,1) ⊗ J(0,1), J(0,1) ⊗ J(1,0)

〉
R

= SpanR




1

1

−1

−1

 ,


1

−1

1

−1


 .

We conclude that sp4(R) has an ODAC:

sp4(R) = H ′∞ ⊕H ′0 ⊕H ′1 ⊕H ′x ⊕H ′1+x.
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Chapter 5

Orthogonal decompositions of Lie

algebras of types B and D

In this chapter, we again assume that R has odd characteristic.

The Lie algebras of skew symmetric n × n matrices son(R) are of type B or type D.

When n is even, they are of type D. Otherwise, they are of type B. We will construct

ODACs in both cases.

5.1 Orthogonal decomposition of so2n

Recall that

so2n(R) = 〈X(i,j)|1 ≤ i 6= j ≤ 2n〉
R
,

where X(i,j) = eij − eji and eij is the matrix having 1 in the (i, j) position and 0 elsewhere.

We will utilize these basis elements to construct an ODAC of this Lie algebra. The matrices

X(i,j)’s satisfy the following properties:

Lemma 5.1.1. With the above notations and denoted by {·, ·} an unordered pair, we have

(1) X(i,j) = −X(j,i).
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(2) If {i, j} 6= {k, l}, then Tr(X(i,j)X(k,l)) = 0.

(3) [X(i,j), X(k,l)] =


X(i,l) if j = k,

0 if {i, j} ∩ {k, l} = Ø.

Proof. The first property is clear from the definition. To prove (2), we first compute

X(i,j)X(k,l) = (eij − eji)(ekl − elk)

= eijekl − eijelk − ejiekl + ejielk.

Assume that {i, j} 6= {k, l}. We consider two distinct cases.

Case 1: i 6= k and l. We have X(i,j)X(k,l) = eijekl − eijelk. Then Tr(X(i,j)X(k,l)) = 0.

Case 2: j 6= k and l. We have X(i,j)X(k,l) = −ejiekl + ejielk. Then Tr(X(i,j)X(k,l)) = 0.

Finally,

[X(i,j), X(k,l)] = X(i,j)X(k,l) −X(k,l)X(i,j)

= (eijekl − eijelk − ejiekl + ejielk)− (ekleij − ekleji − elkeij + elkeji)

=


X(i,l) if j = k,

0 if {i, j} ∩ {k, l} = Ø,

as claimed.

We will use the relations in the above lemma to construct an ODAC of so2n(R). To do

that, we introduce the following set of unordered pairs and its partition. Let

X = {{i, j} : 1 ≤ i 6= j ≤ 2n}

and let

P = {Mk : 1 ≤ k ≤ 2n− 1}
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be a partition of X, where |Mk| = n and α ∩ β = Ø for any α, β ∈Mk such that α 6= β.

This partition P can be viewed as a partition of the complete graph with vertex set

{1, 2, . . . , 2n} and edge set X, it is also called 1-factorization of the graph. Thus, the partition

is constructible. Note that |X| = n(2n − 1) which is equal to the rank of so2n(R) as an R-

module.

Example 5.1.2. For n = 4, we have

X = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}

{2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 8}, {3, 4}

{3, 5}, {3, 6}, {3, 7}, {3, 8}, {4, 5}, {4, 6}, {4, 7}

{4, 8}, {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8}}.

Then we can choose

M1 = {{1, 8}, {2, 5}, {3, 6}, {4, 7}},

M2 = {{1, 7}, {2, 8}, {3, 4}, {5, 6}},

M3 = {{1, 6}, {2, 7}, {3, 8}, {4, 5}},

M4 = {{1, 5}, {2, 6}, {3, 7}, {4, 8}},

M5 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}},

M6 = {{1, 3}, {2, 4}, {5, 7}, {6, 8}},

M7 = {{1, 2}, {3, 5}, {4, 6}, {7, 8}}.

Theorem 5.1.3. For a positive integer n, so2n(R) has an ODAC

so2n(R) = H1 ⊕H2 ⊕ · · · ⊕H2n−1,

where Hk = 〈X(i,j)|{i, j} ∈Mk〉R.
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Proof. By Lemma 5.1.1 (2) and (3), we have the orthogonality and the commutativity of

Hk’s. Next, we show that Nso2n(R)(Hk) = Hk. Let A ∈ Nso2n(R)(Hk) and write it as a linear

combination of the elements X(i,j)

A =
∑
i 6=j

αijX(i,j).

For any X(s,t) ∈ Hk,

[A,X(s,t)] =
∑
i 6=j

αij[X(i,j), X(s,t)] ∈ Hk,

and so ∑
i 6=j

{i,j}/∈Mk

αij[X(i,j), X(s,t)] ∈ Hk.

For each pair (i, j), since the Mk’s form a partition of X, there exists X(j,t) ∈ Hk such that

t 6= i and [X(i,j), X(j,t)] = X(i,t) 6= 0 by Lemma 5.1.1. Therefore, αij = 0, and so A ∈ Hk.

Example 5.1.4. Using the decomposition in Example 5.1.2, we obtain an ODAC of so8(R)

so8(R) = H1 ⊕H2 ⊕ · · · ⊕H7,

where

H1 = SpanR{X(1,8), X(2,5), X(3,6), X(4,7)},

H2 = SpanR{X(1,7), X(2,8), X(3,4), X(5,6)},

H3 = SpanR{X(1,6), X(2,7), X(3,8), X(4,5)},

H4 = SpanR{X(1,5), X(2,6), X(3,7), X(4,8)},

H5 = SpanR{X(1,4), X(2,3), X(5,8), X(6,7)},

H6 = SpanR{X(1,3), X(2,4), X(5,7), X(6,8)},

H7 = SpanR{X(1,2), X(3,5), X(4,6), X(7,8)}.
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5.2 Orthogonal decomposition of so2n−1

In this section, we will discuss the existence of ODAC of the Lie algebra

so2n−1(R) = 〈X(i,j)|1 ≤ i 6= j ≤ 2n− 1〉
R
.

Similar to Section 5.1, we let

X ′ = {{i, j} : 1 ≤ i 6= j ≤ 2n− 1}.

In the next step, we will construct a partition of this set into subsets M ′
k satisfying

|M ′
k| = n− 1 and α ∩ β = Ø for all α, β ∈M ′

k, α 6= β.

The construction can be obtained from all Mk’s of the construction of an ODAC of so2n(R)

in the previous section. Without loss of generality, we assume that each Mk contains the

pair {k, 2n}. Let M ′
k = Mk \ {k, 2n}.

Theorem 5.2.1. For a positive integer n ≥ 2, so2n−1(R) has an ODAC

so2n−1(R) = H ′1 ⊕H ′2 ⊕ · · · ⊕H ′2n−1,

where H ′k = 〈X(i,j)|{i, j} ∈M ′
k〉R.

Proof. We only need to show that each H ′k is a self-normalizer because analogous arguments

from the proof of Theorem 5.1.3 can be used to prove the rest. Let A ∈ Nso2n−1(R)(Hk) and

write it as a linear combination of the elements X(i,j)

A =
∑
i 6=j

αijX(i,j).
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For any X(s,t) ∈ Hk,

[A,X(s,t)] =
∑
i 6=j

αij[X(i,j), X(s,t)] ∈ Hk,

and so ∑
i 6=j

{i,j}/∈M ′k

αij[X(i,j), X(s,t)] ∈ Hk.

For each pair (i, j), if j 6= k, we can use the argument provided in Theorem 5.1.3 to prove

αij = 0. If j = k, we use the relation (1) of Lemma 5.1.1 to interchange i and j. This

completes the proof.

Example 5.2.2. The Lie algebra so7(R) has an ODAC

so7(R) = H1 ⊕H2 ⊕ · · · ⊕H7,

where

H1 = SpanR{X(2,5), X(3,6), X(4,7)},

H2 = SpanR{X(1,7), X(3,4), X(5,6)},

H3 = SpanR{X(1,6), X(2,7), X(4,5)},

H4 = SpanR{X(1,5), X(2,6), X(3,7)},

H5 = SpanR{X(1,4), X(2,3), X(6,7)},

H6 = SpanR{X(1,3), X(2,4), X(5,7)},

H7 = SpanR{X(1,2), X(3,5), X(4,6)}.
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Chapter 6

Further developments

In Theorem 3.2.5, 3.2.6 and Corollary 3.2.7, we provided some sufficient conditions for the

existence of an ODAC of sln(R). On the other hand, a necessary condition of this ODAC is

given in Theorem 3.3.2. These conditions are from the structure of the ring R and n, and

can be checked readily. As a result, we can provide a collection of the rings R such that

sln(R) has an ODAC and another collection of the rings R for nonexistence of ODAC of

sln(R). However, the complete description of the rings R for which sln(R) has an ODAC

requires further attention.

The orthogonal decomposition problem of sl6(R) should be more focused on. We would

like to answer the following question:

Question 2. Is there any commutative ring R with identity for which sl6(R) has an ODAC?

The first step that may be manageable is to study a classical ODAC of sl6(Z5) because the

structure of Aut(sl6(Z5)) and some useful properties of this modular Lie algebra are known.

Moreover, we may be able to use the concept of Gröbner bases and use Magma for the

computation to answer this question. If there is no any ODAC of sl6(Z5), then we will find

the maximum number of pairwise orthogonal classical Cartan subalgebras.
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Appendix A

Gröbner bases

The following Sage code and Magma code are used to complete the proof in Lemma 3.1.6.The

output for both code should be “True”.

Sage code:

R.<a, b, c, d, x, y, z, u, v, w > = ZZ[]

A = matrix([[0, 0, 0], [a, 0, b], [c, d, 0]])

B = matrix([[0, x, y], [u, 0, z], [v, w, 0]])

C = A*B - B*A

detkilling = (A*A).trace()*(B*B).trace() - ((A*B).trace())ˆ 2

J = ideal (list (C[0]) + list (C[1]) + list (C[2]) + [a*b*c*d])

detkilling in J

Magma code:

P<a,b,c,d,x, y,z,u,v,w> := PolynomialRing(IntegerRing(),10);

A := Matrix(3, [0,0,0, a,0,b, c,d,0]);

B := Matrix(3, [0,x,y, u,0,z, v,w,0]);

C := A*B - B*A;

detkilling := Trace(A*A)*Trace(B*B) - Trace(A*B)ˆ 2;

S := { C[i,j]: i,j in [1, 2, 3] } join { a*b*c*d };
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J := Ideal(S);

detKilling in J;
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Appendix B

Maximum number of classical

components

For sl2, we input the value of a prime power integer k into the code below to represent

the cardinality of a needed finite field. The conclusion can be drawn from Max 2 and Max

3. If both are assigned, then the maximum number of pairwise orthogonal classical Cartan

subalgebras is three. If only Max 2 is assigned, then the maximum number of pairwise

orthogonal classical Cartan subalgebras is two. Otherwise, the maximum number is one.

The code for sl2:

k := ...;

K:=FiniteField(k);

X1 := DiagonalMatrix(K, [1, -1]);

H := {X1};

SL := SpecialLinearGroup(2,K);

for M1 in SL do

if Trace(X1*M1*X1*M1ˆ(-1)) eq 0 then

Max2 := 2;

for M2 in SL do
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if M1 ne M2 then

if Trace(X1*M2*X1*M2ˆ(-1)) eq 0 then

if Trace(M1*X1*M1ˆ(-1)*M2*X1*M2ˆ(-1)) eq 0 then

Max3 := 3;

break M1;

end if;

end if;

end if;

end for;

end if;

end for;

Max2;

Max3;

For sl3, we proceed analogously with the code:

k := ...;

K := FiniteField(k);

X1 := DiagonalMatrix(K, [1, -1, 0]);

X2 := DiagonalMatrix(K, [0, 1, -1]);

H := {X1, X2};

SL := SpecialLinearGroup(3,K);

for M1 in SL do

if forall{ <X,Y> : X, Y in H — Trace(X*M1*Y*M1ˆ(-1)) eq 0} then

Max2 := 2;

for M2 in SL do

if M1 ne M2 then

if forall{ <X,Y> : X, Y in H — Trace(X*M2*Y*M2ˆ(-1)) eq 0} then

if forall{ <X,Y> : X, Y in H — Trace(M1*X*M1ˆ(-1)*M2*Y*M2ˆ(-1)) eq 0} then
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Max3 := 3;

for M3 in SL do

if M1 ne M3 then

if M2 ne M3 then

if forall{ <X,Y> : X, Y in H — Trace(X*M3*Y*M3ˆ(-1)) eq 0} then

if forall{ <X,Y> : X, Y in H — Trace(M1*X*M1ˆ(-1)*M3*Y*M3ˆ(-1)) eq 0 and

Trace(M2*X*M2ˆ(-1)*M3*Y*M3ˆ(-1)) eq 0} then

Max4 := 4;

break M1;

end if;

end if;

end if;

end if;

end for;

end if;

end if;

end if;

end for;

end if;

end for;

Max2;

Max3;

Max4;
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Appendix C

J-decompositions of sl3 over finite

fields

C.1 Mathematica code for checking J3(1, z) and J3(1, 1)

Recalling the setting of the proof of Theorem 3.5.7, we need to consider the following J-

decompositions.

(1) J3(1, 1):

sl3(Fpm) = 〈J(1,0), J(2,0)〉 ⊕ 〈J(0,1), J(0,2)〉 ⊕ 〈J(1,1), J(2,2)〉 ⊕ 〈J(2,1), J(1,2)〉 ,

where J(a,b) = DaP b and

D = diag{1, u, u2}, P =


0 0 1

1 0 0

0 1 0

 .
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(2) J3(1, z):

sl3(Fpm) = 〈J ′(1,0), J ′(2,0)〉 ⊕ 〈J ′(0,1), J ′(0,2)〉 ⊕ 〈J ′(1,1), J(2,2)〉 ⊕ 〈J ′(2,1), J ′(1,2)〉 ,

where J ′(a,b) = DaPb and

D = diag{1, u, u2}, P =


0 0 1

1 0 0

0 1 0

 .

The inputs of the above matrices is:

P = {{0, 0, 1}, {1, 0, 0}, {0, 1, 0}};

p[0] = IdentityMatrix[3];

p[1] = P ;

p[2] = P.P ;

p′[0] = IdentityMatrix[3];

p′[1] = {{0, 0, 1}, {z, 0, 0}, {0, z, 0}};

p′[2] = {{0, 1, 0}, {0, 0, 1}, {z, 0, 0}};

p′′[0] = IdentityMatrix[3];

p′′[1] = {{0, 0, 1}, {z2, 0, 0}, {0, z2, 0}};

p′′[2] = {{0, 1, 0}, {0, 0, 1}, {z2, 0, 0}};

d[0] = IdentityMatrix[3];

d[i ]:=DiagonalMatrix[{1, uMod[i,3], uMod[2i,3]}];

f [A ,B ]:=A.B −B.A

J [a , b ]:=d[Mod[a, 3]].p[Mod[b, 3]]
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J ′[a , b ]:=d[Mod[a, 3]].p′[Mod[b, 3]]

J ′′[a , b ]:=d[Mod[a, 3]].p′′[Mod[b, 3]]

Suppose that J3(1, 1) ≈ J3(1, z) by the map ϕ. Then we consider:

ϕ(J ′[1, 0]) = αJ [m[i], n[i]];

ϕ(J ′[2, 0]) = βJ [k[i], l[i]];

ϕ(J ′[0, 1]) = γJ [s[i], t[i]];

ϕ(J ′[0, 2]) = δJ [x[i], y[i]];

ϕ(J ′[1, 1]) = Simplify

[
f [ϕ(J ′[1, 0]), ϕ(J ′[0, 1])]

1− u2

]
;

ϕ(J ′[2, 2]) = Simplify

[
f [ϕ(J ′[2, 0]), ϕ(J ′[0, 2])]

1− u2

]
;

ϕ(J ′[1, 2]) = Simplify

[
f [ϕ(J ′[1, 0]), ϕ(J ′[0, 2])]

1− u

]
;

and check all of the following cases:

m[1] = 1;n[1] = 0; k[1] = 2; l[1] = 0; s[1] = 0; t[1] = 1; x[1] = 0; y[1] = 2;

m[2] = 1;n[2] = 0; k[2] = 2; l[2] = 0; s[2] = 0; t[2] = 2; x[2] = 0; y[2] = 1;

m[3] = 1;n[3] = 0; k[3] = 2; l[3] = 0; s[3] = 1; t[3] = 1; x[3] = 2; y[3] = 2;

m[4] = 1;n[4] = 0; k[4] = 2; l[4] = 0; s[4] = 2; t[4] = 2; x[4] = 1; y[4] = 1;

m[5] = 1;n[5] = 0; k[5] = 2; l[5] = 0; s[5] = 2; t[5] = 1; x[5] = 1; y[5] = 2;

m[6] = 1;n[6] = 0; k[6] = 2; l[6] = 0; s[6] = 1; t[6] = 2; x[6] = 2; y[6] = 1;

m[7] = 2;n[7] = 0; k[7] = 1; l[7] = 0; s[7] = 0; t[7] = 1; x[7] = 0; y[7] = 2;

m[8] = 2;n[8] = 0; k[8] = 1; l[8] = 0; s[8] = 0; t[8] = 2; x[8] = 0; y[8] = 1;

m[9] = 2;n[9] = 0; k[9] = 1; l[9] = 0; s[9] = 1; t[9] = 1; x[9] = 2; y[9] = 2;

m[10] = 2;n[10] = 0; k[10] = 1; l[10] = 0; s[10] = 2; t[10] = 2; x[10] = 1; y[10] = 1;
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m[11] = 2;n[11] = 0; k[11] = 1; l[11] = 0; s[11] = 2; t[11] = 1; x[11] = 1; y[11] = 2;

m[12] = 2;n[12] = 0; k[12] = 1; l[12] = 0; s[12] = 1; t[12] = 2; x[12] = 2; y[12] = 1;

m[13] = 0;n[13] = 1; k[13] = 0; l[13] = 2; s[13] = 1; t[13] = 0; x[13] = 2; y[13] = 0;

m[14] = 0;n[14] = 1; k[14] = 0; l[14] = 2; s[14] = 2; t[14] = 0; x[14] = 1; y[14] = 0;

m[15] = 0;n[15] = 1; k[15] = 0; l[15] = 2; s[15] = 1; t[15] = 1; x[15] = 2; y[15] = 2;

m[16] = 0;n[16] = 1; k[16] = 0; l[16] = 2; s[16] = 2; t[16] = 2; x[16] = 1; y[16] = 1;

m[17] = 0;n[17] = 1; k[17] = 0; l[17] = 2; s[17] = 2; t[17] = 1; x[17] = 1; y[17] = 2;

m[18] = 0;n[18] = 1; k[18] = 0; l[18] = 2; s[18] = 1; t[18] = 2; x[18] = 2; y[18] = 1;

m[19] = 0;n[19] = 2; k[19] = 0; l[19] = 1; s[19] = 1; t[19] = 0; x[19] = 2; y[19] = 0;

m[20] = 0;n[20] = 2; k[20] = 0; l[20] = 1; s[20] = 2; t[20] = 0; x[20] = 1; y[20] = 0;

m[21] = 0;n[21] = 2; k[21] = 0; l[21] = 1; s[21] = 1; t[21] = 1; x[21] = 2; y[21] = 2;

m[22] = 0;n[22] = 2; k[22] = 0; l[22] = 1; s[22] = 2; t[22] = 2; x[22] = 1; y[22] = 1;

m[23] = 0;n[23] = 2; k[23] = 0; l[23] = 1; s[23] = 2; t[23] = 1; x[23] = 1; y[23] = 2;

m[24] = 0;n[24] = 2; k[24] = 0; l[24] = 1; s[24] = 1; t[24] = 2; x[24] = 2; y[24] = 1;

m[25] = 1;n[25] = 1; k[25] = 2; l[25] = 2; s[25] = 1; t[25] = 0; x[25] = 2; y[25] = 0;

m[26] = 1;n[26] = 1; k[26] = 2; l[26] = 2; s[26] = 2; t[26] = 0; x[26] = 1; y[26] = 0;

m[27] = 1;n[27] = 1; k[27] = 2; l[27] = 2; s[27] = 0; t[27] = 1; x[27] = 0; y[27] = 2;

m[28] = 1;n[28] = 1; k[28] = 2; l[28] = 2; s[28] = 0; t[28] = 2; x[28] = 0; y[28] = 1;

m[29] = 1;n[29] = 1; k[29] = 2; l[29] = 2; s[29] = 2; t[29] = 1; x[29] = 1; y[29] = 2;

m[30] = 1;n[30] = 1; k[30] = 2; l[30] = 2; s[30] = 1; t[30] = 2; x[30] = 2; y[30] = 1;

m[31] = 2;n[31] = 2; k[31] = 1; l[31] = 1; s[31] = 1; t[31] = 0; x[31] = 2; y[31] = 0;

m[32] = 2;n[32] = 2; k[32] = 1; l[32] = 1; s[32] = 2; t[32] = 0; x[32] = 1; y[32] = 0;

m[33] = 2;n[33] = 2; k[33] = 1; l[33] = 1; s[33] = 0; t[33] = 1; x[33] = 0; y[33] = 2;

m[34] = 2;n[34] = 2; k[34] = 1; l[34] = 1; s[34] = 0; t[34] = 2; x[34] = 0; y[34] = 1;
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m[35] = 2;n[35] = 2; k[35] = 1; l[35] = 1; s[35] = 2; t[35] = 1; x[35] = 1; y[35] = 2;

m[36] = 2;n[36] = 2; k[36] = 1; l[36] = 1; s[36] = 1; t[36] = 2; x[36] = 2; y[36] = 1;

m[37] = 2;n[37] = 1; k[37] = 1; l[37] = 2; s[37] = 1; t[37] = 0; x[37] = 2; y[37] = 0;

m[38] = 2;n[38] = 1; k[38] = 1; l[38] = 2; s[38] = 2; t[38] = 0; x[38] = 1; y[38] = 0;

m[39] = 2;n[39] = 1; k[39] = 1; l[39] = 2; s[39] = 0; t[39] = 1; x[39] = 0; y[39] = 2;

m[40] = 2;n[40] = 1; k[40] = 1; l[40] = 2; s[40] = 0; t[40] = 2; x[40] = 0; y[40] = 1;

m[41] = 2;n[41] = 1; k[41] = 1; l[41] = 2; s[41] = 1; t[41] = 1; x[41] = 2; y[41] = 2;

m[42] = 2;n[42] = 1; k[42] = 1; l[42] = 2; s[42] = 2; t[42] = 2; x[42] = 1; y[42] = 1;

m[43] = 1;n[43] = 2; k[43] = 2; l[43] = 1; s[43] = 1; t[43] = 0; x[43] = 2; y[43] = 0;

m[44] = 1;n[44] = 2; k[44] = 2; l[44] = 1; s[44] = 2; t[44] = 0; x[44] = 1; y[44] = 0;

m[45] = 1;n[45] = 2; k[45] = 2; l[45] = 1; s[45] = 0; t[45] = 1; x[45] = 0; y[45] = 2;

m[46] = 1;n[46] = 2; k[46] = 2; l[46] = 1; s[46] = 0; t[46] = 2; x[46] = 0; y[46] = 1;

m[47] = 1;n[47] = 2; k[47] = 2; l[47] = 1; s[47] = 1; t[47] = 1; x[47] = 2; y[47] = 2;

m[48] = 1;n[48] = 2; k[48] = 2; l[48] = 1; s[48] = 2; t[48] = 2; x[48] = 1; y[48] = 1;

We use a “for loop” to reduce z symbolically:

For[i = 1, i < 49, i++,Print[i]; Print[Reduce[{zt(u2 − 1)ϕJ ′[1, 2] == f [ϕJ ′[0, 1], ϕJ ′[1, 1]],

z(u− 1)ϕJ ′[2, 0]==f [ϕJ ′[0, 1], ϕJ ′[2, 2]], u 6= 0, α 6= 0, β 6= 0, γ 6= 0, δ 6= 0}, z]]]

C.2 Verifying the automorphism ψ

The map ψ was defined on the basis of J3(1, z2) as follows:

J ′′(1, 0) 7→ −J ′(1, 0), J ′′(2, 0) 7→ −J ′(2, 0),

J ′′(0, 1) 7→ −zJ ′(0, 2), J ′′(0, 2) 7→ −J ′(0, 1),

77



J ′′(1, 1) 7→ z

1 + u
J ′(1, 2), J ′′(2, 2) 7→ 1

1 + u
J ′(2, 1)

J ′′(1, 2) 7→ (1 + u)J ′(1, 1) J ′′(2, 1) 7→ z(1 + u)J ′(2, 2).

Then

(1) ψ([J ′′(1, 0), J ′′(0, 1)]) = z(1− u)J ′(1, 2) = [ψ(J ′′(1, 0)), ψ(J ′′(0, 1))],

(2) ψ([J ′′(1, 0), J ′′(0, 2)]) = (1− u2)J ′(1, 1) = [ψ(J ′′(1, 0)), ψ(J ′′(0, 2))],

(3) ψ([J ′′(1, 0), J ′′(1, 1)]) = z(1− u2)(1 + u)J ′(2, 2) = [ψ(J ′′(1, 0)), ψ(J ′′(1, 1))],

(4) ψ([J ′′(1, 0), J ′′(2, 2)]) = −(1− u)J ′(0, 2) = [ψ(J ′′(1, 0)), ψ(J ′′(2, 2))],

(5) ψ([J ′′(1, 0), J ′′(1, 2)]) = −(1 + u)(1− u2)J ′(2, 1) = [ψ(J ′′(1, 0)), ψ(J ′′(1, 2))],

(6) ψ([J ′′(1, 0), J ′′(2, 1)]) = −z(1− u2)J ′(0, 2) = [ψ(J ′′(1, 0)), ψ(J ′′(2, 1))],

(7) ψ([J ′′(2, 0), J ′′(0, 1)]) = z(1− u2)J ′(2, 2) = [ψ(J ′′(2, 0)), ψ(J ′′(0, 1))],

(8) ψ([J ′′(2, 0), J ′′(0, 2)]) = (1− u)J ′(2, 1) = [ψ(J ′′(2, 0)), ψ(J ′′(0, 2))],

(9) ψ([J ′′(2, 0), J ′′(1, 1)]) = −z(1− u)J ′(0, 2) = [ψ(J ′′(2, 0)), ψ(J ′′(1, 1))],

(10) ψ([J ′′(2, 0), J ′′(2, 2)]) = (1− u2)(1 + u)J ′(1, 1) = [ψ(J ′′(2, 0)), ψ(J ′′(2, 2))],

(11) ψ([J ′′(2, 0), J ′′(1, 2)]) = −(1− u2)J ′(0, 1) = [ψ(J ′′(2, 0)), ψ(J ′′(1, 2))],

(12) ψ([J ′′(2, 0), J ′′(2, 1)]) = −z(1 + u)(1− u2)J ′(1, 2) = [ψ(J ′′(2, 0)), ψ(J ′′(2, 1))],

(13) ψ([J ′′(0, 1), J ′′(1, 1)]) = −z2(u− 1)J ′(2, 0) = [ψ(J ′′(0, 1)), ψ(J ′′(1, 1))],

(14) ψ([J ′′(0, 1), J ′′(1, 2)]) = −z2(u2 − 1)J ′(2, 0) = [ψ(J ′′(0, 1)), ψ(J ′′(1, 2))],

(15) ψ([J ′′(0, 1), J ′′(2, 1)]) = −z2(u2 − 1)(1 + u)J ′(2, 1) = [ψ(J ′′(0, 1)), ψ(J ′′(2, 1))],

(16) ψ([J ′′(0, 2), J ′′(1, 1)]) = −z2(u− 1)J ′(1, 0) = [ψ(J ′′(0, 2)), ψ(J ′′(1, 1))],
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(17) ψ([J ′′(0, 2), J ′′(2, 2)]) = z(1 + u)(u2 − 1)J ′(2, 2) = [ψ(J ′′(0, 2)), ψ(J ′′(2, 2))],

(18) ψ([J ′′(0, 2), J ′′(1, 2)]) = −z(1 + u)(u2 − 1)J ′(1, 2) = [ψ(J ′′(0, 2)), ψ(J ′′(1, 2))],

(19) ψ([J ′′(0, 2), J ′′(2, 1)]) = −z2(u2 − 1)J ′(2, 0) = [ψ(J ′′(0, 2)), ψ(J ′′(2, 1))],

(20) ψ([J ′′(1, 1), J ′′(1, 2)]) = z2(u− u2)J ′(2, 0) = [ψ(J ′′(1, 1)), ψ(J ′′(1, 2))],

(21) ψ([J ′′(1, 1), J ′′(2, 1)]) = −z2(u− u2)J ′(0, 1) = [ψ(J ′′(1, 1)), ψ(J ′′(2, 1))],

(22) ψ([J ′′(2, 2), J ′′(1, 2)]) = z(u2 − u)J ′(0, 2) = [ψ(J ′′(2, 2)), ψ(J ′′(1, 2))],

(23) ψ([J ′′(2, 2), J ′′(2, 1)]) = −z2(u2 − u)J ′(1, 0) = [ψ(J ′′(2, 2)), ψ(J ′′(2, 2))].
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