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Superconductors are unusual quantum materials which offer no resistance to electric 

current. The fascinating physics of this phenomenon is complemented by wide-ranging technical 

applications from power transmission to magnetic levitation.  Commercially successful 

superconductors are found in powerful magnets in medical imaging, particle accelerators, and 

next-generation quantum computing. In my effort to uncover the mysteries and fundamental 

mechanisms of superconductivity, I use an array of techniques to synthesize and study single 

crystals of unconventional superconductors including the iron telluride and bismuth selenide 

family of superconductors.  My study of atomic valence and crystal structure in iron telluride has 

uncovered previously unknown chemical and structural dependencies of the superconducting state. 

Taken together, there exists a much stronger dependence than previously known on how elemental 

concentration, structural defects, and atomic valence determine material properties.  In addition, 

the development of methods to produce high-quality single crystals has enabled my study and 

modeling of the electronic structure of bismuth selenide at high magnetic fields, previously 

impossible with lower quality materials. In bismuth selenide, my results show superconductivity 

is achieved only in samples quenched above 560 °C, with samples quenched at 620 °C showing 

superconductivity correlated with an expanded Fermi surface cross-section, increase in Fermi 
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energy, and appearance of nematic charge density waves.  Oxygen treatments known to induce 

superconductivity in thin film iron telluride were applied to bulk iron telluride and found to cause 

the valence states of tellurium and iron to shift from Te0 and Fe2+ to Te4+ and Fe3+  ̧consistent with 

oxygen bonding to tellurium and the formation of Fe2O3.  Additionally, oxygen causes the 

formation of an oriented FeTe2 intergrowth in single crystals, and the formation of a spin glass 

magnetic state stable up to room temperature. 
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1.0  INTRODUCTION 

As our society becomes more dependent on computing and data processing, so are computer 

systems driven to be smaller, more powerful, and energy-efficient.  In the past, this has been driven 

by the size of the transistors, which has advanced from large vacuum tubes, to solid state devices.  

These transistors are limited by atomic scales, namely, a transistor cannot be smaller than a single 

atom.  Single-atom transistors would represent several orders of magnitude decrease in size, and 

limit computing power only in the total size, power, and heat transfer possible on a computer chip.  

However, even more powerful and energy efficient systems are possible, with one of the most 

ambitious developments of computing advancement in quantum computing technologies.   

In conventional computing, information is stored in the form of 1s and 0s through a binary 

signal, such as the presence or absence of a voltage, or the polarization of a magnetic domain.  

Quantum information is stored in a fundamentally different way. Rather than storing each bit of 

information as a 1 or 0, each qubit is stored as a 1 and 0 simultaneously.  While this appears to 

present a mere doubling of information density, the implications are much more dramatic.  When 

large amounts of information are stored, each bit stores both states (1 and 0) both simultaneously 

and independently, meaning all possible configurations of qubits are stored.  For example, a byte 

of information representing 8 bits can store one combination of 1s and 0s, while 8 qubits store 

28 = 256 possible combinations.  When calculations are performed with qubits, a computer can 
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test all solutions simultaneously, rather than sequentially, leading to a vast improvement in 

computing power.  

The first quantum systems used supercooled atoms at near absolute zero which required 

large devices to isolate and were difficult to manipulate.  Newer systems have used a variety of 

techniques to generate quantum states, and one technique with the most potential for devices is 

using superconducting topological insulators.  The potential for superconducting topological 

insulators depends on the development of these materials, including the ability to produce 

high-quality samples, and a means of tuning the properties which are used for quantum 

computation.  

 MATERIAL MOTIVATIONS 

This dissertation will focus on the development of bismuth selenide (Bi2Se3) and iron telluride 

(FeTe) for applications in a variety of areas including quantum computing through topological 

insulator properties interacting with a superconducting state.  These materials have potential uses 

in many other applications such that control over material properties are of interest even if they 

cannot be used in quantum computing.   

Bi2Se3 is well-known as a thermoelectric material, which generates an electrical potential 

when a temperature gradient is placed across the sample. Additionally, the topological state in 

Bi2Se3 is usable for spintronic computations, which use the electron spin, rather than the electron 

charge, as a bit. FeTe is part of a class of iron-based superconductors which are unique among 

other superconductors.  Iron-based superconductors have much more metallic properties than other 

high-temperature superconductors, meaning they are much easier to form into wires for current 
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transport. In addition, these superconductors have unique low-temperature magnetic states, and 

enhanced properties in thin films, making them novel among other superconductors, and important 

to the broader understanding of superconductivity. The study of FeCh (Ch=Chalcogen) type iron-

based superconductors, sometimes named 11 type in reference to the element stoichiometry, is 

largely motivated by their apparent simplicity among iron-based superconductors.  While the more 

complicated 1111 structures have much higher superconducting temperatures (56K in 

NdFeAsO0.83) versus 11 type (8K in FeSe), the simplicity of 11 structures makes the study of 

fundamental physical properties easier and translatable to other iron-based superconductors.  

Recently the discovery of anomalously high superconducting temperatures in FeSe thin films, 

engineering of FeTe/Bi2Te3 interfaces, and potential for topological surface states have brought 

increased interest to the FeCh system of superconductors.  A greater understanding of the 

characteristics of these materials will greatly increase our understanding of both topological and 

superconducting materials physics. 

 TOPOLOGICAL SYSTEMS 

Topological systems have gained much interest in recent years due to their interesting physical 

properties and potential for new technologies, such as spintronics and quantum computing 

aforementioned.1–3  3D (or 2D) topological systems are generally manifest as materials which have 

insulating bulk (surface) states, but conducting surface (edge) states.  These are divided into 

categories based on the origin of the topology, such as Dirac semimetals, Weyl semimetals, and 

topological insulators. This dissertation is primarily focused on the class known as topological 

insulators.  Topological insulators in 3D materials were first discovered in Bi1-xSbx,4 and have 
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since been found in Bi2Se3, Sb2Te3, as well as other materials with strong spin-orbit coupling, 

usually containing pnictides and chalcogenides, although compounds featuring lead and tin have 

recently been discovered.5 Strong spin-orbit coupling creates electronic states with broken time 

reversal symmetry without an external magnetic field.6–8  The exact effects of this and other 

symmetries on topological states will be discussed later. The prediction and subsequent discovery 

of topological insulators has generated intense research into this new state of matter motivated 

both by their physical novelty and potential applications stemming from their unique properties.  

Applications in areas such as spintronics are driven by the so-called “topological protection” from 

scattering of the surface states, making electronic states robust from scattering even when defects 

are present.  These materials’ use in quantum computing is driven by unique Majorana fermion 

properties when topological and superconducting states coexist.  While the study of topological 

insulators has generated much research in recent years, topological states themselves are not new.  

Perhaps the simplest example of a non-trivial topological state is the quantum Hall state.9  The 

quantum Hall state occurs when 2D electrons with sufficient mobility are placed in a high magnetic 

field.  In this scenario, electrons are split into quantized Landau levels with energy  

𝜖𝜖𝑛𝑛 = ℏ𝜔𝜔𝑐𝑐 �𝑛𝑛 +
1
2
� ;𝑛𝑛 ≥ 0, (1.1) 

where 𝜔𝜔𝑐𝑐 is the cyclotron frequency.   These Landau levels have a finite energy broadening 

due to electron scattering and thermal effects.  This quantization of energy levels leads to the 

sample becoming insulating at magnetic fields when there is no overlap of a Landau level with the 

Fermi energy, and thus the density of conducting states becomes zero.  At the same time, the Hall 

conductance becomes quantized according to the following equation for well separated Landau 

levels, where the Hall conductance is written as  
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𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑗𝑗𝑥𝑥
𝐸𝐸𝑥𝑥

= 𝑛𝑛
𝑒𝑒2

ℎ
(1.2) 

where jy is the current density, Ex is the electric field in a perpendicular direction, e is the electron 

charge, and h is the plank constant. 

This “topologically” insulating quantum Hall state is distinct from a “trivial” insulator and 

has unique properties which are determined by the calculation of a topological number.  Firstly, 

while both trivial and quantum Hall insulators are formed due to an exclusion of electrons from 

the Fermi energy leading to a lack of longitudinal conductance, the quantum Hall state has a finite 

Hall conductance.   In a trivial insulator, the electrons are excluded from conduction bands due to 

electrons binding to atomic cores, while in the quantum Hall insulator, the electrons are bound into 

cyclotron orbits.  Unlike the trivial insulator, the scattering of electrons at the edges of the sample 

in a quantum Hall insulator creates anomalous surface currents.  This difference in scattering can 

be visualized in Fig. 1-1. 

 

 

The existence of edge states in topological systems is driven by the bulk boundary 

correspondence, which forces the existence of a conducting state whenever topology 

Figure 1-1. In a), bulk electrons are bound in cyclotron orbits, while a conducting edge state appears.  In 

a normal insulator b), all electrons are bound to atomic cores. 
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changes.6,7,10,11  This surface state occurs between a topological insulator and vacuum (a trivial 

insulator), although in general topology can change at any surface where the topological number 

changes, such as in a vortex core of a superconductor, or material interface. 

While novel, the quantum Hall state is only possible in thin samples with high electron 

mobility, at very low temperatures, and high magnetic fields.  These restrictions makes the use of 

the quantum Hall states for applications such as computing unfeasible. Topologically insulating 

materials have electrons in topological states without the need for high magnetic fields, and may 

be robust even at room temperature depending on the size of the material’s bulk band gap.  

To discuss how topological insulators are manifest, and how topological materials are 

possible without the application of a magnetic field, this dissertation will first briefly overview 

how topological distinctness is determined by the calculation of topological invariant numbers, 

specifically, the Chern number.  

1.2.1 Topological numbers 

A material’s topological distinctness is determined by calculating a topologically invariant 

quantity such as the Chern number.  The Chern number is constructed in the following manner. 

We start by considering a band insulator with the following generalized Hamiltonian and 

wavefunction 

𝐻𝐻(𝒌𝒌)|𝑢𝑢𝑛𝑛(𝒌𝒌)⟩ = 𝐸𝐸𝑛𝑛(𝒌𝒌)|𝑢𝑢𝑛𝑛(𝒌𝒌)⟩. (1.3) 

We define A(n)(k) as the Berry connection, a measure of the rate of change of the wavefunction, 

𝐴𝐴(𝑛𝑛)(𝒌𝒌) = 𝑖𝑖⟨𝑢𝑢𝑛𝑛(𝒌𝒌)| ∂𝒌𝒌𝑢𝑢𝑛𝑛(𝒌𝒌)⟩ (1.4) 

and a “field strength,” 
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𝐹𝐹𝑖𝑖𝑖𝑖
(𝑛𝑛)(𝒌𝒌) = ∂𝑘𝑘𝑖𝑖A𝑘𝑘𝑗𝑗

(𝑛𝑛)(𝒌𝒌) − ∂𝑘𝑘𝑗𝑗A𝑘𝑘𝑖𝑖
(𝑛𝑛)(𝒌𝒌). (1.5) 

From this we construct a gauge-invariant quantity which can be shown to take integer values when 

integrated around the 2D Brillouin zone:7 

𝐶𝐶ℎ1
(𝑛𝑛) =

1
2𝜋𝜋

� 𝑑𝑑𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥
(𝑛𝑛)(𝒌𝒌)

2𝐷𝐷𝐷𝐷𝐷𝐷
. (1.6) 

The evaluation, and quantization, of this integral is related to the singularities of 𝐴𝐴(𝑛𝑛)(𝒌𝒌) in the 

Brillouin zone and is non-zero for non-trivial topologies. The Berry phase is also constructed in a 

similar way, which is the line integral of 𝐴𝐴(𝑛𝑛)(𝒌𝒌) around a closed path, 

� 𝑑𝑑𝒌𝒌 ∙ 𝑨𝑨(𝑛𝑛)(𝒌𝒌)
𝐶𝐶

 (1.7) 

and is also gauge invariant.  However, the Berry phase is not restricted to integer values except in 

special cases, and is thus not generally a good topological number.  

Symmetries play an important role in the determination of topological states and often 

simplify this calculation.  For example, under time reversal symmetry, one can show 𝐹𝐹𝑥𝑥𝑥𝑥
(𝑛𝑛)(𝒌𝒌) =

− 𝐹𝐹𝑥𝑥𝑥𝑥
(𝑛𝑛)(−𝒌𝒌), and therefore 𝐶𝐶ℎ = −𝐶𝐶ℎ = 0.  In this case time-reversal breaking is necessary to 

realize a non-zero Chern number and a topologically non-trivial quantum number.   In the case of 

a material exhibiting the quantum Hall effect, time-reversal symmetry-breaking is supplied via the 

application of an external magnetic field.  In general, there are other means of breaking time-

reversal symmetry such as spin-orbit coupling, and materials that have a non-trivial topological 

number (e.g. Chern number) without external conditions (such as the application of an external 

magnetic field) are of interest due to a greater ease in use for devices.  Furthermore, a topologically 

insulating state is only present in band insulators, i.e. materials with a sufficiently large band gap 
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which separates valence and conduction electrons under thermal fluctuations are of particular 

interest.7 

Bi2Se3 is one such material which has a non-zero topological number known as the “spin 

Chern number,” which defines Chern numbers for up and down spins separately, and the 

topological class is based on the parity of these numbers even though the net Chern number for all 

electrons is 0.  Further, the large bulk band gap in Bi2Se3 allows surface states to dominate 

conduction if the Fermi energy is tuned to reside in the gap even at room temperature. In Bi2Se3, 

conducting, spin-polarized, surface states manifest through Kramers degeneracy, which dictates 

that electron spin states must be degenerate at momenta where time-reversal invariance is held.  In 

particular, time-reversal symmetry only exists at momentum k =0 (Γ point) in Bi2Se3. The 

degeneracy in these spin states are broken at all other momenta due to time-reversal symmetry 

breaking from spin-orbit coupling.12 Kramers degeneracy and the non-zero spin Chern number 

provide helical wrapping of the surface spin states unique to a topological insulator as shown in 

Fig. 1-2 a).   

 

Figure 1-2. Under no magnetic field in a), spin surfaces are wrapped around the  time reversal invariant 

momentum.  As magnetic field in increased in b) and c) spin polarized surface states decouple and become 

polarized.  
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If time-reversal symmetry at k =0 is broken, for example by the addition of an external 

field, a band gap opens in the surface states, as shown in Fig. 1-2 b) and c).  While small fields 

allow some coupling between surface states, eventually the topology of the surface states becomes 

trivial.   Thus, external magnetic fields can break the degeneracy of surface states in an intrinsic 

topological insulator, although a new topologically distinct state (quantum Hall state) is induced 

in 2D materials for sufficiently large fields.  The distinct surface states of topological insulators 

from bulk states or “trivial” surface states (e.g. monolayer films) are the main physical phenomena 

associated with the topological phase, and manifest as an anomalous surface current in 3D 

materials, or edge currents in 2D materials.  In the case of Bi2Se3, and other 3D topological 

insulators, these surface states are spin-polarized, unlike the edge currents produced in a quantum 

Hall insulator.13  This difference is shown in Fig. 1-3.  Many additional physical phenomena appear 

when a superconducting and topological state coexist including those applicable to quantum 

computing.  In order to explore the potential for this interaction, we will first discuss the properties 

of superconductivity and how it is detected. 

Figure 1-3. In a) the application of a magnetic field produces an edge current.  In a topological insulator b), 

spin-polarized edge currents are produced without the application of fields. [adapted from ref. 13] 
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1.2.2 Superconductivity 

The main effect of superconductivity on the electromagnetic properties of a material is due 

to the pairing of electrons to form a perfectly conducting state and the complete expulsion of 

magnetic fields from the material. These effects begin to appear at critical temperature Tc and 

generally have a small range of temperature for the sample to completely transition to the 

superconducting state.  This gradual transition is often caused by inhomogeneities and defects in 

the sample but generally has a finite width even in very homogenous samples.  There are many 

other signatures of the superconducting state including changes in heat capacity, flux quantization, 

microwave absorption, etc., but perfect conduction and magnetic expulsion are the main properties 

of interest in the detection of superconductivity and interaction with a topological state.   

The exact origin of superconductivity in many systems, including those of interest in this 

dissertation, is not always clear, however, many signatures of superconductivity are universal 

across all systems, particularly resistive and diamagnetic transitions.  For superconductivity to 

appear, conducting electrons (or holes) must have a means of propagating through the material 

without loss of energy.  This is the minimum requirement for a state with zero resistance.  

Superconducting theory allows for this by adding a pairing potential between electrons with 

opposite momentum.  The attractive pairing, usually mediated through phonons, allows fermionic 

electrons (holes) to form a Bose-Einstein condensate. Condensation of electrons (holes) allows for 

electrons (holes) to change momentum with zero energy loss through an interaction with the lattice.  

The pairing of electrons at the Fermi energy also lowers the energy of conducting electrons (holes) 

and forms a gap in the density of states at the Fermi energy. This gap technically makes the 

superconducting state topologically identical to a trivial insulator, even though conduction is still 

possible. The opening of a band gap in a superconductor (shown in Fig. 1-4) allows for the 
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calculation of topological numbers, for which the material must exist in a fully gapped bulk state.  

Additionally, the particle-hole pairing symmetry induced in a superconductor will influence the 

determination of topological class due to the dependence of topological numbers on the symmetry 

states in a material.  

In addition to obtaining zero resistance, superconductors also become completely 

diamagnetic below a critical magnetic field (Hc).  This expulsion of fields is achieved by a 

spontaneous screening current manifest in the superconductor, the physics of which will not be 

discussed in this dissertation.14  Diamagnetism is used as a tool to detect superconductivity through 

measurements of magnetization, and is also particularly relevant to the interaction of the 

superconducting and topological states.  In superconductors designated “Type II,” magnetic flux 

quanta penetrate the superconducting state above a critical field (Hc1) by creating non-

superconducting regions known as an Abrikosov vortices, inside the otherwise superconducting 

material that is screened by a superconducting current. The density of vortices increases with 

Figure 1-4. Formation of the superconducting energy gap at the Fermi energy 
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magnetic field until the entire material becomes normal above a second critical field (Hc2).  When 

a topological material and a superconductor coexist, these vortex cores provide a boundary 

between a trivial and topological state, which harbors topological edge states and Majorana 

fermions.  While a vortex is not necessary to generate topological edge states, which are generally 

produced at any boundary where a topological number changes, vortices are manipulable via 

magnetic fields, unlike other boundaries such as crystal defects or the sample surface.  

1.2.3 Topological Superconductivity 

As electrons pair to form the superconducting state, the opening of an energy gap at the 

Fermi energy allows for the construction of topological numbers.   In addition, a particle-hole 

symmetry is introduced, which is essential in construction of topological numbers in 

superconductors. In 1D (e.g. a superconducting edge state) this quantizes the Berry phase as 𝑀𝑀𝜋𝜋, 

where M is an integer.7 This Berry phase is essential for the creation of Majorana fermions, pairs 

of which can form qubits for quantum computing.1,7,11,15  

When a type-II superconductor is in a sufficiently strong magnetic field, the magnetic flux 

penetrating the material breaks the superconducting state.  Edge states of supercurrent circulate 

around the flux cores which transition into the normal state.16,17  If the normal metal has different 

topology than the superconductor, this will create an edge state due to the bulk boundary 

correspondence which is manipulable via magnetic fields to make practical devices.7 
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1.2.4 Majorana Fermions 

The creation of Majorana fermions is the primary goal of producing topological 

superconductors for quantum computing.  The Majorana fermion was first proposed in 1937 as an 

elementary particle satisfying the Dirac equation that is identical to its own antiparticle.18  Soon 

after the discovery of topological insulators, it was realized the coexistence of a superconducting 

and topological state would harbor Majorana fermion quasiparticles.15 In the superconducting 

state, electron and hole excitations are superimposed, allowing a superconducting excitation to act 

as its own antiparticle.   

The gapless excitations (surface states) formed at the boundaries of topological insulators 

are naturally described by the Dirac equation.11,19 This combination of properties allows edge 

states in topological superconductors to act as Majorana quasiparticles. While the conducting 

surface state of a topological insulator is generally at odds with the fully gapped state of 

superconducting Cooper pairs, the boundary of a superconductor and topological insulator at 

locations such as Abrikosov vortices support Majorana quasiparticles through the superconducting 

proximity effect.7  The Berry phase (φ=π) for superconducting topological insulator) induced by 

Figure 1-5. a) In a superconductor, a hole (white) can bind to a Cooper pair of electrons, acquiring a negative 

charge.  b) Cooper pairs cluster around holes such that no distinction between electrons and holes remain.15 
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“braiding” vortices allows pairs of Abrikosov vortices to become their own antiparticles through 

a φ=π phase change around a Abrikosov vortex allow Majorana states to have identical creation 

and annihilation operators, allowing their use as quantum memory.1,7,20   

 MANIPULATION OF THE FERMI SURFACE 

To create devices which exploit properties of the topological state, one must first synthesize 

high-quality samples of relevant materials and learn how to manipulate factors which alter or tune 

the topological and superconducting state.  These alterations are made through the manipulation 

of the material’s symmetry, chemical potential, and spin-orbit coupling parameters.  Coupling 

parameters and material symmetry are crucial to generate a topological state, which must manifest 

from a fully gapped band structure, while tuning the chemical potential is important to realize the 

isolation of topological surface states, rather than the coexistence of topological and bulk 

conducting states. This dissertation mainly focuses on controlling these effects through 

modification of interstitial elements and quenching parameters used in the synthesis of candidate 

topological superconductors, namely FeTe and Bi2Se3 compounds. 

The most direct way altering the Fermi surface is through the addition of charge carriers. 

Charge carrier doping is often achieved by element substitution, for example in semiconductors, 

but this technique often has effects on material symmetry and atomic coupling parameters, which 

alter the band structure. Intercalation, on the other hand, modifies the Fermi energy in a more direct 

and isolated manner than doping.  In interstitial regions, the only bonding present is due to van der 

Waals forces, and therefore elements added to the interstitial do not bond strongly to elements in 

the lattice, limiting their effects on the rest of the material. Interstitial charge doping may be 
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achieved as a 2D, 1D, or 0D effect, but in materials such as FeTe and Bi2Se3, the interstitial region 

is a plane, and separates 2D layers of parent material.  In this way, these systems are much like 

graphite with loosely bound layers of material.  When metal ions are added to the interstitial, the 

increased density of electrons increases the Fermi energy due to the Fermionic nature of electrons, 

demanding any additional electrons fill unoccupied higher energy states.21  In general 1D or 0D 

interstitial sites also exist, which are organized in either columns or points. Intercalated compounds 

of this type are especially popular in electrochemical storage materials.22,23  While intercalated 

atoms are relatively isolated from the rest of the atomic structure, the lattice often expands in the 

directions perpendicular to the area of the interstitial, although lattice contraction is also possible, 

e.g. in NaMO3 (M=Transition metal).24 In Bi2Se3 and FeTe, increasing concentration of 

intercalating atoms translates to an expansion of the c axis.25,26  Additional details of the effects of 

metal intercalation in Bi2Se3 and FeTe will be discussed in later sections.  

 OBJECTIVE #1: EFFECTS OF QUENCHING ON SUPERCONDUCTIVITY AND 

THE TOPOLOGICAL STATE IN BISMUTH SELENIDE 

The appearance of superconductivity at atmospheric pressure in copper-intercalated bismuth 

selenide is perhaps the most direct manifestation of the coexistence of a topological insulator and 

a superconductor.  While the topological state in Bi2Se3 is interesting on its own accord, the 

appearance of superconductivity in Bi2Se3 opens the door for many potential applications of the 

material, and answers to fundamental questions of the behavior of electrons in the system, 

including how superconducting electrons are formed and how they interact with the topological 

state.  However, the study of this system is impeded by a lack of consistency in synthesizing 
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superconducting samples.  The appearance of superconductivity only appears when intercalated 

samples are quenched, although the direct effects of quenching are not understood.  The effects of 

quenching on the Fermi surface and Fermi energy must be determined with respect to appearance 

of the topological and superconducting state and will help to explain the origin of 

superconductivity in Bi2Se3 as well as a universal means of manipulating the Fermi energy of 

related systems.   

 OBJECTIVE #2: EFFECTS OF OXYGEN TREATMENT ON SINGLE-CRYSTAL 

IRON TELLURIDE 

The properties of iron-based superconductors are influenced strongly by intercalated elements that 

modify low-temperature structural and magnetic phases in FeTe.  Oxidation of FeTe is suggested 

to remove interstitial iron in single crystals and is shown to induce superconductivity in thin films.  

However, oxidation of FeTe does not reliably induce superconductivity in bulk FeTe.  The 

difference in effects of oxygen in FeTe single crystals and thin films remains an open question, 

and a characterization and explanation of these differences will create a greater understanding of 

the control of superconductivity in Fe-based superconducting systems.  Here we investigate the 

effects of oxidizing Fe1+dTe single crystals on interstitial iron and the surrounding crystal structure.   
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2.0  CRYSTAL GROWTH 

To study the properties of Bi2Se3 and FeTe, synthesis of high-quality single crystals is first 

performed.  While the manifestation of a topological state has no large requirement on the size of 

a crystal domain, the growth of single crystals is critical for the study of crystal properties.  The 

appearance of large single crystals ensures sample homogeneity, as inhomogeneity usually results 

in defects such as grain boundaries.  Many material properties depend on the quality of the atomic 

lattice, and a high defect density influences many material properties such as the robustness of the 

superconducting state and electron mobility.  Additionally, angle-dependent measurements are not 

possible in samples with many small crystals of different orientations. Thus, the growth of large 

single crystals is a great advantage in the characterization of many material properties. 

 Single-crystal growth of FeTe and Bi2Se3 was primarily performed using a self-flux 

method.  Here, stoichiometric ratios of constituent elements are sealed in an evacuated quartz 

ampule.  This technique  provides a method for synthesis of reactive compounds which precipitate 

a solid directly from a liquid, particularly in congruent (S⇋L) or  syntactic (L1+L2⇋S) reactions.27  

It is not possible to form large crystals which usually form via a solid state reaction (S1⇋S2) unless 

a flux is used to dissolve the elements .  Self-flux crystal growth via quartz ampules is applicable 

for a large variety of elements due to the relatively low reactivity of silica glass (also known as 

fused quartz) up to temperatures of ~1120 ⁰C, above which temperature the strength of quartz 

begins to significantly weaken. In some cases, our group has modified this method to use double 

walled quartz tubes, or alumina tubes sealed in quartz, when ampule failure is caused by element 

reactivity or expansion upon solidification. 
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 IRON TELLURIDE 

FeTe is a non-superconducting binary compound of the same structure as superconducting 

FeSe.  This phase is of particular interest due to its status as the simplest variant of the Fe-based 

superconductors.28,29  Samples of iron telluride were prepared to study the effects of oxygen on 

atomic valence states, interstitial iron, and crystallography via the following method. Fe1+dTe was 

prepared with tellurium pieces (Alfa Aesar 99.999%) and iron pieces (Alfa Aesar 99.99%) which 

are mixed in stoichiometric ratios under Argon atmosphere and sealed in quartz tubes under 

vacuum of <60 mTorr.  The samples were heated to 425 °C at 10 °C/min, then to 960 °C at 1° 

C/min where the temperature was stabilized for one hour.  The samples were then cooled to 750 

°C at a rate of 6 °C/hour and quenched in room-temperature water.  The quench temperature of 

750 ⁰C was chosen to correspond to the broad area of the β phase (Fig. 2-2), to reduce the likelihood 

of impurity phases forming due to local inhomogeneity.30   

The resulting single crystals were large and easily cleavable along the ab plane as seen in 

Fig 2-1.  Oxygen annealing was performed by heating cleaved crystals or ground powders to 125 

°C for 2.5 hours in a tube furnace of volume 1.5x103 cm3 while flowing oxygen gas at a rate of 

1x104 cm3/hr during heating and cooling.     

Figure 2-1. Single crystals of iron telluride 
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Single crystals of FeTe do not typically show a superconducting phase transition, although 

FeTe1-xSex is superconducting for 0.3<x<1 with the highest confirmed Tc for an iron-based 

superconductor (Tc=65K) obtained by growing monolayer FeSe on a SrTiO3 (001) surface.31  FeSe 

cannot be grown into bulk single crystals, even though the phase diagram of Fe-Se is very similar 

to that of FeTe. There is, however, an important difference in the disappearance of the Catatectic 

region of the phase diagram such that FeSe forms from a solid solution of α-phase Fe and δ-phase 

Fe3Se4.32  In addition limitations on crystal size, the region of the phase diagram (shown in Fig. 

2-3) leading to superconductivity (tetragonal phase) has only a narrow range of stoichiometry and 

Figure 2-2.  Phase diagram of the Fe-Te system.   The phases labeled β, δ, and ε correspond to 

FeTe, Fe2Te3, and FeTe2 phases respectively. The crystal structure of the γ phase has not been identified.  

Phases labeled γ, δ, and δ’ are generally not stable at room temperature. 30 
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quench temperature leading to superconductivity.  Fe1+dSe (d=0.01-0.03) samples must be 

quenched from between 300-450 °C in order for superconductivity to occur.33  Although we have 

grown FeSe from a flux, the extreme sensitivity to stoichiometry has limited the ability to produce 

superconducting samples due to a flux’s ability to alter characteristics of the phase diagram 

through factors such as precursor solubility and crystallization dynamics.  

The phase stability and iron intercalation concentration of Fe1+dTe are two of the factors 

thought to affect the onset of superconductivity in bulk Fe1+dTe. In this dissertation, the control of 

interstitial iron via oxygen annealing in Fe1+dTe is used as a method of post-synthesis treatment to 

alter interstitial iron concentration and tune the structure into the optimal concentration for 

superconductivity.  This method of generating single-crystal Fe1+dTe with controllable iron 

concentration will provide a valuable source of knowledge on the control of interstitial elements 

in iron-based superconductors.  

Figure 2-3.  Phase diagram of the Fe-Se system33 
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 BISMUTH SELENIDE 

Bi2Se3 was prepared in a similar manner to FeTe, where stoichiometric ratios of bismuth 

and selenium were sealed in evacuated quartz ampules.   Bi2Se3 crystallizes easily from the melt 

due to the crystallization directly from the self-flux.   Superconductivity in this sample is only 

induced by quenching, which must be performed above 560 °C, according to Schneeloch et al.34 

However, the large number of phases with similar stoichiometry and crystallization temperatures 

in the Bi-Se system is a sign of the small amount of energy needed for a crystal phase transition.35 

This stark contrast to similar crystals such as Sb2Te3 is apparent in Fig. 2-4.36 The Bi-Se system 

contains many stoichiometrically similar compounds (Bi3Se4, Bi4Se5, etc.) which are easily be 

formed via mechanical stress.  This aspect makes the hexagonal Bi2Se3 particularly sensitive to 

mechanical stress. A consequence of this sensitivity is that the sample cannot be mechanically 

ground to a powder due to the crystal decomposing into multiple phases, making many 

measurements such as powder XRD of pure phase Bi2Se3 single crystals infeasible.  Additionally, 

the sample surface oxidizes easily, requiring careful storage and minimization of time spent in air 

to maintain pure-phase samples.37  While the crystal phase of Bi2Se3 is much more sensitive than 

similar topological insulators, such as Sb2Te3, it has a much larger bulk band gap of ~0.3 eV vs  

~0.01 eV, meaning surface states can dominate transport properties at much higher temperatures 

when the Fermi energy lies in the bulk bandgap.38 
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Figure 2-4.  Phase diagrams of the Bi-Se and Sb-Te systems containing the isostructural topological 

insulators Bi2Se3 and Sb2Te3.36 
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3.0  SPECIAL TECHNIQUES 

 TRANSPORT MEASUREMENTS 

Resistivity measurements were performed using a 4-probe inline measurement as 

diagrammed in Fig. 3-1.  This configuration allows the measurement of sample resistance 𝑅𝑅 =

𝑉𝑉/𝐼𝐼 without needing to subtract the resistances of the wires or contacts.  In the 4-probe technique, 

no current is sent through wiring to the voltmeter, guaranteeing no voltage drop due to the 

resistance of the wire (Rw), or the contact resistance.  

At cryogenic temperatures, consideration of the current is made to minimize heating at the 

sample and maintain a uniform temperature between the sample and the cryostat.  A current 

typically of the order of 1 mA was used.  For Cu0.12Bi2Se3 sample 2b (for example), this translates 

to a heating power at the sample of ~ 1x10-7 W, which has a negligible effect on the sample 

temperature due to the much higher cooling power of the cryostat.   

Samples were mounted on a “Resistance Puck” by Quantum Design for use in a Physical 

Property Measurement System (PPMS) (Fig. 3-2a) and 8 contact DIP sockets (Fig. 3-2b) for use 

Figure 3-1. Schematic of 4-probe resistance measurement 
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at the National High Magnetic Field Laboratory.  Crystals were fixed to the carriers using VGE-

7031 varnish and cured at room temperature in inert atmosphere to minimize air exposure.  

Electrical connections were made using 20 μm gold wire affixed to samples and I-V contacts with 

silver paint.  All wires in the probe channel were formed into twisted conducting pairs to minimize 

any signals from inductive effects.  

3.1.1 Shubnikov de Haas Oscillations 

Shubnikov de Haas (SdH) oscillations in resistivity were analyzed to probe the Fermi 

surface of Bi2Se3.  SdH oscillations appear in resistivity in strong magnetic fields at low 

temperatures as the result of a changes in the density of electron states at the Fermi level.  When a 

strong magnetic field is applied, allowed orbital energies of electrons (E) are quantized into 

constant energy surfaces according to the equation 

𝐸𝐸 = �𝑛𝑛 +
1
2
� ℏ𝜔𝜔𝑐𝑐 ,  𝜔𝜔𝑐𝑐 =

𝑒𝑒𝑒𝑒
𝑚𝑚∗𝑐𝑐

, (3.1) 

Figure 3-2. Inline contacts for resistance measurements on CuxBi2Se3 samples. 
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where 𝑚𝑚∗ is the effective electron mass, B is the magnetic field, e is the electron charge, and c is 

the speed of light. 

These energy levels have a finite width, which can cause the quantized energy levels to 

overlap.  When the constant-energy surfaces are sufficiently separated on a 2D Fermi surface, the 

material enters the quantum Hall state discussed earlier, where the material becomes periodically 

insulating with magnetic field. Before this point, an increasing magnetic field causes sequentially 

numbered levels to pass through the Fermi level, causing a modulation in the density of electrons 

participating in conduction. The varying density of states causes a modulation in resistivity which 

is modeled using the Lifshits-Kosevich (LK) formula for SdH oscillations,  

∆𝑅𝑅 = 𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛 �
2𝜋𝜋𝜋𝜋
𝑒𝑒

+ 𝛽𝛽� (3.2) 

𝐴𝐴 ∝ 𝑒𝑒1 2�
𝛼𝛼𝑚𝑚∗ 𝑇𝑇 𝑒𝑒⁄

sinh(𝛼𝛼𝑚𝑚∗ 𝑇𝑇 𝑒𝑒⁄ ) exp(−𝛼𝛼𝑚𝑚∗ 𝑇𝑇𝐷𝐷 𝑒𝑒⁄ ) (3.3) 

where ∆𝑅𝑅 is the change in resistance from the background magnetoresistance, f is the SdH 

frequency, 𝑒𝑒 is the applied magnetic field, 𝛽𝛽 is the Berry phase, 𝛼𝛼 = 2𝜋𝜋2𝑐𝑐𝑑𝑑𝐷𝐷 𝑒𝑒ℏ ≈ 14.69 T/K⁄ , 

and 𝑇𝑇𝐷𝐷 = ℏ/2𝜋𝜋𝑑𝑑𝐷𝐷𝜏𝜏𝑆𝑆 is the Dingle temperature.39,40  𝜏𝜏𝑆𝑆 is the mean scattering time of electrons, 

which is directly related to electron mobility. Minimum resistance is achieved as Landau levels 

pass through extremal cross sections of the Fermi surface.  The separation of energy levels under 

application of magnetic fields is illustrated for a spherical Fermi surface in Figs. 3-3 and 3-4. 
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Figure 3-3. Under the application of a magnetic field |𝑩𝑩| = 𝑩𝑩𝑩𝑩 electrons are quantized to constant 

momentum surfaces in kx, ky plane. The density of conducting electrons at the Fermi energy is modulated as 

Landau levels pass through extrema in the Fermi surface perpendicular to the applied field. 

Figure 3-4. Occupation of Landau levels as a function of energy.  In (a) and (b), there are no electrons at the Fermi 

energy leading to an insulating state (quantum Hall state).  As the field continues to increase, Landau levels move 

through the Fermi energy, forming a metallic state. 
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The SdH frequency is proportional to the size of extremal cross sections of the Fermi 

surface in the plane perpendicular to the applied field through the LK formula for oscillation 

frequency, 

𝜋𝜋 =
ℏ

2𝜋𝜋𝑒𝑒
𝑆𝑆(𝜃𝜃), (3.4) 

 where 𝑆𝑆(𝜃𝜃) is the Fermi surface extremal cross section perpendicular to the magnetic field 

direction. The dependence only on extremal cross sections means for spherical or elliptical Fermi 

surfaces (for instance) there will be a single SdH oscillation amplitude observed at any particular 

angle while more complicated Fermi surfaces will show multiple frequencies.  For 2D Fermi 

surfaces (cylindrical), all electrons at the Fermi surface have the same 𝑑𝑑𝑥𝑥𝑥𝑥 = �𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑥𝑥2 .  This 

allows Landau levels to form an insulating state for well separated levels leading to the quantum 

Hall state discussed earlier.  A 3D Fermi surface, however, will continue to have electrons at the 

Fermi energy even as the separation of electrons into Landau levels removes electrons from the 

Fermi energy in the kxy plane as is seen in Fig. 3-3. 

While SdH oscillations only measure the extremal cross section of the Fermi surface, much 

more meaningful information about the Fermi surface may be extracted if certain assumptions are 

made. Assuming a linear energy dispersion, the SdH frequency relates to Fermi surface size 

through the linear energy dispersion relation 𝐸𝐸𝐹𝐹 = 𝑣𝑣𝐹𝐹ℏkF ; where ℏ𝑑𝑑𝐹𝐹 is the electron momentum 

and 𝑣𝑣𝐹𝐹 is the Fermi velocity.  Considering a Dirac-type band dispersion, we may consider EF=0 at 

the Dirac point for simplicity.  In the case of a non-linear band dispersion, we can still extract 

information about the Fermi energy if we include a more accurate model of the band dispersion. 

This is used with the LK formula for oscillation frequency to determine the Fermi energy. For 

circular cross sections, 𝑆𝑆(𝜃𝜃) is expressed in the reciprocal space as S= 𝜋𝜋𝑑𝑑𝐹𝐹
2.  The effective mass 
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is found by fitting the temperature-dependent amplitude of oscillations, and relates to the band 

structure through  

𝑚𝑚∗ =
ℏ2

2𝜋𝜋
∂S
∂E

. (3.5) 

These relations are used to calculate the Fermi energy above the Dirac point by measuring 

the temperature dependence of the SdH frequency using 

𝐸𝐸𝐹𝐹 = 𝑣𝑣𝐹𝐹ℏk𝐹𝐹 (3.6) 

𝑣𝑣𝐹𝐹 = (2𝑒𝑒ℏf)1 2�

𝑚𝑚∗   and  𝑑𝑑𝐹𝐹 = �2𝑒𝑒𝑒𝑒
ℏ
�
1
2� . 

Due to the linear dispersion of surface states at the Dirac point combining with the extrema 

of bulk states in Bi2Se3 near the Dirac point, these estimates can represent a good estimation of 

the minimum energy above the Dirac point, even when the conduction is dominated by bulk 

electrons.  This estimate’s correspondence to the actual size of the Fermi surface will break down 

for high-energy states of the bulk conduction band where there is significant deviation from the 

modeled band structure. Nonetheless, this represents an estimation of the Fermi energy for a 

particular cross section.41,42 
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 MAGNETIZATION 

Magnetization measurements were performed using a Quantum Design AC measurement 

system (ACMS).  An ACMS measurement coil is pictured in Fig. 3-5.  Magnetization was 

determined using AC susceptibility.   After loading, samples were placed in a DC field, typically 

ranging from 50 to 200 Oe, modulated with an AC field of 10 Oe at 1000 Hz.  Magnetization was 

determined using the inductance of a secondary detection coil centered around the sample.  When 

the sample temperature is lowered below Tc, samples entering the superconducting state become 

diamagnetic, creating negative magnetic susceptibility.  Hc1 is measured as the point at which 

magnetic field begins to enter the superconducting state and is most easily observed if 

diamagnetism is saturated regardless of superconducting phase fraction.  Hc2 is measured as the 

field value when the superconducting state is completely lost and the magnetic susceptibility is the 

same as that of the normal state above Tc. 

 CRYSTAL DIFFRACTION 

Numerous diffraction techniques are employed to probe the structure of materials after 

synthesis.  All crystal diffraction techniques exploit scattering from atomic positions, although the 

Figure 3-5. Quantum Design ACMS probe 
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atomic scattering factors for different radiation may differ, e.g. x-ray, electrons, and neutrons.  

X-rays primarily interact with the electron cloud, electrons interact with the electric potential of 

the nucleus, and neutrons interact with the nuclei via nuclear forces.43–45  For samples of FeTe, 

powder XRD (x-ray diffraction) was primarily used to determine the crystal symmetry and bulk 

atomic lattice parameters to probe the structure of samples.  X-ray diffraction (XRD) of powdered 

samples is a standard characterization technique for crystal structure due to the fast acquisition 

times and illumination of many randomly oriented particles.  This allows an averaging of many 

particles and allows a determination of the phase concentrations, particle size, lattice strain, and 

many other statistical factors.  However, powder XRD is not ideal for structural determination in 

many cases, including Bi2Se3 crystals.  Mechanically sensitive samples such as Bi2Se3, cannot be 

powdered due to low crystalline stability, nor is XRD ideal for the detection of weakly scattering 

phases, including superstructures, charge density waves, and low dimension phases. On the other 

hand, selected area electron diffraction (SAED) utilizing a transmission electron microscope 

(TEM) addresses many of these issues.  

3.3.1 Transmission Electron Microscopy 

The physics of diffraction in an electron microscope is very similar to diffraction via XRD 

with the same basic stages, as is simplified in Fig. 3-6. Firstly, particles are excited to a uniform 

energy.  In XRD this is done via emission of photons from excited atomic energy levels and 

selected via a diffracting monochromator. In most lab-based XRDs this is typically a Cu-Kα 

photon with wavelength λ=1.5406 Å. In a TEM, electrons are accelerated using an electron gun, 

typically 300 keV (λ= 1.97 pm) for inorganic materials.  Next the particles are collimated, using 

apertures and Soller slits or electromagnetic lenses for XRD and TEM respectively.  After 
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interaction with a sample, the diffracted particles are detected, commonly via CCD camera.  These 

systems have many notable differences including the wavelength and charge of diffracting 

particles, illuminated area, and beam optics.   

The much higher energy of electrons in a TEM has many physical effects on diffraction, 

including the introduction of multiple scattering, which can make otherwise forbidden reflections 

present.  While the inelastic scattering can complicate analysis by modifying scattering intensities, 

it can also reveal additional atomic spacings which may not be apparent in XRD.  Differences in 

illuminated area also have a strong effect on the types of atomic periodicities that are detectable.  

In a TEM, a SAED aperture allows diffraction from only a small thin region of a sample, typically 

of dimension 10μm to 1 nm.  Diffracting electrons need to transmit through the sample to be 

detected in a Laue geometry, unlike a lab based powder XRD for which photons scatter off the 

atomic planes of the sample, typically in a Bragg geometry.  This restriction limits the size and 

quantity of particles which are used for diffraction but allows diffraction from single crystals of 

extremely small volume.  The ability to diffract from a single small crystal provides greatly 

Figure 3-6. Simplified schematic of TEM and powder XRD systems. 
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increased signal to noise ratios, allowing for the detection of structures with weak scattering.  

Finally, the optical system of a TEM provides the ability to image samples in real space, instead 

of only performing diffraction, allowing for the analysis of non-periodic defect structures (e.g. 

crystal domains). TEM optics also extract a 2D diffraction pattern, like Laue XRD, rather than 

rotationally averaged diffraction patterns of many particles from powder XRD.  Specific details 

on how these techniques were used to determine structural details in the FeTe and Bi2Se3 system 

are discussed in later sections. 
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4.0  BISMUTH SELENIDE 

Bi2Se3 is part of the so called “second generation” of topological insulators which have 

larger band gaps, and simpler surface states than the first 3D topological insulators found.46  The 

first generation of a 3D topological insulator was Bi1-xSbx for 0.07 < x < 0.22 and while it was a 

revolutionary discovery, many challenges exist for this material in both the understanding of the 

physics of topological insulators and its potential for applications.47   The alloyed nature of Bi1-

xSbx makes the maintenance of elemental homogeneity difficult, unlike Bi2Se3’s existence as a 

stoichiometric compound. Bi2Se3 is driven towards chemical homogeneity due to the unique 

locations of bismuth and selenium in its structure. This is unlike alloys which generally form with 

varied stoichiometry through crystallization.  Additionally, Bi2Se3 only has a single topological 

band crossing, giving it the simplest band structure for a topological material, whereas the surface 

bands of Bi1-xSbx cross the Fermi energy 5 times.  While a material will remain topologically 

nontrivial for any odd number of crossings, a large number of crossings makes the study of the 

topological state particularly difficult due to the differences in electron characteristics at band 

Dirac points occurring at different symmetry locations.  Finally, Bi2Se3 has a much larger bulk 

bandgap than Bi1-xSbx, reported in excess of 0.3 eV.38 This relatively large band gap allows for 

protection of surface states above room temperature. 

The non-trivial topological state of Bi2Se3 depends on many material characteristics, but 

is robust due to protections from relatively insensitive parameters including the crystal structure 

and spin orbit coupling parameters.   In Bi2Se3, the topological state is protected by time-reversal 

symmetry of the Hamiltonian, meaning it will remain protected under non-magnetic disorder, 

although magnetic fields or magnetic impurities will break the topological state, and open a gap in 
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the surface states at the Dirac point.  Magnetic impurities allow for scattering to induce a spin flip, 

and a continuous electronic state across what would otherwise be a time-reversal-invariant point 

in momentum space.   The discovery of superconductivity in Bi2Se3 under atmospheric pressure 

allows the manifestation of all the properties of a topological superconductor previously discussed. 

 SUPERCONDUCTIVITY 

Copper-intercalated bismuth selenide (CuxBi2Se3) is confirmed by many groups as a 

superconductor that becomes superconducting only under specific quenching conditions during 

synthesis.  Other groups have studied the range of quenching temperature that leads to 

superconductivity and generally found to it to be between 560-620 °C with some reports of 

superconductivity occurring when quenched just below the melting point of Bi2Se3.48 This work 

studies the effects of quenching on CuxBi2Se3 (x=0.12) to determine the effects of quenching on 

electronic and crystal properties and how the superconducting and topological states are impacted.   

 

4.1.1 Magnetization 

Temperature-dependent magnetization (MT) of samples quenched at 620 °C found a 

superconducting transition at 2.9 K shown in Fig. 4.1.  No superconducting transition was detected 

for unquenched samples. Magnetization was performed by AC method with a 200 Oe DC field 

modulated by 10 Oe at 1000 Hz.  The in-phase magnetization signal (M’) is plotted as 

electromagnetic units/gram (emu/g).  
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Magnetization vs. applied magnetic field (MH) shown in Fig. 4-2 was also measured to 

determine the critical field of the superconducting state.  MH measurements reveal a surprisingly 

low critical field, which brings most of the sample into a normal state at fields above ~100 Oe (10 

mT).  The weak critical fields suggest a Tc measured via magnetization will be closer to the 

resistive Tc of 3.2 K if weaker fields are used.  While Hc1 is difficult to quantify in these 

measurements due to the very low critical fields, Hc2  is also difficult to determine due to the broad 

transition in MH measurements and the diamagnetic normal state of the material. 

Figure 4-1. Magnetization vs. Temperature of Cu0.12Bi2Se3 quenched at 620 °C. 
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4.1.2 Resistivity 

While the superconducting state appears weak to applied magnetic fields, resistive data are 

surprisingly robust in comparison.  Resistive data indicate a critical field (Hc2) of ~2.8 T at 0.3 K 

using an applied current of 1 mA.  This difference has many possible origins, but many relate to 

measurements of magnetization as a bulk effect, while resistivity only gives an indication of total 

supercurrent through the sample leading to a drop in resistance.  The relation of resistivity drop to 

superconductor volume is complicated by uncertainty in the shape of superconducting channels. 

The changes in resistivity and magnetization, combined, imply that the superconducting volume 

Figure 4-2. AC magnetization vs. magnetic field of Cu0.12Bi2Se3 quenched at 620 °C. 
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fraction is not uniform due to the broad transitions in temperature, with small areas resistant to 

high magnetic fields while the bulk of the sample is driven into the normal state. While we expect 

a saturation of resistance and magnetization at low temperatures, Hc is strongly correlated with the 

critical current density (Jc), meaning larger applied currents will generate correspondingly smaller 

critical fields (and temperatures).  This relation of critical current to field is due to the generation 

of the screening currents which expel magnetic fields.49  A critical field of 100 Oe implies a critical 

current of ~3 mA for a 1 mm2 cross section which is on the same order of magnitude as the 1 mA 

which was used in this sample.  The sample used was of dimension ~ 1x5x5 mm3, but uncertainty 

in the size of the superconducting channels makes a calculation of the actual current density 

impossible. 

 

Figure 4-3. Magneto-resistance curves of Cu0.12Bi2Se3 quenched at 620 ⁰C. 
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In this sample, inhomogeneity impeding the formation of superconductivity is likely due 

to crystal defects and finite-size effects.  Lattice constants, intercalated copper, and chemical 

potential are unlikely to cause this inhomogeneity due to the uniformity of the Fermi energy found 

throughout the sample which is discussed later in the analysis of SdH oscillations.  Further 

measurements of critical fields Hc1 and Hc2 through magnetization and resistive measurement will 

be able to shed some information on the influence of filamentary superconductivity based on the 

shape of the superconducting dome.  

Samples are dependent on quenching to generate the superconducting state, which has been 

found to influence volume fractions, but not transition temperatures.34 The total resistance drop in 

the samples presented here is ~63% at 350 mK. While this means the sample is not completely 

homogenous, this represents a greater volume fraction than found in many other reports, and all 

other reports that were able to measure SdH oscillations.42,50,51 

 STRUCTURAL ANOMALIES IN COPPER-INTERCALATED BISMUTH 

SELENIDE 

TEM diffraction (SAED) of CuxBi2Se3 in Fig. 4-3 (a) generally shows pristine crystals 

with a high degree of hexagonal symmetry (R-3m:H space group), indicating the most areas have 

crystalized uniformly due to the slow cooling rate during crystallization.  Preparation of TEM 

samples was performed via a combination of ion milling and mechanical exfoliation, which is able 

to thin the samples sufficiently without the formation of additional phases, unlike mechanical 

grinding.   The most common defect seen is the appearance of satellite peaks, generally indicating 
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improper stacking of atoms.  These regions are the result of either a local stretching of atomic 

lattice due to some crystal defect or other inhomogeneity, or peaks from a different zone axis, 

appearing due to the relative tilt of a smaller crystal domain.  Occasionally, satellite peaks 

resembling a charge density wave (CDW) ordering are seen, as in Fig. 4-3 (b). This type of charge 

ordering is commonly seen in various layered dichloride systems, e.g. 1T-TaS2.52,53  The origin of 

CDWs in Bi2Se3 is not definitively known at this time, but some relevant explanations to this 

system are notable. 

4.2.1 Charge Density Waves 

In some cases, CDW waves are interpreted as an ordered defect structure. Here, a minority 

region of the sample has slightly modified a and b lattice parameters, which are close enough to 

allow the minority lattice to match the host crystal in some areas through a flexibility in atomic 

bonding distances.  This causes a buildup of stress in the crystal structure, which is concentrated 

Figure 4-4. SAED patterns of unquenched Cu0.12Bi2Se3.  
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into regions where the bond distance can relax, causing a regular modulation of crystal lattice 

parameters.  In Cu0.12Bi2Se3 the inhomogeneity in local structure is most likely caused by the 

copper intercalant.  While copper is intended to intercalate with uniform, random order into the 

van der Waals gap, this is most likely not the case, as the interaction of inhomogeneous copper 

intercalation with the lattice can cause the satellite peaks and CDWs.  High concentrations of 

copper (x>~0.15) during the crystallization of CuxBi2Se3 are known to cause the substitution of 

bismuth in the form of Cux-y(Bi2-yCuy)Se3.54  Excess bismuth from this substitution can form a 

Bi-Cu alloy and the parent phase can decompose into Cu2Se.55,56 These compounds will invariably 

form defects, and while these compounds were not observed via diffraction, their presence is also 

possible in a disordered form at grain boundaries.  The effect of metallic intercalation on bulk a-b 

lattice parameters is not known in Bi2Se3 but has negligible effects in similar structures, e.g. 

Bi2Te3.57  Even so, the sensitivity of the Bi2Se3 phase to mechanical deformation may indicate a 

difference in Bi2Se3 from the isostructural Bi2Te3 system.  Due to the lack of flexibility of a-b 

parameters of the Bi2Se3 structure, CDW ordering is likely caused by ordering of the copper 

intercalant itself, rather than a direct effect on the host lattice. Near the intercalation density in 

question, (x=0.12) at least some metallic bonding is likely to begin.  As copper acts as a charge 

donor to the system, copper atoms will share the conducting electrons, creating an attractive force 

between intercalating atoms and crystal defects.  Due to the low density of intercalant, some 

amount of copper mobility is expected, similar to the case of mobile Fe intercalant in Fe1+dTe 

discussed later.  CDWs may also form without inhomogeneity causing a lattice mismatch.   

A common explanation for the formation of CDWs is the nesting of wave-vectors on an 

adjacent (cylindrical)  flat surface of the Fermi surface.58–60  This type of Fermi surface is theorized 

to manifest in Bi2Se3, although it is not observed in our measurements via SdH oscillations, or in 



 41 

the work of other groups at the time of this writing.38 While Fermi surface nesting may explain 

CDWs in Bi2Se3, the theory of nesting causing a CDW wave is much debated at this time, as 

groups have shown the energies associated with Fermi surface nesting as negligible compared with 

other energies.60 Additionally, if Fermi surface nesting is responsible for CDW formation, a 

temperature-dependent transition into the CDW state should be observed (Peierls transition) but is 

not known to exist.   

CDWs have been observed in Bi2Se3 by Koski et al., who found various superstructures 

and CDW orderings in Bi2Se3 nanoribbons with various intercalated zero-valent metals.61  

Interestingly, in cobalt-intercalated samples, CDWs were only found after the sample was heated 

for 5 min at 250 ⁰C in vacuum, indicating mobilization of the intercalant is crucial to manifest 

CDWs in Bi2Se3.  While we did not observe the same type of orderings seen in Koski’s copper-

intercalated samples, it is possible the unique ordering observed was influenced by the low 

dimensionally of Kolski’s crystals, or the increased copper concentration possible in copper-

intercalated nanoribbons. 

 Interestingly, samples quenched in the same manner used to induce superconductivity 

show unique orderings compared to unquenched samples.  Firstly, a superstructure ordering was 

observed as seen in Fig. 4-5(a).  The exact form of this ordering is unclear because the ordering 

was not observable from alternate high-symmetry directions.  Secondly, some areas of the sample 

also exhibited a “stripe” ordering as seen in Fig. 4-5 (b).  This crystal is not uniformly ordered in 

one crystallographic direction, although it remains ordered in the orthogonal direction.  This 

disorder pinned along a crystallographic direction may relate to the anomalous symmetry-breaking 

of the superconducting state found in some superconducting CuxBi2Se3 samples as observed by 
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other groups and  may explain the proposed “pinning” of the superconducting state along a 

crystallographic axis in these samples.62,63    

While it is both advantageous and interesting to study the effects of quenching on copper 

ordering and CDWs, observation of these atypical, well-ordered phases are inconsistent from 

sample to sample.  This is matched by the relatively low superconducting volume fractions in 

CuxBi2Se3, weakening any correlation between novel structures and the superconducting state.  

Further investigations are performed on the electronic properties at high field to determine 

information on changes in the Fermi surface. 

 

Figure 4-5. SAED of quenched Cu0.12Bi2Se3. 
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5.0  FERMI SURFACE OF BISMUTH SELENIDE 

To more directly observe properties of the superconducting Fermi surface of CuxBi2Se3, 

investigations were carried out via magneto-resistive measurements of SdH oscillations.  Accurate 

measurements of the Fermi surface of CuxBi2Se3 have gathered much interest due to its relation 

to topological superconductivity, including the maintenance of the Dirac state in a superconducting 

material.  Specifically, do the topological states remain in a sample that has become 

superconducting; are these states isolated from bulk states by a Fermi energy in the bulk band gap; 

and is the origin of superconductivity in the superconducting topological insulator CuxBi2Se3 from 

pairing of topological surface states, or bulk states? While the most detailed measurements of the 

Fermi surface are performed by ARPES measurements, there are two main impediments to its full 

success in this system.  Firstly, ARPES is an angle-resolved measurement, which is extremely 

surface sensitive.64–66  Because of this, extremely uniform crystalline samples are needed to take 

meaningful measurements.  Unfortunately, samples of superconducting CuxBi2Se3 tend to have 

low volume fractions, and many crystal defects.  This means that even if a region with high 

crystallinity can be found to give a clear picture of the Fermi surface, there is no guarantee this 

region is one that exhibits superconductivity. Correlating ARPES measurements with the origin of 

superconductivity is further complicated by a lack of established differences in structural 

differences between superconducting and non-superconducting Bi2Se3.  Additionally, the 

effective operating temperature of ARPES measurements is generally higher than the Tc of 

CuxBi2Se3, meaning the superconducting gap is not directly observable with this technique.  The 

most direct way of identifying features of the Fermi surface without ARPES is through the 

measurement of SdH or de Haas-van Alphen (dHvA) oscillations.  SdH and dHvA oscillations 
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measure the extremal cross section of the Fermi surface, without measuring the Fermi level, or a 

momentum-energy dispersion. However, this information can still be particularly useful in 

characterizing the Fermi surface, especially if the momentum-energy dispersion is already known 

as described in section 3.1.2.  

 SHUBNIKOV DE HAAS OSCILLATIONS 

The following study of the dependence of quenching on the Fermi surface is performed 

using samples quenched from the minimum and near-maximum temperature that 

superconductivity is known to occur.  Sample 1 was quenched from 620 °C and sample 2 was 

quenched from 560 °C.  samples labeled with “a” and “b” are single crystals of size ~5x5x1 mm3 

extracted from the same boule. Magnetoresistance (MR) curves at 0.35 K exhibiting SdH 

oscillations are shown in Fig. 5-1, and the results of fitting MR curves in Table 1.  These results 

show a higher Fermi energy in samples quenched from higher temperature. One can see in the 

background-subtracted data in Fig. 5-3 the amplitude of oscillations is also much smaller for 

sample 1 than sample 2, which is discussed later.  Sample 1 had a much greater SdH frequency 

than sample 2 indicating a much larger Fermi surface cross-section in the superconducting sample.  

This is likely due to the Fermi energy of the non-superconducting sample being closer to the Dirac 

point than the superconducting sample, assuming the linear dispersion of the bands found through 

ARPES measurements.41,42,67  While a superconducting transition is not observed in all samples, 

this is attributed to the small superconducting phase fractions generally found in these types of 

samples, as is commonly reported in literature.34 Nonetheless, the single frequency of oscillation 

observed in Fig. 5-2 indicates a defined Fermi surface and homogenous structure. 
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Sample 1a (SC) 1b 2a 2b 
F (T) 378.8 370.4 89.9 91.9 
m* (me) - - 0.119 0.165 
Δm* (me) - - 0.03 0.052 
kf (Å -1) 1.07 1.06 0.52 0.53 
vF (m/s) 8.87E+05 8.77E+05 5.08E+05 3.71E+05 
EF (meV) 626.14 612.62 174.82 128.89 
TD (K) 26.32 44.3 15.39 19.96 
ΔTD (K) 9.27 16.43 1.22 1.3 
τs (s) 4.62E-14 2.74E-14 7.89E-14 6.09E-14 

Table 1. Modeled parameters of SdH oscillations in CuxBi2Se3 samples. 

 

Figure 5-2. Fourier transform of magnetoresistance curve of Cu0.12Bi2Se3 quenched at 560 °C. 
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The appearance of SdH oscillations in the samples indicates the electrons travel through 

the sample with small enough scattering to preserve a coherent electron energy.  In principle these 

may be topological or bulk electrons, so long as the scattering-induced energy broadening ℏ/τ is 

smaller than the Landau level spacing ℏω, where τ is the scattering time constant and ω is the 

cyclotron frequency.68  In a TI, topological properties protect electrons from scattering, whereas 

there is no such protection in the conducting phase.6,69,70  It is observed that in samples with a 

higher Fermi energy, the electron density and conductance increase, while electron mobility 𝜇𝜇 is 

reduced.42,50  This is likely due to an increasing fraction of conduction electrons occupying bulk 

electron states instead of topological states. In this manner, the diminished amplitude of 

oscillations in the superconducting sample is an indication that a larger fraction of electrons is 

occupying bulk states that are not protected from scattering, due to the increased Fermi energy.  

Analysis of the oscillation frequency by Fourier transform in Fig. 5-2 and SdH fitting in Fig. 5-3 

shows a single oscillation frequency.  Exact frequencies were found by fitting 

background-subtracted curves to the LK formula (Fig. 5-3); f=378.8/370.4 T for sample 1a/1b, and 

f=89.9/91.9 T for sample 2a/2b, respectively.   

Calculating the Fermi energies of the surfaces using the technique by Fang et al. yields 

EF=626 eV/613 eV  for sample 1a/1b and 175 eV/129 eV  for sample 2a/2b, respectively.71  The 

ARPES data of Analytis et al. show the distance from the Dirac point to the Fermi energy in Bi2Se3 

is ~155 meV indicating the non-superconducting samples lie near the bottom of the bulk 

conduction bands, while the Fermi level of the superconducting sample is well into the bulk 

conduction bands.41  If bulk states are needed for superconductivity, this suggests oscillations in 

superconducting samples will have a frequency f >90.7 T given an effective mass of 0.136 me.   

Indeed, superconducting samples in the literature have an SdH or dHvA frequency f>300 T, while 
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non-quenched, non-superconducting samples have a much lower frequency.42,50,72 This indicates 

the Fermi level must be well into the bulk states for superconductivity to appear, suggestive of 

bulk electrons leading to superconductivity rather than topological ones. 

5.1.1 Electron Mass 

The effective mass (𝑚𝑚∗) was determined by fitting the temperature dependence of the 

modeled amplitude of oscillations of data sets at 18 T and 0 degrees of tilt. Amplitudes are plotted 

in Fig. 5-4.  This analysis yielded 𝑚𝑚2𝑎𝑎
∗  = (0.165 ± 0.030) me, and 𝑚𝑚2𝑏𝑏

∗ = (0.119 ± 0.012) me for 

samples 2a and 2b, respectively.   The effective mass for sample 1a/1b was not measured due to 

the narrow range of tilt for which SdH was observed leading to a lack of temperature-dependent 

data.  Because these masses are in line with reports by Vendelev et al. and Lawson et al. which 

found little difference of effective mass between CuxBi2Se3 and Bi2Se3 samples, the effective 

mass m*=0.136 me is used for modeling SdH oscillations and calculations of electron 

characteristics in the superconducting sample and calculated electron characteristics shown in 

Table 1.41,73  
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5.1.2 Fermi surface shape 

The Fermi surfaces of samples 2a and 2b are well fit (Fig. 5-5) to an ellipsoidal Fermi 

surface using 𝜋𝜋(𝜃𝜃) = 𝜋𝜋𝑜𝑜�𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃) + (𝑒𝑒)2𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃)�
1
2� , where  𝑒𝑒 = 𝑑𝑑𝐹𝐹𝑥𝑥 𝑑𝑑𝐹𝐹𝑧𝑧⁄  with eccentricity 

e2a=0.585 and e2b=0.563, confirming the 3D nature of conduction electrons in these samples. Very 

few angles yielded oscillations for the superconducting sample, leaving the shape of the Fermi 

surface in the superconducting sample ambiguous. Other groups have found a quasi-2D Fermi 

surface for electrons with similar Fermi cross-sections, with a more limited range of measurable 

frequencies at high rotation angles.42,50,51,73  A 2D Fermi surface has a diverging cross section, 

leading to an inability to measure a frequency at all angles.  Our data show a measurable frequency 

Figure 5-5. Ellipsoidal fit of  Fermi surface shape for samples 2a and 2b.  Data points for 

sample 2b are shifted up by 30 Tesla for clarity. 
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through a maximum frequency, making the shape of the cross section unambiguous. Regardless 

of the Fermi surface shape, these electrons in superconducting CuxBi2Se3 can be confirmed as 

originating from bulk states, due to the large cross-section, indicating an increased Fermi energy.  

5.1.3 Electron mobility 

To find the Dingle temperature (TD), the maximum amplitude of oscillations at 0.3 K was 

modeled to the non-oscillatory component of the LK formula manipulated to the following form: 

ln �𝐴𝐴𝑒𝑒−1 2⁄ sinh �
𝛼𝛼𝑚𝑚∗𝑇𝑇
𝑒𝑒

�� = 𝐶𝐶𝑐𝑐𝑛𝑛𝑠𝑠𝐶𝐶.−
𝛼𝛼𝑚𝑚∗𝑇𝑇𝐷𝐷
𝑒𝑒

 . (5.1) 

The slope of the data set plotted vs. 1/B then relates to the slope as −𝛼𝛼𝑚𝑚∗𝑇𝑇𝐷𝐷. Dingle temperature 

fitting is shown in Fig. 5-6 and tabulated with uncertainty ∆TD in Table 1.  

Figure 5-6. Dingle plot of Cu0.12Bi2Se3 samples. 
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This dataset suggests a higher Dingle temperature in the superconducting sample consistent 

with a shorter scattering time, although with a high margin of error due to the small amplitude of 

SdH oscillations.  A higher Dingle temperature in the superconducting sample indicates quenching 

incites crystal defects which may contribute to the increased Fermi energy.  This is at odds with 

the general properties of superconductors for which a shorter scattering time, and lower electron 

mobility, are generally negative impacts on the superconducting state.74–76  Additionally, 

quenching generally results in smaller grain sizes and higher defect density, hampering the 

superconducting state.77,78 However, in CuxBi2Se3, the crystallographic stress induced from 

quenching is an important factor in the emergence of superconductivity, likely due to the elevation 

of the Fermi level and population of bulk electron states.   

5.1.4 Effect of Quenching 

While the Fermi energy in Bi2Se3 is raised by copper intercalants charge-doping the 

system, quenching is also necessary in the onset of the superconducting state, as all samples in this 

study had the same nominal stoichiometry, and no copper-intercalated samples are known to 

superconduct without a quenching treatment. Intercalated copper is thought to induce 

superconductivity by raising the Fermi energy.  However, few other intercalated elements are 

known to induce superconductivity in Bi2Se3, even though the Bi2Se3 crystal phase is generally 

very sensitive to copper stoichiometry. Samples with Cux below 𝑥𝑥 < 0.10  are 

nonsuperconducting, and samples with too much copper can lead to substitution of bismuth and 

formation of copper selenide instead of intercalation.79  This research shows that quenching 

induces superconductivity by raising the Fermi energy independently from adding additional 

copper into the system, which causes phase degradation.  It is noteworthy that in our experience, 
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samples with higher concentration of copper have more dislocations, as evidenced by the surface 

finish after cleaving, are more “stressed”, indicated by difficulty in maintaining a pure phase after 

grinding, and are less stable in air.80  Increased defect density indicates that the inclusion of copper, 

in addition to donating conduction electrons, acts as a crystal stressor similar to quenching. Indeed, 

Schneeloch et al. has found the greatest phase fraction from a “furnace cool-quench” preparation, 

indicating the importance of both phase stabilization and quenching stress to induce 

superconductivity.34,81 

A fast quench from high temperature is needed to induce superconductivity in CuxBi2Se3, 

which is correlated with an increase in Fermi energy, although the relation between the increase 

in Fermi energy and superconductivity is not immediately clear.  The most direct effect of raising 

the Fermi energy in Bi2Se3 relates to increasing the DOS at the Fermi energy.  This will 

dramatically increase the Tc of the superconducting state, especially if the pairing of 

superconducting electrons depends on the density of electrons being exponential as found in other 

systems.82,83  In Bi2Se3, the change in the DOS upon raising the Fermi energy is particularly 

dramatic when the Fermi energy is ~600 meV above the Dirac point.38  At this energy, the bulk 

bands near the Γ point combine with bulk states between the Γ − Μ point. If the superconducting 

states only pair across the Γ point, and no pairing occurs in the side bands, as is generally the case, 

this would result in a rapid increase in the DOS available for superconducting electrons. This rapid 

change would not be clearly apparent in measurements of carrier concentration since the net DOS 

would still change continually upon increasing the Fermi energy.   
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 LINEAR MAGNETORESISTANCE 

In addition to differences in Fermi cross-section, large differences are seen in the 

magnetoresistance (MR) of Samples 1 and 2 from typical materials which exhibit a change in 

conductance Δ𝜎𝜎 ∝ B2.  Several conflicting theories have been proposed to explain the linear 

magnetoresistance (LMR) found in Bi2Se3 with generally inconsistent or incomplete explanations.  

Here, we will clarify the factors which lead to LMR in bulk CuxBi2Se3 samples.  

5.2.1 WAL-WL crossover 

The background function of MR can be well fit to the Lu-Shi-Shen (LSS) formula for 

magneto-conductance, modeling a crossover from weak anti-localization (WAL) to weak 

localization (WL). Assuming the inelastic scattering time is much longer than the spin-orbit and 

elastic scattering times, the change in conductance can be modeled using a modified version of the 

HLN equation 

∆𝜎𝜎 = �
𝛼𝛼𝑖𝑖𝑒𝑒2

2𝜋𝜋𝑒𝑒ℏ
�𝜓𝜓 �

1

2
+
𝑒𝑒𝜑𝜑𝑖𝑖
𝑒𝑒
� − 𝑙𝑙𝑛𝑛 �

𝑒𝑒𝜑𝜑𝑖𝑖
𝑒𝑒
�� ,

𝑖𝑖=0,1

 (5.2) 

where 𝑒𝑒𝜑𝜑 = ℏ 4𝑒𝑒𝑙𝑙𝜑𝜑⁄  and 𝑙𝑙𝜑𝜑 is the phase coherence length, and 𝜓𝜓 is the digamma function.84  

Here, 𝛼𝛼0 ∈ [0,1/2)  is the WL term and 𝛼𝛼1 ∈ [−1/2,0)  is the WAL term. In this equation, ‘𝛼𝛼’s 

are fitting parameters related to an opening of the band gap, 𝛼𝛼0 = ∆ 2𝐸𝐸𝐹𝐹⁄ .  In our samples, we can 

interpret the band-gap opening as a result of finite-size effects such as crystal defects and 

inhomogeneity, due to the lack of magnetic impurities.  The best-fit constants used for samples 

near 0 degrees rotation at 0.3 K are shown in Table 2.  WL terms are seen as having more weight 

for the samples quenched at higher temperatures.  Weakening of WAL(WL) MR is represented in 
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the LSS formula through a decrease in 𝛼𝛼1(𝛼𝛼0), and/or an increase in 𝑒𝑒𝜑𝜑1�𝑒𝑒𝜑𝜑0�. Here an increase 

in 𝑒𝑒𝜑𝜑 is analogous to a decrease in the phase coherence length 𝑙𝑙𝜑𝜑.  

 

 

 

 

 

 

 

 

The large MR in the non-superconducting samples 2a/2b  appears to be due to WAL 

resultant from a φ=π Berry phase and short phase coherence length.84  While 𝑙𝑙𝜑𝜑 is small for all 

samples,  𝑙𝑙𝜑𝜑 must only be greater than the electron mean free path in order for WAL to occur.84  

Since we expect a lack of magnetic scattering in all samples, this indicates electrons in sample 2 

have a much larger spin orbit interaction than in sample 1, where electron-phonon interactions are 

disregarded at low temperatures. The larger spin-orbit coupling is consistent with samples 2a and 

2b having a lower Fermi energy, and less electrons in bulk bands.84  The general differences in the 

decrease of MR slope is also observed in sample 1b where no superconductivity was observed.  

Unlike sample 2, sample 1a is not well fit to the HLN formula for magnetoconductance based 

solely on WAL terms alone and appear to be in a WAL-WL (weak localization) crossover, as 

 
α0 Bφ0 α1 Bφ1 

1a 0.379 0.17 -0.289 0.014 

1b 0.007 4.094 -0.499 2.76 

2a 0.5 5.175 -0.447 0.381 

2b 0 - -0.411 1.851 

Table 2. Fitting parameters for background magnetoresistance curves using Lu-Shi-Shen (LSS) formula for 

magnetoconductance. Parameters with subscript “0” are due to WL terms, and subscripts with “1” are due to WAL 

terms. 
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evidenced with the fitting parameter α1≠ -0.5, which is consistent with the loss of the topologically 

protected surface state, and Berry phase changing from π to 0.85 

Assuming this model is correct, we can explore the angle dependence of these 

measurements.  Since WL/WAL is a 2D model of conduction, we would generally expect  

𝑅𝑅 ∝ 𝑒𝑒 cos(𝜃𝜃) . (5.3) 

When the superconducting sample is rotated, we see very little angular dependence in MR unlike 

the large angular dependence in samples 2a and 2b.  Beyond 2D, we may expect the magnitude 

still depends on 𝑙𝑙𝜙𝜙(𝜃𝜃) assuming the increased MR under rotation is due to anisotropy in the phase-

coherence length.  In this interpretation, the reduction in anisotropy in the superconducting sample 

is due to increased dislocation density, further reducing the magnitude of SdH oscillations.  This 

large number of defects will destroy the cos(𝜃𝜃) angular dependence; however, it is not clear the 

WL/WAL characteristics will still appear under these conditions due to their 2D nature. 

5.2.2 Inhomogeneous semiconductor 

Linear MR is also achieved in samples with large inhomogeneity in sample conductance. 

This has been demonstrated in inhomogeneous semiconductors.86  While our samples have 

dislocations, the samples are high enough quality that only a single-frequency SdH oscillation 

appears, indicating homogeneity in Fermi energy and sample conductance.  For an inhomogeneous 

semiconductor interpretation to be consistent with the single frequency seen in SdH oscillations, 

the samples would need to consist of two types of regions, with large differences in electron 

mobility and resistance.  While this effect is sometimes cited as an explanation for linear resistance 

in Bi2Se3-type compounds, it is unlikely in our samples for a variety of reasons.  This interpretation 

relies on a high degree of sample inhomogeneity, while SdH oscillations show a single frequency, 
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and thus fixed Fermi energy in our sample.  The model of an inhomogeneous semiconductor agrees 

with the results only if we consider a dual-phase system, with one having sufficiently low electron 

mobility that SdH oscillations are smeared out. This second phase is presumably caused by 

variations in copper concentration.  This is unlikely due to the relatively small differences in 

conductance between clean and copper-intercalated Bi2Se3.87–89 

5.2.3 Quantum Linear Magnetoresistance 

Linear magnetoresistance is also directly tied to quantization of energy levels in magnetic 

field using the theory of quantum linear magnetoresistance (QMR) first proposed by Abrikosov in 

1969, but applies only when electrons are in the lowest of well-separated Landau levels.90–92  This 

model requires a linear band dispersion, but not necessarily the existence of a topological state.  In 

CuxBi2Se3, we have shown the Fermi surface lies in the bulk bands. Therefore, the samples with 

a linear resistance must have a linear dispersion formed from the bulk band-gap closing due to 

sample inhomogeneity at zero field, or simply a linear region of the dispersion at higher energies.93  

However, as pointed out by Abrikosov in 1998, this scenario is only possible to show oscillations 

if there are two well-separated regions, one with high mobility giving a single SdH oscillation 

frequency, and another with a very low density of charge carriers such that all electrons lie in the 

lowest Landau level, allowing QMR.94  The low-density state would also have to have low 

mobility, which has suppressed SdH oscillations at low fields. This is quite unlikely for the same 

reasons as the model of an inhomogeneous semiconductor. 
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5.2.4 Wang-Lei Model of Magnetoresistance 

The Wang-Lei model of magnetoresistance may explain the linear behavior in Bi2Se3 even 

when the conduction electrons are in bulk states.95 In this model, Landau levels on a linear 

topological band occur at energies:  

𝜀𝜀𝑛𝑛± = ±�2𝑛𝑛𝜀𝜀𝑠𝑠2 + 𝛿𝛿2  (𝑛𝑛 = 1,2, … ) (5.4) 

𝜀𝜀0 = 𝛿𝛿 

where 𝜀𝜀𝑠𝑠 = 𝑣𝑣𝐹𝐹√𝑒𝑒𝑒𝑒 and 𝛿𝛿 = −1
2𝑔𝑔𝜇𝜇𝐷𝐷𝑒𝑒.  Here, 𝑔𝑔 is the Landé 𝑔𝑔 factor for conduction electrons and 

𝜇𝜇𝐷𝐷 is the Bohr magneton.  While all states for n>0 have energy pairs on opposite sides of the Dirac 

point, there is only one 𝜀𝜀0 state below (above) the Dirac point for positive (negative) 𝑔𝑔.  For 

samples with 𝑔𝑔 >0, an increasing magnetic field causes an increasingly large distance between 

overlapping Landau levels.  This gradually lowers the density of electrons participating in 

conduction, and thus raises resistance.  The amount of level overlap is strongly dependent on 𝑔𝑔, 

𝜇𝜇, 𝑣𝑣𝐹𝐹, and 𝑁𝑁, restricting the determination of these constants solely by the magnetoresistance. 

While the model by Wang and Lei is only considered on a topological surface, it will generally 

apply to any band structure, although it may not lead to linearity.  The assumption of a topological 

Bi2Se3 surface merely guarantees a linear dispersion of a single electron band, which is relevant 

in calculating the overlap of Landau levels.  If the model is applied to bulk states, the model must 

be altered to calculate the net carrier concentration over all bulk states, instead of a single 

topological state.  

While the slope of magnetoresistance is most strongly dependent on 𝑔𝑔 in the Wang Lei 

model, differences in slope between sample 1 and 2 must be influenced by other factors, since the 

higher Fermi energy of sample 1 will generally lead to a smaller effect from Landau splitting due 
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to conducting electrons primarily occupying higher Landau levels than in sample 2.  For a linear 

band dispersion, the levels are spaced as 𝜀𝜀𝑛𝑛 ∝ √𝑛𝑛𝑒𝑒, for 𝛿𝛿 ≪ 𝑛𝑛𝜀𝜀𝑠𝑠.  This means that higher-order n 

levels will overlap more, in a similar way to when 𝑔𝑔 is increased. However, the comparatively 

larger Fermi velocity in sample 1 will make sequential Landau levels spaced farther apart in 

energy, with less overlap, making the relation between energy and magnetoresistance complex.  

The angular anisotropy in magnetoresistance is at least in part due to anisotropy in 

effective-𝑔𝑔 factor which has been measured by Wolos et al. in Bi2Se3 with 𝑔𝑔⊥ = 19.48 ±  0.07 

vs. 𝑔𝑔∥ =  27.3 ±  0.15 for magnetic field perpendicular or parallel to the c-axis, respectively.96 

While the particularly large electron 𝑔𝑔-factor in Bi2Se3 is attributed to the strong spin-orbit 

coupling present, the dependency on copper intercalation and quenching is currently unknown.  A 

full 3D model of magnetoresistance would include all anisotropic electron properties, such as 𝑔𝑔, 𝜇𝜇, 

and 𝑣𝑣𝐹𝐹, summed over all conducting electron states, which has not been applied to bulk Bi2Se3 to 

date. In our magnetoresistive measurements we see a large anisotropy in samples 2a/b.  However, 

the anisotropy in samples 1a/b is much smaller. These differences are likely due to the additional 

states which are summed over when Fermi energy is increased. In addition, the effects of 

quenching on 𝑔𝑔, 𝜇𝜇, and 𝑣𝑣𝐹𝐹 are currently unknown. 

The differences in resistive measurements revealed in SdH oscillations and MR 

background are consistent with quenching raising the Fermi energy of the system further into bulk 

bands, with a smaller fraction of electrons occupying topological bands.  Quenching likely creates 

increased dislocation density, causing incomplete bonding of bismuth and selenium at grain 

boundaries.  Crystal vacancies at the boundaries creates an increased density of free electrons, 

which further raises the chemical potential.  Correlations with the appearance of superconductivity 
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suggest the superconducting state relies on the much higher density of electrons in the bulk states 

and is not resultant from topological electrons. 

 OTHER TOPOLOGICAL SUPERCONDUCTOR CANDIDATES 

5.3.1 Bismuth Selenide-Telluride 

While the superconducting state in Bi2Se3 remains interesting, an isostructural analog 

Bi2SeTe2, provides some advantages over Bi2Se3.  Bi2Se3 theoretically has a Fermi energy in the 

band gap, but numerous defects tend to push up the Fermi energy into bulk states.  While Bi2Te3’s 

Dirac point lies below the bulk band gap, the mixed Se-Te compound (Bi2SeTe2) has a theoretical 

Dirac point in the band gap and generally has less crystalline defects than Bi2Se3, causing a lower 

Fermi energy.97  Additionally, van der Waals forces are weakened, allowing easier intercalation of 

atoms.98 The challenge in growing the mixed compound intercalated with copper is phase 

separation into additional Bi2Se2Te and Bi2Se3 phases.  We have successfully intercalated copper 

into this material and verified this result by studying expected effects on the lattice using 

procedures developed by Yanan Li, who added an annealing step which homogenizes the material.   

While CuxBi2Se3 is not stable under the conditions needed to prepare samples for XRD 

and Raman spectroscopy (i.e. mechanical grinding and air exposure), the increased stability of 

CuxBi2SeTe2 allows these techniques to verify the phase purity and copper intercalation.  Under 

the addition of copper, the c-axis increases monotonically in Bi2SeTe2 while the a-b axis remains 

relatively unchanged due to copper residing primarily in the van der Waals gap.  Copper’s 

occupation of the van der Waals gap adds an additional force constant for vibrations happening 
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out of the plane of Bi and Se(Te) layers, resulting in the softening of the A1g modes.  After copper 

concentration of 𝑥𝑥 > 0.2, the A1g2 mode stops softening due to copper substituting the bismuth 

site. Current work is aimed at probing the low-temperature phases of CuxBi2SeTe2, in particular 

the potential for superconductivity through the control of copper doping and quenching conditions.   

5.3.2 Antimony Selenide 

Another related system to the Bi2(Se/Te)3 system of materials is Sb2Se3, which has the 

same stoichiometry and similar elements, but different crystal structure than other Pn2Ch3 

compounds (Pn=Bi, Sb; Ch=Se,Te)  with an orthorhombic rather than hexagonal crystal structure 

at atmospheric pressure.  While the structure of Sb2Se3 is very different, some similarities in 

electronic states exist due to the strong spin-orbit coupling present within this group of elements.  

Indeed, new topological insulators have been discovered in thin-film bilayers of SnTe and 

PbxSn1−xSe(Te) which are protected by mirror symmetry rather than time-reversal symmetry.5  

Initially starting as a strong insulator, the sample transitions under pressure to a conductor at 

~3 GPa, and to a superconductor at ~10 GPa.  The origin of this transition remains unclear, but our 

measurements of SdH oscillations in similar experiments detect a peculiar Fermi surface.  Analysis 

performed by Uma Garg finds a Fermi surface which appears ellipsoidal in a measurement range 

of 45-90 degrees, however, the sudden loss of data oscillations at 45 degrees suggests either a 

rapidly expanding Fermi surface cross section, or a sudden decrease in electron mobility of 

electrons traveling in these directions.  The loss in oscillation amplitude may be the result of 

differences in the properties of bands which are centered on symmetries corresponding to the 

crystallographic a and b axes.  
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We measure a consistent Berry phase of 𝜋𝜋 in this material, consistent with the existence of 

a topological state in a superconducting compound and a material harboring Majorana Fermions. 

However, many challenges exist in this material’s application for devices including the appearance 

of the topological state only at high pressures and relatively small single-crystal size.  This material 

still will provide greater understanding of the role of spin-orbit coupled states and the coexistence 

of topological and superconducting states.   
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6.0  IRON-BASED SUPERCONDUCTORS 

While CuxBi2Se3 has become a prototype for the study of topological superconductivity, 

many other materials have gained interest for their potential as topological superconductors.  FeCh 

type superconductors (Ch = chalcogen) are one such class of materials which show promise of 

holding topological properties.   FeCh-type materials have many similarities to CuxBi2Se3, 

including a quasi-cylindrical Fermi surface core, similar to that of highly charge-doped Bi2Se3.99  

This matching dimension of the Fermi surface means that topological triviality of the 

superconducting state is calculated in the same manner in these materials, namely, by counting the 

number of time-reversal-invariant momenta enclosed by the Fermi surface.7 This similarity 

becomes particularly relevant in interfacial superconducting states formed in these materials, 

which manifest a topological superconductor through the superconducting proximity effect.  In 

these instances, the superconducting state tunnels into the topological insulator to a depth 

proportional to the superconducting coherence length.  This forms a superconducting state inside 

of the topological insulator as long as unoccupied states are available for tunneling of electrons to 

occur.  In order for electrons to occupy both materials in this manner, a degree of control is needed 

over the Fermi surface of one or both materials.   Superconducting-topological interfaces are of 

keen interest in FeCh systems due to the magnetic ordering present, which adds additional interest 

in the symmetry states present to form a topologically insulating state.  As new abilities to control 

the anti-ferromagnetic ordering present in Fe-based superconductors are found, avenues will open 

to modify the topological state. These effects may be controlled through manipulation of spin orbit 

coupling, modified symmetry, and magnetic interactions. 
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 TOPOLOGICAL STATES IN IRON-CHALCOGEN SYSTEMS 

Realization of Fe superconductor-topological insulator interfaces is difficult due to the 

lattice mismatch in this material.  FeCh (Ch=Chalcogen) superconductors have a tetragonal crystal 

structure, while Bi2Se3 type topological insulators are hexagonal.  Nonetheless, some success has 

been found with interfaces of Bi2Te3/FeTe, including finding superconductivity in 7 nm FeTe thin 

films and an apparent superconducting gap in monolayer FeTe films on Bi2Te3.100,101  A larger 

superconducting gap is found in 1 unit-cell layers than 2 unit-cell layers, indicating sample 

dimension holds importance.  This is opposite to the typical behavior of materials losing the 

superconducting state when dimensionality is reduced and is indicative of novel superconducting 

characteristics.78 

Beyond interfaces of inherently topological materials with superconductors, iron selenide 

thin films are suspected to be topological.102,103  These speculations arise from multiple directions, 

including the existence of superconductivity on monolayer films and tunability of the band 

structure to a non-trivial form via modified spin-orbit coupling parameters.  FeSe films on SrTiO3 

have a much higher superconducting temperature, with many reports of Tc ~65 K.102,104  This 

represents an order-of-magnitude increase from bulk superconducting temperatures of ~8 K.105  

The increase in temperature is not fully understood, as the superconducting state is typically lost 

in thin films when the dimension is reduced.78  In FeSe, lattice mismatch between FeSe/SrTiO3 

can induce a phase transition in the band structure near the M symmetry point from a gapless phase 

to a gapped phase and simultaneously suppress the hole-like band at the Γ point indicating lattice 

interactions can tune a topological insulator phase.103  Additionally, tuning the spin-orbital 

coupling can drive monolayer FeSe from the trivial metal or semiconductor phase to a nontrivial 

topological insulating phase. Very recently, 2D topological superconductivity was reportedly 
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discovered in FeSe0.55Te0.45.106  The tunability of spin-orbit coupling parameters in FeSe into a 

non-trivial state, combined with the quasi 2D Fermi surface suggest the superconducting state is 

novel in these systems, and has a potentially unconventional pairing mechanism.  

A handful of groups have now confirmed that non-superconducting iron telluride thin films 

become superconducting upon exposure to oxygen, but have ruled out the role of interfacial 

strain.107 In FeTe, Nie et al. demonstrate that superconductivity in iron telluride thin films is 

reversible upon oxygenation and vacuum annealing: superconductivity appears upon oxygenation, 

disappears upon vacuum annealing, and reappears upon re-annealing in oxygen.108  In the FeTe 

system, recent work shows the appearance of superconductivity outside of thin-film systems, with 

a report by Rößler et al. finding traces of superconductivity on the surface of bulk single crystals 

exposed to air for over 6 months.109  While superconductivity is well known to manifest in bulk 

systems of FeSe1-xTex (0<x<0.85), the enhancement of superconductivity via the introduction of 

oxygen and finite-size effects is particularly novel, as the reduction of dimensionality typically has 

a negative effect on the superconducting state in the BCS theory of superconductivity, but may be 

used in iron-based superconductors to generate novel electronic states.78 

 ROLE OF OXYGEN 

The role of oxygen incorporation in FeCh systems is unclear, as it enhances 

superconductivity in FeTe and FeSe1-xTex (0.15<x<1), but poisons superconductivity in FeSe.29  

Investigations into the origin of superconductivity in the Fe-Te-Se via oxygen treatment have 

focused on role of oxygen in: (1) oxygen-induced change in oxidation state and its effect on charge 

doping and magnetic and electronic structure, and (2) de-intercalation of interstitial Fe and 
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consequent effects on sample stoichiometry, charge doping and magnetic states.  

Superconductivity in FeSe1-xTex is tied strongly to the anti-ferromagnetic (AFM) phase present at 

low temperatures in this system, and many modern “high-temperature” superconductors have 

antiferromagnetic (AFM) and spin density wave (SDW) phases correlated with the 

superconducting state which are influenced by interstitial concentrations and charge doping.110,111  

Additionally, changes to the oxidation state of iron, selenium, or tellurium, charge-dope the 

system, which will lead to superconductivity if the density of charge carriers is too low for pairing 

to occur between superconducting electrons or by changing the Fermi surface through influences 

on the Fermi energy.  The introduction of oxidizing elements to Fe1+dSe1-xTex is shown to leach 

iron from the interstitial areas and similar effects are expected to take place in the Fe1+dTe system.  

In the Fe1+dSe1-xTex system, metallic iron in the interstitial region acts as a charge donor which 

uses the interstitial space as a conduction channel.112–114   This planar mobility is apparent in the 

columnar shape of the Fermi surface representing sheet-like conduction channels.99  Interstitial 

iron also has strong impacts on the phase stability of the system. The presence of interstitial iron 

is of great importance in all Fe1+dCh systems, with narrow stoichiometries often needed for 

superconductivity.33 In Fe1+dTe in particular, self-flux growth of the stoichiometric compound 

(d=0) is not possible, resulting in the formation of Fe2Te3 or FeTe2 depending on cooling 

conditions Interstitial iron concentration also influences the low-temperature magneto-structural 

phase of Fe1+dTe, leading to a monoclinic, incommensurate SDW phase for d<0.15 and an 

orthorhombic. commensurate SDW phase for d>0.15.115  Magnetic and structural phases, valence 

state, and Fermi surface have strong influences on the superconducting state, and control over 

interstitial iron concentration is needed if superconductivity is to be found in this system.  
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6.2.1 Synthesis of Iron Superconductors 

The exact details of synthesis often have dramatic consequences on electronic states.  These 

details, which include stoichiometry, cooling rate, annealing, and oxygenation, are investigated to 

determine which factors control the superconducting state in Fe(Se/Te). FeSe0.5Te0.5 was first 

investigated, as a parent superconductor of this class of materials.   While Fe1+dSe single crystals 

are difficult to grow based on the lack of precipitation from a self-flux, single crystals of 

FeSe0.5Te0.5 are crystallized from a self-flux.  Superconducting samples are known to exist for a 

very small range of stoichiometries deviating from the stoichiometric compound with 0.015 <  

d < 0.03.32  Oxygen and iodine have been used to leach intercalants from similar materials, and are 

used to explore the effects of modified interstitial iron concentration.  The effects of oxygenation 

are extremely varied, however, as oxygen exposure is known to poison superconductivity in FeSe 

samples, even when only exposed during grinding, and induce superconductivity in FeTe.32,109  

Iron leaching through fluorine treatment is first explored using the decomposition of 

polytetrafluoroethylene (PTFE) as a fluorine source.116  Samples of FeSe powders were placed in 

a custom-made ampule (Fig. 6-1), sealed with PTFE.   

Figure 6-1. Ampule style used for fluorination of FeSe0.5Te0.5 (FST) 
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Fluorine treatment shows a greater Tc than as-grown FeSe0.5Te0.5, although with much 

smaller volume fraction as shown in Fig. 6-2.  Samples annealed in the same manner without 

adding fluorine show similar Tc with little loss of volume fraction. Though fluorine has little 

influence itself on the superconducting state, annealing has positive impacts on superconductivity, 

likely through homogenization of interstitial iron and removal of crystal defects.  While little effect 

was seen in fluorinated samples, oxygen is known to have a strong influence in FeSe1-xTex 

(0.1<x<0.9), and further investigations are focused on the role of oxygen treatments in Fe1+dTe.  

Figure 6-2. Magnetization of fluorinated and annealed FeSe0.5Te0.5 performed under 50 Oe field. 
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Oxygenation is known to have a generally positive effect on FeSe0.5Te0.5, although the root 

effect of oxygenation is unknown. The general sensitivity to iron concentration in FeSe motivated 

this research into the chemical manipulation of interstitial iron concentration in Fe1+dSe0.5Te0.5 

and Fe1+dTe to induce a superconducting state.  The effects of oxidation on the magnetization of 

Fe1+dTe are complex to decipher, due to difficulties isolating changes due to interstitials from 

changes due to the apparent formation of FeTe2.  Structural investigations of FeTe2 formation via 

oxygen annealing will be discussed later. Pure Fe1+dTe samples such as Fe1.13Te have a single PM 

to AFM transition around 60 K accompanied by a structural transition from tetragonal to either 

monoclinic or orthorhombic, depending on stoichiometry as seen in Fig. 6-3.115  The monoclinic 

phase has a commensurate AFM phase, while the orthorhombic is incommensurate.  In samples 

with stoichiometry 0.13 < d < 0.15, magnetic phases are suppressed at grain boundaries between 

phases, potentially leading to a different topological state locally.115,117  Additionally, altered 

crystal symmetry has a strong effect on the superconducting and topological insulator state.  

Fe1+dSe and Fe1+dSe1-xTex superconductors have orthorhombic low-temperature phases, and 

therefore FeTe will need the same orthorhombic phase for superconductivity to exist, which is 

only stable for high interstitial iron concentration as seen in Fig. 6-3.115  We chose to investigate 

if interstitial iron concentration can be lowered, while maintaining the orthorhombic phase, if 

altered by chemical means.   
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6.2.2 Low-temperature phases of Iron Telluride 

Two magneto-structural effects from competition between these phases are easily related to 

theories for the emergence of superconductivity in the FeSe/FeTe system.  Firstly, it is possible 

that the competition from competing phases at low temperature induce strain, which leads to 

superconductivity. This narrow region conducive to superconductivity in Fe1+dSe may relate to the 

inability to form superconducting Fe1+dTe single crystals.  Secondly, the interstitial iron 

concentration itself may play an important role by providing charge carriers or tuning spin-orbit 

coupling parameters.  Indeed, the magnetic and structural effects of interstitial iron are linked in 

this system, as indicated by the magneto-structural transition.  Beyond magneto-structural 

alterations from interstitial iron, the post-synthesis modification of iron via oxygen annealing may 

have an independent role in the formation of secondary phases.  

Figure 6-3. Magnetic phase diagram of Fe1+dTe.115 
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The as-prepared sample of Fe1+dTe exhibits a two-stage magnetic transition at 55 K with a 

residual AC magnetization of ~3x10-5 emu/g as seen in Fig. 6-4.  After oxygen annealing the single 

crystal, the susceptibility increases to ~4.3x10-5 emu/g.  Interestingly, the same oxygen treatment 

of powder samples indicates an atypical rising magnetization with temperature in the PM 

magnetization region.  This is indicative of the formation of a magnetic spin glass phase.  In a spin 

glass, the magnetic moments are not ordered with the crystal structure, and at low temperatures 

the magnetic moments are “frozen” in place, leading to low magnetic susceptibility.  As the 

temperature increases, thermal energy gradually liberates the fixed moments, increasing the 

Figure 6-4. AC magnetization of Fe1+dTe. 
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susceptibility, and eventually saturating.  At even higher temperatures, the spin-glass ordering 

breaks down, and the sample transitions into a paramagnetic state.  

The appearance of a spin-glass magnetic state appears to happen in only the powdered 

sample due to the increased penetration ability of oxygen into these samples.  Under oxidation of 

powdered samples, the much higher surface to volume ratio leads to leaching of interstitial iron 

much faster, and the formation of nanoscale and smaller FeTe2 compounds.  This phase provides 

so many magnetic domain boundaries that the sample takes on a spin glass character due to the 

magnetic phase transition of FeTe2 usually seen at 125 K.  This spin-glass behavior is not 

ubiquitous to all Fe1+dTe stoichiometries as seen in Fig. 6-5.  The transition seen at 125K in 

Figure 6-5. Magnetization of oxygenated Fe-Te powders and crystals. 
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Fe0.92Te is due to an FeTe2 phase which was present before oxygen annealing. In samples with 

large volume fractions of FeTe2 before annealing, a spin glass behavior does not appear upon 

oxygenation due to the larger magnetic domains of FeTe2 already present. Following the 

nomenclature of Okamoto and Tanner,30 we will refer to both samples of Fe1.22Te and Fe1.13Te as 

“Fe1+dTe (β),” or the “β-phase.” In contrast, single crystals grown with a nominal composition of 

Fe0.92Te contain two phases: the β phase (tetragonal Fe1+dTe) and the ε phase (orthorhombic 

FeTe2), as also anticipated from the study by Okamoto and Tanner.30 We will refer to samples of 

this type as “Fe1-dTe” or “β+ε phase,”  to keep in mind that it contains both β and ε phases. 

The magnetic transition between 60 and 125 K is smoothed in β+ε samples, and the typical 

1/T paramagnetic-magnetization dependence is lost, indicating some spin-glass characteristics are 

still imposed in this sample.  From these comparisons we can conclude the spin-glass behavior is 

the result of a high concentration of magnetic defects in the Fe1+dTe phase caused by the 

mobilization of Fe to sample surfaces and grain boundaries and the formation of very small FeTe2 

domains.  The spin glass effect is partially lost when FeTe2 exists in the sample before 

oxygenation, since less interstitial Fe is available for transport, and oxygen’s ability to cause the 

growth of existing FeTe2 crystals, rather than the forming new domains.  A similar spin-glass 

phase is known to exist at ~20 K for FeSe1-xTex for 0.9<x<0.7 between the superconducting and 

SDW magnetic phases. 
118  In FeSe1-xTex the spin glass phase exists due to a large defect 

concentration creating a random distribution of ferromagnetic and antiferromagnetic interactions 

between iron ions.  In FeTe, the spin-glass phase is due to numerous ferromagnetic nanometer-

scale formations of FeTe2, which is discussed in chapter 7.  
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The possibility exists that oxygen-annealed bulk crystals only superconduct on a thin 

surface region where oxygen interacts sufficiently with the lattice. This implies that the 

superconducting volumes would be too small to be detectable by conventional magnetic 

susceptibility measurements. For this reason, we employed the extremely sensitive magnetic field 

modulated microwave spectroscopy (MFMMS) technique to search for traces of 

superconductivity. This technique is proven to detect superconducting volumes as small as 

10-12 cm3 within otherwise non-superconducting material.119  Despite this technique’s sensitivity, 

we did not observe superconductivity. MFMMS data collected from all three oxygen-annealed 

single crystals is shown in Fig. 6-6.  A superconducting transition would correspond to a peak-like 

feature in MFMMS.120 The lack of features in data from our samples indicates a lack of a 

superconducting volume down to at least 10-12 cm3.119   

Figure 6-6.  MFMMS data showing absence of superconductivity for all three oxygen annealed samples described 

in this work.  The presence of superconductivity would have yielded a peak in the intensity at Tc. 
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 OXIDATION STATE OF IRON AND TELLERIUM 

Samples of FeTe were also studied to investigate the role of mobilized interstitial iron on 

the oxidation state of lattice iron and tellurium. The relationship between oxidation state, electronic 

charge doping, and superconductivity is well known in systems such as the cuprates and 

pnictides.82,83 However, the oxidation-state data in literature on superconducting iron telluride is 

contradictory.  In situ total electron yield (TEY) and resistivity measurements show 

superconductivity in iron telluride films emerges upon exposure to oxygen, along with Te0 

changing to a mixed Te0/4+ state and Fe0 changing progressively through Fe2+ to Fe3+. 108,121,122 

Subsequent vacuum re-annealing causes the thin films to become non-superconducting, with 

corresponding shifts in the Fe valence from Fe3+ to Fe2+ and the Te valence from mixed Te0/4+ back 

to Te0.  Telesca et al. conclude based on these results that superconductivity is accompanied by 

the presence of Te4+, and non-superconductivity by the absence of Te4+.122 In contrast, data from 

Zhang et al. show no change towards Fe3+ in oxygen-exposed, superconducting single crystals of 

Fe1.05Te, but instead an increase in the signal intensity corresponding to Fe0.109  The lack of Te 

oxidation-state data from Zhang et al. leaves the role of Te4+ in superconducting iron telluride 

unexplored in single crystals.  

These valence changes are explored through X-ray absorption TEY data from Fe1+dTe (β) 

for Fe 2p (700-730 eV) and the Te 3d (568-590 eV) energy regions, in Figs. 6-7 and 6-8 

respectively.  Note that oxygen annealing causes a decrease in intensity of the Te 3d5/2 and 3d3/2 

peaks centered at 573 and 583 eV, and an increase in the intensity of the peaks at 577 and 587 eV.  

This is consistent with an increase in the Te4+ population, along with a corresponding decrease in 

Te0.123  TEY data from Fe 2p3/2 shows a superposition of peaks at 707.5 eV and 709 eV, 
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corresponding to the Fe2+ and Fe3+ oxidation states, respectively.121  The Fe2+ peak is higher in the 

parent crystal, whereas the peak corresponding to Fe3+ becomes higher upon annealing in oxygen.  

 

 

Fig. 6-8 provides evidence that the effect of oxygen annealing on the oxidation state of Te 

in our single crystals is remarkably similar to that in oxygen-annealed FeTe thin films.122 Of 

particular interest is the fact that the intensity of the Te4+ signal in our single crystals increases 

drastically upon oxygen exposure, just as it does with thin films studied by Telesca et al.  However, 

this increase in Te4+ is not accompanied by the appearance of superconductivity in our single 

Figure 6-7.  Fe 2p3/2 energy region for Fe1+dTe (β) before (black squares) and after (red circles) oxygen 

annealing. Note the increase in the intensity of the Fe3+ peak at ~708.5 eV (indicated by the vertical line) 

upon oxygen annealing. 
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crystals. Thus, our results in Figs. 6-7 and 6-8 provide the first evidence that the observation of 

Te4+ is not necessarily correlated with superconductivity in this system.   

We next explore the effect of oxygen on Fe oxidation state in our single crystals in light of 

the conflicting published data from thin films108,121,122  and single crystals.109 Whereas Telesca, 

Nie, and colleagues show a disappearance of Fe0 and an increase of Fe3+ upon oxygenation, Zhang 

and colleagues report exactly the opposite: a significant increase in Fe0 but no increase of Fe3+. 

Zhang et al. infer that an enhancement of the itinerant nature of Fe 3d electrons would correlate 

with the suppression of AFM and emergence of superconductivity in FeTe. However, this is in 

contradiction with published results in oxygenated superconducting thin films and the results from 

our oxygenated single crystals. TEY from our single crystals shows an increase in Fe3+ signal 

Figure 6-8.  Te 3d5/2 and 3d3/2 energy regions for Fe1+dTe (β) before (black squares) and after (red 

circles) oxygen annealing.  Note the increase in the peak intensities corresponding to Te4+ and decrease in the 

Te0 peak intensities. 
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intensity upon oxygen annealing, in agreement with Telesca, Nie, and colleagues but in 

contradiction with Zhang et al.  

It is reasonable to assume that the more dramatic increase of Fe3+ in thin films is due to an 

increased penetration ability for O2 molecules given the large surface area of the films, especially 

considering that some films show pin holes and grain boundaries which may significantly increase 

the avenues for oxygen to diffuse into the van der Waals gap of the crystal.124  Narangammana et 

al. indicate that when thicker, smoother films are grown it is necessary to incorporate oxygen 

during growth, rather than after growth, in order to observe superconductivity.125 However, 

oxygenation during growth appears to initiate substitution of tellurium in contrast with oxygen 

annealing interacting with interstitial elements.107,109  

For samples around d=0.13, small changes in the amount of interstitial Fe in Fe1+dTe (β) 

determine if the low-temperature structure is orthorhombic or monoclinic.115,126 This narrow 

dependency of phase stability on intercalating elements is mirrored in iron selenide (Fe1+dSe), 

which is extremely sensitive to the amount of excess iron.33 Various Fe de-intercalation techniques 

(including oxygen annealing) have been shown to promote superconductivity in Fe(Se,Te) 

compounds, but is not apparent in our samples.112–114 The inability to transition to the 

superconducting state is investigated by examination of secondary effects to changes in oxidation 

state, namely the formation of the FeTe2 minority phase.  
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7.0  MINORITY STRUCTURES IN OXYGENATED IRON TELLURIDE 

Structural effects of oxygenation are explored through XRD and SAED which show the 

formation of additional oriented crystal periodicities upon oxygen exposure. Figure 7-1(a) shows 

a powder XRD profile of a pulverized single crystal of Fe1+dTe (β) before oxygen annealing, 

together with a Rietveld refinement profile.  Powder reflections from this parent (un-annealed) 

single crystal agree with ICDD card number 29-0729 and have no impurity phases detectable by 

XRD.  Rietveld refinement of XRD from the as-grown sample yields lattice parameters of a = 

3.826 Å and c = 6.272 Å in a tetragonal unit cell (space group P4/nmm), consistent with previously 

published values.127   

 XRD 

Figure 7-1(b) highlights the effects of thermal and atmospheric treatments on the XRD 

profile of Fe1+dTe (β).  A small, broad feature appears in the XRD pattern around 2θ ≈ 32° (lattice 

spacing ~ 0.279 nm); this is the only change in XRD observed in Fe1+dTe (β) upon exposure to 

oxygen.  This feature, with full width at half max of 0.9° in 2θ, emerges most strongly upon oxygen 

annealing of single crystals, but is also present after exposure of pulverized crystals to air for 

several days. We identify this feature as arising from the (111) reflection of FeTe2 resulting from 

FeTe2 growth in both post-annealed and air-exposed single crystals, indicating that this change 

arises from exposure to oxygen.  
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 Figure 7-1(b) of oxygen-exposed Fe1+dTe (β) shows a broad pre-peak of the {110} 

reflection emerging around a lattice spacing of 2.79 Å upon both oxygen annealing and multiple 

day exposure of powdered crystal to air [Fig. 7-1(b)].  This is the only change observed in the 

XRD profile; no accompanying peaks could be discerned with our lab-source XRD. The low 

intensity and broad nature of the feature makes definitive assignment using XRD data alone 

difficult, compounded by the fact that many iron telluride phases have reflections obscured within 

the strong majority phase reflections.  As described below, our results from electron diffraction 

Figure 7-1.  (a) Powder X-ray diffraction data of Fe1.22Te before oxygen annealing (black), Rietveld refinement (red 

line), and difference (blue line).  (b) Effects of atmospheric treatments on the XRD profile of the same “parent” 

Fe1.22Te sample, [1] parent Fe1.22Te as shown in part (a), [2] parent sample after oxygen annealing at 125C, [3] 

parent sample after 7 days air exposure at room temperature, and [4] parent sample after 64 days of air exposure at 

room temperature. 
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help confirm that this XRD feature arises from orthorhombic FeTe2 (111).  The data presented in 

Fig. 7-1b, for a sample with d = 0.22, is typical of oxygenated Fe1+dTe (β) for 1.05 < (1+ d) < 1.22.   

 TEM 

Figure 7-2 shows two SAED patterns, (a) from as-grown Fe1+dTe (β) unexposed to oxygen 

and (b) from the same parent Fe1+dTe (β) crystal after annealing in oxygen.  Both patterns are 

recorded in the same [001] zone axis orientation of the parent tetragonal phase.  The square 

diffraction pattern in Fig. 7-2(a) is self-consistently indexed with the a-b plane Miller indices of 

tetragonal Fe1+dTe (β).  The same Bragg reflections are visible in the oxygen-annealed crystal in 

Fig. 7-2(b), showing that the parent phase persists as the dominant phase. However, the oxygen-

annealed crystal shows additional Bragg reflections in electron diffraction, with substantially 

lower intensity than the tetragonal pattern.  These additional reflections are consistent with 

minority ε phase growing in an orientational relationship with the parent β phase. This is illustrated 

in Fig. 7-3 and discussed in the following section in further detail.  Similar phase separation in 

FeSe0.5Te0.5 has been found by oxygen annealing and formation of an Fe7Se8-type phase.128   
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An examination of the minority phase reflections in the selected area diffraction [dashed 

lines in Fig. 7-2(b)] reveals two mutually-orthogonal intergrowths that can be indexed as 

orthorhombic diffraction patterns from FeTe2 in the [010] zone axis. The (002)O planes align 

crystallographically with the (200)T and (020)T planes of Fe1+dTe, as further clarified in Fig. 7-3.   

A cursory examination of the weak electron diffraction reflections leads one to assign these 

reflections to hexagonal (P63/mmc) Fe2Te3 phase. However, a careful analysis reveals that these 

reflections are more consistent with orthorhombic FeTe2 phase (Pnnm). The new XRD reflection 

at 2θ =32°, which arises upon oxygenation, is inconsistent with Fe2Te3. Further, we show in Fig. 

     

Figure 7-2. SAED patterns from as-grown Fe1.13Te a) and oxygen annealed Fe1.13Te b) crystals showing indexed 

reflections of the dominant tetragonal Fe1+dTe phase labeled with subscript “T”, and secondary orthorhombic 

phase of FeTe2 labeled with subscript “O”. Fe1+dTe in [001] zone axis orientation yields a square pattern, as shown 

in a).  A secondary phase is induced by annealing in oxygen, where the sublattices in b) correspond to two 90-

degree oriented domains of orthorhombic FeTe2. Only one of the two orientations have been labeled in this figure 

for the sake of clarity. 
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7-4(a) results from single crystal Fe0.92Te.   Here, Fe1+dTe grows with an inherent FeTe2 

intergrowth. Oxygenation of this crystal clearly results in a growth of the FeTe2 phase. 

The orientation of these intergrowths corresponds to the (002)O planes of the orthorhombic phase 

aligning with either the (200)T or the (020)T planes of the tetragonal phase, as indexed in Fig. 7-

2(b). Note that the {200} tetragonal reflections overlap with the {002} orthorhombic reflections; 

the {301} and {101} orthorhombic reflections from FeTe2 are visible as well.  Traces of the 

orthorhombic minority phase appear in the parent crystal, with much weaker diffraction intensities 

and without a measurable distortion to the a-b plane of the tetragonal parent structure.  Since this 

sample was exposed to air during preparation and transferred into the vacuum of the microscope, 

the trace orthorhombic phase could be due to this exposure to air.  From this, we interpret that even 

a short period of oxygenation initiates an intergrowth of orthogonally aligned FeTe2 crystals within 

the bulk Fe1+dTe crystal, as modeled in Fig. 7-3. 

7.2.1 Effects of FeTe2 Intergrowth 

Both the X-ray pre-peak feature in Fig. 7-1(b) and the SAED pattern shown in Fig. 7-2(b) 

are consistent with the results of Hu et al. in their study of oxygen-annealed Fe1.08Te0.55Se0.45.128 

In that study, superconductivity in Fe1.08Te0.55Se0.45 was induced via low-temperature oxygen 

annealing, and was accompanied by the appearance of additional reflections in electron diffraction. 

Hu et al. assigned these reflections to a hexagonal minority phase. Additionally, they observed a 

broad feature in XRD which they left unassigned. This work presents evidence that the broad 

feature in XRD and the additional reflections in electron diffraction can be explained by oxygen-

induced growth of an orthorhombic FeTe2 minority phase. We assign the unassigned feature in the 

XRD observed by Hu et al., as well as the feature observed by us, to the {110} set of reflections 
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in orthorhombic FeTe2. Though the Fe1+dTe and FeTe2 crystals have different space groups and 

somewhat different lattice parameters, the nearly matching Te-Te distance (as shown in Fig. 7-3) 

allows FeTe2 to grow within the FeTe host lattice, possibly via domain boundaries.  Viewing the 

proposed intergrowth configuration of the crystals in real space from the <100> direction of FeTe 

[Fig. 7-3(a)] allows us to see that both crystals share a similar stacking of tellurium atoms allowing 

an epitaxial crystal growth.  Viewing the structures from the <010> direction of the FeTe parent 

[Fig. 7-2(b)] demonstrates the relative iron deficiency of the FeTe2 structure and similar distance 

between tellurium layers.  Oxygen-mediated mobility of both lattice and interstitial iron (not 

shown in Fig. 7-3) is likely the cause of this iron-deficient orthorhombic phase.  

Figure 7-3. Proposed model of the intergrowth of FeTe2 within Fe1+dTe, upon oxygen annealing.  (a) shows 

the structures as viewed in the tetragonal <001> direction, the same direction as shown in Fig. 7-2.   Note the similar 

Te-Te distances at the interface.    (b) shows the structures rotated 90 degrees into the tetragonal <100> direction.   
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The proposed model of the growth of FeTe2 on Fe1+dTe upon exposure to oxygen, is shown 

from the β <001> direction in Fig. 6a and from the β <010> direction in Fig. 7-3(b).  The 

interatomic distances shown here were derived from Rietveld refinement of the XRD profile in 

Fig. 7-1(a) (after annealing) and are consistent with reported values [ICDD cards 29-0729 and 07-

0367].129,130  Excess Fe in the Fe1+dTe phase is not shown (for clarity) but would reside within the 

interstitial spaces between stacked layers of the FeTe structure shown in Fig. 7-3(b).131 The FeTe2 

phase in Fig. 7-3(a) is shown twice, one rotated 90 degrees relative to the other, in order to show 

that the two growth directions are crystallographically equivalent.  Both directions of growth are 

evident in the analysis of Fig. 7-2.   

It has been shown that oxygen annealing bulk Fe1+dSe0.6Te0.4 causes the de-intercalation 

of interstitial iron and results in an iron-rich surface on the exterior a-b plane of the crystal.114 This 

implies ionic conduction of both interstitial and lattice Fe since the only path to the a-b plane 

surface for an interstitial Fe would be through the lattice, not through the van der Waals gap.  Thus 

as lattice iron atoms are pulled out of the structure and onto the surface of the crystal, nearby 

interstitial iron atoms are simultaneously pulled into the structure.   However, when there are no 

longer any free interstitial iron atoms available to replenish vacant lattice iron, the result is a 

structural change to an iron-deficient phase within the majority lattice, as we see in our data.  

This identifies what may be a complicating factor towards the appearance of 

superconductivity in bulk iron telluride.  Oxygen-annealing of bulk single crystals clearly causes 

mobility of both interstitial and structural iron in the system, leading to local structural 

inhomogeneity.  However, the literature, which describes oxygen annealing induced 

superconductivity at similarly low temperatures in thin films, does not report the growth of any 
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structural minority.  In fact, the structure and transport properties of as-grown crystals and oxygen-

annealed superconducting films are reported to be remarkably similar.125 The absence of 

superconductivity and presence of a minority structural phase upon oxygen annealing bulk single 

crystals thus indicate the possibility that this minority-phase growth may be impeding the onset of 

superconductivity.  The presence of a minority phase in thin-film samples is largely unknown, 

possibly due to the lack of sensitivity of diffraction methods in oriented thin films.   

7.2.2 Oxygenation state of Intergrowths 

It is important to confirm that a minority growth of FeTe2 (ε) in oxygenated single phase 

Fe1+dTe (β) is not responsible for the observed changes in valence shown in Figs. 6-7 and 6-8.  To 

explore this possibility, Fig. 7-4 examines the effect of oxygen annealing on the structure of 

Fe1-dTe (β+ε) and compares the valence states with the results obtained from Fe1+dTe (β). 

Figure 7-4(a) shows changes in XRD peak intensity corresponding to changes in relative content 

of the β and ε phases before and after oxygen annealing Fe1-dTe (β+ε).  Up arrows in Fig. 7-4(a) 

indicate locations of non-overlapping ε peaks and down arrows indicate locations of non-

overlapping β peaks, highlighting the areas to inspect for relative change.  Care was taken to 

control for changes in XRD peak intensity due to changes in preferred orientation before and after 

annealing. To mimic an in situ anneal, we annealed the powder in the XRD sample holder without 

disturbing it, then returned it to the diffractometer in the same orientation for the post-anneal 

measurement. Rietveld refinement of the XRD before and after oxygen annealing yields a relative 

change in β:ε  ratio (by weight) from 79:21 to 49:51.   

Figures 7-4(b) and 7-4(c) compare the pre and post oxygen annealed TEY spectra of single-

phase, Fe-excess Fe1+dTe (β) with mixed-phase, Fe-deficient Fe1-dTe (β+ε). The spectra of the 
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single-phase and the mixed-phase samples are identical with respect to changes in the oxidation 

states of Te and Fe before and after oxygen annealing.  We interpret from this that the valence 

shifts observed upon oxygenation are not due to the formation of the minority ε phase. 

 

To investigate the potential connection between the observed oxygen-induced valence 

change from the minority growth we studied a sample with intentional iron deficit Fe1-dTe 

(Fe0.92Te), which had an unambiguously mixed FeTe/FeTe2 phase, both before and after oxygen 

annealing. Figure 7-4 demonstrates that oxygen induces the growth of FeTe2 at the expense of 

Fe1+dTe: every non-overlapping peak assigned to FeTe2 increases after oxygen annealing, and 

every non-overlapping peak assigned to Fe1+dTe decreases after oxygen annealing.  As described 

Figure 7-4. XRD of Fe1+dTe before (black squares) and after (red circles) oxygen annealing.  (a) the 

XRD for Fe0.92Te highlighting the change in relative amounts of the β and ε phases upon oxygen annealing.  

Arrows indicate the growth or decrease of non-overlapping FeTe2 “ε” reflections.  Lines under the data indicate 

the positions of reflections for the constituent Fe1+dTe “β” and FeTe2 “ε” phases.  (b) and (c) compare the TEY 

spectra of Fe0.92Te to Fe1.22Te.  Note the pre- and post-annealing similarity in the x-ray absorption spectroscopy 

TEY data between the mixed-phase and single-phase samples. 
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previously, quantitative Rietveld refinement of the XRD profile demonstrates that the proportion 

of orthorhombic ε phase increases dramatically upon oxygenation at the expense of the tetragonal 

β phase, lowering the ratio of β to ε from 79:21 to 49:51 (β:ε).  In addition, TEY data presented in 

Figs. 7-4(b) and 7-4(c) shows remarkable similarity of both pre- and post-oxygen annealing when 

compared to the data presented earlier of the Fe1+dTe single-phase sample [Figs. 6-7 and 6-8, 

reprinted in Figs. 7-4(b) and 7-4(c)].  We conclude from these observations that the growth of the 

minority phase of FeTe2 is not responsible for the changes seen in Fe1+dTe oxidation state. If FeTe2 

were responsible for changes in the oxygenation state, one would expect the pre-oxygen-annealed 

Fe1-dTe spectra to resemble the post-oxygen-annealed Fe1+dTe spectra. Therefore, although there 

is evidence of oxygen-induced minority-phase growth in pure-tetragonal-phase Fe1+dTe, it is not 

likely correlated with the changes in the overall iron or tellurium valence as observed with TEY.  
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8.0  CONCLUSIONS 

The manipulation of parameters leading to superconductivity in topological insulators is crucial to 

understanding the fundamental physics behind novel superconductors, as well as the construction 

of devices based on these materials.  Many factors control the emergence of these quantum states, 

which are not easily decoupled. The topological state, for example, is easily broken by the 

modification of spin-orbit coupling parameters, the modification of which generally changes the 

Fermi energy through carrier concentration.   The studies presented in this dissertation present a 

means of controlling some of these parameters and an ability to influence the crystal structures 

into those that harbor the coexistence of superconducting and topological states. 

 MANIPULATION OF THE FERMI SURFACE IN COPPER-DOPED BISMUTH 

SELENIDE 

Quenching temperature is shown to strongly influence the Fermi surface of bismuth selenide by 

raising the Fermi energy.  This increase of Fermi energy, in part through the introduction of defects 

has the correlated effect of expanding the Fermi surface. Other authors have found charge doping 

through off-stoichiometric elemental concentration (i.e. Bi2-xSe3) or copper intercalation increases 

the Fermi energy, eventually creating a quasi-2D Fermi surface.42   However, these reports do not 

find a superconducting state, and are therefore unable to fully correlate effects of charge doping 

with superconductivity.  This dissertation shows high-temperature quenching of CuxBi2Se3 

induces superconductivity due to a combination of charge doping and effects on the crystal 
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structure.  Effects of quenching on the Fermi energy are supported by a combination of results 

from SdH oscillations and magnetoresistance. Additionally, SAED suggests quenching influences 

the appearance of superstructures and CDWs resultant from copper ordering.  

 EFFECTS OF OXYGENATION TREATMENT ON IRON TELLURIDE 

The primary effect of oxygen treatment of FeTe crystals, in a similar manner to those that induce 

superconductivity in FeSe1-xTex single crystals and FeTe thin films, is the formation of a FeTe2 

minority phase.  The FeTe2 phase formed is highly oriented, with the lattice of the parent FeTe 

crystal structure suggesting it is epitaxially bonded.  Oxygen is believed to leach iron out of the 

system through the van der Waals gap, followed quickly by bonding to iron in the lattice.  The 

leaching of iron from the lattice causes an iron deficiency, leading to a phase transition into FeTe2.  

Oxidation also causes changes in the valence state of Te from Te0
 to Te4+ and increases the ratio 

of Fe3+ to Fe2+. This change in oxidation state happens regardless of the phase purity of the 

compound, indicating the change in oxidation state is not caused by the appearance of FeTe2.  The 

transition of Fe valence from Fe2+ to Fe3+ is less complete than what is found in oxygenated thin 

films, indicating an important difference in oxygen dynamics between bulk crystals and thin films. 
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 LIMITATIONS 

8.3.1 Bi2Se3-type topological insulators 

In bismuth selenide, unreliable superconducting phase fractions make definitive identification of 

factors leading to superconductivity difficult.  Methods that reliably produce superconductivity 

tend to lead to small volumes of superconductivity, even at 0.3 K.  These small volumes of 

superconducting phase at low temperatures point to sample inhomogeneity, which limits the ability 

to distinguish properties from superconducting and non-superconducting regions.  Additionally, 

efficient structural characterization via XRD is limited due to the material’s sensitivity to oxidation 

and mechanical stress.  Isolation of surface electron properties is also difficult due to the formation 

of selenium vacancies raising the Fermi energy into bulk bands, even without addition of charge 

doping intercalants. 

8.3.2 FeTe-type superconductors 

The translation of novel superconducting states in iron telluride thin films to bulk systems 

is limited by intrinsic differences between films and bulk samples.  Thin films are necessarily 

grown on a substrate, which provides a stabilization of lattice parameters through coupling to the 

substrate.  Additionally, low dimensionality of thin films will have influences on magnetic 

ordering and 2D interfacial electronic states.  The anomalously high-temperature 

superconductivity found in monolayer FeSe is unlikely to appear in other 11-type bulk systems.  

Oxygen treatment on epitaxial thin films is inherently different from bulk crystals; the former only 

exposes the (001) surface of thin films to oxidation, whereas single crystals expose all faces.  The 
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dynamics of oxidation on the (100) surface will have differing effects on interstitial iron due to an 

ability to access interstitial areas directly, without first interacting with interstitial iron.   

 FUTURE WORK 

8.4.1 Bi2Se3-type topological insulators 

The technique used to modify the Fermi energy and induce superconductivity in copper doped 

Bi2Se3 is directly translatable to isostructural crystal systems including Bi2Te3 and Sb2Te3 binary 

systems. The isostructural Bi2SeTe2 structure, which has a reduced Se site defect density and lower 

Fermi energy, will likely have analogous effects.  The control of the Fermi energy via quenching 

allows a greater control of conducting electron states by tuning the Fermi energy with respect to 

the Dirac point and bulk electron states, independently from copper intercalation. The discovery 

of superconductivity in compounds isostructural to Bi2Se3 will bring an increased understanding 

of the superconducting state in this system.  Bi2Se3-type materials host many other intercalants 

including other transition metals, and easily form heterostructures with lead-based compounds of 

the PbSe type.  Reliable control of Fermi energy in these systems will give increased understanding 

as superconducting and topological properties are found in these materials with varied band 

structures and Fermi energies. 

The tunability of quenching to manipulate the Fermi surface is not well understood, in 

particular, if quenching provides continuous manipulation of the Fermi energy by means such as 

random defects, or creating a high-temperature phase, e.g. superstructures and CDWs.  

Comparison of the effects of quenching in isostructural compounds will provide increased 
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knowledge about the effects of quenching, particularly with compounds which are more 

homogenous and stable to mechanical stress.  The decoupling of effects from mechanical stress, 

Fermi energy, and intercalation ordering, is particularly important to understanding the origin of 

the superconducting state.  

8.4.2 FeTe-type superconductors 

Differences in the effects of oxygen treatments in thin films are at least in part due to the mobility 

of iron and oxygen diffusion in the material. Oxygen reacting with substrate-stabilized films will 

uptake oxygen more slowly than single crystals due to oxygen needing to diffuse through the 

lattice, rather than reacting with interstitial iron directly.  The formation of FeTe2 caused by iron 

deficiency can be mediated by allowing oxygen to diffuse uniformly into the system.  The diffusion 

of oxygen into bulk systems can be further explored by controlling the oxygen pressure, density, 

and temperature.  Other methods of controlling iron deintercalation and phase stability are of 

interest in the FeCh system and should be explored as a combination of the effects on interstitial 

iron concentration and the superconducting state.  The factors likely to impact the superconducting 

state with deintercalation are control of oxygen environment, particle size, exposure time, and 

choice of chemical oxidizer. The small range of iron stoichiometry leading to superconductivity 

in Fe1+dSe is likely mirrored in the Fe1+dTe and other systems leading to a narrow range of 

treatment parameters resulting in a superconducting state. 
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