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ABSTRACT 

GRAPHENE-BASED LUBRICATION FOR 
TRIBOLOGICAL APPLICATIONS: 

NANOLUBRICANTS AND SELF-LUBRICATING 
NANOCOMPOSITES 

by 

Emad Omrani 

 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Pradeep K. Rohatgi 

 

 

In this work, the effects of graphene nanoplatelets (GNPs) additives on tribological 

properties of aluminum are investigated. The objective of this research is to investigate 

and explain the enhancement mechanisms of GNPs at the contact surface during 

tribological testing. The graphene nanoplatelets are studied both as an oil additive 

(Chapter I) and as a reinforcement (Chapter II) experimentally. The coefficient of friction 

(COF) and wear rate were identified using a pin-on-disk test setup.  

Mineral, organic, and synthetic oils are not always efficient enough to satisfy the 

demands of a high-performance lubricant; therefore, mixing additives with base fluids is 

an approach to improve the lubrication ability and to reduce friction and wear. In chapter 

I, GNPs are used as lubricant additives to make nanolubricants. Then, the combined effect 

of the material’s variables (GNPs loading, size, and dispersion stability) and tribo test’s 

variable (applied normal load) are investigated on COF and wear rate of aluminum.  

Tribological studies are all carried out in the boundary lubrication regime. Three-
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dimensional surface metrology is performed using an optical profilometer. Various 

surface analyses, including Scanning Electron Microscope (SEM), Energy-Dispersive X-

ray Spectroscopy (EDX), and Raman Spectroscopy are performed to assess the chemical 

elements on the tested surfaces. The experimental and theoretical analyses show that 

GNPs are effective in reducing friction and wear, although, this positive effect is more 

influential at higher loads. Also, it is demonstrated that there is a critical concentration of 

GNPs, below which a reduced wear rate is not sustained. The proposed mechanism to 

describe the effect of GNPs in boundary lubrication condition is “reduced direct metal-

metal contact area” at the contact surface. In other words, a material which has low shear 

strength layers sits between two contacting surfaces and separates the two sliding metal 

surfaces with no actual contact between them. This means that there is less formation of 

asperity junctions between the two surfaces. 

Although liquid-based lubricants are efficient enough in most tribological 

applications, there are circumstances, such as extreme environmental conditions such as 

high or low temperatures, vacuum, radiation, and high contact pressure in some 

aerospace applications, where no liquid lubricants can be present. In addition, 

interminable providing of lubricant at the contact surface is another challenge ahead. In 

order to respond to these challenges of using liquid oil at extreme environmental 

conditions, in chapter II of this dissertation, the synthesis and performance of self-

lubricating aluminum matrix nanocomposite are evaluated (Chapter II). Aluminum 

powder is mixed with varying concentrations of GNPs and alumina nanoparticles to form 

a hybrid metal matrix nanocomposite. High-energy ball milling is conducted at room 

temperature while powders are immersed and protected by benzene bath. Degassing is 

accomplished by heating to 135oC. Consolidation of the powders is conducted by single 
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action cold compaction and single action hot compaction. Pin-on-disk experiments are 

conducted to investigate the tribological behavior of aluminum matrix composites 

reinforced by GNPs and compare them with unreinforced aluminum. Then, the combined 

effect of material’s variables (reinforcement type and loading) and tribo test’s variable 

(applied normal load) were investigated on COF and wear rate of aluminum. SEM and 

EDX were performed to assess the stoichiometry of the elements on the tribo surfaces. In 

addition, Raman Spectroscopy and Transmission Electron Microscopy (TEM) were also 

performed to identify the bonding/interactions between the phases on the surface. 

Results imply that the COF and wear rate of composites decrease by embedding graphene 

nanoparticles due to reduction the real contact area between the mating surfaces by 

forming the lubricant. Besides, the addition of alumina particles in Aluminum/GNPs 

composites can further improve COF and wear rate because of rolling effect of alumina 

nanoparticles.  

Increasing the loading of GNPs reduces the COF, while there is an optimum 

concentration of GNPs, above and below which the wear rate is increased. In addition, the 

COF and wear of all composites decreases by increasing normal load. Based on the 

observations, multiple mechanisms are proposed to describe the improved tribological 

behavior of the synthesized self-lubricating nanocomposites. In addition to the reduced 

direct metal-metal contact area at the contact surface, the fact that the layered GNPs 

structure is exposed to at the contact surface keeps the surface lubricated.  In other words, 

under sliding conditions, the transfer layer formation of the GNPs on the tribo surfaces 

acts as a solid lubricant film, which prevents direct contact between the mating surfaces. 

Additionally, it is experimentally confirmed that  GNPs prevent the surface from oxygen 

diffusion, thereby reducing the amount of oxides which are harder and more abrasive at 
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the contact surface. “Load bearing” of added alumina nanoparticles, in addition to the 

increased hardness of the matrix, is another proposed mechanism of wear resistance 

enhancement.  It has been shown that an effective lubricant layer forms when the solid 

lubricant has a strong adhesion to the bearing surface; otherwise, this lubricant layer can 

be easily rubbed away and tends to have a very short service life. Raman data confirms 

the formation of Al4C3 bonds on the tribo layer under certain test conditions. 
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OIL ADDITIVE 
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1.1 INTRODUCTION 

Friction and wear is a problem that affects practically every field of engineering. 

Wear has the effect of reducing the life of materials and causing eventual failures of the 

mechanical systems. A common example is the internal combustion engine, where the 

wear in engine cylinders reduces the effectiveness of piston ring seals, thereby reducing 

the combustion pressure and engine power. In practically any mechanical system, all 

friction ends up as lost energy, reducing the overall efficiency. Finally, friction can cause 

runaway heating that can damage or destroy mechanical components. 

Base oils (vegetable oils, mineral oils, and synthetic oils) cannot always satisfy the 

demands of a high-performance lubricant by themselves [1]. For this reason, additives are 

mixed with base fluids to improve upon the lubricant’s ability to reduce friction and wear, 

increase viscosity, improve viscosity index, resist corrosion and oxidation, increase 

component and lubricant lifetime, and minimize contamination [2].  Additives are 

synthetic chemical substances mixed with base oils to improve various characteristics of 

lubricants, so, the oils can placate the higher demand placed on them and satisfy 

specification requirements. Additives often improve existing properties, suppress 

undesirable properties, and introduce new properties to the base oils. One of the most 

important properties that additives enhance is a lubricant’s ability to form protective 

films, which is especially important in boundary lubrication conditions. The use of 

additives has a large influence on the performance of lubricants that makes it possible to 

fulfill the increasingly complex demands placed on lubricants. When blending additives 

with base oils, it is important to have a well-balanced and optimized composition to 

improve the performance of the lubricant. 
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1.1.1 OBJECTIVE FOR GREEN OILS 

It has been reported that 50% of all lubricants worldwide end up in the 

environment through usage, spillage, volatility, or improper disposal [3]. These oils 

typically are not environmentally friendly or biodegradable and are toxic to the 

environment by contaminating soil, air, and drinking water. Moreover, concerns for the 

depletion of crude oil reserves and increases in the price of oil have had an impact on the 

use of petroleum-based oils. These factors have caused the lubrication industry to develop 

and implement environmentally friendly lubricants. These ‘green’ lubricants are typically 

derived from organic materials that are non-toxic, renewable, and provide feasible and 

economic alternatives to traditional lubricants [4, 5]. For this reason, there has been a 

revival in the development of environmentally friendly or environmentally benign 

lubricants that satisfy the combination of environmental, health, economic, and 

performance challenges of modern lubricants.  

Vegetable oils meet many of the requirements as alternatives to traditional 

petroleum-based lubricants because they are renewable, biodegradable, non-toxic, and 

have minimal environmental pollution and production costs [6]. Vegetable oils also 

exhibit higher lubricity, lower volatility, higher shear stability, higher viscosity index, 

higher load carrying index, and superior detergency and dispersancy when compared 

with mineral and synthetic oils [7, 8]. Despite the environmental advantages to using pure 

natural oils, they do suffer from poor thermal and oxidative stability, biological (bacterial) 

deterioration, hydrolytic instability, poor fluid flow behavior, solidification at low 

temperatures, and, occasionally, high wear rates [9-12]. They are also susceptible to 
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oxidative degradation due to the presence of free fatty acids and the presence of double 

bonds in the carbon chain. 

1.1.2 OBJECTIVE FOR OIL ADDITIVE 

Lubricant additives have an important influence on the performance of lubricants. 

These additives are active ingredients which can be added during a blending process to base 

oils in order to either enhance the existing performance of the base fluids or impart new 

properties that the base fluids lack.  

Most of the lubricant oils at present contain several critical lubricant additives, 

including antiwear additives, dispersants, detergents, friction modifiers, viscosity index 

improvers, and antioxidants. Traditionally, oils are presented as a single-phase material to 

maintain a good consistency and dispersibility of the lubricant additives in the base oil. 

However, a great amount of research has been focused on introducing solid particles as a 

friction reduction or antiwear lubricant additive over recent years due to a number of 

incomparable advantages of the two-phase lubricant oils (liquid-solid), such as the superior 

thermal conductivity, high pressure standing ability, high resistance to decomposition at 

temperature, low environmental impact, etc. [13-15]. Some of the solid lubricant additives, 

particularly in nano or submicron size, have demonstrated even better tribological 

performances than the traditional organic additives, Zinc dialkyldithiophosphates (ZDDP) 

for instance. 

Due to the diversity of the materials, there are still many controversies about their 

behavior in a base lubricant and their lubricating mechanisms, although many potential 

candidates have been tested as solid lubricant additives and have shown excellent tribological 

properties [16-18].  The major drawback of solid lubricant additives, the intrinsic poor 
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stability in liquid base lubricant systems, has considerably restrained them from applications. 

Therefore, the research on exploring novel solid lubricant additives and the techniques that 

would improve their dispersibility in base lubricants is certainly required. 

1.1.3 WHY SOLID LUBRICANT ADDITIVES? 

The good friction and wear reduction performances of solid lubricants were 

observed due to the low shear strength of the materials because of their intrinsic crystal 

structure. However, the introduction of a solid lubricant additive in lubricant oil caused 

another problem: stability. Solid particles are generally not stable in liquid media, 

especially for large particles. The agglomeration of the solid lubricant particles causes 

them to separate from the lubricant by sedimentation, thereby reducing or removing the 

additive content from the base lubricant so that the benefits gained from the introduction 

of solid particles in the lubricant are lost. 

Outstanding performance in friction and wear reduction was observed in some 

applications of the solid inorganic lubricant additives [19-22]. Some of the solid inorganic 

lubricant additives even outperform the traditional organic lubricant additive ZDDP [23]. 

Lamellar or layered solid lubricants are some of the most widely used class of lubricants 

by engineers. A significant amount of research and development has been performed to 

understand the tribological characteristics of these lubricants, as well as determining the 

optimal lubricant for specific applications. A few examples of lamellar lubricants are 

graphite, molybdenum disulfide (MoS2), hexagonal boron nitride (hBN), gallium 

selenium (GaSe), and boric acid (H3BO3). These lamellar solid powders all have similar 

molecular structures composed of layers of covalently bonded atoms. These layers are 
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held together by the weak van der Waals force, and maintain different distances between 

the layers for different molecules. Solid lubricants offer many advantages over liquid 

lubricants in applications (Table 1) involving high vacuum, high temperature, cryogenic 

temperature, radiation, extreme dust, or corrosive environments [24]. 
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Table 1 Advantages and Disadvantages of Solid Lubricants[25] 

Advantages  Disadvantages 

Are highly stable in high-temperature, 

cryogenic temperature, vacuum, and high-

pressure environments 

Have high heat dissipation with high 

thermally conductive lubricants, such as 

diamond films 

Have high resistance to deterioration in 

high-radiation environments 

Have high resistance to abrasion in high-

dust environments 

Have high resistance to deterioration in 

reactive environments 

Are more effective than fluid lubricants at 

intermittent loading, high loads, and high 

speeds 

Enable equipment to be lighter and 

simpler because lubrication distribution 

systems and seals are not required 

Offer a distinct advantage in locations 

where access for servicing is difficult 

Can provide translucent or transparent 

coatings, such as diamond and diamond-like 

carbon films, where desirable 

Have higher coefficients of friction 

and wear than hydrodynamic 

lubrication 

Have poor heat dissipation with 

low thermally conductive lubricants, such as 

polymer-based films 

Have poor self-healing properties 

so that a broken solid film tends to 

shorten the useful life of the lubricant 

(however, a solid film, such as a carbon 

nanotube film, may be readily reapplied to 

extend the useful life.) 

May have undesirable color, such 

as with graphite and carbon 

nanotubes 
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The lubrication mechanisms that govern solid lubricants are controlled by intrinsic 

properties, such as the layered crystal structure, interlayer distance, electrostatic 

attraction, and extrinsic parameters such as humidity, temperature, and environment. 

The interlayer distance between layers is also important because as the interlayer distance 

increases, the ability of the van der Waals force to hold adjacent layers together decreases; 

thus, the shearing resistance between layers weakens enhancing lubricity. The interlayer 

distances for graphite are 0.335 nm. There are no solid lubricants that can provide both 

low friction and low wear in all environments. For graphite and MoS2, the interlayer 

distances are 0.335 nm and 0.296 nm, respectively. The friction and wear performance of 

solid lubricants is influenced by inherent properties, environmental parameters, and 

application usage. In humid air, graphite can have a lower friction coefficient than MoS2; 

however, in dry and vacuum environments, MoS2 has the lower coefficient of friction. 

They are used as additives in oils and greases where their physical properties prevail, and 

in coatings in which physiochemical reactions and adherence become critical. In these 

situations, the solid lubricant develops into a thin lubricating transfer film that can 

protect a surface by accommodating the relative motion by easily shearing and carrying a 

portion of the asperity contact load, thus decreasing friction and minimizing wear. This 

physical behavior allows lamellar solids to be used as solid lubricants whether they are in 

the form of a granular powder, compressed pellet, or colloidal solution. 

1.1.4 THE ROLES OF SOLID LUBRICANT ADDITIVES 

Lamellar powder lubricants are known for their crystal structure, in which atoms 

lying on the same layer are closely packed and strongly bonded together by covalent 
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bonds, and the layers are relatively far apart due to the weak van der Waals force. When 

entrained between sliding surfaces, the lamellar powders can adhere to the surface, 

forming a protective boundary layer that minimizes contact between opposing surface 

asperities to prevent wear. The protective boundary acts as a lubricant in sliding contacts 

by accommodating relative surface velocities. The lamellar powder lubricants accomplish 

this by aligning their layers parallel to the direction of motion and sliding over one 

another to minimize friction. Moreover, these powder lubricants can lubricate in extreme 

conditions, such as high or low temperatures and pressures [26, 27]. 

The excellent tribological property of solid inorganic lubricant additives can be 

attributed to four mechanisms: 

Tribochemical reactions -- Solid lubricant additives may interact with the 

surface material of friction pairs and form a surface protection film [28, 29]. 

Ball effect -- Small spherical nano-particles enable rolling between friction pairs. 

These particles introduce a partial rolling friction into a pure sliding friction [29]. 

Mending effect -- in most of the cases, the surface roughness is greater than the 

mean diameter of nano-particles. Nano-particles can be deposited on the surface and 

form a physical tribofilm, which compensates for the mass loss of materials [30, 31]. 

Third body effect -- a large number of nanoparticles helps to reduce 

compressive stress concentrations associated with high contact pressure by bearing the 

compressive force depressively [31, 32]. 
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1.2 LITERATURE REVIEW 

Inorganic solid lubricant additives have recently been developed. The utilization of 

nanosized or submicron sized particles as an inorganic lubricant additive is gradually 

earning their attention in industrial applications, owing to their outstanding tribological 

properties and good environmentally friendly features compared with the traditional 

organic lubricant additives that contain P, S, and Cl elements [33-35]. Like the traditional 

lubricant additives, some of the inorganic solid lubricant additives are also capable of 

forming a boundary film through so-called ‘tribochemical’ reactions to protect the 

rubbing surfaces. This boundary film may contain the materials from lubricant additives, 

lubricant, and substrate surface [36, 37]. 

1.2.1 EFFECT OF GRAPHENE AS AN OIL ADDITIVE 

For tribology applications, nanoparticles as additives in base oil have been widely 

investigated [18, 38, 39]. These studies refer to synthesis and preparation of nanoscale 

particles and their tribological properties and mechanisms. It was observed that when the 

nanoparticles were added to the base oil, the extreme-pressure property and load-

carrying capacity were improved, and the friction coefficient was decreased. At present, 

the viewpoint about mechanisms of nanoparticle additives is as follows: 1) ball effect [29, 

40]; 2) tribochemical reactions [41, 42]; and 3) adsorption film theory [43]. The results 

of previous studies indicate that nanoparticles used as lubricating oil additive can 

improve the tribological properties of base oils. Commercially layered compound 

powders, usually as solid lubricants dispersed in oil, were also included [44]. The addition 

of nanomaterials as additives in base lubricant oil is a rapidly progressing field of research 
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because nanomaterials are different from traditional bulk materials due to their 

extremely small size and high specific surface area [45-47]. Amongst nanoparticles, the 

solid lubricants such as molybdenum disulfide (MoS2) [48] and nano-graphite [49, 50] 

dispersed in oil exhibited beneficial effects by reducing friction and wear. 

Graphite and graphene were used to enhance the tribological properties of 

materials as reinforcements [51-53] or as oil additives [35, 54]. It is reported that a layer 

of solid lubricant continuously forms on the tribosurface during dry sliding of the metal-

graphite composites [55-57]. Composites reinforced with graphite particles at proper 

concentrations have better tribological properties because graphite particles act as a solid 

lubricant on worn surfaces [58-60], to graphite particles as an additive in oil [35, 49, 61, 

62]. Lee et al. [49] separated graphite nanoparticles into industrial gear oil, and the 

results indicated graphite nanoparticles can improve the lubrication properties 

significantly. Huang et al. [35] used graphite nanosheets as an additive in paraffin oil to 

analyze the tribological behavior with a four-ball and a pin-on-disk friction and wear 

tester. It proved that the graphite nanosheets as an additive in oil at proper concentrations 

can improve tribological properties, load-carrying capacity, and antiwear ability, to 

decrease the friction coefficient. Aranganathan et al. [61] compared the effect of natural 

graphite (NG) and thermo-graphite (TG) contained in NAO friction materials (FMs). The 

tribo-performance of TG-based FM proved superior to NG-based ones, excluding 

recovery performance. 

Graphene platelets (GNPs) [62] are a fascinating fundamental component of 

graphite due to their excellent lubricative properties. With increasing thickness of GNPs 

over several layers, the frictional force between an AFM tip and graphene decreases and 

is independent of the substrate [63]. The very low friction coefficient and high pressure 
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resistance of graphene make it a prospective reinforcement for lubricant and antiwear 

coatings [64-67]. Recently, GNPs as additives in base lubricants became a hotspot. 

Eswaraiah et al. [54] manufactured Ultrathin graphene-based engine oil nanolubricants 

and observed a reduction in frictional coefficient. They also found the frictional 

characteristics and wear scar diameter increases with increasing concentration of 

graphene. Arwin and Rashmi [68] detected NGPs as an additive for two different 

biolubricant base stocks resulted in a reduction of the coefficient of friction and a negative 

effect at a higher temperature. Some experiments showed the modification of GNPs can 

improve the dispersion of graphene platelets in base oil. The wear resistance and load-

carrying capacity of the machine also reduce the resistance to shear and wear scar 

diameter [50, 69, 70]. 

The tribological behavior of nano graphite nanosheets as an additive in paraffin oil 

was investigated by Huang at al. [35] with a four-ball and a pin-on-disk tribo tester. The 

graphite nanosheets with an average diameter of 500 nm and a thickness of 15 nm were 

prepared by stirring ball milling. The maximum nanosized loads of the lubricating oil 

were determined according to the ASTM D2783 standard method. As a lubricant additive 

in oil, graphite nanosheets demonstrated better tribological properties than in pure 

paraffin oil when an appropriate additive concentration was used. The low shear strength 

between the sliding surfaces resulting from the employment of graphite nanosheets with 

the layered structure is responsible for the observed improvement on tribological 

properties. 1% was found to be the optimal concentration for the application of this type 

of solid lubricant additive. Gansheimer [71], Rapoport [72], and Kimura [73] also 

reported a similar improvement on tribological properties, such as friction and wear 
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reduction, and the improvement on maximum non-seizure load, by using MoS2, WS2 and 

BN as solid lubricant additives correspondingly. 

1.2.2 SUMMARY  

The present chapter has reviewed previous studies regarding the application of 

solid lubricant additives. Various types of solid lubricant additives have demonstrated 

outstanding tribological properties such as friction reduction, wear resistance, and 

improvement on maximum non-seizure load. 

In general, it can be categorized into three ways by which solid lubricant additives 

can improve the tribological performance of a lubrication system. The first approach is to 

employ their easy shear crystal structure. Solid lubricant additives that have such 

lubricating mechanism such as graphite. These solid lubricant additives create a layer of 

material with low shear strength and, therefore, reduce the force required to activate the 

sliding and, consequently, reduce friction. The second approach is by mending or third 

body effect. Solid lubricant additives that have such lubricating mechanisms include 

metal nanoparticles, metal oxide nanoparticles, and other inert solid particles with small 

particle sizes. These particles may deposit onto the contact surfaces, fill valleys, and work 

as the separation material, ultimately reducing direct substrate to substrate contact and 

protecting contact surfaces. Finally, the third approach is associated with tribochemical 

reactions. Solid lubricant additives that have such lubricating mechanisms include 

borates, sulfides, chlorides and other materials that contain active elements such as Sulfur 

(S), Phosphorus (P), Chlorine (Cl), and Fluorine (F). These lubricant additives react with 

base oil and substrate materials and form a protective film (tribo film) with low shear 



14 
 

strength on contact surfaces. Exfoliation and replenishment of tribo film are the typical 

phenomena involved in tribo chemical reactions. 

Although many materials have been tested as solid lubricant additives and have 

shown good tribological properties, there are still many controversies about their 

lubricating mechanisms. Therefore, research looking for new materials that are 

potentially suitable for a lubricant additive need to be continued. It is well known in 

literatures that dispersion of the additives in the base oil in the application of solid 

lubricant additives plays an important role on the tribological performance. Exploitation 

of new modification techniques is also an essential part of the research on solid lubricant 

additives.  

1.3 MATERIALS AND EXPERIMENTS 

In this chapter, the tribological properties of graphene nanoplatelets as an additive 

to synthesize a nanolubricant is studied.  The experimental procedure which was applied to 

study the tribological performance of solid lubricant additives in the lubricant base oil begins 

with dispersing of the solid lubricant in the base media to prepare the so-called “ Nano 

lubricant”. Subsequently, the prepared nanolubricants were used to lubricate the sliding 

contact during a pin-on-disc tribo test. Friction and wear are evaluated at several 

parameters including volume friction of graphene and applied load. To understand the 

mechanism of the enhancement in presence of graphene nanoplatelets additives, several 

test rigs were also employed to analyze the worn surface of the pins. The key test 

equipment involved in the study are introduced in this chapter. This work is carried out 

in 3 phases: 
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1. Study the tribological properties of nanolubricant (base oil with graphene 

additive) to understand the effects of these solid lubricant additives on 

tribological performances, 

2. Investigate different parameter on the wear and the friction behavior of 

composites. 

3. Characterize worn surface of nanocomposites to understand wear mechanism 

and characterize the tribofilm on the surface to understand the reason for the 

change in wear and COF.   

In the present investigation, canola oil with graphene nanoplatelets powder 

additives was studied using a pin-on-disk tribometer to determine its feasibility as a 

biolubricant. The primary materials used in this investigation were a) Al2024 as the pin 

(Speedy Metal, New Berlin, WI), b) 440C stainless steel as the disk (Speedy Metal, New 

Berlin, WI) and c) nano27 graphene nanoplatelets (GNPs) as the oil additive (Asbury, 

Asbury, NJ) with average thickness of approximately 10 nm and average platelet diameter 

of ~1 µm. Canola oil has a viscosity and surface tension like the functional fluids used in 

industrial applications such as metal-stamping and metal-forming operations. It has been 

speculated to serve as an automotive lubricant for gears or bearings [74]. In this study, 

canola oil was specifically chosen because it is readily available, inexpensive, 

environmentally benign, and tested previously by the authors [27]. Graphene 

nanoplatelets are ball milled for 3 hours before mixing with oil to reduce the thickness of 

graphene nanoplatelets. Additionally, 2024 aluminum alloy is used to manufacture 

components for metal-forming, drilling, and machining operations as well as extensive 

use in a broad set of applications within the manufacturing and automotive industries. 
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1.3.1 NANOLUBRICANTS 

To make the nanolubricants, graphene nanoplatelets (GNPs) are dispersed in the 

canola oil for desired a volume fraction of GNPs (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 

0.40 vol.%). Three methods of dispersing were employed to make the nanolubricants; 

Mechanical Shaker (IKA MS3), Ultrasonic mixer (Powersonic P1100 Ultrasonic Cleaner) 

and the combination of Shaker/Ultrasonic. The ball milled graphene was poured on top 

of the oil container and was shaked for 20 minutes with a speed of 10k rpm to have a 

homogenous nanolubricant. In ultrasonic mixer method, graphene was added to the top 

of oil container and mixed for 2 hours at 60 oC. The last method is mixing graphene for 

20 minutes with a shaker at first and then using an ultrasonic mixer for 2 hours at 60 oC. 

1.3.2 TRIBOLOGICAL TESTS 

To perform the experiments, a disk-on-disk test setup is used that measures the 

friction coefficient using torque and load sensors, as well as the temperature of the lubricant. 

The surface samples are submerged in a small reservoir of the nano-lubricant. Base lubricants 

with no additives have been used as the base solvents to isolate the results and investigate the 

effect of particles explicitly. 

Throughout this experimental investigation 2024 aluminum alloy (T4 heat 

treated) with HRB of 73 was consistently used for the construction of the pins and disks is 

440C stainless steel with HRC of 60 in the tribo-interface. The pins were machined to 

dimensions of 6mm in diameter and 20 mm in length with a hemispherical tip. The disks 

were made having dimensions of 55 mm in diameter and 10 mm in thickness. The disks 

were originally machined and polished to a surface roughness having an arithmetic 
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average, Sa, of 0.15 ± 0.05 μm. Pin-on-disk tests at ambient conditions were conducted to 

characterize the tribological properties of the various nanolubricants. The schematic of 

the pin-on-disk test was shown in Figure 1. Table 2 presents the basic testing conditions 

used throughout each experiment. A thermocouple is also deployed to determine the 

temperature of the lubricant at the end of wear test. This test setup is designed for conducting 

boundary lubrication experiments with a small volume of lubricant. 

Table 2 Test parameters 

Parameter Selected Values 

Normal load (N) 5, 10, 15 and 20 

Sliding velocity (mm/s) 25 

Distance traveled (m) 1000 

Environment Ambient 

Lubricant quantity 

(mL) 

8 

 

Figure 1 Schematic of pin-on-disk interface with a lubricant film covering the disk 
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Investigating the lubrication regime for the following experiments is an important 

preliminary step when characterizing the friction mechanisms between the pin and the 

disk surfaces. This can be achieved by utilizing the elastohydrodynamic minimum film 

thickness equation developed by Hamrock and Dowson, which is applicable in many 

material combinations for a variety of contact geometries including point contact of a 

hemisphere on a flat surface as is the geometry for the pin-on-disk testing. The 

numerically derived formula for the minimum film thickness is expressed in the following 

form: 

 

ho  is the minimum film thickness (m); 

U  is the entraining surface velocity (m/s), i.e. , where the 

subscripts ‘a’ and ‘b’ refer to the velocities of bodies ‘a’ and ‘b’ respectively; 

ηo is the viscosity at atmospheric pressure of the lubricant (Pa s); 

E’  is the reduced Young’s modulus (Pa), i.e.  where ν 

is Poisson’s ratio and E is Young’s modulus for the respective pin and disk 

specimen; 

R’  is the reduced radius of curvature (m) for a pin on flat, i.e. 

, where Ra is the radius of curvature for the pin in the x and y directions 

Α  is the pressure-viscosity coefficient (m2/N), i.e. 

 

w  is the normal load (N) 
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k  is the ellipticity parameter defined as k = a/b, where ‘a’ is the 

semiaxis of the contact ellipse in the transverse direction (m) and ‘b’ is the semiaxis 

in the direction of motion (m), however in this calculation the value of the 

ellipticity parameter for point contact is k = 1. 

In the present experimental conditions, the pin tip radius is 3mm, the sliding speed 

is 25mm/s, and the normal load is 5-20N. Hamrock and Dowson’s elastohydrodynamic 

film thickness equation predicted a minimum film thickness ratio of 5.1×10-6 or less. 

These values are significantly less than unity and place the current experimental 

investigation in the boundary lubrication regime. It can be inferred that for the variety of 

testing conditions presented in this experimental study the lubricating regime will remain 

in the boundary lubrication. 

During each of the tests the surface of the disk was partially submerged by the 

nanolubricant mixture, thereby continually lubricating the pin-disk interface throughout 

the duration of the test. The pin and disk specimens were cleaned before and after each 

test using an ultrasonic cleaner with soap, acetone, and hexane solutions. Each test has 

repeated a minimum of three times to ensure repeatability and accuracy of the results. 

The normal load and friction force measurements were monitored for each test using a 

two-beam type load cells that read the normal load from a static hanging mass and the 

friction force as the tangential force of the pin holder. The linear wear-loss was acquired 

through a linear variable differential transducer (LVDT) with an encoder, which recorded 

the vertical displacement of the pin. 

The COF (coefficient of friction) value presented for each test was the average of 

the friction values. In addition, the linear wear-loss was acquired through a linear variable 

differential transducer (LVDT) with an encoder, which recorded the vertical displacement 
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of the pin. The linear wear loss of each pin was converted into a volumetric wear loss using 

Eq. (1) derived from the geometry of a spherical cap. 

𝑉 =  
𝜋ℎ2

3
(3𝑟 − ℎ)      (1) 

1.3.3 CHARACTERIZATION 

The worn surfaces of the samples are investigated to understand the wear 

mechanism. Comprehensive characterization tests were designed for the nanolubricants 

to understand and explain the relationship between different parameters using the 

following techniques. 

Two different scanning electron microscopes (SEM) (Hitachi S-4800 Ultra High-

Resolution Cold Cathode Field Emission Scanning Electron Microscope (FE-SEM), JEOL 

JSM-6460 LV were used for characterization of the worn surfaces. Elemental analysis is 

performed using an Oxford Energy Dispersive Spectroscopy detector attached to the 

SEM. The thin window silicon drift detector (SDD) allows for the detection of the 

elements carbon and higher. 

X-ray diffraction (XRD) data gathered by a D8 Bruker diffractometer with Cu Kα1 

radiation (λ= 0.15406 nm) (scanning from 2θ = 15° to 2θ =85°, step size of 0.02°, counting 

time of 0.3s per step).  

A LEXT OLS4100 3-D Laser Confocal Microscopy is used for 2-D and 3-D imaging 

and dimensional measurements with a surface feature observation resolution of 20 nm.  

A Renishaw Inc. 1000B Raman spectroscopy (Helium neon laser (633nm)) is used 

to determine the formation of tribofilm on the worn surfaces.  
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1.4 RESULTS AND DISCUSSIONS 

1.4.1 BALL MILLING OF GRAPHENE NANOPLATELETS 

As discussed earlier, GNPs ( Few layer graphene)  offers better antifriction effect 

than a single layer graphene and graphite [75, 76].  The shear force acting on a few layer 

graphene helps its exfoliation [77, 78] thereby contributing to the lubrication effect of the 

oil. However, at the same GNPs loading, the number of layered graphene sheets present 

at the contact surface increases inversely by number of layers.  One can say that, in case 

of very few layers of graphene, the repeated exfoliation due to shear forces could form 

several single layer graphene sheets which cover the contact surface and reduce metal-

metal interaction. One approach to reducing the number of layers in GNPs is mechanical 

milling.  During milling, the shear forces intercalate/exfoliate graphite. Graphite layers 

have the weak van der Waals bonding and strong bonds in basal plane. As a result, the 

shear force during milling can potentially reduce the number of layers in GNPs.  

Figure 2 compares the Raman spectra of graphite, graphene nanoplatelets (GNPs), 

and ball-milled GNPs. Figure 3 illustrates the D- and G-band and Figure 4 shows the 2D-

bands. In general, the D-band appears in graphite only in defective/disordered samples 

or at the edges. In GNPs, the 2D-band changes from a doublet peak profile to a single 

peak. In a perfectly A-B stacked few layer graphene, by about 5 – 6 layers, the 2D-peak 

starts exhibiting a two-peak profile. From top down point of view, this indicates that the 

2D-band in graphite maintains a two-peak profile down to 5 or 6 layers. However, in 

samples with high c-axis disorder, the two-peak profile of graphite is not maintained. 

Cancado et al. [79] have shown that as disorder increases, the 2D2 shoulder shift upwards 
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and finally merges into the 2D1 band. However, this type of analysis and comparison is 

only valid when less than 5 or 6 layers of graphitic planes are under study. High 2D 

FWHM and the doublet structure of 2D bands in both Graphite and GNPs indicated the 

higher than 6 later c-axis disorders. According to Ferrari et al. [80], for a transition from 

graphite to nanocrystalline graphite, one can compare the ratio of the D-peak intensity to 

that of the G-peak which varies inversely with average inter defect distance as well as 

increasing of FWHM. Here, the ID/IG value changes from 0.32 to 0.52 in graphite to 

GNPs. In addition, the downshift of the 2D peaks from 2674 to 2651 in graphite to GNPs 

indicates the decrease in number of layers [81]. The ball-milling procedure breaks the 

large crystallites into smaller particles and introduces a significant number of defects. 

According to Kaniyoor et al. [82], a high amount of defect can suppress the 2D-band and 

a bump like region emerges. Since no chemical treatments were given here, the peculiar 

2D-band shape cannot be due to functional groups and must be due to defects.   
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Figure 2 Raman spectra of graphite, GNP, and ball-milled GNPs 
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Figure 3 D- and G-band of graphite, GNPs, and ball-milled GNPs 
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Figure 4 2D-band of graphite, GNPs, and ball-milled GNPs 

 XRD patterns of the graphene nanoplatelets (GNPs), and ball-milled GNPs (for 

1,2,3,6 hours of milling time) samples are displayed in Figure 5. As shown in Figure 5, as-

received GNPs exhibits a basal reflection (002) peak at 2𝜃 =26.6◦ which corresponds to a 

d-spacing of 0.335 nm and represents the interlayer distance. Results shows that the 

diffraction peaks of the milled samples become weaker and broader, and the diffraction 

angle shifts downward as the milling time increases, indicating a gradual disordering 

process and d-spacing increase (intercalating process). The disordering process of GNPs 

seems to be complete after 3 hours of milling as only one single and board diffraction peak 

is observed in the corresponding XRD pattern. No further change can be seen from the 

XRD patterns for the samples milled for longer periods of time. One can say, when 
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graphite is completely exfoliated to single layer graphene, this diffraction peak 

disappears.  

 

Figure 5 XRD patterns of the GNPs and ball-milled GNPs (for 1,2,3 and 6 hours milling 

time) 

1.4.2 DISPERSION STABILITY 

Graphene nanoplatelets strongly hydrophilic and easy to coagulate in oil. Hence, 

when graphene platelets are added to the base oil as a lubricant additive, it is necessary 

to ensure uniform dispersion without any agglomeration of graphene platelets in the base 

oil. All three methods described in 1.3.1 (Pg. 16) show a good dispersion appearance of 

particles into the oil. Figure 6 illustrates the dispersion of 0.1 vol.% graphene into the oil. 

Observations of the experiments reveal that after one day of mixing, the ultrasonic/shaker 

method started settling the particles from the top while two other methods were still well 
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dispersed (Figure 6b). After 5 days, the settlement of particles was observed in the shaking 

method while the ultrasonic mixing methods were still homogenized (Figure 6c). After 13 

days, most of the graphene particles had settled to the bottom of the containers for 

shaking and shaking/ultrasonic mixing methods, even though graphene tended to settle 

at the bottom of container for the ultrasonic mixing method (Figure 6d). Therefore, the 

ultrasonic mixing method was selected for 2 hours at 60oC to use for mixing due to more 

stability of dispersion of solid lubricant particles. It should be noted that the stability of the 

nano-lubricants is crucial to avoid any aggregation, settling, sinking, and clustering effects. 

 

 

Figure 6 Compression of stability of mixing methods in several days 

1.4.3 TRIBOLOGICAL PERFORMANCE 

1.4.3.1 COF 

In this work, the base lubricant without any additives has been used as the base oil to 

isolate the results and investigate the effect of particles explicitly. In general, the 
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concentration of the additive in lubricating oil plays an important role to determine 

lubricative characteristics. So, the effect of different concentrations of nanolubricants on the 

friction and wear properties of the lubricant is investigated.  

Figure 7 shows the effect of volume fraction of nanolubricants on the COF and 

compared with neat oil. By adding graphene into the oil, the COF decreases because the 

graphene nanoplatelets can reduce the real contact area between two surfaces. Thus, these 

results reveal the important role that the GNPs play in filling the inter-asperity valleys. The 

graphene can more easily penetrate into the interface and form a continuous film in concave 

of rubbing face and align themselves parallel to the relative motion and slide over one another 

which can decrease shearing stress with relative ease providing lubrication. the COF gradually 

decreases by increasing the volume fraction of graphene, Therefore, at a high volume 

percentage of graphene, more graphene nanoplatelets present in the nanolubricant and 

between mating surfaces and, consequently, decreasing the direct contact area between worn 

surfaces. Moreover, with adding more graphene nanoplatelets into oil and increasing its 

concentration, more and more graphene deposit on the worn surface and thus greatly 

reduce the roughness of the surface and direct contact surface-to-surface, and the 

corresponding lubrication state gradually goes up to a good lubrication regime. A 

schematic illustration of the graphene nanoplatelets in the tribo-interface is shown in Figure 

8. This figure demonstrates how the particles fill the inter-asperity valleys to establish a thin 

powder transfer film in the contact zone.  

The lowest COF value is for nanolubricant with more than 0.3 vol.% of GNPs while 

neat oils have the highest COF value. Generally, the influence of the more graphene particles 

to lower the COF is far greater than the low amount of graphene particles. For example, 
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the presence of the 0.1 and 0.3 vol.% of graphene nanoplatelets at 15N applied load lowers 

the COF by 39% and 73% improvement, respectively when compared to the neat oil. 

Figure 9 presents the results of the tests for base oil and several concentrations of 

nanolubricants at different loads. Results indicate that the effect of nanoparticles is more 

influential at higher loads and nanoparticle concentrations. The system works in the 

boundary lubrication regime which is the case where the lubricant film thickness between 

surfaces approaches the surface roughness. In this lubrication regime, there is substantial 

contact between surfaces but also some parts of the surfaces are separated by the lubricant 

film. Therefore, an increase in the normal load would squeeze more lubricant out of the 

contact region which reduces the lubricant film thickness between surfaces. This would 

escalate the probability of contact between surfaces and hence, increases the probability of 

particle engagement in the contact, therefore, the particles are more influential further in the 

boundary lubrication regime.  
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Figure 7 The variation of COF in different volume percentage of graphene at several 

loads. 
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Figure 8 Schematic of the role of graphene as an oil additive in reducing COF 

 

Figure 9 The variation of COF in different loads at several volume percentage of graphene 

Figure 10 compares the worn surface of aluminum pins at 5N for neat oil and 

nanolubricant with 0.1 vol.% and 0.3 vol.% of graphene. There is no evidence for the 

presence of graphene on the worn surface using a neat oil wear test (Figure 10a) while 

they can be observed for samples lubricated by nanolubricant where the worn surfaces 

are covered by a lubricant graphene tribolayer as shown in Figure 10 (b) and (c). In 

conclusion, the real contact area between two surfaces reduced and so the COF is less than 
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neat oil. By comparing the worn surface of nanolubricant with 0.1 and 0.3 vol.% of 

graphene in Figure 10, it is obvious that more area of the worn surface is covered by 

graphene tribolayer for nanolubricant with 0.3 vol.% of graphene. Therefore, there is less 

real contact area between pin and disk and protect more asperities, so the COF of 0.30 

vol.% nanolubricant is less than 0.1 vol.% nanolubricant.  

generally, the nanoparticles usually form a thin transfer layer on the surface of the 

tribocontacts that can support partial hydrodynamic forces, therefore, reducing surface-

to-surface contact of the asperities resulting in less friction, wear, and surface damage. It 

can be concluded that adding graphene particles into oil can be effective. As shown in 

Figure 10, surface characterization of samples shows some black spot on the contact 

surface for both samples in lubrication condition of nanolubricant. These are graphene 

nanoplatelets which is good evidence for reduced real contact area between pin and disk. 

Consequently, the reduction of the COF in presence of additives is attributed to this 

phenomenon. 
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Figure 10 Worn surface of aluminum pins in presence of a) neat oil, b) nanolubricant 

with 0.1 vol.% graphene and c) nanolubricant with 0.3 vol.% of graphene at 5N applied 

load 

Figure 11 shows the steady state temperature of the lubricant at the end of the 

experiment. In the case of lubricants, a lower friction coefficient results in less heat 

production and consequently the final temperature is lower. the graphene nanoparticles 
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also have proven to affect the thermal properties of the solution such as conduction which 

could result in better heat dissipation. Therefore, this effect appears to result in a 

significant reduction in the temperature in comparison to the lubricant without 

nanoparticles. 

 

Figure 11 The variation of surface temperature in different volume percentages of 

graphene at several load 

The fluid flow pattern is affected in the presence of the graphene suspended in the 

liquid that results in an increase in dissipated energy and an increase in the viscosity of 

the nanolubricants. Figure 12 and Figure 13 shows the results of viscometer for different 

concentrations of graphene at several temperatures.  Figure 12 shows that the viscosity of 

graphene nanolubricants significantly reduces with temperature. The viscosity drops due 

to the inter-molecular and inter-particle adhesion forces. The inter-particle adhesion 
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forces become weak with the increase in temperature, causing a decrease in viscosity. 

Moreover, increased Brownian diffusion at elevated temperatures can reduce viscosity. 

Nguyen et al. [83] found that the dynamic viscosity of nanofluids increases considerably 

with particle volume fraction but clearly decreases with a temperature increase.  

The increase in viscosity of mineral oil samples after the addition of graphene is 

insignificant. The reason for this behavior remains unclear as most of the existing 

explanations seem to be speculative [84, 85]. However, Heine et al. [86] showed through 

the molecular dynamics simulations of equilibrium structure and the response to imposed 

shear on suspensions of spheres, rods, plates, and jacks, that the rod and plate systems 

show noticeable particle alignment, which helps to minimize the frequency of particle 

collisions. Similarly, it is expected that the graphene having sheet structure could align 

itself along the shear direction. Nevertheless, this claim requires experimental validation. 

It can be concluded from Figure 13  that nanolubricant behave as a Newtonian fluid where 

viscosity remains constant, no matter the amount of shear applied for a constant temperature. 

Therefore, these fluids have a linear relationship between viscosity and shear stress. 
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Figure 12 Viscosity versus temperature for different concentrations of 

nanolubricants 

 



37 
 

 

Figure 13 Viscosity versus volume percentage of graphene for different loads 

The data from the friction and viscosity measurements are collapsed into the 

widely used Stribeck curve [87] in an attempt to develop generalized observations (Figure 

14). P, η, and ω are the average contact pressure, viscosity and rotating speed, respectively 

in the x-axis of Figure 14. The Stribeck curve can account for the effect of changes in COF 

due to viscosity (temperature rise and particle concentration), along with pressure in one 

combined plot. The change of COF versus the average contact pressure, viscosity and 

rotating speed is considered in Figure 14 using the data shown in Figure 11 and Figure 12. 

The coefficient of friction decreases as more graphene are introduced in the lubricant and 

as contact pressure increases. As contact pressure increases, more asperities in the 

contact region yield and undergo plastic deformation. Lower resistance to the applied 

tangential load is exhibited, causing the overall friction coefficient to drop in accordance 

with existing friction theories [88-92]. Therefore, graphene nanoplatelet additives 
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decrease friction coefficient deep into the boundary lubrication regime (on the far left of 

the curve). 

 

Figure 14 Stribeck curve for different volume percentage of graphene 

1.4.3.2 Wear 

Figure 15 shows the variation of the pin wear volumes rate with the load for all the 

nanolubricants. It is evident that wear rate of samples lubricated with nanolubricants 

significantly improved where the wear rate of nanolubricants is less than neat oil at 

different normal load. Besides, the pin wear volume rate decreases with the increasing 

graphene nanoplatelets volume fraction as an oil additive for various applied loads. Thus, 

the nanolubricants with a high number of particles have the lower wear volumes and the 
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lower particulate mixtures have the highest wear volumes; these results are like the trends 

seen in the coefficient of friction behavior.  

The larger wear of neat oil can result from a real contacting area of the rubbing 

surface owing to wear. Therefore, this enhanced in wear of nanolubricant can be 

attributed to the layered structure of graphene mixed with based oil and due to its 

lubrication nature. When ultrathin graphene was added to the base oil, it fills up the 

micro- and nano-gaps of the rubbing surfaces and form lubricant graphene tribofilm 

which can smooth the surfaces, so that it avoids direct contact of the two surfaces and 

reduces the wear. The influence of the more graphene particles to lower the wear is far 

greater than the low amount of graphene particles. For example, by examining neat oil, 

the presence of the 0.1 and 0.3 vol.% of graphene nanoplatelets at 15N applied load lowers 

the wear volume by 78% and 99% improvement, respectively when compared to the neat 

oil. 

Nevertheless, the wear rate versus GNPs volume percentage is U-shape. 

Consequently, there is an optimum amount of nano additive. The optimum amount of 

graphene as an oil additive for canola oil is 0.3 vol.% that the wear rate has the lowest 

value amongst nanolubricants. Adding more graphene in the oil beyond this optimum 

point (0.30 vol.% GNPs) cause to increases the wear rate. On contrary, less than 0.30 

vol.% graphene, number of graphene particles is not sufficient to cover the majority of 

surface and reduce the contact between the mating surface to reduce the wear rate. In 

addition, particle additive concentrations below the optimum concentration result in 

insufficient load carrying capacity. When the particle additive concentration is above the 

optimum concentration, this results in the excessive additive in the base oil lead 

decreasing the load carrying capacity due to the formation of lumps in the interface which 
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will result in worse lubricating efficacy. Accordingly, the reason for increasing the wear 

rate after an optimum point is that graphene particles can easily aggregate in the oil 

mixture and during the wear process, resulting in the increase of the wear rate. aggregated 

graphene particles are considered to behave more like a third-body abrasive particle when 

sliding along the aluminum pin, because of their plate-like geometry, which damages the 

pin surface by plastic deformation, resulting in the high wear volume rate. Moreover, an 

excessive concentration of graphene nanoplatelets in oil will lead to graphene piling up 

between friction pairs, thus blocking the oil film, and the oil film will become much more 

discontinuous, even causing a dry friction [69]. As a result, the wear will increase beyond 

the bottom point of the curves (0.30 vol. %). 

Generally, graphene nanoplatelets were two-dimensional nanosheets and could be 

easily dispersed in the base oil. Therefore, two contact surfaces were filled with the 

dispersed graphene nanoplatelets during the wear process, and then graphene 

nanoplatelets on wear surface could serve as spacers, preventing rough contact between 

the two mating wear surfaces. In addition, the two-dimensional sheet shape of graphene 

nanoplatelets could provide very easy shear and more easily a slider between the two 

contact surfaces. Consequently, the wear rate of the aluminum pin in nanolubricants 

samples dramatically drops. 

 Figure 16 depicts the variation of wear rate of pins at different loads in several 

volume percentages of graphene nanoplatelets. By increasing the load, the wear rate of 

aluminum in presence of nanolubricants decreased while the wear rate of neat oil 

increases. The wear rate slightly shows higher wear rate at higher normal load. 
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Figure 15 The variation of wear rate in different volume percentage of graphene at 

several loads. 
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Figure 16 The variation of wear rate in different loads at several volume percentages of 

graphene 

Figure 17 compares the worn surface of aluminum pins at 15N for neat oil and 

nanolubricant with 0.1 vol.% and 0.3 vol.% of graphene. There is no evidence for the 

presence of graphene on the worn surface for neat oil wear test (Figure 17a) while the 

black spots on the worn surfaces that expected to be a graphene tribolayer can be observed 

as shown in Figure 17 (b) and (c). Therefore, the real contact area between two surfaces 

reduced and so the wear rate of nanolubricants is less than neat oil. As explained in 1.4.3.1 

(Pg. 27), with increasing the volume fraction of graphene, the larger area of the worn 

surface is deposited with graphene and thus greatly reduce the roughness of the surface 

and direct contact surface-to-surface, and have better lubrication regime. Consequently, 

less contact between asperities and less failure and deformation are occurred and as well 

as less wear rate is expected. 
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 By comparing the worn surface of nanolubricant with 0.1 and 0.3 vol.% of 

graphene, it is obvious that the more surface area of aluminum pins tested with 0.3 vol.% 

nanolubricant covered by graphene tribolayer in comprising with nanolubricant with 0.1 

vol.% of graphene. Therefore, there is less real contact area between pin and disk and so 

the wear rate is less than 0.1 vol.% nanolubricant. Generally, the geometry of the graphene 

is planar and therefore, the graphene can more easily penetrate the interface because on 

nano-sized and cause two important reasons for reducing friction and wear: 1) forming a 

nano-bearing between moving surfaces and 2) forming tribofilm in concave of rubbing 

face which can decrease shearing stress, therefore, give a low friction coefficient and wear. 

Generally, when adding additives to base oil allows it to act as a mechanical reinforcing 

element during friction and can strengthen the load carrying capacity of the lubricant.  
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Figure 17 Worn surface of aluminum pins in presence of a) neat oil, b) nanolubricant with 

0.1 vol.% graphene and c) nanolubricant with 0.3 vol.% of graphene at 15N applied load 

Several enhancing and modification mechanisms have been proposed for nanoparticle 

lubricants in the boundary lubrication regime in the literature, such as: viscosity alteration, 

thermal stability enhancement, mending worn surfaces, the rolling effect and load bearing of 

nanoparticles. Viscosity and thermal properties are affected by the graphene nanoparticles. 
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However, the effect of these two mechanisms is minimal in the boundary lubrication regime 

where tribology is dominated by the contact of asperities. Particle deposition and forming a 

lubricant tribolayer is evident as shown in Figure 17  and the element of carbon is present at 

all the sample surfaces tested with the nanolubricant. The dispersion of particles and 

lubricant film on the surface is random and is sufficient to replace a significant portion of the 

worn material. Therefore, the mending mechanism is one of dominant in tribological tests. 

Moreover, the other mechanism is nanoparticles rolling and bearing and acting as nano 

bearings implies that the use of a nanolubricant should result in minimal wear. It is proven 

that nanoparticles can roll in between surfaces in contact [93]. Particles of the stable 

nanolubricant can exist as individual particles and don’t form clusters in the suspension up 

to 0.30 vol.%. As more concentrated nanolubricant are used, more particles would be engaged 

in the contact and make larger and thicker lubricant tribofilm which explains the reduction 

in the wear rate versus particle concentration. On the other hand, at higher graphene 

concentration more than 0.30 vol.%, these particles would cluster and induce abrasive wear 

by plowing on the surface, therefore, increasing at wear rate happened. Due to the scaling 

effect on material strength, nanoparticles exhibit higher hardness than bulk materials which 

potentially makes them a source of abrasive wear.  To avoid these effects, the concentration 

of nanolubricants is limited to 0.30 vol.%. However, it is reported in the literature [38-40] 

that the nanoparticle effect on wear and friction would saturate at a certain concentration. 

The saturation concentration depends on the type and size of the particle, as well as the 

properties of the base oil. 

Based on the all the results, we would like to suggest the nanoparticles reduce the real 

area of contact and therefore reduce friction in the boundary lubrication. This theory implies 

that particles engaged in contact would keep surfaces apart around the particles which results 

in the reduction of the real area of contact. A decrease in the real area of contact translates to 
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a reduction of the friction coefficient and wear. As more concentrated nanolubricants are 

used, more particles would be engaged in the mating surfaces which explains the monotonic 

reduction in the friction coefficient versus particle concentration. In addition, these particles 

would bear high. 

It is noteworthy to compare the wear on the aluminum pins and the stainless-steel 

disks, the influence of the crystal structure affects the wear rate, for example the steel disk 

has a body-centered cubic (BCC) crystal structure with a lower number of slip systems 

when compared with the aluminum pin, which has a face-centered cubic (FCC) crystal 

structure. Here, the BCC crystal structure has 48 possible slip systems, but since the 

planes are not so closely packed, they require higher amounts of stress to cause slip. On 

the contrary, the FCC crystal structure is closely packed and has 12 possible slip systems 

that require less stress than the BCC to cause slip. The limited number of slip systems in 

the steel decreases the occurrence of plastic deformation in the material, thereby severely 

limiting the real area of contact in the pin-disk interface; for this reason, less wear occurs 

with the steel disk when compared with the aluminum pin. 

1.4.3.3 Surface Studies 

1.4.3.3.1  Three-dimensional confocal microscope 

To further evaluate the influence of the volume fraction on the wear, an optical 

profilometer was used to analyze the worn pin surfaces. An optical profilometer was used 

to measure surface roughness parameters. Figure 18 - Figure 21 shows three-dimensional 

worn surfaces of pins recorded by the optical profilometer at different loads. Surface 

analysis shows that the worn surfaces in presence of graphene nanoplatelets into the oil 

are smoother than neat oil. As it is expected from wear rate data (Figure 15), the worn 
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surfaces of neat oil samples are rougher than the worn surface of nanolubricant if 

compare Figure 18 - Figure 21(a) with other worn surfaces. Generally, it can be found that 

the worn surface lubricated only by the neat oil is rougher with many thick and deep 

grooves, but the worn surfaces lubricated by oil with graphene is comparably smoother 

and the grooves are shallower. 
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Figure 18 The 3D Optical profilometer images of worn surface of the pin at 5N for the a) 

neat oil b)0.05 vol.% nanolubricant c)0.10 vol.% nanolubricant d) 0.15 vol.% 

nanolubricant, e) 0.20 vol.% nanolubricant, f) 0.25 vol.% nanolubricant, g) 0.30 vol.% 

nanolubricant, h) 0.35 vol.% nanolubricant and i) 0.40 vol.% nanolubricant 
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Figure 19 The 3D Optical profilometer images of worn surface of the pin at 10N for the a) 

neat oil b)0.05 vol.% nanolubricant c)0.10 vol.% nanolubricant d) 0.15 vol.% 

nanolubricant, e) 0.20 vol.% nanolubricant, f) 0.25 vol.% nanolubricant, g) 0.30 vol.% 

nanolubricant, h) 0.35 vol.% nanolubricant and i) 0.40 vol.% nanolubricant 
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Figure 20 The 3D Optical profilometer images of worn surface of the pin at 15N for the a) 

neat oil b)0.05 vol.% nanolubricant c)0.10 vol.% nanolubricant d) 0.15 vol.% 

nanolubricant, e) 0.20 vol.% nanolubricant, f) 0.25 vol.% nanolubricant, g) 0.30 vol.% 

nanolubricant, h) 0.35 vol.% nanolubricant and i) 0.40 vol.% nanolubricant 

 



51 
 

 

Figure 21 The 3D Optical profilometer images of worn surface of the pin at 20N for the a) 

neat oil b)0.05 vol.% nanolubricant c)0.10 vol.% nanolubricant d) 0.15 vol.% 

nanolubricant, e) 0.20 vol.% nanolubricant, f) 0.25 vol.% nanolubricant, g) 0.30 vol.% 

nanolubricant, h) 0.35 vol.% nanolubricant and i) 0.40 vol.% nanolubricant 

The Sa values for the worn pin surfaces for various nanolubricants at different 

normal load are depicted in Figure 22, which shows a relationship between the surface 

roughness and volume fraction of graphene nanoplatelets. By comparing the roughness 

number of neat oil tested sample with nanolubricants, it is obvious that nanolubricants 
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are effective to enhance the wear rate due less damage and failure on the surface by having 

less surface roughness number. Moreover, the roughness number of the worn surface 

decreases by increasing the volume percentage of graphene in nanolubricants up to 0.30 

vol.% the same trend of wear rate. Hence, amongst the nanolubricants, the lowest 

roughness belongs 0.30 vol.% nanolubricants as it is expected from wear data from Figure 

16. Therefore, it can confirm the claim that GNPs can fills up the valleys of asperities to 

smooth the surfaces and avoids direct contact of the two surfaces and reduces the wear. 

Besides, nanolubricant with higher graphene volume percentage can fill up more gaps 

and then cover more area of surfaces and then more protection on the surfaces occurs. 

Therefore, the finish surface is smoother for nanolubricants with more graphene 

particles. On the other hand, adding graphene nanoplatelets more than 0.30 vol.% have 

negative effect as the surface roughness increases due to agglomerated graphene behave 

more like a third-body abrasive particle because of their plate-like geometry, which 

damages the pin surfaces by plastic deformation, resulting in the high wear volume rate 

and consequently, rougher surfaces.  

It can be concluded from Figure 22 that surface roughness of samples at higher 

load is smoother as it is expected from wear rate as shown in Figure 16. Hence, adding 

graphene in nanolubricant is more effective at higher load because of lower wear rate and 

roughness. generally, there is a correlation between wear rate and roughness after the 

test. Hence, the wear rate is low, the surface roughness is low.   

Figure 23 shows the relationship between wear rate and surface roughness at 15N. 

A direct relationship between Sa and wear rate and a sharp reduction in wear rate and Sa 

by adding 0.5 wt.% graphene can be observed. Moreover, the surface roughness 

increment from 0.35 wt.% to 0.40 vol.% graphene is in line with the increasing wear rate. 
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Therefore, all samples are corresponding to a direct relationship between wear rate and 

surface roughness. 

 

Figure 22 Surface roughness of worn surfaces of pins in several graphene nanoplatelets 

at different loads 
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Figure 23 The relationship between Wear rate, the surface roughness (Sa) and GNPs 

concentration at 15N 

1.4.3.3.2 Wear Scar Diameter 

After each test, the worn surface is flat, and each worn pin has a unique wear scar 

diameter that related to wear rate of samples. Figure 24 depicts the scar diameter of the 

pin at 15N applied load for neat oil and nanolubricants. As shown in Figure 24, the 

diameter of the pin is larger for the sample tested with neat oil (Figure 24a) in comparison 

with nanolubricant (Figure 24 b and c) as it is expected because of the higher wear rate 

for neat oil sample. In addition, it is concluded that the scar diameter of the pin at 

different applied load for 0.30 vol.% nanolubricant is less than 0.10 vol.% nanolubricant 

(Figure 25) that confirm the wear rate results which lower wear rate occur in 0.30 vol.% 

nanolubricant rather than 0.10 vol.% nanolubricant. Moreover, the wear rate is lower at 
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a higher load, consequently, the scar diameter of pins is smaller as shown in Figure 25 

(b), (d) and (f) in comparison with Figure 25 (a), (c) and (e). Figure 26 exhibit the 

correlation between scar diameter and graphene nanoplatelets volume percentage at 

different loads. The trend of wear scar diameter versus volume fraction of GNPs is the 

same trend of wear rate and surface roughness as expected. 

 

Figure 24 Wear Scar diameter of pins at 15N for samples tested with a) neat oil, b) 0.10 

vol.% nanolubricant and c) 0.30 vol.% nanolubricant. 
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Figure 25 Wear Scar diameter of pins at differ load and graphene volume percentage in 

nanolubricant 
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Figure 26 Correlation of wear scar diameter pin with graphene volume percentage of 

nanolubricant at different applied load 

1.4.3.3.3 SEM Analysis 

The evidence of reducing the friction and wear in presence of graphene 

nanoplatelets dispersed in nanolubricant can be confirmed by the results of SEM and 

EDX.  Figure 27 shows scanning electron micrographs of worn pin surfaces for the 

particulate nanolubricants containing graphene nanoplatelets at different loads. If 

compare with the worn surface of neat oil (first row) with the worn surface of 

nanolubricants, it is obvious that the surface is rougher with many thick and deep crack 

due to no protective layer deposited to protect the worn surface for more damage and 

abrasive wear. The pin surface used in the neat oil is severely abraded, having a high Sa 

(Figure 22) value, which is significantly rougher than nanolubricant tests. On contrary, 

SEM investigations show that graphene nanoplatelets appeared on the worn surfaces of 
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nanolubricants as lubricant tribofilm (Figure 27), unevenly distributed over the texture 

of the surface. These particles or agglomerated particles as a lubricant tribofilm can be 

rolled up and are likely to act as nano-rolling and nano-bearing elements, which explains 

low friction coefficients and wear during the test. A graphene tribofilm is formed on the 

worn surface of nanolubricants as shown in the second, third and fourth row of Figure 27. 

This is consistent with the friction and wear results that show lower COF and wear rate 

for nanolubricants in compression with neat oil samples. In addition, this may suggest 

that the particles fill the inter-asperity valleys and create a smoother surface finish. 

The problem is that these particles are not uniformly distributed over the contact 

surfaces, producing a preferential wear on the particle-free areas. As the particles migrate 

in motion, these areas prone to direct contact. This may be the explanation for the 

variation of the friction coefficient and wear at a different volume percentage of graphene 

nanoplatelets. Amongst the nanolubricant, more area of the surface covered by graphene 

tribolayer that can reduce real contact area more and more between two surfaces and 

consequently, reduce more in the value of COF and wear rate by increasing the number 

of graphene particles in nanolubricants. In the other word, the surface of worn pin 

samples covered enough by a graphene tribolayer can reduce the contact of surface-to-

surface and then reduce COF and wear rate.  

For each applied load from top to bottom in Figure 27, it can be revealed that the 

surface becomes smoother and roughness number of the worn surface decreases at a 

higher volume fraction of graphene nanoplatelets. The smoothest surface was observed 

in 0.30 vol.% nanolubricant. In fact, in this trial the presence of the 0.30 vol.% graphene 

particles lowered the COF by 82, 74, 73 and 76%, the pin wear volume by 86, 98, 99 and 

98%, and the surface roughness by 77, 91, 94 and 94% at 5, 10, 15 and 20 N, respectively. 
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Therefore, adding 0.30 vol.% graphene is the optimum amount of graphene can cover and 

form a good distribution of graphene layer on the surface to preserve the pin surface from 

wear and damage. On the contrary, increasing more on graphene particles cause to have 

more wear due to agglomeration of particles and act as some third-party abrasive particles 

that more scratches were observed on the worn surfaces of samples with 0.40 vol.% 

nanolubricant. 

Generally, these results further verify that nanolubricants can form a protective 

coating on a surface that lowers the coefficient of friction, wear volume, and surface 

roughness. Besides, the coverage of tribolayer play an important role to enhance the 

tribological properties. 
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Figure 27 Scanning electron micrographs of worn pin surfaces for various nanolubricant 

at different loads 

1.4.3.3.4 EDX Analysis 

Figure 28 presents the EDX spectrum of test surfaces before performing any wear test. 

As one expects, the majority of the unworn test surfaces are aluminum. The sample surfaces 

studied in this work are the 2024 aluminum pin, therefore, a comparative study of the surface 

composition yields more insight on the particle-surface interaction. That is why the analysis 

of the original surface (Figure 28) shows that the majority of the surface is made of aluminum 
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with some minor trace of the copper and magnesium. Whereas, EDX results show that the 

majority of the samples worn under a pure base oil are composed of aluminum and a trace of 

iron and chromium on the surface and inside the wear grooves was observed (Figure 29). It 

is also evident in Figure 29 that there is no trace of the carbon element on the surface samples 

used in this work, prior to surfaces being exposed to graphene nanoplatelets exists in the 

nanolubricants.  
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Figure 28 EDX spectrum of unworn aluminum samples before test  

 

Figure 29 EDX spectrum of worn surfaces of aluminum pin samples for neat oil after test 

at a) 10N and b) 20N  

As mentioned earlier, the addition of graphene lead to enhanced friction and wear 

because graphene nanoplatelets are brought in between contact areas as the graphene in 

oil is more stable. This is evident from the EDX analysis which confirms graphene’s 

presence on the surfaces comparatively higher than other neat oil that doesn’t contain 

graphene. It is noteworthy that the addition of 0.30 vol.% graphene has negligible effect 
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on overall behavior of the base oil due to more graphene flakes are brought in between 

contact surfaces. As shown in SEM images earlier, there are some black spots on the worn 

surfaces of pins that it is speculated that graphene particles form a lubricant tribofilm. To 

confirm these spots containing carbon or graphene, EDX was employed to determine the 

composition for these spots on the tribofilm. Figure 30 - Figure 33 depicts the EDX analysis 

for a sample surface tested with nanolubricants at different loads. The EDX analysis indicates 

that traces of the element carbon exist on the surfaces after being exposed to the 

nanolubricant during the test that nanoparticles play a significant role in acting upon the 

tribological contacts. The high concentration of carbon on the surface suggests that the 

graphene nanoparticles at the SEM/EDS analysis is still largely intact on the surface. This is 

also made more apparent by comparing to the EDX analysis of the control sample (Figure 

29). It can be concluded that the graphene nanoplatelets particles could also be deposited on 

the worn surfaces for tested samples with nanolubricant containing graphene nanoparticles. 

This is in contrast to the surfaces worn while submerged in a base lubricant with no graphene 

particles because they have no signs of carbon. Figure 30 - Figure 33 (c), shows the carbon 

element mapping of the worn surface and indicates a distribution of nanoparticles adhering 

to the surface in and outside of the wear grooves. The same arguments stand for other samples 

and the carbon element trace appears to also be randomly distributed. Using EDX the average 

weight fraction of carbon detected on the surfaces exposed to the nanolubricant was 

measured to be 12-95 % at depending on the volume fraction of graphene into nanolubricants. 

It can be concluded that the graphene particles form a physical deposition film on the 

rubbing surface and prevent surfaces from direct contact. These results further indicate 

that graphene nanoplatelets increased the wear resistance of the oil and showed excellent 

antiwear properties. Generally, the darker areas in the SEM images had higher 
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concentrations of carbon, suggesting that graphene may be adsorbed in these dark areas 

and form a tribofilm on the worn surfaces that the notable improvements in friction and 

wear are achieved. 

By comparing the composition of a surface tested with the 0.30 vol.% graphene 

nanolubricant with 0.10 vol.% nanolubricant, high traces of carbon and low traces of iron 

are observed that this is a relatively lower wear rate. In addition, high traces of iron and 

low traces of carbon suggest at the lower load that this is a relatively deep grooves where 

there are more damage and wear on the surface. Therefore, the overall conclusion of 

Figure 30 - Figure 33 is that particles are adhered to the surfaces in all cases regardless of 

the depth of the grooves. This suggests that the adherence of the particles does not depend 

on the high pressures within the asperity contacts as is theorized to be the case with many 

lubricant additives and the difference is an area that covered by graphene tribolayer. 

Therefore, it is evident that particles are dispersed randomly throughout the contact zone 

and can infiltrate the contact regions. This would disregard the hypothesis that the 

majority of particles fill up valleys and are not engaged in contact. Alternatively, the 

reduction of friction monotonically continues as more nanoparticles are dispersed in the 

lubricant. Also, wear seems to be a function of nanoparticle concentration.  
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Figure 30 SEM image and elemental mapping for the surfaces tested with 0.10 

vol.% nanolubricant at 20N and its material composition using EDX. 
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Figure 31 SEM image and elemental mapping for the surfaces tested with 0.30 

vol.% nanolubricant at 20N and its material composition using EDX. 
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Figure 32 SEM image and elemental mapping for the surfaces tested with 0.10 

vol.% nanolubricant at 10N and its material composition using EDX. 
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Figure 33 SEM image and elemental mapping for the surfaces tested with 0.30 

vol.% nanolubricant at 10N and its material composition using EDX. 

The mechanism of reduction in the real area of contact needs further investigation and 

study to be fully proven. One helpful study could be the characterization of the size of 

nanoparticles prior to and after the tests which can prove the abrasive nature of the particle-

surface contact. It should be added that various nanoparticles behave differently based on 
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their mechanical behavior as governed by chemical and physical properties and arguments 

raised in this chapter are currently limited to the graphene nanoparticles studied. 

1.4.3.3.5 Raman Spectra  

The full Raman Spectra of worn surface of sample lubricated by neat oil and 

nanolubricant with 0.30 vol.% graphene is shown in Figure 34. The Raman spectra of the 

aluminum pin surface on the wear track surface lubricated by the neat oil prove no 

existence of graphene because of no existence of D- and G-band in the Raman spectra. On 

the other hand, the wear track surface lubricated with the nanolubricant exhibits strong 

D- and G-band of graphene in the Raman spectrum that confirms worn surface at least 

partly covered with graphene, however, with a disordered structure due to the presence 

of the D-peak in the Raman spectra. Therefore, the analysis result verifies the deposition 

of graphene nanoplatelets on the worn surface during the wear process, and the wear 

track surface is almost covered by the graphene after the tribological test (Figure 27).  

Consequently, the addition of GNPs into the oil clearly gives a positive effect on fraction 

and wear as can be seen in Figure 7 and Figure 15.  
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Figure 34 The Raman spectrum of the worn surface of nanolubricants with neat oil and 

0.30 vol.% nanolubricants 

1.4.3.3.6 Wear Mechanism 

Several mechanisms have been proposed for various tribological enhancements 

using graphene as an additive. Zhang et al. [69] used liquid phase exfoliated graphene 

modified by oleic acid as additives (0.02–0.06 wt.%) in lubricant oil which showed 

enhanced performance, with friction coefficient and wear scar diameter reduced by 17% 

and 14%, respectively. Similarly, Lin et al. [50] found that the surface modified graphene 

enhances the wear resistance and load-carrying capacity of the machine. Their SEM and 

EDX results show that the enhancement might be due to extremely thin laminated 

structure, allowing the graphene to easily enter the contact area. Micro-tribological 
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studies by Ou et al. [94] showed that the reduced graphene oxide possesses good friction 

reduction and antiwear ability. They attributed the enhancement to graphene’s intrinsic 

structure and self-lubricating property. Miura et al. [95] claimed that the grease with this 

graphene was providing better lubricating performance than all the other existing 

additives. Moreover, atomic force microscopy (AFM) based friction studies of graphene 

substrates have been instrumental in explaining various possible mechanisms [75, 96]. 

Electron-phonon coupling [97], puckering effect [76] and interplay of surface attractive 

forces [98] in graphene have a major role in reducing friction.  

Based on the experimental observations and review of the existing literature, it was 

understood that the occurrence of several morphological transformations of graphene 

simultaneously or subsequently could be the key. The large variation in flake size exists 

when graphene is synthesized and dispersed in fluids using sonication techniques [99]. 

Therefore, the graphene-based suspension should be a poly dispersed graphene-oil 

mixture [100]. Small flakes could easily deposit in the valleys and prevent the deepening 

of the same. Large flakes could provide coating effect by sliding, buckling, bending or by 

turning into semi tubes as the shear forces act on them. 

Graphene slides between the contacts [54], especially during mixed and 

hydrodynamic lubrication, thereby furthering the formation of a protective film [50] 

could be mainly possible due to its planar structure. As discussed, SEM images show that 

the graphene is deposited in valleys and ridges and EDX analysis further confirmed high 

carbon deposition in wear tracks as shown in Figure 37 - Figure 39.  

The lubrication models of the pure neat oil and the nanolubricant are illustrated in 

Figure 35. In this study, in case of lubrication with the neat oil, two contact surfaces 

scratch each other, and many abrasive particles are produced because of the friction force. 
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The abrasive particles slide under high friction stress, leading to the contact surface 

becoming extremely rough. Once the surface roughness exceeds the oil film thickness, the 

dry contact will happen, and wide and deep grooves and furrows are formed on the wear 

surface. But as graphene are added to neat oil, the graphene with oil can penetrate the 

interface of contact pairs and gradually deposit and accumulate in the original. Quickly, 

these grooves are filled up, and the contact surfaces become flat and smooth, resulting in 

a decrease in frictional force. The surface roughness of the rubbing surfaces is largely 

decreased compared with that lubricated with the neat oil. Finally, the deposited 

graphene nanoplatelets form a deposition lubricant tribofilm and cover the worn surface, 

as confirmed by SEM and Raman, which results in fewer abrasive particles produced. The 

reduction of abrasive particles is helpful for maintaining the smooth contact surfaces and 

reducing the wear volume of friction pairs.   

In addition, this performance can be described as the lubrication regime transition 

[69] as shown in Figure 36, where h is the thickness of the lubrication film, and Ra is the 

roughness of the solid surface. The lubrication in neat oil belongs to the mixed lubrication 

regime which contains dry contact (DC) and boundary lubrication (BL). Graphene coating 

on the surface reduces the roughness of the surface, resulting in an increase in h/Ra, thus 

the lubrication goes up into the BL regime. When the higher concentration of graphene is 

added into neat oil, graphene sheets will pile up between friction pairs, blocking the oil 

film. As h/Ra declines, the lubrication falls down to the mixed lubrication regime again. 

Moreover, when the load increases, elastic deformation of the graphene takes place 

and it will reduce the buffering friction. And also, since the thickness of graphene layers 

in the present case is less in nanosized, this can form a nanobearing between moving 

surfaces. This may result in sliding when the excess load is applied. Hence, added additive 
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to the base oil can act as a mechanical reinforcing element during friction and can, 

therefore, strengthen the load carrying capacity of the nanolubricants.  
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Figure 35 Schematic of the lubricating models of the neat oil and the nanolubricants  

 

Figure 36 Lubrication regime transition 

As the graphene is the absorbent of oil, it can be suggested that the graphene can 

absorb base oil, which thickens the oil film and prevents the friction pairs from direct 

contact. As a result, the lubrication state in the graphene dispersed oil has transferred to 
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good boundary lubrication from the mixed lubricating in the neat oil, which leads to a 

significant improvement in friction reduction and antiwear ability [101]. 

In summary, it can be explained by two important roles of graphene nanoplatelets: 

Firstly, the graphene nanosheets enter the contact with the oil and roll between the two 

contact surfaces. Secondly, during the sliding, because of the high contact pressure 

creating stressed zones of traction/compression and then lead to the formation of a thin 

physical tribofilm on the pin, as shown in Figure 37 - Figure 39. The physical tribofilms 

could not only bear the load but also prevent from direct contact of two metal surfaces. 

Therefore, the antiwear ability of the oil with graphene nanoplatelets was improved, and 

the friction coefficient and wear are decreased significantly. 
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Figure 37 SEM image and elemental mapping for the surfaces tested with 0.10 

vol.% nanolubricant at 15N and its material composition using EDX. 
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Figure 38 SEM image and elemental mapping for the surfaces tested with 0.20 

vol.% nanolubricant at 20N and its material composition using EDX. 
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Figure 39 SEM image and elemental mapping for the surfaces tested with 0.30 

vol.% nanolubricant at 10N and its material composition using EDX. 
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1.5 CONCLUSION  

Graphene nanoplatelets (GNPs) were added to neat canola oil with several volume 

percentages. The results for the nanolubricants were then compared to the results of a 

neat oil. A pin-on-disk friction tribometer was used to test nanolubricants in the boundary 

lubrication region. The values of the coefficient of friction (COF) and steady state 

temperature are then recorded for different applied normal load. Results indicate that 

COF decreases by adding GNPs where the COF improve 14%, 27%, 52% and 33% by 

adding just 0.05 vol.% graphene at 5, 10, 15 and 20N, respectively. Increasing the 

concentration of graphene can decrease the COF. The friction coefficient decreases by 

83%, 79%, 84% and 83% for the GNPs concentrations of 0.3 vol.% at 5, 10, 15 and 20N, 

respectively. The steady state temperature is also lower for nanolubricants which could 

be the result of the higher thermal performance of nanolubricants and/or the lower 

friction of the nanolubricants. There is no change in the viscosity by adding the GNPs. 

The viscosities of the nanolubricants decreases by increasing the load. The Stribeck curve 

was introduced which consolidates the friction and the viscosity results in one curve. 

Wear volume shows improvement by adding GNPs in based oil. There is an optimum 

point of concentration of GNPs where the wear rate is in lowest value. By increasing the 

load, the wear rate of aluminum in presence of nanolubricants decreased while the wear 

rate of neat oil increases.  

The worn surfaces of the samples examined to find the role of graphene particles 

in the nanolubricants as well as the wear mechanism. The worn surface texture and 

surface roughness value show that lubricated surface with nanolubricants are smoother 

since narrower and shallower grooves exist. There is a direct correlation between wear 
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rate and surface roughness. Wear scar’s diameters for each sample was measured and it 

has been shown that they decreased by increasing the volume percentage of graphene up 

to 0.30 vol.%.  Then the wear scar diameters increase by increasing the concentration 

above 0.30 vol. %. The SEM/EDX analysis identified the elements on the surface samples 

tested with the nanolubricants. EDX results show that aluminum is the dominant element 

of worn surface and a trace of iron and chromium on the surface was observed and there 

is no significant trace of the carbon while the worn surfaces of lubricated with 

nanolubricant show that carbon presents on the surface due to the formation of tribofilm. 

To confirm that tribofilm is lubricant graphene film, Raman Spectroscopy was employed. 

The wear track nanolubricant exhibits strong D- and G-band of graphene in the Raman 

spectrum that confirms worn surface covered with GNPs. Therefore, the result verifies the 

deposition of graphene nanoplatelets on the worn surface during the wear process. Based 

on the results and characterization of worn surfaces, different possible enhancing 

mechanisms were discussed and the reduction of the real area of contact by forming 

lubricant graphene tribofilm was proposed as the dominant mechanism in this work. The 

proposed mechanism is compatible with the friction and wear experimental data. 
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2 CHAPTER II: EFFECT OF GRAPHENE 

AS A REINFORCEMENT 
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2.1 INTRODUCTION 

A composite material is the combination of two or more dissimilar materials 

to form another material having superior properties. In the industries such as 

automotive, aerospace and sports, the requirements for high-performance 

materials to meet challenging demands keeps increasing. It is more difficult for 

conventional metals and alloys to need such demands since they have limited 

properties based on reinforcing metals with suitable reinforcement, Metal Matrix 

Composites (MMCs) provide alternative materials with enhanced properties to 

satisfy the challenging demands. Composite materials can be more easily tailored 

to have specific properties such as being lightweight, having high specific strength, 

high specific stiffness, high wear resistance, low coefficient of friction, high 

hardness, tailored thermal conductivity, low coefficient of thermal expansion, high 

energy absorption, and high damping capacity.  

MMC’s have been investigated by many researchers and create 

improvement in properties are observed for the same volume fraction of 

reinforcements when the size of the reinforcement is decreased.  With recent 

advances in producing particles below 100 nm, it is expected that significant 

improvements can result from the incorporation of nanoparticles in metals.  A 

nanocomposite is a combination of two phases, at least one of which is in the order 

of nano size (less than 100 nm) at least in one dimension. Accordingly, a metal 

matrix composite reinforced with a nanosized particle can be termed as a metal 

matrix nanocomposites (MMNCs). It is expected that by scaling down the particle 

size in MMC’s and going down to the range of nanosized, some of the shortcomings 
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such as poor ductility, poor machinability, and reduced fracture toughness may be 

overcome. Generally, the size of reinforcement influences the mechanical 

properties such as strength, ductility, and fracture of MMCs. MMCs are produced 

to have superior properties when the reinforcement size is in the nano range. There 

are a few common different mechanisms for increase in strength in metal matrix 

composites; (1) Orowan strengthening from dislocation bowing by reinforced 

particles, (2) Hall–Petch strengthening from grain refinement, (3) Forest 

strengthening resulting from the Coefficient of Thermal Expansion (CTE) 

mismatch between matrix and particles, and (4) Taylor strengthening by modulus 

mismatch between matrix and particles. MMNCs will benefit from the Orowan 

mechanism only if a dispersed second phase of nanosized could be attained since 

the strengthening increase at the interface. Hall–Petch strengthening will in 

general one of the most active mechanisms which improve the strength in MMNCs 

by incorporation of nanoparticles which leads a decrease in grain size. The addition 

of nanoparticles refines grains or confines grain growth. CTE and modulus 

mismatch is considered to be negligible when compared to strengthening due to 

Orowan and grain refinement in several recent studies [102-105]. 

Among various reinforcements, recent emerging materials, carbonous 

materials, are found to have many favorable attributes such as high thermal 

conductivity, low coefficient of thermal expansion, high damping capacity and 

good self-lubricant property[102]. Considerable amount of research has been done 

to study the influences of embedding graphite particles into the metal matrix on 

the tribological properties of aluminum alloys [106-108]. Metal matrix composites 

embedded by graphite or carbon fibers have exhibit self-lubricating behavior since 
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graphite act as a solid lubricant [109]. In this regard, solid lubricant as 

reinforcement tends to decrease the friction coefficient of MMCs and improve 

tribological properties of composite, compared to composites reinforced by 

ceramic particles like aluminum and SiC. The graphite size, which has commonly 

been used in MMCs fabrication and obtaining desired mechanical and self-

lubricating properties are in the micron range [102, 103, 110-115].  

Recently, research has been focused on nanosized carbonous materials, 

such as carbon nanotubes (CNTs) and nano-graphite or graphene [110] in order to 

attain enhanced mechanical, electrical, and tribological properties. Carbon 

nanotubes and graphene possess exceptional mechanical strength as well as 

excellent electrical and thermal conductivities, and their incorporation in metallic 

matrices can lead to composites with higher mechanical, electrical, and magnetic 

properties. This has led to an increasing interest in incorporating carbon 

nanotubes and graphene in MMCs the most effective reinforcement for 

synthesizing self-lubricating composites for structural and functional components 

[116-118]. Carbon nanotubes and graphene were observed to reduce the grain size 

in aluminum alloys, resulting in an additional higher strength.   

Although the emerging research interest in smart materials such as self- 

lubricating composites inspires both academia and industry that the combination 

of these carbonous materials and metallic matrices could potentially create 

composites that have high thermal and mechanical properties as well as 

exceptional wear resistance, there is still a need of understanding the nature, 

processing, and tailoring of these composites.   
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2.1.1 SELF-LUBRICATING METAL COMPOSITES 

Man-made self-lubricating materials primarily involve the creation of some 

type of composite materials. A composite is a coupling of two different materials 

designed to inherit the qualities of both materials. Self-lubricating composites take 

advantage of a hard structural matrix carefully combined with a lubricating phase 

[119, 120]. There are several ways to incorporate the lubricating phase. Dispersing 

solid lubricant particles or fibers throughout the matrix can be a simple and 

effective way to ensure that the material is constantly lubricated. The properties of 

the individual matrix and lubricant, the concentration of the lubricating phase, the 

distribution or order of the lubricating phase and the interactions between the 

lubricant and the matrix, are all variables that determine the quality of these types 

of composites. A schematic of the self-lubricating composite is shown in Figure 40. 

As shown in the figure, the material wears against the contact surface, new solid 

lubricant particles will be exposed to the surface thereby keeping the surface 

lubricated. A classic example of this type of composite is the grey cast iron; it 

utilizes a hard iron matrix with dispersed lubricating graphite flakes. Constructing 

a composite with alternating layers of the structural phase and the lubricating 

phase is also an effective way to engineer self-lubricating materials. 

As mentioned earlier, the distinctive feature of self-lubricating composites 

is that the wear particles formed on the contact surface act as solid lubricants and 

it can reduce the friction coefficient and wear rate. For instance, under sliding 

conditions, the metal/graphite composite can form self-lubricating composite 

because of the transfer layer of graphite which formed on the tribosurfaces during 
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sliding and this transfer layer acts as solid lubricant film which prevents direct 

contact between the mating surfaces [121].  To have an effective lubricant layer, it 

is also important that the solid lubricant has a strong adhesion on the bearing 

surface; otherwise, this lubricant layer can be easily rubbed away and tends to very 

short service life.  

 

Figure 40 Schematic of self-lubricating composite and its mechanism  

2.1.2 WHY SELF-LUBRICATING MATERIALS? 

In most tribological applications, liquid or grease based lubricants are used 

to facilitate the relative motion of solid bodies by minimizing friction and wear 

between interacting surfaces. A lubricant made of lower shear strength layer 

between two contacting surfaces and the shear strength of this layer is less than 

the surface shear strength between the sliding surfaces[122]. Therefore, this lower 

shear strength lubricant layer reduces friction between the surfaces during relative 

motion [123]. In fact, lubricants can separate the surfaces with no actual contact 

between two metallic surfaces. This means that there is no formation of asperity 

junctions between the surfaces. However, in most cases, depending on the 
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thickness of the lubricant and testing conditions, asperities may have contacts and 

it is not possible to avoid asperity contacts completely; although lubricants are able 

to reduce asperity to asperity contact, they may also reduce the shear strength of 

the junctions formed [124, 125]. 

The challenges for liquid lubricants arise in extreme environmental 

conditions, such as very high or low temperatures, vacuum, radiation, and extreme 

contact pressure. At these conditions, solid lubricants may be the alternative 

choice which can help to decrease friction and wear without incorporating liquid 

lubricants. Generally, when solid lubricants are introduced at the contact interface, 

solid lubricants function in the same way as that of liquid lubricants. They are 

made of low shear strength layer that can shear easily between two surfaces and 

minimize direct contact between surfaces. Consequently, solid lubricants can lead 

to low friction and diminish wear damage between the sliding surfaces. Several 

well-known inorganic materials have lubrication properties in nature and they can 

provide excellent tribological performance during sliding. These solid lubricants 

include molybdenum disulfide, carbonous allotropes, hexagonal boron nitride, 

and boric acid [53, 110, 126, 127]. The key feature of solid lubricants is that they 

have a lamellar or layered crystal structure that can provide adequate lubricity. 

Graphite, hexagonal boron nitride, boric acid all have the layered crystal structures 

[1, 121, 128-130].  

Challenges with solid lubricants are maintaining a continuous supply of 

solid lubricant on the contact surfaces to act as a lubricious layer between two 

sliding surfaces. Such a continuous supply of solid lubricant is more easily 

maintained in the case of liquid lubricants when compared to solid lubricants.  The 
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most innovative development to ensure a continuous supply of solid lubricant at 

the contact surface during sliding is to introduce solid lubricant as reinforcement 

into the matrix of one of the sliding components. A self-lubricating material is one 

whose composition or structure facilitates low coefficients of friction and wear 

using a self-dispensed and self-regulated lubricant delivery system, such as 

graphite, MoS2 etc. These materials are becoming more and more attractive as the 

world become increasingly conscious of our environmental protection and energy 

usage. Self-lubricating materials have the potential to effectively increase our 

energy efficiency through more efficiently operating system components.   

Self-lubricating metal matrix composites can be processed by casting or 

powder metallurgy techniques [59, 131-143]. Almost all metals and alloys are being 

researched to develop self-lubricating composites.  Self-lubricating composites 

have been used for a long time and are utilized rather widely by the industry to 

combat friction and wear in a variety of sliding, rolling, and rotating bearing 

applications. Recent studies exhibit that some wear particles produced at the 

interface are a solid lubricant and they can form a thin film layer of solid lubricant 

on the contact surfaces of materials. This lubricious layer causes to decrease the 

friction coefficient and wear rate and enhance tribological properties. Therefore, 

composites reinforced by solid lubricant become self-lubricating due to the 

lubricant film developed at the interface, which prevents direct contact between 

the mating surfaces. Thus, self-lubricating composite eliminates usage of any types 

of external lubricants by reducing friction and wear due to self-lubricating nature 

of the materials. This lubricant film does not present initially, and it forms only 

later as a result of surface wear and subsurface deformation. They are continuously 
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replenished by embedded solid lubricant particles in the matrix [103, 113]. For 

example, aluminum/graphite composites show an improvement in lubricity, 

durability, and resistance to seizure under both dry and lubricated conditions[113].  

2.1.3 TRIBOLOGY OF ALUMINUM ALLOYS AND COMPOSITES 

Aluminum alloys have a high wear rate because of their low hardness. 

Among aluminum alloys, eutectic Al-Si alloys have a high strength to weight ratio, 

good tribological behavior, and a low coefficient of thermal expansion that make 

them good candidates for many industrial components. In recent years, these 

materials have potential applications in the areas of automobile and aerospace 

[144]. In general, there are various ways to improve the tribological behavior of 

aluminum alloys including[145]: 

1. Morphology Modification: Substituting of coarse α-Al with fine 

equiaxed α-Al (a.k.a. grain refinement) or replacing coarse 

fibrous/globular eutectic Si with the finer eutectic structure of 

plate/needle-like Si  

2. Reinforcement modification: Embedding ceramic particles in 

aluminum alloys to make composites[110]. In general, 

reinforcements in the metal matrix increase the strength [146] and 

wear resistance of MMCs[147]. The composition and microstructure 

of MMCs, size, volume fraction, particles distribution, and properties 

of the interface between the metal matrices and the reinforcements 



90 
 

are important factors which can determine the performance of 

MMCs. 

3. Alloying: Producing aluminum alloys from pure aluminum by 

adding Si, Cu, Ni, Mg, Fe, etc., followed by a proper heat treatment. 

Alloying decreases the wear rate and also increases mild to severe 

wear transition load during the process [148, 149], which is mainly 

attributed to material hardening [150, 151]. Addition of about 4-24% 

Si to aluminum improves wear resistance by at least two times [152]. 

Because of their high strength to weight ratio and high wear 

resistance, eutectic Al-Si alloys are good candidates for tribological 

applications. 

4. Surface modification: Applying a solid lubricant on polished 

surfaces of aluminum alloys, which creates a soft lubricating film on 

the surface and/or on the counter face and reduces surface 

interactions. 

Among all the techniques used to improve the tribological behavior of 

aluminum alloys, the reinforcement of aluminum matrix with ceramic materials, 

not only helps to achieve higher tribological performance, but also leads to achieve 

enhanced properties, such as high specific strength and modulus, high stiffness, 

increased fatigue resistance, good wear resistance at elevated temperatures, 

excellent corrosion resistance, and high temperature durability. In general, 

reinforcement particles improve COF of composites [153-155]. Replacement of cast 

iron components with aluminum-based composite castings is a proper strategy for 

reduction of weight, fuel consumption, emissions, and cost in automotive and 
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aerospace industry. Furthermore, aluminum matrix embedded by solid lubricants 

possess attractive properties, such as high damping capacity, good machinability, 

good corrosion resistance and higher fatigue life than the surface coated aluminum 

alloys [144, 147, 156, 157]. All these advantages in solid lubricant reinforced 

aluminum matrix composites cause an increase in the popularity of Al/Gr 

composites compared to other types of enhanced materials such as coated metals. 

2.1.4 SELF-LUBRICATED ALUMINUM COMPOSITES 

Self‐lubrication is the ability of material to transfer embedded solid 

lubricants [158, 159], such as graphite [26, 55, 59, 107, 121, 129, 133, 134, 138, 139, 

141, 160-170] to the contact surface to decrease wear rate and COF in the absence 

of an external lubricant [110, 121, 126, 129]. Aluminum reinforced with carbon-

based materials, such as graphite, is known as a self-lubricating aluminum matrix 

composite. Graphite particles act as a solid lubricant at the contact interface, which 

enhances the tribological properties of these composites compared to unreinforced 

aluminum alloys or aluminum alloys reinforced by non-carbonous ceramic 

particles [171-173]. In general, solid lubricants to fabricate self-lubricating 

composites are solid carbon (carbon fibers [174-176], graphite particles [177-181], 

CNTs, graphene), molybdenum disulfide, and hexagonal boron nitride [110, 126, 

157]. Low friction coefficient and low wear rate are the key properties of self-

lubricating materials as well as their high seizure resistance.  

The greatest challenge in introducing aluminum graphite composites in 

industrial components is the negative effect of graphite on mechanical properties 
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of composites. By increasing the amount of graphite in the matrix, the mechanical 

properties of aluminum matrix composite reinforced by graphite decreases [59, 

106, 144]. There are many approaches to reducing the damaging effect of graphite 

particles on the deterioration of mechanical properties. For example, using hybrid 

aluminum metal matrix composites containing ceramic particles and graphite 

particles shows better tribological behavior compared to aluminum alloys or Al/Gr 

composites. In these hybrid composites, graphite acts as a solid lubricant and 

ceramic particles have load bearing ability, which leads to decrease in wear rate. 

Earlier studies show that properties such as excellent anti-seizure 

effect[182], low thermal expansion[183], high damping capacity[184], low friction 

and wear[185], and reduced temperature rise at the worn contact surface are the 

key factors that make self-lubricating Al/Gr composites an attractive alternative to 

aluminum alloys in applications where tribology is dominant[106]. Al/Gr 

composites have superior tribological behavior, which is the most desirable factor 

for automotive industries for making components such as engine pistons, bearings, 

and bushings [110]. 

2.1.5 TRIBOLOGY OF SELF-LUBRICATING MATERIALS 

In general, the addition of carbonous particles as reinforcement to an 

aluminum matrix enhances tribological properties compared to aluminum 

composite reinforced with other ceramic particles such as Al2O3 and SiC[157]. 

There is a significant reduction in friction and wear rate in self-lubricating 
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composites in comparison with unreinforced matrix alloys as a result of 

incorporation of graphite particles [53, 60, 185].  

Ames et al. [55] show that the A356/10%Gr/20%SiC composites made by 

the molten metal mixing technique have about 100 times lower wear rate than 

unreinforced A356 alloy at a constant normal load of 110 N. The average size of 

graphite and SiC is 76.8 and 11.5 μm, respectively. The tribofilm established during 

sliding provides adequate lubrication between contact surfaces. Furthermore, the 

addition of graphite particles decreases the friction heat generated at the interface 

by its intrinsic lubrication behavior. This will consequently increase wear 

resistance due to the reduction in friction force[110].  

Aluminum-silicon alloys consisting of graphite particulates can be of 

considerable interest for applications where properties such as wear resistance and 

seizure resistance are important, such as piston and cylinder liner materials in the 

automotive industry[186]. Das et al. [187] investigated the tribological behavior of 

Al-Si alloy/graphite composites and observed a significant improvement in the 

tribological behavior of composites due to the combined presence of graphite 

particles and silicon phase in the composite[163].  

Improvement of wear resistance in self-lubricating composites primarily 

depends on the type[188], size[189] and distribution[190] of the reinforcing phase 

as well as the manufacturing technique of the composite. The interface between 

the matrix and graphite is a key parameter affecting mechanical properties and 

tribological behavior of Al/Gr composites[176, 191]. Several test parameters, such 

as load and sliding velocity also influence the wear and friction behavior of self-

lubricating Al/Gr composites. The basic parameters that control the tribological 



94 
 

behavior of self-lubricating aluminum matrix composites can be classified into 

three general categories [110, 192]: 

1. Material variables: These are the factors that change intrinsic 

properties of the material undergoing surface interaction. 

Parameters such as the type of reinforcement, reinforcement size, 

the shape of reinforcement, reinforcement volume fraction, and type 

and microstructure of the matrix.  

2. Test or service variables: Factors such as normal load, sliding 

velocity, and sliding distance that depend on the test and working 

condition. 

3. Environmental variables: Physical factors such as temperature 

and humidity that influence the testing conditions. 

2.2 LITERATURE REVIEW 

2.2.1 SYNTHESIZING MMNCS BY POWDER METALLURGY 

METHOD 

Powder metallurgy method is one of the popular methods of producing 

MMCs and MMNCs. Pure aluminum and aluminum alloys are one of the most 

widely used materials in MMCs and MMNCs as a matrix from research and 

industrial viewpoints. This is due to their outstanding properties, such as 

lightweight, high strength, high specific modulus, low thermal expansion 

coefficient, and good wear resistance[193].  For processing of aluminum matrix 
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composites (AMCs) and aluminum matrix nano-composites (AMNCs), different 

types of milling including Planetary ball mill[194], attritor mill[193], Spex high 

energy ball mill [195] and cryomill [196] are using in different researches. Each 

method has its own advantages and disadvantages. Different types of materials can 

be used as reinforcement in AMCs and AMNCs. The common reinforcement 

materials which have been used in aluminum matrices are Al2O3[197], B4C[198], 

SiC[199], AlN[200], CNTs[201, 202], etc. Recently, some researchers are using 

graphene as reinforcements for aluminum matrices[203-207]. In these researches, 

powder metallurgy method was used to produce AMNCs.     

2.2.2  GRAPHENE PROPERTIES 

It has emerged as a new material in the 21st century and received worldwide 

attention in nearly every field of science and engineering because of its exceptional 

optical, mechanical, charge transport and thermal properties. Properties of 

graphene are presented in Table 3.  Graphene is two-dimensional single atomic 

carbon sheet of sp2-bounded in which atoms densely packed in a honeycomb 

lattice. Graphite, the most common form of carbon, is a stack of several graphene 

sheets along the c-axis with an interlayer spacing of 0.34 nm. The bonding between 

carbon atoms is very strong while there are weak van der Waals interactions 

between the layers. In terms of thermodynamics, it was thought that exfoliation of 

layered graphite to freestanding atomic layer would not be possible [208]. 

However, recently different approaches have been developed for synthesizing 

graphene in large quantities, including thermal evaporation of silicon carbide 
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[209, 210], chemical vapor deposition (CVD) of graphene on metal carbides or 

metal surfaces [211, 212], and wet chemical synthesis of graphene oxides followed 

by reduction [213, 214]. 

The yield strength predicted for a single graphite layer using MD simulation 

has reached an extreme value of 0.912 TPa [215]. Another study employed 

quantum mechanical approach revealed that the elastic modulus for armchair 

graphene and zigzag graphene are 1.086 and 1.05 TPa, respectively [216]. The 

Young’s modulus and intrinsic tensile strength of graphene monolayer were 

experimentally tested by using nanoindentation of the atomic force microscope 

(AFM). The Young’s modulus and intrinsic tensile strength obtained using these 

techniques are 1.1.02 TPa and 130 GPa, respectively [217]. By using the same 

method, mechanical properties of graphene bilayer and trilayer have been 

determined where Young’s modulus is 1.04 and 0.98 TPa and intrinsic tensile 

strength is 126 and 101 GPa, respectively [63]. These supreme mechanical 

properties of graphene along with extreme thermal conductivity (5000 W m-1 K-

1) [218], and super charge-carrier mobility (200,000 cm2 V-1 s-1) [219] makes 

them an attractive material for researchers in the last decade to employ them as 

reinforcement into a metal matrix. The graphene has a plate shape; dispersion in 

any kind of matrices is easier in comparison with CNTs. Hence, the graphene is a 

good substitution for CNTs as reinforcement for metal matrix composites [220]. 

Although graphene is defined as graphite single layers, graphene nanoplatelets 

(GNPs) or graphene nanosheets (GNSs) which are short stacks of platelet-shaped 

graphene sheets with an average thickness of the 5-100 nanometers are very 

common in the fabrication of metal matrix composites. Since graphene in its single 
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layer form cannot easily be stable in the free state, usually, GNPs are used as 

reinforcement and then the sheets are exfoliated to achieve a single layer dispersed 

graphene in a matrix. This inexpensive material possesses good thermal 

conductivity, electrical conductivity, mechanical strength and more surface area 

than the expensive carbon nanotubes (CNTs). 

Table 3. Physical and mechanical properties of Graphene. 

Property Unit Data Reference 

Specific surface area m2g-1 2630 [221] 

Electron mobility cm2V-1s-1 1500 [222] 

Electron resistivity Ω.cm 10-6 [222] 

Thermal conductivity Wm-1K-1 5.3×103 [222] 

The coefficient of thermal expansion K-1 -8×10-4 [223] 

Elastic modulus TPa 0.5-1 [224] 

Tensile strength GPa 130 [224] 

 

The most common method to produce graphene is exfoliation method. 

Writing with a graphite pencil is the first exfoliation method to produce graphene 

from graphite. However, by this method, the thickness of graphene sheets is not 

controllable. Andre Geim’s group in Manchester [62] produced a single layer of 

graphene to investigate its properties. They showed that by gently rubbing or 

pressing freshly cleaved graphite crystal on a silicon oxide wafer, a single atomic 

layer of graphene flake forms and visible under an optical microscope due to thin 

film interference effects[225]. However, this method is good to investigate the 

properties of graphene. For the case of using graphene in other researches 
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including using graphene as reinforcement in metal matrices, this method of 

exfoliation is not applicable.  

Recently, researchers exfoliate graphene with some new methods 

(chemically, mechanically or combination of these two) and use the exfoliated 

graphene as reinforcement in metals[205]. Mina Bastwros et. al.[205] have used a 

method called modified Brodie’s method to exfoliate graphite and produce 

graphene oxide. In this method, they mixed 10 g of graphite, 160 ml of nitric acid, 

and 85 g of sodium chlorate at room temperature. The mixture was stirred for 24 

hours. Then, they washed the slurry for four times with 5% hydrochloric acid and 

distilled water. By this method, they produce intercalated graphite through 

sedimentation. Then, they dry the solution at 60ºC. Finally, the intercalated 

graphite was exfoliated to a monolayer or few layers of graphene oxide by using 

ultrasonic power [205]. 

In another research by Ting He et. al. [226], they have used a mechanical 

method to exfoliate graphite and produce alumina/ graphene composites. In this 

method, wet milling was used to mechanically exfoliate graphite. Pure alumina 

with an average particle size of 150 nm and natural graphite powder were mixed 

and milled in ethanol by a planetary ball mill. The BPR and the rotation speed in 

the research were 30:1 and 250 rpm, respectively. Hot pressed in vacuum at 

1100ºC and 60 MPa has been used to consolidate the alumina/graphene composite 

[226].  

Weifeng Zhao et. al. [227] have used a method which is a combination of a 

chemical and mechanical method to exfoliate graphene. In this method, 0.02 g of 

graphite nanosheets with a thickness of 30-80 nm were dispersed in 80 ml of 
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anhydrous N, Ndimethylformamide (DMF) solvent. Then, the slurry was milled for 

30 hours by a planetary ball mill with the speed of 300 rpm. During milling, the 

dominant force which applies to the nanosheets should be shear force to exfoliate 

graphite and produce graphene. Graphite layers have the weak van der Waals 

bonding and DMF-graphene has a strong bond. As a result, the shear force during 

milling can exfoliate graphite nanosheets into graphene. Then, the result slurry 

was centrifuged at 10000 rpm for 20 minutes to separate exfoliated graphene from 

unexfoliated and partially exfoliated graphite nanosheets. In the last step, the DMF 

was evaporated from the supernatant under vacuum and the graphene powders 

were washed with ethanol[227].   

Qianqian Li et. al. [228] have used a block copolymer Disperbyk-2150 (BYK 

Chemie GmbH) in ethanol to disperse MultiWalled Carbon Nanotubes (MWCNTs) 

for 15 minutes in an ultrasonic bath. The ratio of the block copolymer to MWCNTs 

was 1:1. Then, the solution was stirred for 30 minutes at 250 rpm [228]. These are 

the methods which are applicable to exfoliate graphene and used the exfoliated 

graphene as reinforcement in metal matrices.  

2.2.3 SELF-LUBRICATING NANOCOMPOSITES 

2.2.3.1 Mechanical Properties of MMNCs reinforced by Graphene 

As mentioned earlier, graphene has special mechanical and electrical 

properties and because of these properties, researchers have used graphene as 

reinforcement to improve the properties of composite materials. Polymers usually 

have low electrical conductivity and mechanical properties. By adding Graphene 
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to polymer matrices, the mechanical and electrical properties of Polymer Matrix 

Composites (PMCs) improve significantly [229, 230]. Most metals have a good 

electrical conductivity and improving the electrical properties of metals may be 

difficult by adding graphene. As a result, researchers usually do not investigate the 

electrical properties of MMNCs reinforced by graphene. However, mechanical 

properties of metals especially light metals such as aluminum and magnesium are 

improvable. As a result, the main purpose of adding graphene to metal matrices is 

to improve mechanical properties of MMNCs and investigating the strengthening 

mechanisms. The mechanical properties of MMNCs reinforced by graphene has 

been summarized as follow. 

Mechanical properties of MMNCs reinforced by graphene have been 

investigated by hardness measurements[204], tensile test[203], compression 

test[206] and flexural stress[205]. In addition, a few theoretical works have been 

done on mechanical properties of MMNCs reinforced by graphene[231]. 

It is expected that by adding graphene nanoplatelets to a metal matrix, the 

mechanical and tribological properties would be enhanced. In literature, only 

limited researches on metal matrix composites reinforced by graphene are 

available [208, 232-239]. To the authors’ knowledge, so far, aluminum matrix 

composite reinforced by graphene has successfully produced only by powder 

metallurgy method [232, 233, 240]. Recently, Wang et al. [241] have shown that 

by adding 0.3 wt.% Graphene nano-sheets to the aluminum matrix, the tensile 

strength of composite increased by about 62%. However, Bartolucci et al. [233] 

have shown that the tensile strength and strain at failure of aluminum matrix 

composites reinforced by 0.1 wt.% graphene platelets are less than its pure 
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aluminum matrix. In addition to these two types of research, Chen et al. [234] have 

produced magnesium matrix composite reinforced by graphene nano-platelets. 

They employed a novel method combining liquid state ultrasonic processing and 

solid state stirring to fabricate the composites. By using this novel method, they 

reported that the graphene nanoplatelets (GNPs) could be dispersed uniformly 

into magnesium matrix. The results showed that the microhardness of magnesium 

matrix composite reinforced by GNPs has been increased by 78% compared to that 

of pure Mg prepared under the same processing condition. They have also shown 

that the GNPs show an excellent strengthening effect on the magnesium matrix 

composite [234, 237, 242-245].  

In some studies, the Vickers hardness of MMNCs increased with weight 

fraction of graphene[204, 246]. Rashad et. al. [246]showed a significant increase 

in the Vickers hardness of Mg matrix composites reinforced by graphene 

nanoplatelets. The hardness of pure Mg with Mg matrix composites including 0.5-

1.5 wt.% Al and 0.18wt.% GNP was compared. In the case of composites, the matrix 

is not pure Mg and it is Mg alloy. As a result, this comparison could be wrong and 

the increase in the hardness of these samples could be because of alloying element 

and solid solution strengthening [247] not because of graphene nanoplatelets. In 

some studies, the Vickers hardness slightly decreased or increased by adding 

graphene nanoplatelets into the metal matrices[206, 207]. However, Bartolucci et. 

al.[204] showed that by adding graphene to the aluminum matrix, the strength of 

the composite significantly decreased. 

Fracture strength of a perfect single layer of graphene is about 125 

GPa[224]. Wang et. al.[203] have used the rule of the mixture to estimate the 
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mechanical properties of aluminum matrix composites reinforced by Graphene. By 

adding 0.3wt.% (about 0.5vol.%) of GNSs to the aluminum matrix, the 

improvement in tensile strength of the composite should be around 500 MPa. 

However, this improvement has not been reached in the literature and there are 

some reasons for that. First of all, it assumes that all of the graphene nanoplatelets 

are a single layer of graphene which are homogenously distributed in the metal 

matrices. However, in the real world, the graphene reinforcements in the metal 

matrices are not a single layer. As a result, the fracture strength of multilayers of 

graphene is not 125 GPa. Secondly, the strength of GNPs in different directions are 

not the same. The in-plane strength of GNPs is much higher compared to the out-

of-plane strength of GNPs. Graphene nanoplatelets are randomly distributed in all 

directions in the metal matrices. As a result, the out-of-plane GNPs in the metal 

matrices cannot act as an in-plane GNPs. Moreover, the distribution of GNPs in 

the metal matrices and bonding between the GNPs and metal matrices has a 

significant effect on the mechanical properties of these MMNCs. However, the 

homogenous distribution of GNPs and a perfect bonding between GNPs and metal 

matrices are not practically achievable. Because of these reasons, the theoretical 

strength of these MMNCs has not been reached.     

There are well-known strengthening mechanisms for metal matrix 

nanocomposites. These mechanisms are including grain refinement, Orowan 

looping, solid solution strengthening, precipitation strengthening, load bearing, 

Coefficient of Thermal Expansion (CTE) mismatch and modulus mismatch 

strengthening[247]. Different explanation and strengthening mechanisms have 
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been used in the literature to explain the mechanical behavior of MMNCs 

reinforced by graphene. 

During the powder processing of the MMNCs reinforced by GNPs, plastic 

deformation and strain hardening due to the ball occurs. As a result of the 

processing method, the grain size of the metal matrices decreased. Due to the 

smaller grain size, grain refinement strengthening which shows by Hall-Petch 

equation[203, 205, 231, 247] is one of the main strengthening mechanisms in the 

MMNCs reinforced by GNPs.  

In addition, because of the strain hardening, dislocation density increased 

in the composite samples. Increasing the dislocation densities in the sample also 

causes to strengthening the MMNCs reinforced by GNPs[206, 246, 248]. 

Moreover, CTE mismatch between the metal matrices and GNPs can cause to 

increase the dislocation density and increasing the strength of the composite 

samples. However, the existence of the CTE mismatch strengthening in MMNCs 

with very small size reinforcements is in doubt[249, 250]. Since the size of the 

GNPs in one direction is very small, it could be possible that the CTE mismatch 

does not applicable to MMNCs reinforced by GNPs. It has been shown that the 

thickness of flaky shape metal matrices are thousand times larger than the GNPs 

thickness and a very small portion of the metal matrices was affected by the GNPs. 

In this study, the same grain size and amount of dislocation density were reported 

for Al/GNPs and unreinforced Al samples. These results approve that there is no 

CTE mismatch strengthening in this MMNCs reinforced by GNPs[203]. As a result, 

the CTE mismatch strengthening in the MMNCs reinforced by GNPs depends on 

the size and geometry of the metal matrices and reinforcements. 
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The other possible strengthening mechanism for MMNCs reinforced by 

GNPs is Orowan looping. Rashad et. al. [206, 246]have claimed that one of the 

strengthening mechanism in the MMNCs reinforced by GNPs is Orowan looping. 

The Orowan mechanism requires that unshearable particles be located within the 

grains. As a result, the size of grains and reinforcements are very important to get 

the Orowan strengthening in the MMNCs. Graphene is a two-dimensional 

material. In one dimension, the size of graphene is in the order of micron. Since 

the size of GNPs in one dimension is bigger than the size of grains in the metal 

matrix, it is almost impossible to get the Orowan strengthening in these MMNCs. 

Since GNPs is a two-dimensional material, load bearing or load transfer 

strengthening mechanism could be one of the main strengthening mechanism in 

MMNCs reinforced by GNPs[203, 206, 231, 246, 248]. The load which is applied 

to the MMNCs may transfer to the reinforcements from the metal matrices through 

shear stresses along the interface between matrix and reinforcements. The 

interfacial area (S) and reinforcement’s cross-sectional area (A) play an important 

role in the load transfer strengthening mechanism. There are different models to 

show the mechanical properties of MMCs. 

2.2.3.2 Tribological Behavior of Self-lubricating Nanocomposites 

During relative motion of two surfaces, different types of wear mechanisms, 

including adhesive wear, abrasive wear, delimitation wear, erosive wear, fretting 

wear, fatigue wear, and corrosive/oxidative wear may occur. The nature of wear 

mechanisms can be understood by studying the worn surfaces of materials. At low 
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loads and sliding speeds, abrasion is the dominant wear mechanism while at 

higher loads, the wear mechanism changes to delamination. Presence of grooves 

on the worn surfaces of the composites in the sliding direction at low normal loads 

shows that the abrasion wear mechanism becomes dominant.  

Graphite is well-known reinforcement for metal matrix composites which 

acts as a solid lubricant and makes the composite as self-lubricating composites 

[102, 110, 113, 118, 121, 129]. When graphite is embedded into a metal matrix, the 

friction and wear behavior of metal/graphite composite significantly improves 

compared to unreinforced metal which leads to their increased industrial 

applications where tribological properties are dominant. Damage accumulation 

will be reduced in the presence of graphite particles and hence decrease the wear 

rate of metal matrix insignificant extent. MMCs reinforced by graphite particles or 

fibers are potential structural materials for aerospace and automotive owe to their 

excellent tribological properties. 

Among many alloys, aluminum-based composites are extensively used in 

various industries because of high strength to weight ratio, superior tribological 

properties, and good corrosion resistivity. The explanation for the superior 

tribological properties of aluminum/graphite composites can be explained by the 

wear mechanisms which occur in these systems. Aluminum alloys have low yield 

stress and deform extensively during sliding contact while graphite particles in 

aluminum/graphite composite improve the deformation and fragmentation of the 

surface and sub-surface by providing a continuous film of graphite on the contact 

surfaces after a short running-in period. The graphite film hinders direct metal to 

metal contact and hence prevents seizure. Despite good tribological behavior of 
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metal/graphite composite, poor mechanical properties are the disadvantage in the 

graphite reinforced MMCs. These composites sometimes have lower mechanical 

properties than unreinforced alloy [59, 110]. In addition, graphite has a reverse 

effect on electrical conductivity when copper alloys are reinforced by micron-sized 

graphite due to be hindering effect of particles in the continuous copper matrix 

network, though it has a moderate electrical conductivity. Another feature that 

causes to reduce electrical conductivity of copper–graphite composite is the poor 

interface bonding between copper and graphite particles which leads to more 

electron scattering [118]. Due to these shortcomings in using graphite as 

reinforcement in metals, incorporation of nano-sized carbonous materials sought 

to be promising.  

In general, it is desirable in terms of mechanical properties to have matrix 

grain size in the range of nanometer to achieve enhanced hardness, yield strength, 

and tribological properties such as wear resistance and friction coefficient [251]. 

Using nanosized particles as reinforcement also enhances both Young’s modulus 

and tensile strength of composites as well as improving tribological performance. 

Due to the fact that nanocarbonous materials have superior physical and 

mechanical properties, they have recently employed as a novel reinforcement for 

self-lubricating metal matrix nanocomposite. Superior properties of MMNCs 

reinforced by carbon nanomaterials is due to metallurgical factors, such as Hall–

Petch effect by grain size refinement, Orowan looping, and dislocation generation 

resulting from a thermal mismatch between the matrix and reinforcements [208]. 

Previous studies revealed that the MMCs with smaller size reinforcements exhibit 

a lower coefficient of friction and wear rate, thus, it was concluded that the MMNCs 
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have excellent tribological properties rather than metal matrix micro-composites, 

as it is also experimentally confirmed [110, 252, 253]. More specifically, the 

composite reinforced by nanoparticles (graphene) has lower COF than the 

composite reinforced by microparticles (graphite). Also, the hardness of 

composites reinforced by graphene is found to be higher than the composite 

reinforced by CNTs [102]. Worn surface observation suggested that the dominant 

wear mechanism for non-reinforced pure Al specimen has been delaminating wear 

accompanied by some adhesive wear mechanism.  However, worn surfaces of the 

nano-particle reinforced composites were smoother and the total depth of 

deformations was smaller, grooves were finer than the unreinforced aluminum 

alloy matrix specimens [254, 255]. 

There is a great challenge in introducing carbon-based materials in metal 

matrices. Generally, molten aluminum is not able to wet carbonous materials, such 

as carbon fibers (CFs), graphite particles, carbon nanotubes (CNTs) and graphene 

where the contact angle of molten aluminum with graphite is between 140o and 

160o [175]. The reason for high contact angle between carbonous materials and 

molten aluminum is due to the high surface tension of aluminum in a liquid state. 

The surface tension of molten aluminum and carbon nanotubes are 955 mN/m and 

45.3 mN/m, respectively [256]. The very high value of the surface tension of 

molten aluminum compared to carbon nanotubes makes a synthesis of aluminum 

matrix composite reinforced with carbonaceous materials a challenging task. One 

of a typical way to improve wetting behavior of molten aluminum on carbonous 

materials is by forming metallic coatings, such as copper and nickel on 

reinforcements to reduce its contact angle [257, 258]. The formation of Al3Ni, 
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Al3Ni2, and CuAl2 as an intermetallic compound plays a key role in achieving good 

wettability between aluminum with copper and nickel [116, 259]. In the following 

sections, self-lubricating metal/CNT and Metal/ Graphene (single layer or 

nanoplatelets) nanocomposites have been introduced and their mechanical 

properties are discussed. 

Usually to avoid friction and consequently, deterioration of material under 

wear, liquid or solid lubricants are employed. However, in cases such as high 

vacuum environment, high-speed conditions, high applied loads, and very low or 

high temperatures, liquid and grease type lubricants are undesirable. In such a 

tribological system the common liquid and grease type lubricants do not show 

desired performance or durability [208]. Another approach is replacing the liquid 

and grease type lubricants with solid lubricant coatings that they are used to 

decrease the coefficient of friction and wear rate. The coatings are applied on the 

surface of materials by depositing via chemical or physical vapor deposition 

techniques to form a coating layer [260, 261]. The disadvantages of solid lubricant 

coating are a limited lifetime, difficulty in replenishment, oxidation and aging-

related degradation, and poor adhesion. Therefore, to avoid the drawbacks of both 

the liquid and grease type lubricants and the solid lubricant coatings, embedding 

carbonous materials in the metal matrix seems promising.  

Generally, metal matrix composites have a lower coefficient of friction 

(COF) compared to the unreinforced matrix [102, 110, 262-265]. Furthermore, 

adding ceramic particles to the metal matrices lead to an increase in wear 

resistance of the matrices [102, 110, 265-268]. The main reason for increasing of 

wear resistance of metal matrix composite is attributed to the low friction 
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coefficient of metal matrix composite compared to the unreinforced metals. For 

conventional metal matrix composites, the reinforcements act as load bearing 

components at contact surface which tend to protect the surface from plowing 

during sliding. Generally, the hardness of reinforcement greatly affects the wear 

loss and hence, the wear volume of MMCs. The wear loss of MMCs depends on 

several intrinsic properties such as the reinforcements dispersion state, 

distribution of reinforcement, size of reinforcing particles, and interfacial bond 

between matrix and particles [208]. When bonding between matrix and 

reinforcement is poor, the hard ceramic particles are easily pulled out from MMCs 

and then they will be trapped between the sliding surfaces and act as third body 

abrasives and help to increase worn surface damage and wear rate. Among the 

composites, composites reinforced by carbonous materials show better tribological 

properties compared to composites reinforced by ceramic reinforcements, such as 

SiC and Al2O3 due to the lubricative nature of carbonous materials that make them 

a potential reinforcement for self-lubricating composite. The conventional self-

lubricating composites are embedded by graphite particles or carbon fibers [110]. 

The main reason for the significant decrease in COF and wear rate is due to 

the formation of a lubricant film between the contact surfaces because of the 

presence of a carbon-based solid lubricant in the MMCs. Thus, the lubricant film 

prevents direct contact between sliding surfaces and reducing wear [59]. In 

addition, due to the presence of lubricant film which prevents direct contact, the 

transfer of atoms from the asperities of softer surface to the asperities of harder 

surface will be reduced that hence, it leads to decrease in cold welding of atoms of 

softer materials with atoms of harder materials during sliding and then subsequent 
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fracture of atomic junctions [118]. As noted before, although the graphite particles 

in the metal matrix improve the tribological performance, it tends to reduce the 

mechanical properties of the composites. Hence, recently, the nano solid 

lubricants are used as the dominant reinforcement for the metal matrices in self-

lubricating composites. This is because the metal matrix composite reinforced by 

nano solid lubricant has excellent self-lubricating behavior with a low coefficient 

of friction and wear rate as well as high mechanical properties [269]. 

High strength, lightweight and lubricating nature of graphene made it 

suitable as reinforcement for self-lubricating ultrahigh strength metal matrix 

nanocomposites. As this is fairly a novel material and it is difficult to uniformly 

disperse in metals as well as its complex microstructure, there are only a few 

studies which investigated the tribological properties of graphene in a metallic 

matrix. Ghazaly et al. [236] who have investigated the effect of weight percentage 

of graphene on mechanical properties, also studied its effect on the wear rate of 

self-lubricating AA2124 aluminum alloy matrix nanocomposites. The results 

showed that self-lubricating composite reinforced by 3 wt. % graphene has better 

tribological properties under dry wear test compared to the unreinforced and 

another amount of graphene reinforcement. SEM micrographs of worn surfaces of 

unreinforced aluminum alloy and Al/graphene nanocomposites clearly 

demonstrate the presence of longitudinal grooves in all samples. In addition, by 

comparing the worn surfaces, it is obvious that the scratches, craters, and 

delamination of AA2124/3wt.% graphene composite are less than that of the 

unreinforced alloy. Thus, unreinforced alloy and AA2124/3wt.% graphene 

composite are in the severe and mild wear regime, respectively. Shallow parallel 
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grooves and ridges formed on the worn surface of AA2124/0.5 and 5 wt.% 

graphene nanocomposites due to microploughing. Thus, the dominant wear 

mechanism is a severe plastic deformation of the matrix that results in high wear 

rate. Entrapped debris between delaminated surfaces was observed at high 

magnification on worn surfaces of unreinforced AA2124 alloy while there is no 

wear debris on the worn surfaces of nanocomposite. Alumina fragmented films or 

strain hardened particles are the two main sources of debris. This debris is from 

the heavily milled consolidated powders which were detached under the load 

during the wear test. By comparing the worn surfaces at high magnifications, it is 

obvious that the surface of nanocomposite containing 3% graphene is smoother 

than that of unreinforced alloy and the composite reinforced with 5wt.%graphene. 

Furthermore, the surface of AA2124/3 wt.% graphene composite was covered by 

lubricant films that result in reducing friction and wear due to the soft nature of 

the lubricant film. Conversely, deep grooves and severe damage exist on the worn 

surfaces of AA2124/5 wt.% graphene composites which delaminated in the 

direction of sliding that explains the significant increase in wear rates and weight 

loss. 

Inasmuch as copper has good electrical and thermal conductivities and 

graphite has lubricious nature, copper/graphite composites have a variety of 

application in industries. Conversely, the mechanical properties of copper 

composites decrease in the presence of graphite reinforcement. To solve the impact 

of microsized graphite particles, Rajkumar et al. [118] employed powder mixing, 

compaction and microwave sintering methods to synthesize copper 

nanocomposite reinforced by nano-graphite (NG) particles with an average 
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particle size of 35 nm to form copper/5–20 vol% NG nanocomposites. The graphite 

particles were coated with copper using electrodeless plating method. The nano 

graphite particles have not been exfoliated in this investigation and cannot be 

considered as single or “few layers” graphene sheets. the nanocomposites had 

better hardness and electrical conductivity compared to microcomposites. As 

stated earlier, the volume percentage of nano-particles influences physical and 

mechanical properties of self-lubricating composites. The number of nanoparticles 

also influences the relative density. The relative density increases with increasing 

the volume percentage up to 15 vol.% of nano-graphite due to the ability of 

nanoparticles to fill up the porosity cavities. When the nano-graphite amount is 

increased over 15% volume fraction, the relative density and hardness reduced due 

to the reduction in the distance between particles, which consequently facilitate 

nanoparticles agglomeration.  

Results revealed that, at constant volume fraction, embedding nano-

particles decreases the coefficient of friction and wear rate compared to the 

composite reinforced by microsized graphite particles. Higher hardness, lower 

porosity and finer microstructure are the reason for the improved wear resistance 

of nano-graphite reinforced composites. Further, the nano-graphite particles 

reinforced composites are more effective on the degree of self-lubrication 

compared to micron-size graphite particles reinforced composites. The number of 

nano-graphite particles also influences the tribological properties of self-

lubricating copper composites. The increase in volume percentage of nano-

graphite up to 15 vol.% tends to decrease the wear rate and COF because of the 

formation of a uniform and continuous layer of solid lubricant film. This lubricant 
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film reduces the rate of deformation of the matrix and improves the tribological 

behavior. When the amount of reinforcement increases, the decrease in the COF is 

associated with increase in the availability and uniformity of lubricant layer. The 

lubricant layer causes to minimize the metal to metal contacts between the copper 

matrix composite and steel counter surface. In contrast, when the volume fraction 

of nano-graphite is more than 15 vol.%, a large amount of agglomeration was 

observed that tends to incomplete spreading of graphite at the contact zone, and 

hence, increases the wear rate. Increasing of COF at high volume fraction of nano-

graphite is a result of increasing the deformation and fracture at the contact surface 

of copper matrix and increasing the amount of copper debris at contact surfaces.  

the wear rate and coefficient of friction both increase with increasing 

applied load while the coefficient of friction decrease with increasing the sliding 

speed. Increasing normal load also increases the amount of copper wear debris at 

the contact zone and hence influences the rate of increase in the coefficient of 

friction with normal load. In these figures, it can be seen that the coefficient of 

friction of self-lubricating composite significantly decreases with increasing the 

sliding speed up to 1.77 m/s because of formation of uniform lubricant film. By 

increasing the sliding speeds beyond 1.77 m/s, the coefficient of friction slightly 

increases or become constant for 5 and 10-15 vol.%, respectively. This is due to peel 

off of the self-lubricating film on the contact surface at high sliding speed. 

Furthermore, sliding speed does not affect the coefficient of friction of 

copper/nano-graphite with high amount of nano-graphite content due to the 

contact surface that is uniformly covered with the highly adherent graphite layer. 

As shown in SEM micrograph of worn surface at different sliding speed, at constant 



114 
 

normal load, the lubricant film on copper/15 vol.% nano-graphite is not 

continuous at lower sliding speed. While increasing the sliding speed, a lubricant 

layer uniformly forms on the surface of composite that decreases COF as a direct 

result of a decrease in direct surface to surface contact. However, a gradual 

increase in COF was observed for 20 vol.% of nano-graphite composite by 

increasing the sliding speed that it leads to lower mechanical properties such as 

hardness due to increase in temperature at the interface. Further, it tends to more 

grain fracture during sliding. This phenomenon is more intensive at higher sliding 

speeds. 

The mechanism of wear under normal loads suggested by Huang et al. 

[270]. Fine graphite particles form an adherent layer at the contact zone and under 

high normal loads; these GNPs from composite is squeezed out to the contact zone. 

Owe to their smaller size, nano graphite particles can penetrate deep inside the 

asperities of composite and counter surface during the sliding process. During 

sliding, the nano-graphite particles could have filled most of the asperities of the 

composite surface. So, a graphite layer form at the pin (composite) –disc (steel) 

interface. The layer formation process continues up to the formation of thick 

adherent graphite layer. In case of micron size graphite particles, they can also 

undergo similar process; however, due to their larger size, they are not able to 

penetrate the very narrow grooves which formed during the wear process or gaps 

between the asperities of sliding contact easily. 

Additionally, when the size of graphite particles comes down in the range of 

nanosized, at the same volume fraction, the mean free path between the graphite 

particles also decreases (Figure 41a) compared to the same volume fraction of 
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micronsized graphite particles (Figure 41b). This will cause smaller size asperities 

and less space between the asperities compared to micro graphite reinforced 

composite (Figure 41d) during the wearing process which can be filled nano-

graphite particles as shown in Figure 41c. The completely filled nanographite 

particles produce more uniform graphite layer that reduces the direct contact 

between the two wearing bodies and will cause a reduction in the frictional 

coefficient. As confirmed by SEM (Figure 41h and Figure 41f), nanocomposite 

reduces the wear debris size, as shown in Figure 41e when compared to 

microcomposites (Figure 41f) [118]. 

 

Figure 41 a) Distribution of nanographite in matrix, b) distribution of graphite in 

matrix, c) contact profile nanographite composite, d) contact profile of graphite 
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composite, e) and f) conceptual wear generation model for nanographite and 

graphite reinforced composite respectively, g) and h) typical wear debris at 48 N 

and 0.77 m/s for copper–nanographite and copper–graphite respectively[118]. 

2.2.4 SUMMARY  

In section 1, metal-matrix composites and self-lubricating composite were 

reviewed.  In particular, the potential use of aluminum self-lubricating matrix 

particulate reinforced composites presented.  Applications of aluminum alloys are 

increasing in industries such as automotive and aerospace to reduce fuel usage and 

protect the environment, where they can successfully replace steel and cast iron 

parts. On the other hand, aluminum alloys have a disadvantage in that they have 

low mechanical properties and tribological behavior of aluminum alloys. In 

general, there are various ways to improve the tribological behavior of aluminum 

alloys including[145]: 1) Morphology Modification, 3) Alloying, 3) Surface 

modification and 4) Reinforcement modification. Making composites is a well-

known method to enhance wear and friction properties. Then a brief introduction 

of tribological properties of self-lubricating aluminum matrix composites 

discussed. As a conclusion, solid lubricants play a dominant role in improving the 

tribological properties. Among various reinforcements, recent emerging material, 

carbon-based materials (graphite), is found to have many favorable attributes such 

as high thermal conductivity, low coefficient of thermal expansion, high damping 

capacity and good self-lubricant property [4]. Previous studies show that 

mechanical properties of aluminum matrix composites reinforced by graphite are 

low. Hence, recent studies tried to solve this problem by using nano-
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reinforcements. Size of reinforcement generally influences the mechanical 

properties such as strength, ductility, and fracture of self-lubricating MMNCs. It is 

expected that by reducing the particle size in MMC’s to the range of nanosized, 

some of the limitations such as poor ductility and elongation, poor machinability, 

and reduced fracture toughness of MMCs can be solved. The reason for 

significantly improved mechanical properties is due to the combined effect of 

Orowan strengthening and grain refining mechanisms and high temperature creep 

resistance properties could make metal matrix nanocomposites (MMNCs) very 

attractive, especially when lightweight aluminum matrix nanocomposites are used 

as the matrix material. The main conclusion which can be made is that nano-sized 

carbonous materials, such as nano-graphite or graphene, can simultaneously 

enhance mechanical and tribological properties. Therefore, embedding graphene 

to the aluminum matrix can improve both mechanical and tribological properties. 

In section 2, work is done on synthesizing of metal/graphene composites 

and their mechanical and tribological properties to date have been reviewed. Most 

of the researches used powder metallurgy technique to fabricate self-lubricating 

metal matrix nanocomposites. In some studies, the Vickers hardness slightly 

decreased or increased by adding graphene nanoplatelets into the metal 

matrices[206, 207]. However, Bartolucci et. al.[204] showed that by adding 

graphene to the aluminum matrix, the strength of the composite significantly 

decreased. As a result, the mechanical behavior of MMNCs reinforced by graphene 

is not completely understood. During the powder processing of the MMNCs 

reinforced by GNPs, plastic deformation and strain hardening due to the ball 

occurs. As a result of the processing method, the grain size of the metal matrices 
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decreased. Due to the smaller grain size, grain refinement strengthening which 

shows by Hall-Petch equation[203, 205, 231, 247] is one of the main strengthening 

mechanisms in the MMNCs reinforced by GNPs.  

For conventional metal matrix composites, the reinforcements act as load 

bearing components at contact surface which tend to protect the surface from 

plowing during sliding. Generally, the hardness of reinforcement greatly affects the 

wear loss and hence, the wear volume of MMCs. Among the composites, 

composites reinforced by carbonous materials show better tribological properties 

compared to composites reinforced by ceramic reinforcements, such as SiC and 

Al2O3 due to the lubricative nature of carbonous materials that make them a 

potential reinforcement for self-lubricating composite. The main reason for the 

significant decrease in COF and wear rate is due to the formation of a lubricant 

film between the contact surfaces because of the presence of a carbon-based solid 

lubricant in the MMCs. Thus, the lubricant film prevents direct contact between 

sliding surfaces and reducing wear. In addition, due to the presence of lubricant 

film which prevents direct contact, the transfer of atoms from the asperities of 

softer surface to the asperities of harder surface will be reduced that hence, it leads 

to decrease in cold welding of atoms of softer materials with atoms of harder 

materials during sliding and then subsequent fracture of atomic junctions. The 

results showed that self-lubricating composite reinforced by graphene has better 

tribological properties under dry wear test compared to unreinforced. Besides, 

adding more graphene can generally decrease COF due to the lubricant transfer 

layer is thicker and the real contact area between surfaces is less, therefore, COF of 

self-lubricating composites reduced by increasing amount of graphene.  
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2.3 MATERIALS AND EXPERIMENTS 

Looking at the current state of knowledge and the shortcomings in the 

existing research streams, the research goal is to investigate properties of self-

lubricating metal matrix nanocomposites and characterize them. The main 

objectives of this work are to synthesize and investigate the tribological properties 

of aluminum self-lubricating nanocomposites by addition of graphene as a 

reinforcement. As the hardness is an important parameter in wear, embedding 

another hard ceramic particle such as Al2O3 and making hybrid self-lubricating 

MMNCs will also be discussed.  

This experimental work is carried out in 3 phases: 

1. Study the tribological properties of self-lubricating aluminum/graphene 

and aluminum/alumina/graphene nanocomposites. 

2. Investigate the effect of weight percentage of reinforcement and applied 

load on the wear and friction behavior of composites 

3. Characterize worn surface of nanocomposites to find wear mechanism 

and characterize the tribofilm on the surface to understand the reason 

for the change in wear and COF.   

Several factors which can influence the tribological properties including 

materials parameters (weight percentage of graphene and alumina) and test 

parameters (applied load).  Any change in these parameters can result is a change 

in tribological properties. In this study, a selected number of factors were 

designated to evaluate the optimal parameters. For aluminum/graphene 

composites, the weight percentage of graphene will be 0.5, 1, 1.5, 2 and 3. 
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Therefore, the self-lubricating aluminum/graphene composites are Al/0.5GNPs 

(aluminum reinforced by 0.5 wt.% graphene), Al/1GNPs (aluminum reinforced by 

1 wt.% graphene), Al/1.5GNPs (aluminum reinforced by 1.5 wt.% graphene), 

Al/2GNPs (aluminum reinforced by 2 wt.% graphene) and Al/3GNPs (aluminum 

reinforced by 3 wt.% graphene). For hybrid nanocomposites, the summation of 

weight percentage of reinforcement is constant (3%) and the ratio of 

graphene:alumina will be changed. The self-lubricating aluminum/graphene 

composites investigated were Al/0.5GNPs/2.5Al2O3 (aluminum reinforced by 0.5 

wt.% graphene and 2.5 wt.% alumina), Al/1GNPs/2Al2O3 (aluminum reinforced by 

1 wt.% graphene and 2 wt.% alumina), Al/1.5GNPs/1.5Al2O3 (aluminum reinforced 

by 1.5 wt.% graphene and 1.5 wt.% alumina), Al/2GNPs/1Al2O3 (aluminum 

reinforced by 2 wt.% graphene and 1 wt.% alumina), Al/2.5GNPs/0.5Al2O3 

(aluminum reinforced by 2.5 wt.% graphene and 0.5 wt.% alumina). The test 

parameters that were selected include 5, 10, 15 and 20N of normal load and the 

sliding speed is constant, and it is 25 mm/s. 

2.3.1 MATERIALS AND FABRICATION 

The materials used in this investigation are a) 99% pure Al powder (Acros 

Organics, Waltham, MA) with an average particle size of 75 µm, b) Al2O3np powder 

(Nanophase, Romeoville, IL) with an average particle size of 47 nm, and c) 

graphene nanoplatelets (GNP) nano27 (Asbury, Asbury, NJ) with average 

thickness of approximately 10 nm and average platelet diameter of ~1-2 µm.  
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To produce MMNCs, the reinforcements with various wt.% of ball milled 

graphene GNPs (see 1.4.1, Pg. 21) and as-received Al2O3np were dispersed in 99.9% 

benzene by ultrasonication. The aluminum powder and the reinforcement slurry 

were added to a Planetary Ball Mill PM 100 and milled for 6 hours at 500 rpm 

using a ball-to-powder weight ratio of 10:1 (5 and 20 mm diameter steel balls). The 

procedure to synthesize self-lubricating aluminum composites reinforced by 

graphene nanoplatelets (GNPs) and alumina (Al2O3) powders is schematically 

illustrated in Figure 42. The milled composite powders were dried at 135ºC for 1 

hour to remove the benzene in a vacuum oven to prevent oxidation of powders. 

The dried powders were consolidated by single action cold compaction in a steel 

mold with 200 MPa at room temperature followed by single action hot compaction 

in a steel mold with 500 MPa at 525ºC in the air for 5 minutes such that a 25.4 mm 

diameter cylinder with a height of 10 mm was produced. 



122 
 

 

Figure 42 Schematic illustrations to show the attritor milling powder processing 

technique at room temperature 

2.3.2 HARDNESS TEST 

To investigate the mechanical properties of the samples Hardness Rockwell 

B were conducted on the samples. For hardness measurements, five independent 

Rockwell B Hardness (HRB) measurements were averaged for each sample at each 

stage of processing. The Rockwell hardness scale was chosen because it can capture 

the representative indentation behavior from a relatively large area of the MMNC 

sample surfaces. 
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2.3.3 TRIBOLOGICAL TESTS 

To investigate the tribological behavior of the samples, pin-on-disk tests 

under dry condition were conducted. In the tests, cylindrical pins with a dimension 

of 6 mm in diameter and 8 mm in height were utilized from the hot compacted 

composite samples. The contact surface of composite pins is flat. The 440C 

stainless steel discs were prepared to act as the counter body in the wear test. To 

obtain the standard results, the standard counter body is used. The hardness of 

440 steel is 62HRC. The commercial 440 stainless steel is machined and made into 

a disc as per the dimension of 55 mm in diameter and 10 mm in thickness. The pin-

on-disk experiment was conducted for different normal loads (5, 10, 15 and 20 N) 

and constant sliding speed of 25 mm/s (or 120 rpm at 40 mm wear track) at a 

constant sliding distance of 1.5 km. The coefficient of friction (COF) and volume 

loss (wear rates) was measured during the wear tests. The pin and disk specimen 

were cleaned by acetone before and by hexane after each test. 

The COF (coefficient of friction) value presented for each test was the 

average of the friction values. In addition, the linear wear-loss was acquired 

through a linear variable differential transducer (LVDT) with an encoder, which 

recorded the vertical displacement of the pin. The linear wear loss of each pin was 

converted into a volumetric wear loss using Eq. (1) derived from the geometry of a 

spherical cap. 

𝑉 =  𝜋𝑟2. ℎ      (2) 

In Eq. (2), h is the linear displacement (mm) in the vertical (longitudinal) 

axis for the pin, r is the pin radius (6 mm), which is assumed to be constant 
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throughout the test, and V is the volumetric wear loss (mm3). For a given set of 

testing conditions, at least three repetitive tests were performed and the results of 

the average of three tests were presented. 

2.3.4  CHARACTERIZATION  

The worn surfaces of the samples were investigated to understand the wear 

mechanism. Comprehensive characterization tests were designed for the 

synthesized composites to understand and explain the relationship between 

processing, structure, and performance using the following techniques. 

Two different scanning electron microscopes (SEM) (Hitachi S-4800 Ultra 

High-Resolution Cold Cathode Field Emission Scanning Electron Microscope 

(FE-SEM), JEOL JSM-6460 LV were used for characterization of the worn 

surfaces and. Elemental analysis is performed using an Oxford Energy 

Dispersive Spectroscopy detector attached to the SEM. The thin window silicon 

drift detector (SDD) allows the detection of the elements carbon and higher. 

A FEI™ TEM200 Focused Ion Beam (FIB) with Gallium ion source was 

employed to obtain TEM thin foils. TEM was done by a Phillips CM-200 operating 

at 200 kV. STEM characterization was carried out using a FEI/Tecnai™ F30 

300 kV TEM equipped with a Fischione™ high angle annular dark field (HAADF) 

detector and an X-ray Energy Dispersive Spectroscopy (XEDS) detector. 

X-ray diffraction (XRD) data gathered by a D8 Bruker diffractometer with 

Cu Kα1 radiation (λ= 0.15406 nm) (scanning from 2θ = 15° to 2θ =85°, step size of 

0.02°, counting time of 0.3s per step).  
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A LEXT OLS4100 3-D Laser Confocal Microscopy is used for 2-D and 3-D 

imaging and dimensional measurements with a surface feature observation 

resolution of 20 nm.  

A Renishaw Inc. 1000B Raman spectroscopy (Helium neon laser (633nm)) 

is used to determine the formation of tribofilm on the worn surfaces.  

2.4  RESULTS AND DISCUSSION 

2.4.1 MICROSTRUCTURAL STUDIES 

2.4.1.1 Ball Milling of Aluminum Powders 

It has been well established that high-energy mechanical milling is one of 

the major techniques for producing powders with nanocrystalline structures [29]. 

In high energy milling, powder particles are subjected to severe plastic 

deformation through repetitive compressive loads arising from the impacts 

between the balls and the powder particles. As a result, new crystalline and 

amorphous materials could be produced with crystallite sizes at the nanometer 

scale [9]. Furthermore, the mechanical milling kinetics depends on the energy 

transferred to the powder from the balls during milling [10]. The energy transfer 

is governed by many parameters such as milling speed, size and size distribution 

of the balls, dry or wet milling and temperature and duration of milling [11]. High 

energy milling has advantages of being simple, relatively inexpensive to produce 

[12], applicable to any class of materials and easily scaled up to large quantities 

[13]. 
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When a single-phase elemental powder or intermetallic compound powder 

is milled, the grain size of the powder particles continues to decrease until it 

reaches a minimum level—in the range of 3–25 nm. 

For metallic and intermetallic powders, it is believed that fracturing and 

cold welding are not the major mechanisms for the reduction of the grain size. 

Instead, the reduction of the grain size is due to the localization of plastic 

deformation in the form of shear bands containing a high density of dislocations, 

the formation of subgrains or cells by the annihilation of dislocations and the 

conversion of subgrains/cells into grains through mechanically driven grain 

rotation and subgrain boundary sliding. In other words, the mechanism of forming 

nanosized grains during high-energy mechanical milling is very similar to the 

dynamic recrystallization which occurs during hot forming of metals and alloys, 

except the mechanical working temperature in milling is very low and limits the 

opportunities for the new grains to grow. The low temperature is essential in 

keeping the nanograins from further coarsening. The minimum grain size is 

determined by the balance between dislocation accumulation, and dynamic 

recovery through the formation of subgrain boundary and new grains.  

Deviations from ideal crystallinity, such as finite crystallite size and strain 

(at the atomic level) lead to broadening of the diffraction lines in X-ray Diffraction 

spectra. By analyzing this broadening, it is possible to extract information about 

the microstructure of a material. However, various sources for the line broadening 

of X-Ray peaks exist. These include a) Instrumental Broadening (Non- ideal optics, 

Wavelength Dispersion, Sample Transparency, Axial Divergence, Flat Sample 
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Effect, Detector resolution (area det. & PSD’s) b) Crystal size and Extended Defects 

Broadening, and c) Lattice Strain (microstrain). 

A perfect crystal would extend in all directions to infinity, so we can say that 

no crystal is perfect due to it is finite size. This deviation from perfect crystallinity 

leads to a broadening of the diffraction peaks. However, above a certain size (~0.1 

- 1 micron) this type of broadening is negligible. Crystallite size is a measure of the 

size of a coherently diffracting domain. Due to the presence of polycrystalline 

aggregates crystallite size is not generally the same thing as particle size in 

particulate materials. Therefore, in practice, the crystallite size analysis on a 

sample containing extended defects can be used to estimate the ordered domain 

size (the size of the region between defects). Scherrer (1918) first observed that 

small crystallite size could give rise to line broadening. He derived a well-known 

equation for relating the crystallite size to the broadening, which is called the 

“Scherrer Formula”[271]. 

𝐷𝑣 =
𝐾𝜆

βcos 𝜃
 

𝐷𝑣 = Volume Weighted crystallite size 

K = Scherrer constant, somewhat arbitrary value that falls in the 

range 0.87-1.0. I usually assume K = 1. 

λ = The wavelength of the radiation 

β = The integral breadth of a reflection (in radians 2θ) located at 2θ. 

In crystals, there we can observe two types of strain a) Uniform strain b) 

Non-uniform strain. Uniform strain causes the unit cell to expand/contract in an 

isotropic way. This simply leads to a change in the unit cell parameters and shift of 
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the peaks. There is no broadening associated with this type of strain. On the other 

side, non-uniform strain leads to systematic shifts of atoms from their ideal 

positions and to peak broadening. The non-uniform strain arises from point 

defects (vacancies, site-disorder), plastic deformation (cold worked metals, thin 

films), and poor crystallinity.  Stokes and Wilson (1944) first observed that 

strained or imperfect crystals containing line broadening of a different sort, then 

the broadening that arises from small crystallite size. 

𝜀𝑠𝑡𝑟 =  
𝛽

4{tan 𝜃}
 

𝜀𝑠𝑡𝑟 = weighted average strain 

β = The integral breadth of a reflection (in radians 2θ) located at 2θ. 

Note that size and strain broadening show a different θ dependence. 

This provides a way to separate the two effects. 

To do an accurate analysis for size and/or strain effects one must accurately 

account for instrumental broadening. The manner of doing this differs depending 

upon the peak shape. Line broadening analysis is most accurate when the 

broadening due to crystallite size effects is at least twice the contribution due to 

instrumental broadening. If we use this criterion we can calculate the size range 

over which this technique will be the most accurate. We could also estimate a rough 

upper limit for reasonable accuracy by looking at the crystallite size that would lead 

to broadening equal to the instrumental broadening.  

The width of a diffraction line can be estimated by more than one criterion. 

The two most common width parameters are, Full Width at Half Maximum 

(FWHM or Γ) - The width of the peak at 1/2 it’s maximum intensity, and Integral 
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Breadth (β)- The width of a rectangle with the same height and area as the 

diffraction peak. The integral breadth (β) and FWHM (Γ) can be related for various 

peak shapes such as Lorentzian, Gaussian, and Voigt, Pseudo-Voigt. Therefore, 

differentiation of instrumental broadening and size/ strain broadening differs 

depending upon the peak shape (Figure 43). Following Lorentzian equation was 

used in our calculation. 

𝛽𝑜𝑏𝑠=𝛽𝑠𝑖𝑧𝑒 + 𝛽𝑠𝑡𝑟𝑎𝑖𝑛 + 𝛽𝑖𝑛𝑠𝑡 

{𝛽𝑜𝑏𝑠−𝛽𝑖𝑛𝑠𝑡} = 𝛽𝑠𝑡𝑟𝑎𝑖𝑛 + 𝛽𝑠𝑖𝑧𝑒 

 

Williamson and Hall (1953) proposed a method for deconvoluting size and 

strain broadening by looking at the peak width as a function of 2θ. Here. It is a 

Williamson-Hall relationship for the Lorentzian peak shape, but it can be derived 

in a similar manner for the Gaussian peak shape. 

{𝛽𝑜𝑏𝑠−𝛽𝑖𝑛𝑠𝑡} =
𝐾𝜆

𝐷𝑣 cos 𝜃
+ 4𝜀𝑠𝑡𝑟{tan 𝜃} 

{𝛽𝑜𝑏𝑠−𝛽𝑖𝑛𝑠𝑡} cos 𝜃 =
𝐾𝜆

𝐷𝑣
+ 4  𝜀𝑠𝑡𝑟  {sin 𝜃} 

To make a Williamson-Hall plot, one need to plot {𝛽𝑜𝑏𝑠−𝛽𝑖𝑛𝑠𝑡} cos 𝜃 on the 

y-axis (in radians 2θ) and 4sinθ on the x-axis. If you get a linear fit to the data, you 

can extract the crystallite size from the y-intercept of the fit and the strain from the 

slope of the fit. Simplified integral breadth methods work well if the peak shapes 

are either pure Gaussian or pure Lorentzian. It is generally necessary to correct for 

instrumental broadening and to use integral breadths (rather than FWHM) to 

obtain the most accurate analysis. Therefore, samples of high purity Aluminum 
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powder of initial particle size of approximately 40 µm was ball milled for different 

intensities and durations. Instrumental broadening and the peak shape were 

determined using a NIST SRM 640e standard silicon sample (Figure 44).  The high 

energy ball mill process was carry out using a planetary ball mill with a hardened 

steel ball. Data from attritor mill were used to compare the type of milling process 

in final microstructural defects. The peak breadths of the (111), (200), (220) and 

(311) reflections, plotted according to W-H equation. After plotting 

{𝛽𝑜𝑏𝑠−𝛽𝑖𝑛𝑠𝑡} cos 𝜃 on the y-axis  and 4sinθ on the x-axis (Figure 45 and Figure 46), 

a linear fit to the data were used to extract the crystallite size from the y-intercept 

of the fit and the strain from the slope of the fit.  Figure 47 shows the variation of 

crystallite size as a function of milling time and milling rpm. According to data in 

Figure 45, high energy ball mill at 600 rpm is the most effective technique in 

reducing the crystallite size in aluminum powder. Based on the results in Figure 

46 the optimum milling time at 600rpm to obtain the smallest crystallite size is 

selected as 180 minutes. As it can be observed, the crystal size is decreasing and 

then reach a plateau by increasing the milling time, in which a higher rpm helps it 

to reach the plateau at shorter milling time.  
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Figure 43 Illustration of FWHM comparison of (220) of as-received and milled 

aluminum 

 

Figure 44 Determination of instrumental Broadening using a NIST SRM 640e 

standard silicon sample 
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Figure 45 Williamson-Hall plot of as-received aluminum, ball milled Al at 200 

rpm, ball milled Al at 600 rpm, and attritor milled Aluminum.  
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Figure 46 Williamson-Hall plot of as-received aluminum and ball milled 

Aluminum at 600 rpm for 20, 60, 120, 180, 360, and 1440 minutes 
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Figure 47 Variation of crystallite size as a function of milling time for 200 and 600 

rpm 

2.4.1.2  Composites Synthesis 

High Angle Annular Dark Field (HAADF) micrograph of Al/3GNPs powder 

depicts the presence of porosity/holes as shown in Figure 48. EDX analysis didn’t 

reveal any compositional inhomogeneity and impurity. Figure 49 exhibit the 

electron diffraction pattern of Al/3GNPs composites. Figure 49(a) shows a typical 

electron diffraction pattern with no selected area aperture showing the presence of 

nanocrystalline grains. Figure 49b is the selected area electron diffraction pattern 

(SAEDP) showing the presence of diffraction spots from few aluminum grains, and 

Figure 49c shows the SAEDP from the areas where graphene can be possibly 

present in the aluminum matrix. Figure 50 corresponding to the bright field image 

of the spot indicated by red ring and arrow in Figure 49c. Diffraction spot within 

Al(111) ring help to identify the localized region in the sample where graphene can 

possibly be located. High-resolution HRTEM imaging was used to observe 

nanoscale features in the sample. 

Figure 51 depicts the HAADF micrograph of Al/2GNP/1Al2O3 powder 

composite.  Presence of Al2O3 nanoparticles is evident and confirmed by EDX as 

shown in Figure 52.  
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Figure 48 High Angle Annular Dark Field (HAADF) micrograph of Al/3GNP 

(powder composite) 

 

Figure 49  Electron diffraction pattern of Al/3GNPs composites 
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Figure 50 Typical bright field micrograph of Al/3GNP powder composite 

 

Al 

Graphene 

Al 
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Figure 51 HAADF micrograph of Al/2GNP/1Al2O3 (powder composite)  
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Figure 52 EDX of Al/2GNP/1Al2O3 on three points of Figure 51 

Figure 53 - Figure 55 shows the HAADF micrograph of Al/1GNPs, 

Al/3GNPs, and Al/2GNP/1Al2O3 bulk composite, respectively. These figures show 

an anisotropic microstructure for composites. Figure 56 show diffraction pattern 

of TEM images of Al/1GNPs and Al/3GNPs. The diffraction pattern of bulk 

composites shows that oxide layers were formed on the surface of aluminum 

particles. Aluminum powders were heavily deformed during ball milling and 
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consolidation processing. Therefore, dislocations were generated during the 

powder metallurgy processing in the powders and led to increasing the mechanical 

properties. 

  In comparison between the microstructure of Al/1GNPs with Al/3GNPs, it 

can be mentioned that more porosity/holes/gaps appear on the Al/3GNPs 

composites which affect the mechanical properties and hardness of composites as 

will be discussed on 2.4.2 (Pg. 148). Figure 57 - Figure 59 shows the High-

Resolution Transmission Electron Microscopy (HRTEM) with corresponding Fast 

Fourier transforms (FFT) for Al/1GNPs, Al/3GNPs, and Al/2GNP/1Al2O3 bulk 

composite, respectively. It can be concluded from these HRTEM images that 

graphene nanoplatelets were embedded between aluminum grains properly. In 

addition, it is evident that thickness of graphene is about 1-2 nm and confirms the 

good milling of graphene and aluminum powder and sintering condition to keep 

the graphene in nanosized range and nanocrystalline size of aluminum matrix. The 

distance between layers in the GNPs embedded in the aluminum was measured by 

the TEM images. The distance between layers of graphene in the composites 

sample calculated to about 0.346 nm. The same results have been reported by Chen 

et. al[248].  Besides, Figure 55 shows that the alumina nanoparticles are seated in 

between aluminum grains. 
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Figure 53 HAADF micrograph of Al/1GNPs bulk composite 

 

Figure 54 HAADF micrograph of Al/3GNPs bulk composite 

 

Figure 55 HAADF micrograph of 2GNP/1Al2O3 bulk composite 
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Figure 56  TEM images of a) Al/1GNPs and b) Al/3GNPs with oxygen enriched 

locations 

 

Figure 57 High-resolution Transmission electron microscopy (HR-TEM) with 

corresponding Fast Fourier transforms (FFT) for Al/1GNPs 
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Figure 58 High-resolution Transmission electron microscopy (HR-TEM) with 

corresponding Fast Fourier transforms (FFT) for Al/3GNPs 
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Figure 59 High-resolution Transmission electron microscopy (HR-TEM) with 

corresponding Fast Fourier transforms (FFT) for Al/2GNPs/1Al2O3 

The XRD results for as received powders depicted in Figure 60 and Figure 

61 where show the XRD results for the composite powders. In all the XRD 

spectrums, there are five peaks for aluminum. The 2θ measurement for these 

spectrums is approximately 38.4º, 44.6º, 65.0º, 78.2º, and 82.4º. Major 

aluminum peaks observed at 38.4° (111), 44.6° (200), 65.0° (220), 78.2° (311) and 

82.4° (222). Figure 62 presents the XRD results on the selected bulk samples after 

consolidation processing. The XRD spectrum of the bulk samples are the same as 

the XRD spectrum of powders samples and show five major peaks of aluminum. 

These results prove that during consolidation processing, including single action 

cold compaction followed by single action hot compaction, there is no traceable 

undesirable reaction or formation of new phases. It can be concluded from the 
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XRD results different from the XRD results reported in [204] to exhibit peaks at 

2θ = 31.8, 55.0, and 72.5º to show the formation of aluminum carbide in Al-0.1 

wt.% graphene composites. It is worth mentioning that the materials chosen for 

the milling media and the reservoir are highly wear-resistant and, therefore, the 

possibility of contamination is very low. As seen in XRD results, the chemical 

analysis identifies the presence of no contamination from milling media in the 

specimens produced in this study. 

In Figure 63, the diffraction angle at the hkl values of (002), (100) and (004) 

corresponds to pure graphene phase. As graphene get embedded into the aluminum 

matrix, it is expected to observe GNPs diffraction peak at 2θ around 26º (Figure 63) 

in addition to the aluminum diffraction peaks. However, carbon reflections were 

not being observable for any of the samples due to the nanometric size and the low 

content of the reinforcement phase, which is below the detection limit of  XRD for 

second phases [272].  
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Figure 60 XRD spectrum of as-received aluminum powder 
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Figure 61 XRD spectrum of composite powders milled  
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Figure 62 XRD spectrum of the bulk composite  
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Figure 63 Comprising XRD spectrum of the bulk composite with graphene 

nanoplatelets 

2.4.2 MECHANICAL PROPERTIES 

Figure 64 shows the hardness Rockwell B (HRB) measurements for pure 

aluminum and aluminum matrix composites reinforced by graphene and Al2O3. 

Results clearly show that reinforcements increase the hardness of aluminum 

composites. Amongst composites, hybrid composites reinforced by graphene and 

alumina have a higher hardness than aluminum composites reinforced by 

graphene. 

For Al/GNPs composites, the hardness of the composites initially increases 

with increasing graphene content and then decreases. Aluminum reinforced by 1 
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wt.% graphene nanoplatelets has the highest hardness among aluminum/GNPs 

composites. Bustamante et al. also reported that no clusters of graphene are 

observed in the reinforced composite with 1.0 wt.% of graphene under the 

condition of ball milling [207, 273]. Results show that   0.5 wt.% graphene is not 

enough to increase the hardness. Embedding graphene more than 1 wt.% (i.e. 2 

and 3 wt.%) results in agglomeration and decrease in the hardness. Composites 

with higher graphene content show more porosity and gap which has a negative 

effect on the hardness of composites if one compares the microstructure of 

Al/1GNPs and Al/3GNPs composites in Figure 53 and Figure 54, respectively. It is 

evident that composites reinforced by 1 wt.% of graphene has less porosity and 

hole. Hence, the optimum weight percentage of graphene to increase the 

mechanical properties of aluminum is 1 wt.% where hardness increase from 74.8 

HRB for pure aluminum to 90.1 HRB for Al/1GNPs composite and 20% 

improvement in hardness under otherwise identical experimental sample 

compaction and sintering conditions.  

For aluminum hybrid composites, there is a synergetic effect of graphene 

and alumina particles to enhance mechanical properties [274, 275]. In a 

comparison of Al/GNPs and Al/GNPs/Al2O3 with the same weight percentage of 

graphene, the hardness of hybrid composites is higher. The hardness value 

increase from 90.1 HRB for Al/1GNPs to 94.4 HRB for Al/1GNPs/2Al2O3. It is 

attributed to the grain refinement of the matrix [276] and the influence of 

nanoparticles on strengthening of composite according to alumina nanoparticles 

act as obstacles to the motion of dislocation and Orowan mechanism is dominant 

[277, 278]. Moreover, lower porosity content of these samples has led to the higher 
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mechanical properties compared with Al/GNPs composites as will be discussed in 

microstructure  [277].  

 

 

Figure 64 HRB measurements for pure aluminum and composite samples 

2.4.3 TRIBOLOGICAL PROPERTIES 

2.4.3.1 COF 

The coefficient of friction (COF) is the critical parameter to obtain an 

indirect measurement of energy efficiency in industrial materials. Figure 65 

exhibits the COF of aluminum and its composites. It is evident that embedding 

graphene nanoplatelets can decrease the coefficient of friction of aluminum due to 
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the presence of graphene as a solid lubricant which promotes the formation of 

lubricious tribofilm on the surface, therefore, reduce the surface-to-surface 

contact. Results show that adding graphene in loadings as low as 0.5 wt.% can 

decrease COF significantly. The reduction in coefficient of friction of the Al/Gr 

composites with increased graphene content is generally expected from the self-

lubricating composites. This conclusion is consistent with that of 

aluminum/graphite composites reported by many investigators [103, 113, 279, 

280].  

Although the addition of 0.5 wt.% of GNPs to the aluminum matrix decrease 

the composites’ COF, but the loading is sufficient enough to let the solid lubricant 

be fully available at the contact surface. The higher weight percentage of GNP (2 

and 3 wt.%) decreased the COF of the composite sample significantly in 

comparison with other samples. Generally, as the number of graphene 

nanoplatelets between the contacting surfaces increases, the COF decreases owing 

to the lubricating tendency of the graphene nanoplatelets available at the sliding 

interface. 

In comparison between Al/GNPs composites and aluminum hybrid 

composites, it is obvious that the COF of Al/GNPs/Al2O3 composites is lower than 

Al/GNPs composites. The reason for enhanced COF of hybrid composites is the 

presence of alumina particles and their rolling effect.  

The effect of load on the COF of aluminum and its various composites was 

shown in Figure 66. In unreinforced aluminum, results show that COF increases 

by increasing the load. Therefore, higher COF was observed at higher load. On the 

contrary, in  Al/GNPs and Al/GNPs/Al2O3 composites, there is a minor decrease 
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in the COF at higher loads. The possible explanation for this phenomenon may lay 

down in the lubricating behavior of the reinforcement and the fact that higher wear 

releases more solid lubricant into the contact area. In another word, when the 

applied load is higher, initially a substantial wear is happening. Consequently, the 

higher volume of worn composites releases a higher amount of lubricating 

graphene and alumina onto the contact surface. Therefore, these released particles 

can form a protective tribofilm. In summary, at higher normal loads, more 

graphene is projecting out from the pin surface due to plowing between pin and 

disk. Consequently, the direct contact between surfaces of the sample and disk is 

decreased by the graphene layer and this ultimately decreased the wear and COF. 
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Figure 65 The variation of the COF for aluminum and its composites at different 

loads 
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Figure 66 Effect of normal load on COF of various aluminum composites  

2.4.3.2 Wear  

Wear resistance of aluminum and its composites are reported in term of 

normalized wear rate where normalized wear rate is equal to volume loss divided 

by the sliding distance and applied normal load. Figure 67 shows the effect of particle 

types and the weight percentage of reinforcement on the wear rate. The wear rate 

of composites is lower than aluminum due to the presence of graphene and 

alumina embedded in aluminum. Consequently, the lifetime of the aluminum is 

significantly prolonged as the sliding surface is continuously supplied with 

lubricating particles. 
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 The hardness of the material plays a key role to explain the wear behavior 

of materials. Generally, the softer the material is, the higher wear rates it has. 

Further, in the literature, it is well known that there is an inverse relation between 

wear rate and hardness of the materials. For this reason, Al/1GNPs and 

Al/1GNPs/2Al2O3 show the lowest wear rate among Al/GNPs and Al/GNPs/Al2O3, 

respectively compared to pure aluminum and other composites. According to 

Archard equation, the wear rate is inversely proportional to hardness. The sliding 

wear due to abrasion was given as: 

 

where V is the volume loss, P is the applied load, L is the sliding distance, H 

is the hardness of the specimen, and k is the wear coefficient. Therefore, as it is 

expected from Archard equation, the wear rate decreases by graphene particles up 

to 1 wt.% graphene nanoplatelets due to increase in the hardness be embedding 

the graphene particles. Besides, the graphene nanoplatelets form a lubricant 

protective tribolayer on the worn surfaces, which consequently reduces the wear 

rate by lowering the real contact area between two mating surfaces. As seen earlier, 

adding more graphene above 1 wt.% has a negative effect on hardness possibly due 

to agglomeration, which in turn reduces wear resistance. In conclusion, under low 

GNPs contents up to 1 wt.%, the composites outperformed the pure aluminum; 

while the wear performance of the composite deteriorated at high GNPs contents 

of 3 wt.%.  In addition, there is another effect of graphene nanoplatelets which 

improve the wear properties, and that is the ability of GNPs to play an important 

role in protecting the surface against oxygen and enhancing oxidation resistance. 
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In presence of oxygen, aluminum will oxidize on the surface and forms an oxide on 

the surface. This thin oxide layer can act as a third body abrasive.  

If compare the wear rate of Al/GNPs composites with aluminum hybrid 

composites reinforced by graphene and alumina, it is obvious that the wear rate of 

self-lubricating aluminum hybrid composites is lower than Al/GNPs composites 

because the hardness of hybrid composites is higher than Al/GNPs and increase 

the ability of materials for less surface damage. For Al/GNPs and Al/GNPs/Al2O3 

composites with the same weight percentage of graphene, hybrid aluminum 

composites have lower wear rate due to the synergetic effect of graphene and 

alumina. Alumina particles have two effects, 1) rolling effect and 2) compensating 

of wear surface. The alumina particles have a spherical shape that can roll between 

two surfaces and reduce the contact between surfaces. Alumina nanoparticles are 

hard particles and can act as a third abrasive party and make more wear on the 

surface and delamination of the graphene lubricant film. Thus, the optimum 

amount of alumina is required to reduce the wear rate. Therefore, less than 

optimum amount, there is not enough particles to roll between two surfaces and 

compensating the wear and more than the amount of optimum, more alumina 

particles present on the surface and can from a cluster of hard alumina particles 

and make more abrasive on the surface. Consequently, the optimum amount of 

alumina is 2 wt.% and aluminum composites reinforced with 1 wt.% graphene and 

2 wt.% alumina where the wear rate has the lowest value of wear rate. The wear 

rates of aluminum composite reinforced by 1 wt.% graphene and 2 wt.% alumina 

(Al/1GNPs/2Al2O3) are 2.6, 1.4, 1.1 and 0.2 mm3/N.m×10-5 in comparison with a 

wear rate of pure aluminum are 14.4, 15.7, 16.5 and 21.0 mm3/N.m×10-5, so, there 
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are 82%, 91%, 93% and 99% improvements of wear rate at 5N, 10N, 15N and 20N, 

respectively. By comparing the aluminum composite and hybrid composites, 

embedding 2 wt.% alumina nanoparticles in Al/GNPs can reduce the wear rate 

where the wear rate decreases from 9.3, 9.0, 5.6 and 4.2 mm3/N.m×10-5 for 

Al/GNPs to 2.6, 1.4, 1.1 and 0.2 mm3/N.m×10-5 for Al/1GNPs/2Al2O3 composites 

and there are 72%, 85%, 80% and 94% improvements of wear rate at 5N, 10N, 15N 

and 20N, respectively. 

The effect of load on the wear rate of aluminum and its various composites 

was shown in Figure 68. The same trend of COF can be observed for wear rate 

where the wear rate of aluminum was increased by increasing the load while, on 

the contrary, the wear of composites including the Al/GNPs and Al/GNPs/Al2O3 

decreases at higher load. The reason for lower wear at higher load is that more wear 

was occurred at starting of wear test and consequently, more graphene and 

alumina release onto the surface and these particles can form a protective tribofilm 

and therefore, the wear rate of composites reduces at higher load. 
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Figure 67 The variation of wear rate for aluminum and its composites at different 

loads 
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Figure 68 Effect of normal load on the wear rate of various aluminum composites 

Figure 69 illustrate the relationship between COF, Wear rate and hardness 

at 15N with weight percentage of graphene nanoplatelets and alumina 

nanoparticles. Under low GNPs content up to 1 wt.%, there is a direct relationship 

between COF and wear rate. There is a sharp reduction in wear rate from 16.5 

mm3/N.m×10-5 in pure aluminum to 5.6 mm3/N.m×10-5 in Al/1GNP while the COF 

reduced from 0.41 in pure aluminum to 0.27 in Al/1GNPs at 15N. The high GNPs 

composites in Al/3GNPs caused less friction between the stainless-steel disk and 

the Al/3GNPs composite surface, therefore, reduced the COF while the wear rate 

of composite increases. Meanwhile, the wear rate increment from 1 wt.% to 3 wt.% 

graphene is in line with the hardness reduction, from 90.1 HRB in Al/1GNPs to 
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84.5 HRB in Al/3GNPs. Therefore, the increased wear rate in Al/3GNPs is 

associated with its mechanical properties. It is believed that the low hardness of 

Al/3GNPs resulted in weak inter-granular strengths; therefore, more materials 

have been removed during the wear test, even though they have relatively low COF. 

Therefore, as shown in Figure 69, all samples are corresponding to an opposite 

relationship between wear rate and hardness. 
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Figure 69 The relationship between COF, Wear rate, hardness and GNP content at 

15N 

2.4.3.3 Surface Studies  

2.4.3.3.1 3D profilometry 

An optical profilometer was employed to study the worn surfaces and 

measure surface roughness parameters of pure aluminum and composites’ pins. 

Figure 70 - Figure 73 show three-dimensional images of worn surfaces of pure 

aluminum and its composites using an optical profilometer at different loads. 

Surface analysis show that adding reinforcement is effective to have smoother 

finished surfaced after tribotest. It is evident that the wear for aluminum is very 

severe where the wear track profile shows a typical body abrasion. 



162 
 

As discussed earlier, the wear rate of composites is less than pure aluminum 

possibly owes to its higher hardness. Therefore, it is expected to have less damage 

and wear on the surface, consequently, the surfaces of composites show narrower 

and shallower grooves. For example, for aluminum and its composites at 5N, the 

surface of aluminum (Figure 70a) is rougher than the surface of composites (Figure 

70b-k). The wear of composites is mild abrasion while the surface of pure 

aluminum exhibits the severe abrasion.  

Amongst the self-lubricating aluminum composites reinforced by GNPs 

nanoplatelets, the smoother surface belongs to aluminum reinforced by 1 wt.% 

GNPs ( as shown earlier, the wear rate of Al/1GNPs is also lower than other 

Al/GNPs composites). Figure 71c which shows the worn surface of Al/1GNPs 

composite at 10 N applied load, is much smoother in comparison with the surface 

of all other Al/GNPs composites at the same applied load condition (Figure 71d-f).   

If compare the worn surface of Al/GNPs with Al/GNPs/Al2O3 in Figure 70 

- Figure 73, it is evident that surface of hybrid composites is smoother than 

Al/GNPs composites at the same applied load. This can be explained by the higher 

hardness of Al/GNPs/Al2O3 in comparison with Al/GNPs composites. For 

example, for composites with the same weight percentage of GNPs at 15N, the 

surface of Al/1GNPs (Figure 72c) is rougher than the surface of other 

Al/1GNPs/2Al2O3 composites (Figure 72h) and it is clearly shown that narrower 

and shallower grooves appear on the worn surface of hybrid composites. The 

smoother surface on the composites is also due to the fact that the major part of 

the applied load is carried by alumina nanoparticles which minimized the amount 

of plastic deformation and aid to the formation of lubricant film on the surface of 
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composites. In addition, there are interactions between dislocations and Al2O3 

nanoparticles that ultimately resist the propagation of cracks during sliding wear. 

Moreover, the lubricant GNPs tribolayer can reduce the actual area of contact. 

These are the main reasons which lead to decrease in the wear rate of the 

composites containing GNPs and alumina phases. 

If compare the worn surface of composites at different loads, it can be 

concluded that surface of composites is smoother at higher load. For example, for 

composites with 1 wt.%  GNPs and 2 wt.% alumina, the worn surface at lower load 

(5 and 10N) as shown Figure 70(h) and Figure 71(h) is rougher than the surface of 

at higher load (15 and 20N) as illustrated in Figure 72(h) and Figure 73(h). 

Accordingly, less damage can be observed on the worn surface and less, narrower 

and shallower grooves are appeared on the surface at higher load. Therefore, wear 

rate at higher load indicates ultra-mild two-body abrasion while the mild two-body 

abrasion occurs at lower load. 

  



164 
 

 

Figure 70 The 3D Optical profilometer images of worn surface of the pin at 5N for 

a) pure aluminum, b) Al/0.5GNPs, c) Al/1GNPs, d) Al/1.5GNPs, e) Al/2GNPs, f) 

Al/3GNPs, g) Al/0.5GNPs/2.5Al2O3, h) Al/1GNPs/2Al2O3, i) Al/1.5GNPs/1.5Al2O3, j) 

Al/2GNPs/1Al2O3 and k) Al/2.5GNPs/0.5Al2O3 
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Figure 71 The 3D Optical profilometer images of worn surface of the pin at 10N for 

a) pure aluminum, b) Al/0.5GNPs, c) Al/1GNPs, d) Al/1.5GNPs, e) Al/2GNPs, f) 

Al/3GNPs, g) Al/0.5GNPs/2.5Al2O3, h) Al/1GNPs/2Al2O3, i) Al/1.5GNPs/1.5Al2O3, j) 

Al/2GNPs/1Al2O3 and k) Al/2.5GNPs/0.5Al2O3 
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Figure 72 The 3D Optical profilometer images of worn surface of the pin at 15N for 

a) pure aluminum, b) Al/0.5GNPs, c) Al/1GNPs, d) Al/1.5GNPs, e) Al/2GNPs, f) 

Al/3GNPs, g) Al/0.5GNPs/2.5Al2O3, h) Al/1GNPs/2Al2O3, i) Al/1.5GNPs/1.5Al2O3, j) 

Al/2GNPs/1Al2O3 and k) Al/2.5GNPs/0.5Al2O3 
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Figure 73 The 3D Optical profilometer images of worn surface of the pin at 20N for 

a) pure aluminum, b) Al/0.5GNPs, c) Al/1GNPs, d) Al/1.5GNPs, e) Al/2GNPs, f) 

Al/3GNPs, g) Al/0.5GNPs/2.5Al2O3, h) Al/1GNPs/2Al2O3, i) Al/1.5GNPs/1.5Al2O3, j) 

Al/2GNPs/1Al2O3 and k) Al/2.5GNPs/0.5Al2O3 

Figure 74 shows the correlation of surface roughness (Sa) of worn surfaces 

of pure aluminum and self-lubricating composites pins at different loads. The 
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surface roughness of pins after test can confirm the results of wear rate. By 

comparing the roughness number of pure aluminum composites, it is obvious that 

embedding the GNPs and alumina as a reinforcement are effective to enhance the 

wear rate and have smoother finished surface. In addition, the surface roughness 

of hybrid composites is less than surface roughness of Al/GNPs composites where 

the wear rate of composites is less than wear rate of Al/GNPs (Figure 67) as 

discussed. In general, it can be found that the worn surface of pure aluminum is 

rougher with many thick and deep grooves while the worn surfaces of composites 

is comparably smoother, and the grooves are shallower. Besides, aluminum hybrid 

self-lubricating composites has less and shallow grooves in comparison with 

Al/GNPs composites. Figure 75 illustrate the relationship between Wear rate and 

surface roughness at 15N with weight percentage of GNPs nanoplatelets and 

alumina nanoparticles. There is a direct relationship between Sa and wear rate and 

a sharp reduction in wear rate and Sa by adding 0.5 wt.% GNPs. Moreover, the 

surface roughness increment from 1 wt.% to 3 wt.% GNPs is in line with the 

increasing wear rate. Therefore, all composite samples are corresponding to a 

direct relationship between wear rate and surface roughness. 
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Figure 74 The surface roughness of worn surfaces of aluminum and its composites 

at different loads 
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Figure 75 The relationship between Wear rate, surface roughness (Sa) and 

reinforcement content at 15N 

2.4.3.3.2 SEM/EDS 

The SEM/EDX was employed to study the worn surface and find its 

composition. Figure 76 - Figure 79 exhibit the SEM image of worn surface for 

various composites at different loads. By comparing the worn surface of pure 

aluminum and its composites, it is evident that more damages and delamination 

on the surface of pure aluminum appears where surface of composites have less 

number of grooves and debris. In addition, the grooves are narrower and shallower 

and the size of debris on the surface of composites is smaller. By comparing the 

Al/GNPs and Al/GNPs/Al2O3, the surface of hybrid composites reinforced by 

GNPs and alumina shows smoother surface and less debris. If compare Figure 76 

- Figure 79 (b) with Figure 76 - Figure 79 (d), it can be concluded that the grooves 

become narrower and shallower on the worn surface of hybrid self-lubricating 

composites. Generally, the surface texture of worn surface can confirm the wear 

rate results where wear rate of aluminum is higher than its composites because of 

more damage and wear on the surface. Also, hybrid composites have better wear 

properties because of narrower and shallower grooves and less damages on the 

surfaces of hybrid composites in comparison with Al/GNPs composites. The 

surface of composites shows the trace of GNPs on the worn surfaces. In addition, 

SEM images also shows bigger clusters of GNPs sheets along the wear track at 

higher volume fraction of GNPs embedded into the composites. 
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Figure 76 Scanning electron micrographs of worn pin surfaces at 5N for a) pure 

aluminum, b) Al/1GNPs, c) Al/3GNPs, d) Al/1GNPs/2Al2O3 and e) Al/2GNPs/1Al2O3 
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Figure 77 Scanning electron micrographs of worn pin surfaces at 10N for a) pure 

aluminum, b) Al/1GNPs, c) Al/3GNPs, d) Al/1GNPs/2Al2O3 and e) Al/2GNPs/1Al2O3 
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Figure 78 Scanning electron micrographs of worn pin surfaces at 15N for a) pure 

aluminum, b) Al/1GNPs, c) Al/3GNPs, d) Al/1GNPs/2Al2O3 and e) Al/2GNPs/1Al2O3 
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Figure 79 Scanning electron micrographs of worn pin surfaces at 20N for a) pure 

aluminum, b) Al/1GNPs, c) Al/3GNPs, d) Al/1GNPs/2Al2O3 and e) Al/2GNPs/1Al2O3 

The worn surfaces have parallel grooves in the direction of sliding with 

varying groove width and depth that depend on several factors such as the normal 

load. The texture of the worn surfaces clearly depicts the load-dependent wear 

behavior in pure aluminum samples. As the applied load increased, the wear track 

became wider. Moreover, the lower applied loads (5 and 10N) produced relatively 
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smoother wear track surfaces (Figure 76a and Figure 77a), with hardly any grains 

being pulled-out. However, the 15N applied load caused a larger area of grain pull-

out (Figure 78a), and the 20N load led to even severe damage to the wear surfaces, 

with traces of wear groves and large debris on the surface (Figure 79a). Such 

aluminum grain pull-outs under different applied loads produced a large amount of 

wear debris which in turn resulted in abrasive sliding wear. These types of grooves 

which show on the worn surfaces are due to abrasive wear during sliding 

conditions. 

Figure 80 can exhibit the effect of load on the worn surface of Al/1GNPs and 

Al/1GNPs/2Al2O3 composites which are entirely dissimilar to the wear tracks of pure 

aluminum. by comparing the SEM images from top to bottom as shown increasing 

the normal load, it can be concluded that the worn surface of composites shows a 

smoother surface with fewer grooves and debris. It is confirmed the results of wear 

rate where wear rate of composites at higher load decreases by increasing the load.  
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Figure 80 Effect of load on the worn surface of composites 
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As shown in SEM images, darker regions can be distinguished on the worn 

surfaces of composites. This confirms the presence of carbon sheets at least partly 

covering the surface. This appearance is very similar to SEM images from a 

tribological study on GNPs reinforced aluminum surfaces. To confirm that black 

regions are carbon-rich, EDX was conducted. Figure 81 shows the surface texture 

and surface composition of pure aluminum at different loads. The surface 

composition of the worn surface shows the trace of Fe and Cr that can be 

transferred from steel disk during contact between two surfaces of pins and disk. 

Majority of the surface is covered by aluminum and oxygen because the 

temperature goes up during the dry wear test and oxidation occur and the surface 

of the pin is aluminum oxide. If compare the composition of pure aluminum with 

Al/GNPs composites (Figure 82), the significant difference is the presence of 

carbon on the surface that comes from GNPs embedded into aluminum. The 

chemical composition of the worn surface of Al/GNPs was shown in Figure 82. As 

it is expected, carbon can be found on the surface of composites. therefore, it can 

be concluded that a layer of carbon is formed on the surface and this lubricant 

tribolayer can improve the friction and wear properties by reducing the contact 

between surfaces and forming a solid lubricant film on the surface. In addition, the 

surface of composites has less amount of Fe and Cr and it can be expressed that 

less transfer of Fe and Cr to the surface of pin happened. Hence, it is evident that 

contact between pin and disk reduces after forming the lubricant GNPs layer 

because of less transfer of Fe and Cr to the surface of composites pins.  

In addition, there is another effect of GNPs nanoplatelets can be observed 

on the EDX results by reducing the amount of oxygen on the worn surface if 
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compare the O-content of pure aluminum with Al/GNPs (Figure 81 and Figure 82). 

It is confirmed the claim that GNPs prevent the oxygen diffusion in the surface and 

GNPs enhance oxidation resistance because in presence of oxygen alumina 

compound on the surface form and this brittle alumina compound can break and 

have more failure and make more debris that act as a third body abrasive and then 

increase the wear as well. Therefore, GNPs can reduce oxidation on the surface. 
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Figure 81 SEM/EDX of worn surface of pure aluminum at 15N 

 

 

Figure 82 SEM/EDX of worn surface of a,b) Al/1GNPs and c,d) Al/3GNPs at 15N 
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On the surface of pure aluminum and composites, debris can be found. The 

big differences between the debris on the surface of pure aluminum and 

composites are size, volume fraction and composition. The characterization of 

debris is compared in Figure 83. It can be concluded that more area of the worn 

surface is covered by debris for pure aluminum in comparison with Al/3GNPs. 

Therefore, this debris act as a third body abrasive particles and higher wear and 

damage happen on the surface. Besides, the composition of debris for Al/3GNPs 

shows the trace of carbon on the debris. Therefore, the debris is self-lubricating 

composites and cause less wear. 

 

Figure 83 SEM/EDX of debris of a,b) pure aluminum and c,d) Al/3GNPs at 15N 

Increasing carbon-content decreases wear rates, especially when higher 

hardness and lower porosity associated with a finer microstructure. It is suggested 

that the segregation and clumping of GNPs within the aluminum matrices resulted 
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in the release of the non-uniform GNPs thick tribofilms on the aluminum matrices. 

Such films were easily delaminated between the rubbing surfaces, which was 

evident in Figure 84 - Figure 87. As mentioned earlier, several black spots on the 

worn surfaces appeared on the surface of composites. It is expected to be GNPs 

particles that deposited on the worn surface and form lubricant film to improve 

the tribological properties by preventing surface-to-surface contact. Figure 84 - 

Figure 87 depicts SEM image and elemental mapping for the worn surfaces of selected 

composites at 10N. the EDX results show a trace of high weight percentage of 

carbon and confirm that a thick tribofilm of GNPs on the surface.  

In addition, the SEM image and elemental mapping of worn surface shows 

that the more area of worn surface covered by GNPs tribolayer and have better 

distribution at higher weight percentage of GNPs of composites if compare Figure 

84 and Figure 85 as the worn surface of Al/1GNPs and Al/3GNPs, respectively, 

where the worn surface of Al/3GNPs covers by more GNPs tribolayer. Therefore, 

the COF of Al/3GNPs is less than Al/1GNPs because of less contact between surface 

in Al/3GNPs covered by GNPs as shown in Figure 85. 
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Figure 84 SEM image and elemental mapping for the worn surfaces of 

Al/1GNPs at 10N using EDX at 1000X 
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Figure 85 SEM image and elemental mapping for the worn surfaces of 

Al/3GNPs at 10N using EDX at 1000X 
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Figure 86 SEM image and elemental mapping for the worn surfaces of 

Al/1GNPs/2Al2O3 at 10N using EDX at 1000X 
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Figure 87 SEM image and elemental mapping for the worn surfaces of 

Al/2GNPs/1Al2O3 at 10N using EDX at 1000X 

SEM/EDX analysis of worn surface at higher load at higher magnification 

(Figure 88 and Figure 89) shows that because of high applied load, more contact 
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between surfaces is expected and therefore more wear occurs and as shown in 

Figure 88 and Figure 89 at beneath of surface GNPs exist and more wear can 

release more GNPs on the surface and cover majority of worn surface  and 

consequently, reduce the real contact area and improve friction and wear 

properties of composites. the elemental mapping studies show that into 

delamination caused by wear, GNPs appear and can reduce the contact between 

surface or release and form a lubricant tribolayer.  
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Figure 88 SEM image and elemental mapping for the worn surfaces of Al/3GNPs at 

20N using EDX at 1000X 
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Figure 89 SEM image and elemental mapping for the worn surfaces of 

Al/1GNPs/2Al2O3 at 20N using EDX at 1000X 
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2.4.3.3.3 Raman Spectra 

To achieve a specific mechanical or tribological properties, the interface 

between GNPs and aluminum is of significant importance for the overall 

performance of composite materials. Researchers reported that the carbon 

reinforcements easily react with the aluminum and produce a mechanically and 

chemically unstable Al4C3 at the GNPs-matrix interface during the sintering. This 

reaction can be expressed as, 4Al+3C→Al4C3 at 750 oC the free energy of formation 

of Al4C3 is −168 kJ/mol [281].  

Raman Spectroscopy was carried out to determine the formation of Al4C3 

phase at the Al/GNPs interface after wear tests. The full Raman Spectra of worn 

surface of Al/3GNPs composite is shown in Figure 90. this proves that the surface 

of the wear track is at least partly covered with GNPs, however, with a disordered 

structure due to the presence of the D-peak in the Raman spectra as shown in 

Figure 90. Figure 91 compares the D- and G- band of ball milled GNPs for 3 hours 

and worn surface of Al/3GNPs composites. The ratio between the intensities of the 

D and G bands, ID/IG, is considered to be the ratio of structural defects and domain 

size in graphitic materials [282]. The ID/IG ratio increases significantly after wear 

test. Therefore, graphene nanoplatelets are thought to be damaged most during 

milling and wear because of the physical force applied during the process. In 

addition, the XRD results of the worn surface of Al/3GNPs shows the presence of 

GNPs on the worn surface due to G(002) peak at 26.6o is observed as shown in 

Figure 92. 

Figure 93 shows the regional Raman spectrum of Al/3GNPs composite a) 

before wear test and b) at the wear tracks after wear test. As shown in this Figure 
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90 the characteristic peaks of GNPs were observed at ~1350 cm-1 (D Peaks), ~1670 

cm-1 (G peaks). As shown in Figure 93b, a Raman peak exists at 865 cm-1 which 

correspond to metal-carbon bond in Al4C3. Obviously, the Al4C3 does not exist in 

the Al with GNPs composites in this research since the processing temperature was 

lower than the formation temperature of Al4C3. However, results show that the 

tribofilm consists of a GNPs tribofilm that chemically bonded to the aluminum 

matrix (Figure 93b).  

The Al4C3 formation reaction could occur not only during the sintering 

processing but also during the subsequent heat treatment and/or in use under an 

elevated temperature environment. Li et al. [2] reported that the heat treatment 

promoted the Al4C3 formation and degraded the mechanical properties of the 

carbon/aluminum composites. The heterogeneous nucleation of the Al4C3 is 

associated with surface defects on carbon, such as exposed edges of graphite basal 

planes that exhibit carbon atoms with uncompensated high-energy electron bonds. 

The fact that Al/GNPs composites contain no Al4C3 (Figure 93a) indicates that 

aluminum is not reactive to GNPs at the exposed processing condition. The 

tribofilm forms after the wear test contain a small amount of Al4C3 (traceable by 

Raman at the interface and untraceable by the X-ray diffraction). This suggests 

that aluminum reacts with GNPs during wear test and forms Al4C3. This can be 

attributed to the raised local temperature during the wear test. Additionally, the 

wear test process may introduce extra structural defects to GNPs, which makes 

them more susceptible to react with the aluminum matrix and leads to a low 

activation energy. The TEM image of tribosurface of composites proves the 

formation of Al4C3 compound in the interface of GNPs and aluminum and make 
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tribolayer with chemical bonding. Figure 94 exhibit the TEM images of tribolayer 

for Al/1GNPs, Al/3GNPs, and Al/2GNPs/1Al2O3 composites.  

The formation of Al4C3 in carbon-reinforced aluminum matrix composites 

can affect both mechanical and tribological properties of the composite [3,4,5]. 

Many kinds of literature reported that the formation of a ceramic Al4C3 phase at 

the C/Al interface can improve interfacial bonding to some extent [6, 7]. However, 

the formation of excessive Al4C3 is considered to be harmful due to its intrinsic 

brittleness, low thermal conductivity and strong tendency of hydrolysis [8, 9]. In 

other words, the properties and reliability of the C/Al composites significantly 

depend on the extent of the Al4C3-formed interfacial reaction. Therefore, it 

becomes a critical issue to correlate the properties with various processing 

conditions and interfacial reaction extent. 

 As being discussed in Figure 67, there is an optimum GNPs content in 

Al/GNPs composite that gives an enhancement to the wear resistance of the 

composites. Al4C3 has two effects on tribological properties, one may enhance, and 

one can deteriorate the wear characteristics. Formation of Metal-Carbon bonds at 

the tribosurface can enhance the hardness as well as create a strong chemical bond 

between aluminum and GNPs. In addition, carbide crystals can enhance the local 

hardness and therefore has a positive effect on the tribological properties. On the 

other hand, they are brittle and thus promote accelerated crack growth rates. 

Therefore, they can act as secondary hard abrasives when fall out of the metal as 

debris. 

As can be seen in Figure 67 and, the addition of GNPs clearly gives a positive 

effect on wear and friction up to 1 wt.%. Higher loads will also enhance the 
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formation of metal-carbon bonds and therefore better tribological properties are 

expected. However, at higher GNPs contents, the negative effect of Al4C3 can be the 

deteriorating factor of wear characteristics [283-286].  
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Figure 90 The Raman spectrum of the worn surface of Al/3GNPs composite 
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Figure 91 D- and G-band Raman spectrum of initial GNPs powder and Al/3GNPs 

composites 
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Figure 92 XRD of worn surface of Al/3GNPs composites at 20N 
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Figure 93 The Raman spectrum centered at 900 cm-1 of Al/GNPs composite a) 

before wear test and b) at the wear tracks after wear test 
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Figure 94 Cross-section TEM image of tribosurface of a) Al/1GNPs, b) Al/3GNPs 

and c) Al/2GNPs/1Al2O3 composites 

2.4.4 WEAR MECHANISMS 
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A common type of wear in aluminum is adhesive wear [287] which occurs 

when two surfaces are initially rubbed against each other. However, due to 

localized heating and oxygen diffusion, the surface forms aluminum oxide layer 

which is brittle in nature and undergoes abrasive wear. It is expected that hard and 

brittle alumina phase will generate large particles of wear debris, thus increasing 

wear rate and COF. Figure 95 shows a schematic of wear mechanisms of pure 

aluminum. Therefore, the wear track of pure aluminum is very rough, and some 

cracks appear on the surface as shown in Figure 96. The surface of the wear track 

reveals crack formation. Strong aluminum-steel interactions contribute to a severe 

wear rate, with excessive material transfer and cladding of aluminum on the 

counter surface. The strong interactions and material transfer is the reason for the 

failure of the surface of aluminum samples that make debris and propagate crack 

on the worn surfaces. The large amount of material transfer and formation of 

debris is also another reason of high wear rate. The EDS shows high amount of 

oxygen. The brittle Al2O3, surface layer generates large amount of wear debris 

(Figure 97).  
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Figure 95 Schematic Representation of Behavior of Pure Al 
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Figure 96 SEM image of the worn surface for pure aluminum at 15N at 2000X 
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Figure 97 Chemical composition of debris on the worn surface of pure aluminum 

at 5N 

The aluminum-steel pair forms a strong metallic bond which causes to 

transfer of aluminum at the steel surface when sliding against a stainless-steel disk. 
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While the aluminum-steel interactions are strong, the aluminum-carbon 

interactions are very weak. In this case, not only on the composite surfaces but also 

on the mating surfaces, a protective lubricant tribofilm is formed. In addition to 

the fact that almost all composites contain GNPs particles, GNPs sheets are easily 

sheared, the lubricating nature of GNPs and weak aluminum-carbon interactions 

contributes to an overall lowered friction.  

Therefore, it is expected that uniform dispersion of GNPs would facilitate 

the formation of a uniform tribofilm, which will the reduction of COF and 

improved wear resistance. The stated hypothesis of GNPs in aluminum matrix 

expects to find lower wear rate and COF than for pure aluminum. Figure 98 shows 

a schematic of the proposed wear mechanism in Al/GNPs composites. Figure 99(a) 

shows the wear surface of Al/3GNPs composites. Some region indicates deposition 

of GNPs on the surface and forms a tribofilm. This tribofilm consists of carbon-

rich as indicated in EDX shown in Figure 99(b). In addition, the EDS of the worn 

surface shows higher oxygen in comparison with pure aluminum (Figure 97). 

Another mechanism present in this sample is the ability of the GNPs to act as 

inhibitor preventing oxygen to go through the sample. Therefore, it is suggested 

that oxide formation occurs less due to preventing the action of GNPs 

nanoplatelets and GNPs tribolayer from diffusion of oxygen and consequently, 

reduce the wear rate and COF.  

Several detachments are found as wear debris on the worn surface with less 

amount of debris in comparison with the worn surface of aluminum. Besides, no 

plastic deformation is observed in debris particle, suggesting that the wear debris 

is lifted up before plastic deformation. Also, the wear debris composition exhibits 
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the presence of GNPs (Figure 99d), therefore, the debris is self-lubricating and 

cause less wear and damage on the surface as third body abrasive particles.  

This study confirmed that a tribolayer of GNPs is deposited on the worn 

surface. It appears that weak interlayer forces between GNPs layers enable sliding  

or layer buckling to reduce the stress; therefore, the COF decreases in presence of 

GNPs nanoplatelets attached to the surface. When a GNPs sheet experiences shear, 

the weak van der Waals forces break apart and few layers of GNPs tend to wrap the 

deformed material forming sheet-like structures that facilitate shear sliding with 

one another. Also, the GNPs provides the surface with the ability to deflect. It must 

be noted that this wrapping is possible for very thin GNPs and not thick graphite 

as the ability to wrap and deflect is more difficult to be achieved (Figure 100) when 

a large number of layers are present. A tribofilm is formed on the surface due to 

the breaking of the weak van der Walls forces that hold the C-C structure. Due to 

shear forces, a portion of the tribofilm is transferred on the pin surface. The wear 

occurs between transfer film and tribolayer providing lubrication properties and 

helping to reduce COF. 

According to chapter 2.4.3.2, wear rate is dependent on increased GNPs 

content. This also applies to relative density and hardness. The Al/3GNP compact 

is less prone to resist the applied load, compared to the Al/1GNP composites. This 

is due to a higher porosity and lower hardness. The equilibrium between load and 

area becomes large to match the hardness of the mating material. This is an 

alternative explanation why worn volumes are higher, when increased GNPs 

content, after tests with similar parameters.  
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It is concluded that the addition of GNPs leads to reduce friction and wear. 

The composite with GNPs additives presents few wear debris with the smaller size. 

This demonstrated that GNPs nanoparticles can effectively provide lubricious and 

anti-wear properties in aluminum creating a tribofilm and a transferfilm. 

Moreover, SEM micrographs indicate that an overall wear mechanism is a 

combination of adhesive and abrasive wear the same as pure aluminum and the 

difference is the regime where for composites are low or mild abrasion. In addition, 

when self-lubrication or lubrication action is effective at the interface, basically the 

low sliding speed experiments represent that the tests were conducted under 

boundary lubricated regime. At this situation, the adhesion is minimized (if not 

eliminated) due to the presence of lubrication effect and thus the contribution of 

abrasive wear mode is the key factor. 

 



205 
 

 

Figure 98 Schematic Representation of Behavior of Al/GNPs composites 

 

 

Figure 99 Chemical composition of worn surface and debris on the worn surface of 

Al/3GNPs at 5N 
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Figure 100 Schematic Representation of GNPs wear mechanism 

 

2.5 CONCLUSION 

Self-lubricating aluminum nanocomposites reinforced by GNPs nanoplatelets 

(GNPs) and alumina have been synthesized by powder metallurgy (PM) technique and 

using Hot-Pressing (HP).  The effect of reinforcement weight percentage on structural 

features, mechanical properties, and tribological properties of the nanocomposites 

was investigated. Microstructural studies using TEM showed the presence of GNPs 

in the aluminum matrix without any undesired phases, which confirm the 

feasibility of PM and HP technique and parameters in synthesizing Aluminum 

matrix nanocomposites. The XRD spectrums of the bulk samples show five major 

peaks of aluminum which prove no undesirable reaction or formation of new 

phases occurs during self-lubricating aluminum nanocomposites fabrication. The 

carbon element did not detect in any of the nanocomposites due to the nanometric 

size and the low content of the reinforcement phase. The hardness of the Al/GNPs 

composites increased with the increase of the content of GNPs up to 1 wt.% and 

then decreased where hardness increases from 74.8 HRB for pure aluminum to 

90.1 HRB for Al/1GNPs composite. The reason for the reduction in hardness can 
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be found in the microstructure of composites, where more agglomeration occurs 

more porosity appears (confirmed in the TEM analysis). The hardness of hybrid 

nanocomposites is higher than pure aluminum and as well as Al/GNPs composites; 

the hardness increases from 74.8 HRB for pure aluminum to 94.4 HRB for 

Al/1GNPs/2Al2O3 composite. 

Reduced coefficients of friction and improved wear resistance have been 

observed in self-lubricating nanocomposites at several loads. At 15N applied loads, 

Addition of 1 wt.% GNPs in the self-lubricating composites caused a remarkable 

reduction in wear rate and COF value. The wear rate and COF decreased by 66% 

and 35% in comparison with the unreinforced aluminum. Similarly, in 

Al/1GNPs/2Al2O3 93% reduction in the wear rates and 44% reduction in COF value 

in comparison with the pure aluminum were recorded. It is obvious that 

tribological properties of self-lubricating hybrid aluminum composites reinforced 

by GNPs and alumina are improved possibly due their hardness. In all composites, 

there is an opposite relationship between wear rate and hardness. There is an 

optimum weight percentage of reinforcement where the wear rate is minimum, 

and the hardness is maximum. This optimum value was obtained at 1 wt.% GNPs 

for Al/GNPs composites and 1 wt.% GNPs/2 wt.% Al2O3 for hybrid composites. It 

is worth noting that unlike unreinforced aluminum, self-lubricating composites 

has lower wear rate and COF at higher loads. 

Worn surfaces and surface roughness parameters were studied by an optical 

profilometer. Surface texture and roughness values measured in self-lubricating 

composites are in line with the observed wear rate and COF values. To study the 

surface of worn surface and find the composition of worn surfaces, SEM/EDX was 
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conducted. Black spots on the worn surface were detected where EDX data 

suggests the presence of GNPs tribofilm. In addition, the lower oxygen content on 

the worn surface in presence of GNPs suggests the ability of GNPs in reducing 

oxygen diffusion and therefore, hinder the formation of brittle oxides on the 

surface. Raman Spectroscopy was carried out to determine the nature of tribofilm. 

Raman shows D- and G- band that confirms the worn surface is covered with GNPs 

tribofilm. In addition, an Al4C3 peak was observed at tribosurface. even the Al4C3 

does not exist in the synthesized Al/GNPs composites. Results show that the 

tribofilm consists of GNPs tribofilm that are chemically bonded to the aluminum 

matrix. TEM image of the tribosurface of composites confirms the formation of 

Al4C3 compound at the interface of GNPs and aluminum. This formation of Al4C3  

can lead to chemical bond between the matrix and the tribolayer.  

The dominant wear mechanism to explain the improved wear 

characteristics in the composite is “reduction on real contact area” by the 

formation of GNPs tribofilm and preventing the oxidation of the worn surface. In 

addition, the layered GNPs structure is exposed at the contact surface and then 

keeps the surface lubricated. In hybrid composites, in addition to this mechanism, 

alumina particles added to Al/GNPs nanocomposites have a load bearing as well 

as rolling effect. Surface studies clearly show that narrower and shallower grooves 

appear on the worn surface of hybrid composites compared to pure aluminum and 

Al/GNPs nanocomposites. The major part of the applied load is carried by alumina 

nanoparticles. This will minimize the amount of plastic deformation and therefore, 

helps the formation of lubricant film at the interface. In addition, there are 
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interactions between dislocations and Al2O3 nanoparticles that ultimately resist 

the propagation of cracks during sliding wear.  
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FUTURE WORK 

The objective of this dissertation was to explore the feasibility of using 

graphene for tribological applications for nanolubricants and self-lubricating 

nanocomposites.  

It is suggested to make nanolubricants with several thicknesseses of 

graphene nanoplatelets to investigate the effect of a number of layers on 

tribological properties of nanolubricants. In addition, it is required to characterize 

the cross-section of the worn surface by TEM. As the canola oil is not a commercial 

lubricant, it is possible to investigate the graphene efficacy for engine oil or finding 

a way to improve other properties such as stability to commercialize it. The effect 

of nanoparticles on the real area of contact and contact force can be investigated using 

an analytical model. It should be developed such a contact model and relate the contact 

parameters to measurable parameters such as friction and wear. The approach should 

try to identify, quantify and evaluate the most influential contact parameters affecting 

the system into a model that can illuminate the mechanisms behind the friction and 

wear behavior of nano-lubricants. 

For nanocomposites, although preliminary information was obtained 

regarding the microstructure, properties, and the processing conditions, future 

work will focus on TEM and SEM investigation to show how the nanoparticles are 

distributed along and within the grain boundaries at different processing 

condition. Also, more characterization is required to identify the AL2O3 and 

graphene particles by EBSD and lattice imaging.  Experimental studies are 

required to investigate the variation in cooling rate and the particle size and 
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content on their engulfment. The use of this technique to synthesize master alloys 

for subsequent re-melting and dispersion in a larger melt can be explored. Future 

work will also focus on alloy selection so that higher mechanical properties can be 

obtained. Synthesize the nanocomposites with aluminum alloys with higher initial 

mechanical properties such A365 and A206 may lead to utilization of the full 

potential of these materials. However, a careful study is required to investigate the 

possible reaction models of the reactant and the alloying elements. Computational 

analysis of the effect of graphene on reducing the contact area and the mechanism 

of wear reduction.  
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