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ABSTRACT

Isolating secular signals in observations

and climate model simulations

using M-SSA based Wiener filtering

by

Christian Grimm

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professors Sergey Kravtsov and Vytaras Brazauskas

In this thesis, Wiener filtering of gridded surface-temperature time series from observations

and climate model simulations is performed by using multi-channel singular spectrum anal-

ysis (M-SSA) in order to isolate non-stationary climate signals. The contributions to the

singular spectrum from shorter-term internal climate variability — treated in this context as

noise — are estimated by fitting to the data spatially extended stochastic models, which are

subsequently used to produce synthetic ensembles of surface temperature time series and the

corresponding synthetic M-SSA spectra. The full spectra are weighted by the signal-to-noise

ratios and transformed back to physical space to obtain reconstructions of the non-stationary

signal. This methodology was first tested using the twentieth century simulations from the

Community Earth System Model Large Ensemble Project, for which the forced climate sig-

nal can be reliably estimated by taking the ensemble average over the 40 available climate

realizations, then applied to individual model ensembles as well as the overall ensemble

from the Coupled Model Intercomparison Project Phase 5 and, finally, to the observational

surface-temperature time series from Twentieth Century Reanalysis. The method is shown

to successfully recover the low-frequency (decadal or larger time scales) component of the

forced signal in model simulations, but fails to isolate shorter-term variability associated with
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volcanic eruptions. The secular signals estimated from model simulations and observations

exhibit large differences, which indicates the presence, in observations, of a pronounced

multi-decadal variability with a distinctive spatiotemporal structure absent in any of the

model simulations.
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1 Introduction

Analyzing temporal development and spatial patterns of surface atmospheric temperatures

(SAT; measured at a height of 2 meters above the surface), both over ocean and land, is one

of the central issues in climate research. Its results have far-reaching relevance: Changing

sea surface temperatures can effect atmospheric flows and therefore impact the climate at

distant places, too. Also, warming sea surfaces can influence the frequency and power

of severe weather conditions such as tropical cyclone activity (Christensen et al., 2013).

Changes of land surface temperatures, in contrast, are of particular interest for agricultural

and environmental institutions.

An SAT time series at a given spatial location shows an observation of climatic variability

for a limited period of time. The main goal of classical time series analysis in climate re-

search (Venegas, 2001) is the decomposition of this climatic variability into a part which is

called the forced climate variability (e.g. due to solar radiation, anthropogenic warming and

essential natural events such as volcanic eruptions or seasonal effects) and a part referred to

as the internal climate variability (all low-frequency climate variability that is present in the

climate system independently of external forcing). In literature, depending on the object of

study, forced climate variability is associated with the signal and internal climate variability

with noise (Kravtsov and Callicutt, 2017).

Approaches to estimate forced signal and internal noise components from a given time series

are numerous in literature. Statistical models using methods such as empirical orthogonal

function analysis (Monahan et al., 2009), singular spectrum analysis (Hassani, 2007), multi-
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channel singular spectrum analysis (Ghil et al., 2002), multi taper method (Venegas, 2001)

or diverse extended and modified versions of these (Venegas, 2001) provide simulated spatial

and temporal structures which can then be compared to those in the observed time series.

Semi-empirical approaches use partially or fully coupled simulations of the climate and its

dynamics combined with observations of the climate system (Kravtsov and Callicutt, 2017).

In this thesis, instead of the classical isolation of forced signal and noise, the time series of

climatic variability is decomposed into a stationary and a non-stationary part. The non-

stationary part of the variability may contain both external forcing (i.e. the signal) and

extremely low-frequent internal variability (i.e. the part of the noise that cannot be differen-

tiated from signal due to its highly extended temporal scale). Consequently, the stationary

part of variability is defined as the noise except for its ultra-low frequent part.

The main new idea is to use Wiener Filtering in the orthogonal subspace associated with

dominant spatiotemporal modes of variability associated with the Multi-Channel Singular

Spectrum Analysis (M-SSA) (Ghil et al., 2002) to identify the non-stationary part of variabil-

ity in the surface temperatures. The filter applies under the assumption that the stationary

part of variability can be described by a spatially extended linear empirical stochastic model.

The linear empirical stochastic model is implemented in a multi-scale formulation comprised

of two parts: A classical linear inverse model (Penland, 1996) is used for annual tempera-

ture data, and a multilevel nonlinear regression model (Kravtsov et al., 2005) is applied for

monthly data. The novel aspect of the analysis here is the blending of the two simulations

at annual time scale, which provides a better fit of the simulated M-SSA spectra to the

observed M-SSA spectrum for non-leading modes.

For the purpose of analysis, the methodology sketched above will be applied to two different

simulated SAT data ensembles and one assimilated data model, which will be introduced in

Chapter 2 and includes a more detailed description of the methodology.

Chapter 3 will provide results of the analysis for each of the two data sets and point out
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commonalities and differences, particularly in relation to the observed temperature time

series. The main research part of the project is the identification of the spatiotemporal

structure of the difference between the simulated and the observed signals.

Chapter 4 gives a summary and provides a discussion of the results.

Finally, Chapter 5 highlights potential future work in climate signal detection.
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2 Data sets and analysis methodology

This chapter is organized as follows. The analyzed data sets and basic data pre-processing,

including removal of the seasonal cycle and empirical orthogonal function (EOF) based

data compression, are described in section 2.1. Section 2.2 explains in more detail the

empirical stochastic noise models. Finally, section 2.3 describes the Wiener filtering of the

non-stationarity part of variability in M-SSA phase space.

Note that parts of the methodology, such as EOF data compression and M-SSA are standard

techniques in Atmospheric Sciences. Detailed descriptions of some techniques are therefore

moved to Appendices (see notes in this chapter).

2.1 Data sets and pre-processing

2.1.1 Data sets

In this thesis, three different data sets are analyzed: LENS, CMIP5 and 20CR.

Large Ensemble Project (LENS) data is a publically available data set created by fully-

coupled climate model simulations conducted by the Community Earth System Model (Kay

et al., 2015). It contains 40 ensemble members representing the simulations of the 20th

century evolution of surface temperature time series on a 1-degree latitude-longitude grid

covering the globe. Each of the 40 ensemble members experienced the same external forcing

(e.g. solar radiation, anthropogenic warming, volcanic eruptions etc.). Since the simulations

started at the same atmospheric state back in the year 1850, due to growing errors in the

4



atmospheric conditions the ensemble members can be seen to be statistically independent

from about 1920. The LENS data is available and investigated in the 93 years time range

from 1920 to 2012.

The Coupled Model Intercomparison Project Phase 5 (CMIP5) data is a data set distributed

by the World Climate Research Programme (Taylor et al., 2012), which contains, among

other things, historical (1880-2005) climate simulations performed by different climate mod-

els. Multiple simulations of a given model formed by perturbed initial conditions allow one

to estimate the contributions of external forcing and internal variability to the model simu-

lated climates. Following the model selection used by Kravtsov and Callicut (2017), in this

thesis 17 different models and the total of 111 simulations are considered.

The Twentieth Century Reanalysis (20CR) data (Compo et al., 2011) is the product of a

reanalysis project conducted by the National Oceanic and Atmospheric Administration that

assimilates available observations into a climate model to get the best dynamically consistent

fields of climatic variables, including SAT.

2.1.2 Pre-processing of data sets

To pre-process SAT data and exclude effects of irrelevant sources of variation to later results,

the climatological mean is subtracted, and the first five harmonics of the annual cycle are

linearly removed from the data at each grid point to form anomalies (Cryer and Kellet,

1991).

Next, EOF based data compression (Monahan et al., 2009) is applied separately to annual-

mean data and to monthly data anomalies with respect to annual mean for each year;

75 annual EOFs and 200 EOFs of monthly anomalies account for more than 95% of the

respective data sets’ total variance (see the Appendix A for further details on EOF analysis).

Note that, due to the prior pre-processing steps, the 75 annual and 200 monthly PCs of SAT-

anomalies coming along with EOF analysis represent the stationary part of the noise.

To account for meridian convergence (grid box sizes vary for different latitudes and therefore
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bias variance analysis), in computing EOFs, the anomalies data is weighted by
√
cos(φ)

where −90◦ ≤ φ ≤ 90◦ is the degree of latitude of the considered grid box (Chung and

Nigam, 1999).

2.2 Empirical stochastic noise model

The main goal of the analysis methodology explained in this chapter is to filter out the

stationary part of the SAT internal variability from the multi-variate time series associated

with the SAT principal components (PCs) which are a result of EOF analysis. The internal

variability (noise) in this context is defined as the part of variability that can be modeled as

a spatially extended stationary stochastic process.

The corresponding empirical stochastic model of stationary noise is constructed in two parts,

the annual (implemented by a one-level linear inverse model; see subsection 2.2.1) and the

monthly sub-model (implemented by a three-level linear inverse model; see subsection 2.2.2).

While integrating the annual sub-model, the monthly model is blended into it in order to

obtain a combined set of 100 annual stationary noise realizations (see subsection 2.2.3).

2.2.1 One-level linear inverse stochastic models

Classical linear inverse models were first introduced by Penland (1989, 1996). In our case,

the value of the i-th mode of the noise matrix x at time n+1 is modeled by a linear function

of 15 surrounding modes1 at time n with residuals r being simulated as spatially correlated

Gaussian white noise:

xn+1
i = Bi x

n + rn+1 (2.1)

The coefficient estimates B and the covariance matrix C = 〈r rT 〉 are obtained by multiple

linear regression from the 75 annual PCs available after EOF data compression of annual

anomalies data.

1This restriction reduces the effective number of coefficients to be estimated and avoids overfitting.
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The noise data for initial time step n = 1 is simulated by the spatially correlated Gaussian

white noise only.

2.2.2 Three-level linear inverse stochastic models

Multi-level inverse models were described by Kravtsov et al. (2005) including quadratical

terms. In this thesis, only a linear version of it is considered. Compared to the one-level

version, the multi-level inverse model includes additional model levels in order to account for

serial correlations and dependence of residuals r on the modeled process x. In the second

model level, the first-level residuals r(0),n+1 given at time step n+ 1 are expressed as a linear

function of the extended matrix [xn, r(0),n] of 15 surrounding modes of the modeled process

x and first-level residuals at time n. The third level sets the second-level’s residuals r(1),n+1

into linear relation with [xn, r(0),n, r(1),n]:2

xn+1
i = B

(0)
i xn + r

(0),n+1
i

r
(0),n+1
i = B

(1)
i [xn r(0),n] + r

(1),n+1
i

r
(1),n+1
i = B

(2)
i [xn, r(0),n, r(1),n] + r

(2),n+1
i

(2.2)

Again, the coefficient estimates B(0), B(1) and B(2) as well as the covariance matrices C(0) =

〈r(0) r(0)T 〉, C(1) = 〈r(1) r(1)T 〉 and C(2) = 〈r(2) r(2)T 〉 are obtained by prior multiple linear

regression from the 200 PCs of monthly anomalies data.

The third-level’s residuals r(2) as well as the initial time step of the modeled process x are

modeled by spatially correlated Gaussian white noise.

2Note that the linear three-level inverse model (2.2) fulfills the form of an autoregressive-moving average
model (Cryer and Kellet, 1991) also, which can be seen by formulating the three-level model in one equation
including time-lagged values of xi, r

(0), r(01) and r(2).
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2.2.3 Model Integration and Blending

To produce 100 statistical realizations of the stationary noise, the three-level linear inverse

model (2.2) is integrated forward 100 times for monthly temperature anomalies. By con-

struction, the monthly noise realizations xm are given in the phase space of monthly EOFs

Em and need to be projected onto the phase space of the annual EOFs Ea by

Tm = xm ·ET
m,

T a is obtained by annual averages of Tm,

xa,(1) = T a ·ET
a ·
(
ET
a ·Ea

)−1
.

(2.3)

where xa,(1) denotes the annualized noise realizations from the monthly model.

While integrating the one-level inverse model (2.1) for annual simulations xa,(2), the annu-

alized monthly simulations xa,(1) are blended into them at each integration time step by

x(n+1)
a = c · x(n+1)

a,(2) + x
(n+1)
a,(1) (2.4)

The blending factor c is computed as

c =

√
1− F2

F1

where the fraction F2
F1

represents the ensemble-average proportion of variance that is carried

by the 75 modes of simulated noise and variance that is inherent in the 75 original annual

PC modes, i.e.

F1 =
75∑
k=1

V ar(P k−th mode
a ) and F2 =

∑100
s=1

∑75
k=1 V ar(x

k−th mode
a,(1),s−th simul.)

100
.

In other words, the blending factor c secures that the final version of noise realizations xa
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has the same overall variance as the original PC input.

2.3 Wiener filtering in M-SSA phase space

2.3.1 Multi-channel singular spectrum analysis

M-SSA, the multivariate extension of singular spectrum analysis, is a methodology for decom-

posing a set of time series at different spatial locations, where each spatial series is referred

to as a channel, into the sum of independent components including trends, oscillatory be-

havior and unstructured noise (Hassani, 2007). By selecting a subset of the decomposing

components, one can then reconstruct the time series fully (if one selects all components) or

in parts (see Appendix B for technical details).

Mainly, M-SSA is a version of the EOF analysis applied to the data time series augmented

by its lagged copies. The covariance matrix of so-called trajectory matrices is diagonalized,

which provides a set of eigenpairs (λk, E
k) where the eigenvectors Ek can be interpreted as

EOFs, and corresponding space-time PCs (hereafter ST-PCs) Ak. The eigenvalues λk are

the variances associated with the decomposing modes and therefore provide the variance

spectrum (Ghil et al., 2002).

Note that, in this thesis, the trajectory matrices for both original data and noise realizations

are constructed with M = 15 lags, which allows to capture periodicities as long as 15 years

and enables at least N/M = 126/15 ≈ 8 repetitions of the features at interest (Ghil et al.,

2002). The number of channels in the annual phase space is L = 75.

2.3.2 M-SSA based Wiener filtering in the analyzed models

Fig. 2.1 presents the variance spectra of the original anomalies input time series (blue crosses)

and the ensemble-mean noise (black plus-symbols) shown on the example of the first simula-

tion run of the CNRM-CM5 model from CMIP5 data. Apparently, the mean noise spectrum

9



Figure 2.1: M-SSA spectrum of input data (blue crosses) and ensemble-mean noise spectrum
(black plus-symbols), as well as the mean (red crosses) and the 95th percentile of rescaled
noise spectra (dashed red line; see text for details).

underestimates the input spectrum. We therefore rescale the noise spectra by least-square

fitting the ensemble-mean noise spectrum to the spectrum of the input signal for the trailing

modes, where the input time series is expected to be dominated by noise. The rescaled

ensemble-mean noise spectrum (red crosses) and the 95% percentile of the noise spectra

(dashed red line) complete the graph.

Since the noise was modeled by a stochastic model describing the stationary part of climatic

variability, one can derive that those M-SSA modes for which the input variance exceeds a

high percentile of the stationary noise spectra (in this thesis it was chosen the 95th percentile)

are very likely associated with the non-stationary part of variability. For the simulation run

depicted in fig. 2.1, the first two of the M-SSA modes were detected to include non-stationary

variance.
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Now, Wiener filtering (Allen and Smith, 1997; Vaseghi, 2008) is applied in order to select

and weight those ST-PC modes that should be used for reconstruction of the secular signal

(i.e. the stationary part of climate variability). For the k-th M-SSA mode, the so-called

signal-to-noise ratio

wk =
V ar(Signalk)

V ar(Signalk) + V ar(Noisek)
(2.5)

provides a measure of how many percent of the total variance is captured by noise. Since

V ar(Totalk) = V ar(Signalk) + V ar(Noisek), equation 2.5 can be restated as

wk =
V ar(Totalk)− V ar(Noisek)

V ar(Totalk)
. (2.6)

In our case, V ar(Totalk) is given by the k-th value of the input spectrum and V ar(Noisek)

is, by assumption, represented by the 95th percentile of the rescaled simulated variance noise

spectra. Note that wk is set equal to 0 if V ar(Noisek) > V ar(Totalk), i.e. if the 95th per-

centile of noise variance exceeds the input spectrum value.

The so-computed weights reduce or eliminate the impact of the ST-PCs in the k-th recon-

struction equation

Rk
l (t) =

1

M

Ut∑
j=Lt

wkA
k(t− j + 1)Ek

l (j)

for certain lower and upper summation boundaries Lt and Ut and channel l ∈ {1, 2, ..., L}

(compare to Appendix B). The reconstructions (RC) are then summed over the modes of

ST-PCs in order to obtain the portion of variability associated with the signal. The resulting

time series is transformed back to physical space by means of the initial EOFs which provides

the filtered estimate of the non-stationary signal for the considered model realizations. The

reconstruction is repeated for all L channels.

The above-described filtering technique is in its way ”optimal” because it minimizes the error

and provides, by construction of the filter, the estimate closest to the original signal (Allen
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and Smith, 1997).
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3 Results

In sections 3.1 to 3.3, the estimation of the secular, non-stationary signal (including both

forced component and secular low-frequency component), described in chapter 2, is analyzed

for the data sets introduced in subsection 2.1.1. In section 3.4 we then subtract the models

from observations and analyze the difference.

3.1 LENS analysis

For LENS simulations, the secular signal is estimated by the ensemble-mean of the recon-

structed secular signals from 40 individual runs after M-SSA based Wiener filtering. Esti-

mation uncertainty is derived from the spread of the 40 individual estimations in terms of

its standard deviation. The ”true” signal is defined via the ensemble average of the original

SAT data from the 40 runs.

The right upper plot in fig. 3.2 depicts the estimated forced signal (black line) together with

its estimation uncertainty (dashed black lines; showing the range of +/- 1 standard devia-

tion) next to the ”true” forced signal (red line) and the 40 individual runs (grey lines) for the

Northern Hemispheric Multidecadal Oscillation (NMO) which is defined as the multidecadal

component of internal Northern Hemisphere mean temperature variance (Steinman et al.,

2015).

The ensemble-mean reconstruction of the secular signal is fairly close to the model forced

signal. One can therefore conclude that M-SSA based Wiener Filtering is able to identify

the forced signal in LENS simulations. Furthermore, the smooth form indicates that the
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Figure 3.2: On top: Spatial global warming map (left) and estimated forced signal (black
line), estimation uncertainty (dashed black lines), ”true” forced signal (red line) and the
40 individual runs (grey lines) of LENS data for the NMO index (right). Below: Leading
EOF (left) and PC (right) of the difference between non-stationary signal estimate and true
forced signal for LENS data.

signal in this model is primarily associated with low-frequency forced variability, whereas

the intermittent interannual forced signal associated with volcanic eruptions (recognisable

by pronounced troughs in grey and red curves) is not captured. Secular internal variability

appears to be rather small in LENS simulations.

Also, we observe a fairly narrow ensemble spread coming along with the secular signal es-

timation using LENS data. The narrow band of standard deviation can be explained by

the relatively large number of ensemble members belonging to a consistent climate model

(Kravtsov and Callicutt, 2017).
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The top left plot depicts corresponding spatial global warming tendencies. Obviously, LENS

data predicts fastest warming in the two polar regions (so-called polar intensification).

The two bottom plots of fig. 3.2 show the leading EOF and PC after an EOF analysis of the

difference between the non-stationary estimate and the true forced signal. Apparently, the

time points of pronounced troughs in the leading PC curve, which captures about 24.8% of

the total variance, coincide with the dates of volcanic activity seen in the original runs. This

suggests that the difference between non-stationary estimate and true forced signal primarily

stems from volcanic forcing. The remaining 75% of the total variance distribute among the

subsequent modes, with 12.7% to the second and 10.8% to the third PC, and are explained

by internal variability and biases in the estimation of the forced signal.

3.2 CMIP5 analysis

3.2.1 Individual model estimation

Signal estimation by an individual CMIP5 model is exemplarily illustrated for the CNRM-

CM5 model. Note that analysis is representative for any other choice of the set of 17 models.

Analogously to section 3.1, estimated and true signal are computed by the ensemble average

over the 10 simulation runs contained by CNRM-CM5.

Fig. 3.3 (top right) shows that the implemented filtering methodology provides an equally

good isolation of the forced signal for the CNRM-CM5 model than it did for the LENS

ensemble. It similarly fails in capturing interannual volcanic forcing. The observations

therefore corroborate conclusions made in section 3.1.

The secular signal estimates in the CNRM-CM5 model show a larger spread. Probably this is

because the CNRM has a larger internal variability at low frequencies. Also the uncertainty

of the ensemble mean goes down with the increasing ensemble size, which however does not

affect the spread of the individual simulations (or their filtered analogs).

Also, CNRM-CM5 seems to predict a similar polar intensification in global warming (see
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Figure 3.3: On top: Spatial global warming map (left) and estimated forced signal (black
line), estimation uncertainty (dashed black lines), ”true” forced signal (red line) and the 10
individual runs (grey lines) of the CNRM-CM5 model in CMIP5 data for the NMO index
(right). Below: Leading EOF (left) and PC (right) of the difference between non-stationary
signal estimate and true forced signal for CNRM-CM5 model.

top right plot). EOF analysis of the difference between the estimated secular and the ”true”

signal provides three leading modes capturing 35.9%, 15.6% and 7.3% of the variance. The

leading PC (see lower plots in fig. 3.3) show similar, however not as pronounced troughs at

time of volcanic eruptions in external forcing.
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Figure 3.4: On top: Spatial global warming map (left) and estimated forced signal (black
line), estimation uncertainty (dashed black lines), ”true” forced signal (red line) and the 111
individual runs (grey lines) of the overall CMIP5 model ensemble for the NMO index (right).
Below: Leading EOF (left) and PC (right) of the difference between non-stationary signal
estimate and true forced signal for CMIP5 model ensemble.

3.2.2 Overall ensemble estimation

Now, the estimated and true signal are computed by the overall CMIP5 models ensemble

data consisting of 111 simulation runs. This provides a larger ensemble size but involves 17

models characterized by different sets of external forcing.

While fig. 3.4 suggests a similar signal estimation quality and spatial global warming struc-

ture and therefore confirms prior analysis and conclusions, the spread of the secular signal

estimates is clearly larger here, since internal variability is dominated by the model uncer-

tainty here. We define model uncertainty as the uncertainty which is the uncertainty arising
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Figure 3.5: Signal Spatial global warming map (left) and estimated forced signal (black line)
of the assimilated observational 20CR data for the NMO index (right).

from different forcing assumptions and physical parameterizations used in the 17 considered

CMIP5 sub-models (Kravtsov and Callicutt, 2017).

The variability of differences between secular signal estimation and true signals is clearly

dominated by the leading PC with 69.8%; the second and third PC capture another 5.1%

and 4.1% of the total variability. The dominating PC shows pronounced troughs at the dates

of volcanic activity.

3.3 20CR analysis

For the one-run 20CR observational data, we only show the filtered M-SSA based signal

reconstruction. The estimated signal is obtained by its filtered M-SSA based reconstruction.

Fig. 3.5 suggests that, compared to model estimations, the M-SSA based Wiener filtering

of the observed signal leads to a richer structure of non-stationary variability since it is

described by a larger number of significant M-SSA modes (right plot).

The spatial analysis of global warming supports conclusions from models. Since 20CR con-

sists of only one run, it is an unseparable mixture of internal variability and forced signal and

the difference between signal reconstruction and original time series would be noise by con-

struction. Therefore, no estimation spread and EOF analysis of the forced signal differences
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is provided.

3.4 Comparing CMIP5-based and observed signal

The main research part of this thesis is to identify the spatio-temporal structure of the

difference between the observed and simulated signals.

Given that our estimated secular signals in CMIP5 simulations primarily reflect the forced

response of CMIP5 models, it makes sense to linearly subtract them from the observed secular

signal at each grid point using linear regression. The regression residuals describe the part

of the observed secular variability unaccounted for in CMIP5 simulations (Kravtsov and

Callicutt, 2017; Steinman et al., 2015). To analyze and visualize the model-data differences,

we again apply the M-SSA analysis to the 111 multi-variate difference time series obtained

as above. By reconstructing the variability associated with statistically-significant leading

modes, one obtains spatially extended time series of the observed multidecadal variability

that is unexplained by the climate models considered.

We can also subtract the individual model ensemble-mean secular signals from all of this

models simulations to define an internal component of the secular signal in each simulation.

As a third component of analysis, the difference time series from step 2, denoted by dT , are

projected onto the observed EOFs Eobs of M-SSA analysis, i.e.

Pobs,proj = dT · Eobs.

Using the 20 leading PC’s, a trajectory matrix D with maximal lag 65 is built and then the

variance estimated by ∑
(D · E)2

L

where the squared in the numerator is meant element-wise and the scalar L is the row di-

mension of D minus 1.
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Fig. 3.6 (A) depicts the observed (black line) and mean CMIP5 (blue line) data-model

difference spectrum including errorbars which are representing the spread across the 111

estimated spectra. The 99% percentile of the projected spectrum completes the graph.

The M-SSA analysis of data-model differences identifies a pronounced pair of M-SSA modes

altogether absent from model simulations. The black line presents the internal variability

estimate in observations which is clearly larger than the one associated with the model-

mean difference. One can conclude that the data-model differences are dominated by a

pronounced multidecadal signal that is absent from the model simulations. Observational

space-time patterns are only barely represented in the models.

The reconstruction of this pair of modes for different regional climate indices (see part (B))

identifies a multidecadal oscillation propagating across the climate index network (see part

(C)) – a so-called stadium wave (Wyatt et al., 2012), which we will refer to as the Global

Stadium Wave Multidecadal Oscillation.

The order of indices in the sequence of Fig. 3.6, part (C), (except for GMO) is chosen based

on the visual analysis of the SAT anomaly propagation over a time period between 1921

and 1963, which roughly spans half of the oscillation period (Fig. 3.7). In year 1921, the

oscillation is in its cold phase (cf. Fig. 3.6, part (C)), with the exception of four major positive

SAT anomaly spots: west of Weddell Sea, in eastern equatorial Pacific, as well as over central

US and Greenland. The development of an oscillation starts with emergence of the positive

SST anomaly in the North Atlantic (1921-1930), which subsequently expands and growth

along with SST anomalies in the North and Southwestern Pacific (1933-1942), then in the

Southern Ocean and Antarctica (1941-1957) and, finally, over the Arctic region (1960-1963),

at which point the oscillation arrives at its positive phase throughout the world (with the

exception of four major negative SAT anomaly regions roughly at the same locations as their

positive analogs 40 years ago).
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Figure 3.6: (A) M-SSA spectra of data-models secular difference (black) and model sig-
nals’ deviations from individual model ensemble means (blue), both including uncertainty
computed over 111 estimates (errorbars), and the 99th percentile of variances obtained by
projecting the simulated signals onto the observed ST-EOFs of M-SSA analysis (red). (B)
Locations of regional SAT indices. (C) Reconstructed time series associated with the lead-
ing M-SSA pair in selected regional indices. GMO (Global Multidecadal Oscillation) time
series represents the reconstruction of the global-mean temperature. All time series are
dimensionless.
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Figure 3.7: A 1921-1963 segment of the global stadium wave; shown are reconstructed SAT
anomalies raised to the power of 1/7, which alleviates differences between SAT anomalies
over ocean and over land to concentrate on the anomaly patterns and their propagation.
Color axis is from -1.5 (saturated blue) to 1.5 (saturated yellow)
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4 Summary and Discussion

4.1 Summary

M-SSA based Wiener filtering was implemented in order to filter out the stationary part of

the SAT internal variability. In estimating the related secular non-stationary signal which

contains both a forced and a secular low-frequent component, we find that this signal is

dominated by the forced component. We then subtract the models from observations and

see a large difference, which is presumably attributable to the internal variability present in

observations but absent from the models.

4.2 Discussion of results

The key result of this study is the identification of a pair of pronounced global-scale modes

of multi-decadal climate variability in the twentieth century which is not captured by any

state-of-the-art climate model, here shown on the example of LENS and CMIP5 models.

Such a mode was previously proposed to explain a major fraction of variability in a network

of oceanic and atmospheric climate indices over the Northern Hemisphere and termed the

stadium wave (Kravtsov and Callicutt, 2017; Kravtsov et al., 2014; Wyatt et al., 2012). Here

we show that the leading of the two modes has a global significance and provide a description

of its worldwide evolution throughout the twentieth century.

The global stadium wave presented here was defined in terms of deviations of the observed

SATs from the secular trends identified in CMIP5 models, which can be interpreted to be
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approximations for the observed forced signal. In principle, it is still possible that these

deviations are pronounced in part because of the potential biases in the CMIP5 derived

forced signals. However, the oscillatory behavior of the global stadium wave and the spatial

pattern of its delayed teleconnections strongly suggest that this mode reflects internal climate

variability, perhaps associated with that of global oceanic conveyor-belt circulation.
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5 Future Work

Future climate modeling efforts should strive to alleviate discrepancies between the observed

and simulated multi-decadal climate variability. Analyzing the signal of data-model differ-

ences should help model development efforts and eventually improve the understanding of

the physics behind the observed climate change.

In particular, signal estimation should be designed in a way such that it manages to capture

the intermittent interannual forced signal associated with volcanic eruptions. A possible

approach to do so could be using wavelet transforms which can be seen as a generalized form

of (windowed) Fourier transform (Lau and Weng, 1995). Lau and Weng found in 1995, that

wavelet transforms provide an improved time-frequency information compared to classical

or windowed Fourier transform.

Also, including further fields such as sea level pressure can improve analysis, since multi-

decadal variability might correlate between the two fields and therefore provides additional

information. For instance, a coupled field analysis of sea surface temperatures and sea level

pressure was conducted in Delworth and Mann (2000).
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Appendix A (EOF analysis)

The following explanations and methodologies follow Venegas (2001). The main goal of
EOF-based data compression is to reduce the relatively large SAT data set T into a smaller
set of independent pieces of information which is, however, accounting for the most part of
the time series’ variance.
Assume we have N consecutive ”observations” of temperature at each of M spatial grid points,
forming a SAT data matrix T with dimensions NxM. Using Singular Value Decomposition
(SVD), T is decomposed into the product of the three matrices U (NxN), Σ (NxN) and E
(MxN) such that

T = U · Σ · ET

where V T is the transposed of V and U has orthogonal columns.
By denoting P := U · Σ one obtains the decomposition

T = P · ET

where we call matrix P the principal components (PCs) of the data and matrix E the
empirical orthogonal functions (EOFs). In fact one can show that the columns of E solve an
eigenvalue problem, and the same decomposition results, i.e. PCs and EOFs, could equally
be obtained by a covariance matrix approach which is also presented by Venegas (2001).
The columns of P are time series of the original time length N whereas the columns of E
are spatial patterns with length M . Together, P and E encode the entire spatiotemporal
information of the time series.
By construction, the columns of P are ordered by descending variances of the associated
time series. Also, since P is obtained from U and Σ by a linear mapping, P has orthogonal
columns. Consequently, its covariance matrix has diagonal form

Cov(P ) =
P T · P
N − 1

=


λ1

λ2
. . .

λN


where the diagonal elements λ1, λ2, ..., λN are the variances associated with the N PC modes
(columns of P ) with λ1 > λ2 > ... > λN .
For each of these N modes of the decomposition, 100 · λi∑N

j=1 λj
denotes the percentage of

variance that is accounted for by mode i ∈ {1, 2, ..., N}. For a particular percentile α ∈ (0, 1)

one can find the minimum number Nα ∈ N so that
∑Nα
i=1 λi∑N
j=1 λj

≥ α, i.e. the first Nα PC modes
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account for more than 100 · α % of the climatic variability in the original time series.
Truncating both PC and EOF matrices to the first Nα modes leads to matrices

Pα =


P1,1 P1,2 ... P1,Nα

P2,1 P2,2 ... P2,Nα
...

...
...

...
PN,1 PN,2 ... PN,Nα

 and Eα =


E1,1 E1,2 ... E1,Nα

E2,1 E2,2 ... E2,Nα
...

...
...

...
EM,1 EM,2 ... EM,Nα


which decompose an approximation of the original time series

Tα = Pα · ET
α .

Since Pα and Eα are both only truncated in their column dimension, Tα has still dimension
NxM .
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Appendix B (M-SSA)

The following explanations are taking from Ghil et al. (2002). In the following, each time
series specified at a certain spatial location is referred to as a channel.
Given spatial dimension L and using the methodology described by Broomhead and King
(1986), for each channel l ∈ {1, 2, ..., L} a trajectory matrix

X̃m =


Xl(1) Xl(2) . . . Xl(M)
Xl(2) Xl(3) . . . Xl(M + 1)

...
...

...
...

Xl(N
′) Xl(N

′ + 1) . . . Xl(N)


with N ′ = N −M + 1 can be constructed.
The L individual trajectory matrices are then combined to a N ′× (L ·M) - dimensional joint
trajectory matrix

X̃ =
(
X̃1, X̃2, . . . , X̃M

)
.

The covariance matrix of X̃ is a (LM × LM) - dimensional blog matrix of the form

C̃X̃ =
1

N ′
X̃

T
X̃ =


C1,1 C1,2 . . . C1,L

C2,1 C2,2 . . . C2,L
...

... Cl,l′
...

CL,1 CL,2 . . . CL,L


with the blog

C̃ l,l′ =
1

N ′
X̃

T

l X̃ l′

representing the covariance matrix for the individual trajectory matrices of channels l and
l′.
Diagonalizing C̃X̃ provides L ·M eigenpairs (λk, E

k), where the eigenvectors Ek contain L
consecutive M -long segments denoted by Ek

l . Since here diagonalizing is only a special case
of a singular value decomposition, the Ek really are EOFs, which explains the affinity of
M-SSA and EOF analysis. By projecting X̃ onto these EOFs one obtains the corresponding
space-time PCs

Ak(t) =
M∑
j=1

L∑
l=1

Xl(t+ j − 1)Ek
l (j)
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with 1 ≤ t ≤ N ′.
The k-th reconstruction for channel l at time t is then given by

Rk
l =

1

M

Ut∑
j=Lt

Ak(t− j + 1)Ek
l (j)

where Lt and Ut are certain lower and upper boundaries of the summation depending on
time step t.
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