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ABSTRACT

SUPPLY CHAIN CONTRACTING IN THE PRESENCE OF SUPPLY
UNCERTAINTY AND STORE BRAND COMPETITION

by

Xinyan Cao

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Xiang Fang

In today’s complex business environment, manufacturers are striving to maintain a com-

petitive advantage over their supply chain partners. Manufacturers’ profitability is tightly

linked to their strategic interactions with other entities in the supply chain. While numerous

studies have been conducted to investigate such interactions in supply chains, certain issues

remain unresolved. We apply a game-theoretic framework to analyze two distinct supply

chain structures in the presence of supply uncertainty and store brand competition in two

essays, respectively.

In the first chapter, we study a decentralized assembly supply chain under supply un-

certainty. In a decentralized assembly supply chain, one assembler assembles a set of n

components, each produced by a different supplier, into a final product to meet an uncer-

tain market demand. Each supplier faces an uncertain production capacity such that only

the lesser of the planned production quantity and the realized capacity can be delivered to

the assembler. We assume that the suppliers’ random capacities and the random demand

can follow an arbitrary continuous multivariate distribution. We formulate the problem as

a two-stage Stackelberg game. The assembler and the suppliers adopt a so-called Vendor-

Managed-Consigned-Inventory (VMCI) contract. We analytically characterize the equilib-

rium of this game, based on which we obtain several managerial insights. Surprisingly, we

show that when a supplier’s production cost increases or when his component salvage value
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decreases, it hurts all other members and the entire supply chain, but it might sometimes

benefit this particular supplier. Similarly, when the suppliers do not have supply uncertainty,

it benefits the assembler but it does not necessarily benefit the suppliers. Furthermore, we

demonstrate that when the suppliers’ capacities become more positively correlated, the as-

sembler is always better off, but the suppliers might be better or worse off. Later in the

chapter, we also solve the game under the conventional wholesale-price contract. We find

that the assembler always prefers the VMCI contract, and the suppliers always prefer the

wholesale price contract. In addition, we illustrate that the VMCI contract is more efficient

than the wholesale price contract for this decentralized assembly supply chain.

In the second chapter, we consider a two-tier decentralized supply chain with a national

brand supplier and a retailer. The national brand supplier (she) distributes her products

to consumers through the retailer. Meanwhile, the retailer (he) intends to develop and

produce his own store brand through a manufacturing source that is different from the

national brand supplier. The retailer holds the store brand production unit cost as private

information, for which the national brand supplier only has a subjective assessment. Given

a supply contract offered by the national brand supplier, the retailer simultaneously decides

whether to accept the contract and whether to produce the store brand. The national brand

supplier aims to design an optimal menu of contracts to maximize her expected profit as well

as extract the retailer’s private cost information. We formulate the problem as a two-stage

screening game to analyze the strategic interaction between the two players. Despite the

inherent computational complexity, we are able to derive the optimal menu of contracts for

the national brand supplier, of which the format depends on the national brand supplier’s

unit production cost. Furthermore, we investigate how the model parameters affect the value

of information for each member in the supply chain. We show that the retailer’s private cost

information becomes less valuable to both the national brand supplier and the retailer when

the national brand unit production cost increases. We also illustrate that when the gap
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between the two possible cost values increases, the private cost information becomes more

valuable to the national brand supplier, however the value of information to the retailer

himself can either increase or decrease. Finally, we demonstrate that when the perceived

quality of the national brand increases, the value of information to the retailer first decreases

then increases, but the impact on the value of information to the national brand supplier

can be either positive or negative.
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Chapter 1

Component Procurement for an
Assembly Supply Chain with Random
Capacities and Random Demand

1.1 Introduction

In recent years, outsourcing has become a common practice in a number of industries, includ-

ing automobiles, electronics, computers, and others, in which Original Equipment Manufac-

turers (OEMs) outsource the component production to independent suppliers (or contract

manufacturers) and finish the assembly in-house. Kallstrom (2015) reported that the auto-

motive suppliers’ proportion of value added to worldwide automobile manufacture has been

steadily increasing from 56% in 1985 to 82% in 2015. Rajaram (2015) pointed out that “The

global market for electronics contract manufacturing (ECM) services should total $515.6

billion in 2015, and reach nearly $561.2 billion by 2016 and $845.8 billion by 2021, with

a five-year compound annual growth rate (CAGR) of 8.6% from 2016-2021.” These OEMs’

operations heavily depend on the reliability of the component supply. Sodhi and Tang (2012)

commented that “problems in one link of the supply chain have caused unmitigated disaster

to another link, resulting in large financial and non-financial damage.” In particular, when

the upstream supply capacity is uncertain, it might affect downstream OEMs significantly.

For example, due to supply problems, Sony had to delay the launch of Sony PlayStation 3 in

1



2006, which hurts not only Sony’s short-term revenues but also its long-term market share

(Sodhi and Tang, 2012).

There are various reasons for the supply capacity uncertainties, such as unforeseen pro-

duction line breakdown, suspended delivery due to disagreement, and so on. In 2014, an

eye-catching news story in the technology industry was the winding-down relationship be-

tween Apple and one of its suppliers, GT Advanced Technology (GTAT). Apple planned to

use the sapphire crystal glass manufactured by GTAT on the iPhone 6 and two models of

Apple Watch. However, GTAT failed to deliver the agreed amount and quality of glass to

Apple, and ended up filing bankruptcy due to the financial pressure. Consequently, Apple

had to turn to a different material for the screen (Gokey, 2015). A more recent case in

2016 was that two Volkswagen suppliers, one following the other, suspended contractually

agreed deliveries of components. This shortage of components led to bottlenecks in produc-

tion, causing severe disruptions at several Volkswagen factories (Bronst, 2016). Numerous

cases have shown that the supply uncertainty has a significant impact on such an assem-

bly supply chain since the supply chain performance is determined by the bottleneck agent

(Gurnani and Gerchak, 2007). Taking account of the uncertainties from all suppliers and an

often uncertain market demand, the supply chain risk could be even more significant. Such

supply chains are further complicated by the fact that each component supplier and the

manufacturer are independent entities which seek to maximize their own profits. Hence, in

this chapter, we seek to study the strategic interactions among the upstream suppliers and

the downstream manufacturer in a decentralized assembly system in the presence of random

capacities from the suppliers and random demand from the market.

We consider a decentralized assembly supply chain with one manufacturer (referred as

assembler hereafter) and n suppliers each producing a different component. The assembler

assembles the n components into a final product to satisfy a single-period uncertain market

demand with an exogenous fixed retail price. Each supplier’s production capacity is uncertain
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as well. We assume the random demand and the suppliers’ random capacities follow an arbi-

trary multivariate continuous distribution. In our base model, we assume that the assembler

and the suppliers adopt a Vendor-Managed-Consigned-Inventory (VMCI) contract. That is,

each supplier manages his own inventory and the assembler only pays to each supplier for

the components actually used by the assembler according to the pre-agreed unit price. We

formulate the problem as a two-stage Stackelberg game. First, the assembler proposes a unit

price to each supplier. Second, the suppliers make their own production quantity decisions

simultaneously. Then the suppliers’ uncertain capacities are realized. Each supplier’s final

deliverable quantity is the lesser of its realized capacity and planned production quantity.

The suppliers deliver their available components to the assembler who will then assemble

the components into final products to satisfy its realized market demand, and each supplier

collects a payment from the assembler.

As noted by Gümüş et al. (2008), VMI and consignment inventory are two separate

supply chain strategies, i.e., VMI permits the vendor to initiate orders for the customer,

while consignment inventory means that the vendor owns the goods until the customer uses

them and the vendor is only paid for the goods used by the customer. Although VMI

can be implemented with or without consignment inventory in practice, a recent survey

by Gatorpoint Research across various industry sectors including wholesale, manufacturing,

retailing, and telecom regarding their VMI strategies indicates that “49% of responders

use consigned inventory at their buyers’ VMI location ”(Gatorpoint Research 2013). In

our VMCI contract, we assume that the assembler and the suppliers adopt the VMI and

consignment inventory together because without the consignment inventory agreement (i.e.,

the suppliers are only paid for the components delivered to the assembler), the suppliers

would deliver as much inventory as possible to the assembler. Similar VMCI contracts are

adopted in Gerchak and Wang (2004), Fang, et al. (2008), Bazan et. al. (2014), and Lee

and Cho (2014). In a general VMI contract without consignment inventory, an upstream
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supplier may decide the inventory level and the delivery schedule for a downstream retailer

according to predetermined minimum and maximum inventory levels set by the retailer, and

the retailer owns the inventory upon receiving it. (see Fry et al. 2001). Bischescu and Fry

(2009) assume that a continuous review (Q,R) inventory policy is used in a supply chain,

where the supplier determines the replenishment quantity Q and the retailer decides the

reorder point R. More discussions about various forms of VMI contracts can be found in a

recent survey paper regarding VMI by Gorvidan (2013).

Despite the complexity, we are able to derive the analytical equilibrium prices and or-

der/production quantities in closed-forms for the VMCI contract. Our results illustrate sev-

eral important managerial insights for the decentralized assembly supply chain under supply

uncertainties. Under the VMCI contract, we obtain the following results. First, when a

supplier’s production cost increases, we show that the profits of the assembler, all other sup-

pliers, and the entire supply chain all decrease, but the profit of this particular supplier may

sometimes improve. This result is quite surprising but it is consistent with similar results

derived in Fang et al. (2008) and Granot and Yin (2008). Second, when a supplier’s com-

ponent salvage value increases, it benefits the assembler, all other suppliers, and the entire

supply chain, but surprisingly it may hurt this supplier himself. This result is relatively new

in the literature since the salvage values are assumed to be zero in Fang et al. (2008) and

Granot and Yin (2008). Third, by comparing our results with those in Gerchak and Wang

(2004), we find that when the suppliers display no capacity uncertainties, the assembler is

always better off, but the suppliers may sometimes be worse off. These three results suggest

that the assembler may need to offer some incentives to suppliers with certain cost structures

to reduce his production cost or capacity uncertainty and to improve his salvage value since

such actions may hurt the suppliers but always benefit the assembler. Fourth, we observe

that when the final product retail price increases or the assembly cost decreases, every one

is better off. This result validates our intuition, and it is indeed consistent with most liter-
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ature. Last but not the least, we demonstrate that when the suppliers’ random capacities

become more positively correlated under the multivariate normal distribution, the assembler

is always better off, but the suppliers may be better or worse off. We believe this result is

new since it is often assumed in the literature that random yield/capacity distributions are

independent. Based on this result, we suggest that under a VMCI contract, the assembler

could select suppliers from the same regions such that the suppliers’ random capacities may

be positively correlated.

In addition to the base model under the VMCI contract, in section 1.6, we also ana-

lyze and solve the game under the traditional wholesale-price contract (i.e., without VMI or

consignment inventory), i.e., the suppliers first choose their respective wholesale prices simul-

taneously, then the assembler orders from the suppliers. Comparing the respective results

from the wholesale price contract and the VMCI contract, we show in section 1.7 that the

assembler and entire supply chain would prefer the VMCI contract, whereas the suppliers

would prefer the wholesale price contract. This result is consistent with Gerchak and Wang

(2004) who study the same two contracts for a decentralized assembly system with perfectly

reliable suppliers.

The remainder of this chapter is organized as follows. In section 1.2, we provide a liter-

ature review. In section 1.3, we present our model setup for the decentralized system under

the VMCI contract, and then derive the optimal production plan for the corresponding cen-

tralized system as a benchmark. In section 1.4, we characterize the equilibrium behaviors

for both the suppliers and the assembler in the decentralized system under the VMCI con-

tract. We then derive our managerial insights regarding the VMCI contract in section 1.5.

In section 1.6, we present the model and the equilibrium results for the traditional wholesale

price contract. In section 1.7, we compare the system performance and individual firm’s per-

formance under the VMCI contract with those under the wholesale price contract. Finally,

we conclude the chapter with major findings and further research directions in section 1.8.
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All mathematical proofs are summarized in a separate Appendix.

1.2 Literature Review

Our work is most related to two streams of literature regarding supply uncertainties and

assembly systems. Supply uncertainties can be attributed to different causes in the pro-

duction process. In the literature, the supply uncertainties can be characterized into three

categories: random capacity, random yield, and supply disruption. Random capacity de-

notes an uncertain exogenous upper bound on the actual production quantity (Bollapragada

et al. 2004). Random yield refers to the situation where only a random fraction of products

turn out to be usable due to production defects, machine breakdowns, and so on (Yao 1988).

Supply disruption can be considered as a special case of random capacity with a Bernoulli

distribution following which either the full order or nothing is delivered (Gurnani et al.

2000). On the other hand, the papers studying assembly systems can be grouped in two

categories, i.e., decentralized and centralized assembly systems. In a centralized assembly

system, the assembler aims to derive the optimal inventory policy for all the components and

the optimal component allocation policy among various final products among which com-

mon components are shared (Song and Zipkin 2003). Due to outsourcing, the assembler now

faces a decentralized assembly system. The research focus in decentralized assembly systems

is to study the strategic interactions under contractual arrangements among independent

component suppliers and the assembler who seek to optimize their own profits (Gerchak and

Wang 2004). We summarize the relevant papers in Table 1.1.

There are abundant papers studying random yields in the area of supply chain and oper-

ations management. In Table 1.1, we only list the papers analyzing both random yields and

assembly systems. In particular, Yao (1988), Gerchak et al. (1994), Gurnani et al.(2000),

and Pan and So (2010) explore the inventory/production/pricing decisions for a centralized

6



Table 1.1: Papers related to supply uncertainties and assembly systems

Decentralized Assembly System Centralized Assembly System

Random
Yield

Gurnani & Gerchak (2007)
Güler & Bilgiç (2009)
Güler (2015)
Pan & So (2015)

Yao (1988)
Gerchak et al. (1994)
Gurnani et al. (2000)
Pan & So (2010)

Supply
Disruption

Li et al. (2017)
Gurnani et al. (1996)
DeCroix (2013)
Yin et al. (2017)

Random
Capacity

This essay

Bollapragada et al. (2004)
Xiao et al. (2010)
Bollapragada et al. (2015)
Ji et al. (2016)

assembly system subject to random supply yields and investigate how the random yields

affect the system performance. A few papers study random yields in a decentralized assem-

bly system. Gurnani and Gerchak (2007) propose a contract to coordinate a decentralized

assembly system with two component suppliers both experiencing random yields and an as-

sembler facing a deterministic market demand. Güler and Bilgiç (2009) extend their work by

establishing two coordinating contracts with three parameters for a decentralized assembly

system consisting of N suppliers with random yields and an assembler with random market

demand. Under the same system structure as that in Güler and Bilgiç (2009), Güler (2015) is

able to form a coordinating contract with two parameters only. Pan and So (2015) derive the

equilibrium production and pricing decisions for a decentralized assembly system with two

suppliers under a similar VMI contract to our VMCI contract, and one of the two suppliers

is exposed to the random yield.

There are several papers investigating the optimal inventory/ordering policies for the

centralized assembly system with supply disruptions, e.g., Gurnani et al. (1996), DeCroix

(2013), and Yin et al. (2017). We found only one recently published paper, i.e., Li et al.

(2017), studying a decentralized assembly system with two suppliers and one assembler, and
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they assume one of the two suppliers faces the supply disruption. In their work, they explore

how a cost-sharing contract would affect the performance of individual firms and the entire

system.

Compared with the vast amount of the random yield literature, Feng (2010) points out

“There are relatively few papers analyzing random supply capacity.” We here focus on the

papers studying centralized assembly systems with random capacity. For example, Bollapra-

gada et al. (2004) characterize the optimal base-stock inventory policy which minimizes

the total inventory investment in a centralized assembly system. Xiao et al. (2010) study

a single-product single-period assemble-to-order system with uncertain assembly capacity,

and they identify conditions under which an assemble-in-advance strategy should be adopted

to maximize the centralized system profit. Bollapragada et al. (2015) explore the compo-

nent procurement and assembly decisions for a cost-minimizing assembly system. Ji et

al. (2016) derive an optimal production planning decision for a centralized single-period

cost-minimizing assembly system with random production and assembly capacity. All these

papers study a centralized assembly system where the assembler decides the inventory de-

cisions for the entire system. However, we study a decentralized assembly system (supply

chain), where the focus is to apply game theory to explore the strategic interactions among

the suppliers and the assembler.

To our best knowledge, our study is the first one that considers a decentralized assembly

system with random supply capacities. We build a general model for the decentralized

assembly system with n suppliers (each of whom experiences a random capacity) and an

assembler facing a stochastic market demand. Furthermore, our model allows the random

capacities of the n suppliers to follow any arbitrary multivariate continuous distribution

with correlations, while all the papers for random yield and random capacity listed in Table

1.1 assume independent distributions. Incorporating correlated random capacities into our

model, we are able to show that when the suppliers’ capacities become more positively
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correlated under a general multivariate normal distribution, the assembler is always better

off, but the suppliers may be better or worse off. Our work can be considered as an extension

of Gerchak and Wang (2004). Our model setup is similar to theirs except that they assume

all suppliers are perfectly reliable whereas we relax this assumption and consider that all

suppliers have random capacities. Compared with their results, we demonstrate that when

a component supplier faces an uncertain capacity, it always hurts the assembler, but it may

sometimes benefit this specific supplier, which is quite surprising.

1.3 Model Setup

In this section, we first elaborate our model setup for the decentralized assembly system under

the VMCI contract, then we solve the corresponding centralized system as a benchmark for

the decentralized system.

1.3.1 Decentralized System under VMCI Contract

We consider a decentralized supply chain with n upstream suppliers and a downstream

assembler. Without loss of generality, we assume one unit of the assembler’s final product

consists of n (sets of) components, each produced by a different supplier, i.e., supplier i (he)

produces component i (i = 1, ..., n). The assembler (she) assembles the n components into

the final product to satisfy a single-period uncertain market demand, D, with a fixed retail

price of $p per unit. The assembler and the suppliers agree to adopt the VMCI contract,

i.e., each supplier manages his own inventory and the assembler only pays to each supplier

for the components that are actually used by the assembler based on the pre-agreed unit

price. Before the final demand D is realized, the assembler initiates the procurement in

advance by offering a unit price, wi, to supplier i, i = 1, ..., n. Given the prices, the suppliers

make their own production decisions simultaneously, i.e., supplier i decides his production

quantity Qi and incurs a total production cost of ciQi, in which $ci is the unit production
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cost for component i. Furthermore, each supplier’s production capacity, Ki (i = 1, ..., n) is

uncertain. The random vector (K1, ..., Kn, D) is assumed to follow an arbitrary multivariate

continuous distribution. After each supplier’s uncertain production capacity is realized, only

min {Qi, Ki} units of component i can be delivered to the assembler. In most cases, the

assembler’s assembly time is much shorter than the suppliers’ lead time, so we assume that

the assembler can start the final assembly after demand D is realized and the assembly cost

is c0 per unit. Thus, the assembler can sell min {mini=1,...,n(Qi, Ki), D} units of the final

product to the market. Each supplier collects the payment from the assembler for the used

components. Unassembled components, if any, are salvaged by each supplier at a salvage

value of $si/unit for component i. Assume ci > si so that the suppliers will not produce

unlimited components. si can also be negative to represent a disposal cost, if applicable. We

assume all parties are risk neutral and that all information about the retail price, salvage

value, costs, and distributions are common knowledge to all parties.

Figure 1.1: Sequence of events.
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1.3.2 Centralized System

We now analyze the corresponding centralized system as a benchmark for the decentralized

system. In a centralized assembly system, the assembler, as a central planner, decides the

production quantity, Qi, ∀i = 1, ..., n, for each component to maximize the total system
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profit, denoted as ΠC , as follows:

ΠC(Q1, ..., Qn) = E{(p− c0) min
i=1,...,n

(Qi,Ki, D)−
n∑

i=1

ciQi +

n∑
j=1

sj [min(Qj ,Kj)− min
i=1,...,n

(Qi,Ki, D)]+}

= E{(p− c0) min
i=1,...,n

(Qi,M)−
n∑

i=1

ciQi +
n∑

j=1

sj [min(Qj ,Kj)− min
i=1,...,n

(Qi,M)]+}, (1.1)

where M
def
= min(K1, ..., Kn, D). For notational convenience, let fM(.) and FM(.) be the

respective PDF and CDF of M , which can be derived from the multivariate distribution of

(K1, ..., Kn, D) since FM(x) = 1 − Pr(K1 > x, ...,Kn > x,D > x),∀x . The total system

profit ΠC here simply represents the assembler’s revenue from selling the final products

to satisfy the uncertain market demand D minus the assembly cost and the component

production costs plus the revenue from salvaging leftover components. Recall that without

loss of generality, we assume that each final product is composed of one unit of the n

components. Hence, it is straightforward to derive the following result:

Lemma 1.1. The optimal solution to problem (1.1) satisfies Q1 = ... = Qn
def
= Qc.

Note that the assembler has to match the n components to assemble the final product.

It is best for the assembler to plan the same production quantity for all components, i.e.,

Q1 = ... = Qn, because for each additional leftover component, the assembler can only get the

salvage value of the component, which is lower than the production cost of the component.

Substituting Q1 = ... = Qn = Qc into (1.1), we have

max
Qc

ΠC(Qc) = E{(p− c0) min
i=1,...,n

(Qc,M)−
n∑

i=1

ciQc +
n∑

j=1

sj[min(Qc, Kj)− min
i=1,...,n

(Qc,M)]+}.

For notational convenience, let fD(·) and FD(·) denote the marginal probability density

function (PDF) and cumulative distribution function (CDF) of D, respectively. Similarly,

let fi(·) and Fi(·) be the marginal PDF and CDF of Ki, i = 1, ..., n, respectively. We do not

make any assumption on the relationship among the probability distributions of D and Ki,
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for example, Ki is stochastically larger(smaller) than D or Kj, j 6= i. As we will show in

the remainder of the chapter, our result holds valid without any of such assumptions. After

some algebra, we can show the following result:

Proposition 1.1. ΠC is strictly concave in Qc. Hence, the optimal solution to the centralized

problem given by (1.1), denoted as Q∗c, is uniquely determined by

(p− c0 −
n∑

i=1

si)F̄M(Q∗c)−
n∑

i=1

ci +
n∑

i=1

siF̄i(Q
∗
c) = 0, (1.2)

where F̄i(x)
def
= 1− Fi(x) for all i = 1, ..., n,D,M .

1.4 VMCI CONTRACT

In this section, we apply the backward induction method to study the decentralized system

under the VMCI contract, i.e., we first analyze the suppliers’ problem in section 1.4.1, and

then we investigate the assembler’s optimal pricing scheme in section 1.4.2 based on the

anticipated best responses from the suppliers.

1.4.1 Suppliers’ Problem

Given any prices, w1, ..., wn, offered by the assembler, the n suppliers make their respective

production decisions simultaneously to maximize their own expected profits. To encourage

each supplier to produce a positive quantity of his component, the assembler must propose

a feasible contract such that wi > ci for all i = 1, ..., n. We aim to characterize the Nash

equilibrium (or equilibria) for the suppliers’ production decisions, (Q1, ..., Qn). To do so, we

first need to derive the best response production quantity for supplier i, i = 1, . . . , n, given

other suppliers’ production quantities, defined as Q−i = Qj such that j ∈ {{1, ..., n} \ {i}}.

For any given Q−i, supplier i chooses Qi to maximize his expected profit function as follows:

Πi(Qi|Q−i) = E{wi min
j=1,...,n

(Qj,M)− ciQi + si[min(Qi, Ki)− min
j=1,...,n

(Qj,M)]+},
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In supplier i’s profit function, the first term is the payment he gets from the assembler for

the components used in the final product, the second term is the supplier’s production cost,

and the last term represents the supplier’s revenue from salvaging his leftover components,

if any.

For notational convenience, we define Q−i = min
j=1,...,n,j 6=i

(Qj). Hence, supplier i’s profit

function can be further reduced to two forms based on two possible scenarios (I) Qi ≤ Q−i,

or (II) Qi > Q−i, as below.

Πi(Qi|Q−i) =

{
ΠI

i (Qi|Q−i), Qi ≤ Q−i
ΠII

i (Qi|Q−i), Qi > Q−i

where

ΠI
i (Qi|Q−i)

def
=wiE[min(Qi,M)]− ciQi + siE[min(Qi, Ki)−min(Qi,M)]+, (1.3)

ΠII
i (Qi|Q−i)

def
=wiE[min(Q−i,M)]− ciQi + siE[min(Qi, Ki)−min(Q−i,M)]+. (1.4)

ΠI
i and ΠII

i are continuous at Qi = Q−i.

When supplier i plans a production quantity Qi that is lower than any other supplier’s

production quantity, the assembled quantity of the assembler’s final product becomes only

dependent on Qi but not Q−i. We can derive the first order condition for ΠI
i (Qi|Q−i) as

∂ΠI
i (Qi|Q−i)
∂Qi

= (wi − si)F̄M(Qi)− ci + siF̄i(Qi) = 0. (1.5)

Since wi > ci > si and F̄i(·), i = 1, . . . , n,M are decreasing functions, ΠI
i is strictly

concave in Qi. Note that at Qi = 0,
∂ΠI

i (Qi|Q−i)

∂Qi
= wi − ci > 0, and as Qi approaches to

∞,
∂ΠI

i (Qi|Q−i)

∂Qi
→ −ci < 0. There exists a unique solution to the first-order condition of

ΠI
i (Qi|Q−i) given by equation (1.5).

However, if supplier i plans a higher production quantity than some other supplier, then

Qi will not constrain the final product quantity, but it still affects supplier i’s own production
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cost. It is straightforward to show that the first derivative of ΠII
i (Qi|Q−i) is

∂ΠII
i (Qi|Q−i)
∂Qi

= −ci + siF̄i(Qi) < 0,

which implies that ΠII
i (Qi|Q−i) is strictly decreasing for all Qi > Q−i. Combining the

properties of functions ΠI
i (Qi|Q−i) and ΠII

i (Qi|Q−i), we obtain the following result:

Lemma 1.2. Given any Q−i chosen by the other n − 1 suppliers, supplier i’s optimal pro-

duction quantity, Q∗i , is

Q∗i = min(Q̃i, Q−i),∀i = 1, ..., n, (1.6)

where Q̃i is the unique solution to (1.5).

Note from (1.5) that Q̃i is a function of wi. Hence, we can analyze the relationship

between Q̃i and wi, which can be characterized in the following Lemma.

Lemma 1.3. Q̃i is increasing in wi.

Lemma 1.3 echoes with our intuition that a higher unit price offered by the assembler

tends to drive up the supplier’s planned production level.

Solving the n best response functions given by (1.6) simultaneously, we are able to char-

acterize the Nash equilibrium (N.E.) for the suppliers’ problem in the Proposition below.

Proposition 1.2. For any (w1, ..., wn) chosen by the assembler, any (Q∗1, ..., Q
∗
n) satisfying

Q∗1 = ... = Q∗n ≤ min
j=1,...,n

(Q̃j)
def
= Q̃ constitutes a N.E. for the suppliers, among which

Q∗1 = ... = Q∗n = Q̃ is the unique Pareto-optimal N.E.

Proposition 1.2 indicates that all suppliers would produce the same quantity in equilib-

rium. This result is driven by the fact that the assembler needs to assemble the suppliers’

components into final products to sell in her market, so unmatched components will not

be used and paid by the assembler. Therefore, in equilibrium, every supplier shall produce
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the same quantity. Although there are numerous equilibria for the suppliers’ problem, there

always exists a unique Pareto-optimal N.E., i.e., Q̃, which maximizes the expected profit for

every supplier among all the equilibria. As a result, we consider this equilibrium solution as

the outcome of the suppliers’ problem.

1.4.2 Assembler’s Problem

Anticipating that all suppliers simultaneously choose their Pareto-optimal N.E., Q̃, given in

Proposition 1.2, the assembler’s decision problem is to choose the optimal pricing scheme to

maximize her expected profit, i.e.,

max
(w1,...,wn)

Π0(w1, ..., wn) = E[(p− c0 −
n∑

i=1

wi) min(Q̃,M)]. (1.7)

According to the VMCI contracting arrangement, the assembler pays the suppliers only for

the components used in the final product. We first obtain the following property for the

assembler’s optimal pricing scheme:

Lemma 1.4. The assembler’s optimal pricing scheme, denoted as (w∗1, ..., w
∗
n), satisfies

w∗i = si +
ci − siF̄i(Q̃)

F̄M(Q̃)
, i = 1, ..., n, (1.8)

under which we have Q̃1 = ... = Q̃n = Q̃.

The result of Lemma 1.4 can be explained as follows. From Lemma 1.3, we know that

for all i = 1, ..., n, as wi increases, Q̃i increases. Because Q̃ = min
i=1,...,n

Q̃i, it is best for the

assembler to set up the prices such that the optimal prices would induce Q̃1 = ... = Q̃n = Q̃.

Otherwise, there exists Q̃j such that Q̃j > Q̃, then reducing wj to lower Q̃j to equal Q̃

would simply improve the assembler’s unit profit margin without reducing her expected

sales volume.

Following Lemma 1.4, we can transform the assembler’s problem given by (1.7) to the
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following problem:

max
Q̃

Π0(Q̃) = {p− c0 −
n∑

i=1

[si +4i(Q̃)]}S(Q̃), (1.9)

where

S(Q̃)
def
= E[min(Q̃,M)] (1.10)

4i(Q̃)
def
=

ci − siF̄i(Q̃)

F̄M(Q̃)
,∀i = 1, ..., n (1.11)

S(Q̃) represents the expected sales quantity of the final product.

For the remainder of the chapter, we assume that (A1) Ki (i = 1, ..., n) and M have

increasing failure rates (IFR) (i.e.,
fj(Q̃)

F̄j(Q̃)
,∀j = 1, ..., n,M , is increasing in Q̃), and (A2) M is

smaller than any Ki in the hazard rate order. As discussed in Gerchack and Wang (2004),

commonly used distributions, including uniform, normal, and Weibull families subject to pa-

rameter restrictions, have IFRs. Gupta and Gupta (2001) prove that when (K1, ...Kn, D) fol-

low a multivariate normal distribution, M retains the IFR property. SinceM = min(K1, ..., Kn, D),

M can be considered as the system lifetime of a serial system with n+ 1 parts. (A2) simply

means that at time t, the failure rate of this serial system is higher than the failure rate of

any individual part in the system, i.e., fM (t)

F̄M (t)
≥ fj(t)

F̄j(t)
,∀j = 1, ..., n,D (see Boland et al. 1994).

After some algebra manipulation, we can obtain a unique optimal solution to the assembler’s

problem, formally described in the Proposition below.

Proposition 1.3. There exists a unique solution, Q̃∗, to the assembler’s problem (1.9),

which can be determined by solving

−
n∑

i=1

4′i(Q̃∗)S(Q̃∗) + [p− c0 −
n∑

i=1

si −
n∑

i=1

4i(Q̃
∗)]F̄M(Q̃∗) = 0. (1.12)

Note that without assumptions (A1)-(A2), the optimal Q̃∗ can also be found by solv-

ing (1.12), which means the existence of the N.E. is always guaranteed. Moreover, when
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(K1, ..., Kn, D) follow a multivariate normal distribution, we do not need these assumptions

to derive the managerial insights regarding correlations among random capacities and de-

mand in section 1.5.4.

1.5 Managerial Insights

In this section, we investigate how variations in the model parameters influence the equilib-

rium as well as the expected profits of the suppliers, the assembler, and the entire supply

chain. The results here could provide useful managerial insights for managing the decen-

tralized assembly supply chain in the presence of supply uncertainty and random demand.

To facilitate our discussions, we use Π∗0, Π∗i (i = 1, ..., n), and Π∗D =
∑n

j=0 Π∗j to denote the

equilibrium expected profits for the assembler, supplier i, and the entire decentralized supply

chain, respectively. Moreover, in the remainder of this chapter, we refer to “decrease” and

“increase” in a weak sense, i.e., “decrease” means “ non-increase,” and “increase” means

“non-decrease.”

1.5.1 Component Cost

We first analyze how a change in the component costs can affect the suppliers’ production

decision (Q̃∗) and the assembler’s pricing scheme (w∗1, ..., w
∗
n) in equilibrium and the sub-

sequent profitability of every supply chain member. Suppose all other model parameters

stay the same, except that one supplier’s, say supplier i’s, component cost ci increases. The

following result illustrates the impact of such an increase in ci on the equilibrium and the

profits.

Proposition 1.4. Suppose supplier i’s unit cost, ci, increases. Then,

(i) Q̃∗ decreases;

(ii) w∗j for all j = 1, ..., n, j 6= i decrease, but w∗i increases;
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(iii) Π∗0, Π∗D, and Π∗j decrease for all j = 1, ..., n, j 6= i.

As one supplier’s cost increases, this supplier tends to plan a lower production quantity.

This tendency leads other suppliers to produce less as well since the suppliers are only paid

for the components used in the assembler’s final product and the assembler’s final production

quantity is limited by the supplier who delivers the lowest quantity. As illustrated by the

numerical example in Table 1.2, when supplier 1’s cost increases, the assembler would offer

supplier 1 a higher price (w∗1) to compensate him. However, anticipating that all suppliers

shall plan a lower identical production quantity in equilibrium, the assembler has room

to offer lower prices to all other suppliers (e.g., w∗2 decreases in Table 1.2) because these

suppliers’ costs remain unchanged. Given lower prices, all other suppliers’ profits would

decrease. Intuitively, the assembler, as the leader of the game, also suffers from any supplier’s

cost increase, and we prove that the entire supply chain suffers as well.

Table 1.2: n = 2, p− c0 = 200, s1 = s2 = 10, c2 = 50, K1, K2, D (are i.i.d) ∼ Exp(0.01)

c1 Q̃∗ w∗1 w∗2 Π∗1 Π∗2 Π∗0 Π∗D Π∗C Π∗D/Π
∗
C

28 17.37 43.00 80.05 119.83 239.27 1041.94 1401.03 1761.2 79.55%
38 15.07 56.20 75.06 127.36 175.15 833.3 1135.81 1438.95 78.93%
48 13.04 67.99 70.95 122.17 128.01 658.75 908.93 1159.46 78.39%
58 11.22 78.69 67.79 109.77 92.83 512.66 715.26 918.05 77.91%
68 9.57 88.52 64.53 93.66 66.36 390.79 550.82 710.95 77.48%
78 8.08 97.63 61.95 76.15 46.41 289.86 412.42 535.04 77.08%

Interestingly, we observe that this particular supplier (i.e., supplier 1 in Table 1.2) may

sometimes become better off when his production cost increases (see the entry as bolded).

As explained earlier, the assembler would offer a higher unit price to the supplier whose

production cost increases. Facing a higher price and a higher cost at the same time, this

supplier’s profit margin might increase or decrease, as indicated by our example in Table

1.2. In conjunction with a lower equilibrium production quantity which leads to a lower

sales in the final product market, this supplier could be better or worse off. This result is
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surprising yet consistent with the result in section 6.2 of Fang et al. (2008) and Proposition 3

in Granot and Yin (2008). Under the VMCI contract, the suppliers are not always motivated

to improve the efficiency of their production processes. Therefore, the assembler might need

to provide additional incentives for suppliers to reduce their costs.

One can easily prove that the optimal decentralized system profit is strictly less than

the optimal centralized system profit due to double-marginalization. In order to explore

how the decentralized system efficiency is affected by each supplier’s component cost, we

quantify the decentralized system efficiency as Π∗D/Π
∗
C . Although the derivative of Π∗D/Π

∗
C

with respect to ci is analytically intractable, our numerical experiments demonstrate that

the decentralized system efficiency decreases in the supplier’s production cost, as illustrated

by the last column of Table 1.2. This observation has been consistently confirmed by 1000

runs of simulations based on randomly generated data sets. Under the VMCI contract, each

supplier (game follower) bears his own overstocking risk, which would be amplified when his

production cost increases. The supplier, being self-interested, shall then plan his production

more conservatively, which hurts the entire system.

1.5.2 Salvage Value

Second, we investigate how the variation in the component salvage values can affect the

equilibrium decision and the resulting expected profit for each member. Recall that we

assume si < ci,∀i = 1, . . . , n, to guarantee that no supplier would produce an unlimited

quantity.

Proposition 1.5. Suppose supplier i’s salvage value, si, increases. Then,

(i) Q̃∗ and w∗j increase for all j = 1, ..., n, j 6= i;

(ii) Π∗0, Π∗D, and Π∗j increase for all j = 1, ..., n, j 6= i.
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Proposition 1.5 (i) indicates that when supplier i’s salvage value improves, the suppli-

ers’ equilibrium production quantity increases and the equilibrium prices for all suppliers

except supplier i also increase. A higher salvage value for supplier i’s component can, to

some extent, mitigate this supplier’s overstocking risk, which therefore drives up his own

production quantity, and the assembler does not need to offer a higher price to supplier i.

However, to induce all other suppliers to plan a higher production quantity in equilibrium,

the assembler would have to offer higher prices to them since these suppliers’ cost structures

remain unchanged. As a result, all other suppliers’ profit margins are greater given higher

prices so that these suppliers are better off.

Surprisingly, when supplier i’s own salvage value increases, supplier i may sometimes

be worse off, as illustrated by the numerical example given in Table 1.3 (see the entry as

bolded). This result is surprising but consistent with the similar result derived above for the

component cost. As indicated in the example, when supplier 1’s salvage value (s1) increases

which tends to benefit this supplier, but the assembler would offer supplier 1 a lower price

(w1) which tends to hurt supplier 1’s profitability. Consequently, these two conflicting factors

may drive supplier 1’s profit either up or down. However, the assembler, acting as the leader

of the game, always benefits from an increase in any supplier’s component salvage value, and

the entire supply chain profit improves as well.

Table 1.3: n = 2, p− c0 = 120, s2 = 29, c1 = 50, c2 = 30, K1, K2, D (are i.i.d) ∼ Exp(0.005)

s1 Q̃∗ w∗1 w∗2 Π∗1 Π∗2 Π∗0 Π∗D Π∗C Π∗D/Π
∗
C

16 18.97 63.12 33.82 118.96 35.28 380.83 535.07 689.83 77.57%
26 20.78 62.27 34.27 121.87 43.12 418.54 583.53 749.44 77.86%
36 22.92 61.24 34.84 123.11 53.63 463.93 640.67 819.06 78.22%
46 25.47 59.92 35.55 121.29 68.02 519.34 708.66 900.98 78.65%

Similar to section 1.5.1, we again compute Π∗D/Π
∗
C to evaluate the effect of one compo-

nent’s salvage value on the decentralized system efficiency. The example provided in Table

1.3 demonstrates that when component 1’s salvage value s1 increases from 16 to 46, the
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decentralized system efficiency increases from 77.57% to 78.65%. All our numerical results

(1000 simulations) show that when one component’s salvage value increases, the decentral-

ized system efficiency improves as well. As one component’s salvage value increases, this

component supplier potentially faces less inventory risk of overstocking. Therefore, this

supplier tends to produce more of his components, which benefits the overall decentralized

system.

1.5.3 Retail Price and Assembly Cost

Third, we explore how a change in the retail price or assembly cost of the final product

impacts the equilibrium production quantity, pricing decisions, and each party’s profitability.

With some derivations, we summarize the results in the following Proposition.

Proposition 1.6. Suppose the final product’s retail price p increases (or the assembly cost

c0 decreases). Then,

(i) Q̃∗ and wj increase for all j = 1, ..., n;

(ii) Π∗0, Π∗D, and Π∗j increase for all j = 1, ..., n.

When the retail price of the assembler’s final product increases or when the assembler’s

assembly cost decreases, the assembler has motivations to induce all suppliers to produce

more by paying higher prices to the suppliers. Consequently, every supplier’s profit improves.

As the leader of the game, the assembler always benefits when she gets a higher retail price

for her product or when she incurs a lower assembly cost. Since every one is better off, the

entire supply chain is better off as well.

1.5.4 Correlations among Random Capacities and Demand

Assume (K1, ..., Kn, D) ∼ N(µ,Σ), i.e., the random vector follows a multivariate normal

distribution with mean vector µ and covariance matrix Σ = [σij]i,j=1,...,n+1, where the corre-
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lation coefficient between i and j, j 6= i, ρij = σij/
√
σiiσjj.

Proposition 1.7. If σab for some a 6= b; a, b = 1, ..., n+1 increases, then the random variable

M stochastically increases, and Π∗0 increases as well.

Note that the proof of Proposition 1.7 is based on the theory of supermodularity in

Topkis (1998), hence assumptions (A1)-(A2) are not required to prove this result. As σab

increases, the correlation coefficient, ρab, increases. When any two of the random variables in

(K1, ..., Kn, D) become more positively correlated, M becomes stochastically larger. Recall

that M is defined as min(K1, ..., Kn, D) which represents the maximum quantity the assem-

bler can sell to the market, and the assembler’s final sales is actually the minimum of M

and Q̃∗. When M increases, even if the assembler induces the suppliers to produce the same

quantity (Q̃∗), the assembler’s profit would still increase because she can sell more products

to the market without increasing her costs. As the leader of the game, the assembler is able

to optimally change the prices offered to the suppliers such that the equilibrium production

quantity (Q̃∗) changes optimally for her. Hence, the assembler is always better off when any

two random variables in (K1, ..., Kn, D) become more positively correlated.

Table 1.4: n = 2, (µ1, µ2, µD) = (500, 500, 600), (σ1, σ2, σD) = (180, 180, 30), ρ1D = ρ2D =
0, p− c0 = 5112, c1 = 100, s1 = 66, c2 = 150, s2 = 80

ρ12 Q̃∗ w∗1 w∗2 Π∗0 Π∗1 Π∗2 Π∗D
-0.99 412.50 212.58 334.83 1552120 33426 54878 1640423
-0.96 412.51 212.59 334.86 1552124 33431 54886 1640440
-0.9 413.13 213.38 336.10 1552539 33699 55314 1641552
-0.5 430.39 226.52 355.55 1578571 38522 62522 1679615
0 458.30 240.16 373.36 1643060 44550 70850 1758460

0.5 490.76 251.46 386.12 1742330 51100 79478 1872908
0.9 524.17 254.91 386.10 1886973 56338 85744 2029055
0.96 530.80 252.41 381.03 1930979 56511 85586 2073076
0.99 535.50 249.41 375.49 1968850 56278 84907 2110035

On the contrary, the suppliers may be better or worse off as verified by our numerical
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experiments. In Table 1.4, we report the equilibrium results of a randomly generated nu-

merical example. In this example, as the correlation coefficient between K1 and K2 (ρ12)

increases from −0.99 to 0.99, we observe that the equilibrium production quantity (Q̃∗) and

the assembler’s profit always increase, but the prices and profits for both suppliers could

either increase or decrease. This result can be explained as follows. When ρ12 increases,

M increases. Therefore, even if the assembler does not pay each supplier a higher price,

the suppliers still have a tendency to produce more in equilibrium because under the con-

signment contract, each suppliers are only paid for the quantity sold to the market which

is min(M, Q̃∗). Hence, the assembler does not necessarily need to offer higher prices to the

suppliers to induce a higher production quantity. Since each supplier may obtain a higher

or lower price from the assembler, the suppliers’ profits might increase or decrease.

1.5.5 Random Capacity vs. Reliable Supply

In this study, random capacities are the key factors influencing every member’s strategy

and profit in equilibrium. Note that Gerchak and Wang (2004) analyze a model under

the revenue-sharing contract which is similar to our model under the VMCI contract, and

the only difference is that they assume all suppliers are perfectly reliable and the suppliers

do not have any capacity constraints. By comparing our results under random supply ca-

pacities with their results under reliable supplies, we can investigate the impact of supply

uncertainties on the system performance as well as each individual firm’s profitability.

Following the similar algebra procedure, we can derive Q̃r∗
i , w

r∗
i ,Π

r∗
i ,Π

r∗
0 , and Πr∗

D which

denote the equilibrium production quantity and unit price for supplier i, and the respective

equilibrium profits for supplier i, the assembler, and the system under reliable supplies. It

is straightforward to show the following results: the assembler will choose a pricing scheme

(wr∗
1 , ..., w

r∗
n ) such that wr∗

i = si + ci−si
F̄D(Q̃r∗)

,∀i = 1, ..., n, to induce the same production

quantity, namely Q̃r∗, from all suppliers; then if fD(Q)

[F̄D(Q)]2

∫ Q

0
F̄D(x)dx is increasing in Q, there
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exists a unique solution Q̃r∗ to the suppliers’ problem that satisfies

[p− c0 −
n∑

i=1

si]F̄D(Q̃r∗)−
n∑

i=1

(ci − si)[1 +
fD(Q̃r∗)

[F̄D(Q̃r∗)]2

∫ Q̃r∗

0

F̄D(x)dx] = 0.

As noted in Gerchak and Wang (2004), the assumption (i.e., fD(Q)

[F̄D(Q)]2

∫ Q

0
F̄D(x)dx is in-

creasing in Q) is very weak, and any demand distribution with IFR satisfies this assumption.

In conjunction with Lemma 1.4 and Proposition 1.3, we compare Π∗0 and Πr∗
0 to establish

the following Proposition.

Proposition 1.8. Π∗0 < Πr∗
0 .

Proposition 1.8 indicates that the assembler’s expected profit under random capacities is

strictly less than her expected profit under reliable supplies.

Table 1.5: n = 2, p− c0 = 254, c1 = 30, s1 = 28, c2 = 45, s2 = 20, D ∼ Exp(0.008),
under random capacity: K1 ∼ Exp(0.004), K2 ∼ Exp(0.003), (D,K1, K2) are mutually in-
dependent.

Q̃r∗, Q̃∗ wr∗
1 , w

∗
1 wr∗

2 , w
∗
2 Πr∗

0 ,Π
∗
0 Πr∗

1 ,Π
∗
1 Πr∗

2 ,Π
∗
2 Πr∗

D ,Π
∗
D

Reliable Supply 128.59 33.52 89.05 10610.9 188.87 2360.81 13160.6

Random Capacity 55.28 44.31 83.39 4779.06 356.8 927.85 6063.71

When the suppliers are perfectly reliable, all suppliers are able to deliver the same quan-

tity in equilibrium. With random capacities, the suppliers cannot always deliver the same

quantity although their planned production quantities are identical in equilibrium. Hence,

there exists additional efficiency loss due to mismatched components in the assembly sys-

tem. As a result, the assembler, as the leader of the game, is always worse off with supply

uncertainties.

Interestingly, we find that the suppliers may sometimes be better off with random ca-

pacities, as illustrated by our numerical example in Table 1.5. In the presence of random

capacities, the suppliers tend to be more conservative on their production decisions thus
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might potentially reduce the final product sales quantity. As the follower of the game, the

supplier may use her random capacity as a leverage to negotiate with the assembler. Hence,

the assembler might need to offer a higher unit price to the supplier to induce a larger pro-

duction quantity. Consequently, the supplier with certain cost/risk structures might obtain

a higher profit.

1.6 Wholesale Price Contract

In this section, we apply the traditional wholesale price contract in this decentralized as-

sembly supply chain. As in Gerchak and Wang (2004), we assume that under the wholesale

price contract, the assembler bears the inventory risks, and the suppliers are the game lead-

ers while the assembler is the follower. That is, the component suppliers first offer their own

wholesale prices wi, i = 1, . . . , n, to the assembler simultaneously, then the assembler decides

the production quantity for each supplier, i.e., Qi for supplier i, i = 1, ..., n. After the ran-

dom capacities Ki, i = 1, ..., n are realized, supplier i delivers min(Qi, Ki) to the assembler

and receives wi for each unit delivered. After the demand D is realized, the assembler as-

sembles the available components and sells mini=1,...,n(Qi, Ki, D) to the market. The leftover

components, if any, are salvaged by the assembler at $si/unit for component i, i = 1, ..., n.

Based on the backward induction, we first solve the assembler’s problem and then solve the

suppliers’ problem.

Assembler’s Problem

Given any prices (w1, . . . , wn) offered by the suppliers, the assembler’s problem is to

choose (Q1, ..., Qn) to maximize her expected profit below

Π0 = E{(p− c0) min
i=1,...,n

(Qi,M)−
n∑

i=1

wi min(Qi, Ki) +
n∑

j=1

sj[min(Qj, Kj)− min
i=1,...,n

(Qi,M)]+},

(1.13)
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where the first term is the assembler’s revenue from the final product market, the second

term is her payments to the suppliers, and the last term is her revenue from salvaging the

leftover components.

Suppose, WLOG, supplier k receives the lowest order quantity from the assembler,

i.e., Qk = min(Q1, ..., Qn). Since M = min(K1, ..., Kn, D) ≤ Ki and for all j = 1, ..., n,

min(Qj, Kj) ≥ min(Qk,M) always holds, the assembler’s expected profit function can be

reduced to

Π0(Q1, ..., Qn|Qk = min(Q1, ..., Qn)) = E{(p− c0 −
n∑

i=1

si) min(Qk,M)−
n∑

i=1

[(wi − si) min(Qi, Ki)]}

Therefore, it is best for the assembler to order the same quantity from all suppliers because

wi > si for all the components. Define Q1 = ... = Qn = Q˜ . We obtain the following result.

Proposition 1.9. Π0 is quasi-concave in Q˜ and has a unique solution Q˜ ∗ to the assembler’s

problem which is determined by the first-order condition

(p− c0 −
n∑

i=1

si)F̄M(Q˜ ∗) =
n∑

i=1

(wi − si)F̄i(Q˜ ∗). (1.14)

Suppliers’ Problem

Anticipating an identical order quantity of Q˜ ∗ from the assembler, the suppliers simul-

taneously decide their respective wholesale prices to maximize their own expected profits.

Specifically, for any wholesale prices chosen by the other n−1 suppliers, supplier i’s problem

can be written as

max Πi(wi|wj, j 6= i) = E{wi min(Q˜ ∗, Ki)− ciQ˜ ∗}. (1.15)

Following the same procedure in section 1.4.2, we can establish a one-to-one relationship

between Q˜ ∗ and wi for any given wholesale prices chosen by the other suppliers. Hence, we

can equivalently optimize supplier i’s expected profit Πi over Q˜ ∗ instead of wi. For notational

26



convenience, let L(Q)
def
=
[∑n

i=1(ci − siF̄i(Q))− (p− c0 −
∑n

i=1 si)F̄M(Q)
]
/
∑n

i=1

∫Q
0 F̄i(x)dx

F̄i(Q)
,∀Q.

After solving each supplier’s best response, we are able to obtain the N.E. for this game,

formally presented in the following Proposition:

Proposition 1.10. There exists a pure-strategy N.E. for the game. The suppliers’ equilib-

rium prices are

w∗i (Q˜ ∗) =
1

F̄i(Q˜ ∗) [ci − L(Q˜ ∗)
∫ Q˜∗

0 F̄i(x)dx

F̄i(Q˜ ∗) ], ∀i = 1, ...n,

where the assembler’s equilibrium order quantity Q˜ ∗ can be determined by solving

n∑
i=1

fi(Q˜ ∗)
F̄i(Q˜ ∗)(ci−siF̄i(Q˜ ∗))−fM(Q˜ ∗)(p−c0−

n∑
i=1

si)−L(Q˜ ∗)
n∑

i=1

fi(Q˜ ∗) ∫ Q˜∗

0 F̄i(x)dx

[F̄i(Q˜ ∗)]2 −L(Q˜ ∗) = 0.

(1.16)

Although we could not prove the uniqueness of Q˜ ∗, our result is still one step further than

the result obtained in Gerchak and Wang (2004) since under the wholesale price contract,

they only obtain the equation for the equilibrium quantity Q, i.e., (24) in their paper, for a

special case in which all suppliers are identical. Under the same assumption, we are able to

prove the uniqueness of Q˜ ∗ as well.

1.7 VMCI vs. Wholesale Price

Finally, we compare the VMCI contract with the wholesale price contract in this section.

Using the centralized system as the baseline, we first compare the system performance un-

der the VMCI contract with that under the wholesale price contract. We use Mathematica

11.2 to conduct an extensive numerical experiment based on 2000 randomly generated data

sets. The model parameters are randomly generated as follows: n = 2, D ∼ Exp(λ0), K1 ∼

Exp(λ1), K2 ∼ Exp(λ2), (λ0, λ1, λ2) ∼ Uniform[0.001, 0.01], D,K1, K2 are mutually inde-

pendent, (c1, c2) ∼ Uniform[30, 50], (s1, s2) ∼ Uniform[10,29], (p− c0) ∼ Uniform[200, 300].
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All our results (from 2000 simulations) consistently indicate that the equilibrium pro-

duction quantity under the wholesale price is lower than that under the VMCI contract,

which is strictly lower than the optimal centralized production quantity. Due to the double-

marginalization effect, the assembler/suppliers in a decentralized system become more con-

servative, i.e., they would plan an equilibrium production quantity strictly lower than the

optimal centralized production quantity. As a result, there always exists efficiency loss in

the decentralized system. Recall that under the VMCI contract, the assembler is the game

leader and the suppliers bear all the inventory overstocking risks, whereas under a wholesale

price contract, the assembler is the game follower and the assembler bears the inventory

risks. Hence, under the VMCI contract, the assembler tends to induce a higher production

quantity in equilibrium.

To distinguish between the two contracts, we now use Π∗W and Π∗V to denote the respective

decentralized system profits under the wholesale-price contract and the VMCI contract.

Since the centralized system profit function is strictly concave in the production quantity

(as demonstrated in Proposition 1.1), Π∗W < Π∗V < Π∗C always holds, as shown in Figure

1.2. To enhance the clarity of Figure 1.2, we sort the results from the 2000 iterations by the

centralized system profits in ascending order. Figure 1.2 indicates that the VMCI contract is

more efficient than the wholesale price contract for the supply chain. This result is consistent

with the results from the supply chain contracting literature including Gerchak and Wang

(2004), Granot and Yin (2008), and others. We also observe that the decentralized system

efficiencies under the wholesale price contract are about 40-70% whereas the decentralized

system efficiencies under the VMCI contract are about 50-80%.
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Figure 1.2: System profits comparison
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Figure 1.3: Assembler’s optimal profit comparison
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Our results also remark that the assembler is more profitable under the VMCI contract

(see Figure 1.3) whereas the suppliers would earn a higher profit under the wholesale price

contract (see Figure 1.4). Such observations can be explained by the first-mover advantage

since the assembler is the game leader under the VMCI contract while the suppliers are the

game leaders under the wholesale price contract.
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Figure 1.4: Suppliers’ profits comparison under two contracts.

(a) Supplier 1’s optimal profit comparison
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(b) Supplier 2’s optimal profit comparison
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1.8 Conclusion

We studied a decentralized assembly supply chain with an assembler and n component

suppliers each producing a different component. Due to exogenous factors, each supplier’s

capacity is uncertain such that only the lesser of planned production quantity and actual

realized capacity can be delivered to the assembler. In the first part of the chapter, we

focused on the VMCI contract. Under the VMCI arrangement, the assembler offers a unit

price to each supplier who subsequently decides the production plan. After the demand is

realized, the assembly process begins and the suppliers are paid by the assembler for their
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used components only. Unused components, if any, are salvaged by each supplier. Using

a game-theoretic framework, we derived the equilibrium solution for this problem. Our

results revealed several interesting insights for the decentralized assembly system with supply

uncertainties. Our analysis illustrated that while a reduction in one supplier’s component

cost, capacity uncertainty, or an increase on the component salvage value would improve

the assembler’s and other suppliers’ profitability, it does not necessarily benefit this specific

supplier. Hence, it is critical for the assembler to offer proper incentives to induce the

suppliers to reduce their costs or capacity uncertainties, and to increase their salvage values.

In addition, we showed that when the suppliers’ random capacities become more positively

correlated, it always benefits the assembler but not necessarily the suppliers.

Since simple wholesale price contracts are often used in practice and discussed in the

literature, we analyzed a wholesale price contract in the second part of the chapter. Under

the wholesale price contract, the suppliers are the leaders of the game, and the assembler

is the follower. That is, the suppliers first decide their respective wholesale prices, then the

assembler decides the order quantities. After obtaining the analytical equilibrium solution

for the wholesale price contract, we were able to compare the wholesale price contract with

the VMCI contract. First, we found that the assembler prefers the VMCI contract and

the suppliers prefer the wholesale price contract, which can be explained by the first-mover

advantage. Second, by comparing the decentralized system profit under the VMCI or the

wholesale price contracts with the centralized system profit, we revealed that the VMCI

contract is more efficient than the wholesale price contract for the entire supply chain.

This result further confirms that the prior result in the decentralized assembly supply chain

literature (see, e.g., Gerchak and Wang 2004, Grant and Yin 2008) still holds when the

component suppliers have random capacity constraints.

There are several limitations of our model. First of all, our study, similar to many other

related papers, assumed that each of the random demand and random capacities follows
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a continuous probability distribution for the derivation simplicity. However, in many real

operations environments, it is important to precisely use discrete distributions to describe

D,Ki, and Q, especially for those critical products which only come in small discrete quan-

tities. Hence, future studies may adopt discrete distributions to represent a more realistic

case. It will also be worthy to study a scenario with both supply disruption and random

capacity. That is, there is a discrete probability under which a supplier cannot deliver any

component due to disruptive events, and if the supplier’s production is not disrupted in the

very beginning, the production capacity is a random variable following a continuous distribu-

tion. Second, we assumed that each component is provided by a single supplier. One might

also consider dual-sourcing or multi-sourcing for the same component to examine whether

the horizontal competition could mitigate the supply risk and improve the supply chain effi-

ciency. The model used in Jiang and Wang (2010) might be helpful in this direction. Third,

we assumed that there is only one final assembled product. In a general assembly system,

same components may be used in several final products. Therefore, it might be fruitful to

follow the model in Bernstein et al. (2007) to analyze how supply uncertainties could affect

the performance of a multi-product assembly system. Finally, in our model we assumed all

the suppliers and the assembler are independent. One might extend our work to allow the

suppliers and the assembler to form coalitions, as in Granot and Yin (2008), to reduce the

supply chain risk due to supply uncertainties.
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1.A Appendix

Proof. Lemma 1.1. In the centralized system, without loss of generality, suppose that Qk =

min
i=1,...,n

Qi. The component k can be referred as the “bottleneck”. Since min, [ ]+, and the

composition of such functions are Lipschitz functions, the expectation and the derivatives

can be interchanged (Glasserman, 1994), i.e., ∂EΠ
∂Q

= E[ ∂Π
∂Q

]. Taking the differentiation of ΠC

w.r.t. Qk, we obtain

∂ΠC

∂Qk

= (p− c0)Pr(M ≥ Qk)− ck −
n∑

i=1,i 6=k

siPr(M ≥ Qk)+

skPr(Qk ≤ Kk)Pr(min(Qk, K1, ..., Kk−1, Kk+1, ..., Kn, D) 6= Qk | Qk ≤ Kk)

= (p− c0)F̄M(Qk)− ck − F̄M(Qk)
n∑

i=1,i 6=k

si + sk(F̄k(Qk)− F̄M(Qk))

= (p− c0 −
n∑

i=1

si)F̄M(Qk)− ck + skF̄k(Qk).

(1.A.1)

F̄M(·) and F̄i(·), i = 1, ..., n, are decreasing functions, therefore ΠC is strictly concave.

For any other component i, i 6= k, direct differentiation of ΠC w.r.t. Qi yields that

∂ΠC

∂Qi

= −ci + siF̄i(Qi) < 0

Since ΠC is strictly decreasing in Qi, the central planner will choose the same production

quantity for all components to match with Qk, i.e., Q1 = . . . = Qk = . . . = Qn.

Proof. Proposition 1.1. The proof is embedded in the main body of the chapter, hence we

do not repeat it here.

Proof. Lemma 1.2. The proof is embedded in the main body of the chapter, hence we do

not repeat it here.

Proof. Lemma 1.3. Recall that Q̃i is the solution to (5). From
∂ΠI

i (Qi)

∂Qi
, it can be easily

derived that
∂2ΠI

i

∂Qi∂wi
= F̄M(Qi) > 0, and,

∂2ΠI
i

∂Q2
i

= −fM(Qi)(wi − si) − sifi(Qi) < 0. Hence,
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∂Q̃i(wi)
∂wi

= − ∂2ΠI
i

∂Qi∂wi
/
∂2ΠI

i

∂Q2
i
> 0, that is, Q̃i(wi) is increasing in wi.

Proof. Proposition 1.2. Solving the n best response functions given by (1.6) simultaneously,

it is straightforward to show that Q∗1 = ... = Q∗n ≤ Q̃ is a N.E. for the suppliers’ problem.

Because ΠI
i (Qi|Q−i) is increasing in Qi for all Qi ≤ Q̃, Q∗1 = ... = Q∗n = Q̃ is the unique

Pareto-optimal N.E.

Proof. Lemma 1.4. Without loss of generality, suppose Q̃1(w∗1) < Q̃2(w∗2) < . . . < Q̃n(w∗n).

Thus, min{Q̃1(w∗1), Q̃2(w∗2), ..., Q̃n(w∗n)} = Q̃1(w∗1). Recall from Lemma 1.3 that Q̃i, i =

1, . . . , n, is an increasing function in wi. Then, for any i = 2, ..., n, there exists a w̄i < w∗i

such that Q̃1(w∗1) = Q̃i(w̄i) < Q̃i(w
∗
i ). Therefore,

min{Q̃1(w∗1), Q̃2(w∗2), ..., Q̃n(w∗n)} = min{Q̃1(w∗1), Q̃2(w̄2), ..., Q̃n(w̄n)} = Q̃1(w∗1).

By offering such a pricing scheme (w∗1, w̄2, ..., w̄n), the assembler’s expected profit becomes

Π0(w∗1, w̄2, ..., w̄n) = (p− c0 − w∗1 −
n∑

i=2

w̄i)E[ min
i=1,...,n

(Q̃1(w∗1),M)].

Since w∗1 +
∑n

i=2 w̄i <
∑n

i=1 w
∗
i , Π0(w∗1, w̄2, ..., w̄n) > Π0(w∗1, w

∗
2, ..., w

∗
n) which results in con-

tradiction against the optimality. Therefore, the optimal pricing scheme should be designed

such that

Q̃1(w∗1) = Q̃2(w∗2) = ... = Q̃n(w∗n) = Q̃. (1.A.2)

Building upon such one-to-one relationship between Q̃ and each w∗i , i = 1, . . . , n, we can

express each w∗i as a function of Q̃ by transforming equation (1.5).

Proof. Proposition 1.3. Direct differentiation of (1.9) gives

dΠ0

dQ̃
= −

n∑
i=1

4′i(Q̃)S(Q̃) + (p− c0 −
n∑

i=1

si −
n∑

i=1

4i(Q̃))F̄M(Q̃) = 0, (1.A.3)
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and

d2Π0

dQ̃2
= −

n∑
i=1

4′′i (Q̃)S(Q̃)− 2
n∑

i=1

4′i(Q̃)F̄M(Q̃)− (p− c0 −
n∑

i=1

si −
n∑

i=1

4i(Q̃))fM(Q̃)).

Similar to Theorem 2 in Cachon and Lariviere (2001), an obvious condition for ensuring

a concave profit function of the assembler is that
∑n

i=14′′i (Q̃) ≥ 0. Checking the first

derivative of 4i(Q̃), we have

4′i(Q̃) =
sifi(Q̃)

F̄M(Q̃)
+

(ci − siF̄i(Q̃))fM(Q̃)

(F̄M(Q̃))2
= si

fi(Q̃)

F̄i(Q̃)

F̄i(Q̃)

F̄M(Q̃)
+4i(Q̃)

fM(Q̃)

F̄M(Q̃)

As a result of the IFR property and increasing F̄i(Q̃)

F̄M (Q̃)
, 4′i(Q̃) is increasing in Q̃. At Q̃ = 0,

dΠ0

dQ̃
= p −

∑n
i=0 ci. In conjunction with the concavity of Π0, there must exist a unique

solution, namely Q̃∗, to equation (1.A.3).

Proof. Proposition 1.4. (i) Since Q̃∗ is obtained from solving dΠ0

dQ̃
= 0, ∂Q̃∗

∂ci
= − ∂2Π0

∂Q̃∂ci
/∂2Π0

∂Q̃2 .

From equation (1.A.3), we can derive that

∂2Π0

∂Q̃∂ci
= −S(Q̃)

n∑
j=1

∂4′j(Q̃)

∂cj
− F̄M(Q̃)

n∑
j=1

∂4j(Q̃)

∂cj

= −S(Q̃)
∂4′i(Q̃)

∂ci
− F̄M(Q̃)

∂4i(Q̃)

∂ci

= −S(Q̃)fM(Q̃)

[F̄M(Q̃)]2
− 1 < 0,

In conjunction with the property of a concave Π0, ∂Q̃∗

∂ci
< 0.

(ii) For supplier j, ∀j 6= i, since wj(Q̃
∗) is independent of ci, the result follows directly

from
dw∗

j

dci
=

∂4∗
j

∂Q̃∗
∂Q̃∗

∂ci
< 0.

For supplier i, we first substitute 4′i(Q̃) into the first order condition from Proposition
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1.3, and expand the function such that

−
n∑

j=1,j 6=i

4′j(Q̃∗)S(Q̃∗)− sifi(Q̃
∗)

F̄M(Q̃∗)
S(Q̃∗)−4i(Q̃

∗)S(Q̃∗)
fM(Q̃∗)

F̄M(Q̃∗)

+ (p− c0 −
n∑

i=1

si −
n∑

j=1,j 6=i

4j(Q̃
∗))F̄M(Q̃∗)−4i(Q̃

∗)F̄M(Q̃∗) = 0,

where h0(·) def
= g(·)

Ḡ(·) and hi(·)
def
= fi(·)

F̄i(·)
, i = 1, ..., n for notational convenience. It implies that

the optimal quantity Q̃∗ satisfies

4i(Q̃
∗) =

(p− c0 −
∑n

i=1 si −
∑n

j=1,j 6=i4j(Q̃
∗))F̄M(Q̃∗)−

∑n
j=1,j 6=i4′j(Q̃∗)S(Q̃∗)− sifi(Q̃

∗)

F̄M (Q̃∗)
S(Q̃∗)∑n

i=0 hi(Q̃
∗)S(Q̃∗) + F̄M(Q̃∗)

,

following which wi(Q̃
∗) = si +4i(Q̃

∗) is independent of ci. Together with the IFR property,

we recognize that the right-hand side of the above function decreases in Q̃∗, i.e.,
∂4∗

i

∂Q̃∗ < 0.

Hence,
dw∗

i

dci
≡ d4∗

i

dci
=

∂4∗
i

∂Q̃∗
∂Q̃∗

∂ci
> 0.

(iii) For analyzing the assembler’s expected profit, suppose ci decreases to ĉi under which

the optimal quantity and the assembler’s profit function are denoted by ˆ̃Q∗ and Π̂0, respec-

tively. Due to ci > ĉi, it follows from (9) that Π0(Q̃∗) < Π̂0(Q̃∗). Since ˆ̃Q∗ is the optimal

solution to maximizing Π̂0, Π0(Q̃∗) < Π̂0(Q̃∗) < Π̂0( ˆ̃Q∗), which implies that Π∗0 decreases in

ci.

Given the optimal quantity Q̃∗, the decentralized system profit, Π∗D, is written as

Π∗D = (p− c0)E[ min
i=1,...,n

(Q̃∗,M)]−
n∑

i=1

ciQ̃
∗ +

n∑
i=1

siE[min(Q̃∗, Ki)− min
j=1,...,n

(Q̃∗,M)]+(1.A.4)

Direct differentiation of Π∗D w.r.t. ci yields

dΠ∗D
dci

= [p− c0 −
n∑

i=1

si −
n∑

i=1

4i(Q̃
∗)]F̄M(Q̃∗)

∂Q̃∗

∂ci
− Q̃∗ < 0.

For supplier j, ∀j 6= i, substituting (1.8) into Πj provides

Π∗j = (sj +4j(Q̃
∗))E[ min

i=1,...,n
(Q̃∗, Ki, D)]− cjQ̃∗ + sjE[min(Q̃∗, Kj)− min

i=1,...,n
(Q̃∗, Ki, D)]+,
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which is independent of ci. Then differentiation of Π∗j w.r.t. ci yields
dΠ∗

j

dci
=

∂Π∗
j

∂Q̃∗
∂Q̃∗

∂ci
. Together

with
∂Π∗

j

∂Q̃∗ =
(

sjfj(Q̃∗)

F̄M (Q̃∗)
+

(cj−sj F̄j(Q̃∗))fM (Q̃∗)

F̄M (Q̃∗)2

)
S(Q̃∗) > 0, the result follows from part (i).

Proof. Proposition 1.5. (i) Following (1.A.3), it can be derived that

∂2Π0

∂Q̃∂si
=
F̄i(Q̃)S(Q̃)

F̄M(Q̃)

(
fM(Q̃)

F̄M(Q̃)
− fi(Q̃)

F̄i(Q̃)

)
+ F̄i(Q̃)− F̄M(Q̃) > 0.

Hence, we obtain that ∂Q̃∗

∂si
= − ∂2Π0

∂Q̃∂si
/∂2Π0

∂Q̃2 > 0.

For supplier j, ∀j 6= i, since wj(Q̃
∗) is independent of si, the result follows directly from

dw∗
j

dsi
=

∂4∗
j

∂Q̃∗
∂Q̃∗

∂si
> 0.

(ii) Suppose the parameter si increases to ŝi under which the corresponding optimal

quantity and the assembler’s optimal expected profit are denoted by ˆ̃Q∗ and Π̂0. From (1.9),

it follows that Π0(Q̃∗) < Π̂0(Q̃∗). Since ˆ̃Q∗ is the optimal solution for the system with

parameter ŝi, Π0(Q̃∗) < Π̂0(Q̃∗) < Π̂0( ˆ̃Q∗), i.e., the assembler’s expected profit increases in

si. Direct differentiation of Π∗D w.r.t. si yields that

dΠ∗D
dsi

=
∂Π∗D
∂Q̃∗

∂Q̃∗

∂si
+ E[min(Q̃∗, Ki)− min

j=1,...,n
(Q̃∗,M)]+ > 0.

Furthermore, since the expected profit for supplier j, j 6= i, is not affected by si and

increasing on Q̃∗. It directly follows from part (i) that Π∗j increases as si increases.

Proof. Proposition 1.6. (i) Applying the same method as in the proof of Proposition 4, it is

straightforward to obtain ∂Q̃∗

∂p
= − ∂2Π0

∂Q̃∂p
/∂2Π0

∂Q̃2 > 0. Since wi(Q̃
∗), i = 1, . . . , n, is not affected

by p, the result follows directly.

(ii) Since Πj(Q̃
∗), ∀j = 1, . . . , n is independent of p, the result follows directly from (i).

For the assembler’s profit, the proof is analogous to the proof of Proposition 1.5(i) and

thus omitted here. As a consequence of increasing Π∗0 and Π∗j ,∀j = 1, . . . , n, the total system

profit increases as well.
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The analysis for the impact of decreasing c0 on the system is analogous to above, thus

we omit the details here.

Proof. Proposition 1.7. Let Y
def
= (K1, ..., Kn, D), YL = (KL

1 , ..., K
L
n , D

L) ∼ N(µ,Σ) and

YH = (KH
1 , ..., K

H
n , D

H) ∼ N(µ′,Σ′). Assume µ = µ′, σab ≤ σ′ab for some a 6= b; a, b =

1, ..., n + 1 and σij = σ′ij,∀(i, j) /∈ {(a, b), (b, a)}. Then, following Theorem 4.2 of Müller

and Scarsini (2000), we have Y L ≤sm Y H , i.e., Y L is smaller than Y H in the supermodular

order which implies that Ef(Y L) ≤ Ef(Y H) for all supermodular functions f such that the

expectations exist by Definition 2.3 of Müller and Scarsini (2000). It follows from Example

2.6.2 (f) on page 46 of Topkis (1998) that function min(K1, ..., Kn, D) is a supermodular

function in (K1, ..., Kn, D). Therefore, we have S(Q̃|Y L) ≤ S(Q̃|Y H), ∀Q̃ since S(Q̃)
(1.10)

=

E[min(Q̃,M)] = E[min(Q̃,K1, ..., Kn, D)]. Definition 2.4 and remarks on page 110 of Müller

and Scarsini (2000) immediately imply that Y L ≤uo Y
H , i.e., F̄Y L(t) ≤ F̄Y H (t), ∀t ∈ Rn+1.

Let t = (t, ..., t) ∈ Rn+1, ∀t ∈ R, then we have Pr(KL
1 > t, ...,KL

n > t,DL > t) ≤ Pr(KH
1 >

t, ...,KH
n > t,DH > t) which implies that Pr(min(KL

1 , ..., K
L
n , D

L) > t) = F̄M(t|Y L) ≤

Pr(min(KH
1 , ..., K

H
n , D

H) > t) = F̄M(t|Y H) due to M = min(K1, ...Kn, D). In conjunc-

tion with (1.11), we have ∆i(Q̃|Y L) ≥ ∆i(Q̃|Y H),∀Q̃, i = 1, ..., n. Let Q̃∗i, i = L,H de-

note the optimal Q̃ which maximizes Π0(Q̃|Y i) in (1.9). Hence, we have Π0(Q̃∗H |Y H) ≥

Π0(Q̃∗L|Y H) ≥ Π0(Q̃∗L|Y L).

Proof. Proposition 1.8. Recall that Π0(Q̃) = E[(p − c0 −
∑n

i=1 wi(Q̃)) min(Q̃,M)] and

Πr
0(Q̃r) = E[(p − c0 −

∑n
i=1 w

r
i (Q̃

r)) min(Q̃r, D)]. We first establish that
∑n

i=1wi(Q̃
∗) −∑n

i=1w
r
i (Q̃

∗) =
∑n

i=1
siFi(Q̃

∗)

F̄M (Q̃∗)
+
∑n

i=1
ci−si

F̄M (Q̃∗)
−
∑n

i=1
ci−si

F̄D(Q̃∗)
. Since F̄D(Q̃∗) − F̄M(Q̃∗) =

Pr(D > Q̃∗) − Pr(M > Q̃∗) = Pr(D > Q̃∗) − Pr(K1 > Q̃∗, ..., Kn > Q̃∗|D > Q̃∗)Pr(D >

Q̃∗) > 0,
∑n

i=1wi(Q̃
∗) >

∑n
i=1w

r
i (Q̃

∗). In conjunction with min(Q̃∗,M) ≤ min(Q̃∗, D), we

have Π∗0(Q̃∗) < Πr
0(Q̃∗). Since Q̃r∗ is the optimal solution to maximizing Πr

0, it follows that

Π∗0(Q̃∗) < Πr
0(Q̃∗) < Πr∗

0 (Q̃r∗).
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Proof. Proposition 1.9. Taking the derivative of Π0(Q˜) w.r.t. Q˜ , we obtain

∂Π0(Q˜)

∂Q˜ = F̄M(Q˜)

[
(p− c0 −

n∑
i=1

si)−
n∑

i=1

(wi − si)F̄i(Q˜)

F̄M(Q˜)

]
.

It follows from the assumption (A2), there exists a unique solution, namely Q˜ ∗ ∈ [0,∞), to

the assembler’s problem (1.13) that is uniquely determined by
∂Π0(Q˜)

∂Q˜ |Q˜=Q˜∗= 0.

Proof. Proposition 1.10. Given any wholesale prices wj, j 6= i, offered by all other suppliers,

supplier i will set his wholesale price wi according to
∂Π0(Q˜)

∂Q˜ |Q˜=Q˜∗= 0 such that

wi = si +
1

F̄i(Q˜ ∗) [F̄M(Q˜ ∗)(p− c0 −
n∑

i=1

si)−
n∑

j=1,j 6=i

(wj − si)F̄j(Q˜ ∗)] (1.A.5)

Following Proposition 1.9, we can derive
∂Q˜∗

∂wi
= −

∂2Π0/∂Q˜∂wi

∂2Π0/∂Q˜2 =
F̄i(Q˜)

∂2Π0/∂Q˜2 < 0, and
∂2Q˜∗

∂w2
i

=

−
F̄i(Q˜)fi(Q˜)

(∂2Π0/∂Q˜2)2
< 0. That is, Q˜ ∗(wi) is decreasing concave in wi,∀i = 1, . . . , n. It then follows

that the inverse function wi(Q˜ ∗) is decreasing and concave in Q˜ ∗. Based on the one-to-one

relationship between wi and Q˜ ∗, we can equivalently optimize supplier i’s expected profit

Πi over Q˜ instead of wi. Substituting (1.A.5) into problem (1.15) and checking the second

derivative w.r.t. Q˜ , we have

∂2Πi(Q˜)

∂Q˜ 2 = 2
∂wi(Q˜)

∂Q˜ F̄i(Q˜) +
∂2wi(Q˜)

∂Q˜ 2

∫ Q˜
0

F̄i(x)dx− wi(Q˜)fi(Q˜) < 0.

That is, Πi(Q˜) is continuous and concave with respect to supplier i’s own strategy. Moreover,

each wi is strictly constrained to be in [ci, p − c0] so that each supplier’s strategy space is

compact and convex. Therefore, there exists a pure-strategy N.E. for the game (Debreu,

1952).
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Substituting (1.A.5) into (1.15) then taking derivative w.r.t. Q˜ , we have

∂Πi(Q˜)

∂Q˜
=

∫ Q˜
0

F̄i(x)dx{
fi(Q˜)

[F̄i(Q˜)]2
[F̄M(Q˜)(p− c0 −

n∑
i=1

si)−
n∑

j=1,j 6=i

(wj − sj)F̄j(Q˜)]

+
1

F̄i(Q˜)
[−fM(Q˜)(p− c0 −

n∑
i=1

si) +
n∑

j=1,j 6=i

(wj − sj)fj(Q˜)]}

+ siF̄i(Q˜) + F̄M(Q˜)(p− c0 −
n∑

i=1

si)−
n∑

j=1,j 6=i

(wj − sj)F̄j(Q˜)− ci,

(1.A.6)

in which all other wj, j 6= i, are embedded.

For any other supplier j, j 6= i, direct differentiation of Πj(wj) (i.e., problem (1.15))

w.r.t. wj yields

∂Πj(wj)

∂wj

=

∫ Q˜∗

0

F̄j(x)dx+ (wjF̄j(Q˜ ∗)− cj)
∂Q˜ ∗
∂wj

, (1.A.7)

and

∂2Πj(wj)

∂w2
j

= F̄j(Q˜ ∗)
∂Q˜ ∗
∂wj

− wjfj(Q˜ ∗)(
∂Q˜ ∗
∂wj

)2 + (wjF̄j(Q˜ ∗)− cj)
∂2Q˜ ∗
∂w2

j

.

The first-order condition (1.A.7) should be discussed in two cases: (1) wjF̄j(Q˜ ∗)−cj ≥ 0;

and (2) wjF̄j(Q˜ ∗)−cj < 0. If wjF̄j(Q˜ ∗)−cj ≥ 0 (referred as case 1), the first order condition

is non-monotonic and Πj is concave in wj. Then there is a unique optimal solution, namely

w∗j , to
∂Πj(wj)

∂wj
|wj=w∗

j
= 0. However, if wjF̄j(Q˜ ∗) − cj < 0 (referred as case 2), the first-order

condition is monotonically increasing in wj, implying that the optimal w∗j will be ∞ which

will lead to an order quantity of 0. Case 2 is clearly dominated by case 1 thus not in the

equilibrium. Therefore, the unique optimal solution w∗j is the solution to
∂Πj(wj)

∂wj
|wj=w∗

j
= 0,

satisfying w∗j F̄j(Q˜ ∗) = cj − ∂2Π0

∂Q˜∗2

∫Q˜∗

0 F̄j(x)dx

F̄j(Q˜∗)
. Summing up all w∗j F̄j(Q˜ ∗), ∀j = 1, . . . , n, and

then subtracting equation (1.14), we can obtain an equivalent expression for ∂2Π0

∂Q˜∗2 , which is

denoted by L(Q˜) and presented in the main body of the chapter. Subsequently, w∗j can now

become a function of Q˜ only, i.e., w∗j (Q˜) = 1
F̄j(Q˜)

[cj − L(Q˜)
∫Q

0̃ F̄j(x)dx

F̄j(Q˜)
].
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By substituting w∗j (Q˜) into (1.A.6) and setting it equal to 0, the equilibrium production

quantity Q˜ ∗ can be determined by solving equation (1.16).
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Chapter 2

Procurement Design for a National
Brand Supplier in the Presence of
Store Brand Competition

2.1 Introduction

Store brands, also known as private labels or generic brands, are a line of products branded

and managed solely by a retailer for sales. In recent years, having realized that store brands

are an efficient instrument to improve gross margin, many retailers have been gradually

shifting their emphasis to the development of store brands. Store brand products have been

steadily earning trust among consumers and are becoming recognized as good alternatives

to national brands. Achieving significant success in Europe, store brands hold market shares

of 40% or higher in seven countries, including UK, Germany, and Switzerland (Private La-

bel Manufacturers Association International, 2017). ACNielsen reported that in 2014, the

dollar shares of private label products had achieved 17.5% of the total sales revenue in the

U.S. Marchat (2018) stated that “during 2017, store brand sales across all outlets measured

by Nielsen came in at $122.3 billion, up from $119.1 billion, while units moved up to 44.6

billion from 43.9 billion.” Private Label Manufacturers Association (PLMA, 2018) further

commented that “since Nielsen’s statistics do not include some of the biggest and best store

brands retailers in the country, such as Costco, Aldi, and Trader Joe’s, estimates of their
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private label sales and other major operators not counted, such as Amazon, you can conser-

vatively add another $35 billion to private label sales for a total of $160 billion.” In addition,

unit sales of store brands in the mass channel increased by 9.1% in 2017 while unit volume

of national brands declined by 1%. Since retailers present a serious threat to national brand

suppliers by expanding their private labels, the rules of the game have changed. Retailers

who used to be simply a distribution channel for national brands have now also become

competitors to the national brand suppliers. The traditional advantages of national brands

are no longer as strong and are beginning to lose relevance. Hence, the national brands rec-

ognize the need to strategically defend against retailer brands (Alliance Consulting Group).

Since the recession ended, national brands have stepped up both promotional activity and

innovation efforts to protect share positions and drive growth (ACNielsen 2014). However,

precisely how a national brand supplier should adjust the supply contracting strategy to

cope with the rising store brand competition has not been completely addressed.

We first examine the various store brand supply structures. PLMA International Council

identifies three general categories of store brand manufacturers, which are (1) large manufac-

turers who produce their own brands and utilize the excess capacity to produce store brand

products, (2) smaller-size and regional manufacturers that specialize in particular product

lines and concentrate on producing store brands almost exclusively, (3) manufacturing facil-

ities run by major retailers and wholesalers to provide store brands for themselves and other

retail chains. (See PLMA International: Private Label Today). In the latter two cases, store

brands do not share the same manufacturing source with national brands. Given the poten-

tial competition with the national brand suppliers, the retailers do not have any incentive to

share the core information about store brand. Under such circumstances, a set of research

questions naturally arises: How should a national brand supplier design the supply contract?

What impact does the private information have on the supply chain participants? To our

best knowledge, such questions have not been fully answered in the literature.
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We consider a decentralized supply chain with a national brand supplier (she) and a

retailer (he). The national brand supplier distributes her products to consumers via the

retailer through a two-part tariff supply contract, which includes a unit wholesale price and

a lump-sum payment. Meanwhile, the retailer intends to develop and produce his own store

brand. Similar to Yano (2017), we assume that the retailer has a manufacturing source that

is different from the national brand supplier. The unit production cost of the store brand

is privately discovered by the retailer. The national brand supplier only has a subjective

assessment about the store brand production cost and believes that it has two possible

values, high type or low type. Given the supply contract offered by the national brand

supplier, the retailer can simultaneously decide whether to accept the supply contract and

whether to introduce the store brand. We show that if the wholesale price is low and the

lump-sum payment is lower than the threshold value, then the retailer will carry the national

brand only. When the wholesale price is in the medium range and the lump-sum payment

is lower than a certain threshold, then the retailer will carry both the national brand and

store brand. However, if the wholesale price is too high or the lump-sum payment is above

the threshold, then the retailer will prefer to carry the store brand only. Subsequently,

the retailer decides the retail price(s) for the carried product(s) to sell to the market. The

demand of the carried product(s) is determined by a quality-utility framework.

We first investigate a benchmark case assuming that the store brand cost information is

common knowledge to both members in the supply chain. In this case, the national brand

supplier will always offer a contract to achieve her first best profit and leave the retailer

nothing but his reservation profit. We then analyze the case in which the store brand unit

production cost is private information to the retailer only. Following the theory of incentives,

we formulate the problem as a two-stage screening game to analyze the strategic interaction

between the two players. The national brand supplier offers a menu of two contracts to the

retailer to maximize her expected profit and induce the retailer to truthfully reveal his store
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brand cost information. The national brand supplier’s contractual design problem presents

inherent complexity since there exists eight possible parameter settings, each representing a

distinct relationship among the national brand’s and store brand’s product characteristics

(i.e., cost and quality), and under each parameter setting there exists up to five possible

contract forms. Despite the computational complexity, we are able to derive the optimal

menu of contracts that maximizes the national brand supplier’s expected profit. We analyt-

ically demonstrate that the format of the optimal contract depends on the national brand

supplier’s own production cost. Moreover, we explore how the model parameters affect the

value of information for each member of the supply chain. We show that when the national

brand unit production cost increases, retailer’s private cost information becomes less valu-

able to both the national brand supplier and the retailer. Our results also indicate that

when the gap between the two possible cost values increases, the private cost information

becomes more valuable to the national brand supplier, but the value of information to the

retailer himself can increase or decrease. Finally, we illustrate that when the perceived qual-

ity of national brand increases, the value of information to the retailer first decreases then

increases, but the impact on the value of information to the national brand supplier is not

definitive. These observation are somewhat counter-intuitive and provide us with interesting

managerial insights.

The rest of the chapter precedes as follows. In section 2.2, we review the related lit-

erature. We then introduce the modeling framework in section 2.3. Section 2.4 solves the

retailer’s problem. In section 2.5, we analyze the supplier’s problem with complete informa-

tion as a benchmark case and also design the optimal menu of contracts under asymmetric

information. In section 2.6, we investigate the value of private information to both entities

and derive analytical results to illustrate the impact of model parameters. In section 2.7, we

will conclude the chapter with major results and further research directions.
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2.2 Literature Review

Our study stems from the store brand literature and a stream of asymmetric information

studies in operations management. The analytical research on store brands has been growing

since 1990s. Mills (1995) demonstrated that store brand can be leveraged to eliminate

double marginalization problem in the entire supply chain. Groznik and Heese (2010) studied

interaction between one supplier and one retailer and analyzed the impact of the store-brand

introduction on the supply chain. Wu and Wang (2005) investigated a more complicated

setting with two national brand manufacturers and one common retailer. Dhar and Hoch

(1997) conducted empirical analysis to investigate why the store brand performance varies

among major grocery retailers in the US. Sethuraman (2009) provided a comprehensive

summarization of the analytical results on the national brand and store brand marketing

as wells as the external validity of those results. Groznik, and Heese (2010) investigated

the interaction between retailers under the introduction of store brand. Yano et al. (2017)

studied a case in which a retailer, such as a major grocery chain, manufactures store brand

products in one’s own factory and faces a decision whether to sell the factory. Fang, et al.

(2013) investigated a two-stage Stackelberg game between national brand and store brand

and analyzed wholesale contract design under both centralized and decentralized systems.

To our best knowledge, no study has incorporated the private store brand cost information

in the interaction between the national brand supplier and the retailer.

In supply chain literature, the principle-agent model (Laffont and Martimort 2002) has

been utilized as a powerful instrument to cope with the information asymmetry. A principle

(he) offers contracts to an agent (her), who holds the private information, to extract informa-

tion revelation. The induction of private information is assured by setting up participation

constraints and incentive compatibility constraints on the agent’s profit. The participa-

tion constraints (also called individual rationality constraints) ensure the agent to at least
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achieve his reservation profit. The incentive constraints imply that the information rent will

be given up to the agent if his type is inefficient so that she will not mimic the efficient

type. Consequently, the incentive of conflict arising from cost information asymmetry will

be successfully eliminated, preventing the national brand supplier from over-discounting his

selling price (Fang 2012).

There was a large body of literature that applied principle-agent model in analyzing

the operations management problems. Corbett and deGroote (2000) derived the optimal

quantity discount policy for a single supplier single buyer supply chain under asymmetric

information. Corbett (2001) investigated stochastic inventory systems in a supply chain

where the supplier has private information about setup cost. Corbett et al. (1999) studied

how a supplier is impacted by the obtaining better information about the buyer’s cost struc-

ture. Xiao and Xu (2012) investigated R&D alliance strategy in the presence of asymmetric

effort information from both participants. Ha (2001) studied a contract to maximize the

supplier’s profit in a one-supplier-one-buyer relationship for a short-life-cycle product. In his

study, the reservation profit is fixed regardless of the agent’s type, whereas in our study the

agent’s reservation profit deviates based on his type, which brings in more computational

complexity.

2.3 Model Setup

We consider a two-tier decentralized supply chain with a national brand supplier and a

retailer. The national brand supplier produces a product at a cost of cn per unit with a

quality value qn. The national brand supplier distributes her product to consumers via the

retailer. In addition to selling the national brand product from the supplier, the retailer is

also able to produce and sell his store brand product at a cost of cs per unit with quality

value qs. As pointed out by Bergs-Sennou et al. (2004), consumers usually perceive the store
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brand products having lower quality than the national brand products. Chung and Lee

(2017) also commented that in reality, NBs often times demonstrate superior brand equity

to the SBs, which leads to higher perceptional quality. Therefore, we make a reasonable

assumption that qs < qn to be consistent with Mills (1995), Chen et al. (2011), etc., and for

the analytical simplicity. We shall discuss a contrary case (i.e., qs > qn) in the conclusion

section. The unit production cost of store brand, cs, is private information for the retailer

only. The national brand supplier only has a subjective assessment about the retailer’s store

brand unit production cost. In details, the NB supplier believes that the retailer’s unit

production cost follows a discrete probability distribution and cs has two possible values,

denoted by cHs and cLs with respective probabilities v and 1 − v. For convenience, for the

remainder of this chapter, we call these two cost types “high cost” and “low cost.”

Figure 2.1: Sequence of events.

 

 

Nature reveals the 

true type of 𝑐𝑠 to 

the retailer only 

National brand 

supplier offers a 

menu of contracts 

Retailer determines 

the order quantity 

and/or production 

quantity 

The product(s) is 

produced and sold to 

the customers, and the 

profits are collected 

The sequence of events is illustrated in Figure 2.1. (1) Nature reveals the true type of cs

to the retailer only. (2) The national brand supplier offers a menu of two-part tariff contract

to the retailer. That is, the retailer pays the national brand supplier a wholesale price w and

a lump-sum payment T . (3) The retailer subsequently decides whether to accept the contract

and which contract to accept. The retailer also simultaneously decides whether to produce

his own store brand. If the retailer decides to carry the national brand (referred as NB

hereafter) product and/or the store brand (referred as SB hereafter) product, he shall decide

the NB and/or SB retail price pn and/or ps and their quantities Qn and/or Qs , respectively.
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Then the product(s) is (are) sold to consumers, and payments are collected. Following the

revelation principle, the supplier only needs to provide two contracts (wH , TH) and (wL, TL)

corresponding to the retailer’s two cost types in the menu to maximize her expected profit.

Next, we shall describe our demands for the national brand and/or SB products. Follow-

ing Mills (1995), Chen, et al. (2011) , and Fang, et al. (2013), we assume that consumers

who are interested in purchasing NB or SB are vertically heterogeneous with respect to their

evaluations (θ) on the product quality. From now on, we refer a consumer with a quality

evaluation parameter of θ as “consumer θ” for brevity. Consumers make purchasing decisions

based on their evaluations of the product quality and price. When a product with quality

level q is sold for $p per unit, consumer θ derives a utility function, U(θ) = θq − p. If there

is only one product available on the market, the consumer would purchase the product if

and only if his/her utility U(θ) for the product is positive. If there are multiple products

available on the market, he/she would purchase only the product which gives him/her the

highest positive utility. Without loss of generality, we assume the entire population of po-

tential consumers is normalized to 1. We further assume θ is uniformly distributed between

0 and 1.

In our model setup, the retailer has three options: (I) to accept a contract from the

supplier and carry the NB only (named as case I for the remainder of this chapter); (II) to

accept a contract from the supplier, carry the NB product and also introduce his own SB

(named as case II); (III) to reject the supplier’s contract and sell his SB only (named as

case III). In the two extreme cases, i.e., in case I or III, the retailer chooses to carry the

NB only or the SB only. Then only one product will be available on the market. Under

such circumstances, we define Ui(θ) = θqi − pi is the utility that the consumer θ derives for

product i, where i = s, n representing the SB(i = s) and NB(i = n) respectively. Following

Ui(θ) > 0 and the uniform distribution of θ from 0 to 1, we directly obtain the demand for

product i (i = s, n) is 1− pi/qi.
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Figure 2.2: Market segmentation for NB and SB when ps
qs
< pn−ps

qn−qs < 1.

Now we discuss the most interesting case, i.e., case II, in which the retailer decides to

carry both the national brand and store brand products. In this case, the consumer θ derives

the utility Ui(θ) = θqi− pi for product i = s, n simultaneously, and he/she will purchase the

one with a higher positive utility. We show that in order to ensure both products receive

positive demands, the retailer has to set the retail prices such that ps
qs
< pn−ps

qn−qs < 1, or

equivalently, ps
qs
< pn

qn
< 1 (due to qs < qn). For the consumers who purchase the national

brand product, it follows directly from Un(θ) > Us(θ) that θ > pn−ps
qn−qs . Figure 2.2 further

shows the market segmentation for NB and SB under such conditions.

When the condition of ps
qs
< pn−ps

qn−qs < 1 is not satisfied, only one brand (either NB or SB)

has positive demand. Table 2.1 summarizes the demands for NB and SB as a function of

the SB retail price.

In sum, we provide the list of all mathematical notations used in this chapter in Table

2.2. As a benchmark for the asymmetric information case, we also investigate the symmetric

Table 2.1: Demands for NB and SB as a function of ps

Ranges for ps Demand for NB Demand for SB

ps >
pnqs
qn

1− pn
qn

0

pn − qn + qs ≤ ps ≤ pnqs
qn

1− pn−ps
qn−qs

pn−ps
qn−qs −

ps
qs

ps < pn − qn + qs 0 1− ps
qs

56



Table 2.2: List of mathematical notations used.

Notation Definition

Πn NB supplier’s profit function

Πr Retailer’s profit function

Qn(Qs) NB (SB) production quantity

pn(ps) NB (SB) product retail price

qn(qs) NB (SB) product quality

θ Consumer’s quality evaluation parameter

cn(cs) NB (SB) unit production cost

cHs (cLs ) Estimated high-type (low-type) SB unit production cost

w Unit wholesale price paid to the NB supplier

T Fixed lump-sum payment paid to the NB supplier

wH(wL) Unit wholesale price for high-type (low-type) retailer

TH(TL) Fixed lump-sum payment for high-type (low-type) retailer

information case, i.e., the supplier knows about the retailer’s store brand cost, cs.

2.4 Retailer’s problem

Following the backward induction, we analyze the retailer’s problem first. In this section,

without loss of generality, we can suppress the superscript i (i = L,H) which denotes the

retailer’s type from the parameter cis and variables wi and T i for notational convenience.

Furthermore, since the retailer knows his own type, the retailer’s problem under asymmetric

information is the same as that under symmetric information. Hence, the retailer’s problem

is to figure out his best response for any given contract (w, T ) offered by the supplier.

As specified in the previous section, the retailer’s reaction falls into one of the following

three cases: (I) the retailer accepts the supplier’s contract and only sells the NB; (II) the

retailer accepts the supplier’s contract and sells both NB and SB; (III) the retailer rejects
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the supplier’s contract and only sells his own SB. In summary, the retailer’s profit function

can be written as follows:

Πr =


ΠI

r(pn, Qn) = (pn − w)Qn − T
ΠII

r (pn, Qn, ps, Qs) = (pn − w)Qn − T + (ps − cs)Qs

ΠIII
r (ps, Qs) = (ps − cs)Qs

(2.4.1)

For the two extreme cases, case (I) and (III), it is straightforward to derive the following

result:

Lemma 2.1. For any given (w, T ) contract offered by the supplier, if the retailer accepts

the contract and only carries NB, then his optimal decision and profit are pI∗n = w+qn
2
, QI∗

n =

1
2
− w

2qn
, and ΠI∗

r = (qn−w)2

4qn
−T ; if the retailer rejects the contract and chooses to carry SB only,

then his optimal decision and profit are pIII∗s = cs+qs
2
, QIII∗

n = 1
2
− cs

2qs
, and ΠIII∗

r = (qs−cs)2

4qs
.

Note that ΠIII∗
r is the retailer’s optimal profit when he carries his SB only. Therefore, we

can consider ΠIII∗
r as the retailer’s reservation profit. The retailer would only do business

with the NB supplier when he can obtain a higher profit than his reservation profit.

In the case II, the retailer decides to carry both NB and SB. Following the demand

functions specified in Table 2.1, the retailer has to set the retail prices such that pn−qn+qs ≤

ps ≤ pnqs
qn

, under which both products have positive demands and we have

Qn = Dn = 1− pn − ps
qn − qs

, Qs = Ds =
pn − ps
qn − qs

− ps
qs
.

Subsequently, the retailer’s profit function reduces to

ΠII
r (pn, ps) = (pn − w)(1− pn − ps

qn − qs
) + (ps − cs)(

pn − ps
qn − qs

− ps
qs

)− T.
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Taking derivatives of ΠII
r with respect to pn and ps, we obtain

∂ΠII
r

∂pn
= 1− 2(pn − ps)− w + cs

qn − qs
,
∂ΠII

r

∂ps
=

2(pn − ps)− w + cs
qn − qs

− 2ps − cs
qs

,

∂2ΠII
r

∂p2
n

=
−2

qn − qs
< 0,

∂2ΠII
r

∂p2
n

∂2ΠII
r

∂p2
s

− (
∂2ΠII

r

∂pn∂ps
)2 =

4

qs(qn − qs)
> 0.

Hence, we show the Hessian matrix of the retailer’s profit function ΠII
r is negative definite.

Then, by setting ∂ΠII
r

∂pn
= 0 and ∂ΠII

r

∂ps
= 0, we get the interior optimal solution

pII∗n =
w + qn

2
, pII∗s =

cs + qs
2

(2.4.2)

Furthermore, we need to derive the conditions under which these retail prices satisfy the

aforementioned condition, pn − qn + qs ≤ ps ≤ pnqs
qn

. When pII∗n and pII∗s do not satisfy

this condition, the retailer’s maximum profit under case II would be achieved at a corner

solution. By carefully comparing the retailer’s maximum profits under cases I, II, and III,

we can characterize the retailer’s best response for any given contract (w, T ) offered by the

supplier as follows:

Proposition 2.1.

(I) If 0 ≤ w ≤ csqn
qs

and T ≤ T̄ I(w) where

T̄ I(w)
def
=

(qn − w)2

4qn
− (qs − cs)2

4qs
, (2.4.3)

then the retailer shall carry NB only, and p∗n = pI∗n , Q
∗
n = QI∗

n given in Lemma 2.1,

(II) If csqn
qs

< w ≤ cs + qn − qs and T ≤ T̄ II(w) where

T̄ II(w)
def
=

(cs − w + qn − qs)2

4(qn − qs)
, (2.4.4)

then the retailer will carry both NB and SB, and p∗n = pII∗n , p∗s = pII∗s given by (2.4.2),

Q∗n = 1− w−cs
2(qn−qs)

, Q∗s = w−cs
2(qn−qs)

− cs+qn
2qs

.
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(III) If w ≤ csqn
qs

and T > T̄ I(w) or csqn
qs

< w ≤ cs+qn−qs and T > T̄ II(w), or w > cs+qn−qs

and T ≥ 0, the retailer will carry SB only, and p∗s = pIII∗s , Q∗s = QIII∗
s given in Lemma 2.1.

It is straightforward to show that T̄ I(w) = T̄ II(w) = (qs−cs)2(qn−qs)
4q2s

at w = csqn
qs

and

T̄ II(w) = 0 at w = cs + qn − qs. Since csqn
qs

< cs + qn − qs due to qn > qs, Proposition 2.1

completely characterize the retailer’s optimal response for any given (w, T ) with w ≥ 0, T ≥ 0

chosen by the NB supplier. Proposition 2.1 can be further illustrated by the following Figure

2.3.

Figure 2.3: Retailer’s Best Response given any (w, T ).

 

Figure 2.3 shows that for any wholesale price, w ∈ [0, cs + qn− qs], if the supplier charges

a fixed payment T below the threshold T̄ I(w) or T̄ II(w), the retailer would carry the NB,

otherwise, the retailer would not carry the NB. Furthermore, Figure 3 shows that when the

supplier charges a wholesale price low enough, i.e., w ≤ csqn
qs

and a fixed payment below the

threshold T̄ I(w), then it is best for the retailer to carry NB only; when the wholesale price

is in the medium range, (i.e., csqn
qs

< w ≤ cs + qn − qs) and the fixed payment is below the

threshold T̄ II(w), the retailer would carry both NB and SB; when the wholesale price is too
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high (i.e., w > cs + qn − qs) or the fixed payment is above the threshold, the retailer would

carry SB only.

2.5 Supplier’s problem

Unlike the retailer’s problem, the supplier’s problem under asymmetric information differs

from that under symmetric information. In this section, we first solve the supplier’s problem

under symmetric information as the benchmark for the asymmetric information case, then

we solve the supplier’s problem under asymmetric information.

2.5.1 Symmetric Information

Under symmetric information, the retailer’s type is known to the national brand supplier.

Hence, based on the retailer’s best response summarized in Proposition 2.1, we need to figure

out the supplier’s optimal contract, (w∗, T ∗), which maximizes her profit function:

Πn(w, T ) =


ΠI

n = (w − cn)(1
2
− w

2qn
) + T, if w ≤ csqn

qs
& T ≤ T̄ I(w)

ΠII
n = (w − cn)[1− w−cs

2(qn−qs)
] + T, if csqn

qs
< w ≤ cs + qn − qs & T ≤ T̄ II(w),

0, otherwise.

(2.5.1)

After some algebra, we derive the following result:

Lemma 2.2. Under symmetric information,

(I) If cn ≤ csqn
qs

, then the supplier’s optimal contract is w∗ = cn, T
∗ = T̄ I(cn) = (qn−cn)2

4qn
−

(qs−cs)2

4qs
, under which the retailer only carries NB, Π∗n = (qn−cn)2

4qn
− (qs−cs)2

4qs
, and Π∗r = ΠIII∗

r

given in Lemma 2.1.

(II) If csqn
qs

< cn ≤ cs + qn − qs, the supplier’s optimal contract is w∗ = cn, T ∗ = T̄ II(cn) =

(qn−cn−qs+cs)2

4(qn−qs)
, under which the retailer carries both NB and SB, Π∗n = (qn−cn−qs+cs)2

4(qn−qs)
, and

Π∗r = ΠIII∗
r .
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(III) If cn > cs + qn − qs, it is not profitable for the national brand supplier to sell the NB

product to the retailer and the retailer only carries SB, i.e., Π∗n = 0 and Π∗r = ΠIII∗
r .

Lemma 2.2 suggests that under symmetric information, the national brand supplier will

charge a wholesale price equal to her production cost and a fixed payment as high as the

threshold to earn her first-best profit, and the retailer always earns her reservation profit,

i.e., ΠIII∗
r , which is his optimal profit when he sells his SB only. In addition, NB production

cost plays a critical role in the supplier’s problem. When the NB cost is low, the supplier is

able to offer a low wholesale price and fixed payment to prevent the retailer from introducing

his own SB; when the NB cost is medium, the supplier is not able to lower his wholesale

price and fixed payment to prevent the retailer from introducing his SB, and the retailer

would carry both NB and SB; when the NB cost is too high, it is best for the supplier not

to do business with the retailer and the retailer would carry his SB only.

2.5.2 Asymmetric Information

When the retailer holds private information on his store brand cost, the national brand

supplier can no longer achieve her first-best profit. Instead, she confronts the challenge of

designing a menu of incentive compatible contracts to extract the retailer’s private informa-

tion by giving up the information rent to the retailer. Based on the revelation principle, the

supplier needs to offer a menu of two contracts, i.e., (wL, TL), (wH , TH), corresponding to

the two cost types of the SB, to maximize her expected profit subject to the incentive com-

patibility (IC) and the individual rationality (IR) constraints. Hence, the supplier’s problem
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can be described as as follows:

max
(wH ,TH),(wL,TL)

Πn = vΠn(wH , TH , cHs ) + (1− v)Πn(wL, TL, cLs ). (2.5.2a)

subject to

(I.C.H) Πr(w
H , TH , cHs ) ≥ Πr(w

L, TL, cHs ) (2.5.2b)

(I.C.L) Πr(w
L, TL, cLs ) ≥ Πr(w

H , TH , cLs ) (2.5.2c)

(I.R.H) Πr(w
H , TH , cHs ) ≥ ΠIII∗

r (cHs ) (2.5.2d)

(I.R.L) Πr(w
L, TL, cLs ) ≥ ΠIII∗

r (cLs ), (2.5.2e)

in which Πr(w
i, T i, cjs) (i, j = L,H) denotes the type-j retailer’s resulting profit when he

chooses contract (wi, T i), and Πn(wi, T i, cis) (i = L,H) represents the supplier’s profit when

the type-i retailer chooses contract (wi, T i). Constraints (I.R.H.) and (I.R.L.) ensure that

both types of the retailer earn at least their respective reservation profits (i.e., ΠIII∗
r ) therefore

do business with the supplier. It is worth mentioning that the IR constraints here are type-

dependent because the retailer’s reservation profits vary between the two types, which brings

additional complexity to this problem. Moreover, it follows from the equation of ΠIII∗
r in

Lemma 2.1 that ΠIII
r (cLs ) > ΠIII

r (cHs ) due to cLs < cHs , which indicates that the low-cost

retailer has a higher reservation profit. Constraints (I.C.H.) and (I.C.L.) guarantee that

each type of the retailer would be more profitable by choosing the right contract consistent

with his true type than by choosing the wrong contract.

To reduce the complexity of the optimality search, we further examine the four constraints

and recognize a redundant constraint.

Lemma 2.3. Following (I.C.H.), (I.R.L.), and cLs < cHs , (I.R.H.) is a redundant constraint.

Lemma 2.3 implies that (I.R.H) will not be binding for any feasible solution to the

supplier’s problem, which means that the high-type retailer is guaranteed to earn a profit

strictly higher than his reservation profit. This result can be explained intuitively as follows:
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Recall that the low-type retailer is more cost effective in producing the SB than the high-

type retailer (due to cLs < cHs ), and the low-type retailer has a higher reservation profit than

the high-type retailer. Hence, the high-type retailer has an incentive to mimic the low-type

retailer, but the low-type retailer has no incentive to mimic the high-type retailer. As a

result, the supplier has to offer the high-type retailer an information rent, i.e., the additional

profit above his reservation profit, to prevent the high-type retailer from mimicking the

low-type retailer.

As specified in Proposition 2.1, for any given contract (w, T ) offered by the NB supplier,

the retailer’s best response falls into one of the three cases: (I) the retailer carries NB

only; (II) the retailer carries NB and SB, and (III) the retailer carries SB only. Although

constraints (I.R.H) and (I.R.L) ensure that both types of the retailer would do business with

the NB supplier, i.e., the retailer would react according to case (I) or (II), the retailer’s

profit function Πr given in (2.4.1) and the supplier’s profit function Πn given in (2.5.1)

have different function forms under case (I) and case (II). Therefore, in order to derive the

optimal menu of contracts for the supplier, we have to break down the supplier’s optimization

problem (2.5.2) into four subproblems corresponding to four possible options of the supplier’s

decision variables, denoted by (HI , LI), (HII , LI), (HI , LII), and (HII , LII), where we define

(H i, Lj) (i, j = I, II) as the subset of the supplier’s menu of contracts which would induce

the high-type retailer to select case i and the low-type retailer to choose case j. Further

study on these four contract options reveals the following result:

Lemma 2.4. (HII , LI) contract is not a feasible option for the supplier.

The definition of (HII , LI) contract implies that this subset of (wL, TL) and (wH , TH)

would induce the the low-type retailer to carry SB only and the high-type retailer to carry

both NB and SB. If (wL, TL) is good enough for the low-type retailer to carry SB only,

then it must be good enough for the high-type retailer to carry SB only because Proposition
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2.1 and cLs < cHs imply that if wL ≤ cLs & TL ≤ T̄ I(wL|cs = cLs ), then wL ≤ cHs & TL ≤

T̄ I(wL|cs = cHs ). Moreover, constraint (I.C.H) ensures that (wH , TH) is more attractive than

(wL, TL) to the high-type retailer. Hence, (wH , TH) must also be good enough to induce the

high-type retailer to carry NB only. Consequently, (HII , LI) is never a feasible option for

the supplier.

Lemma 2.4 slims down the range of our optimality search. Thereafter, we only need to

analyze three contract options, (HI , LI), (HI , LII), and (HII , LII).

Recall from Lemma 2.3 that (I.R.H) is a redundant constraint. In fact, constraint (I.C.L)

is redundant as well. First, we shall obtain the optimal solution to the supplier’s problem

in (2.5.2) by considering (I.C.H) and (I.R.L) constraints only, and later we would show

that this optimal solution indeed satisfies constraint (I.C.L). Second, we would demonstrate

constraints (I.C.H.) and (I.R.L.) must be binding at optimality. Lemma 2.1 and Proposition

2.1 imply that for any (w, T ) offered by the supplier, the retailer’s optimal decisions in

pn, ps, Qn, Qs are not directly affected by T . Moreover, (2.4.1) and (2.5.1) show that the

retailer’s profit is decreasing in the fixed payment T , and the supplier’s profit is increasing

in T . Therefore, if (I.C.H) or (I.R.L) is not binding at optimality, then the national brand

supplier could further improve her profit by simply increasing TL or TH until both (I.C.H)

and (I.R.L) are binding.

Using the binding constrains (I.R.L) and (I.C.H), we can derive TL and TH as func-

tions of wL and wH . In this way, we can convert the supplier’s problem in (2.5.2) into an

unconstrained optimization problem, i.e., max Πn(wL, wH).

Before proceeding the analysis, for notational convenience, we summarize the T̄ functions
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given in (2.4.3)-(2.4.4) as follows: for all i = L,H,

T̄ i(w)
def
=


T̄ Ii(w) =

(qn − w)2

4qn
− (qs − cis)2

4qs
, if 0 ≤ w ≤ cisqn

qs

T̄ IIi(w) =
(qn − w + cis − qs)2

4qs
, if

cisqn
qs

< w ≤ cis + qn − qs

0, if w > cis + qn − qs.

(2.5.3)

The definition of T̄ i here unifies T̄ I and T̄ II given in Proposition 2.1 for both types of the

retailer. Additionally, we establish the following relationship between T̄H(w) and T̄L(w).

Lemma 2.5. For all w ≥ 0, T̄H(w) > T̄L(w).

Consistent with our intuition, Lemma 2.5 simply indicates that when the store brand

cost increases, the retailer becomes less competitive, then the supplier is able to charge a

higher fixed payment, i.e., the threshold of the fixed payment T̄ increases as well.

2.5.2.1 (HI , LI) Contract

According to Proposition 2.1, (HI , LI) contract refers to a subset of the supplier’s menu

of contracts such that (wH , TH), (wL, TL) satisfying the conditions of wH ≤ cHs qn
qs

, TH ≤

T̄H(wH) = T̄ IH(wH), wL ≤ cLs qn
qs

, TL ≤ T̄L(wL) = T̄ IL(wL). Under (HI , LI) contract, the

retailer would carry the NB only regardless of his type, i.e.,

Πr(w
i, T i, cis) = ΠI∗

r (wi, T i, cis)
lemma 2.1

=
(qn − wi)2

4qn
− T i,∀i = L,H.

In this case, following (2.5.1), the supplier’s profit function is expressed as

Πn = v

[
(wH − cn)(

1

2
− wH

2qn
) + TH

]
+ (1− v)

[
(wL − cn)(

1

2
− wL

2qn
) + TL

]

In conjunction with cLs < cHs , we have wL ≤ cLs
qn
< cHs

qn
and TL ≤ T̄ IL(wL)

(2.5.3)
≤ T̄ IH(wL).

Therefore, if the high-type retailer chooses (wL, TL), he will still carry NB only (case I), i.e.,

Πr(w
L, TL, cHs ) = ΠI∗

r (wL, TL, cHs ). From the binding constraints (I.C.H.) and (I.R.L.), we
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can directly derive that TL and TH as functions of wL and wH below.

TL = T̄ IL(wL) =
(qn − wL)2

4qn
− (qs − cLs )2

4qs
,

and

TH =
(qn − wH)2

4qn
− (qn − wL)2

4qn
+ TL =

(qn − wH)2

4qn
− (qs − cLs )2

4qs
. (2.5.4)

2.5.2.2 (HI , LII) Contract

According to Proposition 2.1, (HI , LII) contract refers to a subset of (wH , TH), (wL, TL)

which satisfies the conditions of wH ≤ cHs qn
qs
, TH ≤ T̄ IH(wH), c

L
s qn
qs

< wL ≤ cLs + qn− qs, TL ≤

T̄ IIL(wL). Under (HI , LII) contract, the high-type retailer would carry the NB only and the

low-type retailer would carry both NB and SB. Consequently, the supplier’s expected profit

function becomes

Πn = v[(wH − cn)(
1

2
− wH

2qn
) + TH ] + (1− v)[(wL − cn)(

1

2
− wL − cLs

2(qn − qs)
) + TL]

Setting (I.R.L.) to be binding, we have Πr(w
L, TL, cLs ) = ΠII

r (wL, TL, cLs ) = ΠIII∗
r (cLs ), which

implies

TL = T̄ IIL(wL)
(2.5.3)

=
(cLs − wL + qn − qs)2

4(qn − qs)
.

Unlike the previous (HI , LI) case, under (HI , LII) contract, the high-type retailer’s re-

sponse to the low-type contract is not definite, i.e., the function form of Πr(w
L, TL, cHs ) varies

depending on the model parameters. Due to qn > qs, we have cisqn
qs

< cis + qn − qs for all

i = L,H. In conjunction with cLs < cHs , we have cLs qn
qs

< cHs qn
qs

< cHs + qn − qs. However, the

relationship between cHs qn
qs

and cLs + qn − qs is indefinite. Therefore, we need to consider the

following two parameter settings for the cost-quality relationship, i.e., cLs + qn − qs ≤ cHs qn
qs

and cHs qn
qs

< cLs + qn − qs.

(i) cLs + qn − qs ≤ cHs qn
qs
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In this parameter setting, we have wL ≤ cLs + qn − qs ≤ cHs qn
qs

, TL = T̄ IIL(wL) = T̄L(wL) <

T̄H(wL) = T̄ IH(wL) (by Lemma 2.5). Proposition 2.1 implies that Πr(w
L, TL, cHs ) =

ΠI
r(w

L, TL, cHs ). As a result, setting (I.C.H.) to be binding, we obtain TH as a function

of wL and wH , i.e.,

TH =
(cLs − wL + qn − qs)2

4(qn − qs)
+

(qn − wH)2

4qn
− (qn − wL)2

4qn
(2.5.5)

(ii) cHs qn
qs

< cLs + qn − qs

Under this parameter setting, we need to distinguish two possible subcases that differentiate

on wL: wL ≤ cHs qn
qs

, and wL > cHs qn
qs

. These two subcontracts are notated as (HI , LII : cLs qn
qs

<

wL ≤ cHs qn
qs

) and (HI , LII : cHs qn
qs

< wL ≤ cLs + qn − qs).

(ii.1) (HI , LII : cLs qn
qs

< wL ≤ cHs qn
qs

)

Since wL ≤ cHs qn
qs

, TL = T̄L(wL) < T̄H(wL) as in case (i), we still have Πr(w
L, TL, cHs ) =

ΠI
r(w

L, TL, cHs ). Setting (I.C.H.) to be binding yields that TH follows the same equation

given in (2.5.7).

(ii.2) (HI , LII : cHs qn
qs

< wL ≤ cLs + qn − qs)

For any wL ∈ ( c
H
s qn
qs
, cLs + qn − qs] and TL = T̄ IIL(wL), we have cHs qn

qs
< wL < cHs + qn − qs

and TL = T̄L(wL) < T̄H(wL) = T̄ IIH(wL). Therefore, Proposition 2.1 implies that if a

high-type retailer chooses (wL, TL), he shall carry both NB and SB, i.e., Πr(w
L, TL, cHs ) =

ΠII
r (wL, TL, cHs ). Setting (I.C.H.) to be binding yields that

TH =
(qn − wH)2

4qn
−qn − w

L

2
(
1

2
− wL − cHs

2(qn − qs)
)+
qs − cHs

2
(
wL − cHs

2(qn − qs)
− c

H
s

2qs
)+

(cLs − wL + qn − qs)2

4(qn − qs)
.

(2.5.6)
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2.5.2.3 (HII , LII) Contract

Proposition 2.1 implies that (HII , LII) contract refers to a subset of (wH , TH), (wL, TL)

satisfying the conditions of cHs qn
qs

< wH ≤ cHs + qn − qs, TH ≤ T̄ IIH(wH) and cLs qn
qs

< wL ≤

cLs + qn− qs, TL ≤ T̄ IIL(wL). Under (HII , LII) contract, the retailer shall carry both brands

regardless of his type. Consequently, the supplier’s expected profit function becomes

Πn = v[(wH − cn)(
1

2
− wH − cHs

2(qn − qs)
) + TH ] + (1− v)[(wL − cn)(

1

2
− wL − cLs

2(qn − qs)
) + TL].

The binding (I.R.L) constraint implies that TL = T̄ IIL(wL). Similar to (HI , LII) contract,

it is complex to predict the high-type retailer’s response if he chooses the low-type contract.

Following the similar steps, we can derive the TH as a function of wL, wH as below:

(i) If cLs + qn − qs ≤ cHs qn
qs

or { c
H
s qn
qs

> cLs + qn − qs & cLs qn
qs

< wL ≤ cHs qn
qs
}, then

TH =
qn − wH

2
(
1

2
− wH − cHs

2(qn − qs)
) +

qs − cHs
2

(
wH − cHs
2(qn − qs)

− cHs
2qs

) +

(cLs − wL + qn − qs)
2

4(qn − qs)
− (qn − wL)

2

4qn
. (2.5.7)

(ii) If cHs qn
qs

< wL ≤ cLs + qn − qs, then

TH =
cLs

2
+ (wH − qn + qs)

2
+ 2cLs (qn − qs − wL)− 2cHs (wH − wL)

4(qn − qs)
. (2.5.8)

2.5.2.4 Optimal Contract

Substituting the TL and TH functions into each corresponding objective function respec-

tively, the resulting Πn becomes a two-dimensional function of wL and wH . To solve for the

optimal wL∗ and wH∗ for the supplier’s problem, we make two technical assumptions for the

remainder of the chapter as follows:

1. We assume (1 − v)qn − vqs > 0 to ensure the concavity of the objective function on

wL for any wL ∈ ( c
L
s qn
qs
, cLs + qn − qs]. Otherwise, if Πn is convex on wL, the case II contract

69



Table 2.3: Optimal (wH∗, wL∗) under Parameter Setting cLs + qn − qs < cHs qn
qs

cn interval: cn ≤ cLs qn
qs

cLs qn
qs

< cn ≤ c
(1)
n c

(1)
n < cn ≤ cLs + qn − qs

(HI , LI)
wH∗ cn cn

cHs qn
qs

wL∗ cn
cLs qn
qs

cLs qn
qs

(HI , LII)
wH∗ cn cn cn

wL∗ cLs qn
qs

(cn−vcn−vcLs )qn
qn−vqn−vqs cLs + qn − qs

(HII , LII)
wH∗ cHs qn

qs

cHs qn
qs

cHs qn
qs

wL∗ cLs qn
qs

(cn−vcn−vcLs )qn
qn−vqn−vqs cLs + qn − qs

for low type, LII , will always be dominated by LI or be better off to not offer any contract

(case III).

2. We only discuss under cn ≤ cLs + qn− qs such that both types are willing to carry NB.

With some algebra, we obtain the local optimal whole prices under each contract type,

highlight in blue in Table 2.3 and Table 2.4. Note that c
(1)
n

def
= cLs (qn−vqs)+(qn−qs)((1−v)qn−vqs)

(1−v)qn
,

c
(2)
n

def
= cHs qn

qs
− v(cHs −cLs )

1−v , and c
(3)
n

def
= cLs + qn − qs − v(cHs −cLs )

1−v .

In order to search for the global optimality, we compare the derived optimal solutions

among all the contract types and parameter settings. As presented in Table 2.3 and 2.4, we

need to analyze the national brand supplier’s expected profit function under the two parallel

parameter settings, i.e., cLs +qn−qs ≤ cHs qn
qs

and cHs qn
qs

< cLs +qn−qs. If cLs +qn−qs ≤ cHs qn
qs

, there

are three possible contract options (HI , LI), (HI , LII), (HII , LII); if cHs qn
qs

< cLs +qn−qs, there

are five possible contract options (HI , LI), (HI , LII : cLs qn
qs

< wL ≤ cHs qn
qs

), (HI , LII : cHs qn
qs

<

wL ≤ cLs + qn− qs), (HII , LII : cLs qn
qs

< wL ≤ cHs qn
qs

) and (HII , LII : cHs qn
qs

< wL ≤ cLs + qn− qs).

We compare the supplier’s optimal profit across these contracts for each parameter setting.

The results are summarized in the Proposition below.

Proposition 2.2. Under asymmetric information, the national brand supplier’s optimal

70



T
ab

le
2.

4:
O

p
ti

m
al

(w
H
∗ ,
w

L
∗ )

u
n
d
er

P
ar

am
et

er
S
et

ti
n
g

cH s
q n

q s
<
cL s

+
q n
−
q s

(a
)

S
ce

n
ar

io
1:

cL s
+

q n
−
q s
−

v
(c

H s
−
cL s

)
1
−
v

<
cH s

q n
q s

c n
in

te
rv

al
:

c n
≤

cL s
q n

q s

cL s
q n

q s
<
c n
≤
c(2

)
n

c(2
)

n
<
c n
≤
c(3

)
n

c(3
)

n
<
c n
<

cH s
q n

q s

cH s
q n

q s
<
c n
≤
cL s

+
q n
−
q s

(H
I
,L

I
)

w
H
∗

c n
c n

c n
cH s

q n
q s

cH s
q n

q s

w
L
∗

c n
cL s

q n
q s

cL s
q n

q s

cL s
q n

q s

cL s
q n

q s

(H
I
,L

I
I

:
cL s

q n
q s

<
w

L
≤

cH s
q n

q s
)

w
H
∗

c n
c n

c n
cH s

q n
q s

cH s
q n

q s

w
L
∗

cL s
q n

q s

(c
n
−
v
c n
−
v
cL s

)q
n

q n
−
v
q n
−
v
q s

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s

(H
I
,L

I
I

:
cH s

q n
q s

<
w

L
≤
cL s

+
q n
−
q s

)
w

H
∗

c n
c n

c n
c n

cH s
q n

q s

w
L
∗

cH s
q n

q s

cH s
q n

q s
c n

+
v
(c

H s
−
cL s

)
1
−
v

cL s
+
q n
−
q s

cL s
+
q n
−
q s

(H
I
I
,L

I
I

:
cL s

q n
q s

<
w

L
≤

cH s
q n

q s
)

w
H
∗

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s
c n

c n

w
L
∗

cL s
q n

q s

(c
n
−
v
c n
−
v
cL s

)q
n

q n
−
v
q n
−
v
q s

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s

(H
I
I
,L

I
I

:
cH s

q n
q s

<
w

L
≤
cL s

+
q n
−
q s

)
w

H
∗

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s
c n

w
L
∗

cH s
q n

q s

cH s
q n

q s
c n

+
v
(c

H s
−
cL s

)
1
−
v

cL s
+
q n
−
q s

cL s
+
q n
−
q s

(b
)

S
ce

n
ar

io
2:

cH s
q n

q s
<

cL s
+
q n
−
q s
−

v
(c

H s
−
cL s

)
1
−
v

c n
in

te
rv

al
:

c n
≤

cL s
q n

q s

cL s
q n

q s
<
c n
≤
c(2

)
n

c(2
)

n
<
c n
≤

cH s
q n

q s

cH s
q n

q s
<
c n
<
c(3

)
n

c(3
)

n
<
c n
≤
cL s

+
q n
−
q s

(H
I
,L

I
)

w
H
∗

c n
c n

c n
cH s

q n
q s

cH s
q n

q s

w
L
∗

c n
cL s

q n
q s

cL s
q n

q s

cL s
q n

q s

cL s
q n

q s

(H
I
,L

I
I

:
cL s

q n
q s

<
w

L
≤

cH s
q n

q s
)

w
H
∗

c n
c n

c n
cH s

q n
q s

cH s
q n

q s

w
L
∗

cL s
q n

q s

(c
n
−
v
c n
−
v
cL s

)q
n

q n
−
v
q n
−
v
q s

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s

(H
I
,L

I
I

:
cH s

q n
q s

<
w

L
≤
cL s

+
q n
−
q s

)
w

H
∗

c n
c n

c n
cH s

q n
q s

cH s
q n

q s

w
L
∗

cH s
q n

q s

cH s
q n

q s
c n

+
v
(c

H s
−
cL s

)
1
−
v

c n
+

v
(c

H s
−
cL s

)
1
−
v

cL s
+
q n
−
q s

(H
I
I
,L

I
I

:
cL s

q n
q s

<
w

L
≤

cH s
q n

q s
)

w
H
∗

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s
c n

c n

w
L
∗

cL s
q n

q s

(c
n
−
v
c n
−
v
cL s

)q
n

q n
−
v
q n
−
v
q s

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s

(H
I
I
,L

I
I

:
cH s

q n
q s

<
w

L
≤
cL s

+
q n
−
q s

)
w

H
∗

cH s
q n

q s

cH s
q n

q s

cH s
q n

q s
c n

c n

w
L
∗

cH s
q n

q s

cH s
q n

q s
c n

+
v
(c

H s
−
cL s

)
1
−
v

c n
+

v
(c

H s
−
cL s

)
1
−
v

cL s
+
q n
−
q s

71



menu of contracts is as follows:

(i) If cLs +qn−qs ≤ cHs qn
qs

, then the national brand supplier’s optimal contract (H∗, L∗) is given

by

(H∗, L∗) =

 (HI , LI), if cn ≤ cLs qn
qs

(HI , LII), if cLs qn
qs

< cn ≤ cLs + qn − qs.

(ii) If cHs qn
qs

< cLs + qn − qs, then the national brand supplier’s optimal contract (H∗, L∗) is

given by

(H∗, L∗) =


(HI , LI), if cn ≤ cLs qn

qs

(HI , LII), if cLs qn
qs

< cn ≤ cHs qn
qs

(HII , LII), if cHs qn
qs

< cn ≤ cLs + qn − qs.

Proposition 2.2 verifies that under asymmetric information the national brand’s produc-

tion cost still has a significant impact on the supplier’s optimal contract design. Low-type

retailer is more competitive than the high-type retailer. As the NB production cost increases,

the supplier firstly loses the capability to prevent the introduction of SB for the low-type

retailer, and then that of the high-type retailer.

The detailed optimal decisions for the supplier are summarized below.

Corollary 2.1. The optimal menu of contracts (wH∗, TH∗), (wL∗, TL∗), i.e., the solution to

(2.5.2), is

(i) If cLs + qn−qs ≤
cHs qn
qs

, then

wL∗ =


cn, if cn ≤ cLs qn

qs
(cn−vcn−vcLs )qn

qn−vqn−vqs , if cLs qn
qs

< cn ≤ c
(1)
n

cLs + qn − qs, if c
(1)
n < cn ≤ cLs + qn − qs.
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(ii) If cHs qn
qs

< cLs + qn−qs, then

wL∗ =


cn, if cn ≤ cLs qn

qs
(cn−vcn−vcLs )qn

qn−vqn−vqs , if cLs qn
qs

< cn ≤ c
(2)
n

cn + v(cHs −cLs )
1−v , if c

(2)
n < cn ≤ c

(3)
n

cLs + qn − qs, if c
(3)
n < cn ≤ cLs + qn − qs.

TL∗ = T̄L(wL∗) given in (2.5.3), wH∗ = cn, and TH∗ can be found by substituting wH∗

and wL∗ into the respective TH function given in (2.5.4)-(2.5.8) under the optimal contract

(H∗, L∗).

After substituting wH∗ and wL∗ into TH∗, we do have TH∗ ≥ T̄L(wH∗). In conjunction

with Proposition 2.1 and the binding (I.R.L) constraint, it is straightforward to obtain

Πr(w
L∗, TL∗, cLs ) = ΠIII∗

r (cLs ) ≥ Πr(w
H∗, TH∗, cLs ), which implies that constraint (I.C.L) is

indeed satisfied by the optimal solution.

2.6 Managerial Implication

In this section, we investigate how the model parameters influence the value of information

for the national brand supplier and the retailer. Proposition 2.2 has shown that the optimal

contract varies based on the parameters such as NB and SB production cost and product

quality. In-depth analysis on these parameters shall provide useful managerial insights for

both the supplier and the retailer.

The value of information for each entity in the supply chain is quantified as the differ-

ence between his (her) optimal expected profits under symmetric information (denoted as

ΠSym∗
i , i = n, r) and asymmetric information (denoted as ΠAym∗

i , i = n, r). Under symmet-

ric information, the supplier, as the leader of the Stackelberg game, will extract the entire

supply chain profit and leave the retailer only his reservation profit regardless of his type.

However, in the presence of information asymmetry, the supplier would give up some in-
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formation rent to the retailer so the retailer is induced to truthfully reveal his type. Our

results show that the high-type retailer earns a positive information rent in addition to his

reservation profit and the low-type retailer still obtains the reservation profit only. That is,

the retailer’s overall expected profit under asymmetric information is higher than that under

symmetric information. Consequently, the retailer’s valuation of his own SB cost information

is Vr = ΠSym∗
r −ΠAsy∗

r = −vU , where U denotes the information rent given up by the supplier

to the high-type retailer. To simplify the interpretations, we use the absolute value of Vr,

i.e., |Vr|, to reference the value of information to the retailer in the following discussions. On

the contrary, the NB supplier’s profit under symmetric information is higher than that under

asymmetric information, the value of information to the supplier, i.e., Vn = ΠSym∗
n −ΠAsy∗

n , is

positive. We first compare the values of information to each entity and obtain the following

Proposition.

Proposition 2.3. Vn ≥ |Vr|.

Proposition 2.3 implies that the value of information to the NB supplier is higher than

that to the retailer. Under symmetric information, as indicated in Lemma 2.2, the NB

supplier’s optimal wholesale price is always equal to her production cost regardless of the

retailer’s type. Hence, there exists no efficiency loss for both types of the retailer. However,

under asymmetric information, there is efficiency loss for the low-type retailer due to the

double marginalization, as indicated in Corollary 2.1 that wL∗ ≥ cn = wH∗
. As a result,

under asymmetric information, the NB supplier has to not only surrender the information

rent to the high-type retailer, but also suffer from the efficiency loss for the low-type retailer.

Recall that |Vr| represents the retailer’s expected information rent only. Hence, the value of

information to the NB supplier is greater than that to the retailer.

In the following subsections, we explore the impact of a change in the NB/SB cost or

quality on the value of information to the supplier or the retailer. To facilitate the discussions,
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we refer to ”decrease” or ”increase” in a weak sense, i.e., ”decrease” means ”non-increase”,

and ”increase” means ”non-decrease”.

2.6.1 Production Cost

We first explore how a change in the unit production cost of the NB affects the value of

information to each entity while keeping other parameters constant.

Proposition 2.4. Vn and |Vr| are decreasing in cn.

In the presence of asymmetric information, the national brand supplier’s expected profit

is compromised due to the information rent offered to the retailer. When the NB produc-

tion cost increases and other model parameters remain unchanged, the supplier tends to

charge higher wholesale prices to sustain her profitability. In other words, the supplier has

the tendency to offer lower information rent to the retailer, i.e., |Vr| decreases. When the

NB production cost increases, the NB supplier’s profits under symmetric and asymmetric

information decrease simultaneously. However, the decrease under asymmetric information

is less than that under symmetric information because the supplier offers lower information

rent to the retailer under asymmetric information. Therefore, the value of information to

the supplier decreases as well.

We next analyze the impact of SB costs, cHs and cLs , on the value of information to the

supplier and the retailer, respectively.

Proposition 2.5. Vn is increasing in cHs and decreasing in cLs .

While SB cost is held as private information by the retailer, the high-type retailer has the

tendency to mimic the low-type retailer. When the high-type SB cost (cHs ) increases or the

low-type SB cost (cLs ) decreases unilaterally, the gap between the two possible values of the

SB cost is enlarged. In other words, the NB supplier is more uncertain about the retailer’s

SB cost. Hence, the value of information to the supplier becomes higher.
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We next examine the impact of cHs and cLs on the value of information to the retailer.

Our analytical results indicate that Vr could either increase or decrease on cis,∀i = L,H. We

show an examples for cHs and cLs , respectively.

Example 1: cn = 509, qn = 665, qs = 208, cLs = 140, v = 0.659. As cHs increases from 161

to 171 then to 181, |Vr| increases from 0.8773 to 0.9756 then decreases to 0.8678.

Example 2: cn = 228, qn = 334, qs = 251, cHs = 173, v = 0.259. As cLs increases from 149

to 159 then to 169, |Vr| increases from 0.1623 to 0.3231 then decreases to 0.1546.

Note that the information rent,|Vr|, is paid to the high-type retailer and weighted by

the probability of high type v. The capability of paying the information rent depends on

the supplier’s overall expected profit and, furthermore, the competition situation between

NB and SB, which is essentially influenced by the relationship among cHs , cLs and cn. In-

tuitively, the supplier’s relative competitive advantage could vary depending on the gap

between the two possible types and the probability of the each type. Although holding other

parameter constant, different combinations of cHs , cLs , v and cn could present various part-

nership/competition situations between the supplier and retailer. In addition, Proposition 4

illustrates that the information rent tents to decreases on cn whereas Proposition 5 shows a

positive relationship between the value of information to the supplier and the gap between cHs

and cLs . With such complication, the information rent |Vr| could either increases or decrease

on cHs and cLs .

2.6.2 Product Quality

We proceed to investigate how the product quality affects the value of private information

for the supplier and the retailer. Recall that the product quality is a perceptional value

evaluated by the customer. That is, the parameters qn and qs are exogenous factors in the

model.

Proposition 2.6. For the retailer, under cLs + qn− qs < cHs qn
qs

, |Vr| is decreasing on qn ∀qn ∈
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(cn− cLs + qs,
(1−v)cn−cLs +qs+

√
((1−v)cn−cLs +qs)2−4(1−v)vqs(qs−cLs )

2(1−v)
) and then increasing on qn ∀qn ≥

(1−v)cn−cLs +qs+
√

((1−v)cn−cLs +qs)2−4(1−v)vqs(qs−cLs )

2(1−v)
; under cHs qn

qs
< cLs + qn − qs, |Vr| is decreasing

on qn ∀qn ∈ (cn− cLs + qs, cn− cLs + qs + v(cHs −cLs )
1−v ), and then increasing on qn ∀qn ≥ cn− cLs +

qs + v(cHs −cLs )
1−v .

When NB quality is very high such that qn >
cnqs
cLs

, the supplier is fully capable of offer a

menu of contract following which the retailer will carry NB only regardless of his type. Thus

in this case the information rent is insensitive to qn. If the NB quality is in a medium range, he

starts to lose the ability of preventing the introduction of SB. Recall that the fundamental

paradox in this supply chain is that if the retailer carries both products, he earns profit

from selling the national brand, which also competes with his own brand. Section 4.1 has

provided an intuition that when both product are in the market, a higher qn would lead to

a larger segment of demand for the national brand. As NB becomes more competitive, the

retailer potentially becomes more profitable from selling NB, but demand for SB might be

compromised. Meanwhile, it is easy to observe that when qn decreases, the retailer tends

to be charged with lower purchasing prices (wH∗, TH∗, wL∗, TL∗), which certainly diminishes

the profit earned from selling NB. Hence, as qn increases, the retailer’s benefit of holding

the private information could be enlarged or shrunk. Hence, the value of information to the

retailer could increase or decrease.

Note that the consumers evaluate a perceptional value for each product and make the

purchasing decision based on the combination of the product’s price and quality. It implies

that the exogenous parameters qn and qs have significant impacts on the demand and the

resulting profits for the supplier and the retailer. However, various combinations of cn, qn,

qs, c
H
s and cLs represent different vertical partnership and horizontal competition situation

between the supplier and retailer. In addition, we have analytically derived that qn and qs

appear in both the numerators and denominators of the profit functions and the value of
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Table 2.5: cn = 42, qn = 110, cHs = 51, cLs = 30, v = 0.228.

qs Vn |Vr|

67 0.894 0.883

77 1.132 1.132

87 1.236 1.223

97 1.060 0.944

information functions which certainly brings in the complexity in the sensitivity analysis. Our

numerical results show that as qn increases, the value of information for the supplier could

either increases or decrease, which can be demonstrated by an experiment with cn = 361, qs =

482, cHs = 343, cLs = 336, v = 0.309. As qn increases from 493 to 513 then to 533, Vn firstly

decreases from 3.42 to 0.32 then increases to 2.36. We also conduct numerical experiments

to observe the impact of the SB quality on the value of information to the supplier and the

retailer. Again, the results suggest that as qs increases, Vn and |Vr| could either increases or

decrease. The following experiment is with cn = 42, qn = 110, cHs = 51, cLs = 30, v = 0.228.

Table 2.5 summarizes the values of information for different values of qs varying from 67 to

97.

2.7 Conclusion

We analyzed a two-tier supply chain with a national brand supplier and a retailer who is

capable of developing his own SB to compete with the NB. The NB supplier offers a menu of

two-part tariff contracts to the retailer to distribute the NB products to consumers. Given

this supply contract, the retailer can decide whether to accept the contract and whether to

produce SB. In addition, the retailer holds private cost information of the store brand, for

which the NB supplier only has an estimate, i.e., high cost or low cost with certain prob-

ability. Due to the information asymmetry, a high-type retailer tends to mimic a low-type
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in order to pay lower procurement prices to the supplier. We applied revelation principle to

design an optimal menu of contracts for the NB supplier to maximize her expected profit as

well as induce the retailer to truthfully reveal his private information. Moreover, we quan-

tify the value of information for each member as the difference between their optimal profits

under symmetric information and asymmetric information, and illustrate how product char-

acteristics (i.e., production cost and perceived quality) affect the value of information to

both the supplier and the retailer. First, when the NB unit production cost increases, the

private cost information becomes less valuable to both the supplier and the retailer. Second,

when the gap between the high-type and low-type costs increases, the supplier considers

the information to be more valuable, but the retailer’s value of information may increase

or decrease. Finally, we observed that when NB’s perceived quality increases, the value of

information to the retailer first decreases then increases, but the impact on the supplier’s

value of information can be positive or negative. In addition, our numerical results demon-

strated that the respective value of information to the supplier and retailer may increase

or decrease when SB’s perceived quality increases. Such observations may be attributed to

the complication caused by the two-dimensional relationship between the supplier and the

retailer as both partners and competitors.

There are numerous ways to extend this study. First, we assume that the supplier’s

estimate for SB production cost follows a discrete probability with two possible values. One

can generalize this assumption to study a realistic case where the possible cost values follow

a continuous distribution. The model formulated in Corbett et al. (2004) may provide

guidance in this direction. Second, we assume that the perceived quality of the SB is lower

than that of the NB. However, it comes to our attention that there are rising evidences

indicating that more consumers might perceive higher quality from some store brands than

national brands in certain categories; see, e.g., Hale (2011), Tuttle (2012), Bronnenberg et al.

(2015), Chung and Lee (2017). One can relax the assumption on quality values in a future
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study to investigate a more generalized case. Last but not the least, our model is formulated

based on an assumption that the NB supplier is the game leader. One can consider a retailer

to be the game leader and employ a signaling game framework to explore the interaction.
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2.A Appendix

Proof. Proposition 2.1 If w ≤ csqn
qs

, condition (1) is satisfied but condition (2) does not

hold. Thus the local maximum exists at the endpoints of the interval [pn− qn + qs,
pnqs
qn

]. We

have ΠII
r |ps= pnqs

qn
= (qn−w)2

4qn
− T and ΠII

r |ps=pn−qn+qs=
(qs−cs)2

4qs
− T . Given w ≤ csqn

qs
, we have

0 < w
qn
≤ cs

qs
< 1 following which ΠII

r |ps= pnqs
qn
≥ ΠII

r |ps=pn−qn+qs . Indeed, when w ≤ csqn
qs

, ΠII
r is

quasi-concave and monotonically increasing on ps within the closed interval [pn−qn+qs,
pnqs
qn

].

Hence, ΠII∗
r exists at the upper endpoint of the interval, such that

ΠII∗
r = ΠII

r |ps= pnqs
qn

=
(qn − w)2

4qn
− T = ΠI∗

r

If w is in ( csqn
qs
, cs + qn− qs], both conditions (1) and (2) are satisfied. Then pII∗n = w+qn

2
and

pII∗s = cs+qs
2

are indeed the optimal solution. We can obtain the local optimum

ΠII∗
r =

qn − w
2

[
1

2
− w − cs

2(qn − qs)

]
+
qs − cs

2

[
w − cs

2(qn − qs)
− cs

2qs

]
− T. (2.A.1)

If w > cs + qn − qs, we expect ΠII∗
r to exist at the lower endpoint of the interval of ps such

that

ΠII∗
r = ΠII∗

r |ps=pn−qn+qs=
(qs − cs)2

4qs
− T.

However, ΠII∗
r |ps=pn−qn+qs< ΠIII∗

r for any T > 0. Then if ps = pn− qn + qs, it is no longer

profitable for the retailer to carry both brands. Aware of such situation, we proceed to

search for the global optimal profit, i.e., Π∗r = max{ΠI∗
r ,Π

II∗
r ,ΠIII∗

r }. The optimal profit is

compared pair-wisely among three local optima. We will illustrate that the global optimum

differentiates with respect to the contract parameters w and T offered by the national brand

supplier.

We have shown that when w ≤ csqn
qs

, Π∗r = ΠI∗
r and ΠI∗

r is monotonically decreasing on w.

For ΠII
r , if w = csqn

qs
, pII∗s = pII∗n qs

qn
,ΠII∗

r = ΠII
r |pII∗s =

pII∗n qs
qn

= ΠI∗
r |w= csqn

qs
, that is ΠI∗

r and ΠII∗
r

are continuous on w at csqn
qs

.
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Note the lump-sum transfer is not applicable in the case III. When comparing ΠI∗
r and

ΠIII∗
r , we need to discuss how the retailer’s decision differentiates based on T . For any

w ≤ csqn
qs

, there exist a threshold transfer T̄ I(w) ≥ 0, such that ΠI∗
r |T=T̄ I(w)= ΠIII∗

r . We have

It follows from (2.4.3) that T̄ I |w=0= qn
4
− (qs−cs)2

4qs
and T̄ I |w= csqn

qs
= (qn−qs)(qs−cs)2

4q2s
. Directly

differentiation on T̄ I(w)w.r.t. w, we have dT̄ I(w)
dw

= w−qn
2qn

< 0, i.e., T̄ I(w)decreases in w.

Hence, if the national brand supplier charges an wholesale price w ∈ [0, csqn
qs

] and a reasonable

fixed payment that lower than the threshold value T̄ I(w), it is more profitable for the retailer

to not introduce the SB and carry NB only; if the fixed payment is higher than the threshold,

it would be better off to only produce SB.

Given any w ∈ ( csqn
qs
, cs + qn − qs), we firstly compare ΠI∗

r with ΠII∗
r . We have proved

that ΠI∗
r with ΠII∗

r are continuous at w = csqn
qs

. After some algebra, we notice that ΠI∗
r

with ΠII∗
r are both monotonically decreasing on w, and dΠII∗

r (w)
dw

< dΠII∗
r (w)
dw

. Therefore, if

csqn
qs

< w ≤ cs + qn − qs, carrying both products is more profitable for the retailer. To

compare ΠII∗
r with ΠIII∗

r , we again use a threshold transfer T̄ II to determine whether to

carry the national brand. For any w ∈ ( csqn
qs
, cs + qn− qs], there exists a T̄ II(w) > 0 given by

(2.4.4), such that ΠII∗
r |T=T̄ II(w)= ΠIII∗

r . The value of T̄ II at the endpoints of the interval for

w can be easily obtained that T̄ II |w= csqn
qs

= (qn−qs)(qs−cs)2

4q2s
and T̄ II |w=cs+qn−qs= 0. Take direct

derivative on T̄ II(w) w.r.t w, we have dT̄ II(w)
dw

= −1
2

+ w−cs
2(qn−qs)

< 0.

Thus, for any w ∈ ( csqn
qs
, cs+qn−qs), if 0 ≤ T < T̄ II(w), Π∗r = ΠII∗

r ; otherwise, Π∗r = ΠIII∗
r .

When w > cs + qn − qs, we can directly claim that for any T > 0, it is never profitable

to carry NB, i.e., Π∗r = ΠIII∗
r .

Proof. Lemma 2.1. Direct differentiation on ΠI
r given by 2.A.1 with respect to pn yields

dΠI
r

dpIn
= w+qn−2pn

qn
and d2ΠI

r

dpIn
2 = − 2

qn
< 0. Solving dΠI

r

dpIn
= 0, we can get pI∗n = w+qn

2
. Substituting

pI∗n into ΠI
r, we have ΠI∗

r = (qn−w)2

4qn
− T. The derivations of pIII∗s and ΠIII∗

r are obtained in a

similar manner and omitted here.
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Proof. Lemma 2.2. The occurrence of case I implies that 0 ≤ w ≤ csqn
qs

and 0 < T ≤ T̄ I(w)

given which the retailer will price NB as pI∗n . We can easily observe that ΠI
n is increasing in

T . Thus in the optimal contract, T ∗ = T̄ I(w). The retailer consequently gets the reservation

profit ΠIII∗
r .

Substitute in pI∗n and T ∗ and taking direct differentiation on ΠI
n with respect to w, we

have dΠI
n(w)
dw

= cn− w
2qn

and d2ΠI
n(w)

dw2 = − 1
2qn

< 0. We can obtain w∗ = cn from dΠI
n(w)
dw

= 0. If

cn ≤ csqn
qs

, then 0 ≤ w∗ ≤ csqn
qs

is indeed satisfied. As a result, the retailer will choose to carry

the national brand only, i.e.,

ΠI∗
n = ΠI

n|w=cn=
(qn − cn)2

4qn
− (qs − cs)2

4qs
. (2.A.2)

If cn >
csqn
qs

, since the profit function is concave and decreasing on w for any w ≤ csqn
qs

, the

optimal solution exists at the endpoint of the interval, i.e., w∗ = csqn
qs

. We have

ΠI∗
n = ΠI

n|w= csqn
qs

=
2(csqn − cnqs)(qs − cs) + (qn − qs)(qs − cs)2

4q2
s

.

Case II: If the retailer decides to carry both products, then the national brand supplier’s

profit function is

max
(w,T )

ΠII
n = (w − cn)(1− pn − ps

qn − qs
) + T (2.A.3)

Following the Proposition 1, the occurrence of case II suggests that csqn
qs

< w < cs+qn−qs

and 0 < T ≤ T̄ II(w) given which the retailer will set the retailer prices for NB and SB as

{pII∗n , pII∗s }. Similar to case I, we can easily verify that T ∗ = T̄ II(w) and the retailer only

earns the reservation profit ΠIII∗
r .

After some algebra, we have w∗ = cn by solving dΠII
n (w)
dw

= 0, noting d2ΠII
n (w)

dw2 < 0. If

cn ≤ csqn
qs

, ΠII
n is quasi-concave and decreasing on w for any w ∈ ( csqn

qs
, cs + qn − qs]. w∗ is

then forced to take the left ending-point value of the interval, i.e., w∗ = csqn
qs

. Thus

ΠII∗
n = ΠII

n |w= csqn
qs

=
2(csqn − cnqs)(qs − cs) + (qn − qs)(qs − cs)2

4q2
s

= ΠI
n|w= csqn

qs
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If csqn
qs

< cn ≤ cs + qn − qs, w∗ = cn is indeed the optimal solution. Then we have

ΠII∗
n = ΠII

n |w=cn=
(qn − cn − qs + cs)

2

4(qn − qs)
. (2.A.4)

If cn > cs + qn − qs, w
∗ then takes the value cs + qn − qs due to the quasi-concavity and

monotonicity on w in ( csqn
qs
, cs + qn − qs]. Thus,

ΠII∗
n = ΠII

n |w=cs+qn−qs= 0.

In such extreme case that the national brand supplier’s production cost is too high, selling

products to the retailer is no longer a profitable option.

We compare the supplier’s profit among the three cases to seek her optimal profit, i.e

Π∗n = max{ΠI∗
n , ΠII∗

n , ΠIII∗
n }, on various intervals of cn.

(1) If cn ≤ csqn
qs

, ΠI∗
n = ΠI

n|wI∗=cn , ΠII∗
n = ΠII

n |wII∗= csqn
qs

. When we compare the expected profit

among the three case, we have that ΠI∗
n − ΠII∗

n = (csqn−cnqs)2

4qnq2s
≥ 0, and ΠI∗

n = (qn−cn)2

4qn
−

(qs−cs)2

4qs
≥ 0 = ΠIII

n .

(2) If csqn
qs

< cn ≤ cs + qn − qs, ΠI∗
n = ΠI

n|wI∗= csqn
qs

, ΠII∗
n = ΠII

n |wII∗=cn . Again, we can easily

derive that ΠII∗
n − ΠI∗

n = (csqn−cnqs)2

4q2s(qn−qs)
> 0 and ΠII∗

n = (qn−cn−qs+cs)2

4(qn−qs)
≥ 0 = ΠIII

n .

(3) If cn > cs + qn− qs, ΠI∗
n = ΠI

n|wI∗= csqn
qs

, ΠII∗
n = ΠII

n |wII∗=cs+qn−qs= 0. By transforming ΠI∗
n ,

we get ΠI∗
n = qs−cs

4qs2
[(csqn − cnqs) + qs(cs + qn − qs − cn)] < 0.

Given any cn > cs + qn− qs, we compare the profit functions cross three cases, obtaining

that ΠI∗
n < ΠII∗

n = ΠIII∗
n = 0.

Proof. Lemma 2.3. Proposition 2.1 implies that for any (w, T ) satisfies Πr(w, T, c
i
s) ≥

ΠIII
r (cis) iff w ≤ cis + qn − qs and T ≤ T̄ i(w),∀i = L,H. Next, we want to show that

for any w ∈ [0, cLs + qn− qs] , we have ∆(w)
def
= T̄H(w)− T̄L(w) > 0 . It follows from ?? that

∆(w) have different forms in different ranges of w . Therefore, we consider the following

cases:
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(1) 0 ≤ w ≤ cLs qn
qs

. In conjunction with cLs < cHs , we have w < cHs qn
qs

. Therefore, ??

implies that ∆(w) = T̄ IH(w)− T̄ IL(w) = (qs−cLs )2−(qs−cHs )2

4qs
> 0.

(2) cLs qn
qs

< w ≤ cLs + qn−qs. We consider the following two sub-cases:

(2-i) If cLs + qn − qs ≤ cHs qn
qs

, then we have cLs qn
qs

< w ≤ cLs + qn − qs ≤ cHs qn
qs

< cHs + qn − qs.

Therefore, ?? implies that ∆(w) = T̄ IH(w) − T̄ IIL(w) = (qn−w)2

4qn
− (qs−cHs )2

4qs
− (cLs −w+qn−qs)2

4(qn−qs)
.

Since ∂∆
∂w

= cLs qn−qsw
2q2n−2qnqs

< 0 for all w > cLs qn
qs

, it follows from ∆|w=cLs +qn−qs=
(qs−cLs )2

4qn
− (qs−cHs )

2

4qs
> 0

that ∆(w) > 0,∀w ∈ ( c
L
s qn
qs
, cLs + qn − qs].

(2-ii) If cHs qn
qs

< cLs + qn − qs, then we have cLs qn
qs

< cHs qn
qs

< cLs + qn − qs < cHs + qn − qs.

For cLs qn
qs

< w ≤ cHs qn
qs

, (2-i) implies that ∆(w) = T̄ IH(w) − T̄ IIL(w) and ∂∆
∂w

< 0,∀w >

cLs qn
qs
. Moreover, ∆|

w=
cHs qn
qs

= (qs−cHs )2(qn−qs)2−(cLs qs+qnqs−q2s−cHs qn)2

4(qn−qs)q2s
> 0. Hence, we show ∆(w) >

0,∀w ∈ ( c
L
s qn
qs
, c

H
s qn
qs

]. For w ∈ ( c
H
s qn
qs
, cLs + qn − qs], we have

∆ = T̄ IIH(w)− T̄ IIL(w) = (cHs −cLs )t(cHs +cLs +2qn−2qs−2w)
4t(qn−qs)

> 0 due to cLs < cHs .

In summary, we have shown that T̄H(w) > T̄L(w), ∀w ∈ [0, cLs + qn − qs]. There-

fore, Proposition 1 implies that for any (wL, TL) that satisfies (I.R.L), we have wL ≤

cLs + qn − qs < cHs + qn − qs and TL ≤ T̄L(wL) < T̄H(wL), which implies such (wL, TL)

satisfies Πr(w
L, TL, cHs ) ≥ ΠIII

r (cHs ). Hence, we have Πr(w
H , TH , cHs )

(I.C.H)

≥ Πr(w
L, TL, cHs ) ≥

ΠIII
r (cHs ).

Proof. Lemma 2.4

We have proved that following (I.C.H.), (I.C.L.) and (I.R.L.), (I.R.H.) is redundant. We

now further show that under the (HII , LI) contract, (I.C.H.), (I.C.L.), (I.R.L.) and TH ≥ 0

cannot be simultaneously satisfied so that (HII , LI) contract is never feasible for the supplier.

By offering a (HII , LI) contract, the national brand supplier guides a retailer to carry

both brands if she is high type, and to carry the national brand only if she is low type.

It follows that wH ,TH , wL and TL must be priced according to Proposition 1, i.e., cHs qn
qs

<

wH ≤ cHs + qn−qs, TH ≤ T̄ IIH(wH), wL ≤ cLs qn
qs
, TL ≤ T̄ IL(wL). In conjunction with Lemma
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3, we can predict that if a high-type retailer lies about his type by choosing the (wL, TL),

he will react as carrying the national brand only, i.e., Πr(w
L, TL, cHs ) ≡ ΠI

r(w
L, TL, cHs ).

Hence, (I.C.H.) can be equivalently written as ΠII
r (wH , TH , cHs ) ≥ ΠI

r(w
L, TL, cHs ), or

qn−wH

2
(1

2
− wH−cHs

2(qn−qs)
) + qs−cHs

2
( wH−cHs

2(qn−qs)
− cHs

2qs
)−TH ≥ (qn−wL)

2

4qn
−TL. Rearranging the inequality,

we can obtain the relationship between TH and TL that TH − TL ≤ qn−wH

2
(1

2
− wH−cHs

2(qn−qs)
) +

qs−cHs
2

( wH−cHs
2(qn−qs)

− cHs
2qs

)− (qn−wL)
2

4qn

def
= ∆TU .

Together with TL ≤ T̄ IL(wL), TH ≤ qn−wH

2
(1

2
− wH−cHs

2(qn−qs)
) + qs−cHs

2
( wH−cHs

2(qn−qs)
− cHs

2qs
) −

(qs−cLs )
2

4qs

def
= T̂H . Since ∂ T̂H

∂ wH = wH−cHs −qn+qs
2(qn−qs)

≤ 0, T̂H ≤ T̂H |
wH=

cHs qn
qs

= qn(qs−cHs )
2−(qs−cLs )

2
qs

4q2s
.

If cLs + qn−qs <
cHs qn
qs

, then in conjunction with 1
qn
< 1

qs
, qn(qs−cHs )

2−(qs−cLs )
2
qs

4q2s
< 0 so that TH

has to satisfy TH < 0. In this case, (H II, LI) contract is not feasible. If cHs qn
qs

< cLs + qn−qs,
qn(qs−cHs )

2−(qs−cLs )
2
qs

4q2s
− T̄ IIL(wH) = − (cHs −cLs )(2wHqs−cHs qn−cLs qn)

4qs(qn−qs)
≤ 0. If wH < cLs + qn−qs, then

according to Proposition 1 we can predict that if a low-type retailer chooses the high-type

contract, he would carry both brands, i.e., Πr(w
H , TH , cLs ) ≡ ΠII

r (wH , TH , cLs ). Further

checking (I.C.L.), if follows from ΠI
r(w

L, TL, cLs ) ≥ ΠII
r (wH , TH , cLs ) that TH − TL ≥

qn−wH

2
(1

2
− wH−cLs

2(qn−qs)
) + qs−cLs

2
( wH−cLs

2(qn−qs)
− cLs

2qs
) − (qn−wL)

2

4qn

def
=∆TD. However, ∆TU − ∆TD =

− (cHs −cLs )(2wHqs−cHs qn−cLs qn)
4qs(qn−qs)

< 0, implying (I.C.H.) and (I.C.L.) cannot be simultaneously satis-

fied. If wH < cLs + qn−qs, TH ≤ T̂H ≤ T̂H |wH=cLs +qn−qs=
(cHs −cLs )(cHs qn+cLs qn−2(cLs +qn−qs)qs)

4(qn−qs)qs
< 0.

Therefore, under the parameter setting cHs qn
qs

< cLs + qn−qs, (H II, LI) contract is not feasible

regardless of the value of wH .

Hence we have that (HII , LI) contract is not a feasible option for the supplier.

Proof. Lemma 2.5. Proposition 2.1 implies that a (w, T ) contract, from which a retailer will

earn a profit no less than his reservation profit ΠIII
r (cis), must satisfy w ≤ cis + qn − qs and

T ≤ T̄ i(w),∀i = L,H. We now define ∆(w)
def
= T̄H(w)− T̄L(w) for any w ∈ [0, cLs + qn− qs].

It follows from (2.5.3) that ∆(w) has different forms in different ranges of w. Therefore, we

consider the following cases:
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(1) If 0 ≤ w ≤ cLs qn
qs

, then it follows from cLs < cHs that w ≤ cLs qn
qs

. Therefore, equation

(2.5.3) implies that ∆(w) = T̄ IH(w)− T̄ IL(w) = (qs−cLs )2−(qs−cHs )2

4qs
> 0.

(2) If cLs qn
qs

< w ≤ cLs + qn − qs, then the following two parameter settings should be

discussed separately.

(2-i) Under the parameter setting cLs + qn− qs ≤ cHs qn
qs

, we have cLs qn
qs

< w ≤ cLs + qn− qs ≤
cHs qn
qs

< cHs + qn − qs. Therefore, equation (2.5.3) implies that ∆(w) = T̄ IH(w)− T̄ IIL(w) =

(qn−w)2

4qn
− (qs−cHs )2

4qs
− (cLs −w+qn−qs)2

4(qn−qs)
. Since ∂∆(w)

∂w
= cLs qn−qsw

2q2n−2qnqs
< 0 for all w > cLs qn

qs
, it follows

from ∆(w)|w=cLs +qn−qs=
(qs−cLs )2

4qn
− (qs−cHs )

2

4qs
> 0 that ∆(w) > 0,∀w ∈ ( c

L
s qn
qs
, cLs + qn − qs].

(2-ii) Under the parameter setting cHs qn
qs

< cLs + qn − qs, we naturally have cLs qn
qs

< cHs qn
qs

<

cLs + qn − qs < cHs + qn − qs. For cLs qn
qs

< w ≤ cHs qn
qs

, (2-i) has shown that ∆(w) = T̄ IH(w) −

T̄ IIL(w) and ∂∆
∂w

< 0,∀w > cLs qn
qs
.Moreover, ∆(w)|

w=
cHs qn
qs

= (qs−cHs )2(qn−qs)2−(cLs qs+qnqs−q2s−cHs qn)2

4(qn−qs)q2s
>

0. Hence, we obtain ∆(w) > 0,∀w ∈ ( c
L
s qn
qs
, c

H
s qn
qs

]. For cHs qn
qs

< w ≤ cLs + qn − qs, we have

∆(w) = T̄ IIH(w)− T̄ IIL(w) = (cHs −cLs )t(cHs +cLs +2qn−2qs−2w)
4t(qn−qs)

> 0 due to cLs < cHs .

Hence, we have that T̄H(w) > T̄L(w),∀w ∈ [0, cLs + qn − qs].

Proof. Proposition 2.2

Under each parameter setting, we compare the local optima from each subcontract option

throughout all the intervals of cn. (I.R.L.) constraint was set to be binding at the optimality,

implying that a low-type retailer will only obtain his reservation profit, i.e., Πr(w
L, TL, cLs ) =

ΠIII
r (cLs ). Consequently, (I.C.L.) can be rewritten as ΠIII

r (cLs ) ≥ Πr(w
H , TH , cLs ). In order

to check the feasibility of the optimal solution in the (I.C.L.) constraint, it follows the

Proposition 1 that if wH∗ ≤ cLs qn
qs

and TH∗ ≥ T̄ IL(wH∗), or cLs qn
qs

< wH∗ ≤ cLs + qn−qs and

TH∗ ≥ T̄ IIL(wH∗), or wH∗ > cLs + qn−qs and TH∗ > 0, then (I.C.L) is satisfied. We will

show that with substituting the resulting optimal parameters (wH∗, TH∗), (wL∗, TL∗) into

(I.C.L), (I.C.L) is indeed satisfied.

1. cLs + qn−qs <
cHs qn
qs
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(1-i) If cn ≤ cLs qn
qs

, Π∗n(HI , LI) − Π∗n(HI , LII) = (1−v)(cLs qn−cnqs)
2

4qnq2s
≥ 0; Π∗n(HI , LII) −

Π∗n(HII , LII) = v(cHs qn−cnqs)
2

4qnq2s
> 0. Hence, (HI , LI) contract is more profitable, and wH∗ =

cn, T
H∗ = (qn−cn)2

4qn
− (qs−cLs )

2

4qs
, wL∗ = cn, T

L∗ = (qn−cn)2

4qn
− (qs−cLs )

2

4qs
. Since wH∗ = cn ≤ cLs qn

qs
,

TH∗ − T̄ IL(wH∗) = 0, (I.C.L.) is satisfied and binding at optimality.

(1-ii) If cLs qn
qs

< cn <
(cLs +qn−qs)[(1−v)qn−vqs]+vcLs qn

(1−v)qn
,Π∗n(HI , LII)−Π∗n(HI , LI) = (1−v)2qn(cLs qn−cnqs)2

4(qn−qs)q2s((1−v)qn−vqs)
>

0; Π∗n(HI , LII)−Π∗n(HII , LII) = v(cHs qn−cnqs)2

4qnq2s
> 0. Therefore, (HI , LII) contract is more prof-

itable, and wL∗ = (cn−vcn−vcLs )qn
qn−vqn−vqs , TL∗ =

(cLs +qn−qs−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4(qn−qs)
, wH∗ = cn, T

H∗ = (qn−cn)2

4qn
−

(qn−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4qn
+

(cLs +qn−qs−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4(qn−qs)
. Since wH∗ = cn and cLs qn

qs
< cn < cLs +qn−qs, we

compare TH∗ with T̄ IIL(wH∗) and obtain TH∗ − T̄ IIL(wH∗) = v(2(1−v)qn−vqs)(cLs qn−cnqs)
2

4qn(qn−qs)((1−v)qn−vqs)2
> 0.

(I.C.L.) is satisfied.

(1-iii) If (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn
(1−v)qn

< cn ≤ cLs + qn − qs, Π∗n(HI , LII) − Π∗n(HI , LI) =

v(qs−cLs )
2
(qn−qs)

4qnqs
− (1−v)(qs−cLs )((qn−qs−2cn)qs+cLs (qn+qs))

4q2s
≥ (qs−cLs )

2
(qn−qs)((1−v)qn−vqs)

4qnq2s
> 0, Π∗n(HI , LII)−

Π∗n(HII , LII) = v(cHs qn−cnqs)
2

4qnq2s
> 0. Hence, (HI , LII) contract is more profitable,

wH∗ = cn, T
H∗ =

(qn − cn)2

4qn
− (qs − cLs )

2

4qn
,

wL∗ = cLs + qn − qs, TL∗ = 0.

Since wH∗ = cn and
cLs qn
qs

< cn ≤ cLs + qn − qs, we compare TH∗ with T̄ IIL(wH∗), resulting

in that TH∗ − T̄ IIL(wH∗) = (cLs +qn−qs−cn)(cnqs−cLs qn+(qn−qs)(qs−cLs ))
4qn(qn−qs)

≥ 0. Therefore, (I.C.L.) is

satisfied.

2. cHs qn
qs

< cLs + qn − qs

(2-i) If cn ≤ cLs qn
qs

, Π∗n(HI , LI)−Π∗n(HI , LII :
cLs qn
qs

< wL <
cHs qn
qs

)= (1−v)(cLs qn−cnqs)
2

4qnq2s
>

0; Π∗n(HI , LII :
cLs qn
qs

< wL <
cHs qn
qs

) − Π∗n(HI , LII :
cHs qn
qs

< wL < cLs + qn−qs) =

(cHs −cLs )qn(cLs ((1−v)qn+vqs)+cHs ((1−v)qn−vqs)−2(1−v)cnqs)
4q2s(qn−qs)

≥ (cHs −cLs )
2
qn((1−v)qn−vqs)

4(qn−qs)q2s
> 0; Π∗n(HI , LII :

cLs qn
qs

< wL <
cHs qn
qs

) − Π∗n(HII , LII :
cLs qn
qs

< wL <
cHs qn
qs

) = v(cHs qn−cnqs)
2

4qnq2s
> 0; Π∗n(HI , LII :

92



cHs qn
qs

< wL < cLs + qn−qs) − Π∗n(HII , LII :
cHs qn
qs

< wL < cLs + qn−qs) = v(cHs qn−cnqs)
2

4qnq2s
> 0.

Hence, (HI , LI) contract is the most profitable contract among six options, and

wH∗ = cn, TH∗ =
(qn − cn)2

4qn
− (qs − cLs )

2

4qs
,

wL∗ = cn, TL∗ =
(qn − cn)2

4qn
− (qs − cLs )

2

4qs
.

Since wH∗ = cn ≤ cLs qn
qs

, TH∗ − T̄ IL(wH∗) = 0, (I.C.L.) is satisfied and binding at optimality.

(2-ii) If
cLs qn
qs

< cn ≤ cHs qn
qs
− v(cHs −cLs )

1−v , Π∗n(HI , LII : cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HI , LI) =

(1−v)2qn(cnqs−cLs qn)
2

4(qn−qs)q2s((1−v)qn−vqs)
> 0; Π∗n(HI , LII : cLs qn

qs
< wL < cHs qn

qs
) − Π∗n(HI , LII : cHs qn

qs
< wL <

cLs + qn − qs) = qn(((1−v)cn−vcLs )qs+cHs ((1−v)qn−vqs))
2

4(qn−qs)q2s((1−v)qn−vqs)
> 0; Π∗n(HI , LII : cLs qn

qs
< wL < cHs qn

qs
) −

Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) = v(cHs qn−cnqs)
2

4qnq2s
> 0; Π∗n(HII , LII : cLs qn

qs
< wL < cHs qn

qs
) −

Π∗n(HII , LII : cHs qn
qs

< wL < cLs + qn − qs) = qn(((1−v)cn−vcLs )qs+cHs ((1−v)qn−vqs))
2

4(qn−qs)q2s((1−v)qn−vqs)
> 0. Therefore,

in this case, (HI , LII : cLs qn
qs

< wL < cHs qn
qs

) is the most profitable option for the national

brand supplier, and

wH∗ = cn, T
H∗ =

(qn − cn)2

4qn
−

(qn − (cn−vcn−vcLs )qn
qn−vqn−vqs )

2

4qn
+

(cLs + qn − qs − (cn−vcn−vcLs )qn
qn−vqn−vqs )

2

4(qn − qs)
,

wL∗ =
(cn − vcn − vcLs )qn
qn − vqn − vqs

, TL∗ =
(cLs + qn − qs − (cn−vcn−vcLs )qn

qn−vqn−vqs )
2

4(qn − qs)
.

Since wH∗ = cn and cLs qn
qs

< cn < cLs + qn − qs, we compare TH∗ with T̄ IIL(wH∗) and obtain

TH∗ − T̄ IIL(wH∗) = v(2(1−v)qn−vqs)(cLs qn−cnqs)
2

4qn(qn−qs)((1−v)qn−vqs)2
> 0, implying that (I.C.L.) is satisfied.

(2-iii) If cHs qn
qs
− v(cHs −cLs )

1−v < cn ≤ cHs qn
qs

, Π∗n(HI , LII : cHs qn
qs

< wL < cLs +qn−qs)−Π∗n(HI , LII :

cLs qn
qs

< wL < cHs qn
qs

) = (((1−v)cn−vcLs )qs−cHs ((1−v)qn−vqs))
2

4q2s(1−v)(qn−qs)
> 0; Π∗n(HI , LII : cLs qn

qs
< wL < cHs qn

qs
) −

Π∗n(HI , LI) = (cHs −cLs )qn(2(1−v)cnqs−cLs ((1−v)qn+vqs)−cHs ((1−v)qn−vqs))
4(qn−qs)q2s

≥ (cHs −cLs )
2
qn((1−v)qn−vqs)

4(qn−qs)q2s
> 0;

Π∗n(HI , LII : cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) = v(cHs qn−cnqs)
2

4qnq2s
> 0;

Π∗n(HI , LII : cHs qn
qs

< wL < cLs + qn − qs) − Π∗n(HII , LII : cHs qn
qs

< wL < cLs + qn − qs) =

v(cHs qn−cnqs)
2

4qnq2s
> 0. Therefore, (HI , LII : cHs qn

qs
< wL < cLs + qn − qs) is the most profitable
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option for the national brand supplier, and

wH∗ = cn,

TH∗ =
(qn − cn)2

4qn
+

(cLs + qn − qs − (cn + v(cHs −cLs )
1−v ))

2

4(qn − qs)

− [
qn − (cn + v(cHs −cLs )

1−v )

2
(
1

2
−
cn + v(cHs −cLs )

1−v − cHs
2(qn − qs)

) +
qs − cHs

2
(
cn + v(cHs −cLs )

1−v − cHs
2(qn − qs)

− cHs
2qs

)],

wL∗ = cn +
v(cHs − cLs )

1− v
, TL∗ =

(cLs + qn − qs − (cn + v(cHs −cLs )
1−v ))

2

4(qn − qs)
.

Since wH∗ = cn and cLs qn
qs

< cn < cLs + qn − qs, we compare TH∗ with T̄ IIL(wH∗), having

TH∗ − T̄ IIL(wH∗) = 2((1−v)cncHs +v(cHs −cLs )
2
)qnqs−(1−v)(cHs

2
q2n+c2nq

2
s)

4(1−v)(qn−qs)qnqs
, which increases on cn. As a

result, TH∗ − T̄ IIL(wH∗) ≥ (TH∗ − T̄ IIL(wH∗))|
cn=

cHs qn
qs
− v(cHs −cLs )

1−v

= v(cHs −cLs )
2
(2(1−v)qn−vqs)

4(1−v)2qn(qn−qs)
> 0.

(I.C.L.) constraint is satisfied.

In a summary for (2-ii) and (2-iii), for any cn ∈ ( c
L
s qn
qs
, c

H
s qn
qs

) , (HI , LII) is the most

profitable contract for the supplier.

(2-iv) If cHs qn
qs

< cn < cLs + qn − qs − v(cHs −cLs )
1−v , Π∗n(HII , LII : cHs qn

qs
< wL < cLs + qn −

qs) − Π∗n(HI , LII : cHs qn
qs

< wL < cLs + qn − qs) = v(cHs qn−cnqs)
2

4q2s(qn−qs)
> 0; Π∗n(HII , LII : cHs qn

qs
<

wL < cLs + qn − qs)− Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) = (((1−v)cn−vcLs )qs−cHs ((1−v)qn−vqs))
2

4(1−v)(qn−qs)q2s
> 0;

Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HI , LII : cLs qn
qs

< wL < cHs qn
qs

) = v(cHs qn−cnqs)
2

4q2s(qn−qs)
> 0;

Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HI , LI) ≥ v(cHs qn−cnqs)
2

4(qn−qs)q2s
+ (cHs −cLs )

2
qn((1−v)qn+vqs)

4(qn−qs)q2s
> 0.

Therefore, (HII , LII : cHs qn
qs

< wL < cLs + qn− qs) is most profitable contract for the supplier,

and

wH∗ = cn, T
H∗ =

cLs
2

+ (cn − qn + qs)
2 + 2cLs (qn − qs − (cn + v(cHs −cLs )

1−v )) + 2vcHs (cHs −cLs )
1−v

4(qn − qs)

w∗L = cn +
v(cHs − cLs )

1− v
, TL∗ =

(cLs + qn − qs − (cn + v(cHs −cLs )
1−v ))

2

4(qn − qs)
.
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Since wH∗ = cn and cLs qn
qs

< cn < cLs + qn − qs, we compare TH∗ with T̄ IIL(wH∗) and obtain

TH∗ − T̄ IIL(wH∗) = v(cHs −cLs )
2

2(1−v)(qn−qs)
> 0, which implies that (I.C.L.) is satisfied.

(2-v) If cLs + qn − qs − v(cHs −cLs )
1−v < cn < cLs + qn − qs, Π∗n(HII , LII : cHs qn

qs
< wL <

cLs + qn− qs)−Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) ≥ (1−vt)(qs(cLs +qn−qs)−cHs qn)
2

4(qn−qs)q2s
> 0; Π∗n(HII , LII :

cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HI , LI) ≥ v(cHs qn−cnqs)
2

4q2s(qn−qs)
+ (cHs −cLs )

2
qn((1−v)qn+vqs)

4(qn−qs)q2s
> 0; Π∗n(HII , LII :

cHs qn
qs

< wL < cLs + qn − qs) − Π∗n(HI , LII : cHs qn
qs

< wL < cLs + qn − qs) = v(cHs qn−cnqs)
2

4q2s(qn−qs)
> 0;

Π∗n(HII , LII : cLs qn
qs

< wL < cHs qn
qs

) − Π∗n(HI , LII : cLs qn
qs

< wL < cHs qn
qs

) = v(cHs qn−cnqs)
2

4q2s(qn−qs)
> 0.

Hence, in this case, (HII , LII : cHs qn
qs

< wL < cLs + qn − qs) is most profitable contract for the

supplier;

wH∗ = cn, T
H∗ =

v(cLs + qn − qs − cn)(2cHs − cLs + qn − qs − cn)

4(qn − qs)
,

wL∗ = cLs + qn − qs, TL∗ = 0.

Since wH∗ = cn and cLs qn
qs

< cn < cLs + qn − qs, we compare TH∗ with T̄ IIL(wH∗) and obtain

TH∗ − T̄ IIL(wH∗) = (cHs −cLs )(cLs +qn−qs−cn)
2(qn−qs)

> 0, which verifies that (I.C.L.) is satisfied.

From (ii-4) and (ii-5), we obtain that for any cn ∈ ( c
H
s qn
qs
, cLs + qn − qs] , (HII , LII) is the

most profitable contract for the national brand supplier.

In summary, throughout all the possible parameter settings of cHs , cLs and cn, (I.C.L.) is

automatically satisfied by the optimal solution.

Proof. Proposition 2.3.

We present and compare the values of information to each entity throughout all possible

parameter settings as follows.

Under the parameter setting cLs + qn − qs < cHs qn
qs

1 If cn ≤ cLs qn
qs

, Vr = v( (qs−cHs )
2

4qs
− (qs−cLs )

2

4qs
) and Vn = v( (qs−cLs )

2

4qs
− (qs−cHs )

2

4qs
). It is easy to

obtain Vn − |Vr|= 0.

2 If cLs qn
qs

< cn ≤ (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn
(1−v)qn

, Vr = v( (qs−cHs )
2

4qs
− (qn−

(cn−vcn−vcLs )qn
qn−vqn−vqs

)
2

4qn
+
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(cLs +qn−qs−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4(qn−qs)
) and Vn = v[

(qn−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4qn
− (qs−cHs )

2

4qs
]+(1−v)[ (qn−cn−qs+cLs )

2

4(qn−qs)
−

( (cn−vcn−vcLs )qn
qn−vqn−vqs − cn)(1

2
−

(cn−vcn−vcLs )qn
qn−vqn−vqs

−cLs
2(qn−qs)

)] − (cLs −
(cn−vcn−vcLs )qn

qn−vqn−vqs
+qn−qs)

2

4(qn−qs)
. It follows that

Vn − |Vr|= (1−v)v2(cnqs−cLs qn)
2

4(qn−qs)(qn−vqn−vqs)2
> 0.

3 If (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn
(1−v)qn

< cn ≤ cLs + qn − qs, then Vr = v( (qs−cHs )
2

4qs
− (qs−cLs )

2

4qn
) and

Vn = v( (qs−cLs )
2

4qn
− (qs−cHs )

2

4qs
)+(1−v) (qn−cn−qs+cLs )

2

4(qn−qs)
. Thus, Vn−|Vr|= (1−v) (cLs +qn−qs−cn)

2

4(qn−qs)
≥

0.

Under the parameter setting cHs qn
qs

< cLs + qn − qs

1 If cn ≤ cLs qn
qs

, Vr = v( (qs−cHs )
2

4qs
− (qs−cLs )

2

4qs
) and Vn = v( (qs−cLs )

2

4qs
− (qs−cHs )

2

4qs
). Then we have

Vn − |Vr|= 0.

2 If cLs qn
qs

< cn ≤ cHs qn
qs
−v(cHs −cLs )

1−v , Vr = v( (qs−cHs )
2

4qs
− (qn−

(cn−vcn−vcLs )qn
qn−vqn−vqs

)
2

4qn
+

(cLs +qn−qs−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4(qn−qs)
)

and Vn = v[ (qn−cn)2

4qn
− (qs−cHs )

2

4qs
+

(qn−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4qn
]+(1−v)[ (qn−cn−qs+cLs )

2

4(qn−qs)
−( (cn−vcn−vcLs )qn

qn−vqn−vqs −

cn)(1
2
−

(cn−vcn−vcLs )qn
qn−vqn−vqs

−cLs
2(qn−qs)

)]− (cLs +qn−qs−
(cn−vcn−vcLs )qn

qn−vqn−vqs
)
2

4(qn−qs)
. After some algebra, we can show

that Vn − |Vr|= (1−v)v2(cnqs−cLs qn)
2

4(qn−qs)(qn−vqn−vqs)2
> 0.

3 If cHs qn
qs
−v(cHs −cLs )

1−v < cn ≤ cLs +qn−qs−
v(cHs −cLs )

1−v , Vr = v(cHs −cLs )(2(1−v)(cn−qn+qs)−(1−3v)cHs −cLs −vcLs )
4(1−v)(qn−qs)

and Vn = −v(cHs −cLs )(2(1−v)(cn−qn+qs)−(1−2v)cHs −cLs )
4(1−v)(qn−qs)

. It follows that Vn−|Vr|= v2(cHs −cLs )
2

4(1−v)(qn−qs)
>

0.

4 If cLs +qn−qs− v(cHs −cLs )
1−v < cn ≤ cLs +qn−qs, Vr = −v(cHs −cLs )

2

4(qn−qs)
and Vn = v (cHs +qn−qs−cn)

2

4(qn−qs)
+

(1−v) (cLs +qn−qs−cn)
2

4(qn−qs)
−v(cn−cLs −qn+qs)(cn−2cHs +cLs −qn+qs)

4(qn−qs)
. Thus, Vn−|Vr|= (1−v) (cLs +qn−qs−cn)

2

4(qn−qs)
≥

0.

Hence, we have that Vn ≥ |Vr| holds throughout all the parameter settings.

Proof. Proposition 2.4.

As the value of information has different forms depending on the value of cn, the impact of

cn on |Vr| and Vn is discussed for each parameter setting and interval of cn.
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(1) Parameter Setting 1: cLs + qn − qs < cHs qn
qs

For the retailer, if cn ≤ cLs qn
qs

, ∂|Vr|
∂cn

= 0; if cLs qn
qs

< cn < (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn
(1−v)qn

,

∂|Vr|
∂cn

= − (1−v)2vqn(cnqs−cLs qn)

2(qn−qs)((1−v)qn−vqs)2
< 0; if (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
< cn < cLs +qn−qs, ∂|Vr|

∂cn
= 0.

For the supplier, if cn ≤ cLs qn
qs

, ∂Vn

∂cn
= 0; if cLs qn

qs
< cn < (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
,

∂Vn

∂cn
= (1−v)v(cLs qn−cnqs)

2(qn−qs)((1−v)qn−vqs)
< 0; if (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
< cn < cLs + qn − qs,

∂Vn

∂cn
=

(1−v)(cn−cLs −qn+qs)
2(qn−qs)

< 0.

(2) Parameter Setting 2: cHs qn
qs

< cLs + qn − qs

For the retailer, if cn ≤ cLs qn
qs

, ∂|Vr|
∂cn

= 0; if cLs qn
qs

< cn <
cHs qn
qs
−v(cHs −cLs )

1−v ,∂|Vr|
∂cn

= (1−v)2vqn(cLs qn−cnqs)

2(qn−qs)((1−v)qn−vqs)2
<

0; if cHs qn
qs
− v(cHs −cLs )

1−v < cn < cLs +qn−qs− v(cHs −cLs )
1−v ,∂|Vr|

∂cn
= v(cLs −cHs )

2(qn−qs)
< 0; if cLs +qn−qs− v(cHs −cLs )

1−v <

cn < cLs + qn − qs,∂|Vr|
∂cn

= 0.

For the supplier, if cn ≤ cLs qn
qs

, ∂Vn

∂cn
= 0; if

cLs qn
qs

< cn < cHs qn
qs
− v(cHs −cLs )

1−v , ∂Vn

∂cn
=

v(1−v)(cLs qn−cnqs)
2(qn−qs)((1−v)qn−vqs)

< 0; if cHs qn
qs
− v(cHs −cLs )

1−v < cn < cLs + qn − qs − v(cHs −cLs )
1−v , ∂Vn

∂cn
= v(cLs −cHs )

2(qn−qs)
< 0;

if cLs + qn − qs − v(cHs −cLs )
1−v < cn < cLs + qn − qs, ∂Vn

∂cn
= (1−v)(cn−cLs −qn+qs)

2(qn−qs)
< 0.

Proof. Proposition 2.5

(1) Parameter Setting 1: cLs + qn − qs < cHs qn
qs

If cn ≤ cLs qn
qs

, ∂Vn

∂cHs
= v(qs−cHs )

2qs
> 0, ∂Vn

∂cLs
= v(cLs −qs)

2qs
< 0; if cLs qn

qs
< cn <

(cLs +qn−qs)((1−v)qn−vqs)+vcLs qn
(1−v)qn

,

∂Vn

∂cHs
= v(qs−cHs )

2qs
> 0, ∂Vn

∂cLs
= v((1−v)cnqn−cLs (qn−vqs)−(qn−qs)((1−v)qn−vqs))

2(qn−qs)((1−v)qn−vqs)
< 0; if (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
<

cn < cLs + qn − qs, ∂Vn

∂cHs
= v(qs−cHs )

2qs
> 0, ∂Vn

∂cLs
= (1−v)(cLs +qn−qs−cn)

2(qn−qs)
− v(qs−cLs )

2qn
< 0.

(2) Parameter Setting 2: cHs qn
qs

< cLs + qn − qs

If cn ≤ cLs qn
qs

, ∂Vn

∂cHs
= v(qs−cHs )

2qs
> 0, ∂Vn

∂cLs
= v(cLs −qs)

2qs
< 0; if cLs qn

qs
< cn < cHs qn

qs
− v(cHs −cLs )

1−v ,

∂Vn

∂cHs
= v(qs−cHs )

2qs
> 0, ∂Vn

∂cLs
= v((1−v)cnqn−cLs (qn−vqs)−(qn−qs)((1−v)qn−vqs))

2(qn−qs)((1−v)qn−vqs)
< 0; if cHs qn

qs
− v(cHs −cLs )

1−v ≤

cn < cLs + qn − qs − v(cHs −cLs )
1−v , ∂Vn

∂cHs
= v((1−2v)cHs −(1−v)cn+vcLs +qn−vqn−qs+vqs)

2(1−v)(qn−qs)
> 0, ∂Vn

∂cLs
=

−v(qn−vqn−qs+vqs−(1−v)cn−vcHs +cLs )
2(1−v)(qn−qs)

< 0; if cLs + qn − qs − v(cHs −cLs )
1−v ≤ cn < cLs + qn − qs,

∂Vn

∂ cHs
= v(cHs −cLs )

2(qn−qs)
> 0, ∂Vn

∂ cLs
= qn−vqn−qs+vqs−(1−v)cn−vcHs +cLs

2(qn−qs)
< 0.

Example 1: Under parameter setting cHs qn
qs

< cLs + qn − qs, if cHs qn
qs
− v(cHs −cLs )

1−v < cn ≤
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cLs + qn − qs − v(cHs −cLs )
1−v , ∂|Vr|

∂cHs
= −v((1−v)(cn−cHs −qn+qs)+2v(cHs −cLs ))

2(1−v)(qn−qs)
, directly following that

∂|Vr|
∂cHs

decreases on cn. Then for any cn ∈ ( c
H
s qn
qs
− v(cHs −cLs )

1−v , cLs + qn−qs −
v(cHs −cLs )

1−v ], ∂|Vr|
∂cHs
≤

∂|Vr|
∂cHs
|
cn=

cHs qn
qs
− v(cHs −cLs )

1−v

= 1
2
v(1 − cHs

qs
− v(cHs −cLs )

(1−v)(qn−qs)
). Directly following cHs qn

qs
< cLs + qn − qs −

v(cHs −cLs )
1−v , we have v(cHs −cLs )

1−v < cLs +qn−qs− cHs qn
qs

. With some algebra, we have that 1
2
v(1− cHs

qs
−

v(cHs −cLs )
(1−v)(qn−qs)

) > 1
2
v( (cLs +qn−qs)qs−cHs qn+(qs−cHs )(qn−qs)

qs(qn−qs)
) > 0, resulting in ∂|Vr|

∂cHs
|
cn=

cHs qn
qs
− v(cHs −cLs )

1−v

> 0.

However, ∂|Vr|
∂cHs
|
cn=cLs +qn−qs− v(cHs −cLs )

1−v

= v(1−2v)(cHs −cLs )
2(1−v)(qn−qs)

in which the sign depends on the value

of v, the probability of high type. It leads to that |Vr| consistently increases on cHs ∀cn ∈

( c
H
s qn
qs
− v(cHs −cLs )

1−v , cLs + qn − qs − v(cHs −cLs )
1−v ] iff v ≤ 1

2
; otherwise, if v > 1

2
, then there is a unique

c̃n such that if cHs qn
qs
− v(cHs −cLs )

1−v < cn ≤ c̃n, then ∂|Vr|
∂cHs
≥ 0; if c̃n < cn ≤ cLs + qn− qs− v(cHs −cLs )

1−v ,

then ∂|Vr|
∂cHs

< 0. Hence, |Vr| could either increase or decrease on cHs depending on v and cn.

Example 2: Under parameter setting cHs qn
qs

< cLs + qn−qs, if
cLs qn
qs

< cn <
cHs qn
qs
− v(cHs −cLs )

1−v ,

∂|Vr|
∂ cLs

= v((1−v)2cnq2n−(qn−qs)((1−v)qn−vqs)2−cLs ((1−v2)q2n−(2−v)vqnqs+v2q2s))

2(qn−qs)((1−v)qn−vqs)2
. It is easy to observe that

∂|Vr|
∂cLs

monotonically increases on cn. Thus ∂|Vr|
∂cLs

> ∂|Vr|
∂cLs
|
cn=

cLs qn
qs

= v(cLs −qs)
2qs

so that ∂|Vr|
∂cLs
|
cn=

cLs qn
qs

=

v(cLs −qs)
2qs

< 0. Also, ∂|Vr|
∂cLs
≤ ∂|Vr|

∂cLs
|
cn=

cHs qn
qs
− v(cHs −cLs )

1−v

= v(qn(cHs qn−qs(cLs +qn−qs))+v(qs(q2n−qs(qs−cLs ))−cHs q2n))
2(qn−qs)qs((1−v)qn−vqs)

.

In conjunction with cHs qn
qs

< cLs + qn − qs, we have that qn(cHs qn − qs(cLs + qn − qs)) < 0 and

qs(q
2
n − qs(qs − cLs )) − cHs q2

n > qs(q
2
n − qs(qs − cLs )) − qnqs(cLs + qn − qs) = qs(qs − cLs )(qn −

qs) > 0. After some algebra, we have v(qn(cHs qn−qs(cLs +qn−qs))+v(qs(q2n−qs(qs−cLs ))−cHs q2n))
2(qn−qs)qs((1−v)qn−vqs)

< 0 iff

v < qn(qs(cLs +qn−qs)−cHs qn)
qs(q2n−qs(qs−cLs ))−cHs q2n

. Our assumption 2 is equivalent to v < qn
qn+qs

. It directly follows from

qn(qs(cLs +qn−qs)−cHs qn)
qs(q2n−qs(qs−cLs ))−cHs q2n

− qn
qn+qs

= − (cHs −cLs )q2nqs
(qn+qs)(q2n−qs(qs−cLs ))−cHs q2n)

< 0 that 0 < qn(qs(cLs +qn−qs)−cHs qn)
qs(q2n−qs(qs−cLs ))−cHs q2n

<

qn
qn+qs

. Therefore, we have that |Vr| consistently decreases on cLs ∀cn ∈ (
cLs qn
qs
, c

H
s qn
qs
− v(cHs −cLs )

1−v ]

iff v < qn(qs(cLs +qn−qs)−cHs qn)
qs(q2n−qs(qs−cLs ))−cHs q2n

; otherwise if v > qn(qs(cLs +qn−qs)−cHs qn)
qs(q2n−qs(qs−cLs ))−cHs q2n

, there exists a unique c̄n

such that if cLs qn
qs

< cn ≤ c̄n, then ∂|Vr|
∂cLs
≤ 0; if c̄n < cn ≤ cHs qn

qs
− v(cHs −cLs )

1−v , then ∂|Vr|
∂cLs

> 0.

Proof. Proposition 2.6

We discuss the value of information to the retailer throughout all possible parameter settings

and show that |Vr| is firstly insensitive to qn if cn is very low. As cn increases, |Vr| starts to
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increase on qn and then decreases on qn. The trend with respect to qn varies depending on

the parameter range.

Under the parameter Setting cLs + qn − qs < cHs qn
qs

, if cn ≤ cLs qn
qs

, ∂|Vr|
∂qn

= 0. If cLs qn
qs

< cn ≤
(cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
, ∂|Vr|

∂qn
= (1−v)2v(cLs qn−cnqs)(cLs qn((1+v)qn−3vqs)−cn(2(1−v)q2n−(1−v)qnqs−vq2s))

4(qn−qs)2((1−v)qn−vqs)3
.

If follows from cn ≥ cLs qn
qs

and 2(1 − v)q2
n − (1 − v)qnqs − vq2

s = (1 − v)(qn − qs) + (1 −

v)q2
n − vq2

s > 0 that ∂|Vr|
∂qn

> 0 iff cn >
cLs qn(qn+vqn−3vqs)

2(1−v)q2n−(1−v)qnqs−vq2s
. With some algebra, we can show

that cLs qn(qn+vqn−3vqs)
2(1−v)q2n−(1−v)qnqs−vq2s

− cLs qn
qs

= −2cLs qn((1−v)q2n−vq2s+v(qn−qs))
qs(2(1−v)q2n−(1−v)qnqs−vq2s)

< 0. Thus we have ∂|Vr|
∂qn

> 0

for cnε(
cLs qn
qs
, (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
]. If (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
< cn ≤ cLs + qn − qs,

∂|Vr|
∂qn

= −v(qs−cLs )
2

4q2n
< 0.

Under parameter setting cHs qn
qs

< cLs + qn − qs, if cn ≤ cLs qn
qs

, ∂|Vr|
∂qn

= 0. If cLs qn
qs

<

cn ≤ cHs qn
qs
− v(cHs −cLs )

1−v , similar to the proof in parameter Setting cLs + qn − qs <
cHs qn
qs

with

cnε(
cLs qn
qs
, (cLs +qn−qs)((1−v)qn−vqs)+vcLs qn

(1−v)qn
), we can show that ∂|Vr|

∂qn
> 0. If cHs qn

qs
− v(cHs −cLs )

1−v <

cn ≤ cLs + qn − qs − v(cHs −cLs )
1−v , ∂|Vr|

∂qn
= v(cHs −cLs )(2(1−v)cn−(1−3v)cHs −(1+v)cLs )

4(1−v)(qn−qs)2
so that ∂|Vr|

∂qn
> 0 iff

cn >
(1−3v)cHs +(1+v)cLs

2(1−v)
. After some algebra, we show that (1−3v)cHs +(1+v)cLs

2−2v
− ( c

H
s qn
qs
− v(cHs −cLs )

1−v ) =

cHs qs+cLs qs−2cHs qn
2qs

< 0. Thus it directly follows that ∂ |Vr|
∂qn

> 0 for cnε(
cHs qn
qs
− v(cHs −cLs )

1−v , cLs + qn −

qs − v(cHs −cLs )
1−v ]. If cLs + qn − qs − v(cHs −cLs )

1−v < cn ≤ cLs + qn − qs, ∂|Vr|
∂qn

= −v(cHs −cLs )
2

4(qn−qs)2
< 0.
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