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Abstract

Novel Algorithms for Merging Computational Fluid
Dynamics and 4D Flow MRI

by

Ali Bakhshinejad

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Professors Roshan M. D’Souza And Vitaliy L. Rayz

Time-resolved three-dimensional spatial encoding combined with three-directional

velocity-encoded phase contrast magnetic resonance imaging (termed as 4D flow

MRI), can provide valuable information for diagnosis, treatment, and monitoring of

vascular diseases. The accuracy of this technique, however, is limited by errors in

flow estimation due to acquisition noise as well as systematic errors. Furthermore,

available spatial resolution is limited to 1.5mm - 3mm and temporal resolution is

limited to 30-40ms. This is often grossly inadequate to resolve flow details in small

arteries, such as those in cerebral circulation. Recently, there have been efforts to

address the limitations of the spatial and temporal resolution of MR flow imaging

through the use of computational fluid dynamics (CFD). While CFD is capable of

providing essentially unlimited spatial and temporal resolution, numerical results

are very sensitive to errors in estimation of the flow boundary conditions. In this

work, we present three novel techniques that combine CFD with 4D flow MRI mea-

surements in order to address the resolution and noise issues. The first technique is

a variant of the Kalman Filter state estimator called the Ensemble Kalman Filter

(EnKF). In this technique, an ensemble of patient-specific CFD solutions are used

to compute filter gains. These gains are then used in a predictor-corrector scheme to

not only denoise the data but also increase its temporal and spatial resolution. The

second technique is based on proper orthogonal decomposition and ridge regression
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(POD-rr). The POD method is typically used to generate reduced order models

(ROMs) in closed control applications of large degree of freedom systems that result

from discretization of governing partial differential equations (PDE). The POD-rr

process results in a set of basis functions (vectors), that capture the local space of so-

lutions of the PDE in question. In our application, the basis functions are generated

from an ensemble of patient-specific CFD solutions whose boundary conditions are

estimated from 4D flow MRI data. The CFD solution that should be most closely

representing the actual flow is generated by projecting 4D flow MRI data onto the

basis vectors followed by reconstruction in both MRI and CFD resolution. The rr

algorithm was used for between resolution mapping. Despite the accuracy of using

rr as the mapping step, due to manual adjustment of a coefficient in the algorithm

we developed the third algorithm. In this step, the rr algorithm was substituted

with a dynamic mode decomposition algorithm to preserve the robustness. These

algorithms have been implemented and tested using a numerical model of the flow in

a cerebral aneurysm. Solutions at time intervals corresponding to the 4D flow MRI

temporal resolution were collected and downsampled to the spatial resolution of the

imaging data. A simulated acquisition noise was then added in k-space. Finally, the

simulated data affected by noise were used as an input to the merging algorithms.

Rigorous comparison to state-of-the-art techniques were conducted to assess the ac-

curacy and performance of the proposed method. The results provided denoised

flow fields with less than 1% overall error for different signal-to-noise ratios. At the

end, a small cohort of three patients were corrected and the data were reconstructed

using different methods, the wall shear stress (WSS) was calculated using different

reconstructed data and the results were compared. As it has been shown in chapter

5, the calculated WSS using different methods results in mutual high and low shear
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stress regions, however, the exact value and patterns are significantly different.
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Chapter 1

Introduction

1.1 Physiology

A cerebral aneurysm is an abnormal dilation of an artery usually near arterial bi-

furcation in circle of Willis (Fig. 1.1). The disease is the result of weakening of the

intima layer of the blood vessel which results in ballooning of the lumen into an

abnormal shape.

The incremental improvement in the resolution of cerebral medical imaging tech-

niques such as MRI and CT in the recent years resulted in more incidental findings

of this type of disease which some believe is as high as 7% [139, 127]. Due to poor

results in treatment of subarachnoid hemorrhage (SAH) which are 40% fatal [64]

there is a pressing request from the clinicians to be provided with a new patient-

specific metric for evaluating the current stage and future development of the disease.

Currently, in case of aneurysm finding, the clinician needs to choose between

treatment and observation based on available risk factors such as: age, gender,

location and size of the disease, and other family history of SAH or similar aneurysms

[64]. A better understanding of patient-specific hemodynamics can play a critical

rule for better understanding of abnormal blood flow which is believed to be the main

reason for the disease [68, 37]. Davies et al. [37] has shown the effect of different

flow patterns on the cell arrangement by exposing the cultured cells to different

shear stresses caused by different flow patterns. As it can be seen in Fig. 1.2A, cells

1



Figure 1.1: The most common locations for cerebral aneurysm, left image represents
the Circle of Willis (COW), middle image shows the location of COW in the brain,
and right image shows the most common areas of cerebral aneurysm. [69].

initially have a symmetric hexagonal shape when they are not expose to any flow.

Next, cells were exposed to unidirectional flow for 24 hours which deformed them

into ellipsoidal shape and aligned into the flow direction (Fig. 1.2B). After exposing

the cells to a random flow pattern, cells also started to form random shapes and

some cells even raised from the monolayer (Fig. 1.2C). They concluded, as long as

cells were expose to unidirectional flow, they were able to handle high shear stress,

however, as soon as the cells were exposed to random flow patterns, they were not

able to handle shear stresses.

Near wall shear stresses can be used as an indicator of how fast flow patterns are

changing near the wall. Mathematically, wall shear stress (WSS) can be calculated

as a correlation of dynamic viscosity (µ), near wall velocity (v)and distance to the

wall (y):

WSS = µ
∂v

∂y
(1.1)

2



Figure 1.2: Cell configuration changes in a controlled environment due to the change
of the flow from static (a), to laminar (b) and turbulence (c) [37].

having a good estimate of the blood flow near the wall can be used to accurately

calculate the value of the WSS. Recently with further development of medical de-

vices, imaging the blood flow became possible using the 4D flow MRI technique [85].

1.2 4D Flow Magnetic Resonance Imaging

4D Flow MRI refers to time-resolved three-dimensional (3D) spatial encoding com-

bined with three-directional velocity-encoded phase contrast MRI. This method

permits a detailed volumetric coverage as well as the study of blood flow dynam-

ics in the vascular region of interest. These studies have been reported in the

ventricles [133, 71, 12, 45, 123, 44, 137] and atria of the heart [52, 48, 3], aorta

[132, 62, 63, 50, 20, 128], and carotid arteries [59, 86, 87, 121]. Unprocessed 4D

Flow MRI data is plagued by several errors in addition to limited temporal (5̃0 µs)

and spatial resolution (1 - 1.5 mm isotropic). This limits the use of 4D Flow MRI

in quantitative analysis of flow derived bio-markers such as WSS.

The physics of 4D flow is based on the measured phase change of spins moving

through two opposing magnetic gradients applied in quick succession. The equation
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that relates Larmor precision frequency of spins to the applied magnetic field and

its gradient is given by

ωL(r, t) = γB0 + γ∆B0 + γr(t) ·G(t) (1.2)

where γ is the gyromagnetic ratio, B0 is the static magnetic field, ∆B0 is the local

field inhomogeneity, ®r is the displacement and ®G(t) is the field gradient. Assuming

that the fluid velocity ®v is constant during the acquisition time, the displacement

vector is given by

r(t) = r0 + v(t − t0) (1.3)

where ®r0 is the displacement at time t0. The phase is computed by integrating

equation 1.2 from t0 to the echo time (TE) as

φ(r,TE) =
∫ TE

t0
ωL = φ0 + γr0 ·

∫ TE
t0

G(t)dt + γv
∫ TE

t0
tG(t)dt + · · ·

= φ0 + γr0 ·M0 + γv ·M1 + · · ·
(1.4)

Here, φ0 is the background phase offset due to field inhomogeneities. The second

and third terms are due to the stationary and moving spins respectively. In the 4

point scan method, a reference scan along with 3 velocity encoding scans (added

bipolar gradients along x−, y−, z− directions) are used for each single raw data line in

k-space. Subtracting the velocity scans from the reference gives the phase difference

as

∆φ = γv∆M1 (1.5)

The velocity-encoding parameter Venc determines that maximum velocity that can

be scanned. Its relationship to the difference in first gradient moment is given by

Venc =
π

γ∆M1
(1.6)
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Finally, the value of the encoded velocity is given by

v = Venc
∆φ

π
(1.7)

1.3 Errors in 4D Flow MRI

Errors in 4D Flow MRI can broadly be divided into two categories, namely, time in-

dependent systematic errors and time dependent dynamic errors. Systematic errors

add constant location dependent bias/shift to phase difference. Therefore they are

also called phase shift errors. Dynamic errors on the other hand are both time and

space varying. These include errors resulting from velocity aliasing and acquisition

noise.

1.3.1 Phase shift errors

Phase shift errors are systematic phase errors of stationary as well as moving spins

[79, 129]. Gradient field non-linearities [84], concomitant gradients (Maxwell terms)

[10], and Eddy currents [129] are the main sources of phase shift errors in MR

images.

Gradient field non-linearities are compensated by a matrix formulation that ac-

counts for relative gradient field deviations from a theoretical model of local gradient

field non-uniformity. This formulation modifies equation 1.7 to compensate for phase

shift [84].

Concomitant gradients arise when the longitudinal gradient fields Gz are simul-

taneously activated with one of the transverse gradients (Gx,Gy). These non-linear

terms are a consequence of Maxwell’s equations (zero gradient and curl conditions)

[93]. The issue of concomitant gradients are handled by altering the gradient de-

sign or by pulsing the main field. Other methods work on the reconstruction side

[29, 31, 42] by modifying methods that have been developed for correcting gradient

5



field non-linearities [66, 107, 83, 92].

Eddy current correction

Background phase distortions result from inhomogeneities in the magnetic field and

eddy current effects. These imperfections cause incorrect velocity measurements by

adding random noise as well as random velocity values to each voxel. Since the

introduction of an eddy current correction algorithm by Walker et al. [129], their

proposed method been used as the gold standard in random noise and eddy current

error correction for 2D and 4D flow MRI datasets. In this algorithm, the standard

deviation (SD) of velocity (v j) at each voxel ( j) was calculated through time and if

the SD was lower than a threshold it was considered as a static tissue. Then a plane

was fitted on the static tissue on each image slice and subtracted from the dataset.

This method can be accurate if the static tissue can be detected precisely. In order

to improve the accuracy of static tissue detection, Ebbers et al. [43] proposed the

use of higher order weighted least-square fit. The proposed weigh (w j) at each voxel

was calculated as:

w j =
m j(

SDv, j
) p (1.8)

where p dictates the contribution of SDv, j to the weighting term and m j repre-

sents the intensity of the voxel j in the magnitude image. We further improved the

static tissue detection by adding a hard threshold filter on dot product of magnitude

and velocity in each voxel.

The improvement between the raw 4D flow data compared to the data after

eddy current correction is shown in Fig. 1.3. Fig 1.3 (a) shows the raw 4D flow MRI

(raw 1 is slice view and raw 2 is particle tracing analysis in interior carotid artery

(ICA)). Fig. 1.3 (b) shows correction with weighted least-square fit with a linear

polynomial. Fig. 1.3 (c) shows the results for fitting quadratic polynomial. As the

6



second step, we zeroed down the remaining of value in the voxels selected as static

tissue using a hard threshold (Fig. d-e) calculated as ten percent of max value of

dot product of magnitude by velocity for each voxel.

1.3.2 Dynamic errors

Dynamic errors in 4D Flow MRI include signal dependent errors such as velocity

aliasing (phase wrapping), , and random noise. We cover random noise in a separate

section in detail.

Velocity aliasing/phase wrapping

Velocity aliasing occurs when the Venc setting is lower than the maximum velocity.

The Venc parameter has to be set manually before the operator has any estimate of

the maximum value of scan velocity. A velocity v with value equal to Venc is mapped

to phase difference ∆φ = π. If v is greater than Venc, then the phase difference wraps

around π and manifests as a negative velocity reading.

Xiang [134] developed an algorithm called temporal phase unwrapping (TPU)

where the wrapped phase data was successfully unwrapped in time using only one-

dimensional temporal integration. Cusack and Papadakis [35] developed a greedy

algorithm to correct considering temporal and spatial information along with thresh-

olding based on the estimated noise level in an iterative manner. Other methods

have used assumptions of spatial and temporal continuity of the 4D Flow MRI sig-

nal [104, 114, 135, 125]. For example, the method by Loecher et al. [78], solves

a constrained optimization problem based on the solution of the Laplacian of the

phase, assuming phase continuity in three spatial and the temporal axes.

Another set of techniques uses multiple Venc scans [106, 22]. The low Venc scans

have low noise but velocity aliasing. The high Venc scans on the other hand will have

no velocity aliasing but will have high noise. In a pre-processing step, the high Venc

7
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Figure 1.3: The effect of Eddy current correction on the particle tracing analysis. (a)
shows an slice of raw 4D flow MRI as well as particle tracing analysis in the internal
carotid arteries. (b) is after eddy current correction using first order polynomial fit.
(c) shows the results after correction using a quadratic polynomial. Image (d) shows
the results of applying hard thresholding on static tissue after first order polynomial
fit. And (e) shows the result after hard thresholding of data after correction using
quadratic polynomial fit.
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scans are used to unwrap the low Venc scans and simultaneously reduce noise.

1.4 Processing of 4D Flow MRI for Noise Reduc-

tion and Enhancement of Spatial Resolution

Random acquisition noise and spatial resolution are important factors that affect

computation of flow dependent parameters such as wall shear stresses, viscous dis-

sipation, and flow vorticity which require spatial derivative of the velocity field.

Random noise in general is amplified by derivatives and low spatial resolution in-

creases the discretization error. In case of certain intra-cranial aneurysms (where

luminal diameters can frequently be < 4mm), at best, 4D Flow data will have about

4 voxels across the diameter in a typical setting (1mm × 1mm × 1mm isotropic spa-

tial resolution). Furthermore, noise can cause the velocity field to be rendered

non divergence-free. Directly using this velocity field in analysis such as contrast

injection simulation will become numerically unstable. Processing methods to han-

dle noise and resolution issues can be broadly classified into three main categories:

1) Computational Fluid Dynamics (CFD)-independent methods, 2) patient-specific

CFD models, and 3) Coupled 4D Flow MRI-CFD methods.

1.4.1 CFD-independent methods

CFD-independent methods, as the name suggests, do not involve computationally

expensive patient specific CFD simulations in order to de-noise unprocessed 4D-

Flow MRI. In addition to de-noising, these method try to impose mass conservation

constraint on the data. The mass conservation constraint manifests as a divergence-

free condition on the velocity field since blood in general is an incompressible fluid.

9



Regularization-based methods

One category of methods formulates the de-noising problem as a vector total varia-

tion regularization [13, 119, 118, 15, 58, 2] given by the equation:

f ∗ = argmin
f
D(f ; vM) +

∑
i

wi | |Ri( f )| |pp (1.9)

Here D is data fidelity term (usually the Euclidean norm) that keeps the solution

f close to the unprocessed 4D Flow data vM , Ri is the regularization function that

imposes different flow physics constraints such as divergence-free and/or incompress-

ibility [117, 2, 118] on the solution and wi is the strength of regularization. Here | |.| |p

is the vector (or tensor) lp norm. Suter et al. [117], Arigovindan et al. [2], and Tafti

et al. [118] only considered spatial regularization. Suter et al. and Arigovindan et

al. have suggested the use of quadratic (L2) regularization. However, Tafti et al.

[118] showed that the discontinuities at the flow boundaries are better preserved by

using l1-norm regularization.

Bostan et al. [15] defined three different characteristics in continuous domain to

apply to the measured flow field as:

R1(f ) = wc

∫
R

∫
R3
|∇ × f (x, t)|dxdt (1.10)

R2(f ) = wd

∫
R

∫
R3
|∇ · f (x, t)|dxdt (1.11)

R3(f ) = wt

∫
R

∫
R3
|∂tf (x, t)|2xdt (1.12)

where eqs. 1.10 and 1.11 are used to penalize the total curl and divergence,

and eq. 1.12 is defined based on smooth flow assumption for laminar flow. The
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discretized optimization equation was given by

Jδ(f ; y) = 1

2
‖f − y‖ + Rs

δ(f ) + R
t
δ(f ) (1.13)

Rs
δ(f ),R

t
δ(f ) represented the spatial and temporal regularization terms given by

Rs
δ(f ) = λc

∑
n∈N

curlδ(f n) + λd

∑
n∈N

divδ(f n) (1.14)

Rt
δ(f ) = λt ‖∂t,δ ®f ‖2 (1.15)

Equation 1.13 was solved in an iterative manner using an argument of separa-

bility of Rs
δ using a novel method based on the Fletcher-Fenchel duality [14].

In another approach, Bostan et al. [13] used nuclear total variation (TVN)

regularizer in order to solve Eq. 1.9. This regularizer can model the dependencies

among the different components of the vector field more efficiently compared to the

previous model. The Jacobian J generates the gradient of the vector field. The

TVN method is formulated such that nuclear norm of the Jacobian evaluated at

every spatial location of the flow. Therefore, the Eq. 1.9 can be re-written as:

f ∗ = argmin
f

1

2
| |vM − f | |22 + w

k∑
j=1

| |Jf j | |N (1.16)

where
∑k

j=1 | |Jf j | |N is the discrete TVN that employs the l1 norm and the discrete

Jacobian (J) of the vector field.

Projection-based methods

The second set of methods uses projection of the unprocessed noisy 4D Flow data

into a divergence-free space to eliminate noise[113, 96, 94].

Song et al. [113] developed a method using finite differences to project 4D Flow
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data onto the space of divergence-free fields (PSDF). Noise that is not divergence

free was therefore eliminated. Using Helmotz representation of continuously differ-

entiable vectors fields, the acquired data vM was represented as

vM = ∇p + ∇ × q (1.17)

where p is a scalar field and q is a vector field. Taking divergence of equation 1.17,

∇ · vM = ∇2p in Ω (1.18)

where Ω is the flow domain. Equation 1.18 was solved for scalar field p with bound-

ary condition

p = 0 on ∂Ω (1.19)

where ∂Ω is the boundary of the flow domain Ω. Finally, the divergence free com-

ponent of vM was computed as

PvM = vM − ∇p (1.20)

where P is the projection operator. Numerically, P was implemented as

P = I − ET (EET )−1E (1.21)

where E is the discretized divergence operator.

Busch et al. [21] developed an algorithm based on the combination of divergence-

free radial basis functions (RBF) [80] and normalized convolution. The RBFs are

divergence-free by definition, therefore, allow processing of three-dimensional veloc-

ity profiles while conserving the continuity equation. The velocity vector at location

r is given as a vector weighted sum of matrix valued RBFs evaluated at distinct

12



locations n j

v(r) =
n∑

j=1

Φ
(
r − r j

)
c j (1.22)

The matrix of divergence-free RBFs can be written as:

Φ(r) =
[
(1 − |r |

2

2Υ2
)I + 1

2Υ2
rrT

]
exp(− |r |

2

2Υ2
) (1.23)

where I is the identity matrix and Υ determines the size of the support for the

Gaussian function. The vector of coefficients is found using a least square fit to the

acquired 4D Flow Data [111]. This process results in a system of equations given

by 
Φ(r1 − n1) · · · Φ(r1 − nn)

· · · · · · · · ·

Φ(rn − n1) · · · Φ(rn − nn)



c1

· · ·

cM


=


v1

· · ·

vn


(1.24)

Here the locations ri where the divergence-free velocity field is reconstructed are the

same locations n where 4D Flow Data is sampled.

Since both of the FDM and RBF methods impose strict divergence-free con-

straints on the flow field, they can suffer greatly from inaccuracies in the segmen-

tation of the flow field. To remedy this, Ong et al. [96] developed a method com-

bining divergence-free wavelets (DFWs) [94] with coefficient thresholding [39] and

SureShrink [40] to enforce a softer divergence-free constraint on the flow field, reduc-

ing the sensitivity of the noise-reduction to segmentation errors. DFWs are vector-

wavelets capable of separating flow data into divergence-free and non-divergence-free

wavelet coefficients. Subsequently, the noise reduction is achieved by shrinking the

two components’ coefficients. Coefficient shrinkage is done by employing a soft-

thresholding strategy. SureShrink aims to find optimal thresholds for coefficient

shrinking as means to automate the process. The algorithm works based on mini-
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mizing mean square error in the wavelet domain, given the level of noise. To estimate

the noise level, at first, simple thresholding is applied to eliminate flow in regions of

low image magnitude. The noise in the remaining flow regions can be approximated

as additive Gaussian noise with standard deviation of Venc/SNR [57]. Finally, to

reduce the blocking artifacts of the DFWs, cycle spinning is used as discussed in

[34].

Combined projection and regularization methods

An interesting approach by Ong et al. [95] and Santelli et al. [105] combines pro-

jection onto a divergence-free basis and optimization to simultaneously reconstruct

and denoise k space 4D Flow Data. Given that the blood flow is incompressible,

the phase of the signal, which is an alias to the velocity, is represented using a

divergence-free wavelets basis. The magnitude signal is represented using a regular

spatial wavelet basis. Since both magnitude and phase signals are sparse in their

respective wavelet bases, a compressed sensing framework [121] using l1 norm min-

imization is used to denoise the data and apply the divergence-free constraint. The

optimization problem solved is given by

min
m∈R+,φ∈R

1

2
‖Ame jφ − y‖22 + λm‖Ψmm‖1 + λφ‖ΨφKvφ‖1 (1.25)

where m is the computed magnitude, φ is the phase, y is the raw 4D Flow Data

in k space, Kv transforms phase to velocity, Ψm is the spatial wavelet for m and

Ψφ is the divergence free wavelet for velocity. Soft thresholding is used to enforce

approximate or “soft” divergence-free conditions. The method is made phase-wrap

tolerant via phase cycle spinning.
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1.4.2 Patient-specific CFD model

CFD-independent methods are fast and capable of significantly decreasing noise.

However, none of these methods are capable of enhancing spatial resolution. CFD

is an alternative to resolve the 4D flow MRI’s spatio-temporal resolution problem.

CFD has been used to predict blood flow patterns in different regions including

but not limited to cerebral [102] and intracranial aneurysms [16, 116], the thoracic

aorta [24] , and the carotid bifurcation [89, 72, 122]. Unlike 4D flow MRI, CFD

simulations can be also used for post-operative flow simulations to ensure the best

outcome of the operation [101]. The work flow of this group of methods can be

divided into three steps: 1) patient-specific mesh generation, 2) boundary condition

estimation, and 3) solving Navier-Stokes equations.

Mesh Generation

In order to numerically solve any partial differential equation, a discretized repre-

sentation of the domain (i.e. mesh) is required. The input to mesh generation is the

geometry of the object, in this case the blood vessels. Therefore, the first step in

generating the computational mesh is the generation of blood vessel geometry from

the MRI-scans through the process of segmentation.

The best source image to generate geometry is contrast-enhanced MR angiogra-

phy (CE-MRA). However, this involves injection of a contrast agent that may not

be suitable for all subjects. Time of flight (TOF-MRA) may be used when CE-MRA

is not suitable. However, TOF-MRA has several sources of errors including in-plane

saturation artifacts (when vessel in the plane of acquisition), shine-through artifacts

(artifact of the maximum intensity projection (MIP) algorithm), flow-reversal arti-

facts (signal suppression due to retrograde flow), and susceptibility artifacts (caused

due to magnetic field distortions near metal implants). The magnitude image from
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4D Flow image may be used for generating the blood vessel geometry. However, it

has typically very low resolution. There are ongoing efforts to merge several images

(for example, TOF-MRA+Magnitude+MIP of 3 velocities) to eliminate various ar-

tifacts.

Once the blood vessel geometry is available from segmentation, mesh generation

itself is not an issue as there are several commercial or free robust mesh generators.

Furthermore, most commercial numerical solvers come with inbuilt mesh generators.

Boundary Conditions

Solving the time dependent flow physics typically requires imposition of initial and

boundary conditions. Typically, in CFD modeling of blood flow, vessel walls are

assume to be rigid (especially in case of blood vessels surrounded by tissue such as

those in the brain or in the liver) with no-slip condition where the fluid touches the

vessel wall. Next, the time varying inlet and outlet flow rates have to be specified.

Inlet and outlet flow rates can be obtained from the 4D Flow data by placing planes

normal to the blood vessel centerline at the inlets and outlets and integrating the

velocity data over the area. To minimize the effect of noise, this analysis has to be

done over multiple planes and the results averaged. Because of various factors (mea-

surement errors, spatial resolution etc.) the computed inlet and outlet flow rates

will not match thus violating the incompressibility constraint. Typically, either the

inlet or the outlet flow rate is assumed to be true. The other flow rate is then

divided in proportion to the measured flow rates from 4D Flow data in the different

branches. CFD simulation packages such as ANSYS typically allow specifying such

boundary conditions (for example, time varying inlet flow rate and time varying

outlet flow proportions). Another issue is that the temporal resolution of 4D Flow

is not sufficient to maintain numerical stability of the typical solvers. Therefore,
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Figure 1.4: The process of calculating boundary conditions for a patient-specific
model starts with the high-resolution co-registered surface file. The first step is to
calculate the centerline of the geometry. Next, the 4D flow data is opened on top of
the surface file and finally, for each inlet and outlet from the region of interest, we
estimate the flow rate at up to five different planes.

either a FFT-based or polynomial-based interpolation with re-sampling is used to

address this issue.

Some researchers have used lumped mass approximation using Windkessel model

to model the dynamics of the downstream vasculature connected to region of interest

to model outlet boundary conditions. Based on time varying terminal pressure data

observed at a convenient downstream location, the outlet back-pressure is calculated

based on RCR equivalent circuit.

Solving Navier-Stokes equations

The general Navier-Stokes equations for fluid motion can be written as [11]:

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p − ∇.τ + b (1.26)

17



where ρ is the fluid density, v = (u, v,w) represents the velocity vector in all three

spatial directions, t stands for time, ∇ is the gradient operator, p is the pressure,

τ stands for the stress tensor, and b represents the body forces acting on the fluid.

As mentioned, blood flow is usually assumed as incompressible Newtonian flow with

constant viscosity µ and constant density ρ. The rigid body assumption omits b,

body forces. Therefore, the simplified equation will be:

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p + µ∆v (1.27)

where ∆ is the Laplacian operator. Incompressible flow without source has to

satisfy the continuity equation as well as Eq. 1.27, which can be formulated as [11]:

∇.v = 0 (1.28)

The momentum equation (Eq. 1.27) and continuity equation (Eq. 1.28) are

non-linear and coupled and must be solved for unknown velocity field (v = (u, v,w))

as well as pressure gradient (∇p). In order to solve these equations, one of the

well known semi-implicit or implicit CFD iterative algorithms such as; semi-implicit

method for pressure linked equations (SIMPLE), semi-implicit method for pressure

linked equations-consistent (SIMPLEC), semi-implicit method for pressure-linked

equations revised (SIMPLER) or pressure implicit with splitting of operator (PISO),

can be used [90]. Based on the user’s desire for using finite volume (FV) or finite

element (FE) method, one of the available solvers can be used to solve these equa-

tions such as ANSYS Fluent (ANSYS Inc., Canonsburg, PA) and OpenFOAM [131]

which are using FV method or StarCCM+ which is uses FE method.

CFD method is capable of providing user-defined high spatio-temporal resolu-

tion. The accuracy of this approach critically depends on the assumptions made in

the process of developing the model such as rigid walls and viscosity models (New-
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tonian versus non-Newtonian fluid) as well as the accuracy of boundary conditions.

However, it has been shown by different groups that this approach is usually in a

good agreement with 4D flow MRI [136, 126, 102].

Different research groups have used this method and have reported different

aspects of that. Rayz et al. [102] have shown the sensitivity of CFD to boundary

conditions and reported good agreement between CFD and 4D flow MRI in a case of

proper boundary measurement. Vali et al. [126] reported a CFD simulation model

for post-operation flow patterns and quantitatively compared their results with in-

vivo X-ray angiography. In this simulation, they have used Fourier analysis of the

discrete flow measurements in order to estimate their inlet(s)/outlet(s) waveforms.

On the other side of the spectrum, there have been some efforts to validate

patient-specific CFD simulations against in-vitro particle image velocimetry (PIV)

in order to provide proofs for CFD to be an alternative to 4D flow MRI. Hoi et al.

[60] reported a comparison between CFD and in-vitro PIV using artificial geome-

try. They have conducted research on the effect of geometry changes on the flow

pattern. In this work they have reported a direct connection between the geometry

details and flow patterns as well as significant effects of geometry mis-segmentation

on hemodynamic parameter calculation. Ford et al. [49] also reported a good agree-

ment between CFD and PIV measurements with patient-specific geometry. Raschi

et al. [100] compared the results between CFD and in-vitro PIV for patient-specific

geometries of growing cerebral aneurysm. They have reported good agreement be-

tween two methods in most areas except low velocity regions such as near the wall

flow. Despite the reported differences, they have concluded that both methods can

be used for patient-specific hemodynamic analysis.
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1.4.3 Coupled 4D Flow MRI-CFD methods

Some of more recent techniques have attempted to combine 4D flow MRI and CFD

to address limitations of both approaches, namely spatio-temporal resolution issues

in 4D flow MRI and inaccuracy of assumptions (boundary conditions, and models

used) in CFD. Unlike the pure CFD approaches where only the inflow and outflow

waveforms are measured from 4D flow MRI for establishing boundary conditions, in

the coupled 4D flow MRI-CFD approaches, the entire data in the region of interest

is used to correct the CFD simulations.

This group of methods is based on the idea of prediction-correction algorithms.

In other words, these methods are solving Navier-Stokes equation (Eq. 1.27) based

on measured boundary conditions observed from 4D flow MRI data and try to min-

imize the error (correct the integration) between the integration and measurements

at each reading using different methods.

De Hoon et al. [38] reported an algorithm where they coupled a simplified

fluid solver ”fluid implicit particle” (FLIP) [19], which was originally developed

for computer graphics, with measured 4D flow MRI. In this model, they further

simplified Eq. 1.27 by assuming inviscid blood flow to:

∂v

∂t
= −v.∇v − 1

ρ
∇p (1.29)

In their iterative algorithm, the simulation starts with initializing positions and

velocities of FLIP particles using 4D flow MRI data. Then for each simulation

time step, which is equal to the 4D flow MRI time steps, the algorithm minimizes

the difference between the simulated velocity (vCFD) and 4D flow MRI measured

data (vM) in multiple steps. Step one is to compute the velocity of each grid cell

based on a weighted average of neighboring particle velocities and measured 4D flow
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MRI data. Step two independently advects FLIP particles using simulated velocity

and measured data using a second-order Runge-Kutta ODE solver. The velocity

difference (vdi f f ) is defined as the difference between estimated velocity and the

measured 4D flow MRI velocity. Next by substituting the velocity difference into

Eq. 1.29 the difference can be calculated as:

∂vdi f f

∂t
= −vCFD.∇vCFD + vM .∇vM −

1

ρ
∇p (1.30)

Next step is to add the difference velocity calculated using eq. 1.30 to particle

velocities and calculate the new velocity. The final step is to update the velocity as

vnew
CFD ← vn+1

CFD − vn+1
di f f .

Furthermore, the reported algorithm runs in the 4D flow MRI resolution and

has produced some preliminary results with a viscous fluid assumption.

1 In another approach, Koltukluoglu et al. [74] proposed an algorithm using Helmholtz-

Hodge theorem. In this method, first, they up-sampled 4D flow MRI data into mesh

resolution using linear interpolation. Since the up-sampled data does not obey the

incompressible flow constraints, next the data was projected onto a divergence-free

space using Helmholtz-Hodge decomposition. In their model, for regularity reasons,

they have made a few assumptions such as the 4D flow MRI field (vM) is quadrat-

ically integrable, the domain of solution (Ω) is bounded, a simply-connected and

Lipschitz subdomain of R3. Using mentioned assumptions and Helmholtz-Hodge

theorem, the following space splitting holds:

(L2(Ω))3 = Hdiv,0(Ω) ⊕ Hcurl,0(Ω) ⊕ Hhar(Ω) (1.31)

where Hdiv,0(Ω) and Hcurl,0(Ω) are the Sobolev space of square integrable vector

fields with a square integrable divergence and a free-divergence, and a square inte-

grable curl and a free-curl, respectively. The Hhar is the space of harmonic scalar
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functions q ∈ H1(Ω) having zero Laplacian. Using Eq. 1.31, the measured 4D flow

MRI data (UM) can be written as:

vM = v̂ + v∧ + v∗ (1.32)

where v̂ ∈ Hdiv,0(Ω), v∧ ∈ Hcurl,0(Ω) and v∗ ∈ Hhar(Ω). Having upsampled

divergence-free data they then calculated a CFD solutions using Windkessel model

as boundary condition and then compared CFD with upsampled 4D flow MRI. In

each iteration, calculated CFD velocities were used as initial values for a new sim-

ulation until the error between two datasets satisfied the convergence criteria.

Rispoli et al. [103] reported another algorithm using an edited version of SIM-

PLER algorithm in Cartesian grids where they added an extra step to the algorithm

using Tikhonov regularization [108] to calculate a flow field that satisfies the physics

of flow while being close enough to the measured 4D flow MRI data. In this imple-

mentation, they used a pseudo-transient solution with spatially-varying time steps

in the algorithm [90]. The pseudo-transient solution in this case is to run CFD

simulations between available 4D flow MRI measurements with constant boundary

conditions for each simulation. In this method, using SIMPLER algorithm, first ve-

locities are estimated using momentum equation (eq. 1.27) and constant boundary

condition between available 4D flow MRI readings as:

Πn−1vn = bn−1 (1.33)

where Πn−1 is a D × D square hepta-diagonal matrix, where D is the number of

mesh nodes, containing the previous iteration information of all three components

of velocity as well as density and viscosity. The velocity vector, vn, is represent-
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ing current time step velocity components to be calculated. The right hand sides

vectors, bn−1, contains previous time step velocity information as well as current

pressure gradient and the physical properties of the flow (density ρ, and viscosity

µ).

For a given time step, convergence is achieved when the continuity equation (Eq.

1.28) is satisfied. In each iteration, velocity profiles, vn, as well as pressure gradients

are updated till the convergence. Having the velocity profiles, Rispoli et al. [103]

minimized the error between CFD and 4D flow MRI using the following equations:

F(vn) =
1

2
| |Πn−1vn − bn−1 | |2 + w | |Γvn − vM | |2 (1.34)

The first term in the right-hand side of Eq. 1.34 is essentially Eq. 1.33, the second

term is the comparison between CFD results and 4D flow MRI measurements (vM).

Coefficient w is adjustable scalars that determines the influence of 4D flow MRI on

the final solution. Γ is a down-sampling matrix to relate CFD resolution into 4D

flow MRI resolution, it can just as well be described as an averaging or blurring

model. Having matrix Γ, and using Eqs. 1.34, the velocities can be calculated as:

vn =
(
ΠT

n−1Πn−1 + wΓTΓ
)−1 (

ΠT
n−1bn−1 + wΓTvM

)
(1.35)

The updated velocity profiles used as initial conditions for the next iteration.

This thesis will focused on development of multiple post-processing algorithms

for 4D flow MRI scans. We limit our focus to brain aneurysms due to the importance

and limitations of MRI images for this disease due to their sizes. We will present
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our algorithms (Ensemble Kalman Filter, Proper Orthogonal Decomposition-ridge

regression, and Proper Orthogonal Decomposition-Dynamic Mode Decomposition),

and will follow up with a case study on the effect of different reconstruction methods

on the value and patterns of WSS.
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Chapter 2

Post-processing 4D Flow MRI Using Ensemble

Kalman Filter (EnKF)1

2.1 Introduction

Kalman Filter was initially introduced by Kalman [67] as a linear sequential fil-

ter, which means the model is integrated forward in time and whenever the mea-

surements are available, these data are used to reinitialize the model before the

integration continues.

Time Update (”Predict”)

(1) Project the state ahead
x̂k = Ax̂k−1 + Buk−1

(2) Project the error covariance ahead
Pk = APk−1A

T + Q

Measurement Update (”Correct”)

(1) Compute the Kalman gain
Kk = PkH

T (HPkH
T + R)−1

(2) Update estimate with measurement zk
x̂k = x̂k + Kk(zk − Hx̂k)

(3) Update the error covariance
Pk = (I − KkH)Pk

k+1

Initial estimate for x̂k−1 and Pk−1

Figure 2.1: Kalman filter is a prediction/correction method. In the prediction step,
model is integrated forward in time until point where measurements are available
and integration reinitialize before the integration continues. [130]

Fig. 2.1 represents the Kalman filter algorithm as a prediction/correction method.

1This preliminary results were presented at:

[8] Bakhshinejad, A., Rayz, V., & DSouza, R. M. (2016). Reconstructing Blood Velocity Profiles from Noisy 4D-PCMR Data
using Ensemble Kalman Filtering. In Biomedical Engineering Society (BMES) 2016 Annual Meeting. inproceedings.
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At step one, the state of the system (x̂k) is predicted based on previous time step

results (x̂k−1) and the boundary condition (uk−1). The second step is calculation of

the error covariance based on the error covariance of the previous time step (Pk−1)

as well as the process noise covariance (Q). In the correction step, Kalman gain (Kk)

is calculated based on the error covariance and the measurement noise covariance

(R). The estimated state and error covariance is updated based on the calculated

Kalman gain. The matrix H relates the state (x̂k) to the measurement (zk).

As mentioned, the Kalman filter is formulated for linear systems. In order to

deal with non-linear systems, an Extended Kalman Filter (EKF) was introduced.

All steps of EKF are similar except for the error covarience calculation where A is

the tangent linear operator (Jacobian) of the system. Due to calculation expense of

the EKF, Ensemble Kalman Filter (EnKF) was proposed by Evensen [46].

Time Update (”Predict”)

(1) Project the state ahead
x̂k = f(x̂k−1, uk−1)

(2) Define the [X] matrix hol-
ding the ensemble members,

[X] = [x1, x2, ..., xN ] ∈ Rn×N

(3) Calculate the ensemble mean,
[X] = [X][1N ]

(4) Define the ensemble perturbation matrix,
[X ′] = [X] − [X]

(5) Calculate the ensemble covariance matrix
[Pe] = 1

N−1 [X ′][X ′]T

Measurement Update (”Correct”)

(1) Define the q vectors
of perturbed observations,

zj = z + εj , j = 1, · · · , L
(2) Define the [Z],

[Z] = (z1, z2, ..., zL) ∈ Rm×L

(3) The ensemble of perturbations,
[Υ] = (ε1, ε2, ..., εL) ∈ Rm×L

(4) Calculate the measu-
rement error covariance,

[Re] = [Υ][Υ]T

L−1
(5) Compute the Kalman gain

Kk = [Pe][H]T ([H][Pe][H]T + [Re])
−1

(6) Update prediction with measurement zk
x̂a
k = x̂k + Kk(zk − Hx̂k)

k+1

Initial estimate for x̂k−1

Figure 2.2: Ensemble Kalman filter (EnKF) is a prediction/correction method based
on Kalman Filter. In the prediction step, the model is integrated forward in time
until a point at which measurements are available, at which point the integration is
reinitialized and continues forward.

Figure 2.2 shows the steps of EnKF as presented by Evensen [46]. As shown in
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the figure, EnKF is a multi-step prediction/correction method based on KF. The

prediction steps are as follow:

1. Predict each ensemble based on previous time step’s state (xk−1) and boundary

condition as (uk−1):

x̂k = f (xk−1, uk−1) (2.1)

2. Define matrix [X] holding all ensemble members as:

[X] = [x1, x2, · · · , xN ] ∈ Rn×N (2.2)

where N is the number of ensemble members and n is the size of the model

state vector.

3. The ensemble mean ([X]) is:

[X] = [X][1N ] (2.3)

where [1N ] is a N × N matrix with all elements equal to 1/N.

4. Having the ensemble mean, ensemble perturbation can be calculated as:

[X′] = [X] − [X] = [X]([I] − [1N ]) (2.4)

5. The ensemble covariance matrix ([Pe] ∈ Rn×n) can be defined as:

[Pe] =
[X′]([X′])T

N − 1
(2.5)

With the ensemble covariance matrix ([Pe]), one can correct the predicted state

(x̂k) using Kalman gain using the following steps:
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1. For each measurement vector z ∈ Rm, with m being the size of the measurement

vector, one can define the L vectors of perturbed measurements as:

z j = z + ε j, j = 1, · · · , L (2.6)

2. Define matrix [Z], with each perturbed observation as a column as:

[Z] = [z1, z2, · · · , zL] ∈ Rm×L (2.7)

3. The ensemble of perturbation is defined as

[Υ] = [ε1, ε2, · · · , εL] ∈ Rm×L (2.8)

4. With having the ensemble of perturbation, the measurement error covariance

matrix can be calculated as:

[Re] =
[Υ][Υ]T

L − 1
(2.9)

5. Kalman gain can be calculated as:

Kk = [Pe][H]T ([H][Pe][H]T + [Re])−1 (2.10)

6. And finally, the predicted state will be corrected using Kalman gain as:

[X]a = [X] + Kk([Z] − [H][X]) (2.11)

Adopting the EnKF method, we developed an algorithm in order to de-noise the

4D flow MRI data as well as increase the resolution to an arbitrary high resolution.
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In this approach, we integrate the Navier-Stokes (NS) equations for an incompress-

ible fluid (a valid assumption for blood flow in small vessels) until the points at

which we have 4D flow MRI readings. At time steps where we have 4D flow data,

the NS integration is re-initiated using EnKF method as described in details in the

following section.

2.2 Method

The flowchart of our algorithm is shown in Fig. 2.3. We begin by constructing

the boundary conditions (flow inlet) from the actual 4D flow MRI data. In this

case, the inlet and outlet flow rate is estimated at several cutting planes at the inlet

and outlet. Subsequently, the sample mean flow rates and the sample variance is

computed. Based on these boundary conditions (BCs), a finite ensemble of BCs is

generated using Gaussian sampling. This ensemble is used to compute an ensemble

of simulations. The 4D flow MRI data are typically available only at intervals of

0.025 s. However, for the types of geometry in the study and discretization, this

time interval results in large discretization errors as well as numerical instability

for the explicit integrator. We therefore use a much smaller time step in the CFD

integrator. We further use cubic interpolation on the BCs for intermediate time

steps between 4D flow MRI data time steps. One of the ensemble solutions is used

as ground truth. Simulated 4D flow MRI is generated by adding white noise to the

solution. In the current study, we are assuming that we have 4D flow MRI values

at each of the locations in the unstructured CFD mesh. In reality, 4D flow MRI is

based on a regular grid with a sampling size that is much lower than the number

of finite volume cells in the CFD mesh. This will be handled in a fully developed

version of this paper.

The EnKF process estimates the best solution in three steps: prediction, comput-
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ing prediction and observation covariance matrices, and analysis. In the prediction

part, an ensemble of velocity vectors x f is marched forward in time (k) by integrat-

ing the Navier-Stokes equation for incompressible fluids as a function of previous

iteration’s output and BCs as:

x
fi
k = f

(
xai

k−1, u
i
k−1

)
(2.12)

where u is the BC. In each iteration 50 different ensemble predictions were cal-

culated with perturbed initial conditions. Each one of these solutions was used as

ensemble member X fi ∈ Rn

[A] f = (x f1, x f2, · · · , x fN ) ∈ Rn×N (2.13)

Where N is the number of ensemble members and n is the size of the model state

vector. Then the sample ensemble perturbation matrix is calculated as:

[
X̂ f

]
= [A] −

[
A f

]
(2.14)

where the matrix
[
A f

]
has an ensemble mean as each column.

The ensemble covariance matrix Pe ∈ Rn×n is defined as:

[P]e =
[
X̂
] [

X̂
]T

N − 1
(2.15)

The vector of measurements d ∈ Rm, where m is the number of observations, is

given by:

[D] =
[

d1 d2 · · · dN

]
∈ Rm×N (2.16)

where d j = d + ε j , ε is the perturbation vector sampled based on observation noise
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Figure 2.3: Flow-chart of the hemodynamic velocity reconstruction process using
ensemble Kalman Filter (EnKF) algorithm.
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characteristics. The matrix of perturbation is given as:

[Υ] =
[
ε1 ε2 · · · εN

]
∈ Rm×N (2.17)

From here the measurement error covariance matrix was calculated as

[R]e =
[Υ] [Υ]T

N − 1
(2.18)

And finally the analysis matrix was calculated as:

[Aa]k =
[
A f ]

k + [P]e [H]
T

(
[H] [P]e [H]T + [R]e

)−1 (
[D] − [H]

[
A f ]

k

)
(2.19)

where [Aa]k =
[

xa1
k xa2

k · · · xaN

k

]
is ensemble Kalman filtered state estimate and

[H] is the observation matrix which is set to the identity matrix in this exercise since

we are assuming that we have sensor readings at all CFD mesh nodes. The results

from this point are used as initial condition for the next time step. We used the

open source OpenFOAM CFD library for the patient-specific flow simulation. The

open source Octave computing library was used to compute covariance and analysis

matrices.

In equation 9, it is impossible to directly compute and store
(
[H] [P]e [H]T + [R]e

)−1
even for small number of observations (m=10000). We therefore use the QR ap-

proach [55]. Note that

[Z] =
[
[U] [V]

] 
[U]

[V]

 =
(
[U] [U]T + [V] [V]T

)
(2.20)
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Assigning [U] = [H]
[
X̂
]
, [V] = [Γ] we have

[Q] [R] =
[
[U] [V]

]
[Z] = [Q] [R] [R]T [Q]T

Computing [Z]−1 v is equivalent to solving [Z]w = v. In other words

[Q] [R] [R]T [Q]T w = v

Clearly

w =

(
[Q]

{(
[R] [R]T

)−1 〈
[Q]T v

〉})
Here the brackets indicate the order of computation <> followed by {} followed by

(). The matrix ([R] [R]T )−1 ∈ R2N×2N is quite small and easy to compute and store.

2.3 Results

High-resolution contrast-enhanced magnetic resonance angiography (CE-MRA) im-

ages were used to construct patient-specific vascular geometry. The patient was

imaged at the Vascular Imaging Research Center (VIRC), University of California,

San Francisco (UCSF). The voxel size in the CE-MRA images was 0.7mm x 0.7mm

x 0.7 mm and the contrast ratio of the luminal to background intensity was in

the range of 8 to 10. MIMICST M (Mimics 17.0, Materialise Inc, Leuven, Belgium)

was used to create a three-dimensional iso-surface corresponding to the luminal

boundaries. A threshold intensity value was adjusted to ensure that the segmented

iso-surface coincides with the luminal boundaries. The geometry obtained from the

segmentation process included the aneurysm with its proximal and distal vessels.
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Figure 2.4: Comparison between noise-free CFD, noisy, and reconstructed/estimated
velocity magnitudes at one randomly chosen node.

The iso-surface was then imported into a pre-processing software ANSYS ICEM

CFD (ANSYS, Inc, Canonsburg, PA), where the computational domain and mesh

were created. In order to obtain the flow waveform in the arteries, five 2D analysis

planes were extracted from 4D flow MRI data for each proximal (inlet) and distal

(outlet) vessel and the through-plane flowrate was calculated using Ensight (CEI,

Apex, NC) for each plane. The sample mean flow µi
v and variance σi

v were then com-

puted at different time steps. Gaussian noise with zero mean and variance of 10%

of max velocity magnitude of the original CFD data was used to corrupt the CFD

solution in order to simulate 4D flow MR data acquisition. We used an ensemble

size of 50. The opensource CFD toolkit OpenFoam [131] was used for simulation.

Kalman filter computation was conducted using opensource Octave. We were able

to reconstruct the original data with less than 1% error. Figure 2.4 shows the com-

parison of velocity magnitude of the original CFD solution, the noisy data, and the

reconstructed data at a randomly chosen location inside the aneurysmal artery.

34



Chapter 3

Post-processing 4D Flow MRI Using Proper

Orthogonal Decomposition (POD)1

3.1 Introduction

Proper orthogonal decomposition (POD) is a data analysis method aimed to ap-

proximate high-dimensional data with extracting basis functions containing char-

acteristics from the system of interest [28]. The POD is also known as Principle

Component Analysis, the Karhunen-Loeve Decomposition, and the singular value

decomposition.

In other words, the aim of POD is to approximate a function as a finite sum of

variables in the form of

f =
M∑

i=1

φi ŷi (3.1)

where the approximation becomes exact when M approaches infinity. For that,

let X be Hilbert space with inner product < ., . > and norm | |.| | =√< ., . >. Given a

1The results from this chapter was published in the Journal of Biomechanics. The preliminary
results were also published in multiple conferences as following:

[6] Bakhshinejad, A., Baghaie, A., Vali, A., Saloner, D., Rayz, V. L., & DSouza, R. M. (2017). Merging computational fluid
dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression. Journal of Biomechanics, 58,
162173. https://doi.org/10.1016/j.jbiomech.2017.05.004

[41] DSouza, R. M., Bakhshinejad, A., Baghaie, A., & Rayz, V. L. (2016). Reconstructing High Fidelity Hemodynamic Flow
Fields by Merging Patient-Specific Computational Fluid Dynamics (CFD) and 4D Phase Contrast Magnetic Resonance Data.
In ISMRM Workshop on Quantitative MR Flow. inproceedings.

[4] Bakhshinejad, A., Baghaie, A., Rayz, V. L., & DSouza, R. M. (2016). A proper orthogonal decomposition approach
towards merging CFD and 4D-PCMR flow data. In The 28th Society for Magnetic Resonance Angiography. inproceedings.

[5] Bakhshinejad, A., Baghaie, A., Rayz, V. L., & DSouza, R. M. (2016). Towards Reconstructing Blood Velocity Profiles
from Noisy and Sparse Time Resolved Phase Contrast Magnetic Resonance Flow Data. misc.
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series of snapshots (yi) in the X space we can define:

y = span{y1, y2, · · · , yn} ⊂ X (3.2)

Having y, POD generates a set of orthonormal basis of dimension k (k ≤ n),

which minimizes the error from approximating the snapshots as:

min{φ}k
i=1

n∑
j=1

| |y j − ŷ j | |2, s.t. < φi, φ j >= δi j =


0 i , j

1 i = j
(3.3)

where ŷ j(x) =
∑k

i=1 < y j, φi > φi(X) is an approximation of yi using {φ}ki=1 and

can be solved using singular value decomposition (SVD).

The POD was developed by several people and has been used in variety of appli-

cations. Low-dimensional description of turbulent fluid flows [61, 56, 9], structural

vibrations [70, 77, 112], and damage detection [53, 76], to name a few applications

in dynamic systems.

In this work, we adopted the POD method to generate a low-dimensional space

of solutions using computational fluid dynamics (CFD) results as our snapshots. In

this method with projecting noisy data on low-dimensional basis functions we were

able to de-noise 4D flow MRI data as well as increase the resolution to an arbitrary

high resolution.

3.2 Methods

The flowchart of our algorithm is shown in Fig. 3.1. We begin by constructing

the boundary conditions (flow inlet and outlet) from the actual 4D flow MRI data.

As shown in Fig. 3.1, the flow rate is estimated by placing cutting planes on the

geometry at a number of locations at the inlet(s) and outlet(s) and computing the

normal components of the velocities. We then average the values to reduce the ef-
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fect of noise. The 4D flow MRI data is available only at intervals of 83.28 ms. This

∆t4D f lowMRI results in large errors in the discretization for CFD simulation as well

as numerical instability. Therefore, the time interval used in our CFD simulation

is ∆tCFD = 0.02∆t4D f lowMRI . The boundary condition (BC) is then interpolated

using cubic splines in-between 4D flow MRI data points and sampled at the time

increments of CFD. The sample BC variance is computed and an ensemble of BCs

is computed. The actual BC is somewhere in-between these ensemble BCs. The

ensemble BCs are used along with the vascular geometry to compute an ensemble

of solutions. At each 4D flow MRI time step, the 3D velocity profile is called a

snapshot. These snapshots are then used to compute the proper orthogonal decom-

position.

3.2.1 Proper Orthogonal Decomposition (POD)

We generate our POD basis functions using the method of snapshots [110]. A matrix

of solutions from the ensemble of solutions is organized as:

[ZH] =
[ [

X1
H

] [
X2

H

]
..

[
X k

H

]
..

]
(3.4)

where
[
X k

H

]
∈ RNH×ND, k = 1 : NQ is the sequence of velocity profiles by time of

the k th ensemble solution, NH is the dimension of the 3-D velocity vector in CFD

mesh resolution, ND is the number of time steps in the input 4D flow MRI data, and

NQ is the number of ensemble solutions. Therefore, the total number of snapshots

in [ZH] is given by Ns = ND × NQ. Consequently, [ZH] ∈ RNH×Ns . The solutions are

also downsampled to the 4D flow MRI voxel grid using inverse distance weighting

(IDW) [81] as:

[ZL] = [S] [ZH] (3.5)
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Figure 3.1: Flow-chart of the hemodynamic velocity reconstruction algorithm based
on proper orthogonal decomposition (POD).
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where [S] ∈ RNL×NH is the weighting matrix. IDW is commonly used to sample

scattered data onto a regular grid, and NL is the number of voxels in the 4D flow

MRI data cube.

We next proceed to compute the singular value decomposition (SVD) [55] of the

matrices [ZH] , [ZL] as:

[ZH] = [UH] [ΣH] [VH]T

[ZL] = [UL] [ΣL] [VL]T
(3.6)

The matrices [UH] ∈ RNH×Ns, [UL] ∈ RNL×Ns consists of left eigen vectors, the

[Σ] ∈ RNs×Ns is diagonal and contains the singular values and the matrices [VH] , [VL]

contains the right eigen vectors. The matrices [UH] , [UL] form the basis that span

the space of all possible solutions in the CFD mesh space and the downsampled 4D

flow MRI voxel space respectively.

3.2.2 Noise Free Reconstruction at 4D flow MRI Resolution

The 4D flow MRI signal is the summation of the actual velocity and noise. While

as the actual velocity signal obeys the flow physics, i.e., satisfies momentum and

mass conservation equations, noise does not. Therefore, the actual velocity lies in

the space of solutions spanned by the basis vectors [UL] and the noise signal is

orthogonal to this space. Therefore, if we project the 4D flow MRI signal onto the

basis vectors [UL], we should be able to recover the actual velocity. The projection

is given by:

[αL] = [UL]T [YL] (3.7)

where [YL] is the 4D flow MRI raw data. Finally the estimate of the actual flow
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in the 4D flow MRI voxel space is obtained as:

[
ŶL

]
= [UL] · [αL] (3.8)

3.2.3 Noise Free Reconstruction at CFD Mesh Resolution

Using Coefficient Mapping

4D flow MRI voxel space resolution is typically not enough to capture fine details

of the flow field. On the other hand, CFD can resolve these details to an arbitrarily

fine level (depending on the availability of computing power, random access memory

(RAM) and time).Therefore, the problem here is to find if the low resolution flow

estimate can be upsampled to the high resolution CFD mesh.

In our work, we used a coefficient mapping approach based on ridge regression to

obtain the flow estimate. The estimate of flow velocity at the CFD mesh resolution

is given by

[
ŶH

]
= [UH]T [αH] (3.9)

To find [αH], we use the relation

[αH] = [M] [αL] (3.10)

where [M] ∈ RNs×Ns is the mapping matrix. To obtain [M] we use ridge regression

that mimimizes an objective function given by

[M]∗ = arg min
[M]




[αi
H

]NQ

i=1 − [M]
[
αi

L

]NQ

i=1




2
F
+ β ‖[M]‖2F (3.11)

where
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[
αi

H

]
= [UH]T

[
X i

H

]
[
αi

L

]
= [UL]T

[
X i

L

] (3.12)

The equations above compute the projections of the CFD mesh resolution en-

semble solution snapshots and their respective downsampled 4D flow MRI resolution

solution snapshots on the basis vectors. β is a regularization parameter which mini-

mizes the effects of outliers in the data. Basically, with ridge regression, we force the

matrix [M] to map known projection coefficients obtained from ensemble solutions

in a least squared sense. The optimal solution is given by

[M] =
( [
αi

H

]NQ

i=1

) ( [
αi

L

]NQ

i=1

)T
×

(( [
αi

H

]NQ

i=1

) ( [
αi

L

]NQ

i=1

)T
+ β.I

)−1
(3.13)

where I is an identity matrix of size Ns × Ns.

Empirically, we have observed that choice of parameter β can impact the quality

of the upsampled solution we obtain. When β is small (10−2), then upsampled data

picks up certain amount of numerical oscillations. When β is large (100) it tends to

smooth out sharp features. A method to optimally determine β automatically is a

problem that we will research in the near future.

3.2.4 Down-sampling Using Inverse Distance Weighting (IDW)

Down-sampling is done to compute values of the field on a regular grid from an un-

structured mesh. Using spatial binning, we assigned the mesh finite volume centers

(mfvc) of the CFD mesh to voxels of the 4D flow MRI grid. The velocity at the

center of every voxel was then computed as
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vL =

∑N
i=1 wiv

i
H∑N

i=1 wi
(3.14)

where vL is the downsampled velocity vector, vi
H in the velocity vector at the ith

mfvc assigned to the given voxel, Np is the total number of mfvcs assigned to the

given voxel using spatial binning. The weight is computed as

wi = exp

(
− ‖pc − pi‖2
γ(∆x2 + ∆y2 + ∆z2)

)
(3.15)

where pc is the center of the voxel, pi is the cell center of the ith mfvc in the

voxel, and ∆x,∆y,∆z are the x, y, z dimensions of the voxel. γ controls the level of

blurring.

3.2.5 Creating Numerical Phantom

A numerical phantom was created to reflect actual data processing conditions.

Patient-specific vascular geometry was used. Boundary conditions were derived

from actual 4D flow MRI flow data.

Creating Patient Specific Vascular Geometry

High-resolution contrast enhanced MR angiography (CE-MRA) images were used

to construct patient-specific vascular geometry. The patient was imaged at the

Vascular Imaging Research Center (VIRC), University of California, San Francisco

(UCSF). The voxel size in the CE-MRA images was 0.7mm x 0.7mm x 0.7 mm

and the contrast ratio of the luminal to background intensity was in the range of

8 to 10. MIMICST M (Mimics 17.0, Materialise Inc, Leuven, Belgium) was used to

create a three-dimensional iso-surface corresponding to the luminal boundaries. A

threshold intensity value was adjusted to ensure that the segmented iso-surface co-

incides with the luminal boundaries. The geometry obtained from the segmentation

42



process included the aneurysm with its proximal and distal vessels. The iso-surface

was then imported into a pre-processing software ANSYS ICEM CFD (ANSYS, Inc,

Canonsburg, PA), where the computational domain and mesh were created. The

computational mesh has roughly 1.8 Million finite volume cells.

Patient Specific Boundary Conditions

The patient-specific boundary conditions were obtained from in-vivo phase-contrast

magnetic resonance (4D flow MRI). Three-dimensional velocity field during one car-

diac cycle was extracted from 4D flow MRI data-set using an in-house software. In

order to obtain flow waveform in the arteries, five 2D analysis planes were extracted

from 4D flow MRI data for each proximal (inlet) and distal (outlet) vessel and the

through-plane flowrate was calculated using Ensight (CEI, Apex, NC) for each plane.

The sample mean flow µi
v and variance σi

v was then computed at different time steps.

A ensemble of 6 random sample flows using Gaussian distribution with the pre-

viously obtained mean flow and variance was computed at each time step. Since

the temporal resolution of the 4D flow MRI was low for CFD simulation (typically

10-20 time-frames are collected during a cardiac cycle), piece-wise cubic interpola-

tion was used to ensure minimal discretization error and numerical instability in the

CFD simulation. The ensemble flows were then used as boundary conditions for the

ensemble solutions of flow in the patient specific geometry.

CFD Simulation

The open source software OpenFoam [131] was used to compute the CFD solutions.

We used the time varying pressure implicit with splitting of operator (PISO) to in-

tegrate the discretized Navier Stokes equation. Reynold’s number calculated at the
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inlet was estimated to be ≈ 400. At this value of Reynold’s number, the flow can be

assumed to be laminar [109]. Dynamic viscosity of blood was set to 3.5 × 10−3Pa.

Flow was assumed to be Newtonian with rigid aneurysm geometry. The time step

for the for the PISO solver was set to 1.67ms. We are limited by the numerical

stability of solver algorithm. An ensemble of 6 simulations was generated from the

6 random sample flows. One of the 6 ensemble solutions was randomly selected to

be the ground truth. The remaining 5 solutions were used to compute the basis

vectors as explained previously.

Simulated Noisy 4D Flow MRI data

To create the simulated noisy 4D flow MRI data, the ground truth solution in CFD

mesh space was down-sampled to the 4D flow MRI grid. Then, the velocity data

is transformed using five-point balanced encoding method proposed in [65]. This is

followed by adding various levels of complex Gaussian noise (10% and 50 % of the

maximum velocity magnitude) to the complex data. Finally, the inverse five-point

balanced encoding transform was applied to obtain the noisy velocity fields [96].

3.2.6 Error Analysis

Error metrics used for comparison between our technique and finite difference method

(FDM), divergence-free radial basis functions (RBF), divergence-free wavelets with

SureShrink and median absolute deviation (MAD) with and without cycle spinning

(DFW-sm, DFWsms) were the same as those in [96]. These include the velocity

normalized root mean squared error (vNRMSE), the speed normalized root mean

squared error (sNRMSE), and direction error (DE). For completeness, we include

these herewith:
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Velocity NRMSE =
1

max
i
|vi,ph |

√√√
1

N

N∑
i=1

|vi,ph − vi,recon |2 (3.16)

Speed NRMSE =
1

max
i
|vi,ph |

√√√
1

N

N∑
i=1

(
|vi,ph | − |vi,recon |

)2
(3.17)

Direction Error =
1

N

N∑
i=0

(
1 −
|vi,ph · vi,recon |
|vi,ph | |vi,recon |

)
(3.18)

PVNR = 20 log10

(
1

Velocity NRSME

)
(3.19)

where N is the number of voxels within the segmented data, vi,ph is the nu-

merical phantom velocity in the ith voxel of the segmented data and vi,recon is the

reconstructed velocity.

3.2.7 In-vivo 4D Flow MRI Data

4D flow MRI imaging was performed on an aneurysm patient using a 3T MRI

scanner (Siemens, Skyra). The number of 4D flow MRI slices was 144 with in-plane

matrix size of 194×144 pixels (voxel size of 1.25mm × 1.25mm × 1.33mm). The

sequence parameters used for the MRI were as follows: TR/TE = 5.2/3.78 ms, flip

angle = 8o, and temporal resolution = 83.28 ms. The VENC was set to 100cm/s.

4D flow MRI data were imported in DICOM format to a pre-processing in-house

software where the velocity data was extracted and saved for post-processing.
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3.3 Results

3.3.1 Tests with Numerical Phantom

The methods developed in this work were compared to existing methods such as

finite difference method (FDM), radial basis functions (RBF), and divergence free

wavelets (DFW) using the numerical phantom described previously. The support

of RBF basis functions was set to 7×7×7 experimentally. The number of iterations

for the LSQR solver was set to be 20. The kernel size for FDM is 3x3x3 is fixed.

The minimum size for the wavelet scaling subband was set to 10 for both DFW-sm

(with automated selection of subband dependent threshold using SureShrink (SS)

and median absolute deviation(MAD)) and DFW-sms (with SS, MAD, and partial

cycle spinning). For DFW-sms, the number of spins was set to 4 which is equivalent

to 16 random shifts[96]. As in the case of RBF, the parameters for DFW-sm, and

DFW-sms were adjusted to achieve the best error performance for the dataset.

Fig. 3.2 illustrates the POD reconstruction results. Compared to the ground

truth in Fig. 3.2(b), the de-noised velocity magnitude profile in 4D flow MRI resolu-

tion in Fig. 3.2(e) is clearly missing details in the high velocity regions as indicated

by the arrows. These details are visible in the CFD mesh resolution reconstruction.

Next comparison tests were conducted with RBF, FDM, DFW-sm, and DFW-

sms. Tests were run for two different noise levels (28.17dB PVNR corresponding to

noise variance σ = 10%|vmax | and 13.2dB PVNR corresponding to noise variance of

σ = 50%|vmax | ) at 4D flow MRI resolution of 40× 80× 80. One additional test was

run with noise level at 50% noise with the 4D flow MRI resolution at 21 × 51 × 25.

This is the resolution of the in-vivo patient data acquisition. Each of these tests

were run 20 times and the sample means and variances of various error metrics were

tabulated in Table 3.1.
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Figure 3.2: Reconstruction of velocity profile using POD. A random two dimensional
cross-section was chosen for visualization purposes. Each sub-figure shows the ve-
locity map of the selected cross-section in meter per second. (a) Original velocity
profile (ground truth) sampled at a 2-D cross-section. (b) Down-sampled ground
truth. (c) Simulated noisy 4D flow MRI. (d) De-noised velocity profile in 4D flow
MRI resolution. (e) Reconstructed velocity profile in CFD mesh resolution. Notice
that fine details missing in the reconstructed velocity profile in the 4D flow MRI
resolution are revealed in the reconstructed velocity profile in CFD mesh resolution
(see arrows pointing regions).
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As can be seen from Fig. 3.3, at 10% noise level and 4D flow MRI resolution

of 40 × 80 × 80, for all methods, the visual quality is almost the same. The overall

quantitative error metrics shown in Table 1 indicate that in order of performance,

FDM performs the worst (it actually amplifies noise), DFW-sm is next, followed by

RBF, DFW-sms, and POD. As can be seen, the second best technique DFW-sms

has about 6.127×, 6.22×, and 66.86× the vNRMS, sNRMS, and DR error of POD.

When the noise is increased to 50% (Fig. 3.4) with the same 4D flow MRI reso-

lution, it can be seen that all methods including FDM reduce the error. However,

the performance degrades with higher noise. The error metrics in Table 1 indicate

that by order of performance, FDM performs the worst, RBF is next, followed by

DFW-sm, DFW-sms, and POD. In this case, the second best method DFW-sms has

about 6.42×, 6.55×, and 42.135× the vNRMS, sNRMS, and DR error of POD. Ad-

ditionally, as indicated by the white arrows in Fig. 3.4, RBF, FDM, and DFW-sm

have significant distortion in high velocity as well as low velocity details. DFW-sms

distorts low velocity details. POD is able to reconstruct these velocity details much

better (Fig. 3.4 (h)).

Fig. 3.5 illustrates the results of tests when noise was set to 50% with reduced

4D flow MRI resolution of 21× 51× 25 (resolution of in-vivo data). As indicated, in

regions indicated by arrows all previous reconstruction techniques have significant

distortion in velocity patterns. POD reconstruction works much better as shown in

Fig.3.5(e).

Fig. 3.6 illustrates the velocity magnitudes at 2 1-D cross sections as shown

in Fig. 3.6(b). Results for 10% noise level indicate all previous methods work

reasonably well (Fig. 3.6 (c),(d)). POD seems to have the least distortion. For the

50% noise level, DFW-sms and DFW-sm seem to have surprisingly large amount of
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Figure 3.3: De-noising comparison on simulated data. In this test, the noise variance
was set to be σ = 10%|Vmax |. The 4D flow MRI resolution was set to 40 × 80 × 80.
(a)2-D section location for sampling velocity. (b) Down-sampled ground truth at the
2-D section. (c) Simulated noisy 4D flow MRI. (d) De-noising using FDM. (e) De-
noising using RBF. (f) De-noising using DFM-sm. (g) De-noising using DFM-sms.
(h) De-noising using POD. All methods visually appear to more or less preserve
details in the velocity profile.

distortion as indicated in Fig.3.6(f). POD on the other hand is able to recover the

velocity profile significantly better (Fig.3.6(g)).

3.3.2 Tests on in vivo Data

We also tested our algorithm on in-vivo data.(Fig. 3.7). In this case, the ground

truth is not available. Fig. 3.7 (d), (e) show the results of our de-noising with recon-

struction at CFD mesh resolution and streamlines respectively. We then compared
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Figure 3.4: De-noising comparison on simulated data with high noise and high 4D
flow MRI resolution. In this test, the noise variance was set to be σ = 50%|Vmax |.
The 4D flow MRI resolution was set to 40 × 80 × 80. (a) 2D section at which
velocity magnitudes were sampled. (b) Downsampled ground truth at this section.
(c) Simulated noisy 4D flow MRI. (d) De-noising using FDM. (e) De-noising using
RBF. (f) De-noising using DFW-sm. (g) De-noising using DFW-sms. (h) De-noising
using POD. For FDM, RBF, DFM-sm, DFM-sms, white arrows indicate features
that are distorted. In case of POD, these features are preserved quite well.
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Figure 3.5: De-noising comparison on simulated data with high noise and low 4D
flow MRI resolution. In this test, the noise variance was set to be σ = 50%|Vmax |.
The 4D flow MRI resolution was set to 21 × 51 × 25 which is the same for in-
vivo 4D flow MRI. (a) 2D section at which velocity magnitudes were sampled. (b)
Downsampled ground truth. (c) Simulated noisy 4D flow MRI. (d) De-noising using
FDM. (e) De-noising using RBF. (f) De-noising using DFW-sm. (g) Reconstruction
using DFW-sms. (h) De-noising using POD. Clearly, as shown in the regions pointed
to by the arrows, the POD method is able to preserve details in the flow much better
than all other methods.
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Figure 3.6: Comparison of velocity profiles along 1-D sections. In this test, the 4D
flow MRI resolution was set to 40×80×80. (a) Location of sampled 1-D sections. (b),
(c) Velocity profile comparison when noise variance was set to be σ = 10%|Vmax |
at 1-D sections ‘1’ and ‘2’ respectively. (d),(e) Velocity profile comparison when
noise variance was set to be σ = 50%|Vmax | at 1-D sections ‘1’ and ‘2’ respectively.
Clearly, POD performs much better than all other methods. There is significant
degradation in the results of other methods when noise level is increased.
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our results against reconstruction using DFW (Fig. 3.8). As in [96], we performed

streamline tests. Streamlines were constructed from the velocity data for the raw 4D

flow MRI data, reconstruction with DFW, and reconstruction with POD in 4D flow

MRI mesh resolution. We used the ParaView software to build streamlines from

velocity data. Significant manual adjustment of parameters (threshold, sub band

level etc.) with DFW had to be performed to generate results. DFM-sms failed

to produce any coherent results. An emitter plane was place near the inlet and an

analysis plane was placed near the outlet. Since this aneurysm has only one inlet

and one outlet, it can be assumed that all streamlines released at the emitter should

reach the analysis plane. In case of DFW, only 7.3 % of the streamlines reached

the analysis plane. For POD-based de-noising in 4D flow MRI resolution, 87.8 %

reached the analysis plane. For comparison, in case of the raw 4D flow MRI data,

only 1% reached the analysis plane. Clearly, the POD approach greatly improves

streamline lengths.

3.4 Discussions

A new method based on proper orthogonal decomposition for reconstructing high

resolution hemodynamic velocity profiles from low resolution noisy time resolved

phase contrast magnetic resonance was developed. Furthermore, a novel technique

based on ridge regression was developed for up-sampling of the results from the 4D

flow MRI voxel grid to the unstructured high resolution CFD mesh. The perfor-

mance of the proposed techniques was tested against existing techniques such as

FDM, RBF, and DFW using a numerical phantom. Since our techniques use actual

CFD simulation to generate basis vectors, unlike most of the previous methods, our

solutions conform to both the momentum balance as well as mass balance parts

of the Navier-Stokes equation. The ability to up-sample means that our technique

can be used to potentially recover minute flow details that are not visible at the
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Figure 3.7: De-noising and reconstruction from in-vivo data. (a) 2-D section at
which results are displayed. (b) Raw 4D flow MRI in-vivo data. (c) POD-based
de-noising in 4D flow MRI resolution. (d) POD-based reconstruction using ridge
regression in CFD mesh resolution. (e) Streamlines of CFD mesh resolution recon-
struction.
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Figure 3.8: Comparison of de-noising on in-vivo 4D flow MRI data using streamlines.
(a) Location of emitter and analysis planes. (b) In-vivo 4D flow MRI streamlines.
(c) DFW streamlines (with manual optimization of parameters for the algorithm).
(d) POD streamlines.

resolution of 4D flow MRI acquisition. Alternatively, our technique can be used in

situations where size of the blood vessels in question limits the resolution of the 4D

flow MRI acquisition.

In our work we have assumed laminar Newtonian flow model in the CFD sim-

ulation based on the Reynold’s number. However, non-Newtonian flow models can

easily be incorporated without any change in the basic process. Uncertainty in the

viscosities and other parameters can be handled by process of sampling which will

increase the number of CFD solutions used to generate the basis vectors.

Tuning of the parameters plays a significant role in the performance of the tech-

niques used for de-noising of PCMR data. For the FDM, there are no parame-

ters that need to be set since it works based on a Laplacian operator defined in a

3 × 3 × 3 neighborhood around each voxel. On the other hand, for RBF, the ra-

dius (r) of radial basis kernels should be specified which results in a support size of

(2r + 1) × (2r + 1) × (2r + 1). Moreover, the number of iterations for the LSQR solver
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needs to be specified. For the divergence-free wavelet based techniques, DFW-sm

and DFW-sms, the user should specify the minimum size for the wavelet scaling

sub-bands. Additionally, the number of cycle spins should be determined for the

DFW-sms. As for our algorithm, γ and β are the two parameters that need to be

specified. γ controls the influence of neighboring points in the down-sampling step

using the inverse distance weighting interpolation while β is the regularization pa-

rameter for computing the mapping between the basis vectors from the 4D flow MRI

domain to the CFD mesh domain. It ensures optimal suppression of the possible

outliers. In the current work, the values for the parameters are chosen experimen-

tally based on the quantitative measures when comparing with the ground truth

data (Fig. 3.9).

Currently, a major limitation of our technique is computational complexity. Sev-

eral ensemble CFD simulations have to be executed to capture the space of solutions

in the vicinity of the actual flow field. Our test case aneurysm had a single inlet

and a single outlet. We empirically set the number of ensemble simulations to 6.

In case of vasculature with multiple inputs and outputs, the number of simulation

as well as the method to sample the simulation will become critical. A systematic

method has to be developed to accomplish this in an optimal manner.

The most time consuming part of our technique is the process of executing the

high fidelity finite volume CFD simulations with a mesh size of approximately 1.8

M nodes. Depending on the required details in the reconstructed flow field, one

may be able to reduce the mesh size. Reducing the time for the simulations can

be achieved by parallelizing the process of CFD simulations. The common practice

involves using local or cloud-based computer grids. For our work, we utilized Google

Cloud which reduced the computational time needed for high resolution simulations

significantly. Earlier versions of the simulations on an AMD Phenom II X4 920
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Figure 3.9: Effect of regularization parameter β in ridge regression based coefficient
mapping on up-sampling. (a) Original velocity magnitude profile at a cross-section.
(b) Velocity profile for β = 0.01 , PSNR = 29.3dB (c) Velocity profile for β =
1 , PSNR = 33.2dB (d) Velocity profile for β = 100 , PSNR = 29.7dB. Large β
tends to smooth out features especially in high velocity regions, while small β tends
to pick up numerical disturbances in high velocity regions. The low velocity regions
seem to remain unaffected.
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Processor computer with 16 GB of RAM in Ubuntu 14.04 LTS environment in

OpenFOAM 3.0 and without any multi-core modifications took around 10 hours

per simulation. Using the current Google Cloud based platform, we reduced the

time to around 1 hour for the six simulations, combined. Currently, we use an

explicit time solver and are limited by the numerical stability of the integrator. We

are in the process of investigating explicit integrators with relaxation which enable

larger time steps. There is also the option of using fully implicit block coupled solver

which may be even more efficient [36]. Another alternative is to integrate graphics

processing unit (GPU) based solvers into our CFD simulation.
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Chapter 4

4D Flow MRI Denoising and Spatial Resolution

Enhancement: Application of Proper Orthogonal

Decomposition Coupled with Dynamic Mode

Decomposition1

4.1 Introduction

In the previous chapter we introduced a method for denoising and super-resolution

of 4D Flow data using proper orthogonal decomposition (POD) [41, 6]. The basic

method was implemented as a two step process: 1) projecting 4D Flow data on

a set of POD basis vectors in the uniform grid of the volume, 2) up-sampling the

projected data into a high resolution unstructured CFD mesh using ridge regression

for coefficient mapping. The POD basis vectors are obtained from the snapshots

of a CFD simulation with the boundary conditions obtained directly from the 4D

Flow data. The ridge regression process required specification of optimization pa-

rameters which had significant effect on the accuracy of the solution. In this paper,

we replace the ridge regression algorithm with a method based on dynamic model

decomposition (DMD). The DMD method does not require parameter tuning and

is completely autonomous.

1The results from this chapter was resulted in the following publications:

[47] Fathi, M. F., Bakhshinejad, A., Baghaie, A., Saloner, D., Sacho, R. H., Rayz, V. L., & DSouza, R. M. (2018). Denoising
and Spatial Resolution Enhancement of 4D Flow MRI Using Proper Orthogonal Decomposition and Lasso Regularization.
Computerized Medical Imaging and Graphics.https://doi.org/10.1016/J.COMPMEDIMAG.2018.07.003

[1] Bakhshinejad, Ali, Fathi, M. F., Baghaie, A., Sacho, R. H., Nael, K., Saloner, D., DSouza, R. (2018). 4D Flow MRI
Denoising and Spatial Resolution Enhancement: Application of Proper Orthogonal Decomposition Coupled with Dynamic
Mode Decomposition. Under Review at the Journal of Biomechanics.
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4.2 Methods

Figure 4.1 shows the developed algorithm. This algorithm is based on our previ-

ously published work using POD [6]. 4D Flow MRI data is sampled on the inlet and

outlet boundaries at multiple cross-sectional planes normal to the centerlines to gen-

erate the boundary conditions. These boundary conditions are used to run a CFD

simulation using geometry obtained from either contrast enhanced magnetic reso-

nane angiography (CE-MRA) or time of flight (TOF)-MRA. Time resolved solution

snapshots xi of the CFD simulation are collected in a matrix XH

XH =
[
x1 x2 · · · xi · · ·

]
The snapshots are downsampled from the CFD mesh to the much coarser 4D Flow

grid by averaging velocity values of finite volume centers (FVCs) that fall inside a

grid voxel. This operation is formulated as a matrix operation as

XL =MXH

Next the POD basis vectors at both 4D Flow resolution (UL) and CFD resolu-

tion ( UH) are computed using singular value decomposition (SVD) of XL and XH

respectively. The 4D Flow data Y is then projected on to the basis XL as

ĈL = UT
LY

The denoised flow field in the low resolution 4D Flow grid is then given by

ŶL = ULĈL
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The projection coefficients in the high resolution are computed as

ĈH = AĈL

where A is the coffiecient mapping matrix. Finally, the flow field in the high reso-

lution of the CFD mesh is given by

ŶH = ĈHUH

Previously, the coefficient mapping matrix A was found using a process of ridge

regression. In this paper, we describe a new method using techniques from DMD.

4.2.1 Mapping projection coefficients using DMD

We use the snapshots of the CFD simulation xi to learn the coefficient projected

matrix A. In high resolution, the projection coefficients of the snapshots are given

by

CH = UT
HXH

Similarly, in low resolution

CL = UT
LXL

We now compute matrix A such that

CH = ACL

We use the DMD algorithm illustrated in Algorithm 1 to compute the matrix A.

Rather than using all available dynamic modes, we only pick an optimal number

of modes (r in line 2 of Algorithm 1) using the method of singular value hard

thresholding (SVHT) to compute A [54]. The SVHT prevents over-fitting which

62



can result in spurious artifacts. The matrix A is then given by

A = ΦΛΦ†

where Φ† is the pseudo-inverse of Φ

Algorithm 1: The overall procedure of DMD algorithm

Data: The low and high resolution coefficients matrices CL and CH , the

number of modes to pick r

Result: The matrix of DMD modes Φ, the vector of corresponding

eigenvalues λ

1 Find the SVD of CL such that CL = UΣV∗;

2 Truncate U to the first r columns;

3 Truncate Σ to the upper-left r × r matrix;

4 Truncate V∗ to the first r rows;

5 Define Ã , U∗CHVΣ−1;

6 Find the eigenvalues λ and eigenvectors W of Ã, i.e. ÃW =W diag(λ);

7 Compute the DMD modes Φ , CHVΣ−1W;

8 return λ, Φ

4.3 Results

4.3.1 Benchmarking tests using numerical phantoms

The numerical phantom was generated by running a reference CFD simulation us-

ing realistic boundary conditions and actual patient geometry obtained from MRA

scans. The reference CFD simulation was down-sampled to the 4D-Flow MRI grid

and noise added in complex k-space as in [96]. We used velocity-normalized root

mean square error (vNRMSE), speed-normalized root mean square error (sNRMSE),

and direction error (DE) to quantify errors.
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Figure 4.1: Flow-chart of the hemodynamic velocity reconstruction process using
dynamic mode decomposition (DMD).
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Table 4.1: Error metrics of denoising and data reconstruction using different meth-
ods for a numerical phantom. The noise level was equal to 15% of the maximum
velocity magnitude. All the reported results are in the regular grid of the 4D-Flow
MRI.

Metric / Method d-CFD reference + noise DFW-sm DFW-sms TV POD-RR POD-DMD
vNRMSE 6.00 5.14 4.21 3.60 0.29 0.28
sNRMSE 3.85 4.12 3.62 2.94 0.19 0.20
DE 9.58 3.65 2.22 2.55 0.14 0.15

Comparison with state-of-the-art denoising methods

The results from the POD-DMD method were compared with state-of-the-art meth-

ods (i.e. Divergence-free wavelet with SureShrink (DFW-sm), Divergence-free wavelet

with SureShrink and cycle spinning (DFW-sms), and Total Variation (TV)) [96, 13].

We created a numerical phantom with noise of amplitude equal to 15% of peak ve-

locity values. (Fig. 4.2 (a) to (c)). It can be seen that the POD-DMD/RR method

generates errors that are an order of magnitude lower (Fig. 4.2(d), Table 4.1).

Furthermore, both POD-RR and POD-DMD are able to accurately super-resolve

velocity fields in the CFD mesh. Note that in POD-RR, the weighting factor β was

chosen using a time-consuming hand tuning approach to minimize error. In case of

POD-DMD, the process was entirely autonomous.
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Figure 4.2: 4D-Flow MRI data reconstruction using different available methods.
Image (a) shows the CFD reference (CFD ref.). (b) Shows the downsampled CFD
ref. into 4D-Flow MRI grid (d-CFD ref.). (c) shows the result of adding simulated k
space noise to d-CFD ref. to generate the numerical phantom (d-CFD ref. + noise).
(d) shows the reconstruction results using different methods. Reconstruction in high
spatial resolution (resolution of the CFD mesh) is only available for POD-DMD and
POD-RR.
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Comparison between POD-DMD and POD-RR

We compared the performance of POD-DMD and POD-RR on a second patient-

specific aneurysm geometry. As before, Fig. 4.3 (a), (b), and (c) represent the slice

of geometry, the CFD reference velocity field, and the numerical phantom with added

noise equal to 15% of peak velocity, respectively. Fig. 4.3 (d) represents the result

of pure CFD simulation with BFCs obtained from the numerical phantom. Fig. 4.3

(e), (f), (g) represents the result of POD-RR for β = 100,β = 0.01, β = 0.0001,

respectively. Notice β = 0.01 has minimum error. This value is difficult to obtain

when real patient data is the input. Fig. 4.3 (h), (i), and (j) represent the results

of POD-DMD where the number of DMD modes for coefficient mapping are 3, 44,

and 88 respectively. Fig. 4.3 (h), (j) represent the case for under-fitting and over-

fitting, respectively. Fig. 4.3 (i) represents the case where the SVHT algorithm

automatically selects the optimal number of modes (44). It can clearly be seen that

the autonomous POD-DMD algorithm performs as well as the hand tuned POD-RR

algorithm.

Comparing in-flow boundary conditions

One of the important parameters that can be computed using 4D-Flow MRI is volu-

metric flow at the inlet(s) and outlet(s). Here we tested the ability of our algorithms

to recover the time-varying in-flow condition. We placed a plane perpendicular to

the centerline of the proximal artery and computed the flow for the flow-field from

the numerical phantom (d-CFD reference with noise), the downsampled CFD ref-

erence, POD-RR, and POD-DMD. From Fig. 4.4, it can clearly be seen that both

POD-DMD, and POD-RR are able to recover the original in-flow that was used to

generate the CFD reference.
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Figure 4.3: Error analysis of reconstructed data using pure CFD, POD-RR, and
POD-DMD. (a) Shows the location of slice, image (b) represents the CFD reference
simulation, (c) represents downsampled CFD reference after adding 15% of maxi-
mum velocity noise causing (vNRMSE=6.00, sNRMSE = 3.85, DE = 9.58) . This is
the simulated 4D-Flow MRI data. For (d)-(j), the top row represents the magnitude
of velocity and the bottom row represents the absolute error against CFD reference.
(d) is pure CFD using boundary conditions measured from the simulated 4D-Flow
MRI. This resulted in (vNRMSE=2.0, sNRMSE=1.2, DE=2.3). (e) is reconstruc-
tion using POD-RR with β = 100. This resulted in (vNRMSE=2.0, sNRMSE=1.3,
DE=3.2). (f) shows the reconstruction using POD-RR with β = 0.01. This resulted
in (vNRMSE=0.4, sNRMSE=0.77, DE=0.46). (g) shows the reconstruction using
POD-RR with β = 0.00001, resulted in (vNRMSE=2.0, sNRMSE=1.5, DE=2.4),
(h) is a reconstruction using POD-DMD with manual selection of coefficient mapping
DMD modes equal to 3. This resulted in (vNRMSE=1.2, sNRMSE=1.7, DE=2.0).
This is a case of of under-fitting. (i) shows the reconstruction using POD-DMD with
autonomous mode selection using SVHT (resulting in 44 DMD modes) for coefficient
mapping. This resulted in (vNRMSE=0.5, sNRMSE=0.69, DE=0.44). (j) shows the
reconstruction and error using POD-DMD by manually selecting coefficient map-
ping DMD modes equal to 88. This resulted in (vNRMSE=0.98, sNRMSE=0.87,
DE=0.45). This is a case of over-fitting.

68



Figure 4.4: Boundary condition comparison for the numerical dataset.

4.3.2 in-vivo data

We finally tested our algorithm on in-vivo data (Fig. 4.5). 4D-Flow imaging was

performed on an aneurysm patient using a 3T MRI scanner (GE, Discovery MR750).

We used a 3D phase-contrast peripherally-gated sequence in the axial plane to cover

the Circle of Willis focusing on the region of aneurysm. The data was processed

using an in-house code to corrected for random noise and eddy currents. We used

the method described by Walker et al. [129] for eddy current corrections. For this

dataset, pre-emphasis in the sequence takes care of gradient field nonlinearities. In

this test, we compared the flow field resulting from a pure CFD simulation using

boundary flow conditions obtained from 4D-Flow MRI, POD-RR, and POD-DMD.

While the flow field patterns are similar, pure CFD shows much higher peak ve-

locities as compared to 4D-Flow MRI and reconstructed POD-RR and POD-DMD.

Meanwhile, POD-RR and POD-DMD flow fields are nearly identical with peak ve-

locity values between those of pure CFD and 4D-Flow MRI.
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Figure 4.5: in-vivo datasets, image (a) shows the velocity profiles in the eddy current
corrected dataset, (b) represents the patient-specific model, (c) is the reconstruction
using POD-RR with β = 0.01, and (d) is reconstruction using POD-DMD.

4.4 Discussion

While 4D-Flow MRI has emerged as a potent new tool for in-vivo measurement of

time-resolved velocity fields, issues such as spatio-temporal resolution and noise have

limited its use in a clinical setting. Our previous paper showed that it is possible

to improve spatio-temporal resolution by merging CFD and 4D-Flow MRI (POD-

RR). In this paper, we report on improvements that make the method autonomous

(POD-DMD). The key idea was the reformulation of the projection coefficient map-

ping process in terms of DMD[124]. Furthermore, the selection of the number of

DMD modes was automated using the SVHT algorithm[54].

Test results on two numerical phantoms Fig. 4.3,4.2 show that autonomous

POD-DMD does not suffer from loss in accuracy as compared to the hand-tuned

POD-RR method. Figs. 3(e)-3(g) show that selecting a wrong parameter β for
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POD-RR can significantly impact the error. Similarly, manually selecting the num-

ber of DMD modes in POD-DMD can also impact accuracy (Figs. 3(h)-3(j)). Pure

CFD with boundary flow conditions obtained from 4D-Flow MRI is affected by

inaccuracy in the BFCs and is less accurate (Fig. 3(d)) when compared to POD-

DMD/RR. Fig. 4 illustrates the effect of spatial resolution on flow quantification

and validates other research in this area [32], i.e., spatial resolution distorts the

velocity field because of averaging. Incredibly, our approach (POD-RR/DMD) is

able to recover the original prescribed BFC for the reference, given as input the low

resolution noisy flow-field of the numerical phantom.

Tests on the in-vivo data set shows significant difference between pure CFD and

POD-DMD/RR unlike the numerical phantom in Fig 3. Visually, POD-DMD/RR

is much closer to the in-vivo data set. We suspect that this difference could be be-

cause of the incorrect assumption on the flow model (newtonian vs non-newtonian,

laminar vs turbulent) in the pure CFD simulation. Our algorithm tries to correct

for this error by merging CFD and 4D-Flow MRI. In depth analysis of this topic

will be the subject of a forthcoming publication.

There are other issues such as segmentation and registration errors that should

be investigated. Also, the method has to be verified using in-vitro models of actual

patient geometry using flow measuring techniques such as particle image velocimetry

(PIV). Finally, the number of patient geometries and data sets that we have applied

this technique to is quite small (3). We are in the process of collecting up to 15

patient data sets to run small cohort trials.
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4.5 Conclusions

In this work we have developed a completely autonomous method for physics-based

super resolution of 4D-Flow MRI data. This work has the potential to address some

of the major limitations of 4D-Flow including partial voluming [138], complex flow

pattern resolution in low-velocity regions[27], and acquisition noise. This will en-

able accurate computation of spatio-temporal maps of parameters such as wall shear

stresses (WSS) [23]. This may enable new risk stratification parameters/protocols

with significant impact on patient-specific prognosis and treatment decisions result-

ing in improved outcomes in patients with ICAs and other cerebrovascular diseases.
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Chapter 5

Effect of Physics-based Superresolution of 4D flow

MRI on Wall Shear Stress Values and Patterns1

5.1 Introduction

Wall shear stress (WSS) is the tangential force on the luminal wall due to velocity

gradients and viscosity of the fluid [51]. WSS has been implicated in many patho-

logical conditions in intra-cranial aneurysms (ICAs) including ICA formation[75],

ICA progression [17], and rupture [26]. It is believed that WSS on endothelial cells

lining the vessel lumen provides mechanical stimuli which in turn result in biolog-

ical signals to regulate vascular homeostasis [91]. Prolonged changes in WSS from

physiological levels leads to several cell-mediated processes such as vascular remod-

eling, extracellular matrix degeneration, cell mortality and inflammatory responses.

Based on histological findings, Meng et al. [88] have proposed that high WSS can

lead to mural-cell mediated destructive cell remodeling leading to ICA initiation.

Subsequently, the change in flow patterns can lead to aberrantly low WSS, which

in turn lead to inflammatory response and ICA growth.

1The preliminary results from this chapter was presented in the following conference paper:

[7] Bakhshinejad, A., Fathi, M. F., Saloner, D., Nael, K., Rayz, V. L., & DSouza, R. M.
(2018). Case study: Coupling 4D flow MRI with CFD using Proper Orthogonal Decompo-
sition and Dynamic Mode Decomposition. In 8th World Congress of Biomechanics. Dublin,
Ireland.
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5.1.1 Estimating WSS

Two dimensional phase contrast magnetic resonance imaging (2D-PCMRI) has been

used to non-invasively measure blood velocities in the cardio-vascular system. Re-

searchers have used this data to further compute local WSS based on these velocity

measurements [82]. The simplest approach is based on the average flow rate com-

puted from 2D-PCMRI with the equation

WSS =
4ηQ
πr3

(5.1)

where Q is the volume flow rate, η is the viscosity and r is the radius of the blood

vessel. This assumes a circular cross-section of the blood vessel with fully developed.

The flow rate is computed from the 2D-PCMRI velocities as

Q = 2π

∫ r

0
v(η)η dη (5.2)

where v(η) is the velocity as measured by 2D-PCMRI at a distance of η from the

center of the blood vessel. This method cannot handle cross-sections that are not

circular nor radial asymmetries in the velocity profile.

Oshinski et al. [97] overcame the problem of asymmetric velocity profiles by

using linear interpolation. In their approach, a straight line is drawn from a point

on the boundary where the velocity is zero (vwall = 0) to an interior point at a

distance dx along the surface normal of the vessel boundary. The velocity vint at

the interior point is sampled from 2D-PCMRI data and the WSS at the boundary

point is calculated as

WSS = η
dv

dx
= η

(vint − vwall

dx

)
(5.3)

Since the flow inside the blood vessel with fully developed Poiseuille flow is
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parabolic, Oyre et al. [98] developed a method to locally fit a 3D paraboloid whose

equation is given by

v(x, y) = a(x2 + y2) + bx + cy + d (5.4)

The WSS was computed by transforming the paraboloid to a radial coordinate

system. The equation for WSS in the radial coordinate system is given by

WSS = η
dv

dr

����
wall

(5.5)

Only points in a band between the center and vessel wall boundary were selected

for the fit. Using this method, WSS at several points along the boundary may be

calculated.

The methods described above are susceptible to vessel wall segmentation errors,

truncation errors and errors due to effects of partial voluming [120, 99] near the

boundary. There are several prescribed methods to mitigate these errors.

Frequently, the velocity profiles inside the blood vessel may other than parabolic.

To account for this, Cheng et al. [30], used a local Lagrangian polynomial fit. Given

this fit, the WSS was calculated as

WSS(x, y) = η (∇v(x, y) · n) (5.6)

With the advent of 4D flow MRI, it has now become possible to scan 3 dimen-

sional time resolved velocities. This allows for retrospective placements of planes

in any location and computing flow velocities at the plane cross-section. Unlike

2D-PCMRI, planes do not have be orthogonal to the flow direction in order to accu-

rately quantify flow. Consequently, the computations of WSS are likely to be more

accurate. On the other hand, due to the scan times involved, the spatio-temporal
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resolution is much lower as compared to 2D-PCMRI.

The basic approach to computing WSS from 4D flow MRI has been to retro-

spectively place planes at given locations and sample the 3D velocity field on the

plane. Next, either a high order polynomial interpolation or a piecewise continuous

(B-Spline) interpolation is used to fit the available velocity data to a continuous

function [73, 115]. Finally, the WSS tensor is computed as

®WSS = 2η Ûε · n (5.7)

where Ûε is the strain rate tensor whose components are given by

Ûεi j =
1

2

(
∂vi

∂x j
+
∂v j

∂xi

)
(5.8)

The main drawback of computing WSS directly from 4D flow MRI is the issue of

spatio-temporal resolution and noise. In cases of small blood vessels such as those

that occur intra-cranially, frequently there are only 3-4 voxels of data in some blood

vessel whose diameter is of the order of 2-3 mm. This data may not be sufficient to

generate a good functional fit. Furthermore, polynomial interpolation of velocities

will cause artifacts which can render the resulting interpolated field non-divergence

free.

Alternatively, several researchers have used CFD to compute WSS [102, 18]. The

boundary conditions, typically inflow and outflow are computed from 4D flow MRI

data. Furthermore, there are certain logical assumption that are made regarding

the type of flow (laminar vs newtonian vs non-newtonian) and model constants (dy-

namic viscosity). The spatio-temporal resolution is only limited by the computing

and memory power available. Furthermore, commercial CFD packages such as CFX,
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Fluent and open source packages such as OpenFoam have function to compute the

WSS tensor once the velocity field is computed.

In this chapter, we apply the POD-DMD method developed in chapter 4 to

compute WSS in high resolution. We generate a numerical phantom using actual

patient geometry and realistic boundary conditions. Time averaged wall shear stress

patterns were generated for the reference velocity field, numerical phantom, pure

CFD, and the results of POD-DMD. Finally, the POD-DMD method was applied

to 3 different patient data sets to generated detailed spatial WSS maps.

5.2 Method

In this section we describe data preparation for the POD-DMD method as well as

the generation of the numerical phantom. POD-DMD requires a CFD simulation

which in turn requires vessel geometry and boundary conditions. Furthermore, the

4D flow MRI data has to be registered with the CFD simulation data. These steps

are explained in detail in the following sections. We also describe the process of

creating a realistic numerical phantom.

5.2.1 Lumen segmentation and Registration

The Vascular Modeling Toolkit (VMTK) package was used for lumen segmenta-

tion. The magnitude image from 4D flow MRI gives an anatomical view of arteries,

however, the resolution of this image is not sufficient to be used for patient-specific

simulation models (Fig. 5.1). Therefore, another segmentation was performed on

high resolution time of flight (TOF). The two segmentations have to be co-located in

order to do point-by-point association of velocities. Due to different imperfections,

these two models never match exactly in the three dimensional space. To resolve
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Mag Slice

TOF Slice

ICP Co-registration

Figure 5.1: Steps of lumen segmentation. The process starts with two parallel
segmentations, the first from the magnitude image of 4D flow (Mag Slice in the
figure) and the second from the time of flight (TOF Slice). After obtaining both
surface files, the low resolution reconstructed surface from Mag Slice will be used as
the base mesh and the high resolution surface from TOF Slice will be co-registered
to the same location. We are using Iterative Closest Point (ICP) co-registration
algorithm.

the problem, we are using an Iterative Closest Point (ICP) co-registration algorithm

to match the location. In this method, up to five identical points were selected by

the user and the algorithm tries to minimize the error using the selected five points

as the base.

5.2.2 Volumetric mesh

The segmented lumen geometry from the TOF images is used to construct the de-

scritized mesh for numerical solving the flow. We used the ANSYS ICEM CFD

package to generate our volumetric mesh. Near wall regions were segmented with

a fine mesh 0̃.1mm size. This typically resulted in a mesh size of 600,000-1,200,000

finite volumes. The co-registered lumen surface is the input for the meshing pro-

cesses and the output is a mesh file in the format of a series of vertices and their

connectivity.
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5.2.3 Boundary condition calculation

The boundary flow conditions (inflow in the proximal arteries and outflow in dis-

tal arteries) were estimated form the 4D flow MRI data (Fig. 1.4). Using the

co-registered lumen segmentation, the centerline of the lumen surface needs to be

calculated. The VMTK package was used for this purpose. Several planes normal to

the centerline were place at the inlet(s) and outlet(s). The flow rates were calculated

by integrating the velocity over the area as

Q =
∫

A
®v · ®nA dA (5.9)

where ®nA is the normal to the plane. For each inlet and outlet, the flow was estimated

at several locations and averaged. The mean inflow was taken as calculated. Due

to noise and error in measurements, the measured inflow will not match measured

outflow. Therefore, for each outflow, the flow was divided proportionally according

to the measured mean outlfow. This balanced the flow conditions. For example, the

balanced outflow Q∗oi from the ith distal branch was computed as

Q∗oi =
Qoi∑
j Qoj

·
∑

Qin (5.10)

5.2.4 Merging 4D flow MRI and CFD

We use the POD-DMD algorithm described in chapter 4 to merge 4D flow MRI

data and CFD. Using the approximate boundary conditions from the 4D flow MRI

data computed as described previously, a CFD simulation was executed on the

patient specific geometry. The Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) algorithm was used by finite-volume solver OpenFOAM. The flow was

modeled as an incompressible and Newtonian fluid with the density of 1060kg/m3

and dynamic viscosity of 0.0035Pa.s. It has been shown in different papers that a
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rigid wall is a good assumption for an intra-cranial aneurysm [102, 6]. Therefore,

we adopted the same assumption and ran our models with rigid wall and the no-slip

boundary condition at walls. The simulation was carried out for upto 4 cardiac

cycles to ensure that the flow patterns through the cardiac cycles were repitative.

Finally, solution snapshots of the final cardiac cycle was used in the POD-DMD

algorithm described previously.

5.2.5 Wall Shear Stress Algorithm

3D shear stress vector was computed as in equations 5.7, 5.8. In the expanded form,

the shear stress vector is given by

®WSS = 2µ


∂vx
∂x · nx +

1
2

(
∂vy
∂x +

∂vx
∂y

)
· ny +

1
2

(
∂vz
∂x +

∂vx
∂z

)
· nz

1
2

(
∂vx
∂y +

∂vy
∂x

)
· nx +

∂vy
∂y · ny +

1
2

(
∂vz
∂y +

∂vy
∂z

)
· nz

1
2

(
∂vx
∂z +

∂vz
∂x

)
· nx +

1
2

(
∂vy
∂z +

∂vz
∂y

)
· ny +

∂vz
∂z · nz



����������
∂Ω

(5.11)

with µ be blood viscosity (3.2×10−3Pa),vx, vy, vz are the velocity coordinates and

nx, ny, nz are the surface normal coordinates in the global coordinate system. The

wall shear stress vector is evaluated at all points on the lumen boundary ∂Ω.

The WSS vector can be split into two components: one that is parallel to the normal

®n given by

®WSS®n = ( ®WSS · ®n)®n (5.12)

and one that is the tangential plane given by

®WSS®t = ®WSS − ( ®WSS · ®n)®n (5.13)

The WSS vector in 4D flow MRI grid was computed using the open-source

software Paraview. In order to be able to calculate the velocity gradient on the

wall of the re gion of interest, the 4D flow velocity data were re-sampled on the
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surface generated from the lumen segmentation step. Then the gradient tensor

was calculated for the velocities on the wall surface. Using the surface from the

segmentation and the gradient tensor, we were able to solve Eq. 5.11. The WSS

vector in the CFD mesh was computed using OpenFoam which provides a dedicated

library function.

5.2.6 Building a numerical flow phantom

In order to test the accuracy of our algorithm, we used a numerical flow phantom.

An actual aneurysm geometry was used in this exercise. The geometry was meshed

using the ANSYS ICEM CFD package. Realistic boundary conditions were applied

at the proximal and distal arteries. The simulation was run till the flow patterns

stabilized between cardiac cycles. Snapshots of the simulation at 80ms intervals

were collected and down sampled into the low resolution cartesian grid whose cell

size mimicked that 4D flow MRI acquisition. Next k-space gaussian noise was added

to the downsampled velocity field to generate the simulated 4D flow MRI data [25].

The process is illustrated in Fig. 5.2.

5.2.7 Study cohort and MR imaging

Three subjects were recruited, including a healthy subject (H1), and two cerebral

aneurysm patients (A1 and A2), for this study and underwent MRI scans using a 3T

MRI scanner (GE, Discovery MR750). ECG synchronized gated 4D flow MRI was

performed using free breathing. Post-processing of 4D flow data included corrections

of Eddy currents and random noise was performed using algorithm introduced by

Walker et al. [129]. The study was approved by our local Institutional Review

Board and informed consent was obtained from all subjects.
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Figure 5.2: Building a numerical flow phantom

5.3 Results

In this section, we compared the results of computing WSS from velocity fields

generated using pure CFD, POD-DMD, DFW-sms, and TV. DFW-sms and TV do

not increase the resolution of the velocity beyond what is available in 4D flow MRI

data. The resolution of pure CFD and POD-DMD is determined by the size of the

CFD computational mesh.

5.3.1 Particle tracing analysis

Particle tracing has been shown to be a good visual aid to visualize the improvement

in flow data after denoising. Our healthy subject data was used for this analysis.

Around one thousand virtual particles were released into the region (Fig. 5.3) and

particles leaving the area were counted at outlets. In case of raw 4D flow MRI

data, Fig. 5.3(a), just less than 2% of particles were observed at the outlets. After

removing random noise and phase errors (i.e. Eddy currents), the number of ob-
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Figure 5.3: Particle tracing analysis for a healthy subject (H1) was performed.
Image (a) shows the raw 4D flow MRI where about 2% of particles released from
inlet were observed in the outlets. The number of particles increased significantly
after removing random noise and eddy currents using a second order polynomial
up to 30% as shown in image (b). Image (c) shows the particle traces after de-
noising using divergence free wavelets, the number of receiving particles reached to
about 48%. Improved results using total variation algorithm shown in (d) which
was about 61%. Image (e) shows results from computational fluid dynamics which
is about 98%. And image (f) is results of proper orthogonal decomposition and
dynamic mode decomposition around 96%.

served particles increased significantly up to about 30% (Fig. 5.3(b)). Removing

the divergence in data using DFW-sms (Fig. 5.3(c)) further increased the number

of observed particles to around 48%. As the secondary denoising method in 4D flow

resolution, TVN was used (Fig. 5.3(d)). The observed particles after using TVN

was up to around 61%. The patient-specific CFD model (Fig. 5.3(e)), provides the

best results with more than 98% counted at outlets. Finally, coupling of CFD with

4D flow MRI, using POD-DMD algorithm, results in about 96% of particles leaving

the area.

As reported by other researchers as well [32, 102], the velocity values are slightly

higher in CFD and POD-DMD methods. However, high and low velocity regions

are in good agreement.
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Figure 5.4: Comparison of WSS computation. (a) Reference WSS pattern. (b)
Numerical phantom, (d) WSS from pure CFD with boundary conditions obtained
from numerical phantom. (d)WSS from POD-DMD

5.3.2 Verification using a numerical phantom

A numerical phantom was generated as described previously. Time averaged WSS

patterns were generated from the velocity field of the reference CFD simulation (Fig.

5.4(a)), the numerical phantom (downsampled reference CFD with added k-space

noise) (Fig. 5.4(b)), pure CFD simulation using boundary conditions from the nu-

merical phantom 5.4(c)), and finally from the POD-DMD algorithm 5.4(d)). Clearly,

it can be seen that WSS computations from downsampled noisy velocity fields is

quite different from the reference. While the patterns resulting from pure CFD and

POD-DMD are quite similar, there are differences in the pattern on the body of the

aneurysm as can be seen in Fig 5.4 (a,c,d). The small differences in POD-DMD and

pure CFD WSS patterns are due to the uncertainty in boundary conditions (which

are measured from the noisy numerical phantom) are model parameter uncertainties

(dynamic viscosity).

5.3.3 Wall Shear Stress using in-vivo data

WSS was calculated for three different patient datasets. First the WSS was calcu-

lated directly using raw 4D flow (Fig. 5.5(a)). The second column of Fig. 5.5(b)
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shows the WSS after correcting for eddy currents. The WSS for denoised data using

DFW-sms is shown in column c of Fig. 5.5. Next WSS for denoised data using

TVN was calculated as shown in Fig. 5.5(d). WSS using a patient-specific CFD

model is shown in column (e) of Fig. 5.5. Finally, WSS using denoised data using

POD-DMD algorithm is shown in Fig. 5.5(f).

As it can be observed in Fig. 5.5, WSS calculated directly using patient-specific

CFD has the highest value. Followed by POD-DMD reconstructed data, and raw

4D flow MRI, respectively. Eddy current corrected data, DFW-sms, and TVN

corrections are look almost identical, however, small pattern detail differences can

be observed. Overall, all datasets share high and low WSS areas regardless of exact

values and method.

5.4 Discussion

In this study, we have evaluated the accuracy of computing WSS using different

methods. We calculated WSS using six different methods: (1) raw 4D flow MRI,

(2) eddy current corrected 4D flow MRI, (3) DFW-sms, (4) TV, (5) pure CFD, and

(6) POD-DMD. To the best of our knowledge, this is the first study to compare WSS

values calculated from multiple different velocity reconstruction methods. There-

fore, we believe this study provides a broader understanding of different methods.

While the results shown similar patterns for WSS, the values are quite different

with raw eddy current corrected 4D flow MRI data and reconstruction methods

such as DFW-sms and TV which reconstruct velocity fields in 4D flow MRI reso-

lution being lower that those obtained from high resolution CFD and POD-DMD.

It appears that low resolution acquisition and the averaging effects that it has on

the acquired data lowers WSS values. The effect of lowering spatial resolution (Fig.
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Figure 5.5: Wall shear stress comparison using different reconstruction methods.
Column (a) shows raw 4D flow datasets. Column (b) is after removing the random
noise and correcting Eddy currents using second order polynomial. Results from
removing divergence using DFW-sms is represented in column (c). Next, the removal
of divergence using TVN is shown in column (d). Column (e) shows patient-specific
CFD results and the last column shows results using POD-DMD algorithm.
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5.4(b)) can clearly be seen in tests using a numerical phantom where the reference

WSS is known. We have further shown that WSS can be accurately reconstructed

using POD-DMD method. It is also seen that in case of tests on the numerical

phantom, the results of pure CFD and POD-DMD are nearly identical with small

differences which we can attribute to difference in model parameters between the

reference and reconstruction methods. While applying the method to actual patient

data (Fig. 5.5) we can see significant differences between pure CFD and POD-DMD.

In case of the actual patient data, we attribute this difference to inaccuracy in model

parameters as well as errors in segmentations. The POD-DMD method attempts

to correct for these errors. In depth research into the performance of POD-DMD

method in presence of segmentation errors will be the subject future research.

5.5 Conclusion

In this work we have evaluated the differences between WSS values calculated using

velocity fields constructed using different methods. We found that WSS calculated

from 4D flow MRI results in an underestimation of these values due to the low

resolution, as suggested by other researchers [33]. Therefore, the same problem can

be seen in other CFD-independent methods, such as DFW-sms and TV. However,

CFD alone cannot be used due to the unavoidable errors in the model assumptions

such as segmentation and viscosity model selection errors. Therefore, a correction

method such as POD-DMD is required to minimize these kinds of errors.
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Chapter 6

Concluding Remarks

6.1 Summary of Contributions

In this thesis we addressed some of the main limitations of 4D-Flow MRI that have

prevented its use in routine clinical practice, namely, spatial resolution and noise.

We achieved this by merging 4D-Flow MRI data with CFD using data assimilation

techniques. We have successfully implemented and tested three different methods.

In chapter 2 we describe implementation of Ensemble Kalman Filter Algorithm

(EnKF)-based method for super resolution of 4D-Flow MRI. Based on boundary

conditions and geometry derived from scanned data, an ensemble of CFD simula-

tions was used to generate the predictor. Using the ensemble of predicted state

values, various matrices used in computing the Kalman gain were computed using

sampling. A novel QR-based matrix inversion method was used to handle large ma-

trix sizes in computing the Kalman gain. However, the ensemble CFD simulations

are computationally expensive and consume significant computing resources. This

method may not be practical in a clinical setting.

In chapter 3, we describe a second method based on proper orthogonal decom-

position (POD). Using boundary conditions and geometry derived from scan data, a

sample CFD simulation was executed. The snapshots of the simulation were used to

generate the POD basis vectors. The POD basis spans the local space of solutions.

Downsampled snapshots were used to generate the POD basis in the regular grid
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domain of the 4D-Flow MRI data as well. Next, a process of projection of scan data

onto the POD basis followed by projection coefficient mapping was used to generate

the solution in high resolution of the CFD mesh. We used ridge regression to map

the projection coefficients, which required the manual specification of the regression

weighting parameter. While the method generated accurate reconstructions when

tested with numerical phantoms, the selection of the ridge regression weighting pa-

rameter is a major drawback since it makes the method semi-autonomous.

In chapter 3, we describe a modification of the POD-based algorithm described

in chapter 2 by replacing the ridge-regression based projection coefficient mapping

algorithm with one based on dynamic mode decomposition (DMD). The main con-

tribution was the identification of projection coefficient mapping algorithm with

well-researched DMD method. This made the POD-based super-resolution method

completely autonomous. Tests on numerical phantoms have shown results that are

equal to or superior to the ones using the ridge-regression algorithm.

In chapter 5, we compared the estimation of wall shear stress (WSS), an im-

portant hemodynamic parameter, using 4D-Flow MRI, pure CFD, and POD-based

methods. In studies on a numerical phantom it was observed that in general, 4D-

Flow MRI underestimated WSS. On the other hand pure CFD (based off of es-

timated boundary conditions and geometry from scan data) produced results with

much lower error. However, the accuracy of CFD was affected by errors in boundary

conditions, and model assumption. The POD-based method significantly reduced

the errors of pure CFD.
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6.2 Future work

There are several avenues to further this research. Currently, our method relies on

the user to specify the type of flow (laminar/turbulent/newtonian/non-newtonian).

An interesting direction of research would include a set of possible flow models in

generating the POD basis and find if the method is able to correctly able to select

the flow model. Among many factors, CFD solutions are most affected by geometry.

Another direction of research would be to research techniques to handle errors in

luminal geometry due to segmentation. The current method assume rigid luminal

walls. This restricts its application in the areas where the vasculature is surrounded

by solid tissue. In case of vessels near the heart such as the aortic arch, there is

significant vessel wall motion. Another direction of research would be to include

fluid-structure interaction to handle wall motion. Treatment of aneurysms typcially

includes insertion of metallic stents and coils. These devices can significantly effect

the MRI signal in the local region. Therefore, 4D-Flow MRI is quite limited in

the post treatment scenario. One area of research would be to further develop the

method to handle gappy data and data with significant metal artifacts.

While the methods presented in this thesis have worked very well with numer-

ically generated data sets, there is a need to verify them using in-vitro studies

before applying them to studies in clinical trials. Particle image velocimetry (PIV)

provides a way to generate velocity fields in transparent models with much higher

spatio-temporal resolution compared to 4D-Flow. A final test of the methods pre-

sented in this thesis would be to create in-vitro models and scan data with controlled

flow rates both using PIV and 4D-Flow MRI. The resolution of the 4D-Flow MRI

could be enhanced using the aforementioned algorithm to match that of PIV and

then results could be compared to check the accuracy.
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Finally, our studies so far are limited with low number of patient data. In order

to show the effectiveness of these methods, larger study cohorts with different kinds

of aneurysms will have to be conducted.
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