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ABSTRACT

A DISCRETE-EVENT SIMULATION APPROACH FOR MODELING
HUMAN BODY GLUCOSE METABOLISM

by

Buket Aydas

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Associate Professor Mukul Goyal

This document describes CarbMetSim (Carbohydrate Metabolism Simulator), a discrete-event simulator

that tracks the blood glucose level of a person in response to a timed sequence of diet and exercise activities.

CarbMetSim implements broader aspects of carbohydrate metabolism in human beings with the objective

of capturing the average impact of various diet/exercise activities on the blood glucose level. Key organs

(stomach, intestine, portal vein, liver, kidney, muscles, adipose tissue, brain and heart) are implemented to

the extent necessary to capture their impact on the production and consumption of glucose. Key metabolic

pathways (glucose oxidation, glycolysis and gluconeogenesis) are accounted for by using the published values

of the average flux along these pathways in the operation of different organs. CarbMetSim has the ability to

model different levels of insulin resistance and insulin production ability. The impact of insulin and insulin

resistance on the operation of various organs and pathways is captured in accordance with published re-

search. The protein and lipid metabolism are implemented only to the extent that they affect carbohydrate

metabolism.
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Chapter 1

Problem Motivation & Research

Objectives

1.1 Background Information

1.1.1 Types and Significance of Diabetes

Diabetes mellitus is a metabolic disorder. It is commonly referred as diabetes. The blood sugar levels are

high over an extended period in diabetes. There are several symptoms of this disorder as a result of high

blood sugar levels, which include increased thirst and frequent urination [1]. If not treated, diabetes can

cause serious health complications such as cardiovascular disease, stroke, chronic kidney disease, foot ampu-

tation, and damage to the eyes [2] as presented in Figure 1.1.

Figure 1.1: Health Complications of Diabetes

Source: Behavioral Risk Factor Surveillance System, Centers for Disease Control and Prevention (CDC) [2]
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The disorder is the result of either not sufficient insulin production by pancreas or the body cells not

responding properly to the insulin produced [1]. There are two main types of diabetes mellitus:

• Type 1 DM: In type 1 DM, the pancreas is not able to produce enough insulin. This form can also

be referred as “insulin-dependent diabetes mellitus” (IDDM). It can develop at any age. There is not

any known way to prevent this form. Nearly 18,000 youth were diagnosed as type 1 diabetes each

year in 2011 and 2012 in the U.S. [2]. In adults, type 1 diabetes accounts for approximately 5% of all

diagnosed cases of diabetes in the U.S. [2].

• Type 2 DM: In type 2 DM, body cells fail to respond to insulin properly, which is called insulin

resistance [1]. As the disease progresses insufficient insulin production by pancreas may also develop

[1]. This form can also be referred as “non insulin-dependent diabetes mellitus” (NIDDM). The most

common cause is excessive body weight and not enough exercise [1]. It can develop at any age. Most

cases can be prevented with an appropriate diet and exercise routine. In adults, type 1 diabetes

accounts for approximately 95% of all diagnosed cases of diabetes in the U.S. [2].

Figure 1.2 presents the types of diabetes and their observed frequencies in the U.S.

Figure 1.2: Types of Diabetes and Observed Frequencies in the U.S.

Source: Behavioral Risk Factor Surveillance System, CDC [2]

In 2016, 422 million people were diagnosed as diabetes worldwide, in which in 2013 this number was 382

million, and it was 108 million in 1980 [1]. About 90% of the cases are type 2. 1.5 million deaths in 2012
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were resulted from diabetes in the records of World Health Organization (WHO), making it the 8th leading

cause of death [1]. On the other hand, another 2.2 million deaths worldwide were attributable to the compli-

cations of diabetes (cardiovascular disease, kidney failure, etc.) are often listed as the cause of death rather

than diabetes [2]. International Diabetes Federation estimates 8.3% of the global population has diabetes,

expected to rise to 9.9% by 2030 [2].

In the United States diabetes is the 7th leading cause of death and may be underreported [2]. Figure 1.3

provides a snapshot of diabetes in the U.S. In the last 20 years, the number of adults diagnosed with diabetes

has more than tripled as the American population has aged and become more overweight or obese. Figure

1.4 presents % of U.S. adults who were obese or diagnosed diabetes in 2015 [2]. The patterns of obesity and

diabetes suggest a high correlation at alarmingly high levels.

Figure 1.3: A Snapshot of Diabetes in the U.S.

Source: Behavioral Risk Factor Surveillance System, CDC [2]

The direct medical costs of diabetes in USA was $176 billion in 2012 with an extra $69 billion cost attributed

to disability [2]. Figure 1.5 presents the CDC’s estimated cost figures of diabetes in the U.S.
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Figure 1.4: % of U.S. adults who were obese or diagnosed diabetes - 2015

Source: Behavioral Risk Factor Surveillance System, CDC [2]

Figure 1.5: Cost of Diabetes in the U.S.

Source: Behavioral Risk Factor Surveillance System, CDC [2]

1.1.2 Physiology of Diabetes

The body obtains glucose from three main sources [3]:

• Intestinal absorption of food

• Breakdown of glycogen, the storage form of glucose in the liver

• Gluconeogenesis (GNG), the generation of glucose from non-carbohydrate substrates (i.e. lactate,

amino acids)

Glucose leaves the blood by uptake into tissues for their energy needs. The concentration remains relatively
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constant, at close to 90 mg/dl in humans for providing a constant source of energy to the tissues [1]. Insulin

is the principal hormone that regulates the uptake of glucose from the blood into most cells of the body,

especially liver, adipose tissue and muscle [1]. Therefore, deficiency of insulin or the insensitivity of its re-

ceptors plays a central role in all forms of diabetes mellitus. Insulin plays a critical role in balancing glucose

levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can

stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in

the form of glycogen. Table 1.1 presents frequently used physiological terms in diabetes literature.

Physiological Terms Explanation

Metabolic Pathway Series of chemical reactions occurring in a cell

Metabolic Flux Turnover rate of molecules through a metabolic pathway

Lactate Blood substrate that is produced as an end product of glycolysis

and can be converted back to glucose when needed

Glycolysis Oxygen independent metabolic pathway that converts glucose

into lactate

Glucose Oxidation Oxygen dependent pathway that converts glucose into CO2 and H2O,

produces more energy than glycolysis

Glycogen Storage form of glucose

Gluconeogenesis (GNG) Generation of glucose from non-carbohydrate substrates

(i.e. lactate, amino acids, fatty acids)

Glycated Hemoglobin (HbA1C) Average level of blood glucose over the past 2 to 3 months

Table 1.1: Frequently Used Physiological Terms

Insulin is released into the blood by beta cells (β-cells) in the pancreas, in response to increasing levels of

blood glucose. Insulin is used by most of the body cells (muscles, adipose tissue, heart, etc.) to absorb

glucose from the blood for use as an energy source or for storage [1]. Lower glucose levels result in decreased

insulin release from the beta cells and this will cause to the increased breakdown of glycogen to glucose.

This process is mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin.

If the amount of insulin available is insufficient, or if cells not responding to the insulin properly (insulin

resistance) then glucose will not be absorbed properly by the body cells that require it, and it will not be

stored appropriately in the liver and muscles. The net effect is persistently high levels of blood glucose.

When the glucose concentration in the blood remains high over time, the kidneys will reach a threshold of

reabsorption, and glucose will be excreted in the urine [1]. This inhibits reabsorption of water by the kidney,

resulting in increased urine production and increased fluid loss [1].
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1.1.3 Treatment Methods & Self Management

There is no known prevention for type 1 diabetes. A number of lifestyle factors are known to be important

to the development of Type 2 DM:

• Obesity (defined by a body mass index of greater than 30),

• Lack of physical activity,

• Poor diet, stress and urbanization.

Type 2 diabetes can often be prevented or delayed by maintaining a normal body weight, engaging in physi-

cal activity, and consuming a healthy diet [2]. Management concentrates on keeping BGL as close to normal

via healthy diet, exercise, weight loss and medications (insulin infusion for Type 1, oral medications for Type

2). Learning about the disease and actively participating in the treatment is important, since complications

are less common and less severe in people who have well-managed blood sugar levels [2].

Higher levels of physical activity (more than 90 minutes per day) reduce the risk of diabetes by 28% [4].

Dietary changes known to be effective in helping to prevent diabetes include maintaining a diet rich in whole

grains and fiber, and choosing good fats, such as unsaturated fats found in nuts, vegetable oils, and fish [2].

Limiting carbohydrate rich meals and sources of saturated fat can also help to prevent diabetes [2].

Glycemic Index (GI) is an index that ranks carbohydrates based on their rate of glycemic response (i.e.

conversion to glucose within the body) [5]. GI measures the effects of carbohydrates on blood glucose levels.

Since sugars and starches are the foods that raise blood glucose levels, carbohydrates are responsible for

most of the changes in blood glucose levels. This concept was developed to find out which foods were best

for people with diabetes [5]. The glycemic index of a food, as presented in Figure 1.6, is defined as the ratio

of: (1) Area under the 2-hour BG curve after eating 50g of carbs of food, and (2) Area under the 2-hour BG

curve after eating 50g of carbs of pure glucose [5]. GI uses a scale of 0 to 100, with higher values given to

foods that cause the most rapid rise in blood sugar. Pure glucose serves as a reference point, and is given

a GI of 100. GI of a food is computed by averaging the area under the 2-hour BGL curve after eating 50g

of carbs of food for 10 different test subjects [5]. Therefore, finding out the GI of a specific food is not easy

and there are not any other methods to compute it. GI values can be interpreted intuitively as percentages

on an absolute scale and are commonly classified as [5] in Table 1.2.
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Figure 1.6: Glycemic Index Calculation

Group GI Range Sample Foods

No GI 0 meat, fish, eggs, cheese, oil

Low GI 1 - 55 milk, yogurt, apples, berries, broccoli, beans, nuts

Medium GI 56 - 69 mango, raisins, whole-wheat bread, brown rice

High GI 70 - 100 potatoes, watermelon, white bread, rice cereal

Table 1.2: Categories of the Glycemic Index

A low-GI food will release glucose more slowly and steadily, which leads to more suitable postprandial (after

meal) blood glucose readings [5]. A high-GI food causes a more rapid rise in blood glucose level and is

suitable for energy recovery after exercise or for a person experiencing hypoglycemia (low glucose level) [5].

Several recent studies have shown that individuals who followed a low-GI diet over many years were at a

significantly lower risk for developing both type 2 diabetes and coronary heart disease than others [6, 7]. One

of the limitations of the current Glycemic Index calculations is for finding the GI of a mixed meal. There

are very basic calculation methods, but not proven the accuracy, yet.

1.2 Benefits of Effective Diabetes Management

Management of diabetes is comprised of complex medical decisions regarding goals of care, self-care behaviors,

and medical treatments [2]. The main goal is to restore carbohydrate metabolism to a normal state. To

achieve this goal, individuals with an absolute deficiency of insulin require insulin replacement therapy,

which is given through injections or an insulin pump. Insulin resistance, in contrast, can be corrected by

dietary modifications and exercise. Glycemic control is a medical term referring to the typical levels of blood
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sugar (glucose) in a person with diabetes mellitus. Much evidence suggests that many of the long-term

complications of diabetes result from many years of hyperglycemia (elevated levels of glucose in the blood)

[2]. Good glycemic control, in the sense of a “target” for treatment, has become an important goal of diabetes

care.

1.2.1 Glycemic Control

Because blood sugar levels vary throughout the day and glucose records are insufficient indicators of these

changes, the percentage of hemoglobin which is glycosylated is used as an alternative measure of long-term

glycemic control in clinical care of people with diabetes [2]. This test, the hemoglobin A1c or glycosylated

hemoglobin, reflects average glucose level over the preceding 2-3 months. In non-diabetic people with normal

glucose metabolism the glycosylated hemoglobin is usually 4-6% [2]. As of 2015 the guidelines recommended

for an HbA1c of around 7% or a fasting glucose of less than 7.2 mmol/L (130 mg/dL) [2]. Keeping the blood

glucose and HbA1c levels within the range recommended can be challenging. That’s because many things

make blood glucose levels change, sometimes unexpectedly.

For Type 1 diabetics there will always be a need for insulin injections throughout their life. However, both

Type 1 and Type 2 diabetics can see dramatic effects on their blood glucose levels through controlling

their diet, and some Type 2 diabetics can fully control the disease by dietary modification. As diabetes

can lead to many other complications it is critical to maintain blood sugars as close to normal as possible

and diet is the leading factor in this level of control. Recent research shows that the first step in diabetes

management should be for patients to be put on a low carb (low GI) diet [6, 7]. Patients that are put on

a high carb diet find it very difficult to maintain normal blood glucose levels. Patients that are put on a

low carb or restricted carbohydrate diet, manage to maintain near normal blood glucose levels and A1cs [6, 7].

High-quality studies established that participation in regular physical activity improves blood glucose control

and can prevent or delay type 2 diabetes [4]. The involvements combining physical activity and modest weight

loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations [4]. There are two

well-defined pathways that stimulate glucose uptake by muscle. At rest and in the post-prandial state (after

meal) of the body, its uptake by muscle is insulin dependent and serves to replace muscle glycogen stores.

During exercise, contractions increase BG uptake to increase muscle glycogenolysis [3]. As the two pathways

are distinct, BG uptake into working muscle is normal even when insulin-mediated uptake is impaired in type
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2 diabetes. Muscular BG uptake remains elevated in the post-exercise phase, with the contraction-mediated

pathway persisting for several hours [3].

1.2.2 Requirement for Decision Support Tools

A growing body of literature suggests that information technology (IT), such as computer, Internet and

cellphone technology, holds great promise in enhancing diabetic care [8]. Quality of decisions are enhanced

by personalized decision support tools that address patient clinical characteristics and treatment preferences.

Individuals are shown to make a dramatic impact on the progression and development of diabetes by par-

ticipating in their own care. There are some self-management tools and glucose metabolism simulators that

help to enhance diabetic care. The details of these models are presented in Chapter 3. All of these tools

help to facilitate the decision processes. There is a real need for tools that help diabetic people understand

the impact of a particular sequence of food and exercise activities would have on their blood glucose levels

(BGL). Continuous BGL monitoring solutions, now offered by a number of vendors, can significantly help

but are either not easily available to a vast majority of diabetic people worldwide or are simply too expen-

sive. Clearly, one solution is to build simulation tools that use our vast knowledge of energy metabolism in

human beings. A few such simulators already exist [9, 10] but are geared towards predicting the impact of

individual meals and are not available in a format that can be freely used by individuals.

1.3 Statement of Research Objectives

This document describes CarbMetSim (the Carbohydrate Metabolism Simulator), an open-source and

freely available simulation software that predicts minute by minute BGL in response to an arbitrary length

sequence of food and exercise activities. While the existing simulation tools are based on continuous time

models that use differential and algebraic equations to describe physiological details, CarbMetSim is based

on a discrete event model where the time increments in units (called ticks) one minute long. At the beginning

of each tick, CarbMetSim fires the food/exercise events that need to be fired at this time and directs various

simulated body organs to do the work they are supposed to do during this tick. The simulator is currently

geared for use by people with Type 2 Diabetes who follow a fixed medication (including insulin) regime

prescribed by their physicians.

CarbMetSim implements broader aspects of carbohydrate metabolism in human beings with the objective
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of capturing the average impact of various diet/exercise activities on the BGL of people with different levels

of diabetes. The simulator implements key organs (stomach, intestine, portal vein, liver, kidney, muscles,

adipose tissue, brain and heart) to the extent necessary to capture their impact on the production and

consumption of glucose. Key metabolic pathways (glucose oxidation, glycolysis and gluconeogenesis) are

accounted for by using the known average flux along these pathways in the operation of different organs.

These average flux values are configurable parameters. The impact of insulin and insulin resistance on the

operation of various organs/pathways is captured in accordance with published research. CarbMetSim allows

the user to specify his/her ability to produce insulin and the level of insulin resistance on a scale between

0 and 1. Thus, it is possible to customize the simulator for a particular user by setting appropriate values

to configurable parameters for the ability to produce insulin, insulin resistance and average flux values for

different metabolic pathways in different organs.

1.3.1 Predicting the Impact of a Particular Diet-Exercise Activity

Keeping BGL under control is a constant struggle for people with Diabetes. One wrong meal choice may

result in very high BGL and an accompanying feeling of sickness for several hours. Persistently high BGL

would ultimately cause a number of severe complications such as heart/kidney failure, blindness and limb

amputations. Those using insulin may suffer life threatening hypoglycemic incidents if too much insulin is

injected. Physical exercise allows the muscles to use glucose in the blood even in the absence of insulin but

exercise activities need to be carefully coordinated with food and medication intake. In general, people with

Diabetes need help deciding how they should plan their food and exercise activities so as to keep their BGL

under control. There is a real need for tools that help diabetic people understand the impact of a particular

sequence of food and exercise activities would have on their BGL.

We have two options to figure out the impact of a particular diet-exercise activity on BGL. First option

is the challenging one, in which researchers use healthy or diabetic subjects and test the diet and exercise

activity on these individuals to figure out the impacts of them on BGL. Second one is utilizing simulators

that mimic glucose metabolism in humans. Since CarbMetSim implements broader aspects of carbohydrate

metabolism in human beings, one can easily capture the average impact of various diet-exercise activities on

the BGL of people with different levels of diabetes. Even user-specific impact of a particular diet-exercise

activity on BGL can be figured out by customizing the simulator for a particular user by setting appropriate

values to configurable parameters for the ability to produce insulin, insulin resistance and average flux values
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for different metabolic pathways in different organs.

1.3.2 Modeling Types and Levels of Diabetes

As stated above, there are two types of diabetes, Type 1 and Type 2. However, there may be various levels

of Type 1 and Type 2 diabetes. There is even a pre-diabetes stage other than these two forms, which the

fasting plasma glucose level is changing from 5.6 mmol/L (100 mg/dL) to 6.9 mmol/L (125 mg/dL). Type 2

diabetes has various levels as well. There are people who have diagnosed with type 2 diabetes that have to

use insulin, on the other hand some type 2 diabetic people solely use diabetes medication instead of insulin

injection, or even there are some levels of type 2 diabetes in which dietary restrictions without any medica-

tions and insulin treatment are sufficient to maintain a good glycemic control. In Type 1 diabetes, insulin

production levels are changing from one person to another. CarbMetSim allows the user to specify his/her

ability to produce insulin and the level of insulin impact on glucose uptake and production rates of organs

and tissues on a scale between 0 and 1. Thus, it is possible to customize the simulator for a particular user

by setting appropriate values to configurable parameters for the ability to produce insulin, insulin resistance

and average flux values for different metabolic pathways in different organs.

By the help of insulin resistance and insulin production levels, how the BGL is changing in different levels of

diabetes would be easily identified. For instance, how quickly the BGL is normalized or even not normalized

at all in different states of diabetes after glucose level reaching up to very high peak values. These parameters

would also help us to understand how insulin and insulin resistance affect individual organs’ glucose produc-

tion and consumption, even we can figure out their effects on flux values for different metabolic pathways in

different organs.

1.3.3 Glycemic Index Prediction of Food Varieties

GI is calculated as the incremental area under the curve (iAUC) for blood glucose after consumption of a

test food divided by the iAUC of a reference food containing the same amount of carbohydrate. To compute

the exact GI of a test food, researchers repeat this process for 10 different test subjects and then the average

of all ten GI values would be reported as the glycemic index of the test food. As an example, consider

Figure 1.6. This shows the BGL curves for one individual and one test food. Suppose at 8am on day 1, the

person ate 50 grams of carbohydrates of pure glucose, and his blood glucose followed the trajectory given

by the gray area. Then at 8am on day 2, he ate 50 grams of carbohydrates of a test food we are interested
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in measuring the glycemic index of, and his blood glucose followed the trajectory given by the black area.

We can then compute that:

GI “ AreapTestFoodq
AreapPureGlucoseq ¨ 100 “ 60

100 ¨ 100 “ 60 (1.1)

Thus for this individual, we compute the glycemic index of the test food to be 60. We can then repeat this

for nine other individuals, and the average of all ten GI values would be reported as the glycemic index of

the test food. As discussed, computing the GI of a particular food has a long process. Nowadays, there are

almost 2000+ foods listed in the literature with their GI values. Computing the GI of a mixed meal such as

a dinner that consists of several foods is another dilemma. By knowing the GI values of these many foods , is

it possible to calculate the GI of a mixed meal which consists of several foods (with known GI values) or do

we still need to follow the process of GI calculation? Current literature provides simple methods to calculate

the GI of a mixed meal, for instance, a formula using the GI of individual foods, weighted according to the

amount of carbohydrate each food contributes to the meal, has been devised to estimate the GI of whole

meals. These methods are not accurate enough for the prediction of GI values of mixed meals. Dodd et al.

[11] compared the predicted glycemic index (GI) of 3 mixed meals with the measured GI and showed that

predicted GI overestimated measured GI by 22-50%.

It would be easier to calculate the GI of a simple food and a mixed meal by using a tool that simulate

glucose metabolism of an averaged person. Since CarbMetSim is an open-source and freely available [4]

simulation software that predicts minute by minute BGL in response to an arbitrary length sequence of

food and exercise activities, GI of a meal or a food can be calculated by the help of CarbMetSim easily

without using any test subjects. GI values are arbitrary for normal individuals and diabetic people. Since

there are configurable parameters like insulin and insulin resistance in CarbMetSim, GI values of different

foods for diabetic people can also be computed. Even user-specific GI values can be found by customizing

the simulator for a particular user by setting appropriate values to configurable parameters for the ability

to produce insulin, insulin resistance and average flux values for different metabolic pathways in different

organs.
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1.3.4 Contributions to the Literature

The key contribution of CarbMetSim to the literature is its implementation of the physiological details in car-

bohydrate metabolism as an object oriented software in which various body organs implemented as software

objects whereas the existing models used Ordinary Differential Equations (ODEs) to model physiological

details. It can be argued that it is much easier to refine/modify behavior described in software than via

ODEs. It is hoped that the ease of modification coupled with the open-source nature of CarbMetSim will

allow it to evolve as a fine granularity software model of human metabolism useful for both research as

well patient education. CarbMetSim is the first “Comprehensive Model” to use an object-oriented approach

modeling physiological details of organs that:

• Dynamically customizes user-specific glucose metabolism parameters (i.e. insulin resistance and pro-

duction level, metabolic pathway flux rates)

• Incorporates protein and fat effect on carbohydrate digestion

• Differentiates glucose metabolism parameters depending on user’s diabetic level

• Addresses several metabolites in the blood (i.e. lactate, alanine, amino acids, GNG substrates) in

addition to glucose

CarbMetSim also provides an alternative approach to predict Glycemic Index (GI) values of various foods.

1.3.5 Potential Use of Glucose Metabolism Simulator

CarMetSim is intended to be utilized in:

• Modeling the impact of different kinds of insulin infusion techniques: The insulin infusion process can

also be added to the simulator to model type 1 diabetes in which insulin injection is utilized as a

treatment method.

• Translating a user’s diet/exercise/BGL data into the values of simulation parameters governing the

behavior of different organs: CarMetSim can take as input the accumulated records of a person’s

diet/exercise activities and BGL measurements, then can estimate the rates at which various metabolic

pathways operate in different states of the body.

• Providing user-specific real-time guidance on diet and exercise: CarbMetSim can be used to build a

smartphone-based tool (or app) that can provide user-specific real-time guidance on diet and exercise.

13



The real-time guidance, can prove especially helpful to diabetic people. With this feature, the app will

be able to suggest a sequence of diet/exercise activities that if followed over the remainder of the day

will allow the app’s user to achieve the best possible glycemic control no matter what his/her current

BGL is.

• Modeling the fat metabolism of human body: With the help of fat metabolism modeling, we can

predict changes in body weight in response to a diet/exercise regimen.
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Chapter 2

Carbohydrate Metabolism in

Humans

2.1 Carbohydrate Digestion and Absorption

2.1.1 Carbohydrate Digestion

Dietary carbohydrate may take different forms. Most meals contain a mixture of simple carbohydrates and

complex ones. Complex carbohydrates consist of digestible starch, composed of amylose and amylopectin,

as well small amounts of glycogen in animal tissues. Amylose has long chains of glucosyl units joined by

α-1,4 links; amylopectin consists of chains of α-1,4-linked glucosyl units, with α-1,6-linked branches simi-

lar to glycogen [12]. Resistant starch is another type of starch which could not be digested in the small

intestine but can be totally digested in the large intestine. Their chemical structure is very similar to

digestible starch, but the polysaccharide chains are in a crystalline state which makes hard for digestion

enzymes to access the bonds [12]. Another type of less digestible carbohydrate is non-starch polysaccharide

or is known as dietary fiber. Cellulose is one of the main components of the non-starch polysaccharide group.

Starchy foods can be categorized regarding their digestibility, which is described by the rate and the duration

of the glycemic response [12]. Predicting and controlling the glucose absorption rates after the ingestion of

starchy food takes great attention in the context of worldwide health concerns [12]. Starches consist of
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an amount that digests rapidly (rapidly digesting starch), an amount that digests slowly (slowly digesting

starch) and that is resistant to digestion (resistant starch) [13]. Resistant starch is described as the portion

of starch that is not digested in the small intestine and passes to the large intestine. One of the most

widely utilized classification of the starches based on digestibility was suggested by Englyst, Kingman, and

Cummings [14]. The classification method is established by the in vitro digestion of starch via modeling

stomach and intestinal conditions and calculating glucose release at different times [14]. By the help of this

method, different starch fractions are defined as:

• Rapidly digestible starch (RDS): amount of glucose released in 20 min.

• Slowly digestible starch (SDS): amount of glucose released between 20 and 120 min of in vitro digestion.

• Resistant starch (RS): total starch minus amount of glucose released within 120 min of in vitro digestion

which can be explained by the following equation:

RS “ TS ´ pRDS ` SDSq (2.1)

where TS is total starch.

Besides the carbohydrate content of the food, there are several factors that affect the digestion of the

carbohydrates. These factors can be classified as starch morphology, amylose to amylopectin ratio, molecular

structure, processing techniques (thermal processing, cooking, etc.) and starch modification. The other

constituents of the food matrix, such as proteins, lipids and polysaccharides (fibers), play a significant role

during processing which affects the final digestibility of carbohydrate [12].

Cooking Effect

Thermal processing during cooking may modify starch structure and this can alter the postprandial reactions

[15]. When raw starch molecules are gelatinized during cooking, the disorder of starch structure increases

its sensitivity to enzymatic reaction [16]. In many starchy foods, however, a portion of the starch is not fully

gelatinized during processing, due to limited water content or inadequate heating. Examples of such foods

include breakfast flakes and other baked cereal products. The postprandial responses of foods containing

raw or partially gelatinized starches have become the subject of increasing interest in recent years [15], [16],

[17]. Starch gelatinization is a process of breaking down the intermolecular bonds of starch molecules by the

help of water and heat, allowing the hydrogen bonding sites to preserve more water.
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As the degree of gelatinization increased, the RS content decreased [3]. Holm et al. [16] also reported that RS

content varied proportionally with degree of gelatinization. The slowly digested starch (SDS) content (0.6-

4.2%) varied among the starch samples differing in thermal treatments. The SDS content was decreased by

gelatinization [17]. These results suggest that the degree of starch gelatinization is an important determinant

for the rate of starch digestion.

Fiber Effect

Fiber lowers the post-prandial glucose response, but the mechanisms how this happens are not well known

yet, however water soluble fiber’s high viscosity (thickness) may slow the rate of gastric emptying (movement

from stomach to intestine) [18, 19] and decrease small intestinal movements [20], which results in delayed

glucose absorption and therefore, a flattened blood glucose response. Ellis et al. [21] studied the effect of

adding guar gum (at different concentrations) on the net glucose absorption in growing pigs. Polysaccharide

based gums are belong to the water-soluble nonstarch polysaccharides. The pig meals containing guar gum

resulted in increased viscosity of jejuna digesta (food that is started to the digestion) along with a significant

reduction in the rate of glucose absorption. This postprandial effect of guar gum results because of the

gum’s capacity to increase the viscosity of digesta within the gastrointestinal tract. This whole phenomenon

reduces the rate of digestion and absorption of carbohydrates and therefore lowers the postprandial rise in

blood glucose. Kaur et al. [22] studied the presence of galactomannan (a type of water soluble fiber) in

the starch mixture that impose limitations on the enlargement of starch granules during gelatinization in

the cooked starch pasta because of less availability of water molecules to starch granules. This incomplete

gelatinization of starch granules may also increase their resistance towards enzymatic hydrolysis. The fiber

derived from different gums increases the viscosity in the food matrix which may increase the overall viscosity

of digesta in the gastrointestinal tract. The consequence is the decreasing of the postprandial carbohydrate

absorption after ingestion of starchy food. Apart from low rate of starch digestion, the transport of digestion

enzymes has also been slowed down through mucosa when gums are present [23]. In addition, it may

be difficult to distinguish among the two effects whether decrease in the rate of hydrolysis occur by the

inhibition of enzymes or by an increase in the viscosity of gastrointestinal contents. An inhibitory action of

very small concentration (0.5%) of galactomannan addition on amylase (digestive enzyme) acting on a range

of concentrations of gelatinized starch was observed by Slaughter et al. [24].
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Protein Effect

The starch digestion process may be influenced by the existence of protein in the food. Digestibility of the

starches with the existence of proteins in several cereal products is significantly influenced by their interac-

tion with each other. The starch digestibility has been observed to be affected by the presence of even small

amounts of protein in cereals and other food products [25]. Protein portions such as albumin, globulins

and glutens assist in attaching the protein bodies into starch granules that may act as a barrier towards

starch digestibility [26]. There are some studies [27] suggest that the structural characteristics of the protein

play a role in defining the degree of starch digestion in pasta. They had discovered that the existence of

starch-protein interactions in pasta dough may be important for reducing the digestibility of starch in pasta.

In vitro digestion studies showed that the concentration of total starch-digestion products was significantly

lower for white bread than for gluten-free bread. All-purpose wheat flour is composed of granules with a

starch core surrounded by a protein network. The protein network may inhibit the rate of hydrolysis in the

small intestine [28].

Another effect of protein on starch digestibility is its effect on insulin secretion. The results of some of the

studies suggest that the daily ingestion of at least one high protein meal containing low to moderate amounts

of carbohydrate increases insulin secretion and glucose uptake, improving insulin sensitivity. Furthermore,

the results indicate that these effects are particularly associated with the consumption of animal protein (i.e.

hydrolyzed whey protein), which has a high content of branched-chain amino acids such as leucine, valine

and others such as arginine, which leads to improvements in insulin secretion and uptake glucose, since it

increases insulin sensitivity [29].

Fat Effect

Starches consist of two molecules – amylose and amylopectin – that connect to form starch granules. Amy-

lose and amylopectin have different characteristics, which determine the different types of starches.Amylose

contains 500 to 20,000 molecules of glucose connected in a straight chain. The chain twists into a helix

and then two chains bond together, forming a structure that resists the digestive enzymes trying to break

the glucose molecules apart. As a result, amylose is slowly digested and absorbed, which is why it’s called

a slowly digestible starch. Amylopectin is significantly larger than amylose, with a structure made up of

millions of glucose molecules that branch out and form a crystalline structure. Its glucose units are easily

cleaved during digestion, which makes it a rapidly digestible starch.
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The effects of free fatty acids (lauric, myristic, palmitic, stearic and oleic acids, lysolecithin and cholesterol)

on the hydrolysis of starch, amylose and amylopectin using amylase and amyloglucosidase have been reported

in the literature by Crowe et al. [30]. Around 60% amylose was converted to glucose in 1 h, reaching up to

90% after 6 h. The addition of lauric, myristic, palmitic and oleic acids reduced the enzymatic hydrolysis of

amylose by 35%. Fatty acids had no effect on the enzymic hydrolysis of amylopectin, whereas inhibition by

fatty acids of the breakdown of whole starch was consistent with only the amylose fraction being affected.

Enzymatic resistance of the pure amylose and lipid complexes has also been reported in the literature [31, 32].

With the help of in vitro and in vivo digestibility studies on amylose lipid complexes, Holm et al. [32] ob-

served that complexed amylose is hydrolyzed and absorbed in the gastrointestinal tract to the same extent

as free amylose but at a somewhat slower rate. However, the helical amylose-lipid complex cannot explain

all effects observed in starch-lipid systems, and the possibility of complexation between amylopectin and

lipids must be considered. Evidence is accumulating for complex formation between outer branches of the

amylopectin molecule and polar lipids [33].

A study [34] examined the acute effects of coingestion of fat (37.5 g) on the post-prandial metabolic responses

to 75 g of carbohydrate which was either slowly absorbed (lentils) or rapidly absorbed (potatoes). Co-

ingestion of fat resulted in a significant flattening of the post-prandial glucose curves, the effect being more

pronounced for the rapidly absorbed potatoes. This was probably due to delayed gastric emptying. However,

the post-prandial insulin responses to either carbohydrate were not significantly reduced by fat, suggesting

that the insulin response to a given glucose concentration was potentiated in the presence of fat.

2.1.2 Glucose Absorption in Digestive System

Monosaccharides are formed by the hydrolysis of the digestible carbohydrates, and then released to the

enterocytes, the intestinal absorptive cells, by the enzymes of the brush border membrane. Glucose enters

cells via the cell membrane by carrier-mediated diffusion (facilitated diffusion) rather than by free diffusion

[3]. There are two families of glucose transporters. The more extensive family includes passive transporters,

in which the movement of glucose across cell membranes is only down a concentration gradient. They are

called GLUTn, where n is a number differentiating different members. There are 14 members of this family

but only five have well-characterized functions [3]. Michaelis Menten kinetics are utilized to determine the

amount of glucose transferred in a minute via passive transport in the body cells [3] (listed in Table 2.1) . As
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per the Michaelis Menten kinetics, the rate of transport (V ) across a membrane depends on the difference in

the substrate concentration (Y ) across the membrane in the following manner: V “ Vmax
Y

Y`Km
, where Vmax

is the maximum rate of transport and Km is the substrate concentration difference at which the transport

rate is half the maximum. The Vmax value associated with a GLUT transporter in an organ indicates the

number of transporters involved. The other family consists of active transporters, in which glucose move up

a concentration gradient. These are known as the sodium-glucose cotransporter family, SGLT-n, because

sodium ions are cotransported with the glucose [3]. The expression of all these transporters is tissue/organ

specific, and their properties are an integral part of the regulation of glucose metabolism in the particular

tissue/organ.

Organs/Tissues GLUT1 GLUT2 GLUT3 GLUT4

Brain X X

Blood (Erythrocytes) X

Kidney X

Liver X

Intestine X

Muscle X X

Adipose Tissue X X

Heart X X

Table 2.1: Glucose Transporters of Organs/Tissues in Human Body

During the digestion stage, the local concentration of glucose at the luminal surface of the brush border

membrane is so high in which maximal absorption rates can be achieved by the help of facilitated diffusion

and also active transport. The local concentration of glucose at the luminal side of the brush border

membrane may increase up to 200 mmol/l; this can definitely diffuse down a concentration gradient into the

plasma, where the glucose concentration, in plasma draining the small intestine, might be 10 mmol/l during

the absorptive phase [3]. The glucose transporter GLUT2 moves to the brush border membrane. As the

luminal glucose concentration falls, the stimulus for GLUT2 translocation is removed and it recycles back to

the intracellular store. Glucose then enter the enterocyte by active transport mediated by SGLT-1; that is,

the glucose molecules may be absorbed against a concentration gradient. During the late stages of digestion,

active transport guarantees complete capture of almost all the intestinal glucose molecules.
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2.2 Metabolic Activities in the Organs and Tissues

2.2.1 The Liver

It is the first organ to encounter the nutrients which enter the body from the intestine after a meal, therefore

it has a major role in energy storage after a meal. This is definitely true for carbohydrate as well; storage and

later release of glucose are key functions of the liver. It also has an important role in amino acid metabolism.

Although most dietary fat avoids the liver as it enters the circulation, the liver does have significant functions

in fat metabolism.

Carbohydrate Metabolism in the Liver

The major pathways of glucose metabolism in the liver, and their hormonal regulation, are summarized in

Figure 2.1.

Figure 2.1: Carbohydrate Metabolism in the Liver

Source: Frayn, 2009 [3]
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Fed State: After a meal, glucose concentration in portal vein may reach almost 10 mmol/l because glucose

is absorbed from the intestine into the portal vein, while the arterial blood glucose concentration is normally

around 5 mmol/l [3]. The hepatocytes (liver cells) are therefore exposed to high concentrations of glucose

during the absorptive stage. Liver cells have primarily the GLUT-2 type of glucose transporter, which is

not responsive to insulin, and has a relatively high Km for glucose so that it normally functions well below

saturation [3]. In addition, there is a high maximal activity (Vmax) for glucose transport because there are

many transporters. This means that the relative glucose concentrations inside and outside the cell deter-

mines the rate and direction of movement of glucose across the hepatocyte membrane.

Within the hepatocyte, by the enzyme glucokinase, the phosphorylation of glucose takes place and glucose

6-phosphate is formed which is the initial step in glucose metabolism by any pathway. This enzyme has a

high Km for glucose (12 mmol/l) and is not inhibited by its product, glucose 6-phosphate [3]. It has a high

capacity (high Vmax) and is unaffected, in the short term, by insulin like the GLUT2 transporter. Within

the hepatocyte, glucose 6-phosphate may enter either one of the two pathways which are glycogen synthesis

and glycolysis. Insulin and glucose both activate the storage of glucose as glycogen. They activate the main

regulatory enzyme of glycogen synthesis (glycogen synthase) and inhibit glycogen breakdown (by glycogen

phosphorylase). The result is a rapid stimulation of glycogen synthesis and suppression of glycogen break-

down, so that net storage of glycogen occurs. Because insulin is secreted from the pancreas and reaches the

liver directly, and because glucose from the small intestine also arrives in the hepatic portal vein, they can

bring about precise and rapid coordination of this system. Glucose 6-phosphate can also be metabolized via

glycolysis to pyruvate in hepatocytes. This pathway is also activated in fed conditions. Some of the resulting

pyruvate may be oxidized directly, some released after conversion to lactate. Most of the energy required by

the liver for its multiple metabolic purposes is, however, derived from the oxidation of amino acids and fatty

acids rather than glucose.

Fasting State: When the concentration of glucose in the blood falls, glycogen will be broken down for

releasing the carbohydrate which is stored in the liver after meals, into the bloodstream. Another significant

function of the liver in glucose metabolism is the synthesis of glucose from other substrates, this pathway

is called gluconeogenesis. The pathway of gluconeogenesis is the reverse of glycolysis, but there are also

some essential differences in the enzymatic steps and these are the points at which regulation occurs. The

substrates for gluconeogenesis are lactate, alanine, and glycerol. Other amino acids can also serve as gluco-

neogenic precursors, although alanine is the most important one. Two major factors control the pathway of
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gluconeogenesis: by the rate of substrate supply, and by hormonal regulation of the related enzymes [3].

Generally, gluconeogenesis is stimulated by glucagon and inhibited by insulin while glycolysis is preferred

under the opposite conditions. The stimulation of gluconeogenesis by glucagon also happens in part by the

help of direct stimulation of the transporters for uptake of substrates (specifically alanine) from the blood

into the liver cell. In conditions where glucagon predominates over insulin, the liver will produce glucose

6-phosphate that is directed into release of glucose into the circulation. The processes of glycogenolysis and

gluconeogenesis tend to be active at the same time in normal daily life. This is not so in more prolonged

starvation, a condition in which gluconeogenesis becomes particularly important since there is little glycogen

in the liver to activate.

The increase in the supply of substrate from other tissues can also activate the pathway of gluconeogenesis.

The period after physical exercise is a good example, lactate concentration is elevated in the blood after

physical exercise, some of which will be reconverted to glucose in the liver. During starvation, an increased

concentration of blood glycerol arising from adipose tissue lipolysis will have the same effect. However,

there is one common situation in which hormonal factors will be tending to suppress gluconeogenesis while

substrate supply increases it. This is the situation after a meal. It is known as the glucose paradox [3].

Under these conditions lactate appears to be the most important substrate for glycogen synthesis. (Lactate

must first be converted to glucose 6- phosphate by the pathway of gluconeogenesis). Therefore, hepatic

glycogen synthesis after a meal takes place by a combination of the “direct pathway” (glucose uptake,

glycogen synthesis) and the “indirect pathway” (uptake of gluconeogenic substrates, particularly lactate,

formation of glucose 6-phosphate and glycogen synthesis). The origin of the lactate in this situation is not

completely clear. One suggestion is that the small intestine itself metabolizes a proportion of the glucose to

lactate during fed state, which passes to the liver through the portal vein [3]. Other tissues may produce

some lactate from glucose in the plasma; red blood cells, adipose tissue, and muscle play some part in this

[3].

Fat Metabolism in the Liver

The liver can oxidize fatty acids for its energy needs and also synthesize fatty acids for storing excessive

amounts of glucose. Fatty acid synthesis from other substrates (specifically glucose) is considered to be very

important in coordinating glucose and fat metabolism. The liver may acquire fatty acids in two different
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ways: it can take up non-esterified fatty acids from the plasma, like other tissues, and also acquires fatty

acids with lipoprotein particles by hepatic receptors. This is specifically important in the period after a

meal, when dietary fatty acids reach the liver in the form of lipoprotein particles.

Fatty acids have two major fates within the liver: oxidation or storage. Fatty acids may be oxidized in the

liver to produce energy for its metabolic activities. Specifically, gluconeogenesis is fueled by oxidation of fatty

acids. If fatty acid oxidation is prevented by using a specific inhibitor, then gluconeogenesis is suppressed; if

fatty acid supply to the liver is increased experimentally, gluconeogenesis always increases. The alternative

fate for fatty acids absorbed by the liver is esterification with glycerol 3-phosphate to form triacylglycerol

and phospholipids. Also, fatty acids synthesized from non-lipid precursors, such as glucose and amino acids,

can be esterified to form triacylglycerol and phospholipids. This pathway is stimulated by insulin. Therefore,

under conditions when glucose is in excess, some of the glucose is converted to lipids, and in this stage, fatty

acids taken up by the liver are also used for triacylglycerol synthesis rather than oxidation. The esterification

of fatty acids with glycerol 3-phosphate is itself stimulated by insulin. Thus, in the fed state, the liver tends

to store fatty acids as triacylglycerol rather than to oxidize them. Hepatic energy requirements under these

circumstances will be met mainly by amino acid oxidation. The hepatic triacylglycerol pool is not a major

energy store for the rest of the body (that function is performed by the triacylglycerol stored in adipose

tissue) but appears to be a local store for hepatic needs [3].

Amino Acid Metabolism in the Liver

The protein in the body is not continuously accumulated and lost under normal circumstances in adult life

[3]. The rate of amino acid oxidation in the body must therefore balance the rate of entry of dietary protein

[3]. The liver plays a special role in amino acid oxidation, this has two reasons, first liver is the first organ

that receives the dietary amino acids, which enter the circulation via the portal vein, and second it is the

only organ capable of eliminating the nitrogen from amino acids, by synthesizing urea [3]. Therefore, amino

acid catabolism occurs predominantly in the liver. (An important exception is that of the group of branched

chain amino acids, whose catabolism is largely initiated in muscle) Amino acid oxidation provides about half

the liver’s energy requirements.

Amino acids are not only used for energy production in the liver. They also has a role in the synthesis of

glucose (particularly alanine) and of fatty acids. Of course, amino acids also serve as precursors for hepatic
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protein synthesis: both proteins required within the liver, and proteins exported into the circulation such

as albumin. Catabolism of amino acids by the liver is mainly regulated on a short-term basis by substrate

supply. Substrate supply depends in the fed state on the arrival of dietary amino acids, and in the starved

state on the net rate of body protein breakdown.

2.2.2 The Brain

The blood supply rate to the brain is so high, about 750 ml/min (50 ml blood per minute per 100 g of tissue)

[3]. This high rate of blood flow to the brain reflects its high metabolic rate. The brain oxidizes about 120

g of glucose per day, equivalent to about 2 MJ of energy, or 20% of the whole-body energy expenditure in

a typical day [3]. The brain as a whole does not utilize fatty acids and amino acids as a metabolic fuel.

Instead it uses almost entirely glucose under normal conditions, although in prolonged starvation it can use

another substrate called ketone bodies [3]. The glucose is for the most part completely oxidized, so the brain

has an individually high rate of oxygen consumption and carbon dioxide production. In general, the rate

of utilization of glucose by the brain is not affected by insulin. Glucose is transported into nerve cells by

the glucose transporter GLUT3, which has characteristics that make it particularly suitable for this role [3].

It has a low Km for glucose transport into the cell so that at normal plasma glucose concentrations it is

saturated with substrate [3].

2.2.3 Skeletal Muscle

Glucose Metabolism in Skeletal Muscle

Glucose uptake in skeletal muscle is mainly done by the glucose transporters which are sensitive to insulin.

These insulin-sensitive glucose transporters are called GLUT4s. GLUT1 is also expressed in skeletal muscle

and plays a role in uptake of glucose at a basal rate. Glucose uptake by GLUT4 has certain characteristics

which are relevant to the characteristics of the skeletal muscle. The Km is within the physiological range of

plasma glucose concentrations. In the presence of low concentrations of insulin the maximal activity (Vmax)

of glucose uptake is low. Raising the insulin concentration brings more transporters into action at the cell

membrane, and hence increases the Vmax. Insulin thus increases the rate at which muscle takes up glucose

from the blood. The absorbed glucose may be used for glycogen synthesis or glycolysis. As in the liver,

insulin stimulates the enzyme glycogen synthase in muscle and inhibits the enzyme glycogen phosphorylase.

Thus, when the plasma insulin concentration is high after a meal, glucose will be stored as glycogen in
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skeletal muscle. In skeletal muscle, there is also a specific mechanism for stimulation of glycogen synthesis

after exercise when the glycogen store has been depleted.

Fatty Acid Metabolism in Skeletal Muscle

Fatty acids are taken up by muscle with two different pathways. These are the plasma non-esterified fatty

acids (NEFA), which have appeared from stored triacylglycerol in adipose tissue, and fatty acids transferred

as triacylglycerol in lipoprotein particles. Non-esterified fatty acids are taken up across the cell membrane

by a specific transport mechanism. Under resting conditions, the rate of fatty acid uptake is usually closely

related to the concentration of non-esterified fatty acids in the plasma. Correspondingly, fatty acids within

the cell are oxidized in agreement with their rate of uptake. During exercise there is obviously a need to

increase the rate of delivery of substrates for oxidation. In the case of fatty acids, this is brought about

by increasing the rate of blood flow through muscle. The rate at which blood flows through any particular

muscle increases several folds when that muscle is exercising, resulting in the delivery of more fatty acids to

the muscle. Experiments with perfused muscle preparations in which the delivery of fatty acids is altered

either by altering their concentration or by altering the blood flow show that the rate of fatty acid uptake is

largely determined by the delivery rate (i.e., blood flow * concentration).

Apart from the situation of exercise, increased uptake of fatty acids by muscle will occur when the plasma

non-esterified fatty acid concentration is raised –for instance, during fasting. Under these conditions the

muscle will not need to use so much glucose. Skeletal muscle cannot take up plasma triacylglycerol directly

because it is not a molecule that can pass through cell membrane. The fatty acids must first be released

from triacylglycerol by the action of an enzyme, lipoprotein lipase, which is present in the capillaries. This

process is, therefore, similar to the absorption of triacylglycerol from the intestine. Lipoprotein lipase is

also present in other tissues, especially adipose tissue. The fatty acids that are released from triacylglycerol

in the capillaries enter the muscle cells, with the same mechanism which plasma non-esterified fatty acids

enter. Thereafter, their fate may be either oxidation or re-esterification to replenish the muscle triacylglycerol

store.

2.2.4 The Heart

The heart is a good example that utilizes a number of fuels. These include fatty acids and glucose during

normal conditions, also ketone bodies during starved conditions [3]. The fatty acids originate both from

26



the plasma non-esterified fatty acid and from plasma triacylglycerol. It can also take up lactate and oxidize

it, via lactate dehydrogenase and the tricarboxylic acid cycle. Its use of the different fuels for its energy

needs depends on their concentrations in blood, although its uptake of glucose, by the insulin-sensitive

glucose transporter GLUT4, is stimulated by insulin. In fasted conditions, the heart uses mainly fatty acids

as oxidative fuel. In fed conditions (high insulin concentrations), the circulating concentrations of these

substrates fall, and the heart cells use glucose rather than fat.

2.2.5 Adipose Tissue

The major metabolic role of adipose tissue is the control of storage and release of fat, stored in the form of

triacylglycerol and released to the rest of the body in the form of non-esterified fatty acids. Two different

aspects of the metabolism of adipose tissue will be considered in this section: the storage of triacylglycerol

when there are excess amounts of dietary substrates in the circulation (as after a meal), and the release of

fatty acids (fat mobilization) when other tissues in the body require energy, for instance during exercise or

after an overnight fast. Both of these are actively regulated all the time; if fat storage is occurring, then fat

mobilization is suppressed, and vice versa.

Figure 2.2: Carbohydrate Metabolism in Adipose Tissue

Source: Frayn, 2009 [3]
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Fat Storage

Triacylglycerol in adipose tissue comes from two major routes: (1) uptake of triacylglycerol from plasma and

(2) de novo lipogenesis, the synthesis of lipid (fatty acids, and hence triacylglycerol) from other sources, par-

ticularly glucose. Triacylglycerol is traveled in the plasma via lipoprotein particles. These particles, which

carry most of the triacylglycerol, are too big to escape from the capillaries into the interstitial fluid; therefore,

the adipocytes cannot take them up directly. There is a significant mechanism to overcome this difficulty.

Adipocytes produce the enzyme lipoprotein lipase, which hydrolyzes the triacylglycerol in lipoprotein par-

ticles to release fatty acids, which can then diffuse into the interstitial space and so reach the adipocytes.

Once taken up to the cells, the fatty acids are esterified to form triacylglycerol, for storage.

The activity of lipoprotein lipase in adipose tissue is stimulated by insulin, secreted in response to an

elevation in the blood glucose concentration. Since we rarely eat fat alone, this means that after a typical

meal containing both fat and carbohydrate, the uptake of fat into adipose tissue will be stimulated with

the increase of insulin. The other potential pathway of fat deposition in adipose tissue is that of de novo

lipogenesis, fatty acid production from other precursors (especially glucose). This pathway is the same as

that in the liver. It is stimulated by insulin. Thus, again, insulin acts to promote fat storage in adipose

tissue.

Fat Mobilization

The mobilization of fat causes the release of fatty acids from the stored triacylglycerol; these fatty acids are

liberated into the plasma as non-esterified fatty acids, and therefore they are appeared to be available to

other tissues. The mobilization of fat is also called lipolysis since it involves the hydrolysis of stored lipid.

Each molecule of stored triacylglycerol produces three fatty acids and one glycerol molecule. The fatty acids

mostly leave the cells and enter the plasma as non-esterified fatty acids. The glycerol also leaves the cell

because it cannot be utilized for esterification of fatty acids again during fat storage, since adipose tissue

almost completely lacks the enzyme glycerol kinase which would be necessary for this.

Lipolysis is inhibited when insulin levels are high. This is a very powerful effect and very rapid, occurring

within a matter of minutes of raising the insulin concentration. Thus, insulin not only promotes fat storage,

but it also controls fat mobilization. Insulin has a further effect in controlling fat mobilization by stimulating

the esterification of fatty acids that are released by the action of hormone-sensitive lipase. Insulin stimu-
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lates this pathway by increasing the delivery of glycerol 3-phosphate. Consequently, insulin both inhibits

the activity of hormone-sensitive lipase and cleans up any fatty acids it may liberate by increasing their

re-esterification.

Adipocytes will take up excess fatty acids in the short term, we already explained in the previous section,

for instance in the period following a meal that contains both carbohydrate (to stimulate insulin) and fat.

Normally the uptake of fatty acids after meals will be balanced by fat mobilization in the post-absorptive

state (e.g., during the night-time fast) and during exercise, so that in many people the size of the fat stores

remains relatively constant over long periods.

2.2.6 The Kidneys

The human kidney has a very important role in glucose metabolism. There are three vital mechanisms which

regulate glucose homeostasis: (i) release of glucose into the circulation via gluconeogenesis; (ii) uptake of

glucose from the circulation to satisfy its energy needs; and (iii) reabsorption into the circulation of glucose

from glomerular filtrate to conserve glucose carbon.

Figure 2.3: Carbohydrate Metabolism in the Kidneys

Source: Frayn, 2009 [3]
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Renal Gluconeogenesis

Glucose is released into the blood stream at a rate of approximately 10 µmol/ (kg min) after an overnight

fast [35, 36, 37]. This released glucose is from two main sources: around 50% of the released glucose is

because of the breakdown of glycogen (glycogenolysis) stored in the liver and the other half is the result

of the production of new glucose molecules from substrates such as lactate, glycerol, alanine and other

amino acids (gluconeogenesis) by liver and kidneys [35, 36, 37]. The kidney is not capable to release glucose

via glycogenolysis [37]. In humans, only the liver and kidney contain substantial amounts of the enzyme

glucose-6-phosphatase and therefore are the only organs that are able to perform gluconeogenesis. Nowa-

days, researchers have confirmed that the human liver and kidneys provide about equal amounts of glucose

via gluconeogenesis in the postabsorptive state. Consequently, after an overnight fast, 75-80% of glucose

released into the circulation derives from the liver and the remaining 20-25% derives from the kidneys. As

the duration of fasting increases, glycogen stores in the liver become further depleted until nearly all the

glucose released into the circulation is the result of gluconeogenesis [38, 36]. Consequently, as the duration

of fast increases, the amount of overall glucose release from renal gluconeogenesis increases [39]. It is vital

to understand that kidney and liver vary in their use of gluconeogenic precursors. Lactate is the principal

gluconeogenic substrate in both organs, but otherwise the kidney preferentially uses glutamine [40], whereas

the liver preferentially uses alanine [41].

Meyer et al. (2002) [40] demonstrated that, after meal ingestion, overall endogenous glucose release decreases

by 61%, with hepatic glycogenolysis almost stopping in the 4- to 6-h period [42] because this period is

responsible for replenishment of hepatic glycogen stores. Hepatic gluconeogenesis also decreases by 82%

and glucose molecules generated through this pathway are not generally released in the circulation but are

largely directed into hepatic glycogen. However, renal gluconeogenesis actually increases by approximately

twofold and accounts for 60% of endogenous glucose release in the postprandial period [42]. This has been

hypothesized to facilitate the repletion of glycogen stores in the liver [42].

Renal Glucose Utilization

The kidneys utilize approximately 10% of all glucose used by the body in the post-absorptive stage after

an overnight fast [35]. The glucose utilization by the kidneys increases after meals. In terms of whole-body

glucose usage, normally approximately 45% of ingested glucose is thought to be converted to glycogen in the

liver, 30% is taken up by skeletal muscle and later converted to glycogen, 15% is taken up by the brain 5% is
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taken up by the adipose tissue and 10% is taken up by the kidneys [35, 42]. The kidney has two important

parts, renal medulla and renal cortex. The metabolic fate of glucose is different in these two regions of the

kidney. Because of its low levels of oxidative enzymes, the renal medulla must use glucose for its energy

requirement and does so anaerobically [35]. Consequently, lactate is the main metabolic end product of

glucose taken up in the renal medulla. In contrast, the renal cortex has a high level of oxidative enzymes.

Consequently, this part of the kidney does not take up and use glucose very much during post-absorptive

state, FFAs act as the main source of energy [35].

Renal Glucose Reabsorption

Another important mechanism in the kidneys that has a great impact on glucose homeostasis is the reab-

sorption of glucose from glomerular filtrate. Normally, approximately 180 l of plasma are filtered by the

kidneys each day [35]. As the average plasma glucose concentration throughout a 24-h period is 5.5 mmol

/l (100 mg/dl), 180 g of glucose is filtered by the kidneys each day [35]. In healthy individuals, virtually

all of this is reabsorbed into the circulation and the urine is essentially free from glucose. In a given day,

the kidneys produce 15-55 g glucose via gluconeogenesis and metabolize 25-35 g glucose [35]. Therefore, in

terms of glucose economy, it is clear that renal reabsorption is the primary mechanism by which the kidney

influences glucose homeostasis.

2.2.7 Endothelial Cells and Other Cell Types

Blood vessels are lined with a single layer of flat cells, which are called endothelial cells. Some cells in

the body normally divide rapidly, or may divide rapidly in certain circumstances. Endothelial cells of the

small intestine, or enterocytes, fall into the former category. A common feature of these cells seems to be

their dependence on glutamine as a metabolic fuel. This may be because glutamine can act as a nitrogen

donor in the nucleic acid synthesis and cell division. In the course of glutamine degradation in the intestinal

mucosa, alanine is formed and may be transported to the liver in the hepatic portal vein as a substrate for

gluconeogenesis.
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2.3 Endocrine Hormones

2.3.1 Insulin

Insulin is a peptide hormone. It is synthesized within the β-cells of the pancreas. Since it has a very sig-

nificant signaling function, its rate of secretion into the plasma must alter according to the metabolic or

nutritional state. The concentration of glucose in the plasma is the most important regulator of the rate of

insulin secretion. The β-cell expresses the GLUT2 transporter and the glucokinase similar to the hepatocyte

[3]. As in the liver, these help the β-cell to act as a glucose sensor. As the plasma glucose concentration rises,

so glucose enters into the β-cell and is phosphorylated, and then enters the glycolytic pathway. This leads to

generation of ATP, which regulates events at the cell membrane. Insulin, which is synthesized within the cell

and stored in secretory granules, is released into the extracellular space by the regulation of cell membrane.

The synthesis of new insulin is also stimulated, and if the elevated glucose concentration continues, insulin

secretion will be preserved by increased synthesis and release to the plasma. Glucose is not the only stimulus

to insulin secretion. Insulin secretion is also responsive to most amino acids (to somewhat differing extents),

so that after a meal containing protein there is a stimulus for net protein synthesis.

Nowadays, considerable interest has been expressed in the effects of fatty acids on insulin secretion. Fatty

acids are essential for normal glucose-stimulated insulin secretion; an increase in the fatty acid concentration

for a period of one or two hours will cause insulin secretion in response to glucose. However, if elevated fatty

acid concentrations are maintained for more than a few hours, the opposite is seen: there is an impairment

of insulin secretion. This is associated with an accumulation of triacylglycerol within the β-cell.

Insulin moves free in the bloodstream; it is not bound to a carrier protein [3]. It affects tissues by binding

to specific insulin receptors, proteins embedded in cell membranes. Insulin is removed from the circulation

after binding to the cell surface insulin receptors. About 70% of the insulin reaching the liver is removed

in its first passage [3]. This means that the liver is exposed to much higher concentrations of insulin than

other tissues or organs.
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2.3.2 Glucagon

Glucagon is a single polypeptide chain of 29 amino acids [3]. In contrast to insulin, glucagon’s major action

is to raise the blood glucose concentration. It is secreted from the pancreatic α-cells, as the insulin from

the β-cells. It responds to both glucose and amino acids. However, unlike insulin, glucagon secretion is

suppressed rather than stimulated by a rise in glucose concentration (although it is stimulated by amino

acids). Thus, a rise in the plasma glucose concentration will lead to an increased ratio of insulin to glucagon

secretion, and a fall in the plasma glucose concentration will lead to an increased ratio of glucagon to insulin.

Again, some glucagon is removed on its first passage through the liver, although probably rather less than

for insulin.

2.4 Carbohydrate, Fat & Protein Metabolism in Normal Daily

Life

2.4.1 Carbohydrate Metabolism

A single meal may contain as an average of 100 g carbohydrate [3]. The volume of blood is about five liters

and the glucose concentration about 90 mg/dl, so the amount of glucose in the blood is about 4.5 g. If we

consider the amount of glucose in all the extracellular fluid (13 liters), that is about 12 g [3]. Therefore

100 g carbohydrate could elevate the glucose concentration in the blood about eightfold if there were not

mechanisms both to inhibit the body’s own glucose production and to increase the uptake of glucose into

tissues. Furthermore, during night a person does not consume any carbohydrate to provide the energy needs

of the body. The body should store glucose and also produce its own glucose for its energy needs whenever

needed, for instance during night. By the help of this mechanism, blood glucose levels in the human body

would be preserved in a specified range.

The Postabsorptive State

In the post-absorptive state, the rate of turnover of glucose is close to 2 mg/kg body weight/minute, or 130

mg/min (the weight of an average person is 65 kg) entering and leaving the blood stream [3]. Where is

this glucose coming from, and where does it go? Glucose metabolism after an overnight fast is illustrated

in Figure 2.4. Much of the glucose supplied to peripheral tissues (muscle, adipose tissue, blood cells, etc.)
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is reused as lactate, alanine, glutamine and glycerol, which return to the liver and the kidney as substrates

for gluconeogenesis. However, a large proportion of the glucose is oxidized, specifically in the brain, and

this represents an irreversible loss from the body’s store of glucose. In the post-absorptive state, muscle and

other tissues (e.g., renal cortex) also oxidize non-esterified fatty acids (NEFA) from the plasma.

Figure 2.4: Glucose Metabolism after an Overnight fast

Source: Shrayyef and Gerich, 2010 [43]

80% of glucose release into the circulation in the postabsorptive state is from the liver [35, 36, 37]. 50%

of the glucose entering the plasma is due to glycogenolysis (glycogen breakdown) and the remainder ( 5.0

µ/kg/min) is due to gluconeogenesis [35] (Figure 2.4). The proportion of gluconeogenesis rapidly increases

with the fasting level, as glycogen stores become depleted, gluconeogenesis provides almost all glucose re-

leased into the circulation.

The kidney normally contains little glycogen and renal cells that could make glycogen, lack glucose-6-

phosphatase. Consequently, all the glucose released by the kidney is the result of gluconeogenesis [44]. The

liver releases about four times as much as the kidney in the post-absorptive state. Their contribution (2.5-3.0

µ/kg/min) from gluconeogenesis is the same [44]. However, the proportion of overall glucose release from

renal gluconeogenesis increases even further with prolonged fasting.
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The liver can be considered to be the only source of glucose due to glycogenolysis. In overnight fasted

people, the liver contains about 75 g of glycogen [44]. Thus, if it releases glycogen at a rate of 63 mg/min (5

µ/kg/min), glycogen stores would be totally depleted in about 20 h and the only source of glucose released

into the circulation at this point would be gluconeogenesis [44]. It is vital to understand that kidney and

liver vary in their use of gluconeogenic precursors. Lactate is the principal gluconeogenic substrate in both

organs, but otherwise the kidney preferentially uses glutamine [40], whereas the liver preferentially uses

alanine [41] (i.e. see Figure 2.5).

Figure 2.5: Summary of post-absorptive glucose release

Source: Shrayyef and Gerich, 2010 [43]

The gluconeogenesis (GNG) precursors result from a variety of tissues. First, lactate comes from those

tissues that use glucose almost entirely by anaerobic glycolysis, such as the red blood cells and renal medulla.

Note that this constitutes a recycling of glucose; red blood cells, for example, use about 25mg glucose/min

and return that amount of lactate to the liver for synthesis of new glucose [3]. Secondly, there will be some

breakdown of muscle glycogen releasing lactate and alanine from anaerobic glycolysis. In the post-absorptive

state, glycerol arises from the liberation of fatty acids in adipose tissue. The source of the GNG precursor,

glutamine, is also skeletal muscle cells. The decreased insulin/glucagon ratio stimulates gluconeogenesis

(again, comparing with the previous evening when it was suppressed after a meal).On the disappearance

side, the brain uses about 120 g glucose per day or about 80 mg/min, more than half of the total glucose

utilization [3]. The remainder is used by a number of tissues including red blood cells, skeletal muscle, renal
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medulla, and adipose tissue.

The Fed State

As discussed in the previous sections, the amount of glucose in an average meal would be sufficient to el-

evate the concentration of glucose in the plasma about eightfold. However, in a normal healthy person,

the peak glucose concentration after such a meal is about 7-8 mmol/l, a rise of only 60% at most from the

post-absorptive value of 5 mmol/l [3]. By the end of the absorptive period - about five hours after the meal -

approximately 25 g of the 100 g of carbohydrate ingested will have been stored and 75 g oxidized [3]. Thus,

although glucose oxidation in tissues was increased after the meal, around one-quarter of the glucose in such

a meal is stored for later use. Approximately half of the storage will be in the liver and half in other tissues,

mainly skeletal muscle. An increase in the concentration of blood glucose can be noticed within about 15

minutes and continues to make a peak at around 30-60 minutes after a moderate meal [3]. The exact timing

of a peak depends on factors such as the size of the meal and the amount of complex carbohydrate, fiber,

protein, and fat in the meal.

Liver Glucose Metabolism in the Fed State

The liver receives the blood flowing from the small intestine to the hepatic portal vein, and so it encounters

the largest change in blood glucose concentration. This indicates to a flow of glucose into hepatocytes from

portal vein via the transporter GLUT2. The raise of glucose concentration in hepatocytes, together with the

increase in insulin/glucagon ratio, leads to inhibition of glycogen breakdown and stimulus of glycogen storage.

It is also expectable that the pathway of gluconeogenesis would be inactivated by the increase in in-

sulin/glucagon ratio, but this does not occur as expected. There is always an elevation of the blood lactate

concentration after ingestion of carbohydrate because of the effect of a switch to partially anaerobic glucose

metabolism in a number of tissues, including muscle and adipose tissue. The increase in blood lactate con-

centration is probably sufficient in itself to maintain the activity of the pathway of gluconeogenesis. The

overall effect is that some of the glucose arriving in the blood is used by tissues, released into the blood as

lactate, taken up by the liver and converted to glucose 6-phosphate and then glycogen – the indirect pathway

of glycogen deposition. It is important to understand that this gluconeogenic flux in fed state does not lead

to release of glucose into the blood; the glucose 6-phosphate is instead mainly directed into glycogen synthesis.
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The rate of glucose release from hepatocytes (i.e., release of glucose from glycogen and from gluconeogenesis)

falls within 1-2 hours after a glucose load or carbohydrate-rich meal (Figure 2.6). This is another mechanism

tending to reduce the increase in blood glucose concentration that might otherwise occur. The suppression

of liver glucose release falls almost to zero after a pure glucose load. Following a typical meal the suppression

is perhaps 30-50% of its fasting value [3]. The difference might be that the presence of fat in the meal slows

gastric emptying and delivers glucose more slowly into the circulation.

Figure 2.6: Changes in rates of glucose entry into and removal from plasma after ingestion of a 75 g oral
glucose load in normal subjects

Source: Shrayyef and Gerich, 2010 [43]

Glucose Metabolism in Other Tissues in the Fed State

Other tissues are also affected by the modification in insulin concentration. In skeletal muscle and adipose

tissue, glucose uptake will be activated by the rise in insulin through increased numbers of GLUT4 trans-

porters at the cell membrane, and by increased usage of glucose within the cell. At the same time, since

fat mobilization in adipose tissue is suppressed, the plasma concentration of non-esterified fatty acids drops;

this will be discussed in more detail in the next section. Therefore, tissues such as skeletal muscle, which can

use either fatty acids or glucose as their energy source, switch to utilization of glucose. Not all the glucose

taken up by muscle is oxidized under these conditions; insulin also activates muscle glycogen storage in which

muscle glycogen stores will replenish. Thus, after a meal containing carbohydrate, there is a general switch

in metabolism to the use of glucose rather than fatty acids, but there is also a major switch to the storage

of glucose as glycogen.
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In Kidney, renal gluconeogenesis actually increases by approximately twofold and accounts for 60% of en-

dogenous glucose release in the postprandial period [42]. This has been hypothesized to facilitate efficient

repletion of glycogen stores in the liver [42]. This can be seen in Figure 2.6.

2.4.2 Fat Metabolism

In this section the regulation of non-esterified fatty acid metabolism in the whole body, along with the fate

of fat we eat in the form of triacylglycerol, will be considered. Both triacylglycerol and non-esterified fatty

acids are always present in the plasma and, like glucose, they are constantly turning over - being used and

replaced. Non-esterified fatty acids turn over very rapidly. Triacylglycerol is present in various forms. The

form in which it enters the blood after a meal, chylomicron-triacylglycerol, also has a high rate of turnover.

Other forms of triacylglycerol in plasma does not have a high rate of turn over.

Plasma Non-Esterified Fatty Acids

Non-esterified fatty acids enter the plasma only from adipose tissue by the process of fat mobilization. The

overall rate of utilization of non-esterified fatty acids from the plasma depends almost entirely on their plasma

concentration: the higher the concentration of non-esterified fatty acids, the higher their rate of utilization.

Therefore, the concentration of non-esterified fatty acids in the plasma reflects their rate of release from

adipose tissue, and also determines the rate of non-esterified fatty acid utilization in other tissues. The

plasma non-esterified fatty acid concentration during a normal day is an inverse proportion of the plasma

glucose and insulin; when the body is in post-absorptive state, for instance after an overnight fast, the

concentrations of glucose and insulin are at their lowest and the concentration of non-esterified fatty acids

is at its highest. It can fall noticeably after a carbohydrate meal.

Plasma Triacylglycerol

Triacylglycerol is water insoluble and is carried in the plasma in specialized forms, the lipoproteins (the

largest of these, the chylomicrons, which transport triacylglycerol absorbed from the small intestine). The

total concentration of triacylglycerol in plasma varies extensively between different people, depending on

fitness, body build, and genetic influences - but a typical figure after an overnight fast is around 1 mmol/l
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[3]. It should be considered that, since each triacylglycerol molecule contains three fatty acids, this is

equivalent in terms of energy delivery to a concentration of 3 mmol/l of non-esterified fatty acids.

The Postabsorptive State

After an overnight fast, the concentration of non-esterified fatty acids in plasma is around 0.5 mmol/l [3].

As mentioned above, the total triacylglycerol concentration might be around 1 mmol/l and the chylomicron-

triacylglycerol concentration close to zero, usually less than 0.05 mmol/l [3]. The turnover of non-esterified

fatty acids in the post-absorptive state involves their release from adipose tissue and their uptake by a

number of tissues, mainly skeletal muscle and liver (Figure 2.7). The rate of liberation from adipose tissue

reflects mainly the fall in insulin concentration. The rate of non-esterified fatty acid release from adipose

tissue is also regulated by the process of fatty acid re-esterification within the tissue. However, the process

of re-esterification requires glycerol 3-phosphate produced from glycolysis, and this will be occurring at a

relatively low rate, so most of the fatty acids will escape from the adipocyte.

Figure 2.7: Non-esterified fatty acid (NEFA) metabolism after an overnight fast

Source: Frayn, 2009 [3]
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The Fed State

The effects of a meal on non-esterified fatty acid and triacylglycerol metabolism are quite different. In this

section two different meals will be considered, one of them is a mainly-carbohydrate meal and its effects

on non-esterified fatty acid metabolism will be considered. Then we will see how a fatty meal affects the

responses.

Non-Esterified Fatty Acid Metabolism After a Meal

As the meal is absorbed, the concentration of insulin in the plasma increases as a result of the rising glucose

concentration. Lipolysis (fatty acid release) in adipose tissue will be suppressed as a result of these effects. At

the peak of insulin after a typical carbohydrate meal, adipocyte lipolysis will be maximally suppressed. The

suppression of lipolysis is not only because of the increase in the insulin level. The rising glucose and insulin

concentrations will also increase adipose tissue glucose uptake and glycolysis, and, therefore, production of

glycerol 3-phosphate and re-esterification of fatty acids within the tissue. Thus, release of non-esterified

fatty acids from adipose tissue will be almost completely suppressed after a carbohydrate-rich meal, and the

plasma non-esterified fatty acid concentration will fall significantly.

The fall in plasma non-esterified fatty acid concentration affects the metabolism of tissues that use fatty

acids as an oxidative fuel after the overnight fast. Skeletal muscle is a good example. The rate of uptake of

non-esterified fatty acids by muscle is a function primarily of fatty acid delivery - that is, plasma concen-

tration and blood flow. On the other hand, when glucose becomes available in the plasma after a meal, its

utilization is stimulated by the rise in insulin concentration. As the absorptive phase ends after about 3-5

hours, so insulin concentrations begin to decline, and the fat mobilization is stimulated; plasma non-esterified

fatty acid concentrations rise again.

Triacylglycerol

In this section a meal containing both carbohydrate and fat will be considered. The plasma glucose and

insulin concentrations will rise as described before, and the release of non-esterified fatty acids from adipose

tissue will be suppressed so that their concentration in plasma falls. Dietary fat is almost entirely in the form

of triacylglycerol. This is absorbed in the small intestine and processed in the intestinal cells to produce

chylomicron particles, which are liberated into the bloodstream through the lymphatic system. This process
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is much slower than the absorption of glucose or amino acids, so that the peak in plasma triacylglycerol

concentration after a fatty meal does not occur until 3-5 hours after the meal.

Unlike other nutrients dietary fat escapes the liver on its entry into the circulation. In fact, most of the

triacylglycerol is removed from chylomicrons in tissues outside the liver, particularly adipose tissue. Adi-

pose tissue contains the enzyme lipoprotein lipase in its capillaries and this is the enzyme responsible for

hydrolysis of the chylomicron-triacylglycerol. The activity of lipoprotein lipase is stimulated by insulin, so

that it will be increased after the meal. Lipoprotein lipase activity in adipose tissue reaches its peak around

3-4 hours of insulin stimulation [3]. It is surely in coordination with the entry of chylomicron-triacylglycerol

into the plasma (which is around 3-4 hours after the meal); this represents another aspect of the significant

way in which insulin coordinates metabolism of different fuels in different tissues after a meal.

Lipoprotein lipase in adipose tissue hydrolyses the chylomicron-triacylglycerol, leading to the liberation of

fatty acids, which enter the adipocytes and are esterified to form new triacylglycerol for storage. This process

is facilitated by the fact that intracellular lipolysis in adipocytes is suppressed after the meal and fatty acid

esterification increased by the increased insulin and glucose concentrations (and thus increased glycolytic

flux and glycerol 3-phosphate production). Therefore, the concentration of fatty acids will be in favor of their

storage rather than diffusion out of the tissue. In this way, the metabolism of triacylglycerol is influenced

by the metabolism of glucose and non-esterified fatty acids.

2.4.3 Amino Acid and Protein Metabolism

Amino acids can be oxidized just as glucose and fatty acids. In fact, most of the amino acids we ingest are

eventually oxidized [3]. Therefore, at a whole-body level the total oxidation of amino acids per day approx-

imately balances the daily intake of protein, around 70-100 g in the typical Western diet [3]. Amino acid

oxidation contributes around 10-20% of the total oxidative metabolism of the body under normal conditions

[3]. Unlike fatty acids, amino acids can be converted into glucose. Some examples are alanine and pyruvate.

After eating a meal containing protein, amino acids appear in the portal vein. We believe that these mainly

reflect the composition of the meal. However, those leaving the liver in the hepatic vein after a meal show

quite different proportions than portal vein. In particular, they are enriched in the three branched-chain

amino acids, valine, leucine, and isoleucine. These three essential amino acids constitute about 15% of di-
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etary protein but represent about 70% of the amino acids leaving the liver after a meal [3]. The implication

is that unbranched amino acids have been favorably preserved in the liver. The branched-chain amino acids

are instead favorably removed by muscle after a meal. Therefore, skeletal muscle has the ability to oxidize

the branched-chain amino acids.

Another case is the pattern of amino acids leaving muscle and other non-hepatic tissues after an overnight

fast; there is always a large predominance of alanine and glutamine, much more than their occurrence in

muscle protein. Similarly, it is possible to measure the uptake of amino acids across the liver and intestine,

and glutamine and alanine are found to contribute the majority of amino acids taken up. These observations

show us that individual amino acids have specific pathways of metabolism in different tissues, some of which

we will discuss in the upcoming sections.

Branched-Chain Amino Acids and Muscle Amino Acid Metabolism

The branched-chain amino acids (leucine, isoleucine, and valine) are favorably absorbed by skeletal muscle

after a meal. The reason of the stimulated uptake of branched-chain amino acids by skeletal muscle is not

only insulin and the increase of its concentration in blood. A number of processes will affect this: transport

from plasma to the muscle, release into plasma, utilization for protein synthesis, production from protein

breakdown, and loss by degradation [3]. Since they are essential amino acids, means no synthesis from other

amino acids, catabolism of branched-chain amino acids take place in muscle, which leads to the release of

glutamine and alanine.

Alanine and Glutamine

As these amino acids provide links between amino acid and carbohydrate metabolism, they have a special

place in a discussion of energy metabolism. Alanine and glutamine predominate among the amino acids

leaving muscle. This is also true of other peripheral tissues including adipose tissue and brain. This ensures

that they must be synthesized in these tissues. Alanine and glutamine contain two groups which are amino

group and a carbon skeleton group. The amino groups for alanine and glutamine may arise from the amino

groups of other amino acids. Where does the carbon skeleton of these amino acids come from? For alanine,

the corresponding carbon skeleton is pyruvate, the end-product of glycolysis [3]. Treatments which increase

glycolysis usually also increase alanine release. It is most likely that most of the carbon skeleton of the

excess alanine leaving peripheral tissues arises from glycolysis. For glutamine, the carbon skeleton comes
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from other amino acids rather than pyruvate [3].

Alanine is taken up eagerly by the liver, particularly under conditions of active gluconeogenesis, when its

uptake is stimulated by glucagon. Within the liver alanine leaves its carbon skeleton as pyruvate, a substrate

for gluconeogenesis. Glutamine is not as good a substrate for hepatic uptake but is removed particularly

by the kidney and by the intestinal mucosal cells. In the kidney, it is converted to glucose in the process of

gluconeogenesis. In the intestinal cells, glutamine is an important metabolic fuel. The pathway of metabolism

leads to production of alanine, which leaves in the portal vein and thus reaches the liver, again as a substrate

for conversion to pyruvate and hence glucose. Glutamine is also an important fuel for other rapidly dividing

cells [3].

2.4.4 Links Between Carbohydrate, Fat, and Amino Acid Metabolism

Carbohydrate and Fat Metabolism

Lipogenesis means the synthesis of lipid. More precisely, the term de novo lipogenesis means the synthesis

of fatty acids and triacylglycerol from substrates other than lipids particularly glucose. Excess carbohydrate

can be retained for storage as triacylglycerol since this is the most energy-dense storage compound. The

pathway of de novo lipogenesis may occur in both liver and adipose tissue.

Metabolic Interactions Between Fatty Acids and Glucose: the Glucose-Fatty Acid Cycle

The glucose-fatty acid cycle refers to important metabolic interactions between glucose and fat metabolism.

These interactions occur in adipose tissue and in muscle; the pancreas is also involved via insulin secretion.

In adipose tissue, we have already seen these mechanisms, when the glucose concentration in plasma is high,

the plasma insulin concentration increases. Insulin suppresses fat mobilization (the release of fatty acids

from adipose tissue). Thus, a high plasma glucose concentration leads to a low plasma non-esterified fatty

acid concentration.

In muscle, the rate at which fatty acids are utilized from plasma is dependent almost entirely on the plasma

non-esterified fatty acid concentration. Thus, when additional glucose becomes available in the plasma –

after a meal, for instance – the muscle will tend to switch to the use of glucose rather than fatty acids

because, firstly, glucose uptake will be stimulated by insulin, and, secondly, the plasma non-esterified fatty
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acid concentration will fall and remove that substrate. Between meals (in the post-absorptive phase), the

plasma glucose concentration falls a little, insulin secretion decreases, and the plasma non-esterified fatty

acid concentration rises. In this situation the body’s strategy is to spare the use of carbohydrate for tissues

such as the brain which cannot use fatty acids. This is achieved by the fact that oxidation of fatty acids in

muscle suppresses the uptake and oxidation of glucose.

Interactions Between Carbohydrate and Amino Acid Metabolism: The Glucose-Alanine Cycle

and Gluconeogenesis from Amino Acids

It has already been mentioned that alanine released from muscle may be pyruvate onto which has been

transferred an amino group from the breakdown of another amino acid. Pyruvate is a potential precursor for

gluconeogenesis. Glucose thus formed in the liver may be released into the circulation, taken up by muscle

and, through glycolysis, pyruvate formed. This pyruvate may be transaminated and alanine formed. This

has been termed the glucose-alanine cycle. It is very closely related to the glucose-lactate cycle or Cori

cycle, described in the 1920s by the Coris (Carl and Gertrude Cori) [3]. These two cycles are illustrated in

Figure 2.8. The glucose-alanine cycle provides a clear link between glucose and amino acid metabolism and

attracted a lot of attention when it was first proposed by Philip Felig and colleagues [45].

Figure 2.8: The glucose-alanine cycle operates in parallel with the Cori (glucose-lactate) cycle

Source: Frayn, 2009 [3]

But many amino acids can, in principle, be converted to glucose, so that the body’s protein reserves, par-
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ticularly the bulk of skeletal muscle, could maintain glucose production for a considerable time. Thus, there

needs to be a mechanism for transporting the necessary substrates to the liver (the main site of gluconeoge-

nesis). But the glucose-alanine cycle as just outlined does not do this: it merely recycles pyruvate, derived

from glucose. It is a means by which muscle glycogen (which cannot lead directly to glucose release from

muscle) may lead to release of glucose into the circulation (i.e., from the liver). It also provides a way for the

muscle to export amino- nitrogen, liberated from those amino acids whose 2-oxo acids it has oxidized (e.g.,

the branched-chain amino acids) [3]. The nitrogen will eventually be excreted as urea, which is synthesized

in the liver.

In order for the glucose-alanine cycle to function as a means of transporting amino acid carbon to the liver

for gluconeogenesis, the carbon skeleton of the alanine also needs to be formed from an amino acid, not from

glucose. In fact there is not a lot of evidence that this occurs, although much effort has been devoted to

attempting to demonstrate it. Glutamine may be a more likely carrier of such carbon. Especially in kidney,

glutamine is the main gluconeogenesis precursor after lactate. Therefore, glutamine-glucose cycle can be a

good example for transporting amino acid carbon to the kidney for gluconeogenesis.

2.5 Exercise

Exercise can be classified into two types, anaerobic and aerobic. Anaerobic exercise is represented by sprinting

or weightlifting; it is of short duration but involves great strength [3]. This type will not be considered in

this document. Aerobic exercise, on the other hand, involves prolonged exercise but at a lower intensity than

can be achieved anaerobically [3]. It is illustrated by running, cycling, swimming, or skiing. Here, since the

duration of the exercise is long the energy needs of the body could not be maintained only from the fuels

stored within muscle; the fuel stores in the rest of the body (fat in adipose tissue, glycogen in the liver)

must also be used. Hence, these substrates must be brought to the muscle in the blood and used for the

energy needs of the muscle. The muscle fibers involved in aerobic exercise are mainly the oxidative, Type 1

fibers. It is called aerobic because substrates (fatty acids and glucose) are completely oxidized to maximize

efficiency.
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2.5.1 Intensity of Exercise

We may measure the rate of whole-body energy expenditure, which will include both external work done

and heat produced, by using various units. For instance, this may be measured in watts, however it is more

convenient to relate it to the body’s resting rate of energy expenditure. The unit MET (abbreviated from

metabolic rate) has been invented for this measure. Some typical rates of energy expenditure expressed in

this way are given in Table 2.2. One MET is defined as the normal resting metabolic rate (i.e., whole-body

energy expenditure); it is about 4.8 kJ/min for a man of average size, and 3.8 kJ/min for a woman of average

size. Note that 4.8 kJ/min is 4800/60 = 80 W [3].

Activity Energy Expenditure in MET

Resting (not sleep) 1.0

Sleeping 0.9

Light Housework(e.g. sweeping floor) 2.5

Walking steadily(3 miles/h) 3.5

Heavy Housework (e.g. washing car) 4.5

Dancing 3-7

Swimming 6-11

Jogging 10-12

Squash 12

Marathon Running 18

Table 2.2: Energy Expenditure During Various Activities

2.5.2 Metabolic Regulation During Aerobic Exercise

The major fuels used in aerobic exercise vary with the intensity of the exercise and with the duration. In

relatively light exercise most of the energy required comes from non-esterified fatty acids delivered from adi-

pose tissue. At higher intensities, carbohydrate tends to predominate early on, fat becoming more important

later as glycogen stores are depleted. The carbohydrate used during endurance exercise comes from glycogen

stores, both in exercising skeletal muscle and in the liver. In principle, it might also come from gluconeo-

genesis: exercising muscles always produce some lactic acid, even in aerobic exercise, and this should be a

good substrate for hepatic gluconeogenesis. In fact, gluconeogenesis seems to be restricted during exercise,

perhaps because blood flow to the liver is restricted as blood is diverted to other organs and tissues (mainly
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skeletal muscle). The use of different fuels at different intensities of exercise is illustrated in Figure 2.9.

The intensities of exercise are estimated by oxygen consumption, in relation to the maximal rate of oxygen

consumption for the individual (VO2max). Panel (a) shows exercise at 65% VO2max; 2h at 65% VO2max

is relatively heavy exercise. Panel (b) shows exercise at 25% VO2max; 2h at 25% VO2max is relatively light

[3]. Figure 2.9 also shows the relative contribution of substrates of the body to energy expenditure.

Figure 2.9: Utilization of different fuels during exercise at two intensities

Source: Romijn et al. (1993) [46], ©American Physiological Society

2.6 Carbohydrate Metabolism in Diabetes Mellitus

Untreated diabetes mellitus is described by extreme thirst and frequent urination. Diabetes mellitus can be

divided into two main types. In the first one, the disease usually develops during childhood or adolescence.

In this type of diabetes, lack of treatment leads to severe illness; and the only effective treatment is injection
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of the hormone insulin. This is known as Type 1 diabetes mellitus or, in older literature, as insulin-dependent

diabetes mellitus (IDDM). In the second one, more common form (90% of all diabetes), the disease usually

starts later in life - from the mid-thirties. However, Type 2 diabetes can be seen now in younger and younger

people. Those who develop this type of the disease are very often overweight. This form of diabetes is known

as Type 2 diabetes mellitus or, in older literature, non-insulin dependent diabetes mellitus (NIDDM).

Type 1 diabetes results from destruction of the insulin-secreting cells of the islets of Langerhans. It is

clear that the metabolic changes in Type 1 diabetes essentially represent a deficiency of insulin and can

largely be treated by injection of insulin. Type 2 diabetes is characterized by a failure of insulin, at relatively

normal concentrations, to employ its normal effects: this is the condition known as insulin resistance. Insulin

resistance is also an obvious feature of obesity. The generally-accepted hypothesis for the development of

Type 2 diabetes with obesity is as follows. When people become obese, their tissues become resistant to the

actions of insulin. Therefore, the concentration of glucose in the blood increases and insulin is released in

greater quantities from the pancreas. In obese subjects, concentrations of insulin in the plasma, and their

response to a glucose load, are thus actually greater than normal.

2.6.1 Alterations in Metabolism in Diabetes Mellitus

Untreated Type 1 Diabetes

The metabolic picture in untreated Type 1 diabetes, outlined in Figure 2.10 , is very much what we might

expect from knowledge of the normal role of insulin. There is breakdown of fuel stores and tissues. Lack

of insulin leads to a net mobilization of glycogen. Glucagon secretion is increased in this condition. This,

together with lack of insulin, leads to increased gluconeogenesis. Thus, hepatic glucose production is in-

creased. In addition, the supply of amino acid substrate for gluconeogenesis is increased because there is

net breakdown of tissue protein, especially of the large amount in skeletal muscle. Glucose utilization in

tissues in which it is normally activated by insulin, particularly skeletal muscle, is impaired or stopped.

This is strengthened by increased availability of fatty acids for oxidation; these will displace glucose as the

oxidative fuel by the glucose-fatty acid cycle mechanism. Thus, the concentration of glucose in the blood

rises dramatically. The normal resting concentration of around 5 mmol/l may increase to 10, 20, or even 50

mmol/l as the disease progresses [3].
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Figure 2.10: The metabolic pattern in untreated Type 1 diabetes

Source: Frayn, 2009 [3]

The increased glucose concentration of the blood, known as hyperglycemia, leads to loss of glucose in the

urine. At normal blood glucose concentrations, glucose is not lost by the kidney; it is filtered at the glomerulus

and reabsorbed in the proximal tubules. But when the blood concentration rises above about 12 mmol/l,

the level known as the renal threshold, reabsorption becomes saturated and glucose spills over into the urine.

Lack of insulin leads to unrestrained release of non-esterified fatty acids from adipose tissue, and also to lack

of activation of adipose tissue lipoprotein lipase. Thus, adipocytes fail to take up triacylglycerol from the

blood, and there is a dramatic net loss of fat from adipose depots. This, together with the breakdown of

protein, leads to the catabolic state.

Metabolic Alterations in Type 2 Diabetes

The plasma glucose concentration in Type 2 diabetes varies according to the severity of the condition, but

if a patient neglects his or her treatment, it would not be uncommon to find a plasma glucose concentration

of 20 mmol/l [3]. The plasma glucose concentration is consistently raised throughout the day, with an

impairment of insulin response of skeletal muscle and adipose tissue. In addition, plasma non-esterified fatty

acid concentrations may be elevated throughout the day. This elevation of plasma non-esterified fatty acid

49



concentration may worsen a number of features of the condition, reducing further the ability of insulin to

stimulate glucose uptake by skeletal muscle.
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Chapter 3

A Review of Modeling Approaches for

Human Body Glucose Metabolism

Blood glucose (BG) regulation in diabetic patients has been examined by researchers for a long time [47].

Various modeling approaches have been implemented with varied complexity ranging from simple data-driven

(or empirical) to more detailed knowledge-driven (or conceptual) physiological models [47]. Empirical (or

data-driven) models are the black box models, which relate the recently recorded BG values, and other

inputs that can influence the BG levels with the output, which is usually the future BG concentration. Gen-

erally, the data-driven models are simple. The number of model equations is determined and parameters are

estimated on individual basis from experimental data [48]. However, the conceptual models employ general

knowledge of the physiology and metabolic processes. Each organ/tissue can be treated as a separate com-

partment with its own model equations and a detailed description of the metabolic and kinetic processes.

These models are more complex and the estimation of the parameters is complicated [47].

The present review provides general information about the BG regulatory models including the description

of empirical (data-driven), semi-empirical, and comprehensive models, along with the meal and exercise

models, that is presented in Figure 3.1. Finally, the main simulation models that have been used for testing

purposes are described.
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Figure 3.1: Glucose Metabolism Modeling Approaches
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3.1 Data-Driven Models

Data-driven models are the black box models, which relate the input(s) with the output, which is usually BG

concentration. In these models, future BG values of a patient will be predicted using recently recorded BG

values and other inputs that can influence the BG levels. The most attractive aspect is that simple models

predicting BG concentrations can be developed easier than other models, as the model structure is easily

identifiable. However, these models cannot provide any understandings on the levels of glucose metabolism in

various tissue and organs, as they do not consider any physiology. Also, these models often require the most

recent data from patients to predict the BG changes in the near future which may not be practicable due

to factors like additional measurement cost, patient’s compliance to frequent BG measurements etc. Data-

driven models can be classified as presented in Figure 3.2: i) Machine Learning Models and ii) Time-Series

Models [48].

3.1.1 Machine Learning Models

The prediction of the glucose as a function of the input variables can be considered as a regression problem.

The fact that the relationship between input variables (i.e. medication, diet, physical activity, stress etc.)
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Figure 3.2: Data-Driven Models for Glucose Metabolism
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and glucose levels is nonlinear, dynamic, interactive and patient-specific [49], requires the application of non-

linear regression models such as artificial neural networks, support vector regression and Gaussian processes.

Different types of neural networks have been considered in modeling the blood glucose metabolism, such

as multilayer perceptron (MLP) [50, 51, 52], radial basis function (RBF) [53], wavelet [54], time series con-

volution [49] and recurrent neural networks (RNN) [49, 55]. Additionally, Gaussian processes have derived

prominent results regarding glucose prediction [56].

Artificial neural networks (ANN) have been used to forecast the BG levels in T1DM patients. Sandham et al.

[57] worked on the prediction of BG concentration in two T1DM patients by using recurrent ANN (RANN).

The BG level of past time was used to predict the present/future BG level. The input vector used to predict

BG levels in T1DM patients includes: insulin (type, time and site of injection), diet (total carbohydrates

(CHO) and meal time), exercise (duration, mobility, strength, endurance, and time), BG level and a vector

comprising of other parameters (stress, illness, pregnancy). The prediction results by ANN were found to

be very close to the measured values of BG in both patients.

Ghevondian et al. [58] developed a method based on a neural network algorithm for estimating blood glu-
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cose levels by using only physiological parameters such as skin impedance and heart rate. Results have

shown that an accuracy of 10% was achieved. Tresp et al. [49] studied the application of neural networks

to modeling the blood glucose metabolism of a diabetic. They considered recurrent neural networks and

time series convolution neural networks that were compared to linear and nonlinear compartment models.

They included a linear error model to consider the uncertainty in the system and for managing missing

blood glucose observations. The results indicated that best performance was achieved by the combination

of the recurrent neural network and the linear error model. Mougiakakou et al. [55] presented two models

based on the combination of compartmental models and ANN to simulate the glucose-insulin metabolism

in four T1DM children. The insulin kinetics and glucose absorption from the gut were characterized in the

form of compartmental models while the glucose dynamics was given by ANN. One model used feed forward

ANN (FFANN) and the other used RANN trained with real time recurrent learning algorithm (RTRL). The

outputs from compartment models were treated as the inputs of ANN models. The results showed a superior

performance by RANN in all the four children.

The Gaussian processes have also been used successfully for the prediction of glucose. More specifically, a

Gaussian processes prediction model for type 1 diabetic patients was developed in [56] based on continuous

glucose measurements, physical activity information as well as information regarding food intake and insulin

injections. The prediction model was evaluated on data collected from 18 patients with type 1 diabetes.

Although no quantitative results were provided, it seems that this method can predict glucose in the short-

term reasonably well and is able to follow the trends in glucose time series.

3.1.2 Time Series Models

Time series models are yet another category of data-driven models which can be used to develop linear and

nonlinear dynamic models by relating the input and output data. Bremer et al. evaluated the ability of

empirically developed linear autoregressive (AR) models to predict the future BG values. Results showed

that the linear models could predict BG values in a short horizon (of up to 30 min) from the recent past data

in both diabetic (T1DM) and non-diabetic patients. Consequently, AR models for predicting BG levels in

different prediction horizons were developed by Sparacino et al. [59] and Reifman et al. [60] from continuous

glucose data of 28 ambulatory T1DM and 9 T1DM subjects, respectively.

Van Herpe et al. [61] developed an input-output time series model using the data obtained from 41 patients
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in an intensive care unit (ICU). A second order autoregressive exogenous input (ARX) model was found to

be the optimal model for this data set. In another work, Van Herpe et al. used the data of 15 ICU patients

to develop an adaptive input-output time series model by employing the significant input variables identified

in their previous study. The new model could make four hours ahead BG predictions. Both models of Van

Herpe et al. were found to demonstrate better predicting ability and clinical interpretation of estimated

coefficients. Finan et al. [62] developed AR, ARX and autoregressive moving average exogenous input (AR-

MAX) models using ambulatory data of two T1DM patients. They also developed these models for the data

obtained by simulating a T1DM nonlinear physiological model with exogenous insulin and meal disturbances

as inputs. The results of this study recommended AR or ARX models for ambulatory data and ARMAX

model for the simulated data.

Apart from these regular time series models, Eren-Oruklu et al. [63] have developed subject-specific recursive

algorithms for the development of time series models predicting the future BG concentrations. Recently,

Eren-Oruklu et al. [64] developed recursive autoregressive moving average model and evaluated the recur-

sive model to further predict the hypoglycemia to provide hypoglycemic alarms. They extended their first

model (univariate modeling algorithm) for predicting glucose concentrations [65] to a multivariate model

that uses not only the subject’s glucose measurements from a CGM device, but also several physiological

signals describing a subject’s physical activity and emotional conditions that have a significant effect on

glucose metabolism.

Aside from the above-mentioned linear data-driven models, some nonlinear models have also been developed.

Mitsis et al. [66] developed Volterra-type nonlinear dynamic empirical models with the data obtained from

simulation of minimal model (will be explained in the knowledge-driven part). They examined the relation

between existing parametric (compartmental) and nonparametric (Volterra type) models. The analytical and

simulation results demonstrated the feasibility of obtaining accurate nonparametric models of insulin-glucose

dynamics that are generated by widely used parametric models. Since the nonparametric modeling approach

did not require prior assumptions about the model structure, it provided the effective means for obtaining

accurate patient-specific and data-true models in a clinical context - thus overcoming the limitations of

current parametric models. Rollins et al. [67] made significant contributions in developing nonlinear block-

oriented Weiner models for T2DM patients. Recently, this group [68] has employed Weiner-block modeling

methodology to predict the BG levels in T2DM patients using a large set of strongly correlated noninvasive

inputs (nearly 35 sets of input variables related to stress, activity and food).
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3.2 Knowledge-Driven Models

The knowledge-driven models can further be categorized as semi-empirical models, and comprehensive mod-

els. The semi-empirical models have limited number of equations, in which various organs or tissues in the

body are combined into one or more compartments. However, the comprehensive models are highly complex

and detailed, in which glucose metabolism of each organ and tissue modeled individually and in detail. The

parameters of semi-empirical models are estimated from the data collected via clinical tests, although the

parameters of comprehensive models are estimated from the literature.

3.2.1 Semi-Empirical Models

The turnaround in BG regulation modeling happened after Bergman et al. [69, 70] introduced their glucose-

insulin kinetics model, which is called minimal model. Their aim is to find out the insulin sensitivity of an

individual with the help of mathematical models. They tried to mimic a healthy person with 3 Ordinary

Differential Equations (ODEs) for plasma glucose, plasma insulin and remote insulin concentration without

considering any external disturbances. The major advantages of this model are its structural simplicity and

ability to estimate the significant physiological parameters by using only the BG and plasma insulin data

obtained from clinical tests. Earlier approaches of minimal models used intravenous glucose tolerance test

(IVGTT) data, but afterwards, as oral glucose tolerance test (OGTT) closely resembles the physiological

condition, this model was extended further by incorporating the description for glucose absorption from gut

[71]. The resulting model estimates glucose and insulin concentration simultaneously, by considering the

feedback relationship between them [71].

The minimal model has met many alterations afterwards. Most of the alterations were based on diabetes,

also meal and physical exercise extensions were added to the original model [72, 73, 74, 75, 76, 77]. An-

other extension was to add a compartment to the glucose kinetics. Glucose kinetics requires at least a

two-compartment description [78]. Under modeling the system, i.e., using one instead of two compartments

during the highly dynamic IVGTT perturbation, can introduce bias in glucose effectiveness and insulin

sensitivity, being over and under-estimated, respectively [79, 80, 81]. A two-compartment glucose mini-

mal model has been proposed [82, 83], but this requires a priori knowledge on the two glucose exchange

parameters [78, 84, 85, 86]. By incorporating this a priori knowledge and using a Bayesian Maximum a pos-

teriori estimator, the accuracy of both glucose effectiveness and insulin sensitivity has been shown to improve.
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In 2007, Dalla Man et al. [87, 88, 89, 90] developed a new model describing the glucose-insulin kinetics in the

postprandial state. Glucose subsystem was modeled as a two-compartmental structure by using two ODEs,

one explaining the glucose mass in plasma and rapidly equilibrating tissues and another denoting the glucose

mass in slow equilibrating tissues. The insulin subsystem was also represented by a two-compartmental

structure with two ODEs for insulin masses in plasma and liver. The model involved four unit metabolic

processes, namely, endogenous glucose production (EGP), glucose absorption via gut wall, glucose utiliza-

tion, and endogenous insulin secretion. The mathematical representation of EGP quantified the effect of

insulin and glucose on liver to suppress the EGP. The insulin-dependent (tissues) and independent (brain and

erythrocytes) glucose utilizations during meals were modeled based on the results of Cobelli et al. [91, 92].

Finally, the unit process for pancreatic insulin secretion modeled the pancreatic insulin secretion responses

with respect to increasing and decreasing glucose concentration.

Dalla Man et al. checked the parameters of the resulting model with a large database of normal subjects and

also with a smaller database of T2DM patients. Based on this model, a new simulation software of glucose

insulin model (GIM), which could be used to simulate the life of normal, T1DM and T2DM subjects, was

developed. This model was modified for T1DM patients by excluding pancreatic insulin secretion term and

by including a new model of subcutaneous insulin kinetics. In 2009, Kovatchev et al. [9] developed another

simulator (available as ’ UVa simulator’) for performing in silico preclinical trials in T1DM subjects based

on the glucose-insulin model of Dalla Man et al. Food and Drug Administration (FDA) has accepted this

simulator as an alternative to animal studies in the preclinical testing of a closed-loop control strategy.

3.2.2 Comprehensive Models

In 1978, Guyton et al. [93] developed a whole-system mathematical model of glucose metabolism in nor-

mal man by using current physiologic knowledge about glucose-insulin homeostasis in liver, brain, pancreas,

kidney, peripheral tissues, and central vascular organs. The stated organs and tissues in the human body

identified as the six compartments in the model. The model structure and the parameters of the model

were determined by the available literature at that time and more than 100 intravenous glucose tolerance

tests. In 1985, Sorenson [94] revised this model by adding a more complicated mathematical explanation.

Then, Parker et al. [95, 96] updated Sorenson’s model by adding a meal and exercise input model. The

regulatory effects of insulin and glucagon hormones on glucose metabolism are considered in these models.
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The Sorensen model contains three main sub-models which represents blood glucose, insulin and glucagon

concentrations in the body. Each sub-model is divided into individual compartments representing a specific

organ in the human body. The number of compartments in each sub-model is determined by the significance

of the organ’s job in maintaining the respective solute concentrations. Therefore, the glucose sub-model has

six compartments: brain; liver; heart and lungs; periphery (muscles and adipose tissues); gut, which includes

the stomach and intestinal system; and kidney. The insulin sub-model has the same six compartments and

an additional compartment for the pancreas. The glucagon sub-model treats the whole body as one com-

partment.

Each compartment is generally divided into three well-mixed spaces representing the capillary blood space,

the interstitial fluid space and the intracellular space. Capillary blood space is fed in by arterial blood and

drained out by venous blood. The blood components may diffuse through capillary walls to interstitial fluid

and from interstitial fluid to intracellular space. For each compartment, sub-compartments are considered

where significant transport resistance exists. On the other hand, when the rate of component transport

across the cell membrane is not restricted by its respective concentration in the intracellular space, the in-

tracellular space may be omitted.

Model equations include mass balance equations over each sub-compartment for every individual compart-

ment. Since pancreatic insulin production is a complex mechanism which cannot be described by simple mass

balance equations, a separate model is considered for the pancreas. The pancreatic insulin release model used

in the Sorensen model has been proposed by Landahl and Grodsky [97]. The aim of Landahl and Grodsky’s

model is to mimic the biphasic behavior of pancreatic insulin secretion in response to a glucose stimulus.

The model describes insulin secretion patterns in response to a variety of glucose stimuli, they postulated

that insulin granules were not a homogeneous pool. While the threshold hypothesis they introduced (i.e.,

each granule has a certain glucose threshold above which it releases the content) has gained little support

from subsequent experiments, the non-homogeneity of insulin-containing granules pool is today an accepted

notion and various beta-cell biology theories have been put forward. Next, we present the general approach

employed for the modeling of physiologic processes.

Metabolic rates causing addition or removal of mass were assigned mathematical equations of the general

form:

r “MGlupGlu, tq ¨M IpI, tq ¨MGpGq ¨ rbasal (3.1)
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r : metabolic rate of mass addition or removal (mass/time)

MGlu : multiplicative effect of glucagon (dimensionless)

M I : multiplicative effect of insulin (dimensionless)

MG : multiplicative effect of glucose (dimensionless)

rbasal : basal metabolic rate (mass/time)

This method of representing regulatory effects in terms of separable multiplicative functions is commonly

utilized in the modeling of biological processes (Carson et al., 1983). Since hyperbolic tangent functions

have been found to be readily suitable for representing the sigmoidal nonlinearities commonly observed in

biological data correlation, the rate multiplier functions were generally given the mathematical form:

M ipiq “ A`B ¨ tanh ¨ rC ¨ pi´Dqs (3.2)

where the ith multiplier function was fit to clinical data by adjustment of the four constants A, B, C and D.

Physiologic processes affecting glucose mass equations and the substrates affecting the rate of function were

listed as follows:

1) Red Blood Cell Uptake - Rate is constant

2) Brain Uptake - Rate is constant

3) Gut Uptake - Rate is constant

4) Peripheral Uptake - Rate is dependent on Peripheral Interstitial Glucose, Peripheral Interstitial Insulin

5) Urinary Excretion - Rate is dependent Kidney Plasma Glucose

6) Hepatic Uptake - Rate is dependent on Liver Glucose and Liver Insulin

7) Hepatic Production - Rate is dependent on Liver Glucose, Liver Insulin, and Plasma Glucagon.

Physiologic processes affecting insulin mass equations and the substrates affecting the rate of function were

listed as follows:

1) Liver Clearance - Rate is dependent on Liver Insulin

2) Kidney Clearance - Rate is dependent on Kidney Insulin

3) Peripheral Clearance - Rate is dependent on Peripheral Interstitial Insulin

4) Pancreatic Insulin Release - Rate is dependent on Heart and Lung Glucose
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Physiologic processes affecting glucagon mass equations and the substrates affecting the rate of function

were listed as follows:

1) Plasma Clearance - Rate is dependent on Plasma Glucagon

2) Pancreatic Glucagon Release - Rate is dependent on Heart and Lung Glucose, Heart and Lung Insulin

The parameter values were figured out from the literature and models proposed for a healthy body. These

models are not personalized but a general representation. These models for glucose-insulin interactions have

been widely used in studying the physiological behavior of type I diabetic patients [96, 98, 99, 100, 101] and

type 2 diabetic patients [58] by suitably adjusting the models.

In the early eighties, Cobelli et al. [91, 92] developed a comprehensive physiological model to characterize

the glucose, insulin and glucagon kinetics. The glucose and glucagon subsystems are described by one-

compartment models. The insulin subsystem is described by five-compartment model. This model also

had used mass balance equations for calculating the level of substrates in the compartments and multiplier

functions for the metabolic processes.

In 1992, Puckett et al. [102] proposed a multi compartment model structure to explain glucose-insulin in-

teractions at various tissue and organ levels, which is like Sorenson’s updated model. However, Puckett’s

model did not consider the glucagon effect.

Another mathematical model about physiology of diabetes is the Archimedes model developed by Eddy and

Chlessinger [103, 104]. The model is written in differential equations, using object-oriented programming.

The model includes the pertinent organ systems, more than 50 continuously interacting biological variables,

and the major symptoms, tests, treatments, and outcomes. Their main goal is to build a mathematical

model of the anatomy, pathophysiology, tests, treatments, and outcomes pertaining to diabetes that could

be applied to a wide variety of clinical and administrative problems and that could be validated.
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3.2.3 Meal and Exercise Models

The regulation of blood glucose concentration within safe limits in diabetic patients is accomplished by

effective dietary planning, physical exercise, and insulin management. Mathematical models describing the

effect of diet and exercise on controlling the blood glucose concentration are discussed in this section.

Meal Models

Fisher et al. [74] developed a meal model to explain the rate at which glucose enters bloodstream after

intestinal absorption from meal. In oral glucose tests with normal subjects, the plasma glucose level rises

quite rapidly (from the rest level) to a maximum in less than 30 min and then falls to the base level after

about 2-3 h. Fisher et al. found out the parameters of the equation which specifies the rate at which glucose

enters bloodstream by using the oral glucose test values of normal subjects.

Lehmann and Deutsch [105] proposed a meal model to mimic the glucose dynamics starting from oral meal

ingestion to glucose absorption into blood. The rate of glucose appearance in gut was modeled by sub-

tracting the rate of glucose appearance in plasma compartment from the rate of gastric emptying. The

model represents the duration of period for which gastric emptying is constant and maximal as a function of

carbohydrate content in the ingested meal. It assumes that gastric emptying is a trapezoidal function and

that intestinal absorption follows first order linear kinetics. Lehmann and Deutsch calculated the parameter

values of the meal model from the experimental results of Guyton et al. [93].

In Hovarko’s [106] meal model, the gut absorption rate is represented by a two-compartment chain and is

dependent on the time-of-maximum appearance rate of glucose in the accessible glucose compartment, the

amount of carbohydrates digested, and carbohydrate bioavailability.

Fabietti et al. [107] used a meal model based on Arleth et al. [108] to describe the glucose input via meals.

The glucose input from meals was obtained by processing a time dependent input representing the rate of

food intake. The gut absorption was split in three terms, each one corresponding to a class of carbohydrates

with different absorption rates: sugar (Ag), fast absorption starch (As), and slow absorption starch (Am),

as derived from mixed meals, where the presence of different nutrients slows down the absorption of car-

bohydrates. Ag, As, and Am were obtained mathematically in the form of transfer functions based on the
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experimental results of Arleth et al. [108].

All the above models failed in fitting glucose appearance (Ra) into the blood from ingested food satisfactorily

[89]. The reason is likely their simplistic structure relative to the complexity of the Ra signal. It is, in fact,

well known, for instance, that the gastric emptying of liquids depends nonlinearly on the size of the meal, its

energy density and the amount of nutrient in the stomach [109, 110, 111, 112]. Moreover gastric emptying

is described as a biphasic process in many studies [111, 113]. Clearly, a linear model does not capture these

features. Dalla Man et al. [89], thus, moved to a nonlinear model based on available knowledge on gastric

emptying and glucose absorption. A physiological model of glucose intestinal absorption had been developed

by Dalla Man et al. [89]. Briefly it describes the glucose transit through the stomach and intestine by

assuming the stomach to be represented by two compartments (one for solid and one for triturated phase),

while a single compartment is used to describe the gut. The parameters were estimated by the help of the

experimental data obtained from labeled oral glucose tolerance test of 41 subjects and labeled mixed meal

ingestion of 20 subjects.

Exercise Models

In 2002, Lenart and Parker [114] integrated the effects of exercise into the updated comprehensive model of

Sorenson. Their exercise model quantified the exercise level of a person by using percentage of a person’s

maximum oxygen consumption rate. The influence of exercise on blood flow distribution, peripheral glucose

uptake, hepatic glucose production, and insulin uptake has been modeled in the literature. The experimental

works of Ahlborg et al. [115] were used to validate the exercise model. This model was mainly developed

for introducing mild and moderate intensity exercise effects into the physiological model. The complicated

nature of the model makes it difficult to tailor it for a specific patient.

In 2007, Roy and Parker [76] integrated exercise effects into Bergman’s minimal model. The extended

minimal model consists of three additional variables representing rates of glucose uptake, hepatic glucose

production, and insulin removal from the circulatory system because of exercise. The simplistic nature of

this new model can help in designing patient specific models for clinical use.
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3.3 Simulations

A variety of models, discussed above, have been used to describe the glucose-insulin kinetics and the glucose

regulation in subjects with diabetes. Recent research focuses on developing simulation models representing

a ’virtual patient’. The Simulation models that will be discussed in this section, consist of a glucose-insulin

kinetics model, a meal model and some of them have exercise models. Since we already discussed the specified

models, we will summarize the simulation models briefly in this section. The glucose metabolism simulations

that are discussed in this section are presented in Figure 3.3.

Figure 3.3: Glucose Metabolism Simulations
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3.3.1 AIDA Simulation

AIDA is a diabetes computer program that permits the interactive simulation of plasma insulin and blood

glucose proles for teaching, demonstration, and self-learning purposes. It has been made freely available,

without charge, on the Internet as a noncommercial contribution to continuing diabetes education. It was

launched in 1996 by Lehmann and Deutsch [105]. The model focused on the adjustment of insulin and/or

diet in the insulin-treated diabetic patient. The model was followed the principles usually associated with the

minimal-model approach, to find a concise mathematical formulation to represent the major physiological

systems with the fewest possible parameters. This simulator considered the meal model and the subcutaneous

insulin injection, but not the exercise model.
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3.3.2 Hovorka Simulation

Hovorka et al. [106] developed a multi-compartment model of glucose and insulin kinetics as part of a model

predictive controller for subcutaneous insulin infusion for people with type 1 diabetes. This model consists of

a two compartment glucose subsystem (accounting for glucose absorption, distribution and disposal), a two-

compartment insulin subsystem (accounting for insulin absorption, distribution and disposal) and an insulin

action subsystem (accounting for insulin action on glucose transport, disposal and endogenous production).

A possible weakness of Hovorka simulation model is its simple representation of glucose absorption from the

gut which may need to be refined.

3.3.3 Dalla Man(UVA/PADOVA) Simulation

Dalla Man simulation model [89, 90] is one of the well-known virtual patient models. Dalla Man et al. [89, 90]

developed a model that related the plasma concentrations of glucose and insulin to various glucose and insulin

related rates (the rate of appearance of glucose from the gastro-intestinal tract, the rate at which the glucose

is produced by liver and kidney, insulin dependent and independent rates of glucose utilization, the rate of

renal extraction of glucose, the rate of insulin secretion by beta cells and the rate of insulin degradation).

The parameters of this model were determined using the experimental data collected for 204 normal and

14 Type 2 Diabetic subjects. This model was used to simulate patient behavior in UVA/PADOVA Type 1

Diabetes Simulator [9] aimed at investigating the closed control strategies for insulin pumps. A new version

of UVA/PADOVA Type 1 Diabetes Simulator [3] modifies Dalla Man?s model by incorporating glucagon

secretion/action/kinetics and nonlinear increase in insulin dependent glucose utilization as BGL dips below

the normal range. It has a meal model subsystem, but not an exercise model. As stated before, the model

has been accepted by the Federal Drug Administration to replace animal testing of glucose controllers.

3.3.4 Sorenson/Guyton Simulation

Sorensen simulation model [94] belongs to the class of complex physiologically based compartment models.

Tiran et al. [116] developed a multi-compartment model for glucose circulation where each relevant organ

was modeled as a separate compartment. Guyton et al. [93] developed another multi-compartment model

consisting of a glucose circulation subsystem (separate compartments for liver glucose, liver glycogen, kid-

ney glucose, brain tissue glucose, brain blood glucose, peripheral (muscles, adipose tissue) blood glucose,

peripheral tissue glucose, central (i.e. gastrointestinal tract) blood glucose and central tissue glucose) and
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an insulin circulation subsystem (separate compartments for liver insulin which represents insulin from pan-

creatic beta cells, kidney insulin, peripheral blood insulin, peripheral tissue insulin, central blood insulin

and central tissue insulin). The model consisted of a total of 32 nonlinear ordinary differential equations

(ODEs) with 11 nonlinear ODEs just to model insulin secretion from pancreas [94]. Sorensen [94] presented

another physiologically complex, multi-compartment model albeit with a much simplified model for pancre-

atic insulin secretion. Sorensen’s model consisted of a total of 22 nonlinear ODEs of which 11 ODEs were

associated with glucose circulation, 10 ODEs with insulin and 1 ODE with glucagon. Parker et al. [95, 96]

updated the Guyton/Sorensen models by accounting for uncertainty in parameter values and by including a

model for gastric emptying of carbohydrates in a meal [105].

65



Chapter 4

CarbMetSim: A Discrete-Event

Simulator for Carbohydrate

Metabolism in Humans

4.1 Introduction

More than 400 million people world wide suffer from Diabetes, around 90% of whom have Type 2 Diabetes

[1]. People with Type 2 Diabetes usually have at least some ability to produce insulin, however their bodies

develop insulin resistance and hence are not able to react strongly enough to the presence of insulin in blood

to keep blood glucose level (BGL) under control. On the other hand, people with Type 1 Diabetes cannot

produce insulin endogenously at all and hence must receive external insulin regularly. The work described in

this paper is geared towards people with Type 2 Diabetes and any reference to the standalone term Diabetes

should be interpreted as meaning Type 2 Diabetes unless explicitly noted otherwise.

Keeping BGL under control is a constant struggle for people with Diabetes. One wrong meal choice may

result in very high BGL and an accompanying feeling of sickness for several hours. Persistently high BGL

would ultimately cause a number of severe complications such as heart/kidney failure, blindness and limb

amputations. Those using insulin may suffer life threatening hypoglycemic incidents if too much insulin is

injected. Physical exercise allows the muscles to use glucose in the blood even in the absence of insulin but
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exercise activities need to be carefully coordinated with food and medication intake. In general, people with

Diabetes need help deciding how they should plan their food and exercise activities so as to keep their BGL

under control. There is a real need for tools that help diabetic people understand the impact a particular se-

quence of food and exercise activities would have on their BGL. Continuous BGL monitoring solutions, now

offered by a number of vendors, can significantly help but are either not easily available to a vast majority

of diabetic people world-wide or are simply too expensive. Clearly, one solution is to build simulation tools

that use our vast knowledge of energy metabolism in human beings. A few such simulators already exist

[9, 10] but are geared towards predicting the impact of individual meals and are not available in a format

that can be freely used by individuals. This paper describes CarbMetSim (the Carbohydrate Metabolism

Simulator), an open-source and freely available simulation software that predicts minute by minute BGL in

response to an arbitrary length sequence of food and exercise activities. While the existing simulation tools

are based on continuous time models that use differential and algebraic equations to describe physiological

details, CarbMetSim is based on a discrete event model where the time increments in units (called ticks) one

minute long. At the beginning of each tick, CarbMetSim fires the food/exercise events that need to be fired

at this time and directs various simulated body organs to do the work they are supposed to do during this

tick. The simulator is currently geared for use by people with Type 2 Diabetes who follow a fixed medication

(including insulin) regime prescribed by their physicians.

CarbMetSim implements broader aspects of carbohydrate metabolism in human beings with the objective

of capturing the average impact of various diet/exercise activities on the BGL of people with different levels

of diabetes. The simulator implements key organs (stomach, intestine, portal vein, liver, kidney, muscles,

adipose tissue, brain and heart) to the extent necessary to capture their impact on the production and

consumption of glucose. Key metabolic pathways (glucose oxidation, glycolysis and gluconeogenesis) are

accounted for by using the known average flux along these pathways in the operation of different organs.

These average flux values are configurable parameters. The impact of insulin and insulin resistance on the

operation of various organs/pathways is captured in accordance with published research. CarbMetSim allows

the user to specify his/her ability to produce insulin and the level of insulin resistance on a scale between

0 and 1. Thus, it is possible to customize the simulator for a particular user by setting appropriate values

to configurable parameters for the ability to produce insulin, insulin resistance and average flux values for

different metabolic pathways in different organs.

CarbMetSim is not yet a finished product. The protein and lipid metabolism are implemented only to the
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extent that they affect carbohydrate metabolism. The simulator does not yet consider monosaccharides

other than glucose and assumes that all dietary carbohydrate gets converted to glucose after digestion.

The impact of insulin is captured in a simplified manner and other important hormones (e.g. glucagon)

are not yet considered. Only aerobic exercise activities can be modeled. Finally, CarbMetSim is not yet

capable of translating a user’s diet/exercise/BGL data into the values of simulation parameters governing

the behavior of different organs. The simulator has broad applicability beyond its original purpose described

above. For example, it is possible to extend the implementation to study the long term impact of diabetes on

various organs or to predict changes in body weight in response to a diet/exercise regimen. The CarbMetSim

simulator is physiologically complex just like the models presented by Tiran et al. [116], Guyton et al. [93],

Sorensen [94] and Dalla Man [89]. The key difference is that CarbMetSim implements the physiological

details as an object oriented software with various body organs implemented as software objects whereas

the existing models used ODEs to model physiological details. It can be argued that it is much easier

to refine/modify behavior described in software than via ODEs. It is hoped that the ease of modification

coupled with the open-source nature of CarbMetSim will allow it to evolve as a fine granularity software

model of human metabolism useful for both research as well patient education.

4.2 Key Aspects in CarbMetSim Design

In the following, we describe some of the key aspects of CarbMetSim’s design.

4.2.1 Food and Exercise Description

In CarbMetSim, a food is described in terms of its serving size and the amount of rapidly available glucose

(RAG), slowly available glucose (SAG), protein and fat per serving. The RAG contents include sugars and the

rapidly digestible starch (i.e. starch that gets digested in vitro within 20 minutes [14, 3]). The SAG contents

include the slowly digestible starch (i.e. starch that gets digested in vitro between 20 and 120 minutes

[14, 3]). In general, the starch with high amylopectin to amylose ratio is classified as rapidly digestible

starch whereas the one with high amylose to amylopectin ratio is classified as slowly digestible starch. The

non-starch polysaccharide (also known as dietary fiber) part of the carbohydrates is currently ignored (even

though the fiber contents of the food are known to have an impact on the gastric emptying). CarbMetSim

currently does not have a detailed implementation of the protein and lipid metabolism. However, it does

model the impact of protein and fat contents of food on gastric emptying. Hence, the food description
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should include the total amount of protein and total amount of fat per serving. CarbMetSim currently

does not characterize protein in terms of its amino acid contents. Since only 3 of the 20 amino acids have

branched chains, a general assumption is made that 85% of amino acids resulting from protein digestion

have unbranched chains and the remaining have branched chains [3]. In CarbMetSim, an exercise activity is

described in terms of its intensity in units of MET s, where 1 MET is 1 kcal of energy expenditure per kg of

body weight per hour. The simulator can currently support only aerobic exercises.

4.2.2 Modeling Insulin Production

CarbMetSim models insulin production using the following four configurable parameters: baseGlucoseLevel ,

highGlucoseLevel , baseInsulinLevel and peakInsulinLevel . The baseGlucoseLevel represents the typical

fasting BGL of the user and the highGlucoseLevel represents the typical peak BGL the user experiences.

The default values of these parameters are 100 mg/dl and 200 mg/dl. Both baseInsulinLevel and peakIn-

sulinLevel parameters assume values between 0 and 1 (with baseInsulinLevel ď peakInsulinLevel ). The

baseInsulinLevel represents the insulin level in the blood when the BGL is less than or equal to baseGlucose-

Level . The peakInsulinLevel represents the ability to produce insulin. A value 1 for peakInsulinLevel means

normal insulin production, whereas a value 0 means that the pancreas does not produce any insulin at all (as

in people with Type 1 Diabetes). A value x (between 0 and 1) for peakInsulinLevel means that peak insulin

production is just x times the normal peak. CarbMetSim models the insulin level as a variable insulinLevel

that assumes values between baseInsulinLevel and peakInsulinLevel . The insulinLevel stays at baseInsulin-

Level if the BGL is less than or equal to the baseGlucoseLevel . The insulinLevel increases linearly from

baseInsulinLevel to peakInsulinLevel as the BGL increases from baseGlucoseLevel to highGlucoseLevel . If

the BGL increases beyond highGlucoseLevel , the insulinLevel stays at peakInsulinLevel .

4.2.3 Modeling Glucose Transport

Glucose crosses cell membranes using either active transporters or passive ones. The active transporters,

such as Sodium GLucose coTransporters (SGLTs) are able to move glucose from a low concentration to a

high concentration. The passive transporters, such as Glucose Transporters (GLUTs) move glucose from a

high concentration to a low concentration. CarbMetSim models the operation of active transporters in an

organ by specifying the average amount of glucose transferred per minute via active transport. The actual

amount transferred is a poisson distributed random variable. The simulator uses Michaelis Menten kinetics

to determine the amount of glucose transferred in a minute via passive transport. As per the Michaelis
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Menten kinetics, the rate of transport (V ) across a membrane depends on the difference in the substrate

concentration (Y ) across the membrane in the following manner: V “ Vmax
Y

Y`Km
, where Vmax is the max-

imum rate of transport and Km is the substrate concentration difference at which the transport rate is half

the maximum. The Vmax value associated with a GLUT transporter in an organ indicates the number of

transporters involved. Hence, the simulator treats Vmax associated with a particular GLUT in a particular

organ as a poisson distributed random variable with a configurable mean.

Among the GLUTs, the GLUT4 transporters are of particular importance because they allow the muscles

to absorb glucose from the bloodstream. The number of active GLUT4 transporters depends on the insulin

level in the bloodstream (unless the muscles are engaged in vigorous physical exercise). However, in people

with diabetes, GLUT4 transporters have significantly less level of activation even in presence of high insulin

levels. CarbMetSim uses a configurable parameter (glut4Impact ) that multiplicatively modifies the Vmax

value associated with GLUT4 transporters. This parameter can be used to model reduced activation of

GLUT4 transporters in people with diabetes. The impact of insulin level is captured by multiplying Vmax

with a factor (between 0 and 1) that increases in value with increase in the insulinLevel. Currently, the

insulinLevel itself is used as the value of this factor.

4.2.4 Modeling Glucose Consumption

Glucose serves as a key source of energy for various tissues, which either oxidize it completely or consume it

anaerobically via glycolysis. Complete oxidation yields significant more energy than anaerobic glycolysis but

can only be done if oxygen is available. Tissues with access to plenty of oxygen oxidize glucose for their energy

needs whereas others (possibly in the same organ) use glycolysis. Glycolysis results in the generation of lac-

tate, which serves as a key substrate for endogenous glucose production via gluconeogenesis (described later).

The following organs in CarbMetSim use anaerobic glycolysis as an energy source: Muscles, Liver, Kidneys,

Intestine and Blood. The amount of glucose consumed for glycolysis increases with the glucose availability,

which is signaled by the insulin level in the bloodstream. This is modeled in the simulator in the following

manner. Each organ using glycolysis as an energy source has two configurable parameters: glycolysisMin

and glycolysisMax (different organs will have different values for these parameters). At each tick, the organ

generates a poisson distributed random number (x) with glycolysisMin as the mean value and glycolysisMax

as the maximum value. Then, subject to the glucose availability in the organ, the amount of glucose consumed
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Organ glycolysisMin glycolysisMax
(µmol/kg/minute) (µmol/kg/minute)

Blood 0.5 5
Kidneys 0.5 5
Liver 1 16.5
Muscles 1 20
Intestine 0.5 5

Table 4.1: The minimum and the maximum amount of glucose consumed by the simulated organs for
glycolysis [42, 118]. 1 µmol of glucose equals 0.1801559mg.

in a tick for glycolysis is given by: x`insulinImpactˆpglycolysisMax ´xq. Here, insulinImpact is a factor

(between 0 and 1) that increases in value with increase in the insulinLevel. This factor is currently calculated

using CDF of a normal distribution with a configurable mean and standard deviation. The simulator also

uses a configurable multiplicative parameter glycolysisImpact to modify the glycolysisMax value associated

with each organ. This parameter can be used to model the impact of diabetes on glycolysis flux. A fraction

(by default 1) of the glucose consumed for glycolysis is converted to lactate, which is added to the Blood

object. The glycolysisMin and glycolysisMax values associated with various organs are shown in Table

4.1.

4.2.5 Modeling Gluconeogenesis

The liver and kidneys produce glucose via gluconeogenesis by consuming lactate, glycerol, glutamine and

alanine [3, 42]. Normally, gluconeogenesis occurs when the insulin level is low (i.e. in the post-absorptive

state). However, diabetic people may experience high gluconeogenesis flux even in the post-prandial state

when the insulin level is high [117, 3]. Table 4.2 shows the default values used in the simulator for average

gluconeogenesis flux in Liver and Kidneys using different substrates. The simulator models the impact of

insulin on gluconeogenesis flux by multiplying it with a factor (between 0 and 1) that decreases in value

with increase in the insulinLevel. This factor is currently calculated using the complementary CDF of a

normal distribution with a configurable mean and standard deviation. The simulator also uses a configurable

multiplicative parameter gngImpact to modify the configured gluconeogenesis flux. This parameter can be

used to model the impact of diabetes on gluconeogenesis flux. The simulator currently keeps track of only the

lactate concentration in the blood. It is assumed that the other substrates are always available in sufficient

quantity to allow gluconeogenesis to take place in the manner described above.
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Liver Kidneys
(µmol/kg/minute) (µmol/kg/minute)

Lactate 2.0 1.1
Glycerol 0.5 0.5
Glutamine 0.5 0.5
Alanine 1.0 0.1

Table 4.2: The gluconeogenesis flux for different substrates in Liver and Kidneys in post-absorptive state
for a healthy person with insulinResistance zero [42].

4.2.6 Modeling Liver Glycogen Synthesis & Breakdown

In human body, the liver helps maintain glucose homeostasis by storing excess glucose in blood during the

post-prandial state (when the insulin levels are high) as glycogen and releasing glucose to the blood during

the post-absorptive state (when insulin levels are low) by breaking down the stored glycogen. Diabetes

may effect both glycogen synthesis and breakdown in the liver. The Liver object in CarbMetSim does

both glycogen synthesis and breakdown simultaneously at configured rates modified by two factors each.

The first factor models the impact of insulin on glycogen synthesis and breakdown. For glycogen synthesis

(breakdown), this factor (between 0 and 1) increases (decreases) in value with increase in the insulinLevel. For

glycogen synthesis (breakdown), this factor is currently calculated using (complementary) CDF of a normal

distribution with a configurable mean and standard deviation. The second factor affecting glycogen synthesis

(breakdown), called liverGlycogenSynthesisImpact (liverGlycogenBreakdownImpact ), simply modifies the

configured rates multiplicatively. These factors can be used to model the impact of diabetes on glycogen

synthesis and breakdown in the liver.

4.2.7 Modeling Diabetes

As described in the previous paragraphs, CarbMetSim uses a number of configurable parameters to model the

state of diabetes in a user’s body. Parameters baseGlucoseLevel , highGlucoseLevel , baseInsulinLevel and

peakInsulinLevel control the insulin production. Parameters glut4Impact , glycolysisImpact , gngImpact ,

liverGlycogenSynthesisImpact and liverGlycogenBreakdownImpact can be used to independently model the

impact of diabetes on glucose absorption by muscles, glycolysis, gluconeogenesis and liver glycogen synthe-

sis/breakdown. Additionally, there are configurable parameters that determine how the insulin level would

impact these processes.
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4.2.8 Modeling Glycemic Index (GI) Calculation

The glycemic index (GI) of a food is defined by the incremental area under the blood glucose curve (IAUC)

in 120 minutes after the ingestion of 50 grams of carbohydrates in a test food, expressed as a percentage of

the IAUC of an equal amount of a reference food (glucose or white bread). In CarbMetSim, white bread is

used as a reference food. IAUC is generally calculated by summing up the areas between the blood glucose

level curve and the base glucose level. We use a simple method to calculate the IAUC. Since our model

is discrete not continuous, for every tick (minute) we decrement the base glucose level from the current

glucose level and sum the decremented values up for the first 120 minutes after the ingestion of 50 grams of

carbohydrates in a test food. The same method is used for white bread, and then we get the percentage of

the IAUC of the test food to the IAUC of the reference food (white bread).

4.2.9 Randomization

In the paragraphs above, we have seen several uses of poisson distributed random variables. This pattern

is repeated throughout CarbMetSim implementation. A poisson distributed random number is used for any

quantity that does not have a fixed value and for which only an average value is known. In the subsequent

discussion all references to a random variable mean a poisson distributed random variable unless noted

otherwise.

4.3 CarbMetSim Design and Implementation

At the top level, CarbMetSim consists of a SimCtl (SIMulation ConTroLler) object and a HumanBody ob-

ject. The SimCtl object maintains time (tick, where each tick is a minute) and contains a priority queue

of food/exercise events sorted in order of their firing times. At the beginning of the simulation, the SimCtl

object reads all the food/exercise events into the priority queue. At each tick, the SimCtl object fires the

events whose firing time has arrived (by invoking appropriate methods on the HumanBody object) and then

causes each organ to do its work during that tick (again by invoking a HumanBody object method).

In the following, we describe the implementation and operation of all the objects that together implement the

CarbMetSim simulator. Figure 4.1 shows an overview of the simulation design. The default values of various

parameters listed here were obtained either from the provided references or determined experimentally to
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Figure 4.1: A Brief Overview of the Simulation Design
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provide best match against published measurements performed on non-diabetic humans [118].

4.3.1 HumanBody

The HumanBody object serves as the container for following organ objects: Stomach, Intestine, PortalVein,

Liver, Kidneys, Muscles, AdiposeTissue, Brain, Heart and Blood. At the beginning of a simulation, the

HumanBody object reads the description of various foods (their composition in terms of rapidly/slowly

available glucose (RAG/SAG), protein and fat) and exercise activities (their intensity in units of MET s)

as well as the values for various parameters affecting the operation of different organs. The HumanBody

also contains methods that cause the food to be added to the stomach when SimCtl fires a food event and

update the energy needs of the body when SimCtl fires an exercise event. When an exercise event gets over,

the HumanBody resets the energy needs to the resting state. Thus, at any given time, the HumanBody

remembers whether the stomach has some undigested food (Fed) or not (PostAbsorptive) and whether the

body is currently engaged in some exercise (Exercising) or not (Resting). Accordingly, there are four body

states: Fed Resting, Fed Exercising, PostAbsorptive Resting and PostAbsorptive Exercising. Different body

states allow different values to be in effect for the configurable parameters governing the operation of the

organs1. As mentioned before, the HumanBody object provides a method, which is invoked by the SimCtl

object at each tick and causes methods to be invoked on individual organ objects that allow the organs to

do their work during that tick.

1The simulation results presented later do not use different parameter values for different body states.
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4.3.2 Blood

The Blood object represents the bloodstream and interacts with various organs to exchange glucose, amino

acids and other substrates. The Blood object maintains the following substrate variables: glucose, lactate,

branchedAminoAcids (consumed by muscles, adipose tissue and brain) and unbranchedAminoAcids. The

Blood object also maintains the insulinLevel variable discussed earlier and a fluidVolume variable represent-

ing the blood volume (5 liters by default). Hormones other than insulin are not currently maintained. At

each tick, the Blood object updates the insulinLevel in the manner described in Section 4.2.2. Also, some

glucose is consumed for glycolysis in the manner described in Section 4.2.4.

4.3.3 Stomach

The gradual emptying of stomach contents into the intestine, also known as gastric emptying, is a complex

phenomenon affected by a number of factors such as the volume, particle size, viscosity, osmolarity, acidity

and nutritional contents of the meal [12, 109, 112]. A variety of models have been suggested in the past for

the emptying of food from the stomach into the intestine. Many of these models were based on mathematical

functions such as exponential [112, 109] and power exponential [119]. Lehmann and Deutsch [105] presented

a simple model for gastric emptying of carboydrates in a meal, where the rate of gastric empyting has three

phases - a linear increase phase, a constant maximum rate phase and a linear decrease phase. Dalla Man

et al. [87] presented a three-compartment model of the gastrointestinal tract where the gastric emptying

rate follows a trough-shaped pattern (initially high followed by a non-linear decrease to a minimum value

followed by a non-linear increase back to the initial maximum value).

In CarbMetSim, when a food event is fired, the eaten food enters the Stomach instantaneously, where its

contents are added to any existing stores of RAG, SAG, protein and fat. The simulator currently uses a

simple model (formulated in the following equations) for gastric emptying where all the food in the stomach is

assumed to be in the chyme form and the amount of chyme leaking to the intestine each minute consists of one

part determined using a poisson distribution (with default mean 100 mg) and another part proportional to

the total amount of chyme currently present in the stomach. This proportionality constant increases linearly

with decrease in the energy density of the chyme. The minimum value of this proportionality constant (0.01

by default) represents the fraction leaking out of stomach each minute when the chyme consists entirely of

fat (with energy density 9.0 kcal/g). On the other hand, the maximum value (9.0{4.0 times the minimum

value) represents the fraction leaking out of stomach each minute when the chyme consists entirely of carbs
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(with energy density 4.0 kcal/g). The nutritional composition of leaked chyme is same as that of chyme

present in the stomach. This simple model, inspired from [109], allows us to take in account the fat/protein

induced slowdown of gastric emptying. There are many other factors that affect the gastric emptying process

(the solid/liquid nature of food, fiber content, osmolarity, viscosity etc.) which CarbMetSim currently does

not take in account. Thus, a bolus of chyme leaks from the Stomach into the Intestine every tick (i.e. every

minute) until the Stomach is empty.

totalFood = RAG + SAG + protein + fat (4.1)

CalorificDensity “ 4.0¨pRAG`SAG`proteinq`9.0¨fat
totalFood (4.2)

geSlope “ 9.0 ¨ geSlopeMin
CalorificDensity (4.3)

geBolus “ geConstant` geSlope ¨ totalFood (4.4)

ragToChyme “ geBolus ¨ RAG
totalFood (4.5)

sagToChyme “ geBolus ¨ SAG
totalFood (4.6)

proteinToChyme “ geBolus ¨ protein
totalFood (4.7)

fatToChyme “ geBolus ¨ fat
totalFood (4.8)

4.3.4 Intestine

Carbohydrate Digestion: The intestine digests the carbohydrate in the chyme using a number of enzymes

to produce monosaccharides such as glucose, fructose and galactose [3]. However, the Intestine object in

CarbMetSim converts all the carbohydrate in the chyme to just one monosaccharide - glucose. The Intestine

receives a bolus of chyme from the Stomach every tick as long as there is some food in the Stomach. The

Intestine maintains a list of Chyme objects where each object contains the undigested RAG/SAG contents of

each bolus received from the Stomach and the time when the bolus was received. At each tick, the Intestine

digests some amount of RAG/SAG from each Chyme object. The amount digested from a particular Chyme

object is determined using normal distributions (default mean & standard-deviation: 5 minutes & 5 minutes

for RAG and 60 minutes & 20 minutes for SAG) such that most of the RAG/SAG contents of a bolus

are digested within 20 and 120 minutes respectively after the bolus’s entry into the Intestine. The glucose
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Figure 4.2: Overview of the Stomach, Intestine & Portal Vein Objects
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resulting from digested RAG/SAG is added to the glucoseInLumen variable in Intestine, which represents the

total glucose present in the intestinal lumen. This glucose is processed as described later in this section.

t “ tcurrent ´ tfoodAdded (4.9)

For RAG Digestion:

RAGConsumed “

«

origRAG ¨ 0.5 ¨

˜

erf

ˆ

t´RAG Mean
RAG StdDev ¨

?
2

˙

´ erf

ˆ

t´1´RAG Mean
RAG StdDev ¨

?
2

˙

¸ff

(4.10)

For SAG Digestion:

SAGConsumed “

«

origSAG ¨ 0.5 ¨

˜

erf

ˆ

t´SAG Mean
SAG StdDev ¨

?
2

˙

´ erf

ˆ

t´1´SAG Mean
SAG StdDev ¨

?
2

˙

¸ff

(4.11)

Fat and Protein Digestion: As a chyme bolus enters the Intestine from the Stomach, its fat contents are
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simply added to the AdiposeTissue and its protein contents are added to a common protein pool in Intestine.

At each tick, the Intestine digests a small amount of this protein (determined as per a poisson distribution

with default mean 1mg) and transfers the resulting amino acids to the PortalVein. The simulator does not

keep track of the amino acid contents of dietary protein and makes a simple assumption that 85% of these

amino acids are unbranched and the remaining 15% are branched.

Glucose Absorption from Intestine to PortalVein: The glucose moves from the intestinal lumen to the en-

terocytes across the brush border membrane and then from the enterocytes to the portal vein across the

basolateral membrane. The transfer from the intestinal lumen to the enterocytes takes place via a combina-

tion of active (SGLT-1s) and passive (GLUT2s) transporters, where the number of GLUT2 transporters in

action depends on the glucose concentration on the lumen side. The transfer from the enterocytes to the por-

tal vein takes place solely via passive GLUT2 transporters [3]. The Intestine object maintains two variables:

glucoseInLumen and glucoseInEnterocytes, which represent total glucose present in the intestinal lumen and

in enterocytes respectively. At each tick, the Intestine moves some glucose from glucoseInLumen to gluco-

seInEnterocytes. The amount moved has an active transport component (poisson distributed with default

mean 30 mg/minute) and a passive transport component determined using Michaelis Menten kinetics (as-

suming configurable volumes for the lumen and the enterocytes). The Vmax value used for Michaelis Menten

kinetics increases with glucose concentration in the lumen with default maximum value 1000 mg/minute.

The Km value used is 20 mmol/l by default [3]. Glucose transport from the enterocytes to the portal vein

is modeled by moving some glucose from glucoseInEnterocytes to the PortalVein at each tick. The amount

moved is determined using Michaelis Menten kinetics (average Vmax = 1000 mg/minute, Km = 20 mmol/l

by default [3]).

Glycolysis: The intestinal cells get some of their energy via glycolysis of glucose to lactate in the manner

described in Section 4.2.4. If the glucose in enterocytes (glucoseInEnterocytes) is not sufficient, the extra

glucose needed for glycolysis comes from the bloodstream (the Blood object).

4.3.5 PortalVein

The portal vein carries blood that has passed through the intestinal tract to the liver. Due to its special

status as the conduit from the intestine to the liver, CarbMetSim maintains the portal vein as a separate

entity (the PortalVein object) from rest of the circulatory system (represented by the Blood object). The glu-
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cose and amino acids resulting from the food digestion in the Intestine travel to the Liver via the PortalVein.

Since the portal vein is a part of the circulatory system, it must have the same glucose concentration as

rest of the circulatory system when no new glucose is being received from the intestine. This is achieved

in CarbMetSim in the following manner. At the beginning of a tick, there is no glucose in the PortalVein.

During each tick, the following sequence of actions take place:

• The PortalVein imports glucose from the Blood so that the glucose concentration2 in the PortalVein

matches that of Blood before the import.

• Glucose transfer takes place from the Intestine to the PortalVein (as described previously in Section

4.3.4) and then from the PortalVein to the Liver (as described next in Section 4.3.6).

• Finally, any remaining glucose in the PortalVein is moved back to the Blood.

All the amino acids received from the Intestine into the PortalVein during a tick are moved to the Liver

during that tick itself.

4.3.6 Liver

The hepatocytes in the liver absorb glucose from the portal vein via GLUT2s when the glucose concentration

in the portal vein is higher. The absorbed glucose is phosphorylated to glucose 6-phosphate, which is used

either for glycogen synthesis or for glycolysis. Insulin and glucose activate the enzymes associated with

glycogen synthesis and inhibit those associated with glycogen breakdown. Insulin also activates glycolysis

of glucose 6-phosphate in hepatocytes to form pyruvate, some of which is oxidized and the remaining is

converted to lactate and released to the bloodstream. On the other hand, lack of insulin (and presence

of glucagon) activates glycogen breakdown to glucose and gluconeogenesis, a pathway that also leads to

glucose production using substrates like lactate, alanine and glycerol from the bloodstream. The gluconeo-

genesis flux also increases with the availability of the substrates in the bloodstream even if insulin level is

high. Excess glucose is either used for glycogen synthesis (if insulin level is high) or leaves hepatocytes via

GLUT2s and possibly other means (if insulin level is low). High insulin levels also cause some of the excess

glucose to be converted to lipids. Thus, the liver absorbs glucose during the fed state and uses it for glyco-

gen synthesis and glycolysis. On the other hand, the liver releases glucose to the bloodstream during the

post-absorptive state via glycogen breakdown and gluconeogenesis. Another important aspect of liver oper-

2The PortalVein’s volume, used to calculate the glucose concentration, is a configurable parameter with default value 5 dl.
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ation is its oxidation of unbranched amino acids which provides for almost half of liver’s energy requirements.

Figure 4.3: Overview of the Liver Object
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CarbMetSim implements the liver operation in the Liver object. An overview of the liver object can be seen

in Figure 4.3. At each tick, the Liver does the following:

• Glucose Absorption/Release: If the glucose concentration in the PortalVein is higher than that in the

Liver, some glucose will be absorbed in the Liver via GLUT2s. Similarly, if the glucose concentration in

the Liver is higher than that in the Blood, some glucose will be released to the Blood via GLUT2s. The

amount of the glucose absorbed/release is determined using Michaelis Menten kinetics (with default

average Vmax=50mg/kg/min and default Km=20 mmol/l[3]).

• Glycogen Synthesis and Breakdown: Some of the glucose in the Liver is converted to glycogen and

some of the glycogen is broken down to glucose in the manner described in Section 4.2.6. By de-

fault, glycogen synthesis (breakdown) takes place at the maximum rate 76 µmol/kg/min when the

liverGlycogenSynthesisImpact (liverGlycogenBreakdownImpact ) parameter has value 1.
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• Lipogenesis: If the glycogen level exceeds its maximum configured value (equivalent to 120 grams of

glucose by default), excess glycogen is converted to fat, which is stored in AdiposeTissue.

• Glycolysis: The Liver consumes some glucose for glycolysis in the manner described in Section 4.2.4.

• Gluconeogenesis: The Liver produces glucose via gluconeogenesis in the manner described in Section

4.2.5.

• Amino Acid Consumption: The Liver consumes 93% of unbranched amino acids received from the

PortalVein and releases the rest (along with all the branched amino acids) to the Blood.

4.3.7 Kidneys

The kidneys filter the blood and require significant amount of energy for this task. Their outer layer (the

cortex ) is well supplied with oxygen and hence meets its energy needs via oxidation of glucose and fatty

acids absorbed from the bloodstream. The inner core (the medulla) uses anaerobic glycolysis for energy.

The kidneys also generate glucose via gluconeogenesis. CarbMetSim implements the kidney operation in the

Kidneys object. At each tick, the Kidneys do the following:

• Glycolysis: The renal medulla in Kidneys meets its energy requirements via glycolysis, which is im-

plemented in the manner described in Section 4.2.4. The glucose consumed for glycolysis is absorbed

from the Blood object and the resulting lactate is released to the Blood object.

• Gluconeogenesis: The Kidneys produce glucose via gluconeogenesis in the manner described in Section

4.2.5. Lactate and other substrates needed for gluconeogenesis are absorbed from the Blood object and

the resulting glucose is released to the Blood object.

• Glucose Excretion in Urine: As the the glucose concentration in Blood increases from one threshold

(11 mmol/l [44] by default) to another (22 mmol/l by default) , the glucose excretion in urine increases

linearly from zero to a certain peak level (100 mg/min by default).

4.3.8 Muscles

The skeletal muscles have two types of cells or fibers: the red fibers oxidize substrates (fatty acids, glu-

cose) absorbed from the bloodstream to meet their energy needs while the white fibers rely on glycolysis

of glucose 6-phosphate obtained from the glycogen stored within the white fibers for energy. The glucose

absorption from the bloodstream occurs mainly via insulin-sensitive GLUT4 transporters with some basal

81



level absorption taking place via GLUT1 transporters. The skeletal muscles also use branched chain amino

acids absorbed from the bloodstream to meet their energy needs.

Muscles Operation During Rest [3]: In the resting state, the muscles meet most of their energy needs via

the oxidation of fatty acids and glucose absorbed from the bloodstream. The glucose is absorbed from the

bloodstream using GLUT4 and GLUT1 transporters as mentioned earlier. The absorbed glucose is used for

oxidation, glycogen synthesis and glycolysis [120]. The glucose oxidation and glycolysis in muscles under

resting conditions increases with insulin level in the bloodstream.

Muscles Operation During Aerobic Activity [3]: The muscles meet about 10% of their energy needs by oxi-

dizing glucose absorbed from the blood via GLUT4/GLUT1 transporters. The aerobic activity is sufficient

to activate GLUT4 transporters. So, their action is not dependent on insulin levels while the muscles are

engaged in a vigorous physical activity. For moderate and high intensity exercise (more than 3 MET in

intensity), a fraction of energy requirements is met by oxidation of glucose derived from the glycogen stored

in the muscles. Subject to the availability of glycogen stored locally in the muscles, this fraction increases

linearly from 0 to 30% of the energy needs as the exercise intensity increases from 3 MET to 6 MET. For

exercise with intensity higher than 6 MET, about 30% of the energy needs is met via oxidation of glycogen-

derived glucose as long as the muscle glycogen lasts. Another fraction of the energy needs is met by glycolysis

of glucose 6-phosphate derived from glycogen stored in the muscles. The glycolysis level increases linearly

with exercise intensity. The remaining energy needs are met via oxidation of fatty acids.

Implementation: In CarbMetSim, the skeletal muscles are implemented as the Muscles object. Currently,

the simulator implements response to aerobic exercise only. When the HumanBody is in Fed Resting or

PostAbsorptive Resting state during a tick, the Muscles object performs the following actions:

• Glucose Absorption: GLUT4 based glucose absorption (default Vmax= 4 mg/kg/minute, default Km=

5 mmol/l [3]) occurs in the manner described in Section 4.2.3. Also, basal absorption via GLUT1s

occurs at a configured rate (by default 1.91 µmol/kg/minute [42]).

• Glycolysis: A fraction of the absorbed glucose (determined as described in Section 4.2.4) is consumed

via glycolysis and the resulting lactate is added to the Blood.

• Glycogen Synthesis: If the glycogen store of the Muscles is less than a configurable maximum value (by

default 15 grams of glycogen per kg of wet muscle weight, which in turn is assumed to be 40% of the
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initial body weight [3]), some of the absorbed glucose (up to 12µmol/kg/min by default) is converted

to glycogen.

• Oxidation: Remainder of the absorbed glucose is considered consumed via oxidation.

• Fatty Acid Consumption: If glycolysis and glucose oxidation described above do not meet the energy

needs during the resting state, Muscles consume fat (representing fatty acids) from the AdiposeTissue

to meet the remaining energy needs.

When the HumanBody is in Fed Exercising or PostAbsorptive Exercising state during a tick, the Muscles

object performs the following actions:

• Oxidation: The Muscles oxidize glucose absorbed from Blood or derived from locally stored glycogen

to meet a part of the energy needs of the body during exercise (as described earlier in this section).

• Glycolysis: Starting from the average minimum value glycolysisMin (by default 1 µmol/kg/minute),

the glycolysis flux increases linearly with exercise intensity with peak level glycolysisMax (by default

15 µmol/kg/minute) achieved with exercise intensity 18 METs. The glucose 6-phosphate consumed

for glycolysis comes from locally stored glycogen. The resulting lactate is added to the Blood object.

• Fatty Acid Consumption: If glucose oxidation and glycolysis described above do not meet the energy

needs, Muscles consume fat (representing fatty acids) from the AdiposeTissue to meet the remaining

energy needs.

4.3.9 Adipose Tissue

CarbMetSim does not yet have a detailed implementation of lipid metabolism. Currently, the AdiposeTis-

sue object serves as the storage for fat. The Intestine object directly adds the fat contents in chyme to

the AdiposeTissue object. Similarly, the Liver object converts excess glycogen to fat to be stored in the

AdiposeTissue object. The Muscles object directly remove fat from the AdiposeTissue in accordance with

its energy needs.

Glucose Absorption: GLUT4 based glucose absorption (default Vmax= 0.4 mg/kg/minute, default Km= 5

mmol/l [3]) occurs in the manner described in Section 4.2.3. Also, basal absorption via GLUT1s occurs at

a configured rate (by default 0 µmol/kg/min).
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4.3.10 Brain

The brain meets its energy needs by oxidizing glucose (although under starvation conditions it can also use

ketone bodies). The nerve cells in the brain use GLUT3 transporters to absorb glucose from the bloodstream.

Since the Km value associated with GLUT3 transporters is quite low, the rate of glucose absorption by the

nerve cells does not change much with glucose concentration in bloodstream (unless it drops way below the

normal levels). The brain oxidizes about 120 g of glucose per day, equivalent to absorption of about 83.33

mg of glucose per minute [3, 120]. In CarbMetSim, the brain operation is modeled as the Brain object which

consumes on average 83.33 mg of glucose every minute from the Blood object.

4.3.11 Heart

The heart meets most of its energy needs by oxidizing fatty acids. Depending upon their availability, up

to 30% of the heart’s energy needs are met by consuming glucose and lactate [3]. A much smaller part of

the energy needs is met from amino acids and ketone bodies. The heart uses both GLUT1 and GLUT4

transporters to absorb glucose from the bloodstream. The Heart object in CarbMetSim models the heart

operation. It absorbs some glucose to meet its energy needs during fed state.

Glucose Absorption: GLUT4 based glucose absorption (default Vmax= 0.4 mg/kg/minute, default Km= 5

mmol/l [3]) occurs in the manner described in Section 4.2.3. Also, basal absorption via GLUT1s occurs at

a configured rate (by default 0 µmol/kg/min).
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Chapter 5

Simulation Results & Discussion

In this chapter, simulation results of CarbMetSim are presented and discussed by the help of comparing them

with some very well known studies in the glucose metabolism area. Most of the parameters of CarbMetSim

are found out in the literature, the ones that are not specifically expressed in the literature are estimated

by running the simulations with different levels of values and comparing the results with the studies that

are specifically discussed in this chapter. The parameters which are used both for a normal subject and a

diabetic subject are listed in Appendix A.

There are 5 sections in this chapter. In the first one, the results of post-absorptive and resting state of

CarbMetSim in a normal subject is validated by comparing them with the results of Shrayyef and Gerich,

2010 [43]. The second section discusses the results after glucose load in normal subjects and compares

them with the results of Meyer et al., 2002 [42]. Changes in BGL after glucose load, hepatic and renal

glucose release rates, and also peripheral glucose uptake rates are discussed in this section of the chapter.

The next part discusses the results after a typical meal in normal and diabetic subjects. Specifically the

results regarding blood glucose level, insulin level, glucose production and consumption rates, and also total

amounts of glucose produced and consumed in some specific tissues and in some specific pathways during

postprandial state in normal and diabetic subjects are compared with the ones in the Woerle et al., 2003

[118]. Fourth section is about glycemic index (GI) prediction results and its discussions. The last section

discusses the CarbMetSim results of a typical day for a normal subject and a diabetic subject.
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5.1 The Results of Post-Absorptive & Resting State in Normal

Subjects

Blood glucose level, insulin level, glucose production and consumption rates should be stable in post

absorptive-resting state of a non-diabetic subject. In this part of the document, the stableness of Carb-

MetSim is presented in addition to the validation of its rates with some well known studies in this area

[121, 3, 43]. The results of Gerich et al., Frayn et al., and Shrayyef et al. [121, 3, 43] are very similar regard-

ing blood glucose level, insulin level, glucose production and consumption rates of the post absorptive-resting

state. Blood glucose level graphs, glucose production and consumption rates are compared with the listed

studies.

5.1.1 Glucose Production

80% of glucose release into the circulation in the postabsorptive state is from the liver [35, 36, 37]. 50%

of the glucose entering the plasma is due to glycogenolysis (glycogen breakdown) and the remainder ( 5.0

µ/kg/min) is due to gluconeogenesis [35] (Figure 5.1). All the glucose released by the kidney is the result of

gluconeogenesis [44]. The liver releases about four times as much as the kidney in the post-absorptive state.

Their contribution (2.5-3.0 µ/kg/min) from gluconeogenesis is the same. However, the proportion of overall

glucose release from renal gluconeogenesis increases even further with prolonged fasting.

The liver can be considered to be the only source of glucose due to glycogenolysis. In overnight fasted people,

the liver contains about 75 g of glycogen. Thus, if it releases glycogen at a rate of 63 mg/min (5 µ/kg/min),

glycogen stores would be totally depleted in about 20 h and the only source of glucose released into the

circulation at this point would be gluconeogenesis. It is vital to understand that kidney and liver vary in

their use of gluconeogenic precursors. Lactate is the principal gluconeogenic substrate in both organs, but

otherwise the kidney preferentially uses glutamine [40], whereas the liver preferentially uses alanine [41] (i.e.

see Figure 5.1).
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Figure 5.1: Summary of post-absorptive glucose release

Source: Shrayyef and Gerich, 2010 [43]

Shrayyef and Gerich’s Study [43] CarbMetSim

Total Glucose Release 160 154.77

Hepatic

Total 128 126.32

Glycogenolysis 80 78.15

Gluconeogenesis 48 48.17

Renal
Total 32 28.46

Gluconeogenesis 32 28.46

Table 5.1: Comparison of post-absorptive average glucose production rates (mg/min.) in non-diabetic

Comparison of Glucose Production in the CarbMetSim and in the Shrayyef and Gerich, 2010

[43]

As shown in Table 5.1, the glucose release rates, their proportions in liver and kidney, the amounts from

glycogenolysis and gluconeogenesis are significantly similar. The small changes can be caused by different

body weights in CarbMetSim and in Shrayyef and Gerich, 2010 [43].

5.1.2 Glucose Utilization

In the post-absorptive state, there is no net storage of glucose; consequently, glucose taken up by tissues is

either completely oxidized to CO2 or released back into the circulation as lactate, alanine, and glutamine
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for reincorporation into glucose via gluconeogenesis. Most glucose used by the body can be accounted for by

six tissues: the brain (45-60%), skeletal muscle (15-20%), kidney (10-15%), blood cells (5-10%), splanchnic

organs (liver, digestive organs, etc.) (3-6%), and adipose tissue (2-4%). Glucose taken up by the brain

is completely oxidized whereas that taken up by the kidney, blood cells, splanchnic tissues, and muscle

mainly undergoes glycolysis. Recall that most of the body energy requirements are met by oxidation of FFA

which compete with glucose as the fuel of choice in certain organs (e.g., skeletal muscles, heart, and possibly

kidney).

Figure 5.2: Summary of post-absorptive glucose utilization

Source: Shrayyef and Gerich, 2010 [43]

Comparison of Glucose Utilization in the CarbMetSim and in the Shrayyef and Gerich, 2010

[43]

Shrayyef and Gerich’s Study [43] CarbMetSim

Total Glucose Utilization 155 157.5

Oxidation 105 109.7

Glycolysis 50 47.8

Brain 80 83.3

Skeletal Muscle 32 30

Splanchnic Organs 24 23.2

Kidney 16 15

Blood Cells 8 4.8

Table 5.2: Comparison of Post-Absorptive Glucose Utilization (mg/min.) in non-diabetic

As shown in Table 5.2, total glucose utilization rate, its proportions from oxidation and glycolysis, the

percentages of various organs are significantly similar in CarbMetSim and in Shrayyef and Gerich, 2010
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[43].

5.2 The Results After Glucose Load in Normal Subjects

Studies of glucose homeostasis in humans have generally dealt with the post-absorptive state, i.e., 12-14 h

after an overnight fast. However, people usually eat at least three times a day, and assimilation of ingested

nutrients takes 5-6 h [122]. The majority of the day, therefore, is spent in the postprandial state. Most studies

evaluating postprandial glucose homeostasis have used an oral glucose load because of the convenience of oral

glucose tolerance test. In this section, we investigate and compare the results of the literature and the ones of

the CarbMetSim after an oral glucose load. The major factors influencing postprandial glucose homeostasis

are those that affect suppression of endogenous glucose release and those that affect glucose uptake of tissues

(most importantly peripheral tissue glucose uptake). Therefore, changes in BGL after glucose load, hepatic

and renal glucose release rates, and also peripheral glucose uptake rates are discussed in this part of the

document.

6-hour Meyer et al. [42] CarbMetSim

Total Glucose Release 118.2 119

Total Endogenous Glucose Release 43.2 45.8

Total Glycolysis 23 20.7

Total Oxidation 43 43.6

Total Glycogen Storage 44 46.3

Table 5.3: Comparison of total glucose release and disposal amounts (mg) in non-diabetic subjects after 75
gr glucose load

We compare total glucose release and disposal amounts in 6-hours period after ingestion of a 75 g oral glucose

load in a normal subject in Table 5.3. Total glucose release, endogenous glucose release, glycolysis, oxidation,

and glycogen storage amounts are all satisfying when compared with the amounts in the Meyer et al., 2002

[42].

5.2.1 Changes in BGL

After ingestion of 75 g glucose, plasma glucose levels increase to a peak in 30-60 min, usually not exceed-

ing 7.8 mM (160 mg/dl) and gradually return to or slightly below post-absorptive values by 3-4 h (Figure

5.3). Plasma glucagon concentrations change reciprocally to those of insulin and are generally suppressed by

about 50%. Early insulin release (within 30-60 min) plays a critical role in maintaining normal postprandial
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glucose homeostasis.

Figure 5.3: Changes in plasma glucose, insulin, and glucagon after ingestion of a 75 g oral glucose load in
normal subjects

Source: Meyer et al., 2002 [42]

Comparison of Frayn’s [3] and CarbMetSim’s BGL Graphs

Figure 5.4: Comparison of the changes in plasma glucose levels after ingestion of a 75 g oral glucose load in
normal subjects

Figure 5.4 shows that CarbMetSim’s BGL changes during 6-h period after ingestion of a 75 g oral glucose load

in a non-diabetic subject (non-diabetic hypothetical user of the simulator as its parameters are expressed
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in Appendix A) is following a very similar pattern that is specified in Frayn, 2009 [3]. Furthermore, Frayn,

2009 [3] is not the only study that validates CarbMetSim regarding BGL changes, as explained in the

previous section, the results of the Meyer et al., 2002 [42] follows the same pattern as CarbMetSim, which

reaches to the peak value (157 mg/dl) in around the same time period (30-60 min) and also returns to the

post-absorptive rates (85 mg/dl) by 3-4 h.

5.2.2 Hepatic & Renal Glucose Release Rates

Endogenous glucose release by the liver decreases rapidly and is suppressed nearly 80-100% during the 5

h postprandial period (Figure 5.5). As a result, nearly 25 g less glucose due to endogenous production

reaches the systemic circulation during this interval. In contrast to the liver, recent studies indicate that

endogenous renal glucose release is not suppressed and actually increases during this period so that it exceeds

hepatic glucose release. This increase in renal glucose release would facilitate more efficient hepatic glycogen

replenishment.

Figure 5.5: Changes in rates of entry of glucose into the circulation from ingested glucose, liver, and kidney

Source: Meyer et al., 2002 [42]

In Frayn, 2009 [3], the pattern shown in Figure 5.5 for the liver glucose release is different after 120 min

which is shown in Figure 5.6. There can be some specific reasons that cause the differences after 120 min.

CarbMetSim mostly follows a similar pattern with Frayn, 2009 after 120 min.
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Figure 5.6: Rates of glucose release from liver, from exogenous (dietary) and endogenous sources in normal
subjects before and after drinking 75g glucose in water.

Source: Frayn, 2010 [3]

Comparison of Frayn’s [3] and CarbMetSim’s Liver Glucose Release Rates

In CarbMetSim, endogenous glucose release from the liver decreases rapidly to almost 0 mg/min from the

post-absorptive rate around 125 mg/min and returns back to its post-absorptive rate in around 200 min.

The suppression time and returning time to the post-absorptive rate in CarMetSim are earlier than the ones

in the Frayn, 2009 [3] and Meyer et al., 2002 [42]. However, the total amount of glucose release to the

blood circulation in CarbMetSim, Meyer et al., 2002 [42], and Frayn, 2009 [3] are similar as shown in Table

5.3.

Comparison of Meyer et al.’s, 2002 [42] and CarbMetSim’s Renal Glucose Release Rates

As seen in Figure 5.8, renal gluconeogenesis actually increases by approximately twofold after ingestion of

a 75 g oral glucose load in normal subjects. It starts with 30 mg/min and increments to the rate of 62
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Figure 5.7: Comparison of the changes in liver glucose release rates after ingestion of a 75 g oral glucose load
in normal subjects

Figure 5.8: Comparison of the changes in renal glucose release rates after ingestion of a 75 g oral glucose
load in normal subjects

mg/min in 50 minutes, stays there around two hours, and returns to the post-absorptive rate in around 200

min.
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5.2.3 Muscle & Renal Glucose Uptake Rates

Muscle glucose uptake averages 1.91 µ/kg/min before glucose ingestion and accounts for 22 % of systemic

glucose disposal. During the initial 2 h after glucose ingestion, muscle glucose uptake increases approximately

fivefold. Over the 4.5-h postprandial period, it averages 5.72 µ/kg/min accounted for 38 % of systemic glucose

disposal. Renal glucose uptake (RGU) before glucose ingestion averages 0.89 µ/kg/min and accounted for

9.4 % of systemic glucose disposal. After glucose ingestion, RGU increases more than threefold to a peak

value at 90 min and returns to post-absorptive rates at 240 min.

Figure 5.9: Renal and skeletal muscle glucose uptake, circle represents renal, square muscle

Source: Meyer et al., 2002 [42]

Comparison of Meyer et al.’s [42] and CarbMetSim’s Muscle Glucose Uptake Rates

As seen in Figure 5.10, muscle glucose uptake actually increases by approximately fivefold after ingestion

of a 75 g oral glucose load in normal subjects. It starts with 35 mg/min and increments to the rate of 200

mg/min in 60 minutes and returns to the post-absorptive rate of 35 mg/min in around 200 min.

Comparison of Meyer et al.’s [42] and CarbMetSim’s Renal Glucose Uptake Rates

As seen in Figure 5.11, renal glucose uptake actually increases by approximately threefold after ingestion

of a 75 g oral glucose load in normal subjects. It starts with 15 mg/min and increments to the rate of 38

mg/min in 60 minutes and returns to the post-absorptive rate of 15 mg/min in around 200 min.
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Figure 5.10: Comparison of the changes in muscle glucose uptake rates after ingestion of a 75 g oral glucose
load in normal subjects

Figure 5.11: Comparison of the changes in renal glucose uptake rates after ingestion of a 75 g oral glucose
load in normal subjects

5.3 The Results After a Typical Meal in Normal and Diabetic

subjects

Considerable attention has recently been focused on the causes of high blood glucose levels in type 2 diabetic

people. One of the well known ones is the study of Woerle et al. [118]. In this section, we analyze and
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validate our results with the help of Woerle et al., 2003 [118]. We compare the results of Woerle et al., 2003

with CarbMetSim, furthermore we examine the causes of high blood glucose levels in diabetic subjects by

discussing the simulation results. Most of the postprandial analysis in the literature were considered glucose

load tests but in this study a mixed meal is considered which makes it more reliable.

In Woerle et al., 2003, 15 healthy subjects (7 men and 8 women, 49 yr of age, 89 kg body wt, BMI 30) with

no family history of diabetes mellitus and normal glucose tolerance (according to World Health Organization

criteria), and 26 subjects with T2DM (16 men and 10 women, 53 yr of age, 93 kg body wt, BMI 30) are

considered as test subjects. At 10 AM, subjects are ingested a meal for 5 min. The size and composition of

this meal is designed to simulate a normal breakfast. The size of the meal is 6 kcal/kg, with a composition

of 50% carbohydrate, 30% fat, and 20% protein. Various calculation and measurement methods are used

to get results regarding blood glucose level, insulin level, glucose production and consumption rates, and

also total amounts of glucose produced and consumed in some specific tissues and in some specific pathways

during postprandial state in normal and diabetic subjects.

Normal Woerle et al. [118] CarbMetSim

Total Release 78.9 78.9

Meal 58.9 58

Endogenous 20 20.9

Glycogen Breakdown 4.7 7.3

GNG 15.3 13.6

Table 5.4: Comparison of postprandial glucose releases in non-diabetic subjects (mg)

Normal Woerle et al. [118] CarbMetSim

Total Tissue Uptake 107.6 105.1

Total Tissue Glycolysis 67.1 65.2

Oxidative Glycolysis 45.6 44.2

Nonoxidative Glycolysis 21.5 21

Total Tissue Storage 40.5 39.9

Liver Storage 15.3 18.3

Muscle Storage 25.2 21.6

Table 5.5: Comparison of postprandial glucose disposal in non-diabetic subjects (mg)

We compare total glucose release and disposal amounts in 6-hours period after ingestion of a mixed meal

in a normal subject and a diabetic subjects in Tables 5.4, 5.5, 5.6, 5.7. Total glucose release, endogenous

glucose release, glycolysis, oxidation, and glycogen storage amounts are all satisfying in both non-diabetic
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Diabetic Woerle et al. [118] CarbMetSim

Total Release 97.8 96.7

Meal 60.9 60

Endogenous 37 36.7

Glycogen Breakdown 10.1 13.4

GNG 26.9 23.3

Table 5.6: Comparison of postprandial glucose releases in diabetic subjects (mg)

Diabetic Woerle et al. [118] CarbMetSim

Total Tissue Uptake 107.8 105.7

Total Tissue Glycolysis 61.5 61

Oxidative Glycolysis 32.8 34.5

Nonoxidative Glycolysis 28.7 26.5

Total Tissue Storage 46.3 44.7

Liver 16.1 15

Muscle 30.2 29.7

Table 5.7: Comparison of postprandial glucose disposal in diabetic subjects (mg)

and diabetic subjects when compared with the amounts in the study of Woerle et al., 2003 [118].

5.3.1 Blood Glucose Level

Diabetic subjects start with greater preprandial plasma glucose concentrations (11.7 vs. 4.7mM) and have

more prolonged and greater increases after meal ingestion as shown in Figure 5.12. Consequently, their mean

plasma glucose concentration during the 6-h postprandial period is almost three times as great as that of the

non-diabetic subjects. Fasting plasma insulin concentrations are greater in the diabetic subjects, an index of

insulin resistance is greater in the diabetic subjects. During the initial 90 min after meal ingestion, plasma

insulin increases less in the diabetic subjects, averaging 179 vs. 290 pM in the non-diabetic subjects. We do

not discuss glucagon in this document since we do not model glucagon effect in CarbMetSim. The units of

the values in the figures of the listed studies are different than what we use, so they are all converted to the

units that we use to compare them in the same graph.

Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] BGL graphs in Normal and

Diabetic Subjects

Figure 5.13 shows that CarbMetSim’s BGL changes during 6-h period after ingestion of a mixed meal in a

non-diabetic subject is following a very similar pattern that is specified in Woerle et al., 2003 [118], which
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Figure 5.12: Arterial concentrations of plasma glucose, insulin, and glucagon

Source: Woerle et al., 2003 [118]

Figure 5.13: Comparison of the changes in plasma glucose levels after ingestion of a mixed meal in normal
subjects

reaches to the peak value (155 mg/dl) in around the same time period (30-60 min) and also returns to the

post-absorptive values (85 mg/dl) by 3-4 h.
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Figure 5.14: Comparison of the changes in plasma glucose levels after ingestion of a mixed meal in diabetic
subjects

Figure 5.14 shows that CarbMetSim’s BGL changes during 6-h period after ingestion of a mixed meal in

a diabetic subject is following a very similar pattern that is specified in Woerle et al., 2003 [118], which

reaches to the peak value (355 mg/dl) in around the same time period (30-60 min) and also returns to the

post-absorptive values (218 mg/dl) by 3-4 h. The starting level of CarMetSim is less than the one in the

Woerle et al., 2003 [118], this is because of the greater renal excretion rates in CarbMetSim.

5.3.2 Endogenous Glucose Production

Post-absorptive Endogenous Glucose Release (EGR) is significantly greater in the diabetic subjects. This is

attributable to increases in both glycogenolysis and gluconeogenesis. The relative contribution of gluconeo-

genesis to EGR is comparable in both groups. After meal ingestion, EGR decreases in both groups over the

initial 90 min by comparable amounts. But because the diabetic subjects have greater preprandial values,

their EGR during this period is almost twice as great as that of the non-diabetic subjects. EGR during the

postprandial period is significantly correlated with the changes in plasma insulin.
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Figure 5.15: Endogenous glucose release into plasma; filled circle represents diabetic, empty circle represents
normal subjects

Source: Woerle et al., 2003 [118]

Figure 5.16: Comparison of the changes in endogenous glucose release rates after ingestion of a mixed meal
in normal subjects

Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] EGR Graphs

Figure 5.16 shows the comparison of the changes in endogenous glucose release rates after ingestion of a mixed

meal in normal subjects. CarbMetSim starts from a post-absorptive rate of 155 mg/min and decreases to

the value of 60 mg/min in around 20 min, stays there for around 2 hours and returns back to the post-

absorptive value of 155 mg/min in 4,5 hours. Post absorptive rates and the suppressed amounts are similar

in both graphs, on the other hand in Woerle et al., 2003 [118], the release rate does not return back to the
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post-absorptive rate in 6 hours and the suppression time in Woerle et al., 2003 [118] is greater than the one

in CarbMetSim.

Figure 5.17: Comparison of the changes in endogenous glucose release rates after ingestion of a mixed meal
in diabetic subjects

Figure 5.17 shows the comparison of the changes in endogenous glucose release rates after ingestion of a mixed

meal in diabetic subjects. CarbMetSim starts from a post-absorptive rate of 220 mg/min and decreases to

the rate of 90 mg/min in around 20 min, stays there for around 2 hours and returns back to the post-

absorptive value of 220 mg/min in 4,5 hours. Post absorptive rates and the suppressed amounts are similar

in both graphs, on the other hand in Woerle et al., 2003 [118], the release rate does not return back to the

post-absorptive value in 6 hours and the suppression time in Woerle et al., 2003 [118] is greater than the one

in CarbMetSim.

5.3.3 Glucose Production via Gluconeogenesis

During post-absorptive state, glucose production via gluconeogenesis (GNG) is significantly greater in the

diabetic subjects. After meal ingestion, gluconeogenesis decreases slightly in both groups over the initial 90

min by comparable amounts. Then, it increases again slightly which reaches to the starting point in both

groups as shown in Figure 5.18.
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Figure 5.18: Glucose production via Gluconeogenesis

Source: Woerle et al., 2003 [118]

Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] GNG Graphs

Figure 5.19: Comparison of the changes in glucose production rates via GNG after ingestion of a mixed meal
in normal subjects

Figure 5.19 shows the comparison of the changes in glucose production rates via GNG after ingestion of a

mixed meal in normal subjects. CarbMetSim starts from a post-absorptive value of 80 mg/min and decreases

to the value of 60 mg/min in around 20 min, stays there for around 2 hours and returns back to the post-

absorptive value of 80 mg/min in 4,5 hours. Post absorptive values, the suppressed amounts, suppression

and return times are similar in both graphs.
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Figure 5.20: Comparison of the changes in glucose production rates via GNG after ingestion of a mixed meal
in diabetic subjects

Figure 5.20 shows the comparison of the changes in glucose production rates via GNG after ingestion of

a mixed meal in diabetic subjects. CarbMetSim starts from a post-absorptive value of 115 mg/min and

decreases to the value of 90 mg/min in around 60 min, stays there for around 2 hours and returns back

to the post-absorptive value of 115 mg/min in 4,5 hours. Post absorptive values, the suppressed amounts,

suppression and return times are similar in both graphs.

5.3.4 Glucose Storage, Glycolysis and Oxidation in Peripheral Tissues

The patterns of glucose storage, total glycolysis, and tissue uptake of postprandial changes in diabetic and

non-diabetic subjects are similar. Moreover, during the 6-h postprandial period, peripheral tissue (tissues

other than liver and intestine) uptake of glucose, glycolysis, and direct storage are not significantly different

in diabetic and non-diabetic subjects (Figure 5.21). The proportion of glucose taken up by peripheral tissues

that undergoes glycolysis tends to be lower in diabetic subjects. Postprandial whole body carbohydrate

oxidation is also reduced in the diabetic subjects, whereas non-oxidative glycolysis is increased in the diabetic

subjects.
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Figure 5.21: Peripheral glucose uptake, glycolysis, oxidation and direct storage

Source: Woerle et al., 2003 [118]

Figure 5.22: Comparison of the changes in peripheral storage rates after ingestion of a mixed meal in normal
subjects
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Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] Peripheral Storage Graphs

Figure 5.22 shows the comparison of the changes in peripheral storage rates after ingestion of a mixed meal

in normal subjects. CarbMetSim starts from a post-absorptive storage rate of 0 mg/min, increments to the

rate of 140 mg/min in around 60 min and returns back to the post-absorptive rate of 0 mg/min in 5 hours.

Post absorptive rates, the peak amounts, incremental times to the peak values and return times to the post

absorptive rates are similar in both graphs.

Figure 5.23: Comparison of the changes in peripheral storage rates after ingestion of a mixed meal in diabetic
subjects

Figure 5.23 shows the comparison of the changes in peripheral storage rates after ingestion of a mixed meal

in diabetic subjects. CarbMetSim starts from a post-absorptive storage rate of 40 mg/min, increments to

the rate of 140 mg/min in around 60 min and returns back to the post-absorptive rate of 60 mg/min in 5

hours. Post absorptive rates, the peak amounts, incremental times to the peak values and return times to

the post absorptive rates are similar in both graphs.

Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] Peripheral Oxidation Graphs

Figure 5.24 shows the comparison of the changes in peripheral oxidation rates after ingestion of a mixed

meal in normal subjects. CarbMetSim starts from a post-absorptive oxidation rate of 105, increments to the

rate of 160 mg/min in around 60 min and returns back to the post-absorptive rate of 105 mg/min in 3.5

hours. Post absorptive rates and return times to the post absorptive values are similar in both graphs. On
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Figure 5.24: Comparison of the changes in peripheral oxidation rates after ingestion of a mixed meal in
normal subjects

the other hand, peak values, incremental times to the peak values are close but not very similar.

Figure 5.25: Comparison of the changes in peripheral oxidation rates after ingestion of a mixed meal in
diabetic subjects

Figure 5.25 shows the comparison of the changes in peripheral oxidation rates after ingestion of a mixed meal

in diabetic subjects. CarbMetSim starts from a post-absorptive oxidation rate of 87 mg/min, increments to
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the value of 107 mg/min in around 60 min and returns back to the post-absorptive rate of 90 mg/min in 3.5

hours. Post absorptive rates, the peak amounts, incremental times to the peak values and return times to

the post absorptive rates are similar in both graphs. The only difference is their starting rates.

Comparison of CarbMetSim’s and Woerle et al.’s, 2003 [118] Peripheral Glycolysis Graphs

Figure 5.26: Comparison of the changes in peripheral glycolysis rates after ingestion of a mixed meal in
normal subjects

Figure 5.26 shows the comparison of the changes in peripheral glycolysis rates after ingestion of a mixed meal

in normal subjects. CarbMetSim starts from a post-absorptive glycolysis rate of 120 mg/min, increments to

the value of 180 mg/min in around 60 min and returns back to the post-absorptive rate of 120 mg/min in

3.5 hours. Post absorptive rates, the peak amounts, incremental times to the peak values and return times

to the post absorptive rates are similar in both graphs.

Figure 5.27 shows the comparison of the changes in peripheral glycolysis rates after ingestion of a mixed meal

in diabetic subjects. CarbMetSim starts from a post-absorptive glycolysis rate of 130 mg/min, increments

to the value of 180 mg/min in around 60 min and returns back to the post-absorptive rate of 130 mg/min in

3.5 hours. Post absorptive rates, the peak amounts, incremental times to the peak values and return times

to the post absorptive rates are similar in both graphs.
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Figure 5.27: Comparison of the changes in peripheral glycolysis rates after ingestion of a mixed meal in
diabetic subjects

5.4 Glycemic Index Prediction Results

Glycemic Index (GI) prediction of 30 foods and comparison of the predicted values with the values listed

in the literature are examined in Table 5.8. Table 5.9 provides the GI prediction errors, such as mean

and median of the absolute percentage errors, furthermore quarters and maximum of them. It is really

complicated to find an exact value of the GI for a typical food even in the literature. There are several

factors which affect GI of foods. The protein, fat, fiber amounts of the food and the different cooking times

are the major factors to see different values of GI even in various studies of the literature. For instance,

especially for plain pasta there are more than 5 different GI values listed in the well known studies. We

tried our best to find the most accurate values to compare our results with. Our prediction results are very

accurate for some of the foods. However, we can improve the accuracy of CarbMetSim by adding fiber and

cooking effects to the gastric emptying model of the simulator in the future.
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Rank Food Name iAUC Predicted GI Actual GI Abs. % Error

1 White Bread 5239.53 100 100 0.00%

2 Frozen Pea 3938.83 75 74 1.59%

3 Weetabix Cereals 5573.74 106 109 2.40%

4 Ryvita Crispbread 4836.30 92 95 2.84%

5 Wholemeal Bread 5024.42 96 99 3.14%

6 Potato 5097.66 97 101 3.67%

7 Pasta Macaroni 3485.40 67 64 3.94%

8 Haricot Beans 2238.00 43 45 5.08%

9 Brown Rice (Long) 4122.82 79 83 5.20%

10 Oatmeal Biscuits 4335.96 83 78 6.10%

11 Marrowfat Peas 3320.96 63 68 6.79%

12 Rich Tea Biscuits 4515.78 86 80 7.73%

13 Kidney Bean 2370.80 45 42 7.73%

14 Kidney Beans (Canned) 3571.60 68 74 7.88%

15 Buckwheat Cereals 3548.77 68 74 8.47%

16 Water Biscuits 5174.44 99 91 8.52%

17 Shredded Wheat Cereals 4632.52 88 97 8.85%

18 Parboiled Rice 3829.43 73 67 9.09%

19 White Rice Long 4550.23 87 96 9.54%

20 Pasta Spaghetti 3854.48 74 67 9.80%

21 Digestive Biscuits 3871.07 74 82 9.90%

22 Oat Bran Cereals 3936.32 75 84 10.56%

23 Rice Krispies 5476.19 105 117 10.67%

24 Chickpea (Canned) 3526.30 67 60 12.17%

25 Sweetcorn Cereals 5142.42 98 87 12.81%

26 Puffed Wheat Cereals 4996.26 95 110 13.31%

27 Potato Crisps 4488.88 86 74 15.77%

28 Porridge Oats Cereals 4453.45 85 71 19.71%

29 Pinto Beans 3802.96 73 60 20.97%

30 Instant Potato 4787.13 91 116 21.24%

Table 5.8: Glycemic Index Prediction Results of 30 Foods

5.5 Comparison of a Typical Day for Diabetic and Non-Diabetic

Subjects

In this section we consider two hypothetical users, one normal and one diabetic, in which their related

parameters are listed in Table 5.10. Table 5.11 represents the specifications of a typical day. Blood glucose
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Abs. % Error

Mean 8.85%

1st Quar. 5.11%

Median 8.50%

3rd Quar. 10.64%

Max 21.24%

Table 5.9: Glycemic Index Error Calculation

Normal Person Diabetic Person
bodyWeight 65 kg 65 kg

baseGlucoseLevel 100 mg/dl 150 mg/dl
highGlucoseLevel 150 mg/dl 350 mg/dl
insulinResistance 0 0.5
insulinPeakLevel 1 0.5

Table 5.10: Simulation parameters for two hypothetical users

and insulin levels, glucose production and utilization rates of both normal and diabetic subjects are considered

and compared using CarbMetSim. The results show clearly that average blood glucose level of a diabetic

person in a typical day is almost threefold of the non-diabetic person’s. The post-absorptive insulin level of

the diabetic person is higher than the non-diabetic one, whereas the postprandial insulin level of the diabetic

is almost half of the insulin level of the non-diabetic. By comparing the glucose production and utilization

rates of both a normal and a diabetic person, we clearly understand that the reason of the high blood glucose

levels in the diabetic one is the insulin effect on the insulin dependent pathways in glucose metabolism. Insulin

dependent pathways are glycogen synthesis and glycogen breakdown in liver and muscles, glucose uptake in

peripheral tissues (mostly dependent on GLUT4s for the transport of glucose), glycolysis, and endogenous

glucose release from liver and kidney. We see from the simulation results that the gluconeogenesis in liver

and kidney, and also glycogenolysis in liver have higher rates in various states of the body. Glucose uptake

by peripheral tissues is decremented in diabetic subjects which causes higher glucose levels. The decreased

insulin levels is not the only reason of the increased endogenous glucose release and decreased glucose uptake

by some tissues, the insulin resistance of the peripheral tissues is another factor that should be considered

to understand the reasons of high blood glucose levels. Another significant result of CarbMetSim that we

should consider is the effect of the exercise on blood glucose levels in both diabetic and normal subjects.

During exercise, the blood glucose levels of diabetic and non-diabetic subjects decrease significantly even the

insulin level is less and the insulin resistance level is greater than the normal one.
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RAG SAG Protein Fat Dur. Intensity
Breakfast (8am) 25g 30g 25g 20g
Lunch (1pm) 40g 40g 30g 25g
Snack (4pm) 30g 10g 5g 15g
Walk (6pm) 30min 5 MET
Dinner (8pm) 40g 40g 30g 25g
Total 135g 120g 90g 85g

Table 5.11: Simulated events

Figure 5.28: Blood Glucose Level (mg/dl) Figure 5.29: Insulin Level

Figure 5.30: Digested Glucose Release (mg/min) Figure 5.31: Glucose Produced From Liver Glycogen
Breakdown (mg/min)
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Figure 5.32: Liver GNG (mg/min) Figure 5.33: Liver Glycogen Synthesis (mg/min)

Figure 5.34: Liver Glycogen Amount (mg) Figure 5.35: Liver Glycolysis (mg/min)

Figure 5.36: Muscle Glucose Uptake (mg/min)

Figure 5.37: Muscle Glycolysis (mg/min)
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Figure 5.38: Kidney GNG (mg/min) Figure 5.39: Kidney Glycolysis (mg/min)

Figure 5.40: Kidney Excretion in Urine (mg/min)
Figure 5.41: Total Glycolysis (mg/min)
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Chapter 6

Conclusions

6.1 Significance of Decision Support Tools in Diabetes Manage-

ment

More than 400 million people world wide suffer from Diabetes, around 90% of whom have Type 2 Diabetes

[1]. People with Type 2 Diabetes usually have at least some ability to produce insulin, however their bodies

develop insulin resistance and hence are not able to react strongly enough to the presence of insulin in blood

to keep blood glucose level (BGL) under control. On the other hand, people with Type 1 Diabetes cannot

produce insulin endogenously at all and hence must receive external insulin regularly.

Keeping BGL under control is a constant struggle for people with Diabetes. One wrong meal choice may

result in very high BGL and an accompanying feeling of sickness for several hours. Persistently high BGL

would ultimately cause a number of severe complications such as heart/kidney failure, blindness and limb

amputations. Those using insulin may suffer life threatening hypoglycemic incidents if too much insulin is

injected. Physical exercise allows the muscles to use glucose in the blood even in the absence of insulin but

exercise activities need to be carefully coordinated with food and medication intake. In general, people with

Diabetes need help deciding how they should plan their food and exercise activities so as to keep their BGL

under control. There is a real need for tools that help diabetic people understand the impact a particular

sequence of food and exercise activities would have on their BGL.
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6.2 Specifications of Existing Models

Existing approaches to model carbohydrate metabolism in human beings can be classified as either data-

driven or knowledge-driven [47]. The data-driven (or empirical) models relate a user’s recent BGL values

along with other relevant information (e.g. diet, exercise, medication and stress) to the user’s future BGL

values using approaches such as neural networks [49, 51, 52, 53, 54, 55] and gaussian models [56]. A number

of different neural network models exist including those based on multilayer perceptrons [51, 52], radial

basis function [53], wavelets [54], time series convolution [49] and recurrent neural networks [49, 55]. Such

models consider the human body to be a black-box and do not take in account the physiological aspects of

carbohydrate metabolism [48].

Unlike the data-driven models, the knowledge-driven models are based on human physiology. In such mod-

els, different factors are treated as different compartments that influence each other and are described by

a set of differential and algebraic equations [47]. The earliest such models [123, 124, 125] involved two

linear compartments - one for glucose in blood and the other for insulin in blood - such that the rates of

appearance/disappearance of glucose/insulin were linearly proportional to their level in blood. The next

generation of models included non-linear rates and consideration of additional hormones (e.g. glucagon) be-

sides insulin [126]. Foster [5] presented a six compartment model, one each for blood glucose, liver glycogen,

muscle glycogen, plasma insulin, plasma glucagon and free fatty acids in plasma, and the addition/removal

from each compartment happened in a non-linear fashion. Some of the other notable multi-compartment,

nonlinear models were those developed by Cerasi [127], Insel [128], Cramp and Carson [129] and Cobelli et

al. [91]. These models were increasingly more complex with more and more physiological details taken in

account. Sorensen [94] provides a good overview of the earliest knowledge-based models (and some of the

later models described next).

Bergman et al. [69, 70] designed a method to quantify a) the sensitiviy of an individual’s beta cells to his/her

BGL and b) the sensitivity of the individual’s BGL to insulin level in his/her blood. For this purpose, a

minimally complex mathematical model was developed that could capture the individual differences in the

two sensitivities mentioned above. Bergman’s minimal model has been modified in a variety of ways. Furler

et al. [72] introduced modifications to allow for absence of insulin production by pancreas and external

insulin infusion. Bergman’s model has also been used to study closed [73] and semi-closed [74] loop optimal

control algorithms to determine the insulin infusion profile for an individual. Roy and Parker extended
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Bergman’s model to take in account the level of free fatty acids in plasma [75]. Bergman’s model has also

been extended to take in account the impact of physical exercise [76, 77].

Tiran et al. [116] developed a multi-compartment model for glucose circulation where each relevant organ

was modeled as a separate compartment. Guyton et al. [93] developed another multi-compartment model

consisting of a glucose circulation subsystem (separate compartments for liver glucose, liver glycogen, kid-

ney glucose, brain tissue glucose, brain blood glucose, peripheral (muscles, adipose tissue) blood glucose,

peripheral tissue glucose, central (i.e. gastrointestinal tract) blood glucose and central tissue glucose) and an

insulin circulation subsystem (separate compartments for liver insulin which represents insulin from pancre-

atic beta cells, kidney insulin, peripheral blood insulin, peripheral tissue insulin, central blood insulin and

central tissue insulin). The model consisted of a total of 32 nonlinear ordinary differential equations (ODEs)

with 11 nonlinear ODEs just to model insulin secretion from pancreas [94]. Sorensen [94] presented another

physiologically complex, multi-compartment model albeit with a much simplified model for pancreatic insulin

secretion. Sorensen’s model consisted of a total of 22 nonlinear ODEs of which 11 ODEs were associated

with glucose circulation, 10 ODEs with insulin and 1 ODE with glucagon. Parker et al. [95, 96] updated

the Guyton/Sorensen models by accounting for uncertainty in parameter values and by including a model

for gastric emptying of carbohydrates in a meal [105]. Hovorka et al. [106] developed a multi-compartment

model of glucose and insulin kinetics as part of a model predictive controller for subcutaneous insulin infusion

for people with type 1 diabetes. This model consists of a two-compartment glucose subsystem (accounting

for glucose absorption, distribution and disposal), a two-compartment insulin subsystem (accounting for

insulin absorption, distribution and disposal) and an insulin action subsystem (accounting for insulin action

on glucose transport, disposal and endogenous production).

Dalla Man et al. [89] developed a model that related the plasma concentrations of glucose and insulin to

various glucose and insulin related rates (the rate of appearance of glucose from the gastro-intestinal tract, the

rate at which the glucose is produced by liver and kidney, insulin dependent and independent rates of glucose

utilization, the rate of renal extraction of glucose, the rate of insulin secretion by beta cells and the rate of

insulin degradation). The parameters of this model were determined using the experimental data collected

for 204 normal and 14 Type 2 Diabetic subjects. This model was used to simulate patient behavior in

UVA/PADOVA Type 1 Diabetes Simulator [9] aimed at investigating the closed control strategies for insulin

pumps. A new version of UVA/PADOVA Type 1 Diabetes Simulator [10] modifies Dalla Man’s model

by incorporating glucagon secretion/action/kinetics and nonlinear increase in insulin dependent glucose
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utilization as BGL dips below the normal range.

6.3 Contributions of CarbMetSim to the Literature

The CarbMetSim simulator presented in this document is physiologically complex just like the models pre-

sented by Tiran et al. [116], Guyton et al. [93], Sorensen [94] and Dalla Man [89]. The key contribution of

CarbMetSim to the literature is its implementation of the physiological details in carbohydrate metabolism

as an object oriented software in which various body organs implemented as software objects whereas the

existing models used Ordinary Differential Equations (ODEs) to model physiological details. It can be ar-

gued that it is much easier to refine/modify behavior described in software than via ODEs. It is hoped

that the ease of modification coupled with the open-source nature of CarbMetSim will allow it to evolve as

a fine granularity software model of human metabolism useful for both research as well patient education.

CarbMetSim is the first “Comprehensive Model” to use an object-oriented approach modeling physiological

details of organs that:

• Dynamically customizes user-specific glucose metabolism parameters (i.e. insulin resistance and pro-

duction level, metabolic pathway flux rates)

• Incorporates protein and fat effect on carbohydrate digestion

• Differentiates glucose metabolism parameters depending on user’s diabetic level

• Addresses several metabolites in the blood (i.e. lactate, alanine, amino acids, GNG substrates) in

addition to glucose

CarbMetSim also provides an alternative approach to predict Glycemic Index (GI) values of various foods.

6.4 Validation Methods & Results

Simulation results of CarbMetSim are presented and discussed by the help of comparing them with some

very well known studies in the glucose metabolism area. Most of the parameters of CarbMetSim are found

out in the literature, the ones that are not specifically expressed in the literature are estimated by running

the simulations with different levels of values and comparing the results with the studies that are specifically

discussed in the previous chapter.
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The results of post-absorptive and resting state of CarbMetSim in a normal person is validated by compar-

ing them with the results of Shrayyef and Gerich’s Study [43]. Blood glucose level, insulin level, glucose

production and consumption rates should be stable in post absorptive-resting state of a non-diabetic person.

The stableness of CarbMetSim is presented in addition to the validation of its rates with some well known

studies in this area [121, 3, 43]. The results of Gerich et al., Frayn et al., and Shrayyef et al. [121, 3, 43]

are very similar regarding blood glucose level, insulin level, glucose production and consumption rates of

the post absorptive-resting state. Blood glucose level graphs, glucose production and consumption rates are

compared with the listed studies and we find out that the values are significantly similar to the existing rates

listed in the studies of Gerich et al., Frayn et al., and Shrayyef et al. [121, 3, 43].

The results after glucose load in normal subjects are discussed and compared with the results of Meyer et al.

[42]. Changes in BGL after glucose load, hepatic and renal glucose release rates, and also peripheral glucose

uptake rates in normal subjects are validated by the results of Meyer et al. [42].

The results after a typical meal in normal and diabetic subjects are discussed to see the effects of a typical

meal on the glucose metabolism of the normal and diabetic subjects. Specifically the results regarding blood

glucose level, insulin level, glucose production and consumption rates, and also total amounts of glucose

produced and consumed in some specific tissues and in some specific pathways during postprandial state in

normal and diabetic subjects are compared with the ones in the study of Woerle et al. [118]. The results of

both normal and diabetic subjects match very well with the study of Woerle et al. [118].

Glycemic Index (GI) prediction of 30 foods and comparison of the predicted values with the values listed

in the literature are also examined. Our prediction results are very accurate for some of the foods. We can

improve the accuracy of CarbMetSim by adding fiber and cooking effects to the gastric emptying model of

the simulator in the future.

6.5 Limitations & Future Work

CarbMetSim is not yet a finished product. The protein and lipid metabolism are implemented only to the

extent that they affect carbohydrate metabolism. The simulator does not yet consider monosaccharides

other than glucose and assumes that all dietary carbohydrate gets converted to glucose after digestion. The
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impact of insulin is captured in a simplified manner and other important hormones (e.g. glucagon) are not

yet considered. Only aerobic exercise activities can be modeled. Finally, CarbMetSim is not yet capable of

translating a user’s diet/exercise/BGL data into the values of simulation parameters governing the behavior

of different organs.

The simulator has broad applicability beyond its original purpose described in the forth chapter. It can be

utilized in:

• Modeling the long term impact of diabetes on various organs.

• Modeling the impact of different kinds of insulin infusion techniques: The insulin infusion process can

also be added to the simulator to model type 1 diabetes in which insulin injection is utilized as a

treatment method.

• Translating a user’s diet/exercise/BGL data into the values of simulation parameters governing the

behavior of different organs: CarMetSim can take as input the accumulated records of a person’s

diet/exercise activities and BGL measurements, then can estimate the rates at which various metabolic

pathways operate in different states of the body.

• Providing user-specific real-time guidance on diet and exercise: CarbMetSim can be used to build a

smartphone-based tool (or app) that can provide user-specific real-time guidance on diet and exercise.

The real-time guidance, can prove especially helpful to diabetic people. With this feature, the app will

be able to suggest a sequence of diet/exercise activities that if followed over the remainder of the day

will allow the app’s user to achieve the best possible glycemic control no matter what his/her current

BGL is.

• Modeling the fat metabolism of human body: With the help of fat metabolism modeling, we can

predict changes in body weight in response to a diet/exercise regimen.
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APPENDIX

CarbMetSim Configuration Parameters

Default Values for Subjects

Parameters Non-Diabetic Diabetic

insulinPeakLevel 1 0.5

glut4Impact 1 0.8

liverGlycogenBreakdownImpact 1 1.4

liverGlycogenSynthesisImpact 1 6

gngImpact 1 1.4

glycolysisImpact 0.15 0.6

insulinImpactOnGlycolysis Mean 0.7 0.7

insulinImpactOnGlycolysis StdDev 0.2 0.2

insulinImpactOnGNG Mean 0.3 0.3

insulinImpactOnGNG StdDev 0.1 0.1

insulinImpactGlycogenBreakdownInLiver Mean 0.3 0.3

insulinImpactGlycogenBreakdownInLiver StdDev 0.1 0.1

insulinImpactGlycogenSynthesisInLiver Mean 0.8 0.8

insulinImpactGlycogenSynthesisInLiver StdDev 0.2 0.2

bodyWeight 89 kg 93 kg

Table 6.1: Human Body Object Configuration Parameters

Parameters Default Value

glycogenMax 120 gr

glucoseToGlycogen 4.7 * 0.1801559 mg/kg/min

glycogenToGlucose 76 * 0.1801559 mg/kg/min

glycolysisMin 0.1801559 mg/kg/min

glycolysisMax 10 * 0.1801559 mg/kg/min

glycolysisToLactateFraction 1

gngFromLactate 0.762 * 2.0 * 0.1801559 mg/kg/min

gngFromGlycerol 0.762 * 0.5 * 0.1801559 mg/kg/min

gngFromGlutamine 0.762 * 0.5 * 0.1801559 mg/kg/min

gngFromAlanine 0.762 * 1 * 0.1801559 mg/kg/min

fluidVolume 12 dL

Glut2Km 20*180.1559/10.0 mg/deciliter

Glut2VMAX 50 mg/kg/min

Table 6.2: Liver Object Configuration Parameters
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Parameters Default Value

glycogenMax 0.4* bodyWeight *15000.0 mg

volume 250 dL

basalGlucoseAbsorbed 1.91 * 0.180155 mg/kg/min

glucoseOxidationFraction 0.5

baaToGlutamine 0

glycolysisMin 0.5 * 0.1801559 mg/kg/min

glycolysisMax 11.0 * 0.1801559 mg/kg/min

glucoseToGlycogen 12.0 * 0.1801559 mg/kg/min

Glut4Km 5*180.1559/10.0 mg/deciliter

Glut4VMAX 4 mg/kg/min

Table 6.3: Muscle Object Configuration Parameters

Parameters Default Value

geConstant 100

geSlopeMin 0.01

Table 6.4: Stomach Object Configuration Parameters

Parameters Default Value

fluidVolumeInEnterocytes 3 dL

fluidVolumeInLumen 4 dL

Glut2Km In 20*180.1559/10.0 mg/dL

Glut2VMAX In 1000 mg/min

Glut2Km Out 20*180.1559/10.0 mg/dL

Glut2VMAX Out 1000 mg/min

sglt1Rate 30 mg/min

glycolysisMin 0.5*0.1801559 mg/kg/min

glycolysisMax 2*0.1801559 mg/kg/min

aminoAcidsAbsorptionRate 1 mg/min

glutamineOxidationRate 1 mg/min

glutamineToAlanineFraction 0.5

RAG Mean 5 min

RAG StdDev 5 min

SAG Mean 60 min

SAG StdDev 20 min

Table 6.5: Intestine Object Configuration Parameters
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Default Values for Subjects

Parameters Non-Diabetic Diabetic

fluidVolume 50 dL 50 dL

glycolysisMin 0.5 * 0.1801559 mg/kg/min 0.5 * 0.1801559 mg/kg/min

glycolysisMax 2 * 0.1801559 mg/kg/min 2 * 0.1801559 mg/kg/min

baseGlucoseLevel 85 mg/dl 200 mg/dL

highGlucoseLevel 180 mg/dL 360 mg/dL

minGlucoseLevel 40 mg/dL 40 mg/dL

HighLactateLevel 4053.51 mg 4053.51 mg

Table 6.6: Blood Object Configuration Parameters

Parameters Default Value

Glut4Km 5*180.1559/10.0 mg/dL

Glut4VMAX 0.4 mg/kg/min

Table 6.7: Adipose Tissue Object Configuration Parameters

Parameters Default Value

glycolysisMin 0.1801559 mg/kg/min

glycolysisMax 20*glycolysisMin mg/kg/min

gngFromLactate 0.872 * 1.1 * 0.1801559 mg/kg/min

gngFromGlycerol 0.872 * 0.5 * 0.1801559 mg/kg/min

gngFromGlutamine 0.872 * 0.5 * 0.1801559 mg/kg/min

gngFromAlanine 0.872 * 0.1 * 0.1801559 mg/kg/min

glutamineConsumed 0 mg/min

reabsorptionThreshold 11*180.1559/10 mg/dL

glucoseExcretionRate 100/(11*180.1559/10) mg/dl

Table 6.8: Kidney Object Configuration Parameters

Parameters Default Value

glucoseOxidized 83.333 mg/min

glucoseToAlanine 0

bAAToGlutamine 0

Table 6.9: Brain Object Configuration Parameters

Parameters Default Value

basalGlucoseAbsorbed 0 mg/min

Glut4Km 5*180.1559/10.0 mg/dL

Glut4VMAX 0.4 mg/kg/min

lactateOxidized 0

Table 6.10: Heart Object Configuration Parameters
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