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ABSTRACT 

IMPROVED EXTRACTION CHROMATOGRAPHIC MATERIALS FOR THE 

SEPARATION AND PRECONCENTRATION OF METAL IONS 

 

by 

 

Abdul Momen 

 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Mark L. Dietz, Ph.D. 

 

Growing public health and safety concerns over the use of nuclear materials have 

increased the demand for improved methods for the separation and preconcentration of 

various metal ions from environmental and biological samples for subsequent 

determination. Historically, solvent extraction and ion-exchange have often been the 

methods of choice for these separations. Solvent extraction, however, is cumbersome and 

can generate substantial volumes of organic wastes. Ion-exchange, while less 

cumbersome, lacks adequate selectivity and requires careful control of pH for satisfactory 

separation. Moreover it is generally not compatible with acidic samples, such as are 

commonly encountered in the analysis of biological and environmental samples. 

Extraction chromatography (EXC) combines the selectivity of solvent extraction 

with the ease of operation of an ion-exchange column. Since its origins in the late 1950’s, 

a wide variety of EXC materials have been described, and a number of these materials are 

now commercially available. The performance of EXC materials is deficient in several 

important respects, however, including modest retention, physical stability, column 

efficiency, and metal ion sorption capacity. The objective of this work, therefore, is to 

address these deficiencies and thus, to produce improved extraction chromatographic 

materials.  With this in mind, a systematic study of the effect of the properties of the solid 
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support, the extractant, and the diluent on these characteristics of EXC materials has been 

undertaken. Four different approaches have been followed: incorporation of ionic-liquids 

into EXC materials to improve metal ion retention, extractant encapsulation in silica sol-

gels to improve the physical stability, stagnant pore plugging to improve the 

chromatographic efficiency, and the use of polysulfone capsules to improve the capacity. 

Unexpectedly, the use of an ionic liquid as a diluent for a crown ether (CE) was not found 

to provide an EXC material capable of strontium ion retention greater than that 

achievable with a conventional octanol-based material employing the same extractant. 

Encapsulation of the crown ether in a sol-gel glass or a polysulfone capsule, however, 

was found to yield strontium sorbents with improved physical stability, strontium ion   

uptake, or column efficiency. Lastly, it was found that the chromatographic efficiency of 

commercially available EXC resins can be significantly improved simply by blocking the 

relatively inaccessible pores with an inert filler. All of these results represent important 

steps towards the development of commercially viable alternatives to existing extraction 

chromatographic materials. 
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CHAPTER 1: 

INTRODUCTION  

1.1 Overview and Scope 

Liquid-liquid extraction (LLX), also known as solvent extraction (SX), and ion-

exchange (IX) are among the most well-established techniques for the separation and 

preconcentration of metal ions in solution. During World War II, the potential of nuclear 

energy and weapons was recognized, and to provide the needed quantities of purified 

fissile radionuclides, in particular isotopes of uranium and plutonium, SX was scaled up 

from the analytical to the process-scale (1.1, 1.2). Since 1951, when the first large-scale 

Plutonium-Uranium Recovery and Extraction (PUREX) facility was established in 

United States (1.3), solvent extraction has evolved into a technique with important 

hydrometallurgical (1.4-1.6), nuclear, and waste treatment applications (1.2, 1.7-1.9). 

Interestingly, however, its utility as an approach to analytical separation has declined, a 

consequence of the availability of less cumbersome alternatives (e.g., solid-phase 

extraction), its frequent reliance on toxic and/or volatile solvents, and its tendency to 

generate substantial volumes of organic waste (1.10) when large numbers of samples are 

processed. 

More than a century ago, Tswett’s work on chromatographic methods using 

calcium carbonate as a stationary phase (1.11) paved the way for the eventual 

introduction (in 1935) of ion-exchange resins. Since this time, IX has developed 

significantly and is now widely employed for the separation of ionic and ionizable 

compounds, a result in part of the convenience and ease of handling of ion-exchange 
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materials (1.12). Ion-exchange procedures typically require careful pH control for 

satisfactory separations, however (1.13). In addition, ion exchange is generally not 

suitable for samples containing high concentrations of acid, such as those frequently 

encountered in analyses of biological, geological, and environmental samples. 

Extraction chromatography (EXC) combines the best features of these two 

techniques, coupling the selectivity of liquid-liquid extraction with the ease of operation 

of an ion-exchange column (1.14). First proposed by Siekierski in 1959 (1.15), this 

method has since come to be employed in the separation of a variety of metal ions from a 

wide range of sample types (1.16-1.20). There are three major components of an EXC 

system: the inert (typically) support, the stationary phase (i.e., an extractant, either alone 

or dissolved in an appropriate diluent) and the mobile phase. The great advantage of EXC 

in separations lies in the wide variety of possible stationary phases. That is, each 

extractant has specific characteristics (i.e., extraction efficiency and selectivity) that 

allow the EXC system to resolve a particular separation problem. While widely applied 

and generally recognized as offering significant advantages over other methods for metal 

ion separation and preconcentration, extraction chromatography is not without its 

limitations (1.21). First, because the extractant is not chemically bonded to the support, 

the physical stability of typical EXC materials is inadequate for many purposes. Along 

these same lines, the inability of the supports employed to retain significant quantities of 

extractant means that the metal ion uptake capacity of typical EXC materials is not high. 

Lastly, the large particle size of most EXC resins leads to elution band that are quite 

broad, rendering the separation of species having similar extraction behavior difficult or 

impossible. Overall, the performance of an extraction chromatographic system is defined 
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in terms of many parameters, including not just efficiency, capacity, and physical 

stability, but also retention, selectivity, resolution, chemical stability, ease of preparation 

and regeneration (i.e, analyte recovery), and reproducibility. Considering all of these 

parameters, their interrelationship, and their relative importance in the context of the way 

EXC is usually practiced, it becomes clear that improvements in EXC materials require 

extractants of improved selectivity and/or complexing power and supports or 

support/extractant/diluent combinations that provide higher efficiency, capacity, and 

physical stability. 

The objective of the present studies is to address these deficiencies and thus, to 

produce vastly improved extraction chromatographic materials. With this in mind, a 

systematic study of the behavior of solid supports and the role of extractant and diluents, 

all important components of EXC materials, has been undertaken. Four different 

approaches to improving the performance of EXC materials have been pursued: ionic 

liquid-based sorbents for improved retention, extractant encapsulation in silica sol-gel 

glasses for improved stability, stagnant pore plugging to improve efficiency, and 

polysulfone capsule-based materials for improved capacity. 

1.2 Liquid-liquid extraction 

Liquid-liquid extraction is often the method of choice for the large-scale 

separation and preconcentration of metal ions. In an extraction process, the metal ion-

containing solution (usually aqueous) is contacted with a solution of a metal-ion-specific 

extractant in a water-immiscible organic solvent. Solutes distributing between two 

immiscible phases reach an equilibrium concentration according to the Nernst partition 
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isotherm, where the distribution of a solute X between phases is a constant expressed 

mathematically as follows: 

𝐾 =
[𝑋]𝑜𝑟𝑔

[𝑋]𝑎𝑞
                    (1 − 1) 

A thermodynamic partition coefficient, of course, should be expressed using the activities 

of the species. Unfortunately the necessary activity coefficients are often unavailable.  

For many practical applications, therefore, the ratio of the total concentration of a metal 

ion solute, M, present in the organic and aqueous phases, expressed as the distribution 

ratio (D), is used: 

𝐷 =
[𝑀]𝑜𝑟𝑔

[𝑀]𝑎𝑞
                (1 − 2) 

The extractant and the metal ion form an organic-soluble (and thus, extractable) 

metal complex that is transferred to the organic phase. Contact of the separated organic 

phase containing the extracted metal ion complex with an appropriate aqueous phase 

reverses the process, leading to stripping of the metal from the extractant and its return to 

the aqueous phase. By appropriate choice of extractant, organic solvent, and aqueous 

phases, a highly selective metal ion separation can be achieved. Although this would 

appear straightforward, the design of a practical extraction process for many types of 

samples (e.g., nuclear waste) is complicated by the properties of the extractants and 

solvents and the need to satisfy various engineering, environmental, cost, and safety 

requirements. For example, in developing processes suitable for treatment of nuclear 

materials, any solvents used must have a high flash point and low toxicity and should not 

generate any toxic or corrosive by-products upon prolonged heating or irradiation. 
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Additionally, they should be readily available and inexpensive. Also, the extractants 

employed must allow for simple stripping chemistry. Although these considerations are 

probably most relevant to process-scale applications of solvent extraction, many are also 

pertinent to analytical-scale use of the method. It is important to note, however, that 

despite its many virtues, SX has come to be regarded as too time-consuming for routine 

use when large numbers of samples are involved. In addition,  as ordinarily practiced 

solvent extraction can generate substantial volumes of toxic organic wastes, thus running 

counter to recent efforts to devise “green” (i.e., more environmentally friendly) 

approaches to separations. 

1.3  Extraction chromatography 

1.3.1 Background 

One way to circumvent these problems while still retaining the positive 

characteristics of solvent extraction is to immobilize the extractant, either neat or in an 

appropriate solvent, in the pores of a solid support. This approach, commonly known as 

extraction chromatography (EXC), can be thought as a special type of liquid-liquid 

partition chromatography, in which the stationary phase is an organic extractant and the 

mobile phase is an aqueous solution. In conventional partition chromatography, solute 

molecules undergo little, if any, chemical change (apart from association or proton 

exchange) in the process of partition. In contrast, in EXC the transport of the ionic solute 

from the aqueous phase into the organic phase is generally accompanied by complex 

chemical changes involving many interactions and equilibria, ultimately leading to the 

extraction of a metal complex. The sorption of an ion by an EXC sorbent, similar to the 

process of extraction itself, is actually a combination of several processes: partitioning of 
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the extractant molecule or its adsorption at the organic-aqueous interface, formation of 

the metal complex, and partitioning of the metal-complex (Figure 1.1). 

 

 

Figure 1.1: Extraction process equilibria, where E is the extractant, M is a metal ion of 

charge n, and A- is the counteranion required with neutral extractant molecules such as 

crown ethers (1.22). 

 

If the assumption made is that the predominant form of the metal ion (M) in the 

organic phase is the complex (MAnLm) and that in the aqueous phase the uncomplexed 

metal ion predominates, then the distribution ratio of the metal ion can be expressed as 

follows: 

𝐷 =  
𝐾𝑝 𝛽𝑖

𝐾′𝑝
𝑚  [𝐴−]𝑛[𝐿]𝑜𝑟𝑔

𝑚          (1 − 3) 

where Kp is the distribution constant of the extracted complex, βi is its formation 

constant, K’p is the distribution constant of the extractant itself, m and n are the number 

of extractant molecules and anions present in the extracted complex respectively, [A-] is 

the aqueous phase anion concentration, and [L]org is the organic-phase extractant 

Organic  

Aqueous  

MExAn 

MExAn xE + M
n+

 + nA
-
 

xE 
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concentration. This equation clearly indicates the important parameters in determining 

the distribution of a given metal ion between the organic and aqueous phases in a liquid-

liquid system and thus, the extent of sorption in the corresponding EXC system. The 

metal ion distribution ratio (D) in a liquid-liquid system is related to the retention of the 

ion in the corresponding extraction chromatographic system (i.e., the weight distribution 

ratio (Dw)) through equation 1-4. 

 

𝐷 =  𝐷𝑤.
𝑑𝑒𝑥𝑡𝑟

%𝑤𝑡 𝑒𝑥𝑡𝑟 
          (1 − 4) 

 

Where dextr is the density of the extractant and %wt extr is the extractant loading in grams 

of extractant per gram of resin. In turn, the weight distribution ratio (Dw) can be 

converted to a resin capacity factor, k’ (i.e., the number of free column volumes of the 

eluent required to reach the peak maximum), by taking into account the density of the 

extractant or its solution and the value of vs/vm (the ratio of the volumes of the stationary 

and mobile phase). 

 

𝑘 ′ =  𝐷𝑤 .
(𝑑𝑒𝑥𝑡𝑟 . 𝑣𝑠)

(%𝑤𝑡 𝑒𝑥𝑡𝑟 . 𝑣𝑚)
          (1 − 5) 
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In actual practice, weight distribution ratios are usually not calculated from LLX data, but 

rather are measured by determining the extent to which the metal ion concentration of a 

solution is reduced by contact with a known mass of the EXC resin. 

  

𝐷𝑤 =  (
𝐴0 − 𝐴𝑠

𝑊
)

𝐴𝑠

𝑉
⁄                     1 − 6 

 

Here A0 and As represent the aqueous concentration of the metal ion before and after 

equilibration, respectively. W is the weight of the sorbent (in grams), and V is the volume 

of aqueous phase used (in milliliters).  

Although LLX data often represent a valuable guide to the design of EXC 

systems, certain aspects of the performance of an EXC materials are not predictable from 

LLX data, as many more factors are involved in a dynamic chromatographic process than 

in a batch (i.e., static) process like LLX (1.23). As already noted, the behavior of the 

EXC materials is normally described in terms of seven parameters: retention, selectivity, 

efficiency, capacity, stability (both chemical and physical), ease of preparation and reuse, 

and reproducibility. The retention and selectivity of an EXC material are governed 

primarily by the properties of the extractant and the mobile phase composition. Column 

efficiency, typically expressed in terms of HEPT or N, is a complex function of a number 

of system characteristics, including mobile phase velocity, diffusion coefficients of the 

metal ion in the mobile and stationary phases, particle diameter, temperature, kinetics of 

extraction and stationary phase thickness. The ideal EXC resin, from the perspective of 
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efficiency, is one consisting of uniform, small-particle size supports bearing a thin, 

homogeneous layer of a non-viscous extractant capable of rapid reaction with the metal 

ion(s) of interest. Few, if any, EXC materials approach this ideal. The capacity of an 

EXC material is obviously dependent on the amount of extractant that can be loaded into 

the support. For analytical-scale applications, capacity is usually regarded as secondary 

consideration. Maintaining a constant capacity i.e., stability, however, is very important. 

To be useful, an EXC material must exhibit satisfactory chemical and physical stability. 

Although the chemical stability is not normally an issue, the physical stability of the EXC 

materials is another matter. As mentioned earlier, because of weak interactions between 

extractant and support, loss of extractant into the mobile phase is quite common. In fact, 

poor stability arising from the dissolution or the shearing off of the stationary phase from 

the support is regarded as the single biggest obstacle to the widespread use of EXC (1.24, 

1.25). After all, it is the physical and chemical stability of an EXC column that 

determines the ease with which it can be re-used and the reproducibility of results 

obtained with it. Considering all of these parameters, it is evident that much can be done 

to improve the performance of existing EXC materials for application in metal ion 

separation and preconcentration. 

Despite the need for improvement, extraction chromatographic methods often 

compete favorably with ion-exchange liquid chromatography (IELC), particularly in the 

trace metal ion separations such as are often encountered in radiochemical separations. In 

IELC, the properties of the ion-exchanger and the composition of the aqueous phase 

determine the selectivity of the ion-exchange process. Unfortunately, in the case of two 

ions having same charge and similar ionic radii, the properties of the ion-exchanger (e.g., 
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acidity or basicity, degree of cross-linking) are generally not such as to provide effective 

separation. To effect a separation, an appropriate complexing agent must be added, and 

the selectivity observed is thus due to differences in either metal-ligand stability constants 

or in the charge or structure of the complex formed. In contrast, the stationary phase of an 

EXC material exhibits complex-forming properties that potentially render it adequately 

selective. 

Conventional EXC materials are prepared by the physical impregnation of a 

porous substrate with an extractant employing any of several techniques (1.26-1.28). 

Typically, the support material is contacted with a solution of extractant (or extractant-

diluent mixture) in a volatile solvent, which after a period of equilibration is slowly 

removed by evaporation under vacuum. In the alternative, the extractant can be 

incorporated into the support during its preparation. For instance, EXC materials have 

been prepared from macroporous styrene-divinylbenzene copolymers containing an 

extractant added to the mixture of monomers during polymerization (1.29, 1.30). 

Regardless of the method in which an EXC is made, the retention of the extractant by the 

support is solely the result of physical interactions, not covalent bond formation between 

the extractant and the support.  

1.3.2 Extractants and diluents 

Since the introduction of EXC, many of these materials have been employed for 

metal ion separation and preconcentration (1.31). For the separation of actinide elements, 

for instance, tri-n-butyl phosphate (TBP) (1.32, 1.33), tri-n-octyl amine (1.34, 1.35), 

Aliquat 336 (tri-caprylylmethylammonium chloride) (1.36, 1.37), bis(2-ethylhexyl) 
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phosphoric acid (HDEHP) (1.38, 1.39) and many other extractants have been used. These 

extractants have been coated onto any of a variety of substrates, including diatomaceous 

earth, silica, powdered cellulose, and various polymers (1.40). Table 1.1 lists some of 

these materials and other “classical” resins, along with their active components and 

selectivities for a number of elements or groups of elements. Because of various 

limitations, including inadequate selectivity, poor stability, and limited capacity, very few 

of these EXC materials have actually found widespread application.  

 

Table 1.1: “Classical” extraction chromatographic resins 

Support Stationary Phase Selectivity Ref. 

Kel-F 
HDEHP/TTA in isobutyl 

ketone 
U 1.41, 1.42 

Alumina HDEHP Rare earth 1.43 

Cellulose HDEHP Rare earth 1.44 

Celite-545 Aliquat-336 Cf, Am 1.45 

Hyflo Super Cel TBP Np 1.46 

Teflon-6 MIBK Sn 1.47 

Activated charcoal 
Di-octylpyrophosphoric 

acid 
U 1.48 

Teflex 
Dipicrylamine in 

nitrobenzene 
Rb, Cs 1.49 

Copolymer of 

polystyrene with 

DVD 

TBP U 1.50 
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Table 1.2: Commercially available extraction chromatographic resins 

EXC materials Stationary Phase Selectivity Ref. 

TRU resin 0.75 M CMPO in TBP 
Actinides (III, IV, 

VI), Ln(III) 
1.51 

UTEVA resin 
Undiluted diamyl 

amylphosphonte 
U(VI) 1.52 

TEVA Undiluted Aliquat 336 
Th(IV), Np(IV),  

Pu(IV), Tc(VII) 
1.53 

Sr-resin/Pb-

resin 

1 M DtBuCH18C6 in 1-

octanol 
Sr, Pb 1.17 

Ln-resin Undiluted HDEHP Ln(III) 1.54 

Actinide resin 

Bis(2-

ethylhexyl)methanediphospho

nic acid (H2DEH[MDP]) 

Actinides 1.55 

Cs resins AMP, KNiFC Cs 1.56 

Nickel resin Dimethylglyoxime (DMA) Ni 1.57 

RE resin 1 M CMPO in TBP 
Th, U, Np, Am, Cm, 

rare earth elements 
1.58 

 

 

 

More recently, a variety of new EXC materials have been introduced for the 

separation and preconcentration of metal ions from various sample types. Many of these 

materials are now commercially available (Table 1.2). Advances in molecular design and 

synthetic methodology have led to a variety of new extractants, including crown ethers 

(1.59, 1.60), cryptands (1.60), and calixarenes (1.61). These compounds are capable of 

stronger and more selective binding of certain metal ions than has been achieved with 

previously available reagents. Applying such extractants has led to significant 

improvements in EXC methods for the separation and preconcentration of radiostrontium 

ion, isotopes of which (89/90Sr) are of great interest in environmental radiochemistry. 

Since WWII, the use of nuclear materials has increased dramatically, and the potential for 
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environmental contamination has also increased (e.g., Chernobyl and Fukushima). 

Because of the ability of strontium-90 (half life ≥ 29 yrs) to replace calcium in bone, it 

represents a potential human health hazard. As a result, there is an urgent need to 

determine the radiostrontium in environmental and biological samples.  

Previously, Akaza (1.41) and Lieser et al. (1.42) described the separation of 

strontium from other alkaline earth metals using thenoyltrifluoroacetone (TTA) in 

isobutyl ketone and bis(2-ethylhexyl)phosphoric acid (HDEHP) respectively, supported 

on polytrifluorochloroethylene (Kel-F). The problem with both of these reagents and 

other such “classical” extractants is that their strontium selectivity is not sufficient to 

analyze environmental and biological samples. In addition, these reagents are not 

effective for highly acidic sample solutions, a significant limitation given that a number 

of procedures for the determination of radionuclides in urine (1.62), feces (1.63), soils 

(1.64, 1.65), and natural waters (1.65) involve either sample acidification or leaching 

and/or digestion of the sample with acid. 

In the early 1990’s, workers at Argonne National Laboratory developed an LLX 

process for the removal of radiostrontium from acidic nuclear waste streams (1.66-1.68). 

This process, known as the SREX (StRontium EXtraction) process, incorporates a 

macrocyclic polyether, di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6, Figure 

1.2), in 1-octanol to extract strontium as a strontium-nitrato-crown ether complex. It was 

subsequently demonstrated that impregnation of a polymeric support (e.g., Amberlite 

XAD-7) with a 1 M solution of this crown ether in 1-octanol yields an EXC resin ( Sr-

resin) that exhibits both good retention and selectivity of strontium from acidic nitrate 

media (1.16-1.18). 
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Figure 1.2 Di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6). 

 

The application of this crown ether-based EXC material in the separation and 

preconcentration of strontium is now well established, and a number of studies detailing 

its use in various analyses have appeared in the literature (1.20, 1.64-1.67). It has been 

reported, however, that despite its many advantages, the material does suffer from certain 

limitations, among which is inadequate physical stability. Figure 1.3 illustrates the effect 

of column washing on the behavior of strontium-85 on Sr-resin. It shows that passage of 

even a modest volume (250 free column volumes, FCV) of eluent (i.e., here, 1 M HNO3) 

through the column leads to a significant shift in the position of the elution band. As a 

consequence, attempts to reuse the material are complicated by changing column 

behavior induced by sample loading, column rinsing, and strontium recovery. The elution 

band is shifted to higher volumes upon column washing, consistent with loss of diluent 

(here, 1-octanol) from the support. This observation suggests that the stability of the resin 

might be improved by changing or even eliminating the diluent. 
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Figure 1.3 Effect of column washing on the elution behavior of Sr-85 on a 

conventional, strontium-selective extraction chromatographic material (“Sr Resin”). 

(Eluent: 1 M HNO3; Flow rate: 1-2 mL/cm2/min; Temperature: ca. 23°C; Particle size: 

100-150 μm; Filled circles: unwashed resin; Open circles: washed (259 FCV) resin) 

(1.21). 
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Previously, it had been shown that a change to a higher molecular weight (and 

thus, less water-soluble) alcohol would be expected to lead to a decrease in strontium 

retention by the resin (1.66, 1.20). Complete elimination of the diluent would also seem 

to be out of question, as prior studies have clearly established the important role played 

by the alcohol in strontium extraction from acidic nitrate media (1.66). However, the 

elution behavior of Sr-85 on an EXC resin comprising only DtBuCH18C6 dispersed on 

an appropriate polymeric support is barely distinguishable from that observed on the 

conventional resin in which the stationary phase consists of a 1-octanol solution of the 

crown ether, as shown in Figure 1.4. This unexpected result has been partially explained 

by the ability of DtBuCH18C6 itself to extract significant amounts water, much like 

aliphatic alcohols (1.21). Additionally, a volume of mobile phase that had induced a 

significant change in the elution behavior of conventional resin has no discernible effect 

on Sr-85 elution on octanol-free materials (1.21). This study opens the possibility of 

utilizing undiluted DtBuCH18C6 not only on polymer-based supports but also other 

supports (e.g., silica) to address the poor stability of the Sr-resin. 
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Figure 1.4: Comparison of the elution of Sr-85 on a conventional (filled circles) and 

an octanol-free (open circle) strontium-selective extraction chromatographic 

materials. (Conditions are as noted in figure 1.3) (1.21). 
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1.3.3 Solid supports 

In the last few years, there has been growing awareness of the possibility of 

employing support properties to enhance the performance of EXC materials. It is known 

that the physical properties of a support influence certain aspects of chromatographic 

separations. For instance, improved column efficiency resulting from the use of smaller 

particle size supports is well-established (1.74). Recently, the effect of chemistry of the 

support on the behavior of EXC materials, either using different support surfaces to 

manipulate the adsorptive forces for a typical extraction chromatography or actually 

participate in metal ion uptake, has been explored. EXC materials designed on the basis 

of adsorptive forces between extractant and the support are known as ‘inert substrate”, 

while those for which the support itself or surface-bound functional groups participate in 

metal ion uptake are termed as “active substrate”. 

In conventional extraction chromatography, supports are specifically chosen to be 

inert to the extractant, diluent (if any), and the constituents of the sample. The inert 

support is made up of a porous organic polymer or inorganic materials typically ranging 

in size from 50 to 150 μm in diameter (for special applications other smaller or larger 

particles have been studied). Conventional EXC materials have shown significant 

degradation (i.e., physical instability) during use (1.21), and this may be related to the 

pore width of the beads, as previous work suggests that larger pores provide faster 

kinetics and smaller pores provide slower kinetics (1.75). If EXC materials could be 

designed with intermediate pore widths appropriate for both good kinetics and extractant 

retention, then the long-standing issue of the stability of EXC materials might be 

corrected. 
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In an effort to exploit support chemistry, active substrate EXC materials have 

been prepared by the impregnation of a material capable of acid-base interactions or ion 

exchange with an extractant bearing an appropriate functional group (e.g., an anionic 

functionality capable of interaction with an anion-exchanger). A variety of studies have 

been performed with such systems, extending from early investigations by Akaiwa 

(1.76), Tanaka (1.77-1.80) and Lee (1.81) to more recent work by Sarzanini (1.82), 

Warshawsky (1.83, 1.84) and Khalifa (1.85). Most often, a sulfonated extractant has been 

sorbed on a strong anion-exchanger and the metal ion sorption properties of the resultant 

materials determined. These studies have shown that the retention of the extractant is 

likely due to a combination of adsorption and ion-exchange, with the latter being 

predominant. This retention is sometimes sufficiently strong for the resin to withstand 

contact with acids and bases. However, two limitations in these materials have become 

evident. First, the capacity of certain of the resins is less than that expected on the basis 

of extractant loading, suggesting that not all of the extractant is available for 

complexation (1.81). Secondly, it appears that the binding ability of certain immobilized 

extractants is less than that of the free extractant (1.82).  

Along these same lines (i.e., utilization of the surface chemistry to improve an 

EXC material), another approach has been described in which macroporous beads of a 

copolymer of chloromethylstyrene and methylmethacrylate are prepared using 

divinylbenzene as a cross-linker, then surface-functionalized to leave unreacted carbon-

carbon double bonds (1.86, 1.87). Following impregnation of the support with an 

extractant, a pair of water-soluble monomers (N,N’methylenebis(acrylamide/glycidyl 

methacrylate)) are polymerized in the presence of the beads, resulting in the formation of 
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a polymer film anchored to the bead by what had been the surface carbon-carbon double 

bonds. This approach to stabilizing an EXC material initially showed some promising 

results, but it was subsequently found that the polymer film decomposes upon contact 

with acids to release formaldehyde. Up until now, the performance of EXC materials 

based on functionalized supports has not been shown to be sufficiently better than that of 

analogous “inert substrate” resins to represent a compelling advantage over conventional 

ones. 

Another limitation of EXC materials, capacity, can in principle, also be improved 

by utilizing the property of the solid supports. Because of the ability of available solid 

supports to hold and retain an extractant is limited and because extractants are frequently 

diluted with an organic solvent to improve the kinetics of metal ion uptake (by reducing 

the stationary phase viscosity), the capacity (i.e., the maximum loading of metal ion 

available) of conventional EXC materials is typically low, often only a few mg per mL of 

bed volume. As a result, in many applications, inconveniently large columns may be 

required to avoid extractant saturation (i.e., column overload). To overcome this problem, 

higher capacity of EXC materials are clearly required. Previous work indicates that 

polymer microencapsulation techniques may yield materials containing much more 

extractant per unit mass than is found in any conventional material (1.88-1.89). In one 

study, for example, applying a modified dry impregnation technique (described below) 

yielded microcapsules containing up to 11.8 mL solvent per gram of (polysulfone) 

capsules (1.88). This enormous capacity for solvents clearly opens up the possibility of 

producing very high capacity (i.e., high extractant content) EXC materials.  
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The separation of ions of similar charge and comparable size (e.g., actinides vs. 

lanthanides, americium vs. curium) remains a challenge and very few works describing 

the application of EXC materials to these separations have been reported in the literature 

(1.90-1.92). The major limitation of the existing chromatographic materials is the 

significant band broadening of the elution curves (1.93, 1.94), indicative of the poor 

efficiency typical of the extraction chromatographic materials. Column efficiency, 

typically expressed in terms of height equivalent of theoretical plate (HETP) or number 

of theoretical plates (N), is a complex function of a number of system characteristics, 

including mobile phase velocity, diffusion coefficients of the metal ion in the mobile and 

stationary phases, particle diameter, temperature, kinetics of extraction and stationary 

phase thickness (1.21). Of these factors, diffusion is the critical one, and obviously the 

diffusion of a metal ion into and out of the deep pores of a chromatographic resin takes 

more time than the same process for shallow pores. Thus by designing support materials 

that contain predominantly shallow pores, the problem of poor efficiency can be at least 

partly addressed. 

If the limitations of current EXC materials can be addressed, either through the 

use of “active substrate” supports or manipulation of the physical properties of a more 

conventional support, then the utility of extraction chromatography as a method for the 

separation and preconcentration of metal ions is certain to increase. 

 

 

 



22 
 

 
 

1.4 Overview of the Chapters 

Chapter 2 describes an evaluation of solid-supported ionic liquids containing 

crown ethers as media for metal ion separation and preconcentration. In this study an 

effort has been made to extend the extraordinary performance of ILs in the liquid-liquid 

extraction of strontium using crown ethers to extraction chromatographic configuration. 

The results demonstrate that the translation of the solvent extraction properties of an IL to 

extraction chromatography is not always straightforward. 

Chapter 3 explores the effect of solid support properties on the performance of 

extraction chromatographic materials. Specifically, extractant chromatographic materials 

based on silica sol-gel encapsulated extractants have been synthesized and characterized. 

A silica network is shown to be capable of encapsulating up to ~50% DtBuCH18C6 

(w/w). Optimized silica-based extraction chromatographic materials show better 

radiostrontium uptake than a conventional Sr-resin, along with other characteristics 

suggesting that this sol-gel-based EXC material may represent a viable alternative to 

conventional Sr-resin. 

Chapter 4 describes efforts to develop high-efficiency extraction chromatographic 

materials using stagnant pore plugging. In this work, beads of a commercial porous 

polymer were filled with polypropylene glycol. Following removal of the peripheral 

filler, the support was impregnated with extractant, yielding an EXC material exhibiting 

high column efficiency vs. conventional EXC resins. 

Chapter 5 demonstrates the development of high capacity extraction 

chromatographic materials based on polysulfone capsules for metal ion separation and 
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preconcentration. Polysulfone capsules in the 50-100 μm size range (desirable for EXC) 

have been synthesized. Extractant loading studies of these capsules have shown that they 

can retain up to ~65% (w/w) extractant, is a significant improvement over conventional 

EXC materials. 

Finally, Chapter 6 offers a summary of the accomplishments of this study and 

recommendations for future research in this field. 

 

1.5 References  

1.1 J. Rydburg, In Principle and Practices of Solvent Extraction, J. Rydberg, C. 

Musikas, G.R. Choppin, Eds., M. Dekker, New York, 1992, p 1. 

1.2 C. Musikas, W.W. Schulz, In Principle and Practices of Solvent Extraction, J. 

Rydberg, C. Musikas, G.R. Choppin, Eds., M. Dekker, New York, 1992, p 413. 

1.3 J.M. Mckibben, “Chemistry of the PUREX Process”, DPSPU-83-272-1, Savana 

River Plant, 1983. 

1.4 D.S. Flett, In Hydrometallurgy: Research, Development, and Plant Practice, K. 

Osseo-Asare, J.D. Miller, Eds., American Institute of Mining, Metallurgical, and 

Petroleum Engineers, New York, 1982, p 39. 

1.5 G.M. Ritcey, A.W. Ashbrook, Solvent Extraction: Principles and Applications to 

Process Metallurgy, Elsevier Science Publishers, Amsterdam, 1984. 

1.6 M. Cox, In Principle and Practices of Solvent Extraction, J. Rydberg, C. Musikas, 

G.R. Choppin, Eds., M. Dekker, New York, 1992, p 357. 

1.7 Science and Technology of Tributyl Phosphate, Volume 1, Synthesis, Properties, 

Reactions, and Analysis, W.W. Schulz, J.D. Navratil, A.E. Talbot, Eds., CRC 

Press: Boca Raton, FL, 1984, Vol. 1.  

1.8 Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle, D.H. Logsdail, 

A.L. Mills, Eds., Ellis Horwood, Ltd.: Chichester, UK, 1985. 



24 
 

 
 

1.9 Chemical Pretreatment of Nuclear Waste for Disposal, W.W. Schulz, E.P. Horwitz, 

Eds., Plenum Press: New York, 1994. 

1.10 V.V. Yakshin, B.F. Myasoedov, O.M. Vilkova, A.M. Tuzova, A.T. Fedrova, I.M. 

Rodionova, Use of Dicyclohexyl-18-Crown-6 for selective extraction of 

Radioactive trontium from water. Radiokhimiya, 1989, 31(2), 67-71. 

1.11 D.C. Harries, Exploring Chemical Analysis, Fourth Ed., W.H. Freeman and Co.: 

New York, 2009, p 459. 

1.12 C. Pohl, Recent developments in ion-exchange columns for inorganic ions and low 

molecular weight ionizable molecules, Recent Developments in Column 

Technology, 2010, pp 24-31. 

1.13  C.R. Porter, B. Khan, M.W.  Carter, G.L.  Vehnberg, E.W.  Pepper, Determination 

of radiostrontium in food and other environmental samples. Environ. Sci. Technol. 

1967, 1, 745-750. 

1.14 S. Siekierski, Theoretical aspects of extraction chromatography, Extraction 

chromatography, T Braun, M. Gherensini, Eds., Elsevier, Newyork, 1975, 1-16. 

1.15 S. Siekierski, B. Kotlinska, At Energiya, 1959, 7, 60. 

1.16 E.P. Horwitz, M.L. Dietz, D.E. Fisher, Separation and preconcentration of 

strontium from biological, environmental, and nuclear waste samples by extraction 

chromatography using a crown ether. Analytical Chemistry, 1991, 63, 522-525. 

1.17 E.P. Horwitz, R. Chiarizia, M.L. Dietz, A novel strontium-selective extraction 

chromatographic resin. Solvent Extraction and Ion Exchange, 1992, 10, 313-336. 

1.18 R. Chiarizia, E.P. Horwitz, M.L. Dietz, Acid dependency of the extraction of 

selected metal ions by a strontium-selective extraction chromatographic resin: 

calculated vs. experimental curves, Solvent Extraction and Ion Exchange, 1992, 10 

(2), 337-361. 

1.19 E.P. Horwitz, M.L. Dietz, R. Chiarizia, The application of novel extraction 

chromatographic materials to the characterization of radioactive waste solutions, 

Journal of Radioanalytical and nuclear chemistry, 1992, 161 (1), 575-583. 

1.20 E.P. Horwitz, M.L. Dietz, S. Rhoads, C. Felinto, N.H. Gale, J. Houghton, A lead 

selective extraction chromatographic resin and its application to the isolation of 

lead from geological samples, Analytica Chimica Acta, 1994, 292 (3) 263-273. 



25 
 

 
 

1.21 M.L. Dietz, Recent progress in the development of extraction chromatographic 

methods for radionuclide separation and preconcentration.  In Radioanalytical 

Methods in Interdisciplinary Research: Fundamentals in Cutting Edge 

Applications; Laue, C.A., Nash, K.L., Eds.; American Chemical Society: 

Washington, DC, 2003, 160-176. 

1.22 M.L. Dietz, E.P. Horwitz, Novel chromatographic materials based on nuclear waste 

processing chemistry, LC-GC, 1993, 11, 424-436. 

1.23 E.P. Horwitz, M.L. Dietz, D.E. Fisher, Extraction of strontium from nitric acid 

solutions using dicyclohexano-18-crown-6 and its derivatives, Solvent Extraction 

and  Ion Exchange, 1990, 8, 557-572. 

1.24 S.D. Alexandratos, K.P. Ripperger, Synthesis and characterization of high-stability 

solvent-impregnated resins, Industrial & Engineering Chemistry research, 1998, 37 

(12), 4756-4760. 

1.25 M.L. Dietz, E.P. Horwitz, A.H. Bond, Extraction chromatography: Progress and 

opportunities. In Metal Ion Separation and Preconcentration: Progress and 

Opportunities; Bond, A.H., Dietz, M.L., Rogers, R.D., Eds.; American Chemical 

Society: Washington, DC, 1999, 234-250. 

1.26  Extraction Chromatography, T. Braun, M. Ghersini, Eds., Elsevier, New York, 

1975. 

1.27 A. Warshawsky, In Ion Exchange and Solvent Extraction-A Series of Advances, 

J.A. Marinsky, Y. Marcus, Eds., Marcel Dekker: New York, 1981, 8, 229. 

1.28   J.L. Cortina, A. Warshawsky, In Ion Exchange and Solvent Extraction, J.A. 

Marinsky, Y. Marcus, Eds., Marcel Dekker: New York, 1997, 13, 195. 

1.29 R. Krochbel, A. Meyer, In Proceedings and solvent extraction conference-1974, 

Society of Chemical Industry, London, 1974, 2095. 

1.30 H.W. Kauczor, A. Meyer, Structure and properties of Levextrel resins. 

Hydrometallurgy, 1978, 3, 65-73. 

1.31 H. Eshrich, D. Drent, in Extraction Chromatography, T. Braun, M. Ghersini, Eds., 

Elsevier, New York, 1975, 402-555. 

1.32 A.G. Hamlin, B.J. Roberts, W. Loughlin, S.G. Walker, Separation of uranium by 

reversed-phase chromatography on a kel-F column, Analytical Chemistry, 1961, 33, 

1547-1552. 



26 
 

 
 

1.33 E.A. Huff, Trace impurity analysis of thorium-uranium and plutonium-thorium-

uranium alloys by anion exchange-partition chromatography, Analytical Chemistry, 

1965, 37 (4) 533-536. 

1.34 C. Testa, Chromatography of some cations by means of paper treated with a liquid 

anion exchanger, Journal of Chromatography, 1961, 5, 236-243. 

1.35 E. Cerrai, C. Testa, The use of tri-n-octylamine-cellulose in chemical separations, 

Journal of Chromatography, 1961, 6, 443-451. 

1.36 E.A. Huff, partition chromatographic studies of americium, yttrium, and the rare 

earths in the tricaprylylmethylammonium thiocyanate-ammonium thiocyanate 

system, Journal of Chromatography, 1967, 27 (1), 229-236. 

1.37 P.G. Barbano, L. Rigali-Camen, Separation of americium from rare earths by 

reversed-phase partition chromatography, Journal of Chromatography, 1967, 29 

(1), 309-311. 

1.38 B. Tomazic, S. Siekierski, Separation of some fission products from U(VI) by 

reversed-phase partition chromatography, Journal of Chromatography, 1966, 21 

(1), 98-104. 

1.39 V.A. Luginin, I.A. Tserkovnitskaya, Separationof uranium (IV) and (VI) by 

column partition chromatography, Radiokhimiya, 1970, 12 (6), 898-899. 

1.40 G.S. Katykhin, Inert supports in column extraction chromatography, Extraction 

chromatography, T Braun, M. Gherensini, Eds., Elsevier, Newyork, 1975, 134-174. 

1.41 I. Akaza, Separation of alkaline earth metals as their TTA-complexes by reversed-

phase partition chromatography, Bulletin of the Chemical Society of Japan, 1966, 

39 (5), 980-989. 

1.42 K.H. Lieser, H. Bernhard, Separation of calcium and strontium by column 

chromatography, Analytische Chemie, 1966, 219 (5), 401-408. 

1.43 A.A Poli, CNEN-RT/CHI (70), 1970, 32  

1.44 E. Cerrai, C. Testa, C. Triulzi, Separation of rare earths by column chromatography 

with cellulose powder treated with di(2-ethylhexyl) orthophosphoric acid. II. 

Energia Nucleare (Milan), 1962, 9, 377-84. 



27 
 

 
 

1.45 E.P. Horwitz, K.A. Orlandini, C.A.A. Bloomquist, The separation of americium 

and curium by extraction chromatography using molecular weight quaternary 

ammonium nitrate, Inorganic Nuclear Chemistry Letters, 1966, 2, 87-91. 

1.46 H. Eschrich, Separation of neptunium (IV), neptunium (V), neptunium (VI) by 

extraction chromatography, Analytische Chemie, 1967, 226(1), 100-114. 

1.47 J.S Fritz, G.L. Latwesen, Separation of tin from other elements by partition 

chromatography, Talanta, 1967, 14(5), 529-536. 

1.48 L.A. McClaine, P. Noble, E.P Bullwinkel, The development and properties of an 

adsorbent for uranium, Journal of Physical Chemistry, 1958, 62, 299-303. 

1.49 M. Kyrs, L. Liberna, Separation of alkali metals by extraction chromatography with 

dipicrylamine and nitrobenzene, Journal of Radioanalytical Chemistry, 1968, 1 (2), 

103-112. 

1.50 H. Small, Gel-liquid extractions. The extraction and separation of some metal salts 

using tributyl phosphate gels, Journal of Inorganic and Nuclear Chemistry, 1961, 

18, 232-244. 

1.51 E.P. Horwiz, R. Chiarizia, M.L. Dietz, H. Diamond, D. Nelson, Separation and 

preconcentration of actinides from acidic medial by extraction chromatography, 

Analytical Chimica Acta, 1993, 281, 361-372. 

1.52 E.P. Horwitz, M.L. Dietz, R. Chiarizia, H. Diamond, A.M. Essling, D. Graczyk, 

Separation and preconcentration of uranium from acidic media by extraction 

chromatography, Analytical Chimica Acta 1992, 266 (1), 25-37. 

1.53 E.P. Horwitz, M.L. Dietz, R. Chiarizia, H. Diamond, S.L. Maxwell III, M. Nelson, 

Separation and preconcentration of actinides by extraction chromatography using a 

supported liquid anion exchanger: Application to the characterization of high-level 

nuclear waste solutions, Analytica Chimica Acta, 1995, 310, 63-78. 

1.54 E.P. Horwitz, C.A.A. Bloomquist, Chemical Separations for Super-Heavy Element 

Searches in Irradiated Uranium Targets, Inorganic and Nuclear Chemistry, 1975, 

37(2), 425-434. 

1.55 E.P. Horwitz, R. Chiarizia, M.L Dietz, DIPEX: A new extraction chromatographic 

material for the separation and preconcentration of actinides from aqueous solution, 

Reactive & Functional Polymers, 1997, 33, 25-36. 



28 
 

 
 

1.56 F. Sebesta, V. Stefula, Composite ion exchanger with ammonium 

molybdophosphate and its properties. Journal of Radioanalytical and Nuclear 

Chemisrty, 1990, 140(1), 15 – 21. 

1.57 D. Cahill, L. Peedin, A comparison of standard and extraction chromatography 

methods of analysis for nickel-59/63 and tritium, 41st Annual Conference On 

Bioassay, Analytical & Environmental Chemistry (Eichrom Workshop), Boston, 

MA (1995). 

1.58 E.A. Huff, D.R. Huff, TRU-Spec and RE-Spec chromatography: basic studies and 

applications, 34th ORNL/DOE Conference On Analytical Chemistry In Energy 

Technology, Gatlinburg TN(1993). 

1.59 W.J. McDowell, Crown ethers as solvent extraction reagents: where do we stand? 

Separation Science and Technology, 1988, 23 (12-13) 1251-1268. 

1.60 G. Gokel, Crown Ethers and Cryptands, Royal Society of Chemistry, Cambridge, 

England, 1991. 

1.61 G.J. Lumetta, R.D. Rogers, A.S. Gopalan, Eds., Calixarenes for Separations, ACS 

Symposium Series 757, American Chemical Society, Washington, DC, 2000. 

1.62 M.L. Dietz, E.P. Horwitz, D.M. Nelson, M. Wahlgren, An improved method for 

determining strontium-89 and strontium-90 in urine, Health Physics, 1991, 61 (6), 

871-877. 

1.63 J.C. Veselsky, A routine procedure for the determination of trace amounts of 

plutonium in urine, Mikrochimica Acta, 1978, 1 (1-2) 79-88. 

1.64 K. Juznic, M. Korun, Radioactivity of cattle fodder and milk after the Chernobyl 

accident, Journal of Radioanalytical and Nuclear Chemistry, 1989, 137 (3), 235-

242. 

1.65 W.C. Burnett, D.R. Corbett, M. Schultz, E.P. Horwitz, R. Chiariza, M.L. Dietz, A. 

Thakkar, M. Fern, Pre-concentration of actinide elements from soils and large 

volume water samples using extraction chromatography, Journal of 

Radioanalytical and Nuclear Chemistry,1997, 226 (1-2), 121-127. 

1.66 E.P. Horwitz, M.L. Dietz, D.E. Fisher, Correlation of the extraction of strontium 

nitrate by a crown ether with the water content of the organic phase, Solvent 

Extraction and Ion Exchange, 1990, 8 (1), 199-208. 



29 
 

 
 

1.67 E.P. Horwitz, M.L. Dietz, D.E. Fisher, extraction of strontium from nitric acid 

solutions using dicyclohexano-18-crown-6 and its derivatives, Solvent Extraction 

and Ion Exchange, 1990, 8 (4-5), 557-572. 

1.68 E.P. Horwitz, M.L. Dietz, D.E. Fisher, SREX: a new process for the extraction and 

recovery of strontium from acidic nuclear streams, Solvent Extraction and Ion 

Exchange, 1991, 9 (1), 1-25. 

1.69 J. Mellado, M. Llaurado, G. Rauret, Determination of actinides and strontium in 

fish samples by extraction chromatography, Analytical Chimica Acta, 2002, 458 

(2), 367-374. 

1.70 T.A. DeVol, J.M. Duffey, A. Paulenova, Combined extraction chromatography and 

scintillation detection for off-line and on-line monitoring of strontium in aqueous 

solutions, Journal of Radioanalytical and Nuclear Chemistry, 2001, 249 (2), 295-

301. 

1.71 J.M. Torres, M. Llaurado, G Rauret, M. Bickel, T. Altzitzoglou, R. Pilvio, 

Determination of 90Sr in aquatic organisms by extraction chromatography: method 

validation, Analytica Chimica Acta, 2000, 414 (1-2) 101-111. 

1.72 Z. Grahek, N. Zecevic, S. Lulic, Possibility of rapid determination of low-level 90Sr 

activity by combination of extraction chromatography separation and Cherenkov 

counting, Analytica Chimica Acta ,1999, 399 (3), 237-247. 

1.73 M. Filss, W. Botsch, J. Handl, R. Michel, V.P. Slavov, V.V. Borschtschenko, A 

fast method for the determination of strontium-89 and strontium-90 in 

environmental samples and its application to the analysis of strontium-90 in 

Ukrainian soils, Radiochimica Acta, 1998, 83 (2), 81-92. 

1.74 D.G. Kalina, E.P. Horwitz, Variations in the solvent extraction behavior of 

bifunctional phosphorous-based compounds modified with TBP, Solvent Extraction 

and Ion Exchange, 1985, 3 (3), 235-250. 

1.75 A. Ziad, F. Guenneau, M. Springuel-Huet, A. Gedeon, J. Iapichella, T. 

Cacciaguerra, A. Galarneau, Diffusion properties of hexane in pseudomorphic 

MCM-41 mesoporous silicas explored by pulsed field gradient NMR, The Journal 

of Physical Chemistry C, 2012, 116, 13749-13759. 

1.76 H. Akaiwa, H. Kowamoto, N. Nakata, Y. Ozeki, Ion exchange based on 

complexation using a chelating agent-loaded resin, Chemistry Letter, 1975, 10, 

1049-1050. 



30 
 

 
 

1.77 H. Tanaka, M. Chikuma, A. Harada, T. Ueda, S. Yube, A new chelate-forming 

resin with dithizone functional group prepared by the conversion of an anion-

exchange resin, Talanta, 1976, 23, 489-491. 

1.78 M. Chikuma, M. Nakayama, T. Tanaka, H. Tanaka, A new chelate-forming resin 

bearing mercapto and azo groups, Talanta, 1979, 26, 911-912. 

1.79 M. Chikuma, M. Nakayama, T. Itoh, H. Tanaka, K. Itoh, Chelate-forming resins 

prepared by modification of anion-exchange resins, Talanta, 1980, 27, 807-810. 

1.80 M. Nakayama, M. Chikuma, H. Tanaka, T. Tanaka, A Chelate-forming resin 

bearing mercapto and azo groups and its application to the recovery of mercury (II), 

Talanta, 1982, 29, 503-506. 

1.81 K.S. Lee, W. Lee, D.W. Lee, Selective separation of metal ions by a chelating 

agent-loaded anion exchanger, Analytical Chemistry, 1978, 50, 255-258. 

1.82 C. Sarzanini, E. Mentasti, V. Porta, M.C. Gennaro, Comparison of anion-exchange 

methods for preconcentration of trace aluminum, Analytical Chemistry, 1987, 59, 

484-486. 

1.83 A. Warshawsky, A.G.  Strikovsky, K. Jerabek, J.L. Cortina, Solvent-impregnated 

resins via acid-base interaction of poly(4-vinylpyridine) resin and di(2-ethylhexyl) 

dithiophosphoric acid, Solvent Extraction and Ion Exchange, 1997, 15, 259-283. 

1.84 A. Warshawsky, J.L. Cortina, M. Aguilar, K. Jerabek, New developments in 

impregnated resins. An overview. In Solvent Extraction for the 21st Century 

(Proceedings of ISEC ’99), Vol. 1; Cox, M., Hidalgo, M., Valiente, M., Eds; 

Society of Chemical Industry: London, 2001, 1267-1272. 

1.85 A. Khalifa, Selective separation of uranium using Alizarin Red S (ARS)-modified 

anion-exchange resin or by flotation of U-ARS chelate. Seperation Science and 

Technology, 1998, 33, 2123-2141. 

1.86 E.P. Horwitz, M.L. Dietz, A novel approach to improving the stability and column 

efficiency of extraction chromatographic systems, Invention Report, Argonne 

National Laboratory, 1998. 

1.87 S.D. Alexandratos, K.P. Ripperger, Synthesis and characterization of high-stability 

solvent-impregnated resins, Industrial & Engineering Chemistry Research, 1998, 

37 (12), 4756-4760. 



31 
 

 
 

1.88 C. van den Berg, C. Roelands, P. Bussmann, E. Goetheer, D. Verdoes, L. van den 

Wielen, “Preparation and analysis of high capacity polysulfone capsules, Reactive 

and Functional Polymers 2009, 69, 766-770. 

1.89 B. Pena, C. Panisello, G. Areste, R. Garcia-Valls, T. Gumi, Preparation and 

characterization of polysulfone microcapsules for perfume release. Chemical 

Engineering Journal.  2012, 179, 394-403. 

1.90 A. Ikeda, T. Suzuki, M. Aida, K. Otake, Y. Fujii, K. Itoh, T. Mitsugashira, M. 

Hara, M. Ozawa, Chromatographic separation of trivalent actinides by using 

tertiary pyridine resin with methanolic nitric acid solutions, Journal of Nuclear 

Science and Technology, 2004, 41, 915-918. 

1.91 T Suzuki, K. Otake, M. Sato, A. Ikeda, M. Aida, Y. Fijii, M. Hara, T. Mitsugashira, 

M. Ozawa, Separation of americium and curium by use of tertiary pyridine resin in 

nitric acid/methanol mixed solvent system, Journal of Radioanalytical and Nuclear 

Chemistry, 2007, 272, 257-262. 

1.92 E.P. Horwitz, C.A.A. Bloomquist, K.A. Orlandini, D.J. Henderson,  The separation 

of milligram quantities of americium and curium by extraction chromatography, 

Radiochimiya Acta,  1967, 8, 127-132. 

1.93 E.P Horwitz, C.A.A. Bloomquist, The preparation, performance and factors 

affecting band spreading of high efficiency extraction chromatographic columns for 

actinide separations, Journal of Inorganic Nuclear Chemistry, 1972, 34, 3851-

3871. 

1.94 N. Gharibyan, A. Dailey, D.R. McLain, E.M. Bond, W.A. Moody, S. Happel, R. 

Sudowe, Extraction behavior of americium and curium on selected extraction 

chromatography resins from pure acidic matrices, Solvent Extractant and Ion 

Exchange,  2014, 43, 391-407. 

 

 

 

 



32 
 

 
 

CHAPTER 2: 

EVALUATION OF SOLID-SUPPORTED ROOM-TEMPERATURE IONIC 

LIQUIDS CONTAINING CROWN ETHERS AS MEDIA FOR METAL ION 

SEPARATION AND PRECONCENTRATION 

2.1 Introduction 

The retention of metal ions on many EXC materials is at times insufficient, even 

in the absence of competing ions that might be expected to consume a significant fraction 

of the sorption sites on the material.  For example, although an EXC resin selective for 

radiostrontium (2.1-2.3) has long been commercially available, its modest strontium 

retention makes it poorly suited for large-volume samples and complicates efforts to 

miniaturize chromatographic separations employing it. 

Prior work has shown that metal ion extraction by crown ethers such as that on 

which the commercial strontium resin is based (di-tert-butylcyclohexano-18-crown-6, 

hereafter abbreviated as DtBuCH18C6) is strongly influenced by the organic solvent in 

which the extractant is dissolved (2.4, 2.5).  For example, strontium extraction into a 

solution of dicyclohexano-18-crown-6 (DCH18C6) (and by analogy, its retention on a 

crown ether-based EXC resin (2.1, 2.6)) has been found to increase as the molecular 

weight of the solvent is decreased within a given diluent family (e.g., n-alcohols), the 

apparent result of the greater solubility of water in lower molecular weight solvents and 

the accompanying increase in the ease of solvating the co-extracted anion (2.4).  As a 

compromise between the need to maximize strontium retention and to minimize the loss 

of the stationary phase (i.e, the crown ether/diluent) due to its solubilization in the mobile 

phase during a separation, 1-octanol is employed as the stationary phase solvent in the 

commercial resin (2.1, 2.2).  Recent work suggests that better results, in particular far 
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stronger retention of strontium, might be achieved by employing ionic liquids (ILs), a 

novel class of solvents typically comprising a bulky, asymmetric organic cation in 

combination with any of a wide variety of organic or inorganic anions (2.7), as the basis 

of the stationary phase.  Specifically, various studies have shown that under certain 

conditions, metal ion partitioning far exceeding that seen with conventional (i.e., 

molecular) solvents can be obtained in liquid-liquid systems employing solutions of an 

appropriate extractant in any of a variety of ILs (2.8-2.10).  For example, using solutions 

of DCH18C6 in N,N’-dialkylimidazolium-based ILs, Dai et al. (2.8) have demonstrated 

that strontium distribution ratios 104 times larger than those observed in 1-octanol can be 

obtained. This suggests that an EXC resin employing an appropriate IL as a component 

of the stationary phase may provide strontium ion retention significantly greater than that 

obtained with conventional EXC resins. 

 In the past decade, a number of metal ion sorbents have been described which 

comprise an ionic liquid dispersed in/on a solid support (2.11-2.21).  Much less common 

are sorbents in which an ionic liquid is employed as the diluent for a supported metal ion 

extractant (2.22-2.26).  In this chapter, we describe the preparation and preliminary 

characterization of a series of strontium sorbents incorporating a mixture of a crown ether 

and various N,N’-dialkylimidazolium-based ILs, supported in either a porous polymer 

matrix (as is often done in extraction chromatography) or a sol-gel glass.  Unexpectedly 

the results obtained indicate that the performance (e.g., strontium retention) of these new 

sorbents is not necessarily superior to that of the conventional (i.e., commercial) EXC 

resin. 
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2.2 Experimental 

2.2.1 Materials and Methods 

 Reagents.  Dicyclohexano-18-crown-6 (DCH18C6) was obtained as a mixture of 

the cis-syn-cis (A) and cis-anti-cis (B) isomers from Parish Chemical Company (Orem, 

UT).  The 4,4'(5')-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) was obtained 

from EichroM Technologies, Inc. (Darian, IL) and used without further purification. 

AmberchromTM CG-71m was purchased from Rohm and Haas (Philadelphia, PA) and 

pretreated as previously described (2.27). The tetramethyl orthosilicate (TMOS) and 1-

octanol were obtained from Alfa Aesar (Heysham, UK), while the formic acid (98%) was 

obtained from Sigma-Aldrich (St. Louis, MO).   All were used as received. Optima 

grade nitric acid and HPLC grade methanol were obtained from Fisher Scientific 

Company (Waltham, MA). All water was obtained from a Milli-Q2 system and had a 

specific resistance of at least 18 MΩ-cm. The ionic liquids employed in this work, 1-

decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C10C1imTf2N) and 1-

(12-hydroxydodecyl)-3-butylimidazolium bis[(trifluoromethyl)sulfonyl]imide 

(C12OHbimTf2N), were prepared by reaction of the corresponding bromides with LiTf2N 

and purified using methods described previously (2.7, 2.28, 2.29).  Sample purity was 

verified by 1H- and 13C-NMR (DMSO), as detailed in previous reports (2.7, 2.28, 2.29). 

The NMR spectra were acquired on a Bruker DPX300 NMR spectrometer operating at 

300.13 MHz for proton and 75.47 MHz for carbon-13, and equipped with a z-gradient 

broadband (BBO) probe.  Spectra were obtained using solutions in dimethylsulfoxide-d6 

(Aldrich, 99.96 atom% D), and all chemical shifts were reported relative to 

tetramethylsilane. 
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2.2.2 Procedures   

2.2.2.1 Liquid-liquid extraction studies 

The distribution of a Sr-85 radiotracer (PerkinElmer, Shelton, CT) between the 

aqueous and organic phases of interest was determined by equilibrating equal volumes of 

a tracer-spiked nitric acid solution and either 1-octanol or an ionic liquid.  Prior to the 

distribution measurement, the organic phase was pre-equilibrated via two contacts with 

twice its volume of an appropriate acid solution.  From the measured activity of the 

aqueous and organic phases after equilibration (determined by gamma spectroscopy 

according to standard procedures on a Perkin-Elmer 2480 Automatic Gamma Counter), 

the distribution ratio of strontium was calculated from the equation: 

DSr = [Sr]org, eq / [Sr]aq, eq 

2.2.2.2 Polymer-supported IL-crown ether mixtures   

The EXC resins comprising polymer-supported IL-crown ether mixtures were 

prepared in a manner analogous to that described previously for mixtures of crown ethers 

and conventional organic solvents (2.1, 2.2). 

2.2.2.3 Sol-gel-encapsulated IL-crown ether mixtures   

To synthesize the silica-based EXC materials, an acid-catalyzed sol-gel procedure 

was employed (2.30).  In a typical preparation, DtBuCH18C6 (50 mg) was dispersed into 

a mixture of TMOS (1 mL) and formic acid (2 mL). This route yielded a “solvent-less” 

(i.e., no diluent added) sorbent. To determine the impact of the presence of a solvent, the 

same route for preparation was followed, but neat DtBuCH18C6 was replaced with a 1M 
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solution of the crown ether in either the IL or 1-octanol.  For all preparations, the quantity 

of DtBuCH18C6 used was maintained at 50 mg.  After a week of standing, during which 

time gelation and the volatilization of hydrolysis products (CH3OH and HCOOCH3) 

occurred, a monolithic glass composite consisting of DtBuCH18C6 or its solution in the 

IL or 1-octanol entrapped in the silica network (2.31) was obtained. The composite glass 

material was crushed and sieved to collect material of the desired size range (~50-100 μm 

diameter) for subsequent metal ion uptake experiments.  Following sieving, the ground 

material was examined by scanning electron microscopy using a Hitachi Model S-4800 

field emission SEM.  

2.2.2.4 Equilibrium metal ion uptake  

Solid-liquid (weight) distribution ratios (Dw) for strontium were determined 

radiometrically using a commercial 85Sr radiotracer. Specifically, the sorption of the 

tracer from nitric acid solutions by the resins was measured by contacting a known 

volume (typically 1.0 mL) of 85Sr-spiked acid solution of appropriate concentration with 

a known mass of resin.  The ratio of the aqueous phase volume (mL) to the weight of the 

chromatographic material (g) typically ranged from 40-50. (This ratio is determined 

primarily by the need to produce an easily measured decrease in the aqueous activity by 

contact with the resin). Contact times of two and four hours (with occasional swirling) 

were employed for the polymeric and silica-based EXC materials, respectively.  After 

equilibration, an aliquot of the aqueous phase was withdrawn from each culture tube and 

filtered through a 0.22 μm poly(vinylidene fluoride) (PVDF) filter to ensure that no 

dispersed resin was present.  On the basis of the initial and final activity of a measured 



37 
 

 
 

aliquot of this aqueous phase, the weight distribution ratio (Dw) of strontium was 

calculated from the following equation: 

                                      Dw = [(A0 – Af)/Af] (V/w) 

where A0 and Af represent the aqueous phase activity (cpm) before and after equilibration 

respectively, w is the mass of the resin taken (g), and V is the volume of the aqueous 

phase (mL). 

2.2.2.5 Metal ion uptake kinetics   

Into a series of screw-cap test tubes, each containing the same (± 10%) amount 

(20 mg) of EXC resin, was introduced a known volume (typically 1 mL) of an 

appropriate nitric acid solution containing a Sr-85 radiotracer.  At various time intervals 

following the introduction of the tracer solution (during which the samples were 

periodically mixed to ensure equilibration), the aqueous phase was withdrawn from one 

of the test tubes and filtered through a 0.22 μm poly(vinylidene fluoride) (PVDF) filter.  

From the initial and final (residual) activity of the aqueous phases, Dw values were 

determined as described above and a plot of the time dependence of Dw was prepared.  

2.3 Results and Discussion 

2.3.1 Liquid-liquid extraction studies.   

In an earlier report, Horwitz and Dietz (2.32) examined the relationship between 

the efficiency with which a given metal ion is extracted in a liquid-liquid (l-l) system (as 

reflected in the metal ion distribution ratio, DM) and its retention on an extraction 

chromatographic sorbent based on this l-l system (as reflected in the weight distribution 
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ratio, Dw for the ion).  For lanthanide (Ln) extraction by several organophosphorus acids, 

it was found that despite some differences between the observed and expected (on the 

basis of DM) values of k’ (i.e., the capacity factor) for the Ln ions, the overall trends (e.g., 

decreasing metal ion affinity for the organic phase with rising acidity) were generally the 

same in both the l-l and EXC systems.  On the basis of this and similar observations by a 

number of other investigators on a variety of extraction systems (2.33-2.40), it is now 

well-established that the extraction behavior of a metal ion is often a useful predictor of 

its retention behavior on the corresponding EXC resin.  For this reason, efforts to develop 

an ionic liquid-based EXC material for strontium began with a consideration of the 

extraction behavior of strontium into a series of ILs incorporating DCH18C6 or its di-

tert-butyl- analog, compounds known to exhibit substantial affinity for Sr2+ in 

conventional solvent systems (2.41-2.43). 

Figure 2.1 shows the nitric acid dependency of the extraction of strontium ion by 

DCH18C6 into two ionic liquids, one alkyl-substituted (C10C1imTf2N) and the other 

hydroxyl-functionalized (C12OHC4imTf2N).  Also shown for purposes of comparison are 

the results obtained under the same conditions using a conventional molecular diluent, 1-

octanol, as the organic solvent.  In addition, the corresponding results for Na+ extraction 

into both 1-octanol and C10C1imTf2N are provided. As can be seen, extraction into the 

molecular diluent follows the expected trend (2.45), namely (generally) increasing 

extraction efficiency (DM) with rising aqueous acid (i.e., nitrate) concentration.  Note that 

at sufficiently high acidities, competition for the extractant between the acid present and 

the metal ion (2.45) eventually leads to a rollover of the acid dependency for sodium ion.  

The net result is an increase in the strontium/sodium separation factor, αSr/Na, with acidity. 



39 
 

 
 

For the ionic liquids also, strontium extraction generally rises with increasing aqueous 

acidity, indicating (as noted in prior studies (2.10)) that ion-pair extraction/extraction of a 

neutral strontium-crown ether-nitrato complex is the predominant mode of extraction 

under the experimental conditions.  In contrast, the extraction of sodium ion into 

C10C1imTf2N declines over the entire range of acidities examined, behavior consistent 

with the predominance of ion-exchange in the overall extraction process (2.10, 2.46).  In 

this extraction system too then, αSr/Na varies with acidity, in this case peaking at ca. 3 M 

HNO3 (the acidity most commonly employed for sample loading in procedures 

incorporating commercial resins for strontium sorption) at a value ca. 64, approximately 

three times that obtained in 1-octanol (2.47).  These results, together with the higher 

values of DSr observed in the 1-3 M HNO3 range, suggest that it should be possible to 

significantly improve the performance of established commercial strontium sorbents 

simply by replacing the diluent employed (1-octanol) with an appropriate ionic liquid. 
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Figure 2.1: Effect of nitric acid concentration on the extraction of Sr2+ into 1-octanol 

(●),C10C1imTf2N (), or C12OHbimTf2N (♦) and Na+ into 1-octanol () or 

C10C1imTf2N () by DCH18C6 (0.1 M).  (The smooth curves are intended only as a 

guide to the eye.) (2.69) 
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Because the not insignificant water solubility of DCH18C6 (2.48) would be 

expected to make an EXC material prepared from it unstable, its more hydrophobic di-

tert-butyl-substituted analog, DtBuCH18C6, was next evaluated.  Figure 2.2 depicts the 

nitric acid dependency of DSr for this compound, again in 1-octanol, C10C1imTf2N, and 

C12OHC4imTf2N, along with analogous results for sodium ion in 1-octanol and 

C10C1imTf2N.  In the conventional molecular diluent (i.e., 1-octanol), the dependency for 

both Sr and Na extraction generally exhibits the increase with rising acidity expected for 

neutral complex extraction, and the Sr/Na separation factor (αSr/Na) approaches 100 at the 

highest acidities (ca. 6 M).  For the ionic liquids, DSr again generally increases with 

aqueous acidity, although some flattening or rollover of the dependency is observed 

above ca. 2 M HNO3.  At acidities greater than ca. 0.25 M, the value of DSr is typically a 

factor of 5-10 greater than that obtained with DCH18C6, as would be expected from the 

greater hydrophobicity of the di-t-butyl-substituted compound.  Equally important is that 

strontium-sodium separation factors of 50-100 are observed in C10C1imTf2N for 1-6 M 

HNO3.  Overall then, the use of the more hydrophobic crown ether yields strontium 

extraction efficiencies significantly higher than those seen with DCH18C6, while 

preserving its excellent strontium extraction selectivity.  In addition, when combined with 

an IL, DtBuCH18C6 provides DSr values much greater than those seen with 1-octanol.  

Taken together, these results further reinforce the notion that a substantial improvement 

in the performance of an EXC material for strontium might be effected by use of an ionic 

liquid diluent. 
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Figure 2.2: Effect of nitric acid concentration on the extraction of Sr2+ into 1-octanol 

(●), C10C1imTf2N (), or C12OHbimTf2N (♦) and Na+ into 1-octanol () or 

C10C1imTf2N () by 4z, 5’z-csc-DtBuCH18C6 (0.1 M).  (The smooth curves are 

intended only as a guide to the eye.) (2.69) 
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2.3.2 Metal ion uptake studies on polymer-supported crown ether-ionic liquid mixtures   

To investigate this possibility, extraction chromatographic resins incorporating 

40% (w/w) of a 1.0 M solution of DtBuCH18C6 in 1-octanol, C10C1imTf2N or 

C12OHC4imTf2N were prepared and evaluated for strontium uptake.  Figure 2.3 shows 

the nitric acid dependence of strontium uptake (as reflected in the weight distribution 

ratio, Dw) by the three resins.  It is immediately apparent that contrary to expectations, the 

IL-based resins actually provide poorer retention of Sr2+ than does the conventional (i.e., 

commercial) octanol-based material in the acidity range of interest (ca. 1-6 M).  In 

addition, and again contrary to results observed in the l-l extraction studies, there is little 

difference between strontium retention by materials based on the dialkyl- and 

hydroxyalkyl-ILs.  Thus in contrast to the conventional solvent system (i.e., 1-octanol), 

for which it has been shown that solvent extraction and extraction chromatographic 

behavior are reasonably well correlated (2.1, 2.2, 2.44), l-l extraction data for the ionic 

liquids considered here are of little apparent value in predicting the behavior of the EXC 

resins prepared from them. 
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Figure 2.3: Effect of nitric acid concentration on the uptake of strontium ion by 

extraction chromatographic resins comprising a solution of DtBuCH18C6 (1 M) in 

1-octanol (○), C10C1imTf2N (), or C12OHbimTf2N (♦) on Amberlite XAD-7.  (The 

smooth curves are intended only as a guide to the eye.) 
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2.3.3 Effects of stationary phase viscosity 

In principle, if the partitioning mechanism for a metal ion in a liquid-liquid 

extraction system and the corresponding extraction chromatographic resin are the same, 

then the adaptation of the solvent extraction system to a solid support should be 

straightforward (2.49).  There are, however, several additional issues that must be 

considered when attempting to understand the relationship between the behavior of the 

two systems for the ILs, among them the effect of solvent viscosity.  According to the 

Stokes-Einstein Equation, the diffusion coefficient of a solute in a medium is inversely 

proportional to the viscosity of the medium: 

D = kB T / 6π η r 

where D is the diffusion coefficient of a spherical particle, kB is Boltzmann’s constant, T 

is the absolute temperature, η is the viscosity, and r is the radius of the particle (2.50).  As 

applied to extraction chromatography, this equation indicates that the rate of diffusion of 

a solute (e.g., strontium ion) into the pores of the EXC resin beads will be reduced as the 

viscosity of the solution with which the resin has been impregnated increases.  In 

addition, it suggests that the accessibility of extractant molecules within the pores of a 

support may be limited when the viscosity of the stationary phase is high.  That is, for a 

solute to interact with an extractant, a path for solute/extractant transport must be 

provided.  If providing such a path requires that relatively large IL molecules rotate or 

translate, however, the high viscosity of the medium could render this difficult, thus 

restricting the availability of the extractant to the solute.  For 1-octanol, a viscosity of 7.2 

cP has been reported at standard temperature and pressure (2.51), while for typical ionic 
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liquids, viscosities of 300-1000 cP are observed under the same conditions (2.52).  

Clearly then the differences in viscosity of the two solvents are substantial, and thus may 

at least partially account for the observations. 

2.3.4 Extractant concentration effects   

The effect of extractant concentration must also be considered.  That is, while the 

solvent extraction experiments described here were carried out using a 0.1 M solution of 

DtBuCH18C6, the stationary phase of the EXC resin comprises a 1 M solution of the 

same extractant, a factor of ten more concentrated.  Table 2.1 summarizes the results of l-

l extraction experiments in which the dependence of the distribution ratio of strontium on 

the concentration of DtBuCH18C6 in either C10C1imTf2N or 1-octanol was determined.   
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Table 2.1:  Effect of DtBuCH18C6 concentration in 1-octanol or C10C1imTf2N on 

the extraction of strontium ion from 1.0 M nitric acid solution. (2.69) 

1-octanol 

[DtBuCH18C6], M  mole ratio (1-OAlc:crown)  DSr 

 0.25         22    8.7 

 0.50         9.4             15.1 

 0.75         5.4             19.4 

 1.00         3.1             26.5 

C10C1imTf2N 

[DtBuCH18C6], M  mole ratio (IL:crown)   DSr 

 0.25         8.0             25.1 

 0.40                 34.5 

 0.50         3.5             43.2 

 0.60                 47.9 

 0.75                 33.1 

 1.00         1.2                -  a 

_______________________________________________________________________ 

a Precipitation of the crown ether is observed. 
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As can be seen, in the conventional solvent, an increase in extractant 

concentration is accompanied by a (roughly) proportional increase in the value of DSr.  (A 

log-log plot of DSr vs. [DtBuCH18C6], in fact, yields a line of near-unit slope (0.78).)  As 

also shown in the table, this increase in extractant concentration is (obviously) also 

accompanied by a decrease in the mole ratio of solvent to extractant.  Even at the highest 

DtBuCH18C6 concentration, however, a significant excess of the solvent remains.  For 

the ionic liquid, however, neither of these observations applies.  That is, as the extractant 

concentration is increased, DSr initially increases, but then declines.  Moreover, in the 

most concentrated DtBuCH18C6 solutions, the very high molar mass of the ionic liquid 

means that the solvent-to-extractant mole ratio is quite low (falling to only 1.2 at 1 M 

extractant).  Thus, in these solutions, the system is rapidly approaching one in which the 

ionic liquid is no longer the majority component.  This dearth of solvent apparently has a 

destabilizing effect, as upon standing in contact with an acidic aqueous phase, the crown 

ether precipitates from the most concentrated solutions, thus limiting the solubility of 

DtBuCH18C6 to ca. 0.6 M.  This strongly suggests that precipitation of the extractant in 

the pores of the support may be at least partly responsible for the unexpectedly poor 

performance of the IL-based EXC resins. 

It is interesting (and also somewhat unexpected) to note that precipitation of the 

extractant from the hydroxyl-functionalized IL C12OHC4imTf2N (which by design, bears 

resemblance to an aliphatic alcohol) occurs to essentially the same extent observed for 

C10C1imTf2N (albeit more slowly) when the solution is allowed to stand in contact with 

an acidic aqueous phase (e.g., 1 M HNO3).  That acid contact induces precipitation in this 

system as well indicates that formation of an insoluble crown ether-hydronium ion adduct 
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is likely responsible.  Such precipitation is not without precedent; in fact, the 

precipitation of a DtBuCH18C6-H3O
+ adduct from n-hexane (induced by perchloric acid 

contact) has been employed as a means of purifying DtBuCH18C6 (2.53).  Moreover, 

although seemingly vastly different than hexane, ionic liquids bearing long alkyl chains 

(as is the case for both ILs considered here) have been found to form nanostructured 

domains in which the polar head groups and hydrophobic side chains are arranged in such 

a way as to provide regions differing greatly in polarity (2.54-2.56).  Here the 

hydrophobic domains would likely resemble a long-chain alkane, not unlike hexane. 

 It is also worth noting here that over a short time frame (i.e., minutes to hours), 

solutions of DtBuCH18C6 in C10C1imTf2N more concentrated than its apparent 

equilibrium solubility can be prepared and studied.  As shown in Table 2.1, for example, 

strontium distribution ratios can be measured for even a 0.75 M solution of DtBuCH18C6 

with no sign of precipitation over the time span of the measurement.  Curiously, however, 

DSr values at these higher concentrations are lower than those observed at lesser crown 

ether concentrations.   In fact, the extraction of strontium by a 0.75 M solution of the 

crown ether is essentially identical to that seen at 0.40 M extractant.  In an effort to 

understand the source of this anomaly, the extraction of strontium by DCH18C6 (which 

is not plagued by such solubility limitations) into the same IL was revisited.  Figure 2.4 

(a) shows the dependence of DSr and DNa on the concentration of DCH18C6 in 

C10C1imTf2N at a fixed aqueous acidity (3.00 M HNO3).   
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Figure 2.4.  Effect of DCH18C6 concentration on the extraction of strontium (●) and 

sodium () ions from 3.0 M nitric acid into C10C1imTf2N (panel A) or 1-octanol 

(panel B).  (Lines represent least-squares fits to the data.) (2.69) 
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For purposes of comparison, the corresponding results for 1-octanol are provided in 

Figure 2.4 (b).  As can be seen, in the conventional solvent, DM for the monovalent cation 

(i.e., Na+) increases linearly with rising extractant concentration, an observation 

consistent with extraction of a neutral sodium nitrato-crown ether complex, a process 

depicted in Equation 2.1 (with n=1): 

Mn+
aq + DCH18C6org + n NO3

-
aq ↔ M(NO3)n∙DCH18C6org      (2.1) 

For the divalent cation (i.e., Sr2+), in contrast, significant flattening of the dependency is 

observed (although DSr values do continue to increase with [DCH18C6]), a consequence 

(as has been described in detail previously (2.45)) of appreciable aqueous phase complex 

formation in the strontium-DCH18C6 system.  
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Figure 2.5: The three-path model for alkali and alkaline earth cation partitioning 

between nitric acid solutions and CnC1imTf2N ionic liquids in the presence of 

DCH18C6. 

 

For the extraction of sodium into the IL, increasing DCH18C6 concentration again yields 

a proportional increase in DM.  In this instance, however, extraction proceeds 

predominantly via two types of ion-exchange processes (Figure 2.5), one in which the 

sodium-crown ether complex initially formed is exchanged for the cationic component of 

the IL, and the other a two-step process involving the initial formation of a 1:1 

hydronium ion-DCH18C6 complex and the subsequent exchange of the complexed H3O
+ 

for Na+ (2.46), as depicted in Equations 2.2 and 2.3: 

H3O
+

aq + DCH18C6IL ↔ DCH18C6∙H3O
+

IL     (2.2) 

Na+
aq + DCH18C6∙H3O

+
IL ↔ DCH18C6∙Na+

IL + H3O
+ aq     (2.3) 
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Here, increasing the DCH18C6 concentration promotes formation of additional 

hydronium ion-crown ether complex, which can then undergo ion exchange (IX) with the 

sodium ion present. 

For strontium extraction into the IL, the values of DM eventually begin to decline 

(albeit slightly) as the extractant concentration rises.  This decline becomes even more 

evident as the aqueous acidity is decreased (Figure 2.6).  These observations can be 

explained by recognizing that under the experimental conditions, a not insignificant 

contribution to the overall extraction of strontium is made by so-called “crown ether-

mediated ion exchange” (2.46, 2.47), analogous to the process shown for sodium ion 

extraction above.  In this instance, however, the initial formation of the 1:1 hydronium 

ion-crown ether complex is followed by a process in which two molecules of this adduct 

react with the metal ion, as necessitated by the electroneutrality requirement: 

Sr2+
aq + 2 DCH18C6∙H3O

+
IL ↔ DCH18C6∙Sr2+

IL + 2 H3O
+

aq + DCH18C6IL  (2.4) 

Clearly a process such as this, which results in the production of free DCH18C6 

molecules, would not be expected to be favored by increasing concentrations of 

extractant in the IL phase.  Thus, as the initial concentration of the free crown ether in the 

IL phase is increased, the propensity to extract a divalent cation by crown ether-mediated 

IX is likely to diminish.  The result, apparently, can be a decline in DM with increasing 

extractant concentration.  
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Figure 2.6.  Effect of DCH18C6 concentration on the extraction of Sr2+ from 0.050 

M HNO3 (♦) 1.0 M HNO3 () and 3.0 M HNO3 () into C10C1imTf2N.  (The smooth 

curves are intended only as a guide to the eye.) (2.69) 
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2.3.5 Sorption capacity studies 

An obvious solution to the problem of extractant precipitation is to reduce its 

concentration in the IL.  Such a reduction, however, would also lower the strontium 

sorption capacity relative to that of the commercial resin.  If, for example, the 

concentration of DtBuCH18C6 in the IL were reduced to its solubility limit (ca. 0.6 M), a 

21% decline in the capacity vs. that of a 1-octanol-based sorbent (from 4.74 to 3.74 

mg/mL of bed) would be expected.  Capacity determinations on the C10C1imTf2N-based 

and conventional sorbents, however, yield an even greater difference between the actual 

capacities of the two materials.  That is, while the measured capacity of the commercial 

resin is (in agreement with a prior report (2.2)) 74% of the theoretical value (3.51 

mg/mL), that of the IL-based resin is only 1.78 mg/mL, 57% of its theoretical value.  

Given that precipitation of the crown ether is not expected at this concentration, lower 

accessibility of the pore volume of the sorbent due to the high stationary phase viscosity 

is a likely contributor to the lower than anticipated capacity. 

2.3.6 Sol-gel encapsulated crown ether-ionic liquid mixtures 

That the properties of the support can exert an influence on the behavior of an 

extraction chromatographic material is by now well-established (2.57).  In 1977, for 

example, Parrish (2.57) showed that the rate of copper (II) uptake by the extractant Kelex 

100 supported on any of a variety of macroporous polymers (e.g., XAD-series resins) was 

affected by the water regain (i.e., hydrophobicity) of the support, with more hydrophilic 

materials yielding faster copper ion uptake under a given set of conditions.  Subsequent 

work by other investigators (2.38, 2.58-2.62) has confirmed the often significant 
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influence of support characteristics on the chromatographic performance of EXC resins.  

Such results suggest that it may be possible to at least partly overcome the apparent 

limitations of the polymer-supported crown ether-IL system by appropriate choice of 

support.  Recent work by Makote and Dai (2.30) concerning the properties of ionic 

liquid-crown ether mixtures encapsulated in sol-gel glasses lends additional credence to 

this notion.  In particular, these investigators demonstrated that while a DCH18C6-

impregnated sol-gel glass exhibited only limited uptake of strontium (Dw = 0.5) from a 

pH 4 aqueous phase when the crown ether employed was neat (i.e., undiluted), addition 

of the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)-sulfonyl]imide 

(C2C1imTf2N) resulted in a dramatic (i.e., thousand-fold) increase in strontium retention 

under the same conditions.  This suggests that a sol-gel glass matrix may be especially 

well-suited as the basis for metal ion sorbents employing crown ether-ionic liquid 

mixtures. 

With this in mind, sol-gel glasses (Figure 2.7) incorporating either undiluted 

DtBuCH18C6 or its solution (1 M) in C10C1imTf2N were prepared and characterized.  

For purposes of comparison, a third material incorporating a solution of the crown ether 

(1 M) in 1-octanol was also examined.  Figure 2.8 depicts the nitric acid dependence of 

strontium uptake (as reflected in the weight distribution ratio, Dw) by these sorbents.  As 

shown, in contrast to the results obtained by Makote (2.30) for DCH18C6, the sorbent 

incorporating only DtBuCH18C6 displays significant retention of radiostrontium, 

yielding a Dw of nearly 80 at the highest acidities examined.  Similar strontium ion 

retention behavior is seen for the sorbent incorporating a solution of DtBuCH18C6 in 1-

octanol (although a rollover in the acid dependency is seen at sufficiently high aqueous 
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acidities).  This observation is consistent with previous results for polymer-based EXC 

resins, for which little effect on strontium ion retention by a crown ether-loaded support 

was noted upon introduction of 1-octanol (2.63).  Again in contrast to the results of 

Makote (2.30), however, much the same strontium ion uptake is observed for the sorbent 

incorporating a solution of the crown ether in the ionic liquid. 

Figure 2.9 shows the results of strontium ion uptake kinetics measurements for a 

sol-gel glass incorporating either neat (i.e., undiluted) DtBuCH18C6 or its solution (1 M) 

in 1-octanol or C10C1imTf2N.  For the sol-gel-based materials, equilibration times 

exceeding two hours are observed, consistent with prior reports for sol-gel glasses 

incorporating a tetracarboxylic acid-functionalized aza-crown ether (2.64) or a thiacrown 

ether (2.65), for which equilibration times of up to 24 hours have been found. This 

observation may also be explained by the relatively smaller pore size of the silica 

materials (2.66), as suggested by the SEM images of the surface of the material (Figure 

2.7).  For the XAD-based sorbents, however, published reports indicate that strontium 

uptake for both the “solvent-less” (2.63) and conventional (2.1, 2.2) resin is typically 

complete in 40 minutes or less, with the former exhibiting slightly slower uptake, a result 

consistent with the higher viscosity of the undiluted extractant.  
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Figure 2.7:  Physical appearance of silica sol-gel-based and polymer-based 

extraction chromatographic materials. 
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Figure 2.8.  Effect of nitric acid concentration on the uptake of strontium ion by 

silica sol-gel glass-encapsulated DtBuCH18C6, incorporated as either the neat 

extractant (●) or a 1 M solution in C10mimTf2N () or 1-octanol (♦).  (The smooth 

curves are intended only as a guide to the eye.) 
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Figure 2.9: Kinetics of the uptake of strontium ion by silica sol-gel-based EXC 

materials from 6.2 M HNO3 using neat DtBuCH18C6 (♦) or its solution (1 M) in 1-

octanol (○) or C10C1imTf2N (●) as the stationary phase. 
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2.4 Conclusions 

The results presented here, while preliminary, do indicate that the transfer to a 

solid-supported (i.e., extraction chromatographic) configuration of metal ion separations 

methodology developed using ionic liquid-based liquid-liquid extraction systems may not 

be straightforward.  Most notably, the significant stationary phase viscosities arising from 

the high extractant concentrations required to maximize the uptake of the ions of interest 

and the inherently high viscosity of typical ILs reduce the sorption of strontium by IL-

based EXC materials.  Along these same lines, given the microheterogeneous nature of 

ILs incorporating long alkyl chains (2.55-2.57) (in particular, the existence therein of 

alkane-like regions) and the need for such hydrophobic ILs to suppress undesirable 

extraction pathways (i.e., ion-exchange processes (2.10)), along with the modest 

solubility of various extractants (and/or extracted complexes) in unmodified alkanes 

(2.67, 2.68), inadequate extractant solubility in the IL phase represents another significant 

potential problem area. 

This is not to say that ILs cannot provide the basis of EXC materials.  Indeed, as 

already noted, a number of sorbents have already been described in which an IL alone is 

employed as both the diluent and the extractant.  Much work remains to be done, 

however, before sorbents incorporating extractant-IL combinations can achieve their full 

potential.  Among the variety of unresolved issues, the optimum level of extractant-

diluent loading on the support, the preferred support hydrophobicity and porosity, and the 

characteristics of the extractant and the IL yielding the most satisfactory stationary phase 

behavior are especially important. 
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CHAPTER 3: 

SOL-GEL GLASS-ENCAPSULATED CROWN ETHERS FOR THE 

SEPARATION AND PRECONCENTRATION OF STRONTIUM 

FROM ACIDIC MEDIA 
 

3.1 Introduction 

Although extraction chromatography is widely applied and generally recognized 

as offering significant advantages over other methods for radionuclide separation (3.1-

3.9) and preconcentration, it is not without limitations (3.1). Many of these limitations 

have their origins in the fact that extraction chromatographic (EXC) materials are 

prepared simply by impregnating an appropriate support (most frequently, porous 

polymers) with a metal ion extractant or a solution of the extractant in an appropriate 

solvent.  Because the extractant is not chemically bonded to the support, the physical 

stability of EXC resins is inadequate for many applications. The extractant is sorbed onto 

support solely by weak van der Waals forces, and because of these weak interactions, loss 

of extractant in mobile phase is quite common. In fact, dissolution or shearing off of the 

stationary phase from the support is the reason for the poor stability of EXC materials. 

This instability complicates the regeneration of the sorbent and leads to unsatisfactory 

reproducibility of its performance (3.10, 3.11). 

For some time now, there has been interest in the possibility of employing the 

properties of the support to enhance the performance of EXC materials (3.12).  For 

example, in an effort to prepare more stable EXC resins, various studies have been 

performed in which a support capable of acid-base interactions or ion-exchange is 

impregnated with an extractant bearing an appropriate (e.g., charged) functional group 

(3.13-3.22).   The capacity of these materials is generally less than that expected on the 



70 
 

 
 

basis of the extractant loading, however, suggesting that immobilization reduces the 

amount of extractant available for complexation (3.18).   Along these same lines, EXC 

materials have been prepared in which the extractant is incorporated into a mixture of 

monomers during their polymerization to yield the support (3.23).  Because the 

polymerization process can be adversely affected by the presence of the extractant, 

however, only certain types of extractants have physical and chemical properties 

appropriate for this type of incorporation (3.24, 3.25). 

A less-commonly investigated approach to the improvement of EXC materials 

involves the use of inorganic supports, such as silica.  While EXC resins employing silica 

as the support material are by no means uncommon (3.26-3.29), there has been little 

systematic effort to employ silica to enhance the stability, capacity, or metal ion uptake 

efficiency exhibited by sorbents prepared with a given extractant.  The use of inorganic 

supports offers several potential advantages over porous polymers, among them 

improved mechanical stability and chemical inertness, and negligible swelling (3.30).  

The use of silica offers an additional advantage, namely facile preparation through the 

application of well-established sol-gel methodology (3.31-3.33).  Sol-gel glasses doped 

with various organics or biomolecules have already proven to be of significant utility in a 

number of areas of chemical analysis, among them the fabrication of optical and 

electrochemical sensors (3.34) and the preparation of molecularly-imprinted sorbents 

(3.35-3.37).  Such studies have demonstrated that in most cases, dopant molecules retain 

their chemical properties upon incorporation into the glass matrix (3.38-3.46).   Sol-gel-

derived ion-sensing materials and electrode membranes encapsulating crown ether 

ligands, for example, have been shown to retain the ion-selectivity of the crown ether 
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while exhibiting good sensitivity and response time, despite the high rigidity of the 

matrix (3.47, 3.48).   More recently, sol-gel glass-encapsulated crown ethers have been 

investigated for metal ion separations.  Yost et al. (3.31), for example, found that a 

sorbent incorporating 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-bis(malonate) 

(Na4oddm) will selectively remove more than 90% of the strontium present in an aqueous 

solution containing a substantial excess of competing ions (e.g., Ca2+).  Subsequent work 

by Makote et al. (3.32) showed, however, that dicyclohexano-18-crown-6 (DCH18C6) 

encapsulated in a sol-gel glass exhibits only limited uptake of Sr2+ (Dw,Sr = 0.5) from a 

pH 4 aqueous phase if the crown ether is employed neat (i.e., undiluted).  Such results 

leave open the question of whether extraction chromatographic materials for metal ions 

superior to those presently available can be prepared by incorporation of a crown ether 

into a sol-gel glass matrix. 

In this study, our preliminary efforts to employ sol-gel glasses as a support for 

ionic liquid-based EXC materials (Chapter 2) have been extended to an evaluation of 

silica sol-gel encapsulation of extractants as an approach to improving the stability of the 

EXC materials. To this end, a series of EXC materials were synthesized by encapsulating 

the macrocylic polyether di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6) in a sol-

gel glass matrix.  These silica-based materials have been characterized and their 

properties compared to those of a well-established (16-18) commercial EXC resin 

incorporating the same extractant into a porous polymer (Sr-resin). 
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3.2 Experimental 

3.2.1 Materials 

The 4,4',(5')-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) was obtained 

from EichroM Technologies, Inc. (Darian, IL), and used as received. Tetramethyl 

orthosilicate (TMOS) and 1-octanol were obtained from Alfa Aesar (Heysham, UK). 

Tetraethyl orthosilicate (TEOS), formic acid (98%) and cetyltrimethylammonium 

bromide (i.e., hexadecyltrimethyl-ammonium bromide; CTAB) were purchased from 

Sigma Aldrich (St. Louis, MO), and used as received. Trace metal grade nitric acid 

(Fisher Scientific, Waltham, MA) was used for metal ion uptake kinetics experiments 

with the silica sol-gel glasses, while the Optima™ reagent was used for all other studies.  

All water was obtained from a Milli-Q2 system and exhibited a specific resistance of at 

least 18 MΩ-cm.  All methanol used was HPLC grade (Fisher Scientific). Radiostrontium 

isotope (Sr-85) was received from PerkinElmer (Shelton, CT). 

 

3.2.2 Instrumentation 

Radiotracers were assayed using a Perkin-Elmer 2480 Automatic Gamma counter. 

All thermograms were obtained using a TA Instruments Model Q50 thermogravimetric 

analyzer.  Scanning electron microscopy (SEM) was carried out on a Hitachi Model S 

4800 field-emission scanning electron microscope (SEM). The porosity of the materials 

was evaluated via BET measurements, specifically, the determination of N2 adsorption-

desorption isotherms at 77 K using a Micromeritics ASAP 2020 instrument. 
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3.2.3 Methods 

3.2.3.1 Preparation of crown ether-doped sol-gel glasses.   

Acid-catalyzed sol-gel processes (3.32) were employed to synthesize the silica 

sol-gel EXC materials incorporating the crown ether. Typically the solution gelled after 

one day and glass formation was complete after one week. To evaluate the effect of the 

level of crown ether incorporation on the properties of the sorbents, materials were 

prepared containing from ~10% to ~60% (w/w) extractant, dispersed in the mixture of 

TMOS or TEOS (1 mL) and formic acid (2 mL) (3.32).  The effect of a porogen, CTAB, 

was evaluated by adding it to this composition immediately after mixing. In all cases, 

evaporation of the hydrolysis products of the reaction (CH3OH and HCOOCH3) left 

behind a monolithic crystalline glass composite consisting of DtBuCH18C6 entrapped in 

the silica network. For the most highly loaded material, ~60% (w/w), a stable silica 

monolith could not be obtained. In all other cases, however, the formation of a stable 

glass was observed. These glasses were crushed and sieved to obtain materials in the 

desired particle size range (~50-100 μm) for use in subsequent metal ion uptake studies.  

Control (blank) sol-gel glass samples not containing DtBuCH18C6 were prepared from 

TMOS or TEOS following the same procedures.  For glasses containing the crown ether, 

thermogravimetric analysis (TGA) was employed to determine the level of DtBuCH18C6 

incorporation achieved.  Figure 3.1 summarizes the synthesis of silica-based EXC 

materials. 
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Figure 3.1 Preparation of silica sol-gel-based EXC materials 

 

 

For sol-gel glasses prepared in the presence of CTAB, crushing and sieving was followed 

by porogen removal via Soxhlet extraction (solvent : water; T : 40-60 °C; time : 10-15 

hrs), yielding silica powders of various porosities.  Following overnight calcination at 

275 °C, the porosity of the materials was evaluated via BET measurements, specifically, 

the determination of N2 adsorption-desorption isotherms at 77 K. 

 

3.2.3.2 Determination of weight distribution ratios   

Solid-liquid (weight) distribution ratios (Dw) for strontium were measured 

radiometrically using a commercial 85Sr radiotracer. Specifically, the uptake of the tracer 

from a series of nitric acid solutions by the sorbents was measured by contacting a known 



75 
 

 
 

volume (typically 1.0 mL) of 85Sr-spiked acid solution of appropriate concentration with 

a known quantity of resin.  The ratio of the aqueous phase volume (mL) to the weight of 

the sorbent/EXC material (g) typically ranged from 40-50. (This ratio is determined by 

the need to produce a readily measureable decrease in the aqueous activity by contact 

with the sorbent). A contact time of four hours (with occasional swirling) was employed 

for all silica-based EXC materials.  Following equilibration, an aliquot of the aqueous 

phase was withdrawn from each culture tube and filtered through a 0.22-μm 

poly(vinylidene fluoride) (PVDF) filter to ensure that no sorbent fragments were present.  

On the basis of the initial and final activity of a measured aliquot of this aqueous phase, 

(determined via gamma spectroscopy according to standard procedures on a Perkin-

Elmer 2480 Automatic Gamma Counter), the weight distribution ratio (Dw) of strontium 

was calculated from the following equation: 

                                      Dw = [(A0 – Af)/Af] (V/w)  (3.1) 

 

Here A0 and Af represent the aqueous phase activity (cpm) before and after equilibration, 

respectively, w is the mass of the resin taken (g), and V is the volume of the aqueous 

phase (mL). 

3.2.3.3 Metal ion uptake kinetics   

Into a series of screw-cap test tubes, each containing the same (± 10%) amount 

(20 mg) of EXC material, was introduced a known volume (typically 1 mL) of an 

appropriate nitric acid solution containing a Sr-85 radiotracer. At various time intervals 

following the introduction of the tracer solution, during which the samples were 

periodically swirled to facilitate equilibration, the aqueous phase was withdrawn from 
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one of the test tubes. After filtration through a 0.22 μm poly(vinylidene fluoride) (PVDF) 

filter, its activity was determined. When the amount of sorbent available was limited, the 

series of test tubes was replaced with a single screw-cap tube containing ca. 25 mg of 

sorbent in contact with a known volume (typically 1 mL) of an appropriate nitric acid 

solution containing a Sr-85 radiotracer. At various times following the addition of the 

tracer solution, a small aliquot (20 μL) of the aqueous phase was withdrawn and counted. 

From the initial and final (residual) activity of the aqueous phase, Dw values were 

determined as described above and a plot of the contact time dependence of Dw was 

prepared. 

3.2.3.4 Column preparation and characterization 

To pack a column, a small quantity of the silica-based EXC material was slurried 

in 18.2 MΩ water, and aliquots of this slurry were transferred onto a Bio-Rad 

Econocolumn (5.0 mm i.d. by 5 cm in length). Packing was carried out under gravity 

flow. When the column bed reached the desired height or volume, a small plug of glass 

wool was placed atop it so that it would not be disturbed by the introduction of a sample. 

The packed sorbent was then rinsed with several bed volumes of deionized water. 

Immediately prior to the introduction of a sample, the column was preconditioned with 5-

10 bed volumes of an appropriate nitric acid solution. Flow rates of ~2-3 ml/ cm2.min 

were typically employed.  
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3.3 Characterization of Crown Ether Encapsulated Silica Sol-Gel EXC Materials 

3.3.1 Extractant loading in the silica matrix 

The preparation of a conventional EXC resin employing a pre-formed support, 

whose capacity is obviously related directly to the available pore volume of the material, 

generally involves mixing of a calculated amount of extractant with a known quantity of 

support in the presence of a volatile solvent and its subsequent evaporation. Therefore, 

the percent composition of extractant is simply obtained from the quantity of the 

extractant and the solid support. For systems in which the support is fabricated in the 

presence of the extractant, as is the case for the formation of a sol-gel glass encapsulating 

a crown ether, the situation is less straightforward, however.  That is, it is not possible to 

know a priori the precise level of extractant incorporation achievable, particularly given 

that at sufficiently high concentrations, the extractant may interfere with the synthesis of 

the support (3.23).  For this reason, it is important to determination of the effect of crown 

ether encapsulation on the properties of the resultant glass and the maximum 

incorporation of DtBuCH18C6 consistent with a stable support.  To this end, a series of 

mixtures were prepared combining a fixed amount of the sol-gel glass precursors with 

increasing quantities of the crown ether.  Following a period of gelation and glass 

formation (as described above), the product glasses were examined. 

As a first step, a pair of “control” glasses to which no extractant had been added 

were prepared.  Figure 3.2 shows the results of TGA analyses of these samples, one 

derived from TMOS and the other from TEOS according to the following reactions: 
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                   Si(OCH3)4 + 2HCOOH  SiO2 + 2CH3OH + 2HCOOCH3                 (3.2) 

 Si(OCH2CH3)4 + 2HCOOH  SiO2 + 2CH3CH2OH + 2HCOOCH2CH3  (3.3) 

 

Both thermograms show two distinct mass loss steps.  The first, which occurs below 200 

C, has been attributed to desorption of water and evaporation of the alcohol.  The 

second, less-distinct peak occurring above 200 C has been described as arising from the 

decomposition of residual organics and the evaporation of water molecules trapped 

within the silica (3.49).  Both materials, in fact, apparently contain similar levels (ca. 

15%) of residual starting materials (i.e., TMOS or TEOS and formic acid) and reaction 

by-products (i.e., methanol or ethanol; methyl formate or ethyl formate) from their 

synthesis. Not unexpectedly, TEOS yields somewhat less silica backbone than TMOS 

under the same conditions. 
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Figure 3.2: Thermograms for silica sol-gel glasses prepared from TMOS and TEOS 

in the absence of added extractant (i.e., “control” samples). Peaks in the derivative 

plots correspond to the maximum mass loss. 
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Figure 3.3: Thermogram for silica-encapsulated DtBuCH18C6 (10% (w/w)). 

 

Figure 3.3 shows the results of TGA analysis of a representative sol-gel glass 

incorporating DtBuCH18C6, in this case, one prepared to contain ca. 10% (w/w) of the 

crown ether.  (Given the similarity of the properties of the TMOS- and TEOS-derived 

glasses, this and all subsequent crown ether encapsulation studies were performed only 

with the TEOS-based glass.) In a typical run, the temperature is first raised to 150 °C, 

where it is held for 20 minutes to remove water, residual starting materials, and reaction 

by-products (as mentioned above) from the glass.  A further increase in temperature, 
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initially to 420 °C and finally, to 500 °C, results in removal of the crown ether.  On the 

basis of studies of the thermal stability of a variety of crown ethers (3.54), in particular, 

the known onset temperature for mass loss upon heating for DCH18C6 and the effect of 

the addition of a tert-butyl group to a molecule on Tonset values, it would be anticipated 

that loss of DtBuCH18C6 would occur at ca. 300 C, substantially lower than the 

temperature actually required for its removal.  The apparent greater stability of the 

encapsulated crown ether is consistent with the results of Saad et al. (3.49) for sol-gel 

immobilized thiacrown ethers, whose thermal stability was found to be significantly 

enhanced (by ca. 200-300 C) upon incorporation into the glass.  For this sample, the 

observed mass loss at the higher temperatures corresponds to incorporation of 11.2% 

(w/w) DtBuCH18C6, in good agreement with the expected (“as prepared”) composition.  

Greater deviations from the expected values were observed for several other samples, 

however, a likely result of sample-to-sample variations in the efficiency of extractant 

encapsulation.  Thus, TGA represents the most reliable means for determining the precise 

composition of the crown ether-loaded sol-gel sorbents.  In the course of these 

experiments, it is important to note, it was found that the presence of more than ~50% 

(w/w) of the crown ether or more than ~ 65%(w/w) crown ether and CTAB (i.e., 

porogen) prevents the formation of a stable glass.  As a result, all subsequent experiments 

were confined to systems incorporating no more than these amounts of crown ether or the 

crown ether and porogen combination. The composition of porogen treated materials 

(i.e., percent of extractant and porogen) were also determined by thermogravimetric 

analysis.  
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3.3.2 Physical properties of the silica sol-gel materials 

Table 3.1 summarizes the surface area, pore volume, and average pore width data 

(obtained by BET measurements) for the same materials.  For purposes of comparison, 

the corresponding values for Amberchrom CG-71m, the support employed for the 

preparation of the commercially available Sr-selective EXC resin (3.8, 3.9), are also 

shown.  For the Amberchrom resin, the surface area determined here, 577 m2/g, is in 

good agreement with that reported by the manufacturer (500 m2/g) (3.50).  For both sol-

gel glass samples, slightly (ca. 20%) larger surface areas were observed, along with 

substantially lower pore widths and volumes.  The BET isotherms for these materials 

exhibit a very small hysteresis loop, indicating that micropores (<2 nm), not mesopores 

(2-50 nm), represent the primary contributor to the observed porosity. These results are 

consistent with those typically observed for glasses prepared via acid-catalyzed sol-gel 

synthesis (3.33). It has been reported that for sorbents exhibiting simple pore geometry, 

diffusion coefficients (and thus, diffusion rates) will decrease with decreasing pore size 

(3.51).  From the perspective of the development of EXC materials then, the small pore 

sizes observed for these glasses are a matter for concern, as they suggest that access to 

the encapsulated extractant may be hindered, and thus, the kinetics of metal ion 

uptake/stripping poor. 
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Table 3.1: BET characterization of the silica sol-gel-based EXC materials 

 

 

Silica sol-gel EXC materials 

BET surface Area 

(m2/g) 

Pore volume 

(cm3/g) 

Avg pore width 

(Å) 

TMOS control 678 0.42 25 

TEOS control 678 0.41 24 

TEOS ~40% CTAB (w/w) 583 0.81 55 

TEOS ~50% CE (w/w) 915 0.96 42 

TEOS ~60% (CE + CTAB) (w/w) 726 1.12 62 

Amberchrom CG-71 m 577 1.27 88 

 

 

3.3.3 Metal ion uptake and uptake kinetics studies 

Figure 3.4 shows the acid dependency of strontium ion uptake on a series of sol-

gel glasses containing amounts of DtBuCH18C6 in the 10-50% (w/w) range. As would 

be expected (and is observed for commercially available Sr sorbents (3.8-3.10)), at all 

extractant levels, strontium retention is generally found to increase with rising nitric acid 

concentration, consistent with the sorption of a strontium-nitrato-crown ether complex: 

 

Sr2+ + 2 NO3
- + CE org   Sr(NO3)2  CE org    (3.4) 
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Figure 3.4: Effect of nitric acid concentration on the extraction of strontium ion by 

silica-encapsulated DtBuCH18C6 (~10% (o), ~20% (♦), ~30% (□), ~40% (◘), ~50% 

(●) (w/w)). (The smooth curves are intended only as a guide to the eye.) 
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Unexpectedly, however, there appears to be no simple relationship between the extent of 

strontium uptake at a given acidity and the amount of DtBuCH18C6 incorporated.  For 

example, over a nearly ten-fold range of acidity, Dw,Sr is actually lower for a sorbent 

incorporating 20% (w/w) crown ether than for one containing 10% extractant.  This 

indicates that not all encapsulated extractant is available for interaction with the metal 

ion, and that the available fraction varies with the extent of crown ether incorporation.  

From the perspective of the characteristics required of an EXC material for 

radiostrontium, the uptake behavior of the sorbent incorporating 50% (w/w) 

DtBuCH18C6 is clearly superior to that of the others.  That is, this material provides a 

comparatively high value of Dw,Sr at high (1-3 M HNO3) acidities (albeit slightly lower 

than that obtained with the 40% (w/w) material) and exhibits greater sensitivity to 

decreasing aqueous acidity than do sorbents prepared using other levels of extractant 

loading, thus facilitating strontium recovery.  Unfortunately “bleeding” of the extractant 

from the support is generally observed for silica-based materials containing more than 

~10% (w/w) of the crown ether, particularly at high acidities (≥4 M HNO3). The 

extractant loss is especially severe when the sorbent containing 50% (w/w) crown ether is 

allowed to stand in contact with aqueous nitric acid.  As a result, this material was not 

considered a viable candidate for further evaluation. Instead material containing ~40% 

(w/w) extractant was selected for a more detailed examination of its uptake behavior.   

Figure 3.5 depicts the kinetics of strontium ion uptake from nitric acid solution by 

this sorbent.  As can be seen, the uptake is not especially rapid.  In fact, equilibrium is 

approached only after 4 hours.  Like the results shown in Figure 3.3 then, these suggest 

that not all of the encapsulated extractant is readily accessible to metal ions.  Indeed as 
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noted by Lin and Liu (3.52), rapid complex formation between a metal ion in solution 

and the encapsulated extractant can initially occur at the surface of the sorbent, but as the 

availability of these surface sites decreases, the metal ion must diffuse into the pores of 

the silica network before reacting with the extractant, a slower process.  Similarly slow 

uptake, it should be noted, was reported by Dai et al. (3.31) for the sorption of Sr2+ by 

Na4oddm and by Khan et al. (3.55) for the uptake of Hg(II) by 1,5-diphenylcarbazide, 

both incorporated into a sol-gel-derived glass.  Thus this observation is not simply a 

feature of the present system, but rather may be a general characteristic of encapsulated 

extractants. 
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Figure 3.5: Kinetics of the uptake of strontium ion from 4.7 M HNO3 by silica-

encapsulated DtBuCH18C6 (~40% w/w). (The smooth curve is intended only as a 

guide to the eye.) 
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As already noted, the average pore size of the unloaded (i.e., control) sol-gel glass 

is substantially less than that of the commercial polymeric support, providing a partial 

explanation for the sluggish kinetics.   As part of our initial investigation of glass 

formation in these systems, it was observed that the presence of a crown ether does lead 

to glasses exhibiting a higher porosity and larger average pore size than are observed in 

its absence (Table 3. 1). Nonetheless the pore size remains well below that measured for 

Amberchrom CG-71.  In an effort to further increase the support porosity, the effect of 

the addition of a porogen (i.e., the surfactant, CTAB) during the glass formation process 

was examined.  It has long been known that the pore size of silica can be “tuned” by 

intercalation of layered silicates with surfactant molecules (3.53).  It has also been 

reported that, for simple pore geometry, diffusion coefficients rise with increasing pore 

size (3.51). With the objective of “opening up” the silica network, a series of sol-gel 

glasses were prepared in the presence of CTAB and its effect on the glass porosity 

determined. As shown in Table 3.I, CTAB addition yields a substantial (two-fold) 

increase in pore volume and width vs. the control materials.  When combined with the 

crown ether (which itself, improves the porosity), the effect of CTAB on the support 

porosity is even greater, with the resultant glass exhibiting a total pore volume 

approaching that of Amberchrom CG-71 and an average pore width only one-fourth less.  
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3.4 Optimization and Characterization of the Silica-based EXC Materials  

 

In an effort to optimize the composition of the silica sorbents, a series of materials 

were prepared by adding varying amounts of extractant and porogen to a fixed (1:2 v/v) 

mixture of the silica precursor (TEOS) and formic acid. As noted earlier, the 40% and 

57% (w/w) extractant-loaded materials showed comparatively good metal ion uptake 

(Figure 3.3). Therefore, in this study, the loading of the extractant and porogen was 

maintained in the range from ~40-65% (w/w). Table 3.2 summarizes the compositions of 

the materials. As can be seen, when the amount of porogen exceeds 200 mg, the loss of 

the dopents (i.e., CE and CTAB) upon Soxhlet extraction is substantial, reaching >90% 

when 468 mg of CTAB are used. As porogen content is reduced, the loss generally 

declines. As can also be seen, however, the loss upon washing is also influenced by the 

amount of crown ether present. It appears, in fact, that for a fixed amount of porogen, 

increasing amounts of crown ether have a stabilizing effect until high levels of loading 

are reached. The best results were obtained by using 150 mg CE with 200 mg CTAB, and 

this material was chosen for further investigation. To place the results obtained in 

context, additional experiments were also performed on materials containing other 

amounts (10, 26, and 46%) of the crown ether/porogen after washing. 
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Table 3.2: Composition of the porogen treated silica sol-gel based sorbents 

 

TEOS 

(mL) 

Formic 

Acid (mL) 

Crown 

ether (mg) 

Surfactant 

(mg) 

% (CE+CTAB) 

encapsulation as 

prepared 

% (CE+CTAB) 

encapsulation 

after wash 

% (CE + 

CTAB) lost 

to washing 

1 2 118 468 64 6 91 

1 2 118 200 49 10 80 

1 2 250 350 64 17 73 

1 2 95 200 46 26 43 

1 2 150 200 51 43 16 

1 2 250 200 60 46 23 

1 2 400 200 64 32 50 

 

 

Figure 3.6 summarizes the results of strontium uptake kinetics experiments on 

these materials. It was anticipated that the greater porosity arising from CTAB addition 

would be accompanied by an increase in the rate of strontium uptake by the sorbent.  

Indeed as shown, strontium sorption by the porogen-treated material containing 43% and 

46% (w/w) DtBuCH18C6 and CTAB is significantly faster than for in the untreated 

material (Figure 3.5). Interestingly, the rate of uptake is even faster when the amount of 

encapsulated extractant/porogen is reduced.  In fact, uptake rates comparable to those 

observed for the commercial Sr resin (3.8-3.10) are observed for loading levels at or 

below 26% (w/w), an observation which may have its origins in the decreased stationary 
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phase thickness expected to accompany reduced levels of extractant encapsulation. (This 

reason may also explain the relatively slow kinetics of the 46% (w/w)-loaded materials.) 

While the kinetics of uptake are an important consideration in optimizing the 

performance of a metal ion sorbent, they are clearly not the only consideration. In fact, 

the extent to which the metal ion is sorbed (i.e., Dw,M) is equally, if not more, important. 

When this is considered in conjunction with the kinetics results and available information 

concerning stability, it becomes clear that the composition involving 43% (CE + CTAB) 

loading (hereafter referred as SSG-Sr resin) represents the best choice for additional 

study. 
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Figure 3.6: Kinetics of the uptake of strontium ion from 6.2 M HNO3 using porogen-

treated silica-encapsulated DtBuCH18C6 (~10% (▲), ~26% (○), ~43% (●), ~46% 

(♦) (w/w)). 
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Figure 3.7 compares the strontium ion uptake of this optimized sol-gel glass-

based material to that of the conventional Sr-resin. The silica-based material clearly 

shows higher metal ion uptake at acidities >1 M, with the difference being most apparent 

at high acidities (>3 M). In addition, the acid dependency of strontium ion uptake is 

steeper for the SSG-Sr resin, which indicates that stripping of the sorbed strontium should 

be more facile.  

To determine the stability of the optimized silica-based material, a column packed 

with the sorbent was subjected to 500 FCV of water wash. The themograms before and 

after the water wash (Figure 3.8) showed that the loss of the stationary phase (here, 

extractant and porogen) was minor (<5%), consistent with good sorbent stability. To 

further investigate the stability of the materials, the water washed sorbent was subjected 

to further washing, this time with 100 FCV of 3 M HNO3. The thermogram after this acid 

wash again shows (Figure 3.8) only minor stationary phase loss (again, ca. 10%).  
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Figure 3.7: Effect of HNO3 concentration on the extraction of strontium ion by 

optimized silica sol-gel based EXC materials (●) and conventional Sr-resin (○).  
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Figure 3.8: Thermograms for optimized silica sol-gel sorbents. Before washing (     -

), after 500 FCV water wash (- - - -) and after 500 FCV water wash and 100 FCV 3 

M HNO3 wash (      ). 

 

 

 

Chromatographic characterization of the water and acid-washed silica-based 

material was carried out to determine its performance (Figure 3.9). The characteristics of 

the SSG-Sr resin and the packed column are summarizes in Table 3.3. Interestingly, this 

highly washed material yields a satisfactory elution profile of strontium ion, with a 

workable breakthrough volume (~15 FCV) and a peak maximum at a k’of 75. The 

number of theoretical plates (N) calculated from the elution curves (3.56), which 

indicates the column efficiency, is 2, whereas that of for Sr-resin packed column is 8. As 

mentioned before, the irregular shape of the silica particle and the slow kinetics may be 

responsible for this lower efficiency.  
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Table 3.3 Characteristics of SSG-Sr resin and packed column 

 

Bulk materials SSG-Sr resin 

Stationary phase DtBuCH18C6 + CTAB 

Support Silica 

Particle diameter 53- 106 µm 

Extractant loading ~43% 

Density of extractant-loaded beads 1.42 g/mL 

Packed column 

 
Vs, mL/mL of bed 0.17 

Bed density (g/mL) 0.47 

Vm, mL/mL of bed (also FCV) 0.67 

Vs/Vm 0.25 

 

 

Figure 3.10 shows that this same material yielded good loading and stripping 

behavior. Up to 16 FCV (i.e., the load and rinse used for this experiment), no 

breakthrough of strontium was observed. In addition, the recovery of sorbed strontium 

using 0.01 M HNO3 was essentially complete (after ~ 50 FCV). Notwithstanding the acid 

dependency results (see above), stripping of the column proved to be less facile than the 

conventional Sr-resin. Using ~9 FCV of strip solution (0.01 M HNO3), it is possible to 

recover ~95% of the loaded strontium ion from a Sr-resin column, whereas only ~65% of 

the strontium ion is recovered from SSG-Sr resin loaded resin in the same volume. 

Slower desorption kinetics for the SSG-Sr resin may be the cause of this difference. 

Following these experiments (washing and chromatographic characterization), the effect 

of nitric acid concentration on the uptake of strontium ion by the sorbent was evaluated. 

By this point, it should be noted, the SSG-Sr resin had experienced ~500 FCV water 



97 
 

 
 

wash, ~225 FCV 3M HNO3 wash, and ~65 FCV 0.01 M HNO3 wash. Nevertheless, the 

resin showed (Figure 3.11) almost identical strontium ion uptake compared to unwashed 

SSG-Sr resin, suggesting that the physical stability of the silica sol-gel glass encapsulated 

extractant-based materials is excellent. 
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Figure 3.9: Elution behavior of strontium ion on a water- (500 FCV) and acid (100 

FCV) washed SSG-Sr resin. (eluent : 3 M HNO3) 
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Figure 3.10: load-rinse-strip experiment on SSG-Sr resin; loading and rinsing of 

strontium ion using 3 M HNO3 and striping using 0.01 M HNO3. (The smooth curve 

is intended only as a guide to eye) 
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Figure 3.11: Effect of nitric acid concentration on strontium ion uptake by the 

washed SSG-Sr resin (●) and unwashed SSG-Sr resin (○). 
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3.5 Conclusions 

The results presented here suggest that silica encapsulation may provide a route to 

the preparation of new and useful metal ion sorbents for radiostrontium.  As has been 

shown, using well-established sol-gel chemistry, it is possible to produce materials 

incorporating up to 50% (w/w) of a crown ether.  Although the rate of metal uptake by 

these materials is not rapid and leaching of extractant at high acidities is observed, 

modification of the properties of sorbent by porogen treatment can be easily 

accomplished, thereby yielding sorbents with improved strontium uptake kinetics, greater 

retention, and improved stability.  The optimization of the sorbent composition (i.e., 

extractant and porogen percentages) yielded a material that showed better strontium ion 

uptake than the conventional Sr-resin. The kinetics of the optimized material is still 

somewhat slower than conventional material, but not unacceptably so. Moreover, 

porogen treatment does provide a significant improvement in kinetics over the non-

porogen-treated material. The optimized SSG-Sr resin showed good stability, with only 

few percent of the extractant being lost upon extensive water and acid washing. The 

elution profile of strontium on the washed material demonstrates that satisfactory 

breakthrough volume and k’ can be obtained. In addition, the stripping of sorbed 

strontium ion is feasible.  

Although significant progress has been made, much remains to be accomplished 

before materials comprising a silica-encapsulated extractant could be regarded as a viable 

alternative to existing extraction chromatographic resins.  For example, the current route 

to preparation yields an assortment of irregular particles (resembling shards of glass) 

whose chromatographic properties are unlikely to be entirely satisfactory.  Clearly then, a 



102 
 

 
 

facile means to prepare uniform, porous, spherical glass particles containing an extractant 

is required. 
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CHAPTER 4: 

STAGNANT PORE PLUGGING AS A MEANS OF IMPROVING THE 

CHROMATOGRAPHIC EFFICIENCY OF EXC RESINS 

4.1 Introduction 

A variety of extraction chromatographic materials have been developed over the 

years and evaluated in a wide range of applications, particularly in the environmental 

radiochemistry. One of the most important challenges in the use of these materials is the 

separation of very similar metal ions (i.e., ions of comparable charge and size), which are 

frequently encountered in nuclear waste treatment, spent fuel reprocessing, and 

radiochemical analysis. For example, actinide-lanthanide separations remain a challenge 

despite significant developments in the fields of solvent extraction and ion exchange 

(4.1). To minimize the long-term radiotoxicity of the by-products of uranium-based 

nuclear fission, it is important to remove and recover the transuranic elements plutonium, 

neptunium and americium. Several separation systems are available to effect the 

separation of plutonium and neptunium (see Chapter 1, Table 1.2). The isolation of 

americium (241/243Am), however, remains difficult due to its chemical similarity to curium 

and certain lanthanides.  

Existing methods for this separation rely on group separations (e.g., Am/Cm from 

lanthanides) that exploit the presence of ligand donor atoms (extractants) softer than 

oxygen (e.g., nitrogen, sulfur) for preferential bonding with actinides (4.1). A wide array 

of ligands have been immobilized onto polymer supports for the separation of actinide 

elements, including tri-n-butyl phosphate (TBP) (4.2, 4.3), tri-n-octylamine (4.4, 4.5), 

Aliquat 336 (tri-caprylylmethylammonium chloride) (4.6, 4.7), bis(2-
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ethylhexyl)phosphoric acid (HDEHP) (4.8, 4.9), and many others. These extractants have 

been dispersed onto substrates such as diatomaceous earth, silica, powdered cellulose, 

and various polymers (4.10). Because of various limitations, however, including 

inadequate stability and limited capacity, very few of these EXC materials have found 

widespread application. Especially problematic is their poor selectivity, which makes 

them unsuitable for the separation of metal ions having the same charge and comparable 

ionic radii (4.11). Recently, for example, a study on trivalent actinide extraction using 

commercially available actinides resins (TEVA, TRU, DGA(N), actinide, Ln, Ln2, and 

Ln3 as manufactured by Eichrom Technologies) found that the elution curves of 

americium and curium  overlap significantly (4.12). 

Despite its obvious importance, relatively little attention has been devoted to the 

separation of such similar cations by EXC, and few systematic studies have been reported 

in the literature (4.13-4.16). This is likely the result of what has been a major limitation 

of existing extraction chromatographic materials, namely the significant band broadening 

of the elution curves (an indication of the poor chromatographic/column efficiency of the 

materials) normally observed (8.19). Column efficiency, typically expressed in terms of 

the height equivalent of a theoretical plate (HETP) or number of theoretical plates (N), is 

a complex function of a number of system characteristics, including mobile phase 

velocity, the diffusion coefficients of the metal ion in the mobile and stationary phases, 

particle diameter, temperature, the kinetics of extraction, and the stationary phase 

thickness (4.17). The ideal EXC resin, from the efficiency perspective, is one consisting 

of uniform, small-particle size supports bearing a thin, homogeneous layer of a non-
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viscous extractant capable of rapid reaction with the metal ion(s) of interest. Few, if any, 

extraction chromatographic materials approach this ideal, however. 

Conventional support materials for extraction chromatography contain openings 

comprising both deep and shallow pores. It is obviously assumed that more time is 

required for a metal ion to diffuse in and out of a deep pore than a shallow one, due to the 

longer diffusion path in the former case. This slow diffusion contributes to the band 

broadening observed in the elution curves of metal ions. In this study, an effort has been 

made to block the relatively inaccessible (“stagnant”) pores of the support by use of a 

suitable filler, thus enabling one to load the extractant only into the readily accessible 

pores. The results show that this “stagnant pore plugging” approach can yield EXC 

materials (hereafter referred as SPP material) providing narrower elution bands (i.e., 

higher efficiency) than are achievable with conventional resins. 

4.2 Experimental 

4.2.1 Materials 

The 4,4',(5')-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) was obtained 

from EichroM Technologies, Inc. (Darian, IL) and used as received. Polystyrene (MW: 

1300, 13000, 123000), polypropylene glycol (PPG) and 1-octanol (99%) were obtained 

from Alfa Aesar (Heysham, UK). HDEHP was obtained from Sigma Aldrich and purified 

as described below before use. All solvents (e.g., methanol, acetone, dichloromethane 

(DCM), propanol, butanol, isopropyl alcohol, toluene, acetonitrile, dimethyl formamide, 

diethyl ether), used were reagent grade. All water was obtained from a Milli-Q2 system 

and exhibited a specific resistance of at least 18 MΩ-cm. Radiostrontium (Sr-85) was 
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purchase from PerkinElmer (Shelton, CT), while Europium-152/4 was a generously 

donation from Argonne National Laboratory. 

4.2.2 Instrumentation 

The radiotracers were assayed using a Perkin-Elmer Model 2480 Automatic 

Gamma counter. All thermograms were obtained using a TA Instruments Model Q50 

thermogravimetric analyzer.  The physical appearance and the phosphorous profile of the 

materials were determined by Hitachi Model S 4800 field emission scanning electron 

microscopy (SEM). SEM-EDX experiments were performed on a 20% (w/w) HDEHP-

loaded SPP sorbent and commercial 40% HDEHP loaded Ln-resin. To mount the 

sorbents in the SEM column, a pair of cylindrical graphite poles were used. One of the 

ends of the pole was cut to make a shape of trapezium, on which two ton adhesive from 

Devcon (Danvers, MA) was applied and allowed to dry for ~30 minutes. The resin was 

then spread on top of the trapezium and allowed to settle overnight. The following day, a 

resin bead was cut in half to expose its interior, thereby permitting examination of the 

cross-section of the bead under SEM. 

 

4.2.3 Methods 

4.2.3.1 Preparation of stagnant pore-plugged EXC materials 

Purification of HDEHP. A 1M solution of crude HDEHP was prepared by diluting 200 

mL of HDEHP to 600 mL with diethyl ether. A 170 gram portion of CuSO4.5H2O was 

dissolved in 500 mL of ultra-pure water to yield a 1M solution. The two (immiscible) 



112 
 

 
 

solutions were then contacted in a 2-liter separation funnel, and 50 grams of NaOH was 

slowly added. (Twice the stoichiometric amount of CuSO4 was used to ensure a complete 

reaction). The mixture was shaken vigorously for 15 minutes. When the reaction was 

complete, the organic phase had acquired a dark blue color, while the aqueous phase was 

light blue and contained traces of a brown precipitate (excess Cu(OH)2). Because the 

phases were cloudy and poorly defined, the entire mixture was divided into four bottles 

and centrifuged at 1800 rpm for 30 minutes. When the two phases separated, the organic 

phase was carefully decanted and the aqueous phase discarded. To remove particulate 

matter from the organic phase (containing Cu(DEHP)2), it solution was filtered using 

Whatman glass microfiber paper (GF/F with a 0.7 micron particle size retention) in a 

vacuum filtration system. 

 The filtered Cu(DEHP)2 solution was transferred to a 4 liter beaker and stirred 

rapidly using a large magnetic stirrer. A 2-L separatory funnel filled with acetone was 

positioned above the stirring solution and dripped into the solution at a rate of about 

2L/hour. As the concentration of acetone increased, blue crystals began to precipitate out 

of the solution. When approximately 1.5 L of acetone had been added, the excess solution 

was decanted, and the crystals were filtered and washed 5 times with 20-mL portions of 

acetone. The crystals (160 grams) were air dried and then re-dissolved in 500 mL of 

diethyl ether. The purification procedure was then repeated. 

The Cu(DEHP)2 was converted back to the acid form by contacting the purified 

complex in diethyl ether(~150 mL) twice with a 500 mL portion of 0.5 M HCl. To 

remove any HCl from the ether, the HCl treatment was followed by three 500-mL 

washings of the organic phase with ultra-pure water. The HDEHP was isolated from the 
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washed organic phase by rotary evaporation at 50˚C under vacuum for 2 hours. About 

150 mL of clear and colorless HDEHP was recovered from the original 200 mL of 

impure amber-colored HDEHP. 

Evaluation of Polystyrene as a filler material. In an effort to prepare an EXC material 

whose stagnant pores were plugged with polystyrene, a commercially available 

polymeric support, Amberchrom CG-71, was impregnated with polystyrene of various 

molecular weights using the same type of procedure normally employed to load the 

support with extractant (“dry impregnation”). Prior to impregnation, portions of the crude  

(i.e., unpurified, as received) Amberchrom CG-71m resin (Rohm & Haas, Philadelphia, 

PA) were contacted with water for 30 minutes with occasional swirling. The resulting 

slurry was transferred to a coarse-fritted glass funnel and the water was removed by 

vacuum filtration. Methanol was poured over the wet resin and allowed to percolate 

through the bed under gravity. The remaining methanol was removed by evaporation 

under vacuum. This process was repeated two additional times or until the methanol 

washings were clear and colorless. Finally, the resin was water washed until the pH of the 

washings was ≤7. Beads of this pretreated resin were then mixed with a polystyrene 

solution prepared by dissolving a known mass of the polymer (corresponding to ~40% 

(w/w) of the impregnated final materials) in dichloromethane. The mixture was then 

subjected to vortex mixing and sonication for varying lengths of time to obtain 

polystyrene-impregnated EXC materials, which were recovered by rotary evaporation 

under vacuum. Because this process was expected to fill all pores in the support, it was 

next necessary to partly strip the support of the filler, thereby creating room for extractant 

loading. This was accomplished by slowly flowing dichloromethane through a known 
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mass of the polystyrene-laden sorbent. The strip solution (i.e., DCM) was collected and 

the mass of the polystyrene removed was determined both gravimetrically after 

evaporation of the solvent and by UV-VIS spectrophotometry. Polystyrene not recovered   

was assumed to remain in the less accessible regions of the support. 

Polypropylene glycol (PPG) as filler. Beads of Amberchrom CG-71 were impregnated 

with polypropylene glycol (PPG) in the same manner described above for polystyrene. 

Following partial removal of the PPG by stripping with n-hexane, the beads were loaded 

with the extractant of interest by slurrying them in a minimal amount of n-hexane 

solution of the extractant, followed by slow removal of the hexane by rotary evaporation 

at room temperature under vacuum. A schematic diagram of the procedure followed is 

shown in Figure 4.1.  

 

 

 

 

 

 

 

 

Figure 4.1: Schematic diagram for the preparation of stagnant pore plugged 

materials. 
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By changing the quantity of solvent (here, n-hexane) used for stripping, the mass of the 

PPG-filled material taken, and the contact time employed, supports impregnated to 

various degrees could be obtained. In a typical run, ~4 gm of the PPG-filled resin was 

placed in a fritted funnel (65 mm porosity C filter disc) and spread uniformly. A 40-mL 

aliquot of n-hexane was then added. The mixture was then subjected to occasional 

swirling and stirring for 10 minutes. After this, the stripping solution was allowed to 

discharge and collected in a round-bottom flask. The removal of the n-hexane by 

evaporation under vacuum left a residue, which was then weighed to determine the 

amount of filler (PPG) stripped from the resin. Following this procedure, a sorbent 

containing ~50% filler was obtained. By reducing the volume of the strip solution to 20 

mL, sorbent incorporating ~75% filler was obtained. Impregnation of these sorbents with 

the extractant yielded materials containing ~10% and ~20% (w/w) of HDEHP or 

DtBuCH18C6 (CE) hereafter referred to as HDEHP/CE-SPP (simply SPP) materials.  

4.2.3.2 Determination of weight distribution ratios 

Solid-liquid (weight) distribution ratios (Dw) for the metal ions of interest (Sr2+ 

and Eu3+) were measured radiometrically using commercial 85Sr and 152Eu radiotracers. 

Specifically, the uptake of the tracer from a series of nitric acid solutions by the sorbents 

was measured by contacting a known volume (typically 1.0 mL) of 85Sr or 152Eu-spiked 

acid solution of appropriate concentration with a known quantity of the sorbent. The ratio 

of the aqueous phase volume (mL) to the weight of the EXC material (g) typically ranged 

from 40-50. (This ratio is determined by the need to produce a readily measureable 

decrease in the aqueous activity by contact with the sorbent). A contact time of ~1 hour 

(with occasional swirling) was employed for equilibration.  Following equilibration, an 
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aliquot of aqueous phase was withdrawn from each culture tube and the activity counted. 

On the basis of the initial and final activity of a measured aliquot of this aqueous phase 

(determined via gamma spectroscopy according to standard procedures on a Perkin-

Elmer 2480 Automatic Gamma Counter), the weight distribution ratio (Dw) of strontium 

was calculated from the following equation: 

                                      Dw = [(A0 – Af)/Af] (V/w)  (4.1) 

Here, A0 and Af represent the aqueous phase activity (cpm) before and after equilibration, 

respectively, w is the mass of the resin taken (g), and V is the volume of the aqueous 

phase (mL). 

4.2.3.3  Capacity of the sorbents 

For this experiment, a highly concentrated solution (each mL. of solution 

containing 5 times the stoichiometric amount of the extractant present) of inactive 

strontium nitrate or europium nitrate (as appropriate) in ~5.8 M nitric acid was made and 

labeled (spiked) using a Sr-85 or Eu-152 radiotracer. A known quantity the sorbent 

(typically 20-25 mg) was then placed in a 2 mL plastic disposable column and contacted 

with 1 mL of the radiotracer-spiked solution. Contact was maintained for  ~2 hours, well 

beyond the period required for equilibrium to be reached. The acidity of the aqueous 

phase was chosen to provide a distribution ratio for the strontium ion of ca. 120-150, 

corresponding to >99% uptake. Following equilibration, the aqueous phase was 

withdrawn from the column and its activity determined.  From the initial and final 

(residual) activity of the aqueous phase, the Dw value was determined as described above. 

If it is assumed that the fraction of non-radioactive strontium taken up corresponds to the 
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fraction of Sr-85 sorbed, then the capacity of the sorbent (mg Sr/g of sorbent) is easily 

calculated. Similar capacity experiments were conducted for the conventional Ln-resin to 

permit ready comparison of the performance of the new SPP sorbents to the commercial 

material. 

4.2.3.4 Column preparation and characterization 

To pack a column, a small quantity of the SPP material was slurried in deionized 

water, and aliquots of the slurry were transferred into a Bio-Rad Econocolumn (5.0 mm 

i.d. by 5 cm in length). Packing was carried out under gravity flow. When the column bed 

reached the desired height, a small plug of glass wool was placed atop it so that it would 

not be disturbed by the introduction of a sample. The packed sorbent was then rinsed with 

several free column volumes of deionized water. Prior to introduction of a sample, the 

column was preconditioned with 5-10 free column volumes of an appropriate nitric acid 

solution. Flow rates of ~2-3 mL cm-2 min-1 were typically employed.  

Column parameters such as the bed density, the volume of stationary phase, (vs, 

the volume of liquid extractant solution contained in the pores of the support), and the 

volume of mobile phase (vm, also known as free column volume (FCV)) were either 

measured or calculate using the characteristics of the sorbents and the column listed in 

Table 4.1. In particular, the bed density was determined from the weight of the 

chromatographic material required to prepare a bed of known volume. 

     The density of the conventional EXC materials was determined by two 

different methods. In the first, the volume of water displaced by a known mass of sorbent 

suspended in water in a volumetric flask was measured. In the second, a portion of the 
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EXC material was added to solutions containing varying concentrations of nitric acid 

until a concentration was found in which the sorbent remained suspended after 

centrifugation. At this point, the density of the EXC material is the same as the density of 

the acid solution. The average of the two values was used in all calculations. 

The volume of mobile phase (i.e., the free column volume, vm) was calculated 

from the difference in the bed volume and the volume of resin in the bed. The latter 

volume was determined from the weight of the EXC material in the bed and its density. 

The volume of stationary phase, vs, was determined from the weight of EXC material in 

the column, the resin loading (i.e., the weight percent of extractant or extractant diluent 

solution present in the resin), and the density of the extractant or its solution. Table 4.1 

summarizes the characteristics of the 20% HDEHP loaded stagnant pore plugged sorbent 

and compared with conventional Ln-resin.  

Table 4.1 Characteristics of 20% HDEHP-loaded SPP sorbent and conventional Ln-

resins and packed columns 

 

Bulk materials 

20% HDEHP loaded 

SPP sorbents 

40% HDEHP loaded 

conventional sorbents 

Stationary phase HDEHP HDEHP 

Support Amberchrom CG-71m Amberchrom CG-71m 

Particle diameter 75 µm 75 µm 

Extractant loading ~20% ~40% 

Density of extractant-loaded beads 1.16 g/mL 1.14 g/mL 

Packed columns 

Vs, mL/mL of bed 0.07 0.15 

Bed density (g/mL) 0.35 0.36 

Vm, mL/mL of bed (also FCV) 0.70 0.69 

Vs/Vm 0.10 0.22 

Capacity, mg Eu/mL of bed 2.68 11.04 
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4.2.3.5 Elution curves for europium 

The elution profile of europium on packed beds of both 20% (w/w) HDHEP-SPP 

materal and 40% (w/w) HDEHP-loaded conventional Ln-resin was determined 

employing Bio-Rad Econocolumns using HNO3 as the eluent. The characteristics of the 

packed columns were determined prior to the experiment following the procedures 

outlined above. For SPP materials, a solution 0.16 M HNO3 was used as the eluent, while 

a solution of 0.30 M HNO3 was used with the conventional material. After conditioning 

the columns with the appropriate eluents, a small quantity (~10 μL) of 152Eu in 0.05 M 

HNO3 was introduced at the top of the bed and then eluted with appropriate nitric acids. 

Samples of the eluent were collected at various intervals and γ counted. The columns 

were subjected to slight pressure applied using the bulb of a Pasteur pipette, yielding a 

flow rate of ~2-3 ml/cm2min. All runs were carried out at ambient temperature (23-

25°C). 

4.3 Results and Discussion 

4.3.1 Development of a method for plugging stagnant pores in an EXC support 

The concept of stagnant pore plugging is based on the idea that if a porous bead is 

filled with an inert material and then stripped, the peripheral filler will be removed first, 

yielding a sorbent whose inner pores are plugged with the filler. In our initial studies, 

polystyrene, a widely used solid support for EXC materials available in a wide range of 

molecular weights was employed to plug the stagnant pores. Polymers of three different 

molecular weights (1300, 13000, and 123000) were used to prepare sorbents with two 

different degrees of extractant loading (20% and 40% (w/w)). Figure 4.2 shows typical 
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results, and indicates that the impregnation process was not complete. That is, as can 

readily be seen (upper panels), some of the polystyrene adheres to walls of the flask. In 

addition, scanning electron microscopy reveals (lower panels) the presence of patches of 

polystyrene on the surface of the beads. Clearly then, much of the polymer initially added 

does not end up in the bead interior as intended. Nonetheless, some polystyrene was 

incorporated. Unfortunately, this was not found to be reproducible, indicating that SPP 

sorbents cannot be prepared using polystyrene as a filler. The apparent unsuitability of 

polystyrene as a filler is likely related to its high molecular weight, high viscosity and 

hydrophobicity, all of which could serve to render it difficult for polystyrene molecules to 

penetrate the interior of the Amberchrom beads. 

 

 

 

Figure 4.2: Stagnant pore plugging using polystyrene as filler. (Top panel). 

Photographs demonstrating incomplete impregnation of the beads. (Bottom panel). 

Scanning electron micrographs showing patches of polystyrene on the surface of the 

beads. 

Polystyrene: MW-1,300 Polystyrene: MW-13,000 Polystyrene: MW-123,000 
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As an alternative to polystyrene, polypropylene glycol (PPG), a hydrophilic liquid 

polymer, with low molecular weight (M.W. 400), was evaluated as a filler material. PPG-

impregnated materials (40% (w/w)) were easily obtained by physical impregnation using 

methanol as the volatile solvent. The partial removal of PPG from the impregnated beads 

was not straightforward, however. In principle, any of a variety of solvents could be used 

to accomplish this removal, among them methanol, propanol, butanol, isopropyl alcohol, 

dichloromethane, toluene, acetonitrile, dimethyl formamide, diethyl ethyl and n-hexane), 

but with many of these, control of the rate/extent of PPG removal proved difficult. 

Eventually, isopropyl alcohol, acetonitrile and n-hexane were found to dissolve PPG 

relatively slowly. In this study, n-hexane was chosen to strip PPG from the resin. 

Following partial PPG removal, the beads were impregnated with an appropriate 

extractant. 

4.3.2 Phosphorus profile 

SPP materials impregnated with HDEHP were examined by energy dispersive X-

ray analysis (SEM-EDX) to determine the distribution of the phosphorus (and thus, 

extractant) in the bead. It was anticipated that filler removed in the stripping step would 

come from the periphery of the beads, so that the HDEHP would reside in the near-

surface regions. Figure 4.3 shows the phosphorus profiles for a conventional 

Amberchrom CG-71 resin loaded to 40% (w/w) with HDEHP (left panel) and 20% 

HDEHP-loaded SPP materials (right panel). As hoped, phosphorus (and thus, HDEHP) is 

present throughout the entirety of the conventional resin, but is confined to the outer 

edges in the SPP material. 
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Figure 4.3 Phosphorus profiles obtained using SEM-EDX for conventional Ln resin 

(left panel) and a stagnant pore plugged (right panel) sorbent containing HDEHP. 

 

4.3.3 Elution profiles for europium-152/4 

To determine the effect of the differing distribution of the extractant within the 

beads on the chromatographic efficiency of the two sorbents (conventional Ln resin and 

the SPP material) the elution profile of Eu3+-152/4 was obtained for columns of both 

resins. The characteristics of the materials and the packed columns are summarized in 

Table 4.1. So that the band spreading of the elution curves could be compared at similar 

values of k’ (i.e., the number of free column volumes to peak maximum), the acidity of 

the eluents used was adjusted. Figure 4.4 depicts the elution profiles obtained using the 

two sorbents.  As can be seen, the elution band is clearly narrower for the SPP resin, 

consistent with higher column efficiency. The number of theoretical plates (N), a 

quantitative measure of this efficiency (4.18), is 17 and 43, respectively, for the Ln-resin 

and the SPP resin. From N, another measure of efficiency, the height equivalent of a 

theoretical plate (HETP), can be calculated as 2.35 mm and 0.93 mm, respectively, for 

the Ln-resin and the SPP material. These parameters imply that the efficiency of the SPP 

material is ca. 2.5 times that of the regular Ln-resin. 
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Figure 4.4 Europium (as 152/4Eu3+) elution profiles on conventional Ln-resin and on 

the analogous SPP material. (Eluent : 0.30 M HNO3 for Ln-resin and 0.16 M HNO3 for 

SPP resin; flow rate : 2-3 mL/cm2/minute; temperature: ~23°C; open circle: regular Ln-

resin; filled circles: SPP resin). (The smooth curves are intended only as a guide to the 

eye.) 
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4.3.4 Metal ion uptake studies on conventional and stagnant pore plugged materials 

It was expected that the SPP materials could exhibit lesser metal ion uptake than 

conventional EXC materials due to the reduced level of extractant loading (20% vs. 40% 

employed for the SPP resins. Indeed, both the SPP Ln-resin and SPP Sr-resin showed 

lower metal ion uptake at a given acidity (as reflected in the values of Dw) than the 

corresponding conventional sorbents (Figure 4.5). If we assume that the reduction in 

HDEHP loading for the SPP resin is equivalent to reducing its concentration by a factor 

of two and we assume that the extraction (i.e., uptake) of europium will exhibit a third-

power dependence on HDEHP concentration (4.19), a factor of 8 decline in Dw, Eu should 

be observed, and the uptake results (left panel), which differ by a factor of ~8, are 

consistent with this. Along these same lines, the ca. 50% reduction in crown ether 

loading, along with the first power dependence of DSr on DtBuCH18C6 concentration 

(4.20), indicate that Dw,Sr values on the SPP resin should be approximately half those 

observed under the same conditions. In fact, this is observed until high aqueous acidities 

are reached (Figure 4.5; right panel). Thus, the improved efficiency of the SPP sorbents 

appears to come at the expense of reduced uptake. Except at high acidities for SPP-Sr 

resin, however, this problem can be reduced simply by changing the aqueous acidity to 

boost retention. 

As expected, the stagnant pore-plugged materials showed faster kinetics in case of 

SPP Ln-resin compare to those of conventional Ln-resin (Figure 4.6- left panel). 

Unexpectedly, for the Sr-resins (plugged or conventional) the differences in the rate of Sr 

uptake are not significant, as both resins equilibrate quickly (Figure 4.6-right panel). 
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Figure 4.5 Effect of nitric acid concentrations on europium (left panel) and 

strontium (right panel) sorption by SPP resins (filled circle) and conventional resins 

(open circle). (SPP resins are loaded with 20% (w/w) HDEHP or DtBuCH18C6 for Eu 

and Sr, respectively. Conventional resins incorporated 40% (w/w) of the same 

extractants). 
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Figure 4.6: Left panel: Uptake kinetics for Eu-152/4 on SPP Ln resin (●), and 

conventional Ln resin (○) from ~0.1 M nitric acid; Right panel: Uptake kinetics for 

Sr-85 on SSP Sr resin (●) and conventional Sr resin (○) ~3 M nitric acid. ((The 

smooth curves are intended only as a guide to the eye.) 
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4.3.5 Capacity of the stagnant pore plugged resins 

The theoretical and experimental capacities for the SPP Ln and Sr resins and their 

conventional counterparts are listed in Table 4.2. The experimental capacity for the 

regular Ln-resin shows almost complete utilization of the theoretical capacity, whereas 

the experimental capacities for the SPP Ln-resins are unexpectedly (and inexplicably) 

significantly lower than the theoretical capacity of the sorbents. In case of Sr-resin 

interpretation of the percent utilization of the theoretical capacity is more problematic, 

given that DtBuCH18C6 exists in a multitude of isomeric forms, not all of which extract 

strontium well.  

 

Table 4.2: Capacity of the stagnant pore plugged and corresponding regular 

sorbents 

 

Sorbents Capacity (mg/g) 

Ln-resins Theoretical Experimental 

~10% HDEHP loaded SPP 5.66 0.9 

~20% HDEHP loaded SPP 13.83 7.67 

~40% HDEHP regular resins 31.42 30.67 

Sr-resins  

~20% CE loaded SPP 15.18 9.82 

~40% CE loaded regular resins 36.15 26.78 
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4.5 Conclusions 

Extraction chromatographic materials exhibiting improved column efficiency can 

be prepared by blocking the deep pores of a conventional EXC support with an 

appropriate filler such as polypropylene glycol. Studies of one such material, SPP Ln-

resin, using SEM-EDX confirms the hypothesis that extractant loaded into the SPP beads 

remains on the periphery, while the core of the beads is plugged by the filler. The elution 

profile of europium on this new material showed that the SPP Ln-resin provides a 

narrower elution band than does conventional Ln-resin. In fact, based on the plate 

number (N) and plate height (H), the efficiency of a packed column of the SPP Ln-resin 

is more than twice that of a conventional Ln-resins column. Because of the reduced 

amount of extractant in the support, the metal ion uptake is reduced, and unexpectedly, 

the percent utilization of the theoretical capacity of the SPP sorbents also declines. For 

the SPP Sr-resin, the uptake efficiency and percent utilization of the theoretical capacity 

are greater than that of SPP Ln resin. Additional study is needed to determine the cause(s) 

of the incomplete capacity utilization and the effect of various types of filters on the SPP 

resin performance. 
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CHAPTER 5: 

DEVELOPMENT OF HIGH CAPACITY EXTRACTION 

CHROMATOGRAPHIC MATERIALS BASED ON POLYSULFONE CAPSULES 

5.1 Introduction 

 Because of the ability of commercially available supports to hold and retain an 

extractant is limited and because extractants are frequently diluted with an organic 

solvent to improve the kinetics of metal ion uptake (by reducing the stationary phase 

viscosity), the metal ion sorption capacity (i.e., the maximum loading of metal ion 

possible) of conventional EXC materials is typically low, often only a few mg per mL of 

bed volume. As a result, in many applications, inconveniently large columns may be 

required to avoid extractant saturation (i.e., column overload). To overcome this problem, 

higher capacity EXC materials are clearly required. Previous work indicates that polymer 

microencapsulation techniques may yield materials containing much more extractant per 

unit mass than is found in any conventional material (5.1-5.3). In one study, for example, 

applying a modified dry-impregnation technique (described below) yielded 

microcapsules capable of holding up to 11.8 mL solvent per gram of (polysulfone) 

capsules (5.1). This enormous capacity for solvents clearly opens up the possibility of 

producing very high capacity (i.e., high extractant content) EXC materials.  

Microencapsulation is a process in which small solid particles, liquid droplets, or 

gas bubbles are enveloped by a coating. Depending on the conditions used for 

preparation, the capsules produced can vary widely in size, from less than 1μm to several 

thousand microns. Those smaller than 1μm are known as nanocapsules , while those 
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between 1 and 1000 μm are termed microcapsules (5.4). Capsules greater than 1000 μm 

are referred to as macrocapsules (5.4). Encapsulation offers a number of potential 

advantages as an approach to preparing EXC materials, including simplicity and the 

ability to produce materials exhibiting high porosity, active component content, and 

mechanical strength (5.5). Since its beginnings in the 1950s as a means to prepare 

capsules containing dyes for carbonless copy paper, the use of encapsulation technology 

has increased considerably (5.6). Today the technology is employed in numerous fields, 

among them metal ion (5.7-5.16) and organic acid separations (5.1, 5.3, 5.17, 5.18), 

protection of food ingredients (5.19), controlled release of perfumes (5.2, 5.20) and drugs 

(5.4), and the isolation of solvents (5.3). In these applications, a variety of materials, 

including polysaccharides, proteins, cellulose ether, synthetic and bio-polymers, 

carbohydrates, and glycerides have been employed to synthesize capsules (5.4).  

Microcapsules are prepared in one of three ways: coacervation methods (phase 

inversion), physical/mechanical methods such as solvent evaporation or a spray-drying, 

and polymerization methods. In this study, polysulfone (PS) was used to prepare the 

microcapsules. PS is a well-known and widely-used polymer that offers high chemical 

and physical stability, excellent thermal, electrical and creep resistance over a wide range 

of temperatures, and low toxicity (5.21). Both the phase inversion and solvent 

evaporation methods were used to synthesize the capsules. The microcapsules prepared 

were then impregnated with 4,4',(5')-di-(tert-butylcyclohexano)-18-crown-6 

(DtBuCH18C6) in an effort to prepare a strontium-selective sorbent. This novel, 

polysulfone capsule-based strontium sorbent has been characterized and its properties 

compared to those of a commercially available EXC resin for strontium. 
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5.2 Experimental   

5.2.1 Materials 

The 4,4',(5')-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) was obtained 

from EichroM Technologies, Inc. (Darian, IL) and used as received. 1-octanol (99%) was 

obtained from Alfa Aesar (Heysham, UK). Polysulfone (PS) average Mn (number 

average molecular weight) ~22,000 by MO (monomer molecular weight) beads were 

purchased from Sigma Aldrich (St. Louis, MO) and used as received. Optima™ grade 

nitric acid and HPLC grade methanol were obtained from Fisher Scientific (Waltham, 

MA). Dimethyl formamide (DMF) (99.8%) was obtained from BDH (Philadelphia, PA) 

and used as received. All water was obtained from a Milli-Q2 system and exhibited a 

specific resistance of at least 18 MΩ-cm. Amberchrom CG-71m was obtained from 

Rohm and Haas Company (Philadelphia, PA) and preconditioned before use as described 

previously (5.26). Gelatin was obtained from Ward’s Science (Rochester, NY) and used 

as received. Radiostrontium isotope (Sr-85) and radiocalcium (Ca-45) were received 

from PerkinElmer (Shelton, CT) and radiotracers of Na-22 and Ba-133 were purchased 

from Eckert and Ziegler Isotope Products, Inc. (Valencia, CA). 

5.2.2 Instrumentation 

Gamma emitting isotopes were assayed using a Perkin-Elmer 2480 Automatic 

Gamma counter. All thermograms were obtained using a TA Instruments Model Q50 

thermogravimetric analyzer.  Scanning electron microscopy (SEM) was carried out on a 

Hitachi Model S 4800 field-emission scanning electron microscope (SEM). The porosity 

of the materials was evaluated via BET measurements, specifically, the determination of 
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N2 adsorption-desorption isotherms at 77 K using a Micromeritics ASAP 2020 

instrument. Liquid scintillation counting was performed using a PerkinElmer Tri-Carb 

2810 TR Series liquid scintillation counter equipped with QuantaSmart software. 

5.2.3 Methods 

5.2.3.1 Synthesis of polysulfone capsules  

Phase inversion method.  In the phase inversion method, a solution of a polymer in an 

organic solvent is contacted with a “non-solvent” (also known as “anti-solvent”) in which 

the polymer is insoluble to yield capsules. Here a solution of PS in DMF (PS : DMF = 1 : 

10 (v/v)) (5.1, 5.18) obtained by overnight stirring at room temperature was dispersed 

into a non-solvent-containing bath consisting of 30% (v/v) ethanol in water. A burette 

equipped with a specially designed tip whose outer diameter is 1 mm was used to deliver 

the solution to the anti-solvent bath. A distance of 7 cm was maintained between the tip 

of the burette and the surface of the anti-solvent (5.1). The PS capsules obtained by this 

route consisted of macrocapsules averaging ~2 mm in diameter. Figure 5.1 summarizes 

the phase inversion procedure and depicts the macrocapsules obtained by this approach. 

 

 

 

 



    
 

 

 

Figure 5.1: Synthesis of macrocapsules using phase inversion method
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The preparation of microcapsules (size 1 μm to 1000 μm) was accomplished by 

employing an airbrush (CrescendoTM Model 175TM M Air-Brush) to disperse the polymer 

solution into the non-solvent, as shown in Figure 5.2 (5.2). Specifically, an airbrush was 

positioned 50 cm above the non-solvent surface and the polymer solution sprayed 

perpendicularly onto the surface of the bath. A wide range of microcapsule sizes (~20 to 

~300 μm) were produced by this technique. As a result, it was necessary to carefully 

sieve (USA Standard Testing Sieves; 53 μm and 106 μm), the capsules to obtain 

materials in the desired size range. A light water jet was used to force the microcapsules 

through the sieves, thus allowing the separation of capsules of the size required for 

chromatographic applications (50-100 μm) without disrupting the spherical morphology 

of the capsules. The polysulfone capsules thus obtained predominantly in the 53-106 μm 

size range, were stored in the non-solvent solution until use. 

Solvent evaporation method. A second method, the solvent evaporation technique, was 

also employed to prepare microcapsules.  In this approach, a solution of PS and the 

extractant (DtBuCH18C6) in DCM was dispersed in a continuous phase consisting of a 

0.5% (w/v) solution of gelatin in water. Using an overhead stirrer, an oil-in-water 

emulsion was generated from this mixture. In a typical run, 2 g of polymer and 1 g of CE 

dissolved in 25 mL of DCM were added to 500 mL of continuous phase in a 1 L beaker 

and then subjected to vigorous agitation (~650-800 rpm) under ambient conditions (5.8). 

The size of the capsules was manipulated by varying the speed, with higher speeds 

yielding smaller particles (5.8). After 2 hrs of stirring, the DCM was allowed to evaporate 

completely. The PS microcapsules produced settled at the bottom of the beaker and were 

collected. Here too, sieving was necessary to obtain capsules in the desired size range.



    
 

 

 

Figure 5.2: Synthesis of microcapsules using phase inversion method 
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The capsules were stored in water until characterization, which was performed after 

drying the capsules in a vacuum oven at 50ºC overnight. Microcapsules not loaded with 

extractant were made following the same general procedures.  

5.2.3.2 Loading of extractants in polysulfone capsules and in conventional resin 

Conventional EXC materials are prepared by the physical impregnation of a 

porous solid support with an extractant by any of several techniques (5.21, 5.26). Most 

commonly, the support material is contacted with a solution of the extractant (neat or 

with diluent) in a volatile solvent, which is slowly removed by evaporation under 

vacuum. Impregnation of dried capsules in this way is not feasible, as the pore structures 

of the capsules would be damaged or deformed during the drying process. Therefore, an 

alternative technique was employed. That is, a weighed amount of vacuum-filtered wet 

capsules was used for impregnation. The dried mass (skeletal mass) of this material was 

calculated from the dry mass of another sample of the same capsules measured 

separately. Water-containing capsules were employed to ensure that the capsule 

morphology remained undisturbed. These wet capsules were soaked in a solution of 

DtBuCH18C6 in methanol. To achieve maximum impregnation efficiency, the mixture 

was vortex mixed and subjected to sonication for one hour. Solvents (i.e., methanol, 

water and residual DMF) were then removed by rotary evaporation under vacuum (23-25 

in Hg) at 75°C. At times during this evaporation process, the capsules were observed to 

cling to the wall of the round bottom flask. At this point, the vacuum was lowered to ~15 

in. Hg, which was found to improve the efficiency of impregnation. Using this general 

procedure, a series of extractant-loaded capsules were synthesized, including 

macrocapsules containing, for example, ~50% (w/w) neat DtBuCH18C6 or its 1 M 
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solution in 1-octanol, macrocapsules containing ~40% (w/w) neat HDEHP, and 

microcapsules containing 28, 42, or 60% (w/w) DtBuCH18C6. Attempts to prepare 

capsules impregnated with more than ~60% (w/w) extractant did not yield satisfactory 

results, as evidenced by their sticky physical appearance. 

In an effort to improve the impregnation technique, the water in the wet capsules 

was replaced with methanol before mixing the capsules with the extractant solution. For 

this modification, the capsules were first placed on a fritted funnel and washed with 18.2 

MΩ water to remove ethanol and any residual DMF. Methanol was then used to wash the 

capsules, thereby replacing the water. The mass of the dried capsules was measured by 

using a one-milliliter volumetric flask. The mass after drying of this volume wet capsules 

was taken as the dry mass of that volume of wet capsules. The remaining procedures 

were the same as those described (above) for the dry impregnation technique, with the 

exception of carrying out the rotary evaporation at 50ºC. Using this modified method 

involving methanol for the preparation of extractant loaded capsules, microcapsules 

incorporating ~42% (w/w) neat DtBuCH18C6, and either ~45% or ~62% (w/w) 1 M 

DtBuCH18C6 in 1-octanol were prepared. Note that the microcapsules containing ~45% 

(w/w) of a 1 M solution of DtBuCH18C6 (here after referred to as “Sr-PSC”) correspond 

closely to the conventional Sr-Spec resin, which contains 40% (w/w) of a 1 M solution of 

DtBuCH18C6. Along these same lines, microcapsules incorporating ~62% (w/w) of the 1 

M solution DtBuCH18C6, which exploit the high loading capacity of the capsules are 

hereafter referred to as high capacity Sr-PSC (“HC Sr-PSC”) capsules. 

To determine the percentage of the extractant or its diluent in the microcapsules, a 

DSC Tzero pan capped with a Tzero lid into which 8 holes had been needle-bored was used. 
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The use of a capped pan minimized the noise of the thermogram and yielded extractant 

mass loss well resolved from that of the PS skeleton. 

5.2.3.3 Determination of weight distribution ratios 

Solid-liquid (weight) distribution ratios (Dw) for strontium were measured 

radiometrically using a commercial 85Sr radiotracer. Specifically, the uptake of the tracer 

by the capsules from a series of nitric acid solutions was measured by contacting a known 

volume (typically 1.0 mL) of 85Sr-spiked acid solution of appropriate concentration with 

a known quantity of capsules. Because the capsules float in aqueous solution, for these 

measurements, they were held between two porous plastic frits in a 2-mL disposable 

plastic column (Eichrom Technologies, Lisle, IL) to ensure adequate contact between the 

capsules and aqueous solution. The ratio of the aqueous phase volume (mL) to the weight 

of the solid sorbent (g) typically ranged from 40-50. (This ratio is determined by the need 

to produce a readily measureable decrease in the aqueous activity by contact with the 

sorbent.) Depending on the kinetics of tracer uptake by the sorbent, a contact time of 2-4 

hours (with occasional swirling) was employed for equilibration.  Following 

equilibration, the upper frit of the column was pushed down using a glass rod and an 

aliquot of the aqueous phase was withdrawn.  On the basis of the initial and final activity 

of a measured aliquot of this aqueous phase (determined via gamma spectroscopy 

according to standard procedures on a Perkin-Elmer 2480 Automatic Gamma Counter), 

the weight distribution ratio (Dw) of strontium was calculated from the following 

equation: 

                                      Dw = [(A0 – Af)/Af] (V/w)  (5.1) 
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Here A0 and Af represent the aqueous phase activity (cpm) before and after equilibration 

with the sorbent, respectively, w is the mass of the resin taken (g), and V is the volume of 

the aqueous phase (mL). 

5.2.3.4 Metal ion uptake kinetics  

Into a series of 2-mL disposable plastic columns, each containing the same (± 

10%) amount (20 mg) of extractant-loaded PS capsules, was introduced a known volume 

(typically 1 mL) of an appropriate nitric acid solution containing a Sr-85 radiotracer. As 

described above, the capsules were held between the frits ensure good contact with the 

aqueous solution. At various time intervals following the introduction of the tracer 

solution, during which the samples were periodically mixed using a vortex mixer to 

facilitate equilibration, the upper frit was pushed down by a glass rod and the aqueous 

phase withdrawn. The activity of this aliquot was determined and from the initial and 

final activity of the aqueous phase, Dw values were determined. A plot of the contact time 

dependence of Dw was then prepared. 

5.2.3.5 Capacity of the sorbents 

For this experiment, a highly concentrated (5 times the stoichiometric amount of 

the extractant present) solution of inactive strontium nitrate in 5.89 M nitric acid was 

prepared and labeled (spiked) using Sr-85 radiotracer. A known quantity of extractant-

loaded capsules (typically 20-25 mg) was then placed in a 2-mL plastic disposable 

column and contacted with 1 mL of this solution. Contact was maintained well beyond 

(4x) the period required for equilibrium to be reached. The acidity of the aqueous phase 

was chosen to provide a distribution ratio for the strontium ion of ca. 120-150, 
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corresponding to >99% uptake. Following equilibration, the aqueous phase was 

withdrawn from the column and its activity determined.  From the initial and final 

(residual) activity of the aqueous phase, the Dw value was determined as described above. 

If it is assumed that the fraction of non-radioactive strontium taken up corresponds to the 

fraction of Sr-85 sorbed, then the capacity of the sorbent (mg Sr/g of solvent) is easily 

calculated. Similar capacity experiments were conducted for the conventional Sr-resin to 

permit ready comparison of the performance of the new sorbents to the commercial 

material. 

5.2.3.6  Column preparation and characterization 

To pack a column, a small quantity of sorbent was slurried in deionized water, 

and aliquots of this slurry were transferred into a Bio-Rad Econocolumn (5.0 mm i.d. by 

5 cm in length). Packing was carried out under gravity for the conventional materials. For 

capsules, which tend to float in water, pressure (5-10 psi) was applied. When the bed 

reached the desired height, a small plug of glass wool was placed atop it so that it would 

not be disturbed by the introduction of a sample. The packed sorbent was then rinsed with 

several free column volumes of deionized water. Prior to introduction of a sample, the 

column was preconditioned with 5-10 free column volumes of an appropriate nitric acid 

solution. Flow rates of ~2-3 mL/ cm2min were typically employed.  

Column parameters such as the bed density, the volume of stationary phase, (vs, 

the volume of liquid extractant solution contained in the pores of the support), and the 

volume of mobile phase (vm, also known as free column volume (FCV)) were measured 

using the characteristics of the sorbents and the column dimensions. In particular, the bed 
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density was determined from the weight of the chromatographic material required to 

prepare a bed of known volume. 

The density of the conventional EXC materials was determined by two different 

methods. In the first, the volume of water displaced by a known mass of sorbent 

suspended in water in a volumetric flask was measured. In the second, a portion of EXC 

material was added to solutions containing varying concentrations of nitric acid until a 

concentration was found in which the sorbent remained suspended after centrifugation. 

At this point, the density of the EXC material is the same as the density of the acid 

solution. The average of the two values was used in all calculations. For the capsules, the 

density of the polysulfone, CE and 1-octanol was used to calculate the density of the 

loaded capsules. 

The volume of mobile phase (i.e., the free column volume, vm) was calculated 

from the difference in the bed volume and the volume of resin in the bed. The latter 

volume was determined by the weight of the EXC material in the bed divided by its 

density. The free column volume was also obtained by measuring the volume of eluent 

corresponding to breakthrough of an unretained solute, 137Cs. The average of these two 

methods was taken to be the free column volume. The volume of stationary phase, vs, 

was determined from the weight of EXC material in the column, the resin loading (i.e., 

the weight percent of extractant or extractant diluent solution present in the resin), and 

the density of the extractant or extractant solution. Table 1 summarizes the characteristics 

of the PS capsule based sorbent (Sr-PSC) and the conventional Sr-Spec sorbent. 
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Table 5.1 Characteristics of the polysulfone capsule-based sorbent and conventional 

Sr-Spec EXC material and packed columns 

 

Bulk materials Sr-PSC Sr-Spec 

Stationary phase 1 M DtBuCH18C6 

in 1-octanol 

1 M DtBuCH18C6 in 

1-octanol 

Support Polysulfone capsules Amberchrom CG-71m 

Particle diameter 53-106 µm 75 µm 

Extractant loading ~45% 40% 

Density of extractant-loaded beads 1.12 g/mL 1.08 g/mL 

Packed columns 

Vs, mL/mL of bed 0.11 0.17 

Bed density (g/mL) 0.23 0.39 

Vm, mL/mL of bed (also FCV) 0.79 0.64 

Vs/Vm 0.14 0.27 

Capacity, mg Sr/mL of bed 5.83 10.52 

Capacity, mg Sr/g of sorbent 25.33 26.78 

 

 

5.2.3.7 Elution curves for strontium and the stability of the sorbents 

The elution profile of strontium on packed columns of both Sr-PSC and 

conventional Sr-Spec resin using 3M HNO3 as the eluent was determined employing a 

Bio-Rad Econocolumn column as mentioned earlier. The parameters of the packed 

columns were determined prior to the experiment following the procedures outlined 

above. After conditioning the column with the eluent (3 M HNO3), a small quantity (~10 

μL) of 85Sr in 0.05 M HNO3 was introduced at the top of the bed and then eluted with 3 

M nitric acid. Samples of the eluent were collected at various intervals and γ counted. 

The column was subjected to slight pressure applied by a rubber pasteur pipette bulb 

fitted with a 100 μL pipette tip, thus yielding a flow rate of ~2-3 ml/cm2min. All runs 
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were carried out at ambient temperature (23-25ºC). After the first elution curve was 

obtained for each column, ~250 FCV of deionized water was passed through each to 

wash the sorbents. A second elution curve was then obtained, thus providing an 

indication of the physical stability of the sorbents. 

5.2.3.8  Strontium recovery determination 

Columns containing Sr-PSC or Sr-Spec were prepared for the strontium ion 

recovery experiments according to the general procedures for packing and 

preconditioning outlined above. The column conditioning and strontium radotracer 

loading were performed using 5.2 M HNO3 for Sr-PSC, however, while 3 M HNO3 was 

used for the Sr-Spec column. Following conditioning, a small aliquot (~100 μL) of 85Sr 

was introduced at the top of the bed. This was followed with a ~1 FCV aliquot of an 

appropriate HNO3 solution to complete the load step and a 5 FCV portion of the same 

acid as a column rinse. Stripping of the column was carried out with dilute (0.01 or 0.05 

M) HNO3 acid. The stripping was continued until the 85Sr count rate approached the 

background level. The total 85Sr activity introduced and the 85Sr activity found in 

combined strip fractions was used to calculate the strontium recovery. 

5.3 Results and Discussion 

5.3.1 Methods for the preparation of polysulfone microcapsules: phase inversion vs. 

solvent evaporation 

As already noted, microcapsules can be synthesized by either the phase inversion 

(5.1-5.3, 5.14) or solvent evaporation method (5.8-5.10, 5.22). Of these, the latter would 

appear to offer greater promise. That is, by incorporating the extractant during the 

synthesis of the capsules, the number of synthetic steps is reduced. In addition, it would 
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be expected that highly stable (i.e., resistant to extractant loss) materials would result. In 

this work, we have followed a procedure employed by Yang et al. for the preparation of 

HDEHP-loaded PS microcapsules (5.8) to produce microcapsules incorporating 

DtBuCH18C6. Unexpectedly the results proved to be unsatisfactory. That is, rather than 

yielding free flowing powder, the procedure provided only a sticky solid prone to the 

formation of clumps. In addition, the material exhibited very poor strontium ion uptake 

(Dw ~4 at 2 M HNO3). These problems may have their origins in the high viscosity of the 

crown ether. That is, because of this viscosity, evaporation of the solvent leaves a 

significant amount of the DtBuCH18C6 on the surface of the capsules, thus rendering 

them sticky. In addition, this would increase the hydrophobicity of the capsules, 

decreasing their wettability and making encapsulated extractant inaccessible to the metal 

ion. Another limitation of the solvent evaporation method is the modest encapsulation 

efficiency. Yang (5.8) reported encapsulation efficiency of ~60% or less, with maximum 

incorporation occurring when the ratio of PS to extractant was 2:3(w/w). Similarly poor 

encapsulation efficiency was observed for DtBuCH18C6. For all these reasons, capsules 

taken for further evaluation in our studies (described below) were prepared by the phase 

inversion method. 

 5.3.2 Morphological characterization 

Morphological characterization of the polysulfone capsules prepared via phase 

inversion (both with and without encapsulated crown ether) was carried out by scanning 

electron microscopy (SEM). For comparison, SEM characterization was also performed 

on conventional strontium resin (Sr-resin/ Sr-spec).  SEM micrographs obtained show 

that the polysulfone microcapsules are isolated predominantly as well-defined spherical 
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particle (Figure 5.2). As shown in Figure 5.3, magnification of surface features of these 

particles indicates that the pore sizes of the capsules are larger than those observed for 

conventional resin. The micrographs reveal the presence of a number of small 

protuberances on the surface of the capsules. Similar observation has also been reported 

in the literature (5.8, 5.23). The SEM image of a cross section of a macrocapsule (Figure 

5.1) clearly shows that the capsule interior contains significant hollow regions, 

particularly at the center of the capsule. It has been suggested that macrovoids form due 

to differences in the rate of DMF and water diffusion during capsule formation (5.18). 

That is, when a mixture of PS in DMF contacts water, DMF diffuses into water. At the 

same time, water diffuses into the DMF. The rate of diffusion of DMF into water is much 

higher than the diffusion of water into the polymer solution, however. As a result, a 

microvoid grows as PS separates from the mixture. Specifically, upon contact of the PS-

DMF mixture with water, a layer of PS forms around droplets of the PS-DMF solution. 

Despite the presence of this layer, DMF in the center of the droplet continues to diffuse 

outward, eventually passing through the PS layer. As this process proceeds, PS is drawn 

outward and away from the droplet center, thus generating the structure evident in the 

macrocapsule cross-sectional micrograph shown in Figure 5.1.  
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Figure 5.3: SEM micrographs of polysulfone capsule skeleton and convention 

polymer bead skeleton. Left: Top-whole image of a microcapsules; Bottom- surface 

structure of a microcapsules. Right: Top-whole image of an Amberchrom CG-71m bead; 

Bottom- surface structure of an Amberchrom CG-71m bead. 

 

The SEM images of the crown-ether impregnated capsules shown in Figure 5.4 (left) 

demonstrate that the capsules morphology remains unaffected upon extractant loading. 

The physical appearance of the capsules also indicates that the surface has been smeared 

by the extractant, which is evident from the comparison of the capsule skeleton 

micrograph shown in Figure 5.3 left-top. The interior of the capsules (right) shows 

significant void volume, with sponge-like PS skeletons comprising the remainder of the 

capsule interior. 
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Figure 5.4: SEM micrographs of DtBuCH18C6-loaded polysulfone capsules. Left: 

exterior of the impregnated capsules; Right: interior of the microcapsules. 

 

5.3.3  Physical properties of polysulfone macro- and microcapsules 

Table 5.2 summarizes the physical properties of the micro- and macrocapsules prepared 

from polysulfone, along with those of the support employed to prepare conventional Sr-

Spec resin, Amberchrom CG-71m. Interestingly, the skeletal mass of the PS capsules 

turns out to be only half of that of the conventional resin, which is consistent with the 

observation that the capsules tend to float in water unless subjected to lengthy sonication 

and vortex mixing. The water regain experiments provide information about the specific 

pore volume of the sorbents (5.25). The efficiency of supports in general depends on their 

specific pore volume and on their pore size distribution, as well as on their specific 

internal surface area (5.29).  For the microcapsules, the water regain found in this study 

matches the literature value (5.25) and is approximately double that of the conventional 

material, which indicates that the capsules have the potential to perform well as support 

materials. The BET experiment, which provides information on such characteristics as 
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pore volume, pore size and surface area, appear to show substantial differences between 

the microcapsules and the conventional Amberchrom resin. BET measurements, 

however, do not take into account the presence of macropores, which are evident from 

the micrographs of the capsules shown above. BET determinations, in fact, encompass 

only micropores and mesopores, which are the predominant in case of the Amberchrom 

materials. Clearly then, the presence of micropores and mesopores in the PS capsules are 

insignificant, indicating that the internal pore structure of the capsules is completely 

different from that of the conventional support considered.  

 

Table 5.2: Comparison of physical properties of macrocapsules, microcapsules and 

amberchrom CG-71 beads backbone 

 

Property  Macrocapsules Microcapsules Amberchrom CG-71m 

Material Polysulfone Polysulfone Methylmethacrylate 

Skeleton mass (g/mL wet 

sorbent) ND 0.0985 0.2128 

Particle diameter (μm) ~2000 ~50-100 ~75 

Water regaina (g/g) 6.12 4.41 2.38 

Pore volumeb (mL/g) ND 0.07 1.27 

Surface areab (m2/g)  ND 22.26 577.53 

Average pore diameterb (Å) ND 126 87 
 

abased on difference between amount of water inside capsule during formation and capsule dry weight (by 

blotting the wet resin between sheets of filter paper) 

bBET measurement  

ND- not determined 
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5.3.4 Thermogravimetric analysis 

As noted above, the impregnation of dried capsules is not feasible due to the possibility 

of collapse of the pore structure of the capsules during the drying process. A weighed 

amount of wet capsules was therefore used for impregnation. The process of obtaining 

wet mass of capsules is not precisely reproducible. As a result, it is not possible to 

determine exact the amount of extractant loaded in the capsules directly from the 

amounts of support and extractant taken, as is the case for conventional materials. 

Therefore, thermogravimetric analysis was employed to determine the percent 

composition of the extractant-loaded capsules. As shown in Figure 5.5, the loss of mass 

for polysulfone occurs above 500°C. In contrast, both the extractant (DtBuCH18C6) and 

1-octanol begin to lose mass well below this temperature (Tonset = ~118°C and ~ 280⁰C 

for the crown ether and alcohol, respectively). These differences enable one to use TGA 

to determine the level of extractant loading achieved in the preparation of a given batch 

of capsules. As shown in Figure 5.6, the onset temperature for mass loss is ~280°C for 

the undiluted crown ether in a microcapsule. The boiling point for 1-octanol is 195°C, 

which allows us to ensure the complete loss of 1-octanol prior to loss of CE by 

employing a 20 minute hold time at 200°C. Similarly, holding the temperature at 420°C 

for 20 minutes ensures the complete loss of the crown ether. 
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Figure 5.5: TGA thermograms of crown ether-loaded PS capsules (top to bottom at 

400°C): polysylfone; microcapsules loaded with undiluted (neat) DtBuCH18C6; 

microcapsules loaded with 1 M DtBuCH18C6 in 1-octanol (Sr-PSC); macrocapsules 

loaded with neat DtBuCH18C6; macrocapsules loaded with 1 M DtBuCH18C6 in 1-

octanol). 

 

 

 

Figure 5.6: TGA thermograms of the microcapsules to determine percent extractant 

loading (top to bottom: 47% neat dtBuCH18C6 loaded microcapsules, Sr-PSC, HC Sr-

PSC)  
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5.3.5 Acid dependency of metal ion uptake 

According to published studies (5.26, 5.27) the conventional resins “Sr-Spec” and 

“Super Sr-Spec”, in which DtBuCH18C6 is dispersed on a polymeric support as a 1 M 

solution in 1-octanol or as a neat DtBuCH18C6 extractant, respectively, exhibit similar 

performance as EXC materials. The indistinguishable elution behavior of Sr-85 on these 

resins (5.21) indicates that the role of diluent is not significant if an appropriate extractant 

(here, DtBuCH18C6) is chosen. Following these observation, we prepared macrocapsules 

containing ~50% (w/w) undiluted DtBuCH18C6 (i.e., neat) and characterized them. In 

contrast to the behavior observed when Amberchrom CG-71m/XAD-7 is employed as a 

support, PS microcapsules unexpectedly show no strontium ion uptake. When the 

macrocapsules were loaded instead with a 1 M solution of DtBuCH18C6 in 1-octanol, 

yielding material containing an amount of DtBuCH18C6 comparable to that of the 

macrocapsules loaded with undiluted crown ether, some strontium uptake is observed, 

but the Dw,Sr values are low (Table 5.3), too low to be of practical value. To determine if 

unsatisfactory metal ion retention is a peculiarity of this particular extractant-capsule 

combination or a general observation, PS macrocapsules were also impregnated with 

HDEHP and the suitability of the resultant material for europium sorption was 

determined. Europium ion sorption (as reflected in the values of Dw,Eu ), while significant, 

is much lower than that expected on the basis of the behavior of the analogous XAD-7 

based materials. These uptake studies thus suggest that the PS macrocapsules are not 

well-suited as a support for the extractant(s) of interest in this work. This unexpected 

result may be a consequence of either the nature of the polymer (i.e., polysulfone) itself 

or the morphology of the capsules. 
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Table 5.3: Effect of nitric acid concentration on metal ions extraction by polysulfone 

macrocapsules 

 

[HNO
3
], M Dw, 20% 

HDEHP  
Commercial        

Ln-resin 

Dw, 1M CE in 1-

OAlc 
Commercial        

Sr-resin 

0.01 289.39 ND ND ND 

0.10 102.65 3578.05 ND 
 

3.75 

1.00 3.10 1.64 3.96 55.78 

       3.00 ND 
 

ND 
25.56 188.37 

6.00 ND ND 43.17 135.01 

 

ND – Not determined 

As noted above, polysulfone macrocapsules exhibit an interior characterized by a 

number of substantial voids. As a result, much of the extractant (or its solution) will be 

present in the capsule interior as a collection of “droplets”. It might be anticipated that in 

such a case, particularly when the extractant is highly viscous, metal ion interaction with 

the extractant could be restricted, resulting in poor uptake. An obvious way to determine 

the role played by morphology is to prepare microcapsules loaded with the same 

extractant. In contrast to macrocapsules, these capsules lack substantial interior voids, 

suggesting that extractant present is found not as large droplets, but as a thin film. As 

already stated, microcapsules can be prepared with either water or methanol as a filler to 

maintain the integrity of the capsules prior to extractant loading. As a first step in the 

evaluation of microcapsules then, strontium uptake by water-containing microcapsules 

(WWMCs) loaded with neat CE was measured.  Uptake was significant (Figure 5.7, left 

panel), with Dw,Sr exceeding 100 for all loading levels at some acidities. Thus, the 
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behavior of the extractant is dependent on the capsule size, consistent with the notion that 

the smaller voids and pores in the microcapsules provide a thinner and thus more 

accessible layer of extractant.  

Microcapsules prepared using methanol (methanol-containing microcapsules, 

MCMCs) extracted strontium even more efficiently. As a result, all subsequent studies of 

microcapsule-based sorbents employed MCMCs. Figure 5.7 (right panel) summarizes the 

results for measurements of the nitric acid dependency of Dw,Sr for three different 

microcapsule-based sorbents. The first contains ~47% (w/w) neat CE. The second, which 

utilized the maximum loading capacity of the microcapsules, contains ~62% (w/w) of a 1 

M solution of the DtBuCH18C6 in 1-octanol (“HC Sr-PSC”), while the third, which 

contains ~45% of a 1 M solution of the DtBuCH18C6 in 1-octanol (Sr-PSC), is 

comparable to “conventional” (i.e., Amberchrom-based) Sr resin. As can be seen, the 

metal ion uptake observed for microcapsules loaded with a 1 M solution of DtBuCH18C6 

in 1-octanol is comparable to that observed for capsules prepared with the undiluted 

extractant. Not unexpectedly, higher strontium ion retention at any given acidity is 

generally observed for microcapsules containing the maximum loading of extractant.  
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Figure 5.7: Effect of nitric acid concentration on the extraction of strontium ion by 

polysulfone capsule-based sorbents. Left panel: WCMCs containing ~28% (w/w) neat 

CE (o); ~42% (w/w) neat CE (◊); ~60% (w/w) neat CE (▲); and MCMCs containing 

~47% (w/w) neat CE (●); Right panel: MCMCs containing ~47% (w/w) neat CE (●); Sr-

PSC (o); and HC Sr-PSC (♦). 

 

 

 

 

 



157 
 

 

Figure 5.8 compares the acid dependency of strontium ion uptake by the Sr-PSC 

microcapsules to that obtained with the commercially available Sr-Spec (5.26) and Super 

Sr-Spec sorbents (5.27). As can be seen, up to ~5 M HNO3, the Dw,Sr values for Sr-PSC 

are lower than those obtained with the commercial resins. Above this acidity, however, 

its Dw,Sr values exceed those of Sr-Spec and are comparable to those of the Super Sr-Spec 

sorbent. Taken together, these results indicate that the Sr-PSC sorbent should provide 

adequate strontium retention at high acidity (≥ 5 M HNO3) and facile stripping of the 

sorbed strontium with dilute acid. Ideally, however, retention should be high at more 

modest acidities (1-3 M HNO3). For this reason, an effort was made to increase the Dw,Sr 

values of Sr-PSC by diluting the DtBuCH18C6 with 1-pentanol rather than 1-octanol. 

Previous solvent extraction studies have shown strontium ion extraction into oxygenated 

aliphatic solvents (e.g., alcohols, ketones) increases as the alkyl chain length of the 

solvent decreases (5.28). As shown in Figure 5.9, however, dilution of crown ether with 

1-pentanol did not yield the expected increase in Dw,Sr. In fact, lower strontium ion 

retention was observed over a range of acidities ( ca. ≥ 4 M HNO3). It is important to 

note here that disagreement between the results obtained in liquid-liquid extraction and 

extraction chromatography is not without precedented (5.30). In fact at best, solvent 

extraction behavior is regarded as a qualitative indicator of EXC performnace (5.31). 
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Figure 5.8: Comparison of the acid dependency of strontium uptake by Sr-PSC (o), 

Sr-Spec (♦) and Super Sr-Spec (Δ). (The smooth curves are intended only as a guide to 

the eye.)  
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Figure 5.9: Effect of nitric acid concentration on the uptake of strontium by Sr-PSC 

incorporating 1 M CE in 1-octanol (o), or in 1-pentanol (●). 
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5.3.6 Interferences effects 

Sodium, potassium, calcium, iron, and aluminum are the major constituents of 

many environmental and biological samples (5.26). Accordingly, the selectivity of the Sr-

PSC sorbent for strontium ion over these ions, especially Na+ and Ca2+, is an important 

parameter in assessing the performance of the sorbent. As can be seen from Figure 5.10, 

in which the behavior of the microcapsule-based sorbent is compared to that of 

conventional Sr-Spec resin, the two materials exhibit similar behavior. Specifically, for 

sodium, Sr-PSC shows no measurable uptake, while that of Sr-Spec is low. For calcium 

ion, the uptake by the two resins is nearly indistinguishable. Although Ba sorption by the 

Sr-PSC resin is generally higher than that of Sr-spec (and thus, the Sr/Ba selectivity is 

poorer), the difference is greatest at low acidity, not at the high acidities (≥ 3M HNO3) 

that would typically be employed for sample loading. 
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Figure 5.10: Effect of nitric acid concentration on the extraction of sodium (left panel), 

calcium (middle panel) and barium (right panel) by Sr-PSC (o) and Sr-Spec (●). 

 

5.3.7 Metal ion uptake kinetics  

A rapid rate of metal ion uptake is an important characteristic of practical EXC 

materials. The kinetics of conventional Sr-resin are very fast, with 91% of equilibrium 

uptake being reached in only 2 minutes (P2min). Super Sr-Spec, another conventional 

material, exhibits somewhat slower kinetics, but its p2min is still 81%. Figure 5.11 (left 

panel) summarizes the results of studies of the kinetics of strontium ion uptake by PS 

microcapsules containing DtBuCH18C6, either neat or as a solution (1 M) in 1-octanol. 

As can be seen, the sorbent containing the undiluted extractant yields a much lower rate 
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of uptake (requiring ~2 hrs to reach equilibrium) than the does the material incorporating 

a solution of the extractant (Sr-PSC), as might be expected from the lower viscosity of 

the solution vs. the extractant. For the highly-loaded sorbent (HC Sr-PSC), the kinetics 

are somewhat slower (P2min = 46%) than Sr-PSC (P2min = 91%), but are nonetheless faster 

than for the neat CE-loaded microcapsules. Figure 5.11 (right panel) compares the 

kinetics of Sr2+ uptake of Sr-PSC to the two commercial resins, Sr-Spec and Super Sr-

Spec. As is evident, the uptake kinetics for the Sr-PSC and Sr-Spec sorbents are similar, 

and both are faster than for the Super Sr-Spec resin, a not unexpected result given the 

absence of a diluent from the latter resin.  
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Figure 5.11: Left panel-uptake kinetics for Sr-85 on Sr-PSC (o), HC Sr-PSC (◊) and 

~47% neat CE loaded microcapsules (∆) from ~5 M nitric acid; Right panel-uptake 

kinetics for Sr-85 on Sr-PSC(o), Sr-Spec (♦) and Super Sr-Spec (▲) resins from ~3 

M nitric acid. (The smooth curves are intended only as guides to the eye.) 
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5.3.8 Elution profiles for strontium/sorbent stability 

The elution profile of a metal ion on an EXC material provides information on 

both metal ion retention behavior (i.e., the number of free column volumes to peak 

maximum, k’) and the efficiency of the column, both important parameters in designing a 

separation. In addition, the profile provides a means to assess the column stability 

(another important characteristic of an EXC material) simply by acquiring an elution 

profile curves before and after extensive washing of the column. Figure 5.12 shows the 

elution for strontium obtained on a pair of identical columns packed with two different 

sorbents: the commercial Sr resin (left panel) and Sr-PSC resin (right panel). All of the 

elution curves show reasonable symmetry, but some tailing is evident. Breakthrough 

occurs at a smaller number of bed volumes (~8 bed volume) on the Sr-PSC column than 

on the Sr-Spec column (~20 bed volume). This differences can be understood from the 

characteristics of the two resins presented in Table 5.1, in particular, the values of vs/vm, 

bed density, and the column capacity. As can be seen from the Table, vs/vm (which is 

related to elution volume through the equation k’ = Dvs/vm) is a factor of two smaller for 

Sr-PSC than for Sr-Spec. Not unexpectedly then, the breakthrough volume for Sr-PSC 

resin column is half that of the corresponding column filled with Sr-Spec. Because PS 

capsules can accommodate more extractant (up to ~65% (w/w)), increasing the loading of 

CE in the capsules could resolve the problem of early breakthrough for the Sr-PSC 

column. 

Alternatively, one could simply use a larger bed volume column. In fact, because 

of the lower density of the Sr-PSC resin, a given mass of it occupies approximately twice 

the volume occupied by the conventional resin. The number of theoretical plates (N) 
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calculated from the elution curves (5.32), which indicates the efficiency of the column, is 

8 and 22 for Sr-Spec and the Sr-PSC sorbent, respectively. From N, the height equivalent 

of a theoretical plate (HETP), another measure of efficiency can be calculated as 5 mm 

and 1.8 mm for Sr-Spec and Sr-PSC, respectively. These parameters indicate, 

unexpectedly, that the efficiency of the Sr-PSC column is higher than that of the 

commercial Sr-Spec column by ca. a factor of 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

Figure 5.12: Effect of column washing on the elution behavior of Sr-85 on Sr-Spec (left) and Sr-PSC (right) EXC materials 
(eluent: 3 M HNO3; flow rate: 2-3 mL/cm2/minutes; temperature: ~23˚C; filled circles: unwashed resin; open circle: washed resin [250 

FCV]) 
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Because extraction chromatography involves contacting a small volume of a 

highly dispersed organic extractant with a much larger volume of aqueous phase, the 

possibility of extractant (stationary phase) loss is of particular concern with any new 

sorbent. To investigate the stability of the Sr-PSC resin, the column employed to obtain 

the strontium elution curves (above) was subjected to washing with 250 FCV of water, 

after which another elution curve measured (Figure 5.13). For purposes of comparison, 

the Sr-Spec column was subjected to the same treatment. In both cases, the elution 

behavior of strontium is affected by washing, consistent with some degradation of the 

sorbents. Strangely, however, the shift of the elution band for the two materials is in 

opposite. The reason behind this observation remains unclear at present. 

5.3.9 Recovery of strontium ion  

To determine the effect of the apparent change in the behavior of the sorbents 

upon washing on the recovery of sorbed strontium, a column of Sr-PSC resin was used 

for a series of experiment involving strontium loading, a column rinse, and stripping of 

sorbed strontium. The recovery of loaded strontium was determine in each case and 

compared to that seen for an analogous Sr-Spec column. Table 5.3 summarizes the results 

obtained. As can be seen, the two sorbents behave similarly. That is, the strontium 

recovery is consistently high and essentially complete.  

 

 

 



168 
 

 

 

Table 5.4: Recovery of strontium ion from the Sr-PSC and Sr-Spec resins. 

 

Load-rinse-strip cycle Sr-PSC materials Sr-Spec materials 

1 100 101 

2 102 103 

3 99.5 97.8 

4 102 98.8 

5 102 99 

 

 

5.3.10 Capacity of the capsules 

There has long been a demand for high-capacity sorbents. In fact, as noted above, 

the present study of PS capsules was initiated in an attempt to devise a high capacity Sr 

sorbent. The conventional Sr resins (i.e., Sr-Spec and Super Sr-spec) have been reported 

(5.26, 5.27) to use less than their full capacity, implying that some of the extractant is 

inaccessible to metal ions. Our measurements show that ~71% of the theoretical capacity 

of Sr resin used. Because no additional pore volume is available in the support, the 

amount of extractant and thus, the capacity cannot be increased. Measurements on the Sr-

PSC sorbent indicate that its experimentally determined capacity is virtually the same as 

of the Sr resin (Table 5.5). Thus, for reasons that are unclear at present, the vastly 

different morphology/porosity of the two supports yields no difference in resin capacity. 

Not unexpectedly, the HC Sr-PSC capsules show higher capacity than either the 
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conventional sorbent or the Sr-PSC resin, the result of the higher amount extractant 

present in the sorbent. Although the utilization of the theoretical capacity is somewhat 

greater (77% vs. 67%), it remains well under 100%. Moreover, this higher capacity 

comes at the price of slower strontium uptake kinetics. 

 

Table 5.5: Capacity of the capsules 

Support Loading (%) 

Theoretical 

Capacity (mg/g) 

Exp'l Capacitya 

(mg/g) 

% of 

theoretical 

capacity used 

Sr-psc 

~45 (1M CE in 1-

OAlc) 37.96 25.33 66.72 

HC Sr-

PSC 

~62 (1M CE in 1-

OAlc) 66.88 51.36 76.79 

Sr-Spec 

~40% (1M CE in 

1-OAlc) 37.96 26.78 70.54 
 

ameasured radiometically 

bPercent attainment of equilibrium in 2 min 

5.4 Conclusions 

Polysulfone capsules-based extraction chromatographic materials have been 

successfully prepared by the phase inversion precipitation technique. A simple 

modification of a widely practiced physical impregnation method (i.e., using methanol-

containing microcapsules instead of water-containing microcapsules for the 

impregnation) results in satisfactory EXC materials. Unlike polysulfone macrocapsules, 

microcapsules loaded with neat crown ether show significant metal ion extraction, but the 

uptake kinetics of strontium for these microcapsules are slow. This limitation can 

overcome, however, by loading the capsules instead with a 1 M solution of DtBuCH18C6 
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in 1-octanol. These extractant-loaded polysulfone capsules (Sr-PSC) show metal ion 

uptake efficiency and kinetics comparable to commercial Sr-Spec resin. The capacity 

limitation of the conventional materials (~40% (w/w) pore volume), which prompted our 

search for alternative materials with higher capacity, has been overcome using 

polysulfone microcapsules. These capsules can contain up to ~65% (w/w) extractant, 

which is significantly higher than the conventional materials, and the capacity utilization 

of the highly extractant loaded capsules (HC Sr-PSC) is similar to that of conventional 

materials. The only drawback of the high-capacity Sr-PSC material is its slightly slower 

metal ion uptake kinetics. 

The breakthrough of strontium from a Sr-PSC column occurs at a lower elution 

volume compared to a conventional Sr-Spec packed column. This can be understood 

from the characteristics of the EXC materials and packed columns, in particular, the 

different ratios of vs/vm. This means that the mass of extractant in a given volume of PS 

capsules is only half that of conventional Sr resin. This limitation can be overcome using 

HC Sr-PSC materials to pack the column or by simply employing a larger bed of Sr-PSC. 

Stability studies of the Sr-PSC column involving significant water washing show some 

peak drift. Curiously, this drift is opposite in direction to that seen for a Sr-Spec column. 

The recovery of strontium using a Sr-PSC column is complete for at least 5 load-rinse-

strip cycles, which is consistent with observations made for a Sr-Spec column. All these 

results suggest that polysulfone capsules have the potential to address some long standing 

limitations of existing EXC materials. 

 



171 
 

 

5.5 References 

5.1 C. van den Berg, C. Roelands, P. Bussmann, E. Goetheer, D. Verdoes, L. van den 

Wielen, “Preparation and analysis of high capacity polysulfone capsules, Reactive 

and Functional Polymers 2009, 69, 766-770. 

5.2 B. Pena, C. Panisello, G. Areste, R. Garcia-Valls, T. Gumi, Preparation and 

characterization of polysulfone microcapsules for perfume release. Chemical 

Engineering Journal.  2012, 179, 394-403. 

5.3 X. Gong, Y. Lu, Z. Qian, G. Luo, Preparation of uniform microcapsules containing 

1-octanol for caprolactam extraction. Industrial and engineering research, 2009, 

48, 4507-4513. 

5.4 C. Thies, Microencapsulation,  In,  Encyclopedia of polymer science and 

engineering, A Wiley-Interscience publication, Newyork, 1987, 9, 724-745.  

5.5 H. Mimura, H. Ohta, H. Hoshi, K. Akiba, Y. Onodera, Uptake properties of 

palladium for biopolymer microcapsules enclosing cyanex 302 extractant. 

Separation Science and Technology, 2002, 36 (1), 31-44. 

5.6 B. Green, L. Scheicher, Pressure sensitive record materials, U.S. Patent, 2,730,457, 

1955. 

5.7  S. Nishihama, N. Sakaguchi, T. Hirai, I. Komasawa, Extraction and separation of 

rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid. 

Hyrometallurgy, 2002, 64, 35-42. S. Nishihama, G. Nishimura, T. Hirai, I. 

Komasawa, Separation and recovery of Cr(VI) from simulated plating waste using 

microcapsules containing quarternary ammonium salt extractant and phosphoric 

acid extractant. Industrial Engineering Chemical Research, 2004, 43, 751-757. 

5.8 W.W. Yang, G.S. Luo, F.Y. Wu, F. Chen, X.C. Gong, Di-2-ethylhexyl phosphoric 

acid immobilization with polysulfone microcapsules, Reactive and Functional 

Polymers, 2004, 61, 91-99. 

5.9 W.W. Yang, G.S. Luo, X.C. Gong, Extraction and separation of metal ions by a 

column packed with polystyrene microcapsules containing Aliquat 336. Separation 

and Purification Technology, 2005, 43, 175-182. 

5.10 M.F. Bari, M.S. Hossain, I.M. Mujtaba, S.B. Jamaluddin, K. Hussin, Simultaneous 

extraction and separation of Cu(II), Zn(II), Fe(III) and Ni(II) by polystyrene 

microcapsules coated with cyanex 272 . Hydrometallurgy, 2009, 95, 308-315. 



172 
 

 

5.11 E.K. Kamio, Y. Fujiwara, M. Matsumoto, F. Valenzuela, K. Kondo, Investigation 

on extraction rate of lanthanides with extractant-impregnated microcapsules. 

Chemical Engineering Journal, 2008,139, 93-105. 

5.12 C. Araneda, C. Fonseca, J. Sapag, C. Basualto, M. Yazdani-Pedram, K. Kondo, E. 

Kamio, F. Valenzuela, Removal of metal ions from aqueous solutions by sorption 

onto microcapsules prepared by copolymerization of ethylene glycol 

dimethacrylate with styrene, Separation and Purification Technology, 2008, 63, 

517-523. 

5.13 T. Vincent, A. Parodi, E. Guibal, Pt recovery using Cyphos IL-101 immobilized in 

biopolymer capsules, Separation and Purification Technology, 2008, 62, 470-479. 

5.14 X. Ma, Y. Li, X. Li, L. Yang, X. Wang, Preparation of novel polysulfone capsules 

containing zirconium phosphate and their properties for Pb2+ removal from 

aqueous solution. Journal of Hazardous Materials, 2011, 188, 296-30. 

5.15 E. Kamio, K.Kondo, Separation of rare metal ions by a column packed with 

microcapsules containing an extractant, Industrial Engineering Chemical Research, 

2002, 41, 3669-3675. 

5.16 T. Saito, S. Torii, Microcapsule for adsorption and recovery of cadmium (II) ion. 

Separation Science and Technology, 2002, 37 (1), 77-87. 

5.17 J. Yin, R. Chen, Y. Ji, G. Zhao, H. Zhang, Adsorption of phenols by magnetic 

polysulfone microcapsules containing tributyl phosphate. Chemical Engineering 

Journal, 2010, 157, 466-474. 

5.18 X.C. Gong, G.S. Luo, W.W. Yang, F.Y. Wu, Separation of organic acids by newly 

developed polysulfone microcapsules containing triotylamine. Separation and 

Purification Technology, 2006, 48, 235-243. 

5.19 A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of 

spray-drying in microencapsulation of food ingredients: An overview, Food 

Research International, 2007, 40, 1107-1121. 

5.20 B. Pena, L. de Menorval, R. Garcia-Valls, T. Gumi, Characterization of 

polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, and 

N2 adsorption-desorption analysis. Applied materials and interfaces, 2011, 3, 4420-

4430. 

5.21 M.L. Dietz, Recent progress in the development of extraction chromatographic 

methods for radionuclide separation and preconcentration, in: C.A. Laue, K. L. 



173 
 

 

Nash, (Eds.), Radioanalytical methods in interdisciplinary research: Fundamentals 

in cutting edge applications, American Chemical Society, Washington, DC, 2004, 

161-176. 

5.22 R. Arshady, Microsphere and Microcapsules, a survey of manufacturing 

techniques: Part III: solvent evaporation. Polymer Engineering and Science, 1990, 

30 (15), 915-924.  

5.23 A.M. Bulte, M.H. Mulder, C.A. Smolders, H. Strathmann, “Diffusion induced 

phase separation with crystallizable nylons. II. Relation to final membrane 

morphology” Journal of Membrane Science, 1996, 121, 51-58. 

5.24 I.M. Wienk, R.M. Boomm, M.A. Beerlage, A.M. Bulte, C.A. Smolders, H. 

Strathmann, “Recent advances in the formation of phase inversion membranes 

made from amorphous or semi-crystalline polymers” Journal of Membrane 

Science, 1996, 113, 361-371.  

5.25  J.R. Parrish, Macroporous resins as supports for a chelating liquid ion-exchanger 

in extraction chromatography, Analytical Chemistry, 1977, 49, 1189-1192. 

5.26  E.P. Horwitz, R. Chiarizia, M.L. Dietz, A novel strontium-selective extraction 

chromatographic resin, Solvent Extraction and Ion Exchange,1992, 10, 313-336. 

5.27 M.L. Dietz, J. Yaeger, L.R. Sajdak, M.P. Jensen, Characterization of an improved 

extraction chromatographic material for the separation and preconcentration of 

strontium from acidic media, Separation Science and Technology, 2005, 40, 349-

366.  

5.28 E.P. Horwitz, M.L. Dietz, D.E. Fisher, Correlation of the extraction of strontium 

nitrate by a crown ether with the water content of the organic phase, Solvent 

Extraction and Ion Exchange, 1990, 8, 199-208. 

5.29 G.S. Katykhin, in Extraction Chromatography, T. Braun, M. Ghersini, Eds., 

Elsevier, New York, 1975, 45-67.  

5.30 C.A. Hawkins, M.A. Momen, S.L. Garvey, M.D. Kaminski, M.L. Dietz, Evaluation 

of solid-supported room-temperature ionic liquids containing crown ethers as a 

media for the metal ion separation, Talanta, 2015, 135, 115-123. 

5.31 M.L. Dietz, E.P. Horwitz, Novel chromatographic materials based on nuclear waste 

processing chemistry, LC-GC, 1993, 11, 424-436. 



174 
 

 

5.32 E.P Horwitz, C.A.A. Bloomquist, The preparation, performance and factors 

affecting band spreading of high efficiency extraction chromatographic columns for 

actinide separations, Journal of Inorganic Nuclear Chemistry, 1972, 34, 3851-

3871. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



175 
 

 

CHAPTER 6: 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

In this work, an effort has been made to improve several important performance 

characteristics of extraction chromatographic materials, including their metal ion 

retention, stability, column efficiency and sorption capacity. Four different approaches 

have been pursued; ionic liquid-based sorbents for improved retention, extractant 

encapsulation in silica sol-gel glasses for improved stability, stagnant pore plugging to 

improve efficiency, and polysulfone capsule-based materials for improved capacity. A 

series of materials prepared using each of the four approaches have been characterized 

made and their properties compared to those of the conventional materials. 

To improve the retention of metal ions, various ionic liquids have been 

incorporated into extraction chromatographic materials, as they had previously shown 

extraordinary performance in the solvent extraction of strontium ion using crown ethers 

(6.1). In solvent extraction, the ILs C10mimTf2N and C12OHbimTf2N yielded higher 

strontium ion extraction than the conventional solvent 1-octanol. In extraction 

chromatography, however, the strontium ion uptake by the IL-based materials was 

unexpectedly found to be lower than for the conventional octanol-based sorbent. This 

result indicates that the performance of an ionic liquid as an extractant solvent will not 

always translate in a straightforward manner into extraction chromatography. In this 

instance, this may be attributable to factors such as precipitation of the extractant in 
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support, solvent molar volume considerations, high stationary phase viscosity (and the 

accompanying slow uptake kinetics), and the peculiarities of the extraction mechanism. 

Acid catalyzed sol-gel chemistry was employed to synthesize silica-based EXC 

materials. Extractant loading experiments showed that the silica network can retain up to 

~50% (w/w) of the crown ether DtBuCH18C6, and a series of materials containing 

extractant loadings ranging from ~10-~50% (w/w) were prepared and characterized. 

Although the rate and extent of metal ion uptake and the physical stability of these 

materials were not found to be satisfactory, these limitations could be easily overcome by 

using a porogen to increase the porosity of the silica network. A series of porogen-treated 

materials were synthesized to optimize their composition and the optimized material 

characterized. This sorbent was found to provide both higher metal ion uptake and better 

resistance to water or acid washing than conventional Sr-resin. Although the metal ion 

uptake kinetics of the optimized material are somewhat slower than the conventional Sr-

resin, uptake rates comparable to another conventional strontium resin, Super Sr-resin, 

are observed. Thus silica encapsulation may provide a route to the preparation of new and 

useful sorbents for metal ions.  

Among the long-standing significant problems of separation science is the 

separation metal ions of the same charge and comparable size. In extraction 

chromatography, such ions normally either co-elute or yield elution bands exhibiting 

significant overlap. By plugging the stagnant pores of the support, metal ion elution band 

can be narrowed considerably, the present work has shown. In particular, comparison of 

two different stagnant pore-plugged materials, SPP Ln-resin and SPP Sr-resin, to 

analogous conventional EXC resins showed that the column efficiency, as expressed by 
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either the plate number (N) or plate height (H), is more than factor of 2 higher for the 

SPP resins than for the conventional materials. The metal ion uptake and the percent 

utilization of the theoretical capacity of the SPP sorbents are unexpectedly low, however. 

The limited capacity of commercial EXC materials and the problem associated 

with this lower capacity (i.e., the requirement for a large column to avoid extractant 

saturation) make necessary efforts to increase the capacity of EXC materials. In this 

study, polymer microencapsulation techniques have been shown to provide sorbents 

exhibiting the ability of retaining much more extractant per unit mass than conventional 

materials (6.2-6.4). In particular, polysulfone microcapsule-based extraction 

chromatographic materials prepared by the phase inversion precipitation technique and 

loaded with a 1 M solution of the crown ether DtBuCH18C6 showed significant metal 

ion uptake and good uptake kinetics. The metal ion uptake efficiency and kinetics of 

these extractant-loaded polysulfone microcapsules (Sr-PSC) were found to be 

comparable to the conventional Sr-resin, while as expected, the capacity was found to be 

higher (up to twice) than that of the commercial material on the high capacity 

microcapsule-based resin. 

 The chromatographic characterization of the capsules showed the early 

breakthrough of strontium compared to a conventional Sr-Spec packed column, but this 

observation can be understood on the basis of the characteristics of the EXC materials 

and packed columns, (in particular, the different ratios of vs/vm) and can be easily 

overcome by loading the column using HC Sr-PSC. Stability studies (involving water 

washing) of Sr-PSC and Sr-Spec columns have demonstrated shifts in the position of 

elution bands in both instances, but curiously, the shift is opposite in direction. Despite 
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this, the recovery of loaded strontium is complete for both washed and unwashed resin. 

Taken together, these results suggest that the long-standing limitations of existing EXC 

materials may be overcome by the use polysulfone capsules as a chromatographic 

substitute. 

While the studies presented in this work have provided a better understanding of 

the behavior of extraction chromatographic materials, many important questions remain 

unanswered. It is hoped that the knowledge and techniques provided in this work will 

facilitate the continued development of this understanding and assist in the generation of 

improved extraction chromatographic materials for separation and preconcentration of 

metal ion from various sample types. 

6.2 Recommendations 

In the following section, several recommendations are made to guide future 

efforts to improve the performance of extraction chromatographic materials. Although 

these do not represent a comprehensive list of possible areas of interest, they do include 

both ongoing studies in this laboratory and future experiments that may lead to 

significant progress in this field. 

6.2.1 Overview 

In this work, the approaches described were pursued to improve the metal ion 

retention, physical stability, column efficiency, and capacity of extraction 

chromatographic materials. In these studies, only a limited number of extractants and 

solid supports were considered.  In fact, however, a wide variety of solid supports are 

available for examination as potential substrate for novel and improved EXC materials. 
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Similarly, a wide range of extractants and diluents are available for consideration. Clearly 

then, the work described hare represents only a first step towards realizing the potential 

of approaches.  

6.2.2   Incorporating ionic liquids in extraction chromatographic materials 

The findings of these and other studies have demonstrated the difficulty of 

preparing practical radioanalytical separations media simply by replacing a conventional 

solvent with an IL, even one that behaves well in solvent extraction studies. The reasons 

behind this, including such IL characteristics as high molar volume and viscosity, have 

already been discussed here. Overcoming these problems will undoubtedly require newer 

ILs exhibiting lower viscosity (6.5, 6.6), and reduced molar volume or the use of IL 

mixture (6.7) to achieve the desired properties. Also, it will be important to consider the 

optimum level of extractant-diluent loading on the support, the preferred support 

hydrophobicity and porosity, and the characteristics of both the extractant and the IL 

yielding the most satisfactory stationary phase behavior. 

6.2.3 Silica sol-gel encapsulated extractants 

Although significant progress has been made in this study in exploiting the 

physical properties of silica (e.g., especially the surface area and the pore width), much 

remains to be accomplished before materials comprising a silica-encapsulated extractant 

can be regarded as a viable alternative to existing extraction chromatographic resins.  For 

example, the current route to preparation yields an assortment of irregular particles 

(resembling shards of glass) whose chromatographic properties are not entirely 

satisfactory.  It has been shown that the porogen-treated optimized silica-based EXC 
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materials yield better metal ion uptake and comparable uptake kinetics vs. conventional 

materials. The irregular particle shape of the silica materials makes it impossible to carry 

out a satisfactory comparison of their chromatographic characteristics with the 

conventional materials, however. Some studies have reported (6.8, 6.9) the preparation of 

spherical silica materials in the desired size range, but none of them have involved 

encapsulating extractant in the particles. Clearly then, a facile means to prepare uniform, 

porous, spherical glass particles containing an extractant is required. 

Along these same lines, in this study, only a crown ether has been encapsulated in 

a silica matrix. It is worthy attempting to encapsulate other extractants and to optimize 

extractant and porogen (if needed) content of the matrix to determine if silica sol-gel 

glasses can serve as a “generic” support for extraction chromatography. 

6.2.4 Stagnant pore plugging for an efficient EXC materials 

Despite a more than two-fold efficiency enhancement resulting from stagnant 

pore plugging, the EXC materials suffer from the unexpected drawback of lower than 

anticipated utilization of the theoretical capacity vs. conventional materials. The origin of 

this problem is unclear at present, but identifying its origin requires investigation of other 

support-filler-extractant combinations. A wide variety of filler materials are available that 

can be explored for this application. For example, the stagnant pores could be filled with 

a manner, which is then polymerized to create the “plug”. Success in this effort could 

facilitate the resolution of a long-standing difficulty in EXC, the separation of metal ions 

of similar charge/size ratios. 
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6.2.5 Polysulfone capsules for high-capacity EXC materials 

Polysulfone capsule-based EXC materials demonstrated a very significant 

improvement in capacity vs. conventional EXC resin, more than a factor of 2. The light 

weight of the balloon-like capsules, however, makes it difficult to fully exploit this higher 

capacity, as the capsules tend to float. It is expected that this problem could be overcome 

by employing more hydrophilic capsule-producing polymers. Studies have shown that 

other materials can be used to produce capsules for metal ion separations (6.10-6.18). In 

this study, however, only polysulfone capsules have been investigated, leaving a wide 

variety of materials remaining to be evaluated for preparing high capacity sorbents.  
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