
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

12-1-2016

Part 1: Design, Synthesis, and Evaluation of Novel
Gram-positive Antibiotics Part 2: Synthesis of
Dihydrobenzofurans Via a New Transition Metal
Catalyzed Reaction Part 3: Design, Synthesis, and
Evaluation of Bz/gabaa Α6 Positive Allosteric
Modulators
Christopher Michael Witzigmann
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Organic Chemistry Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Witzigmann, Christopher Michael, "Part 1: Design, Synthesis, and Evaluation of Novel Gram-positive Antibiotics Part 2: Synthesis of
Dihydrobenzofurans Via a New Transition Metal Catalyzed Reaction Part 3: Design, Synthesis, and Evaluation of Bz/gabaa Α6
Positive Allosteric Modulators" (2016). Theses and Dissertations. 1429.
https://dc.uwm.edu/etd/1429

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=dc.uwm.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1429?utm_source=dc.uwm.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


PART 1: DESIGN, SYNTHESIS, AND EVALUATION OF NOVEL 

GRAM-POSITIVE ANTIBIOTICS 

PART 2: SYNTHESIS OF DIHYDROBENZOFURANS VIA A NEW 

TRANSITION METAL CATALYZED REACTION 

PART 3: DESIGN, SYNTHESIS, AND EVALUATION OF BZ/GABAA α6 

POSITIVE ALLOSTERIC MODULATORS 

 

by 

Christopher Michael Witzigmann 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

Doctor of Philosophy 

in Chemistry 

 

at 

The University of Wisconsin-Milwaukee 

December 2016 



ii 
 

ABSTRACT 

PART 1: DESIGN, SYNTHESIS, AND EVALUATION OF NOVEL 
GRAM-POSITIVE ANTIBIOTICS 

PART 2: SYNTHESIS OF DIHYDROBENZOFURANS VIA A NEW TRANSITION METAL 
CATALYZED REACTION 

PART 3: DESIGN, SYNTHESIS, AND EVALUATION OF BZ/GABAA α6 POSITIVE 
ALLOSTERIC MODULATORS 

 
by 

Christopher Michael Witzigmann 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Distinguished Professor James M. Cook 

 

 Part 1. Lead compound SK-03-92 represents a new scaffold for antibiotic drug 

discovery.  Development of a new process for the synthesis of analogs has led to the 

development of a number of new ligands with even more potent activity against gram-positive 

bacteria, including drug-resistant strains of S. aureus.  Compounds 36 and 38 represent some of 

the most potent analogs developed thus far, and preliminary results indicate that they are also not 

cytotoxic.  Research into a Heck-mediated transition metal catalyzed pathway towards electron-

rich stilbenoid analogs has greatly expanded the scope of future SAR studies.  This development 

has led to 14 new analogs with minimum inhibitory concentrations (MICs) in pharmaceutically 

acceptable ranges and it is presumed that further SAR expansion will lead to even more potent 

compounds.  Mechanism of action studies have shown that these compounds prove difficult to 

induce mutations in bacteria that lead to drug-resistance.  This has made determination of the 

mechanism/mode of action difficult, and to date it is still not known, but is promising in that a 

lack of developed resistance may show that these compounds act on pathways that are novel and 

unlikely to form resistance.  An enzyme catalyzed pathway involving tyrosinase is postulated as 

a plausible mechanism for these stilbenoid compounds.  This process would involve the 
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formation of quinones, which might be toxic to the bacteria, causing the observed bactericidal 

nature of these potent analogs.  Further, this may explain some of the observed activity for a 

number of analogs synthesized in this study.  The need for new antibiotics is clear, and these 

novel compounds represent a new scaffold for antibiotic drug discovery. 

 Part 2. Dihydrobenzofurans are an important class of compounds, a number of which are 

natural products and/or biologically active.  A new transition metal catalyzed pathway was 

developed to synthesize novel dihydrobenzofurans.  This new process was modified from the 

Heck reaction developed in Part 1.  Initially, the dihydrobenzofurans synthesized by the Heck 

mediated process were in very low yields.  Optimization of the conditions for this reaction were 

successful in improving the conversion to nearly quantitative levels.  A preliminary examination 

of the scope of the reactions indicated that a number of electron-rich aryl bromides were well 

tolerated and high yields for nearly all attempted aryl bromides were reported.  The scope of 

vinyl arenes includes both aryl and heteroaryl vinylic compounds, many of which were 

conveniently synthesized from inexpensive starting materials.  This reaction sequence is similar 

to work reported by Larock, however differs in a number of significant ways. 

Part 3. The α6 subunits of GABAA receptors exhibit a quite restricted regional 

distribution in the brain. They are predominantly expressed in the granule cells of the 

cerebellum, and in the cochlea nuclei. Our recent study revealed that the α6 GABAAR in the 

cerebellum plays an important role in controlling the sensorimotor gating function, a deficit of 

this function is manifested in several neuropsychiatric disorders, such as schizophrenia, tic 

disorders, attention deficit hyperactivity disorder, obsessive compulsive disorder. We have 

designed a series of pyrazoloquinolinone ligands that are functionally selective for α6β2,3γ2 

GABAA receptors and are positive allosteric modulators at this subtype. Preliminary data show 



iv 
 

analogs such as Compound 6 and Compound 11 are effective in an animal model with 

sensorimotor gating deficit, reflecting the impairment of prepulse inhibition of the acoustic 

startle response (PPI) induced by methamphetamine. 

Recently, the α6 GABAAR was shown to be expressed in both neurons and satellite glia 

of the trigeminal ganglia. The α6 subunit positive neuronal cell bodies in the trigeminal ganglia 

project axons to the temporomandibular joint and likely to the trigeminal nucleus caudalis and 

upper cervical region (Vc–C1), and might modulate orofacial pain and inflammatory 

temporomandibular joint nociception and might modulate orofacial pain and inflammatory 

temporomandibular joint nociception. Rats with 30% knock down of the α6 subunit of GABAA 

receptors in trigeminal ganglia were hypersensitive to TMJ inflammation, measured by a prolong 

meal time.  The prevalence of TMJ disorders in the United States is estimated at 4.6% and these 

disorders are the leading cause of chronic orofacial pain. 

Importantly, trigeminal ganglia also send projections to the trigeminal nucleus caudalis 

(TNC) and upper cervical region (Vc–C1), the trigeminal cervical complex. Activation of the 

TNC plays an important role in the neuropathogenesis of migraine. In an animal model of 

migraine, we have found a selective α6-GABAA receptor PAM, Compound 6, effectively 

decreased the number of activated neurons in the TNC induced by intracisteral (i.c.) injection of 

capsaicin. This suggests the potential of selective α6-GABAA receptor PAMs for the treatment of 

migraine. 
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CHAPTER ONE 

INTRODUCTION TO ANTIBIOTICS 

I. HISTORY OF ANTIBIOTICS. 

Throughout history infectious diseases have been among the most common ailments for 

man.1  Historical epidemics such as the Bubonic plague, leprosy, and tuberculosis killed 

hundreds of millions of people and were all caused by various bacterial strains.2-4  In the US, 

many of these diseases are viewed as historical, yet they still persist and are major diseases in 

many third-world countries to this day.5-7  This persistence is generally due to poor living 

conditions, lack of access to clean water, and lack of access to antibiotics.8 

Past countries have dealt with these epidemics through a variety of means.  Usually the 

most successful methods were improved living conditions and access to fresh water.  

Quarantines were also routinely used to separate healthy individuals from the sick.9  These 

methods, however, did little to help those already suffering from the disease.  In fact, it wasn’t 

until the early 20th century that the first antibiotics were discovered, the most successful of these 

early antibiotics was Prontosil (Scheme 1-1).10  Prior to this discovery, vaccines were the most 

successful method of avoiding epidemics, however a crude understanding of pathogenicity and 

why vaccinations were successful led to both poor results and, similarly to recent perspectives on 

vaccinations, an “anti-vax” sentiment among many populations.11  Vaccines were also not 

applicable to people who had already contracted a specific disease and survival rates for some of 

these diseases were very low.  Because vaccinations were often not universal and because it was 

not possible to vaccinate for many infectious diseases, the discovery of antibiotics was perhaps 

one of the most important discoveries of the 20th century.12 
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Scheme 1-1: Prontosil and its activation to sulfanilamide. 

 

 Prior to the discovery of Prontosil, Paul Erhlich, an early pioneer in bacterial staining and 

chemotherapeutic agents, discovered that methylene blue could be used to treat patients with 

malaria.13  Methylene blue is described as the first fully synthetic drug, and it found use as an 

antimalarial drug due to its ability to stain the pathogenic protozoans responsible for malaria.14  

Erhlich’s hypothesis was that the ability of the drug to stain the pathogens blue may lead to 

therapeutic potential.  Indeed, when tested on two patients their fevers subsided and the parasites 

disappeared from their bloodstream.  Methylene blue was used for many years as an antimalarial 

drug until the more successful chloroquine was discovered.15 

 Based on this early work by Erhlich, Gerhard Domagk continued research on dyes as 

possible antibiotic agents.  In the early 1930’s, Domagk discovered that Prontosil rubrum, named 

due to its deep red color, was efficacious in treating mice infected with streptococci.16  

Interestingly, the compound had no activity when used in vitro.  Indeed, it was later found that 

Prontosil was an early example of a pro-drug, a compound that breaks down to the active 

component in vivo.  In this case, Prontosil breaks down to sulfanilamide, a compound found to 

have potent antibacterial activity (Scheme 1-1).17  Although this led to a rather short 

pharmaceutical duration of Prontosil, because sulfanilamide was similarly efficacious in vivo, 

this ushered in a new era of antibiotic research in the field of sulfa drugs. 
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 Unfortunately, this new paradigm shift in medicine came with an unfortunate side-effect, 

bacterial resistance.  Sulfanilamide resistance was reported as early as the late 1930’s, just a 

few years after the discovery of Prontosil’s antibacterial activity.18  This has led to a back-and-

forth struggle to design new antibiotics that can treat the growing number of resistant strains. 

II. CURRENT ANTIBIOTICS. 

Since the early pioneering days of antibiotic research, many new antibiotics have been 

discovered.  Advances in the fields of microbiology have allowed researchers to not only 

discover new antibiotics, but also to assess the mechanisms by which these new antibiotics target 

bacteria, they’re mode/mechanism of action (MOA).19-20 

Although certainly not an exhaustive list, eight different current antibiotics will be 

illustrated here.  These include Gentamicin, Ampicillin, Oxacillin, Ciprofloxacin, Vancomycin, 

Erythromycin, Tetracycline, and Rifampin.  These eight drugs are all used in later chapters as 

controls for compounds synthesized in this work. 

1. Gentamicin. 

Figure 1-1: Structure of Gentamicin. 

 

 Gentamicin was discovered in 1963 as a fermentation product of the gram-positive 

bacteria Micromonospora purpurea.21  Due to poor oral bioavailability, it is generally used either 
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as a topical agent or intravenously.22-23  Gentamicin is a type of aminoglycoside which works by 

stopping bacterial protein synthesis, this typically kills the bacterium and is known as a 

bactericidal antibiotic.24  It is also listed by the World Health Organization (WHO) as an 

essential medicine, one of the most important medications needed in a basic health system. 

 Gentamicin is generally used for gram-negative infections, especially blood-related 

infections.25  Although certain gram-positive strains are susceptible to Gentamicin, most are not, 

so in general it is not used to treat gram-positive infections.  Unfortunately, Gentamicin has 

several severe side-effects including nephrotoxicity (kidney damage) and ototoxicity (cochlea 

toxicity) which limit its use as a treatment.22, 26  Recently due to the emergence of resistance in 

many gram-negative strains, Gentamicin has found renewed use since it is still effective against a 

number of these resistant strains.27  This lack of resistance is directly tied to its infrequent use in 

the past rather than an inability for Gentamicin to confer resistance, as resistant strains are now 

becoming more prevalent due to this resurgence.28 

2. Ampicillin. 

Figure 1-2: Structure of Ampicillin. 

 

 Ampicillin is a drug related to penicillin and is in the ß-lactam family of antibiotics.29  

These antibiotics inhibit transpeptidase, a protein necessary for cell wall synthesis.30  This often 
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leads to cell lysis and death of the cell, so ß-lactam antibiotics are bactericidal.30-31  Ampicillin 

was the first ‘broad-spectrum’ penicillin with activity against both gram-positive and gram-

negative bacteria.  It differs from penicillin G only with the inclusion of an amino group, which 

helps Ampicillin penetrate gram-negative bacterial cell walls.32  It is also on the WHO’s list of 

essential medicines for basic health systems. 

 Like other penicillins, Ampicillin is not effective against methicillin-resistant S. 

aureus (MRSA).  The effectiveness of penicillin analogs relies on their ability to both reach 

penicillin-binding proteins (PBPs) and bind to the PBPs.  Some bacteria are able to produce 

enzymes that cleave the ß-lactam rings, known as ß-lactamase or penicillinase.33  Cleavage of the 

ß-lactam rings leaves the resulting compound ineffective.  Another method bacteria have 

employed to gain resistance to ß-lactams is altering the PBPs.  This is most notable in MRSA 

strains in which the PBP is altered to such a degree that the ß-lactam ring is no longer able to 

bind and the antibiotics are thus ineffective.33-34 

 In the case of ß-lactamases, it has been shown that ß-lactamase inhibitors such as 

clavulanic acid can increase the potency of penicillin’s when co-administered.35  However, 

treatment in this fashion can potentially lead to bacterial strains that possess higher levels of ß-

lactamase expression which can make future treatments with ß-lactams even less effective.36  

Still, treatments with ampicillin or the closely related amoxicillin are among the most prescribed 

treatments for bacterial infections.37 

3. Oxacillin. 

 Similarly to Ampicillin, Oxacillin is also a ß-lactam antibiotic.  They differ greatly in that 

Oxacillin is resistant to penicillinase38, however, this has led to extensive use against penicillin-



7 
 

resistant S. aureus.  Unfortunately, this led to the previously mentioned resistant strains in which 

the PBPs active sites are altered in such a way that these ß-lactams can no longer bind, leaving 

drugs like Oxacillin and the related Methicillin ineffective for MRSA strains.39 

Figure 1-3: Structure of Oxacillin. 

 

 Despite these issues, Oxacillin remains a popular choice for treating bacterial infections 

that are penicillin resistant.40  It is increasingly important, however, that these drugs are not over 

prescribed and that patients adhere to the treatment protocols to slow the emergence of new 

strains of MRSA.41 

4. Ciprofloxacin.  

 Ciprofloxacin, commonly known as simply Cipro, is a relatively modern antibiotic 

released in 1987.  It is also on the list of WHO’s essential medications for a basic health system.  

It is used for both gram-positive and gram-negative infections and works by inhibiting DNA 

gyrase and topoisomerase IV.42  This prevents bacterial DNA from separating and thus inhibits 

cell division.  Cipro has been shown to be bactericidal when used in higher concentrations, 

however at its MIC it is bacteriostatic.43  It is thought this bactericidal nature is due to the release 
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of DNA gyrase complexes leading to chromosomal DNA fragmentation, while at lower 

concentrations the inhibitory effects just stop cell division.44 

Figure 1-4: Structure of Ciprofloxacin. 

 

 Cipro is a second generation fluoroquinolone and is derived from the original antibiotic 

quinolones discovered in the early 1960’s.  In general, these fluoroquinolones are known to 

quickly develop resistance, sometimes even within one course of treatment.45  This problem was 

compounded with prescriptions for conditions not approved by the FDA and overuse in 

veterinary medicine.46-47  Some bacteria developed efflux pumps that decrease intracellular 

quinolone concentration and some others developed mutations to DNA gyrase and 

topoisomerase IV that decreased binding affinity for quinolones.45 

 One literature source published in the late 1980’s reports that clinical oral dosage of 

Cipro to 37 MRSA patients resulted in Cipro-resistant mutants which developed in 6 out of the 

37 cases.  While the article claims 91% of patients were clinically cured or their conditions 

improved, this rate of resistance was alarming.48 
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5. Vancomycin. 

Figure 1-5: Structure of Vancomycin. 

 

 Vancomycin is a gram-positive antibiotic biosynthesized by the bacteria Amycolatopsis 

orientalis.  It was first isolated in 1953 from a soil sample collected from the jungles of 

Borneo.49  The mode of action is the inhibition of proper cell-wall synthesis leading to death of 

the cell.  Due to the difference in cell wall configurations, Vancomycin is ineffective in treating 

bacterial infections from gram-negative bacteria. 

 Originally Vancomycin was developed as a solution to the penicillin-resistant S. aureus 

infections mentioned earlier, however as Methicillin and Oxacillin were developed and were 

both more efficacious and easier to dose, Vancomycin fell behind as a drug of last-resort.  This 

was due in part to its low oral bioavailability, which necessitated IV administration.50  Recently, 

however, Methicillin and Oxacillin resistant S. aureus (MRSA) have necessitated Vancomycin 

as a first-line treatment for a number of these infections.51  While IV injections are necessary for 
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most infections, it can be orally administered for bowel or stomach infections since it has rather 

poor oral absorption.52  It is now also on the WHO’s list of essential medications. 

 Vancomycin resistance, however, is becoming more prevalent, especially in hospital 

settings.51, 53  If these infections are not identified as Vancomycin resistant early enough, patients 

are at extreme risk.  As these strains of Vancomycin-intermediate and Vancomycin-resistant S. 

aureus (VISA and VRSA respectively) become more prevalent, a new antibiotic will necessarily 

become the new first-line treatment for bacterial infections, with resistance likely to follow. 

6. Erythromycin. 

Figure 1-6: Structure of Erythromycin. 

 

 Erythromycin is yet another antibiotic that was originally separated from a natural source, 

in this case the bacteria Saccharopolyspora erythraea.54  It is also another antibiotic listed by the 

WHO as an essential medication for a basic health system.  It was first isolated in 1952 and was 

found to be active against gram-positive bacterial strains.  Erythromycin is in the antibiotic class 

of macrolides, compounds that inhibit protein synthesis by binding to the 50S subunit of 
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bacterial ribosomes, humans do not have 50S ribosomal units so these compounds act selectively 

on the bacteria.55 

 Resistance to macrolides and Erythromycin is seen in many bacteria with mutations in 

the 50S subunit which inhibits binding.  MRSA strains, for example, are notoriously resistant to 

Erythromycin and other macrolides.56-58  Growing resistance in other species is also an alarming 

concern. 

7. Tetracycline. 

Figure 1-7: Structure of Tetracycline. 

 

 Tetracycline was also originally isolated from bacteria, in this case strains of 

Streptomyces produced the compound.59  It was first isolated in 1945 and was surprisingly 

already prescribed as a drug as early as 1948.60  It is yet another antibiotic listed by the WHO as 

an essential medicine. 

 Tetracycline acts by inhibiting protein synthesis by blocking the attachment of charged 

aminoacyl-tRNA to the A site on the ribosome.61  Tetracycline binds to the 30S ribosomal 

subunit of microbial ribosomes and also binds to the 40S subunit of mammalian ribosomes.  

However, while bacteria actively pump Tetracycline into the cytoplasm, mammalian cells do not.  
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The relatively small off-site effects in humans by Tetracycline can be explained by this 40S 

binding.62  The inhibition of protein synthesis is reversible and thus bacteriostatic.59 

 Bacteria actively form resistance to Tetracycline by either encoding efflux pumps that 

actively pump Tetracycline from the cytoplasm, or by ribosomal protection proteins that dislodge 

Tetracycline from the ribosome.59, 63  Tetracyclines are sometimes prescribed for MRSA related 

infections, however identification of the strain and its susceptibility to Tetracycline are important 

factors considered before treatment.64-66 

8. Rifampin. 

Figure 1-8: Structure of Rifampin. 

 

 As has been the case for most antibiotics discussed above, Rifampin was also first 

isolated from another species of bacteria, in this case Amycolatopsis rifamycinica.  It was first 

discovered in 1957 and first sold as a medication in 1971.67  Along with most of the 

aforementioned antibiotics, it is also on the WHO list of essential medications, particularly for 

Tuberculosis (TB).68 

 Rifampin inhibits RNA polymerase halting bacterial RNA synthesis.  It is extremely 

potent in wild-type strains of M. Tuberculosis and many strains of MRSA; however, resistance is 
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easily conferred.69  Bacteria confer resistance through altered residues in the Rifampin binding 

site on RNA polymerase.69-71  Rifampin resistant TB is one of the most dangerous microbes in 

developing countries, with TB infecting nearly 10 million people in 2014 alone.  It is estimated 

that ~20% of all cases involve strains resistant to at least one medication.72-74   This often leads to 

a ‘cocktail’ drug composed of, in many cases, three separate drugs (isoniazid, pyrazinamide, and 

rifampin).75 

 Due to side-effects and the conference of resistance, Rifampin is generally not used to 

treat MRSA infections, but when it is used, it is generally used in combination therapy to reduce 

the likelihood of forming resistance.76 

III. THE NEED FOR NEW ANTIBIOTICS. 

The eight aforementioned pharmaceutical drugs represent some of the most widely 

prescribed medications for bacterial infections.  It should be clear, however, that resistant strains 

to every single one of these antibiotics has been observed.  The early penicillins were the first to 

lose effectiveness, followed closely by the penicillinase resistant methicillin/oxacillin drugs.  The 

explosion of new antibiotics in the mid-20th century slowed the spread of resistance, or at least 

widened its scope, leaving a plethora of treatment options even for the deadliest infections.  That 

said, however, identification of strains is difficult and generally results in the use of the best 

current first-line therapy to eradicate an infection and give the best chances of survival to the 

patient.  Indeed, choosing the wrong therapy is deadly in many cases, especially in MRSA 

related infections.77 

This problem is exacerbated since the first-line treatments slowly lose effectiveness and a 

new first-line therapy is needed.  Currently, Vancomycin is considered the first-line treatment for 
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many identified MRSA infections78, as MRSA becomes more prevalent, the use of Vancomycin 

will also become more prevalent.  In the past decade we have seen a surprising explosion of 

Vancomycin resistant related microbes, specifically VISA and VRSA.79 

Currently, it is estimated that close to 19,000 patients die annually from MRSA related 

infections in the United States alone.80-83  When VRSA becomes just as prevalent as MRSA is 

today, those numbers could sky-rocket.  This alone is an important reason for the development of 

new antibiotics, but there is also a plethora of other related infections both from gram-negative 

bacteria and mycobacterium that also require new medications and new treatments.84-87 

Unfortunately, bacterial infections are less enticing for pharmaceutical companies as 

treatment lengths are generally weeks as opposed to chronic diseases in which treatments could 

last years.  The costs necessary to take a drug from the bench to a prescription are prohibitive 

with such short treatment cycles.  Moreover, as current antibiotics are still effective to varying 

degrees, competition in the market lowers the potential profits from a new drug.88 

With this combination of factors involved, it is not surprising that the number of new 

antibiotics approved by the Food and Drug Administration (FDA) has steadily declined since the 

1980’s.  It is also important to note that new antibiotics are generally from an already known 

class of antibiotics, of which resistance patterns are already known.  Recently the resurgence of 

antimicrobial research has led to the discovery of the first new class of antibiotics in 30 years, 

Teixobactin.  Human trials of this new drug may not be started until 2017, however, and 

although resistant strains have not been isolated in vitro, experts claim that it is still possible that 

resistant strains will develop in clinical settings.89 
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IV. CONCLUSION. 

The history of antibiotics spans just over one century.  In the course of that century many 

new drugs have been discovered that have become essential medications in treating often deadly 

infections.  More recently, however, the spread of resistance has led to the need for the discovery 

of new antibiotics.  Although the economic benefits of antimicrobial research limit the overall 

throughput, it is exciting to see that the first new class of antibiotics in 30 years was recently 

discovered with Teixobactin.  It is hoped that this ushers in a new wave of antimicrobial research 

that can potentially lead to discovery of many new novel classes of antimicrobials that are active 

against resistant strains.  Moreover, compounds that do not confer resistance could usher in a 

new era of microbial treatment that no longer relies on the susceptibility patterns of different 

strains. 

Described in this thesis is a new class of antibiotics, stilbenoids, which have been found 

to possess potent activity against gram-positive bacteria.  These compounds were originally 

derived from a natural product, but synthetically modified to increase potency.  While these 

stilbenoids exhibited potent activity against wild-type strains, it was also discovered that these 

compounds possess potent activity against all resistant strains tested.  Additionally, mutants from 

a sub-lethal dosage of these agents were not observed over many trials, prompting the hypothesis 

that these compounds might not confer resistance.  Many of these small molecules were also 

tested both in vitro and in vivo for cytotoxicity and were generally found to be well tolerated and 

safe.  The mode of action for these new stilbenoid derivatives is still elusive, due in part to their 

lack of conference of resistance.  The compounds described within this thesis may one day be 

useful tools or medications for gram-positive bacterial infections. 
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CHAPTER TWO 

SYNTHESIS, SCALE-UP, AND BIOLOGICAL EVALUATION OF                    

SK-03-92 AND A SMALL SERIES OF DIRECT ANALOGS BASED ON AN 

INTERESTING STILBENOID NATURAL PRODUCT SCAFFOLD 

I. INTRODUCTION AND BACKGROUND. 

 1. Natural product identification and evaluation. 

Due to the emergence of resistant pathogens, discovery of new and novel antibiotics is of 

utmost priority.  Natural products represent one of the greatest sources for novel compounds with 

biological activity.  These natural products can be modified and enhanced via synthetic 

techniques to potential drug candidates.  Our interdisciplinary research team has been engaged in 

screening extracts of medicinal plants and fungi in search of new molecules with interesting 

biological profiles.  This research led to the identification of (E)-3-hydroxy-5-methoxystilbene 

(Figure 2-1, 1) in the leaves of a shrub native to the great lakes region.  This shrub, Comptonia 

Peregrina, also known as “sweet fern”, has been used in traditional herbalism to treat a number 

of medical issues.  It is used as a tea to treat nausea or a poultice for skin conditions, which may 

be directly related to the antimicrobial components of the plant. 

Figure 2-1: Natural product from ‘sweet fern’. 

 



17 
 

 Further pharmacological testing of the essential oils of sweet fern indicated that the oil 

was cytotoxic to mammalian cells.90  This cytotoxicity, however, was likely due to other major 

components of the oil, for example methyl p-coumarate (Figure 2-2).  The Michael-acceptor 

nature of this molecule is likely the cause of this cytotoxicity, and it is important to note that the 

compound of interest, 1, does not have any Michael-acceptor moieties.  In other work we have 

shown that related compounds with a Michael-acceptor moiety are both very active 

antimicrobials while also cytotoxic to mammalian cell lines.91 

Figure 2-2: Methyl p-coumarate as a Michael-acceptor. 

 

 Interestingly compound 1 was also identified in a number of other plant species including 

Didymochlaena truncatula92 and Alpinia katsumadai93, however as far as one can determine the 

antimicrobial activity was only investigated by the LaCrosse/UWM research team.  Other 

stilbenes have been investigated as antimicrobial agents and have been shown to exhibit activity 

against both gram-positive bacteria and certain fungal strains, however these stilbenes are 

multimeric derivatives of a basic stilbene structure.  An example of such a compound is 

“heyneanol A”, reported to have both cytotoxic character with potential use for cancer therapy as 

well as antimicrobial activity specific for gram-positive bacteria.  These multimeric compounds 

may work by a similar mechanistic pathway to the natural product 1; however, it should be noted 

that mechanism of action studies for both the compounds presented in this work, along with 
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other similarly structured compounds, such as heyneanol A, have not been unequivocally 

elucidated as of yet. 

Figure 2-3: Structure of heyneanol A. 
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2. Initial SAR study. 

Although analysis of crude extracts and extremely small heavily purified samples of a 

product from natural sources may yield interesting biological data, it is imperative that these 

molecules be prepared synthetically to confirm both the biological activity and also permit the 

synthesis of novel analogs that may improve upon the biological activity of the parent natural 

compound. 

 A broad SAR study was imagined that included synthesis of not only the parent 

stilbenoid scaffold, but also the synthesis of analogous vinyl ethers, vinyl thioethers, and 

enamines (Figure 2-4).94 

Figure 2-4: Initial SAR targets. 
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 Compounds synthesized in these series were routinely assayed for Minimum Inhibitory 

Concentrations (MICs) against eleven standard test strains of bacteria including two gram-

positive species (S. aureus and E. faecalis), two gram-negative species (P. aeruginosa and E. 

coli), and seven mycobacterium strains (M. intracellulare, M. chelonae, M. fortuitum, M. 

kansasii, M. avium, and M. smegmatis).  In addition, some compounds were also tested against 

B. cereus, a safer surrogate of the deadly and high priority B. anthracis which has potential use 

as a biological weapon.  M. smegmatis is a safer surrogate of the high risk pathogen M. 

tuberculosis, which presents a major health epidemic in third world countries. 

 The original synthesis of the natural product 1 and other related stilbenoid compounds 

was accomplished by utilizing a transition metal catalyzed Negishi cross-coupling reaction.  

Negishi coupling forms a C-C bond between organic halides (or triflates) and organozinc 

compounds with a relatively wide scope, thus it was envisioned that a wide variety of 

compounds could be synthesized via this method.  Detailed in Scheme 2-1 is the route towards 

both the natural product and a number of new analogs. 

 

 

 

 

 

 

 



20 
 

Scheme 2-1: Synthesis of stilbenoids, including the natural product 1. 

 

 Although this method was successful in the synthesis of the natural product and a number 

of related analogs, several issues with the reaction were reported.  First, the starting aldehyde 2 

was both expensive and it was found that protection of the phenol to the TIPS derivative 3 was 

necessary for the conversion to the vinyl iodide 4.  Additionally, the vinyl iodide 4 was unstable 

at room temperature and purification required column chromatography, thus large scale reactions 

were difficult and sometimes resulted in little or no yield of the product.  Storage of the vinyl 

iodide at -40 ºC kept it relatively stable, however, enough impurities were present after several 

days/weeks that re-purification was necessary to achieve high yields in the palladium catalyzed 

cross-coupling reaction. 

 Synthesis of the organozinc complex 5 from aryl bromides generally proceeded with no 

issue and the vast number of commercially available aryl bromides provided ample substitution 

patterns in this aryl unit.  Finally, deprotection of the TIPS group with TBAF in THF generally 
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worked very well and in some cases could be done in a one-pot fashion prior to purification of 

the protected compound 6. 

 In a similar fashion vinyl ethers, vinyl thioethers, and enamines were also synthesized 

from the vinyl iodide 4 using a copper catalyzed process described below (Scheme 2-2, Scheme 

2-3, and Scheme 2-4). 

Scheme 2-2: Synthesis of vinyl ethers. 

 

Scheme 2-3: Synthesis of vinyl thioethers. 
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Scheme 2-4: Synthesis of enamines. 

 

3. Results and Discussion. 

 With a viable synthetic procedure in place for the synthesis of natural product 1, enough 

compound was prepared to assay against of number of bacterial strains.  Additional strains of 

bacteria were also used in the assay of the natural product as it was of highest priority.  The 

results indicated that indeed the stilbenoid has antimicrobial properties and its activity should be 

explored more thoroughly (Table 2-1). 

 Interestingly the natural compound 1 was found to have activity against both gram-

positive bacteria and mycobacterium, but no activity against gram-negative bacteria.  This 

interesting result led to the idea that perhaps the mechanism of action was related to the cell wall, 

since the biggest difference between both gram-positive and mycobacterium to gram-negative 

bacteria is indeed the construction of the cell wall.  Some of the most interesting results from this 

initial assay were the activity against strains that are resistant to some commercial antibiotics.  

These include the results from E. faecium VRE 1 and VRE 14 (vancomycin resistant 

enterococci) and S. aureus MRSA MC-1 and MC-4 (methicillin resistant).  This was a surprising 

result as both methicillin and vancomycin’s mode of action is directly tied to the bacterial cell 
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wall, suggesting that if this natural product is also acting on the cell wall, it may be acting on a 

novel mechanism of action. 

Table 2-1: Antimicrobial assays for natural product 1. 

  

Species Gram MIC (µg/mL) 
Bacillus anthracis + 8 

Bacillus megaterium  + 64 
Bacillus cereus + 16 
Bacillus subtilis + 16 

Corynebacterium pseudodipthericum + 16 
Corynebacterium diphtheriae Tox- + 32 

Corynebacterium xerosis + 16 
Enterococcus faecium VRE 1 + 16 
Enterococcus faecium VRE 14 + 16 

Enterococcus faecalis ATCC 29212 + 16 
Staphylococcus aureus ATCC 29213 + 32 
Staphylococcus aureus ATCC 25923 + 32 
Staphylococcus aureus MRSA MC-1 + 32 
Staphylococcus aureus MRSA MC-4 + 32 

Streptococcus mitis + 64 
Streptococcus aagalactiae + 32 
Streptococcus pyogenes + 16 

Streptococcus pneumoniae ATCC 49619 + 8 
Listeria monocytogenes + 32 

Mycobacterium bovis BCG N/A 26 
Escherichia coli – >128 

Pseudomonas aeruginosa – >128 
+: gram-positive, -: gram-negative, N/A: mycobacterium are neither + or - 

 Vinyl ethers, vinyl thioethers, and enamines also showed promise when assayed against 

the primary targets (Table 2-2).  Other compounds synthesized within these series had equal to or 
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weaker activity then the compounds shown below.  Because of this, more focus was put into the 

synthesis of the stilbenoid compounds closely related to the natural product 1. 

Table 2-2: Antimicrobial assays for vinyl ether, vinyl thioether, and enamine analogs.a 

Bacterial Strain 

OHO

OMe

7

 

SHO

OMe

8

  

S. aureus 64 16 32 

E. faecalis 64 16 32 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare 128 64 64 

M. chelonae >128 128 64 

M. fortuitum 128 128 128 

M. kansasii >128 64 64 

M. avium 128 128 64 

M. smegmatis 128 128 32 

M. marinum >128 64 64 

aValues in µg/mL 

 

 Synthesis of a number of stilbenoid analogs, moreover, led to a far more interesting 

analog in SK-03-92 (Table 2-3).  Many other compounds in this series, however, were more 
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similar in activity to the natural product 1, not potent enough for use as an antimicrobial drug 

candidate. 

Table 2-3: Activity of some novel stilbenoid compounds, including SK-03-92.a 

Bacterial Strain 

  

SHO

OMe

SK-03-92

 

S. aureus 16 16 2 

E. faecalis 32 16 2 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare 64 64 32 

M. chelonae 128 64 32 

M. fortuitum 128 64 16 

M. kansasii 128 64 32 

M. avium 128 64 32 

M. smegmatis 64 64 32 

M. marinum 128 64 16 

aValues in µg/mL 

 

 With activities below the range of 10 µg/mL, SK-03-92 exhibited activity that was 

similar to some mainstream antibiotics and thus served as an excellent lead compound for further 

SAR studies. 
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II. CHEMISTRY AND RESULTS. 

 1. Scale up of SK-03-92. 

Based on the initial SAR study, SK-03-92 (Table 2-3) was deemed the most promising 

lead compound and therefore future study required a synthesis suitable for scale-up to gram 

quantities.  The original palladium-mediated Negishi cross-coupling reaction required not only 

the use of expensive transition metals, but also the use of unstable intermediates which were 

difficult to prepare in large quantities (Scheme 2-1).  It was found that a Wittig-type approach 

could be used to successfully scale up SK-03-92 to gram quantities through a less expensive yet 

more laborious seven-step process beginning with 3,5-dihydroxybenzoic acid (Scheme 2-5). 

Scheme 2-5: Scale-up of the synthesis of SK-03-92. 
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  The 3,5-dihydroxybenzoic acid (12) was converted into the methyl ester (13) and 

subsequently protected as the dimethoxy derivative (14).  It is worth noting that the conversion 

from 12 to 14 could be accomplished in one step utilizing the same conditions as 13 to 14; 

however, this leads to a slightly lower overall yield.  The hydride reduction of 14 with lithium 

aluminum hydride provided the alcohol (15) which was subsequently treated with phosphorous 

tribromide to provide the alkyl bromide (16).  The synthesis of the diethylphosphonate (17) was 

accomplished by heating bromide 16 in neat triethylphosphite at 130 ºC.  The 

diethylphosphonate (17) and benzo[b]thiophene-2-carbaldehyde (18), in the presence of sodium 

hydride, gave the corresponding stilbene (19) in good overall yields.  Mono-demethylation was 

accomplished by treating 19 with sodium ethanethiolate at 140 ºC to furnish the final stilbene, 

SK-03-92, in an approximate overall yield of 50%.  It should also be noted that the benzyl bromo 

derivative (16) was not stable and decomposed readily on the benchtop, thus storage as the 

alcohol (15) or conversion immediately to the more stable diethylphosphonate (17) was 

preferred. 

 One significant hurdle to scale-up via this method, however, was the price of 

thioaldehyde 18.  The conversion of the much less expensive thionapthene 20 to 18 was 

accomplished by lithiation of the 2-position with n-butyl lithium and subsequent treatment with 

dimethylformamide to provide the aldehyde 18 in excellent yield (Scheme 2-6). 

Scheme 2-6: Scale-up of the synthesis of aldehyde 18. 
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  Although this route was longer than the prior Negishi cross-coupling procedure, it was 

successfully used to synthesize over 50 grams of SK-03-92 in a more economical and less 

cumbersome manner.  Purification was only necessary after synthesis of 19 (crystallized from 

toluene) and although chromatography was usually necessary for small scale purification of SK-

03-92, on large scale it can be adequately purified by crystallization from isopropanol with 

excellent recovery.  This was a major improvement in the route. 

2. Synthesis of analogs starting from SK-03-92. 

The initial SAR study employing the previously discussed Negishi cross-coupling 

procedure focused exclusively on substitution (ring C) using a variety of aryl bromides (Figure 

2-5, green portion), which left the ‘left-hand-side’ (Figure 2-5, red portion) substitution pattern 

and bridged alkene (Figure 2-5, blue portion) moieties intact.  After screening a number of 

different aldehydes the benzo[b]thiophene moiety was found to be the most active, and thus the 

goal of this research was to synthetically modify both the ‘left-hand-side’ and the bridge in an 

attempt to gain more insight into the SAR of these novel stilbenoid compounds and perhaps get a 

clinical candidate to treat MRSA infections. 

Figure 2-5: Functionality evaluation of SK-03-92. 
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 Since adequate amounts of SK-03-92 were available, direct modification of SK-03-92 

was explored.  The most convenient method of directly modifying the ‘bridge’ of SK-03-92 was 

to hydrogenate it via Pd/C to the saturated analog 21 (Scheme 2-7). 

Scheme 2-7: Hydrogenation of SK-03-92. 

 

 Based on the biological evaluation of this new analog, to be discussed in the upcoming 

section, additional modifications to the bridge were not attempted. 

 SK-03-92 has relatively few sites for direction manipulation, however, the phenolic 

group at the 3-position gave access to a few new analogs.  Since the advent of transition metal 

chemistry a number of reactions have been developed that replace aryl halides or triflates with 

other desirable functionalities.95-99  Through the initial SAR it was shown that the dimethoxy 

analog 19 (Scheme 2-5) was inactive and based on this it was assumed that the phenolic 

functionality was essential for activity.  However, for the same reason mono-demethylation was 

successful, namely the symmetrical nature of 19, this would also allow substitution at the 

phenolic site and subsequent demethylation of the methoxy group at position 5 to give structural 

analogs of SK-03-92 (Figure 2-6). 
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Figure 2-6: Phenolic substitution followed by demethylation. 

 

  From this study, synthesis of the triflate analog of SK-03-92 was followed by substitution 

using transition metal catalysis.  This was followed further by demethylation of the methoxy 

group at position 5 giving rise to other interesting analogs.  Synthesis of the triflate analog of 

SK-03-92 from triflic anhydride proceeded smoothly in 98% yield (Scheme 2-8) and was found 

to be adequately stable when stored in a freezer. 

Scheme 2-8: Synthesis of the triflate analog of SK-03-92. 
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 With the triflate 22 in hand, the study focused on replacement with a functional group 

similar in size and electronic character to the methoxy group at position 5 of SK-03-92.  The first 

interesting analog planned was conversion of the triflate group to a thiol (Scheme 2-9).  A 

number of methods existed for this transformation100-103, however, this work focused on a 

method employing triisopropyl silane thiol and palladium tetrakis.  Two analogs were envisioned 
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from this route; first the thiol depicted in Scheme 2-9, and next the thiomethoxy 25 depicted in 

Scheme 2-11. 

Scheme 2-9: Triflate to thiol synthesis. 
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  Unfortunately, although the transition metal catalyzed reaction worked flawlessly, the 

simple removal of the silyl group proved troublesome.  In fact, the thiol analog was never 

observed even in crude samples tested by NMR.  On addition of TBAF, it was noted that starting 

material abruptly disappears with formation of baseline material.  This material was tested by 

NMR, but revealed little information on the structure of the crude material.  Though synthesis of 

the thiol was halted, it was found that adding 2 equivalents of iodomethane to the TBAF 

conditions resulted in the thiomethyl compound 24 (Scheme 2-10).  Further demethylation of 24 

led to the SK-03-92 thiomethyl analog 25 (Scheme 2-11). 

Scheme 2-10: Synthesis of thiomethyl analog of 19. 
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Scheme 2-11: Synthesis of the thiomethyl analog of SK-03-92. 

 

 Unfortunately, the methylation reaction took place in low yield leading to an overall poor 

yield of the interesting SK-03-92 analog 25.  The final reaction to compound 25 took advantage 

of the electronic character of the thiomethyl group which was not as readily demethylated as 

methoxy groups, an interesting reaction considering that the thiol itself was not stable enough to 

isolate. 

 The next analog of interest was substitution of the triflate group with a nitrile group.  A 

nitrile group is of similar size to a methoxyl group, however, they have very different electronic 

characteristics, so this substitution could give some insight into the SAR related to ring A of SK-

03-92.   A number of methods are available for such a substitution104-106, however, in this case 

we started with the well-known Rosenmund-von Braun reaction (Scheme 2-12).107  It was found 

that under the harsh conditions, conversion to the nitrile via this process was not possible.  It is 

also possible that triflates are not suitable for this reaction since little literature support was 

found for the substitution besides those of aryl halides. 

Scheme 2-12: Rosenmund-von Braun reaction. 
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 Fortunately, there are many alternatives to such reactions and it was found that in a 

similar manner to the thiol synthesis, palladium tetrakis was found to convert the triflate into the 

corresponding nitrile in the presence of copper iodide and sodium cyanide (Scheme 2-13). 

Scheme 2-13: Transition metal catalyzed nitrile synthesis. 
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 Unfortunately, low yields (35%) and difficulties in the synthesis of the phenol from the 

nitrile analog 26 made synthesis of the nitrile analog of SK-03-92 difficult and it was not pursued 

further (Scheme 2-14). 

Scheme 2-14: Demethylation of the nitrile analog. 
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 It should be noted that it is presumed that the above reaction does work, however only a 

small amount of 26 was synthesized and it may have decomposed under the harsh conditions of 

demethylation Scheme 2-14.  At this time, however, it was determined that a new synthetic 

pathway was necessary for synthesis of analogs similar to SK-03-92.  Although the triflate 

pathway was successful for a small number of compounds, the necessity to demethylate many of 

the possible analogs proved troublesome on such a small scale. 
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 One further analog was also synthesized from the diethylphosphonate (17) originally 

discussed in Scheme 2-5.  Thiophene-2-carbaldehyde (27) and diethylphosphonate were reacted 

in a similar manner to Scheme 2-5 (step 6) to give the dimethoxy analog 28.  Demethylation via 

sodium ethane thiol gave the desired thiophene analog 29 (Scheme 2-15).  Thiophene is a known 

bioisostere of a benzene ring108-110 and given the activity of SK-03-92 with a thionapthene ring, 

this compound is an isostere of the original natural product 1 and its activity was important to 

compare to 1. 

Scheme 2-15: Synthesis of the thiophene derivative of natural product 1. 
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3. MIC results and discussion. 

 Minimum inhibitory concentrations (MICs) of new analogs were carried out according to 

standard protocols.111  As previously discussed, the strains tested were two gram-positive strains, 

two gram-negative strains, and a series of seven different mycobacterium strains.  Although MIC 

data for the mycobacterium strains was not within a drug-suitable range for any compounds 

discussed analysis of the data, in some cases, reveal interesting SAR information.  For example, 

in some cases stilbenes exhibited activity against both gram-positive and mycobacterium strains, 
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yet in other cases some only exhibited activity against gram-positive strains.  This may relate to 

the difference in the cell walls between gram-positive bacteria and mycobacterium. 

Table 2-4: MIC results for compounds 22, 21, and 29.a 

Bacterial Strain 

   

S. aureus >128 8 32 

E. faecalis >128 16 64 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 128 64 

M. chelonae >128 >128 128 

M. fortuitum >128 128 >128 

M. kansasii >128 >128 64 

M. avium >128 128 128 

M. smegmatis >128 128 128 

M. marinum >128 >128 64 

aValues in µg/mL 

 

 Not surprisingly, triflate 22 was found to be inactive (Table 2-4).  As discussed the 

previous SAR indicated that a phenolic group was necessary, since dimethoxy analogs, prior to 

demethylation, were found to be inactive in all cases tested.  Importantly, however, examination 
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of the MIC of the triflate analog indicated this lack of activity extended to groups other than 

methoxy. 

 The saturated analog 21 was found to retain activity (Table 2-4), although it was ~4-fold 

less active then the parent lead compound SK-03-92.  From this it was concluded that the 

olefinic bridge was important, but not absolutely necessary for activity, which may prove useful 

for future SAR endeavors.  However, rigid stilbenes with an olefinic bridge have exhibited more 

potent activity and thus should be investigated first.  It is hypothesized that the rigidity of the 

unsaturated bridge may help these stilbenoid compounds penetrate the cell walls of the gram-

positive bacteria more readily.  Only a subtle loss of activity when the bridge was saturated 

supports this hypothesis.  This may be of importance for later SAR advances as saturation of the 

bridge can reduce the likelihood of side-effects similar to that of other stilbenoid pharmaceuticals 

such as stilbestrol.112 

 Since thiophene is a bioisostere of benzene, it was felt the thiophene analog 29 should 

have similar activity to the natural product 1 and that was the case (Table 2-4).  Interestingly in 

the previous SAR it was found that substitution of a naphthene group instead the thianaphthene 

in SK-03-92 resulted in an 8-fold decrease in activity even though they are related bioisosteres.  

This led one to believe that it was perhaps the change in geometric orientation from naphthene to 

thianaphthene that led to the poorer MIC results (Figure 2-7).  Interestingly, ring B 5-membered 

thiophene rings form a conserved symmetry with respect to the alkene bridge when compared to 

their 6-membered ring counterparts. 
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Figure 2-7: Orientation of ring C in stilbenoid compounds. 

 

Table 2-5: MIC results for compounds 24, 25, and 26.a 

Bacterial Strain 

   

S. aureus >128 2 >128 

E. faecalis >128 8 >128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 128 >128 

M. chelonae >128 64 >128 

M. fortuitum >128 64 >128 

M. kansasii >128 64 >128 

M. avium >128 64 >128 

M. smegmatis >128 64 >128 

M. marinum >128 64 >128 

aValues in µg/mL 
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 As previously discussed the SAR predicted that lack of a phenolic group would result in a 

lack of activity and ligand 24 with a thiomethyl group, devoid of a phenolic group, lacked 

activity (Table 2-5).  Similar results were seen with triflate 22; which indicated that the phenolic 

nature in ring A is necessary for the antimicrobial activity as observed in compounds such as SK-

03-92. 

 Thiomethyl analog 25 retained activity and was as active as the parent SK-03-92 within 

experimental error (Table 2-5).  Analysis of this result indicated that although the phenol was a 

necessary component for consistently potent compounds, there was room for synthetic 

manipulation of the methoxy group of SK-03-92 to retain or enhance potency in ring A of the 

stilbenoids. 

 Finally, the nitrile analog 26 lacked activity since it too lacked the necessary phenolic 

group.  Synthesis of the more interesting phenolic analog of 26 failed via the current methods 

and was followed up in future studies to be discussed in Chapter 3. 

4. Biological and Pharmacokinetic data on SK-03-92. 

Note: These data were gathered and compiled by Dr. Bill Schwan, UW-LaCrosse. 

 The gram quantities of SK-03-92 permitted a more robust experimental design that 

included more in depth in vitro assays as well as in vivo assays in mice/rats. 

 The preliminary efficacy testing was performed using SK-03-92 in a murine thigh 

abscess model.113  Briefly, murine thigh abscesses were established with a 1 x 106 CFU of S. 

aureus MW2, a CA-MRSA strain.  Three cohorts were established: a phosphate buffered saline 

control (containing DMSO), a single-dose group of 3.2 µg SK-03-92 per gram mouse, and a 

single-dose group of 160 µg SK-03-92 per gram mouse.  On the day after the bacteria were 
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injected into the mice (CA-MRSA), the mice were injected with either drug or control.  Two 

days after the drug dose (three days after injection of the bacteria), murine thighs were collected, 

homogenized, and plated onto brain heart infusion agar.  Colony counts were taken for the 

homogenized thighs of the mice.  Examination of the results indicated that the median CFU/thigh 

was one log unit lower in the low-dose (3.2 µg per g) test group, and two log units lower in the 

high-dose (160 µg per g) test group, as compared with the control group (Figure 2-8).  It was 

also important to note that no adverse effects were noted in any of the mice tested with SK-03-

92. 

Figure 2-8: In vivo testing of SK-03-92 in a murine thigh abscess model. 

 

 These results were encouraging, however they also indicated that a more in-depth 

pharmacokinetic profile of SK-03-92 was necessary. 
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4.1: Determining the solubility of SK-03-92 in other solutions 

Because SK-03-92 had low solubility in an aqueous solution, and solubilizing the drug in 

DMSO would be inappropriate for oral or intravenous (IV) administration to humans, alternative 

vehicles were examined. The solubility of SK-03-92 was determined using high performance 

liquid chromatography (HPLC).  The solubility of SK-03-92 in PBS was <0.0001 mg/mL, but 

the solubility in other suitable vehicles ranged from 4.6 mg/mL for 20% Solutol HS 15/80% PBS 

to 9.2 mg/mL for PEG 400. The Solutol HS 15/PBS solution was chosen for further development 

of a dosing solution due to the potential for use in both IV and oral administration. 

4.2: Safety/cytotoxicity testing of SK-03-92 

To determine the approximate safety of SK-03-92 against tissue culture cells, an MTT [3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed.  The IC50 of 

SK-03-92 was shown to be 125 μg/mL for all four tissue culture cell lines (J774A.1, U937, 292, 

and T24), generating a promising relatively high therapeutic index (IC50/MIC) of 62.5 for 90% of 

the S. aureus strains. 

To determine if SK-03-92 was safe for use in vivo, an escalating dosing scheme in mice 

(5, 50, 300, and 2000 mg/kg) was employed. None of the mice that received a single dose of the 

highest drug concentration (2000 mg/kg) IP displayed any adverse effects over a two-week time 

frame (e.g., altered gait, ungroomed, significant weight loss), demonstrating that SK-03-92 was 

non-toxic at this highest dose. After initial dosing at 2000 mg/kg, a repeat dose of 2000 mg/kg 

was administered a week later, and again, no overt toxicity was observed for the animals. High 

doses of the related compounds, pterostilbene and resveratrol, have been shown to be non-toxic 

in mice114, rats115, and humans116. 
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4.3: Single dose PK analysis of SK-03-92 

A single dose of SK-03-92 was given to mice to assess single dose PK parameters. The 

observed area under the plasma concentration-time curve (AUCINF_obs), maximum plasma 

concentration (Cmax), time to achieve Cmax (Tmax), oral clearance of drug observed (Cl_F_obs), 

volume of distribution of drug observed (Vz_F_obs), and half-life were calculated. 

Intraperitoneally administered SK-03-92 had a half-life of 22.46 min, a Tmax of 30 min, a Cmax of 

1.64 μg/mL, a Cl_F_obs of 1.46 mL/min/g, a Vz_F_obs of 47.71 mL/g, and a AUCINF_obs of 

70.15 min·mg/mL (Table 2-6). The Tmax of 30 min when given ip and 22 min when dosed orally 

demonstrated rapid absorption of SK-03-92 in line with the rapid absorption of other stilbenoid 

drugs.117 The maximal plasma concentration (Cmax) was somewhat low for orally administered 

SK-03-92 (370 ng/mL), but was still detectable and was approximately 25% of the 

Cmax observed with ip-administered drug (1.64 μg/mL). The Cmax and AUC0-inf values for SK-03-

92 fall between the values reported for resveratrol and pterostilbene118. After achieving the Cmax, 

the SK-03-92 plasma concentrations dropped to negligible levels 75 min after oral gavage, which 

was in line with the PK results that have been observed using other stilbenoid drugs.117-118  The 

relatively short half-life of SK-03-92 (22 min for ip administered, 30 min for orally 

administered) suggested that administration more than once a day would be needed to treat a S. 

aureus infection. The concentration of SK-03-92 reached a high of 1.641 μg/mL after 30 min and 

dropped to 0.149 μg/mL within 90 min of ip injection. All of the mice looked healthy, and no 

overt toxicity (e.g., excessive weight loss, ungroomed, altered gait) was observed, mimicking the 

mouse safety study above. 
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Table 2-6. Summary of pharmacokinetic (PK) parameters by route and schedule. 

Route Half-Life 
(min) 

Tmax c 
(min) 

Cmax c 
(µg/mL) 

Cl_F_obs c 
(mL/min/g) 

Vz_F_obs c 
(mL/g) 

AUCINF_obs c 
(min*µg/mL) 

ip a 22.46 ± 
17.81 

30.00 ± 
0.00 

1.64 ± 
0.59 

1.46 ± 0.26 47.71 ± 
33.25 

70.15 ± 12.76 

oral b 30.40 ± 
17.81 

21.43 ± 
11.80 

0.37 ± 
0.35 

21.00 ± 
6.71 

810.67 ± 
173.87 

5.14 ± 1.87 

a Mean ± standard deviation from three mice tested; b Mean ± standard deviation from three mice tested; 
c Tmax (time to achieve Cmax), Cmax (maximum plasma concentration), Cl_F-obs (oral clearance of drug 
observed), Vz_F-obs (volume of distribution of drug observed), and AUCINF_obs (area under the plasma 
concentration-time curve observed). 

4.4: Relative bioavailability of SK-03-92 

To determine the relative bioavailability of the SK-03-92 lead compound, 100 μg/g of 

Solutol HS 15/PBS formulated SK-03-92 was administered orally to the mice. After 15 min, 

0.740 μg/g was detected in the mouse plasma, and by 30 min that level had dropped to 0.126 

μg/g. All of the mice looked healthy, and no signs of toxicity were observed.  The relative 

bioavailability (AUCoral/AUCIP) was approximately 8%, which indicated that oral delivery of the 

drug would not provide therapeutic concentrations for treating S. aureus infections. Other studies 

that have examined stilbenoid compounds have also observed low to very low bioavailability for 

those agents.117-119 

4.5: Multi-dose effects and protein analyses of SK-03-92 

Examination of the single dose PK analysis indicated that the SK-03-92 lead compound 

was safe, but the plasma concentration was somewhat low. Multi-dose experiments were 

performed to assess adverse effects associated with chronic dosing as well as pharmacokinetics. 

Given that adverse effects do not correlate linearly with plasma concentrations, animals could 

experience adverse effects when plasma concentrations were undetectable with repeated dosing. 

Pharmacokinetic evaluations were performed to determine if changes in pharmacokinetic profiles 

with chronic dosing (e.g., reduced clearance) were associated with adverse effects. 
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To determine how multiple doses of SK-03-92 affected the health of the mice, as well as 

the PK parameters, an extended five-day PK study was undertaken. Plasma concentrations 

ranged from a high of 0.086 μg/mL after 15 min to a low of 0.027 μg/mL after 75 min. In the PK 

study which extended to two-weeks following oral administration, the plasma SK-03-92 

concentrations ranged from 0.144 μg/mL after 15 min to 0.01 μg/mL after 75 min. On average, 

the treated mice lost about 1.5% of their weight after two-days, but after one week, the weight of 

treated mice increased on average by 5.16% on day 9 and went up further to 9.75% by day 12. 

Two doses of SK-03-92 given four hours apart for three days achieved a maximum SK-03-92 

plasma concentration of only 2.12 μg/mL. 

4.6: Protein binding by SK-03-92 

The degree of protein binding by SK-03-92 in plasma was also determined. It was found 

that 84.4% of the SK-03-92 drug bound to plasma proteins. Consequently, most of the SK-03-92 

lead compound bound to plasma proteins, which could affect its bioavailability. 

This was the first study to examine the PK properties of a new lead compound labeled SK-03-92. 

Other studies have examined the PK properties of stilbenoid-based compounds, but none of these 

other studies have done PK analysis with the expressed goal of using a drug with a stilbene 

scaffold to treat bacterial infections. The absence of overt symptoms in mice following dosing 

with SK-03-92 suggests that SK-03-92 may have a very good safety margin. High concentrations 

of SK-03-92 given daily to mice did not appear to have gross adverse effects on the mice, which 

is in line with animal studies done using resveratrol and pterostilbene.117 Both the SK-03-92 ip 

and oral administration pharmacokinetic profiles were low; likewise, low plasma concentrations 

of resveratrol (<1 μg/mL) and pterostilbene (<8 μg/mL) have been observed in animals. The 

maximum SK-03-92 plasma concentration in the mice was only 2.12 μg/mL. Several properties 
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of SK-03-92 probably contribute to its low plasma/tissue concentrations in mice. Aqueous 

solubility appeared to be one of the barriers. Stilbene compounds are hydrophobic and generally 

insoluble in aqueous solutions. The use of a Solutol HS 15/PBS solution improved the solubility 

of SK-03-92, but the solubility was still less than 10%. Another property tied to the low 

plasma/tissue availability of SK-03-92 was its high level of plasma protein binding (84.4%). Our 

previous in vitro study demonstrated a much higher MIC against Streptococcus pneumoniae, and 

this was probably due to SK-03-92 binding to the proteins found in the fetal calf serum added to 

the wells of the microtiter plate. A myriad of proteins present in the bloodstream and tissues 

would reduce the effective concentration of SK-03-92. Lastly, SK-03-92 exhibited a relatively 

short half-life in the mice, breaking down into metabolic byproducts within 15 min after ip or 

oral delivery. Resveratrol and pterostilbene also have short half-lives in animal plasma (15–60 

min and 120 min, respectively) with substantial accumulation of metabolic byproducts. 

New drugs with novel mechanisms of action are needed to keep abreast of antibiotic 

resistance in S. aureus, one of the ESKAPE pathogens. The safety profile of SK-03-92 is highly 

encouraging. Although the oral bioavailability of SK-03-92 may hinder use as an oral stand-

alone treatment for S. aureus infections, the opportunity to employ it against drug resistant 

strains of MRSA topically or embedded in a patch still exists. We are also analyzing microarrays 

and performing additional assays to elucidate the mechanism(s) of action of SK-03-92. 

Furthermore, we are currently assessing whether SK-03-92 has a synergistic effect when co-

administered with clinically useful antimicrobials such as oxacillin, clindamycin, and 

vancomycin. If the half-life and bioavailability problems can be solved, an analog of SK-03-92 

may have a future in treating S. aureus skin and soft tissue infections. 
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III. CONCLUSION. 

In summary, a method for the scale-up of SK-03-92, a new lead compound for 

antimicrobial research, was completed in an overall yield of 50% from a total of seven synthetic 

steps.  This permitted gram scale synthesis of SK-03-92 which led to a compendium of 

information on the biological and pharmacokinetic properties of SK-03-92. 

Although initial results with SK-03-92 in vivo seemed promising, pharmacokinetic issues 

involving its absorption as well as it is half-life indicate that as a pharmaceutical candidate it is 

not ideal.  However, it provides the impetus and direction for future synthetic endeavors 

discussed in future Chapters of this work. 

Since the mechanism of action of SK-03-92 and related analogs is still unknown, it is not 

possible to design related drugs for a specific target, but rather continue with SAR studies to 

attempt to find the optimal substitution patterns for activity.  Once a catalog of active compounds 

is constructed, more in depth PK analysis may lead to a novel candidate for an antimicrobial 

pharmaceutical drug. 

Synthesis of some new analogs was successful using transition metal catalyzed 

substitution of a triflate group with other small nucleophiles, however the route took place in low 

yield and required a difficult demethylation step after the penultimate palladium catalyzed 

reaction.  This was not ideal and was not seen as a long-term solution to advance the SAR of this 

interesting class of compounds.  Because of this, a new one-step route was investigated. 

IV. EXPERIMENTAL. 

 1. In vitro and in vivo assays. (Completed by Dr. Bill Schwan, UW-LaCrosse) 
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1.1: MIC assays. 

In vitro minimum inhibitory concentration (MIC) determinations were performed 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines,115 for most of the 

bacteria that were screened. Tetracycline, ciprofloxacin, and erythromycin controls were 

included as control antibiotics for the gram-positive bacteria MICs and correlated with 

established MIC values. All anti-mycobacterium activity evaluations (except for the anti-

Mycobacterium tuberculosis assays) were performed using MIC assays in Middlebrook 7H9 

broth with 10% oleic acid albumin dextrose complex (OADC) as previously described.120 

Rifampin was used as the positive control for the mycobacterial MICs. All MIC numbers are a 

compilation of the geometric means from three separate runs. For the broad characterization 

against S. aureus, strains that have been typed by a variety of means were used.116 

1.2: Mice. 

The Institutional Animal Care and Use Committees at the University of Wisconsin-La 

Crosse and the University of Wisconsin-Madison approved the study design and the animal 

handling protocols of this pharmacokinetic study. The protocol number for UW-Madison was 

M1732 with a start date of 23 April 2009, whereas the UW-La Crosse protocol was 3–8 with a 

start date of 26 March 2008. Either female BALB/c (NCI) or Swiss Webster (Harlan) mice 5–9 

weeks old were used in this study. 

1.3: Cytotoxicity assays. 

Initial in vitro safety testing of SK-03-92 was performed with an MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (9, American Type Culture 

Collection) for several tissue culture cell lines (murine monocytic J774A.1, human monocytic 

U937, human kidney epithelial 293, and human bladder epithelial T24) using mitomycin C 



47 
 

(Sigma, St. Louis, MO, USA) and DMSO alone as positive and negative controls, respectively. 

Assays were done a total of three times per tissue culture cell line. 

1.4: Initial Safety Testing in Mice. 

Three female 5–9 week old Swiss Webster mice (Harlan) per drug concentration were 

injected intraperitoneally (ip) with increasing concentrations of SK-03-92: 5, 50, 300, and 2000 

mg/kg according to OECD.115  The lowest concentration of drug was used first. Overt toxicity 

(e.g., altered gait, ungroomed, significant weight loss) was monitored. If two of three mice 

showed no overt toxicity, then the next dose of drug was given. 

1.5: HPLC sssay development. 

An HPLC method was developed on a Halo C18 4.6 × 1.0 mm, 2.7 μm column (MAC-

MOD Analytical Inc., Chadds Ford, PA, USA) for the detection and quantitation of SK-03-92. 

The method was developed using the information obtained from a scouting gradient of 5%–

100% acetonitrile over 35 min. A UV spectrum of SK-03-92 was obtained from the scouting 

gradient and the observed maximum for SK-03-92 was 335 nm, with a local maximum of 224 

nm also observed. The 335 nm maximum wavelength was used for the quantitation of SK-03-92, 

and the 224 nm local maximum wavelength was used to monitor for possible formation of 

degradation products not visible at the 335 nm wavelength. Flow rate was 0.750 mL/min and 

injection volume was 10 μL. The mobile phase was 62% acetonitrile (Fisher, Hanover Park, IL, 

USA):38% water (Milli-Q UV plus) and the isocratic program was 62% acetonitrile:38% water 

for 20 min. Acquisition time was 10 min and room temperature retention time was 5.4 min. 

Standards of SK-03-92 were prepared in acetonitrile at concentrations of 0.05–0.005 mg/mL. 

1.6: Single Dose PK Assay. 
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An initial single dose PK experiment was performed using 100 μg/g of formulated SK-

03-92 administered ip to twenty-one female, 5–6 week old BALB/c mice (7 per cohort for 3 

cohorts, NCI) under parameters established previously. Three animals were used as a control 

group and received blank vehicle, whereas three mice per time point received 100 μg/g SK-03-92 

ip and were sacrificed with blood collected at the 15, 30, 45, 60, 75, and 90 min time points by 

warming the tails of the mice in warm water, lancing the lateral saphenous tail vein, and 

collecting the blood (up to 150 μL) into microvette tubes (Sarstedt) containing EDTA or terminal 

bleed into vacucontainers containing EDTA as an anti-coagulant. Plasma was separated from 

packed blood cells by centrifugation (600× g) and stored at −70 °C until needed for HPLC 

analysis. Samples were analyzed with a Shimadzu Prominence HPLC system (Kyoto, Japan) 

with a Halo C18 column (MAC-MOD Analytical Inc., Chadds Ford, PA, USA). A mobile phase 

of 62% acetonitrile/38% water, isocratic program of 62% acetonitrile for 20 min, and flow rate 

of 0.75 mL/min with an injection volume of 10 μL and a retention time of 5.4 min were used. 

The standard curve for SK-03-92 was linear from 0.0098 to 2.5 μg/mL in plasma. Each 

chromatogram was collected and integrated to estimate the peak area of analyte by EZ 

Chrom® software (version.1.0, Agilent Technologies Inc., Santa Clara, CA, USA). The ratio of 

peak area of SK-03-92 was calculated to estimate the drug concentration(s) using a pre-built 

calibration curve. Major pharmacokinetic parameters were calculated using the 

noncompartmental analysis module of WinNonlin® (version 5.1, Pharsight Corp., Princeton, NJ, 

USA) under sparsely sampling mode. 

1.7: Bioavailability assay. 

A relative bioavailability study was performed using 100 μg/g of formulated SK-03-92 

administered orally to six female 5–6 week old BALB/c mice (NCI) with three animals as the 
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control group receiving blank vehicle by the oral route. Three mice per time point had blood 

collected at 15 and 30 min after administration. 

1.8: Multi-dose analysis. 

First, a five-day PK study with SK-03-92 orally administered to female 5-6 week old 

BALB/c mice was conducted. Three mice received 300 μL of blank vehicle by oral 

administration. Doses of 100 μg/g SK-03-92 were given orally each day in the vehicle. Blood 

was collected from three mice at time points 15, 30, 45, 60, 75, and 90 min after administration. 

Body weight was monitored every day before SK-03-92 administration. Plasma was prepared 

and stored at −70 °C until analyzed by HPLC. In an extension of this PK study to two-weeks 

following oral administration of SK-03-92, six mice were dosed in the test (SK-03-92) arm and 

six vehicle control mice in the other arm. Lastly, a multi-dosing PK analysis was done using two 

51-μg/g doses of SK-03-92 per day (given four hours apart) over the course of three days in five 

mice. 

1.9 Protein binding assay. 

Plasma collected from EDTA treated blood from six SK-03-92 dosed mice was added to 

methyl tert-butyl ether (MTBE) to precipitate the proteins. The precipitated proteins were 

separated from the remainder of the plasma by centrifugation (14,000× g for 20 min) through a 

Microcon 10K filter (Millipore) and dried under a stream of nitrogen gas. The dried product was 

suspended in 62% acetonitrile/38% ddH2O and the AUC was quantified and correlated with the 

initial concentration of SK-03-92 present in the plasma by HPLC. 

 2. Characterization data. 

 Both 1H and 13C NMR spectra were recorded on a Bruker DPX-300 or DRX-500 

instrument where noted.  HRMS scans were recorded with a Shimadzu LCMS-IT-TOF or similar 



50 
 

instruments run at the Shimadzu Analytical Chemistry Center of Southeastern Wisconsin.  In 

silico cLogP values and topological polar surface area values (tPSA) were calculated with 

ChemBioDraw Ultra v. 14. 

(E)-3-(2-(Benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenol (SK-03-92, Table 2-3, entry 3) 

 

The NaH (60% dispersed in mineral oil, 3.6 g, 0.09 mol) was added to anhydrous DMF (100 

mL) at 0° C.  The CH3CH2SH (12.2 mL, 13.22 g, 0.12 mol) was then added dropwise and stirred 

at 0° C for 30 min. The temperature of the reaction mixture was allowed to rise to rt and the 

mixture stirred for 1 h. The temperature of the reaction mixture was raised to 140° C and (E)-2-

(3,5-dimethoxystyryl)benzo[b]thiophene (8.90 g, 0.03 mol) in dry DMF (30 mL) was added 

dropwise to the reaction mixture. This mixture was held at 140° C and monitored by TLC (30% 

EtOAc in hexanes). When the starting material was no longer present by TLC (~1 hr), the 

reaction mixture was cooled to rt and quenched by addition of aq 0.5N HCl (500 mL).  The 

mixture was extracted with EtOAc (3 x 200 mL). The combined organic layers were washed 

sequentially with aq 0.5N HCl (3x60 mL) and brine (3 x 60 mL). The organic layer was dried 

over Na2S04 and the solvent was removed in vacuo. The crude solid was purified by flash 

column chromatography (FCC) (20% EtOAc in hexanes) to afford the pure SK-03-92 in 92% 

yield as a pale yellow solid (7.79g): 1H NMR (300 MHz, CD3COCD3) δ 8.43 (s, 1H), 7.89 – 7.77 

(m, 2H), 7.52 – 7.34 (m, 4H), 6.97 (d, J = 15.9 Hz, 1H), 6.72 (m, 2H), 6.40 (t, J = 2.2 Hz, 1H), 
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3.81 (s, 3H); 13C NMR (75 MHz, CD3COCD3) δ 161.3, 158.7, 142.7, 140.3, 138.6, 130.8, 124.8, 

124.5, 123.6, 123.4, 122.4, 122.0, 106.2, 103.4, 101.5, 54.6; HRMS (ESI) (M + H), Calcd. for 

C17H15O2S 283.0793; Found 283.0797. 

(E)-3-(2-(Benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenyl trifluoromethanesulfonate (22, 

Table 2-4, entry 1) 

 

The (E)-3-(2-(benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenol (1.00g, 3.54mmol, 1eq) was 

dissolved in 50mL DCM (freshly distilled) and the pyridine (310mg, 3.90mmol, 1.1eq) was 

added in one portion.  The solution was cooled to 0 ºC and trifluoromethanesulfonic anhydride 

(1.1g, 3.90mmol, 1.1eq) was added dropwise at 0 ºC.  The starting material was consumed after 

10 min on analysis by TLC (20% EtOAc in hexanes) and the reaction was quenched with aq 

0.5N HCl (50mL).  DCM (40mL) was added and the organic layer extracted.  The organic layer 

was washed with brine (50mL) and dried over Na2SO4.  The solvent was removed in vacuo 

leaving a crude yellow solid.  The solid was purified by flash column chromatography on silica 

gel (10% EtOAc in hexanes) to provide the pure 22 in 98% yield as a white solid (1.44g): 1H 

NMR (300 MHz, CDCl3) δ 7.80 (dd, J = 8.8, 4.8 Hz, 1H), 7.75 (dd, J = 6.1, 3.0 Hz, 1H), 7.41 – 

7.30 (m, 4H), 7.28 (s, 1H), 7.04 (s, 2H), 6.92 (d, J = 16.0 Hz, 1H), 6.74 (t, J = 2.1 Hz, 1H), 3.89 

(s, 3H), 1.57 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 160.97, 150.51, 141.74, 140.00, 139.80, 
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139.16, 128.56, 125.24, 124.89, 124.72, 124.68, 123.73, 122.30, 112.00, 111.19, 106.59, 55.82; 

HRMS (ESI) (M + H), Calcd. for C18H14F3O4S2 415.0286; Found 415.0291. 

3-(2-(Benzo[b]thiophen-2-yl)ethyl)-5-methoxyphenol (21, Table 2-4, entry 2) 

 

The (E)-3-(2-(benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenol (100mg, 0.354mmol, 1eq) and 

10% Pd/C (38mg, 10mol% Pd) were mixed in a sealed tube under argon.  THF (4mL) was added 

in one portion and the sealed tube was evacuated under vacuum and backfilled with argon three 

consecutive times.  The sealed tube was evacuated under vacuum and a balloon filled with 

hydrogen was attached.  The starting material was consumed after 2h (TLC, silica gel) and the 

solution was filtered through a plug of celite.  The solvent was removed in vacuo to leave a crude 

yellow solid.  The solid was purified by flash column chromatography on silica gel (10% EtOAc 

in hexanes) to provide the pure 21 in 95% yield as a white solid (96 mg): 1H NMR (300 MHz, 

CDCl3) δ 7.79 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.42 – 7.19 (m, 2H), 7.02 (s, 1H), 

6.41 (s, 1H), 6.30 (dd, J = 5.9, 3.7 Hz, 2H), 4.83 (s, 1H), 3.77 (s, 3H), 3.33 – 3.11 (m, 2H), 3.11 

– 2.83 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 160.95, 156.59, 145.28, 143.63, 140.08, 139.31, 

124.12, 123.55, 122.82, 122.15, 120.93, 107.92, 106.84, 99.32, 55.29, 37.37, 32.32; HRMS 

(ESI) (M + H), Calcd. for C17H17O2S 285.0949; Found 285.0947. 
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(E)-3-Methoxy-5-(2-(thiophen-2-yl)vinyl)phenol (29, Table 2-4, entry 3) 

 

The NaH (60% dispersed in mineral oil, 360 mg, 0.009 mol) was added to anhydrous DMF (10 

mL) at 0° C.  The CH3CH2SH (1.22 mL, 1.32 g, 0.012 mol) was then added dropwise and stirred 

at 0° C for 30 min. The temperature of the reaction mixture was allowed to rise to rt and the 

mixture stirred for 1 h. The temperature of the reaction mixture was raised to 140° C and (E)-2-

(3,5-dimethoxystyryl)thiophene (739 mg, 0.003 mol) in dry DMF (3 mL) was added dropwise to 

the reaction mixture. This mixture was held at 140° C and monitored by TLC (30% EtOAc in 

hexanes, silica gel). When starting material was no longer present by TLC (~2 h) the reaction 

mixture was cooled to rt and quenched by addition of aq 0.5N HCl (50 mL).  The mixture was 

extracted with EtOAc (3 x 20 mL). The combined organic layers were washed sequentially with 

aq 0.5N HCl (3x15 mL) and brine (3 x 15 mL). The organic layer was dried (Na2S04) and the 

solvent was removed in vacuo. The crude solid was purified by FCC (20% EtOAc in hexanes) to 

afford the pure 29 in 62% yield as an off-white solid (432 mg): 1H NMR (300 MHz, CDCl3) δ 

7.23 – 7.17 (m, 2H), 7.09 – 7.08 (m, 1H), 7.04 – 7.00 (m, 1H), 6.84 (d, J = 16.2 Hz, 1H), 6.63 (s, 

1H), 6.57 (s, 1H), 6.36 (t, J = 2.1 Hz, 1H), 5.04 (s, 1H), 3.83 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 161.0, 156.7, 142.4, 139.3, 127.8, 127.5, 126.3, 124.5, 122.4, 105.7, 104.7, 101.0, 55.3; 

HRMS (ESI) (M + H), Calcd. for C13H13O2S 233.0636; Found 233.0639. 
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(E)-2-(3-Methoxy-5-(methylthio)styryl)benzo[b]thiophene (24, Table 2-5, entry 1) 

 

The (E)-3-(2-(benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenyl trifluoromethanesulfonate 

(250mg, 0.603mmol, 1eq) and tetrakis(triphenylphosphine)palladium(0) (35mg, 5mol%) were 

mixed in a sealed tube under argon.  Then degassed toluene (3mL), triisopropylsilanethiol 

(138mg, 0.724mmol, 1.2eq), and triethylamine (80mg, 0.784mmol, 1.3eq) were added and the 

sealed tube was heated to 100 ºC.  After 2h the starting material was consumed (by TLC) and the 

sealed tube was cooled to rt.  The solution was filtered through a plug of celite and the celite 

washed with EtOAc (10mL x 3).  The organic layer was washed with water (10mL) and brine 

(10mL), then dried over Na2SO4, and the solvent removed in vacuo.  The crude solid was 

dissolved in THF and iodomethane (171mg, 1.20mmol, 2eq) was added in one portion.  

Tetrabutyl-ammonium fluoride trihydrate (381mg, 1.20mmol, 2eq) was added slowly in 3 

portions.  Analysis by TLC (20% EtOAc in hexanes, silica gel) confirms the reaction was 

complete 0.5h after the addition.  The reaction was quenched with water (10mL) and extracted 

with EtOAc (10mL x 2).  The organic layer was washed with brine (10mL) and dried over 

Na2SO4.  The solvent was removed in vacuo leaving an orange solid.  The solid was purified by 

flash column chromatography on silica gel (10% EtOAc in hexanes) to provide the pure 24 in 

47% yield as a yellow solid (89 mg): 1H NMR (300 MHz, CDCl3) δ 7.85 – 7.76 (m, 1H), 7.76 – 

7.69 (m, 1H), 7.42 – 7.24 (m, 4H), 7.00 (d, J = 10.2 Hz, 1H), 6.94 (d, J = 16.0 Hz, 1H), 6.84 (s, 
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1H), 6.80 – 6.70 (m, 1H), 3.87 (s, 3H), 2.55 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 160.18, 

142.58, 140.32, 140.15, 138.98, 138.36, 130.25, 124.88, 124.55, 123.69, 123.50, 123.18, 122.25, 

117.29, 111.87, 108.61, 55.39, 15.77; HRMS (ESI) (M + H), Calcd. for C18H17OS2 313.0721; 

Found 313.0718. 

(E)-3-(2-(Benzo[b]thiophen-2-yl)vinyl)-5-(methylthio)phenol (25, Table 2-5, entry 2) 

 

The NaH (60% dispersed in mineral oil, 40mg, 1.00 mmol, 8eq) was added to anhydrous DMF 

(2 mL) at 0° C.  Then CH3CH2SH (0.1 mL 1.39 mmol, 11eq) was added dropwise and stirred at 

0° C for 30 min. The temperature of the reaction mixture was allowed to rise to rt and the 

mixture stirred for 1 h. The temperature of the reaction mixture was raised to 140° C and (E)-2-

(3-methoxy-5-(methylthio)styryl)benzo[b]thiophene (38.7 mg, 0.124 mmol, 1eq) in dry DMF 

(0.5 mL) was added dropwise to the reaction mixture. This mixture was held at 140° C and 

monitored by TLC (30% EtOAc in hexanes). When the starting material was no longer present 

by TLC (~1 hr) the reaction mixture was cooled to 0 ºC and quenched by addition of aq 0.5N 

HCl (10 mL).  The mixture was extracted with EtOAc (3 x 10 mL). The combined organic layers 

were washed sequentially with aq 0.5N HCl (2 x 10 mL) and brine (2 x 10 mL). The organic 

layer was dried over Na2SO4 and the solvent was removed in vacuo. The crude solid was purified 

by FCC (20% EtOAc in hexanes) to afford the pure product in 82% yield as a pale yellow solid 

(30 mg): 1H NMR (300 MHz, CDCl3) δ 7.78 (dd, J = 7.9, 4.8 Hz, 1H), 7.75 – 7.66 (m, 1H), 7.40 
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– 7.29 (m, 2H), 7.29 – 7.23 (m, 2H), 6.96 (s, 1H), 6.89 (d, J = 16.0 Hz, 1H), 6.76 (s, 1H), 6.68 (t, 

J = 1.8 Hz, 1H), 2.52 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 160.52, 142.48, 140.46, 140.10, 

138.76, 138.32, 130.22, 124.87, 124.45, 123.70, 123.40, 123.15, 122.20, 117.19, 111.67, 108.71, 

15.57; HRMS (ESI) (M + H), Calcd. for C17H15OS2 299.0564; Found 299.0568. 

(E)-3-(2-(Benzo[b]thiophen-2-yl)vinyl)-5-methoxybenzonitrile (26, Table 2-5, entry 3) 

 

The (E)-3-(2-(benzo[b]thiophen-2-yl)vinyl)-5-methoxyphenyl trifluoromethanesulfonate 

(250mg, 0.603mmol, 1eq), tetrakis(triphenylphosphine)palladium(0) (35mg, 5mol%), sodium 

cyanide (59.10mg, 1.21mmol, 2eq), and copper iodide (11.5mg, 10mol%) were mixed in a sealed 

tube under argon.  Then degassed toluene (3mL) was added and the sealed tube was heated to 

100 ºC.  After 2hr the starting material was consumed (by TLC) and the sealed tube was cooled 

to rt.  The solution was filtered through a plug of celite and the celite washed with EtOAc (10mL 

x 3).  The organic layer was washed with water (10mL) and brine (10mL), dried over Na2SO4, 

and the solvent removed in vacuo to furnish a red solid.  The solid was purified by flash column 

chromatography on silica gel (20% EtOAc in hexanes) to provide the pure 26 in 35% yield as a 

yellow solid (61.5 mg): 1H NMR (300 MHz, CDCl3) δ 7.80 (dd, J = 8.6, 5.0 Hz, 1H), 7.77 – 7.70 

(m, 1H), 7.46 – 7.29 (m, 5H), 7.22 (s, 1H), 7.05 (s, 1H), 6.89 (d, J = 16.0 Hz, 1H), 3.89 (s, 3H); 

13C NMR (75 MHz, CDCl3) δ 160.03, 141.69, 139.97, 139.36, 139.16, 128.11, 125.30, 124.98, 
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124.81, 124.72, 123.76, 122.52, 122.31, 118.60, 116.83, 115.88, 113.65, 55.68; HRMS (ESI) (M 

+ H), Calcd. for C18H14NOS 292.0796; Found 292.0792. 
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CHAPTER THREE 

DEVELOPMENT OF A NEW TRANSITITION METAL CATALYZED 

REACTION FOR THE SYNTHESIS OF NOVEL ANALOGS OF SK-03-92: 

EXPLORATION OF THE HECK REACTION 

I. INTRODUCTION AND BACKGROUND. 

 1. Negishi and Wittig couplings. 

As described in the previous Chapter, the two methods that were previously employed to 

synthesize novel stilbenoid analogs had numerous shortcomings from a synthetic perspective 

(Scheme 3-1). 

Scheme 3-1: Negishi cross-coupling and Wittig-Horner type coupling procedures. 

 

 The Negishi cross-coupling procedure required synthesis of the unstable vinyl iodide 4 

and while it was useful for synthesis of analogs in which ring A (see Figure 2-4) was static, it 

was not very useful for a more comprehensive analysis of the SAR.  It also required deprotection 

of a silyl group, which while not very difficult nor low-yielding, still added another step to the 

process.  The Wittig-Horner type coupling was devised for scale-up purposes of SK-03-92 and 
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similarly to the Negishi type coupling it was very useful when ring A was held static.  However, 

it also required a deprotection step; in this case a mono-demethylation which was rather low-

yielding and troublesome when working on small scales.  A reaction with a more comprehensive 

scope for the synthesis of similar stilbenoid analogs was necessary. 

 2. Retrosynthetic analysis. 

 As described earlier, it is helpful to identify and separate the three distinct structural 

moieties observed in these analogs: the phenolic substituted ring A, the alkene “bridge”, and the 

non-polar aromatic region of, in general, rings B and C (see Figure 2-4).  Due to the reactivity of 

phenols, prior synthetic procedures focused on protection, which of course resulted in the need 

for deprotection, generally as a final step, to obtain the desired analog.  The removal of this 

deprotection step was a priority, directing research toward reactions that were tolerable to 

phenolic substituents. 

 Because prior results indicated that benzo[b]thiophene was the most advantageous non-

polar aryl group which represented rings B and C in active analogs, it was determined that a 

method that focuses on this moiety, while still with the capacity to change to different structural 

analogs, was preferred. 

 The SAR also indicated that the alkene ‘bridge’, while not necessary for activity, seemed 

to show improved potency for at least 1 analog.  Taken together, these stipulations resulted in the 

analysis illustrated in Scheme 3-2. 

 

 



60 
 

Scheme 3-2: Retrosynthetic analysis. 

 

 The second option in the Figure above very much resembles the prior Negishi cross-

coupling reaction.  The first option, however, is more interesting for a number of reasons.  

Firstly, aryl halides are generally commercially available and inexpensive.  Secondly, if a desired 

bromo/iodo phenol is not available, phenols can be readily brominated with commercially 

available and inexpensive reagents such as Br2 or NBS.  In addition, keeping the aryl side-chain 

static as a benzo[b]thiophene moiety was the initial goal for the new SAR and synthesis of the 

vinyl analog was trivial. 

 Both options, however, strongly imply a transition metal catalyzed reaction.  One of the 

most well-known transition metal reactions is the Heck-Mizoroki reaction, a reaction between an 

aryl halide (usually electron-poor) and an unsaturated (usually activated) styrene.121  In this case, 
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however, electron-rich phenolic bromides and unactivated styrenes are not ideal candidates for 

such a reaction121-122, however it was still pursued due to the scope and ease of synthesis of the 

starting materials. 

 3. Heck-Mizoroki reaction. 

3.1: Background. 

 In the early 1970’s both Heck and Mizoroki published a nearly identical synthesis of 

stilbene (Scheme 3-3).123-124  This synthesis employed iodobenzene, styrene, base, and a 

palladium (II) catalyst.  This work was an extension of prior work done by both Fujiwara125-126 

and Heck.127 

Scheme 3-3: Original synthesis by Mizoroki (1971) and Heck (1972). 

 

 Heck greatly expanded the scope and utility of this reaction over the course of the next 

few years and made many key discoveries including the use of phosphine ligands to enhance 

reaction conditions.128  As one of the first palladium mediated coupling procedures, the Heck 

reaction prompted the way to other widely known transition metal catalyzed reactions such as the 

Suzuki reaction, Sonogashira coupling, and Negishi coupling reactions.129-131 

3.2: Catalytic cycle. 
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 The catalytic cycle of the Heck reaction (Figure 3-1) generally starts with a palladium (II) 

species which is subsequently reduced to palladium (0) via a phosphine ligand and through a 

number of transformations, all discussed below, ends with a regeneration of the palladium (0) 

species which gives rise to the catalytic nature of the process. 

Figure 3-1: General catalytic cycle of the Heck reaction. 

 

 As discussed earlier a palladium (II) catalyst, if employed, is reduced to palladium (0), 

prior to entering the catalytic cycle (Figure 3-1).132  While palladium (II) catalysts are routinely 

used based on the relative stability of palladium (II) and the ability to store for long periods of 

time on the benchtop, palladium (0) catalysts are also available and can be used directly without 

the need for pre-catalyst activation.133-135  Many of these catalysts, including palladium tetrakis, 
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are not air or temperature stable, however a growing number of air and/or temperature stable 

palladium (0) catalysts have been discovered.134, 136-137 

The next step, b (Figure 3-1), is the oxidative addition of a halide or triflate substituted 

aryl group (Scheme 3-4).  This reaction occurs in a concerted manner (b1) and though the cis and 

trans isomers are in equilibrium (b2), it has been found that only the cis continues through the 

catalytic cycle.138-140 

Scheme 3-4: Concerted mechanism of oxidative addition (Figure 3-1 “b”). 

 

 Detailed in process c (Figure 3-1) is the migratory insertion of an alkene into the 

palladium species (Scheme 3-5).  Data suggests that this step also relies on a concerted 

mechanism (c1), although other mechanisms may be possible depending on the 

catalyst/ligand/reactants involved.141-142  The regioselectivity of the migratory insertion step is 

generally determined by steric considerations, however when electron-rich alkenes are employed 

in some cases electronic character can play a role.134, 143  Regioselectivity in the original 

Heck/Mizoroki reaction relied exclusively on sterics due to the electron-poor nature of the alkene 

(styrene). 

Scheme 3-5: Migratory insertion of an alkene to palladium (Figure 3-1 “c”). 
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 The double bond is re-introduced by ß-hydride elimination, step d (Scheme 3-6).  Steric 

effects generally lead to only the E isomer; however, in some cases the Z isomer can be more 

prevalent.134, 144  Base plays an essential role in reductively eliminating the remaining palladium 

hydride species back to palladium (0), stopping re-insertion of the alkene and allowing the 

catalytic cycle to continue, step e (Scheme 3-7). 

Scheme 3-6: ß-hydride elimination (Figure 3-1 “d”). 

 

Scheme 3-7: Base promoted dehydropalladation and reductive elimination (Figure 3-1 “e”). 

 

 As with almost all transition metal chemistry, the above schemes are a general case and 

many factors may influence these micro-reactions to varying degrees.  Many theories exist on the 

exact mechanism of oxidative addition and reductive elimination; presented here are the most 

well-regarded theories for a general palladium-phosphine directed reaction.134, 138, 143 
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3.3: Scope. 

 The scope of the Heck reaction is wide and varied.  Bimolecular reactions to 

intramolecular reactions have been thoroughly explored over the last few decades.  It was 

generally thought that aryl (pseudo)halides were necessary; however, recent findings suggest that 

even alkyl halides can undergo Heck reactions.145-147  With some 3rd generation phosphine 

catalysts it is even possible to use aryl chlorides with varying degrees of success.148-150  The most 

general considerations for a Heck reaction seem to be an organo-halide and an olefin, from there 

careful selection of both catalyst and ligand, along with reaction conditions, can potentially lead 

to the desired product. 

II. CHEMISTRY AND RESULTS. 

 1. Heck reaction trials. 

 From examination of the original retrosynthetic analysis, it was determined that a Heck 

reaction may be useful in the synthesis of analogs of SK-03-92.  The original synthesis 

envisioned the use of 3-bromo substituted phenols to give analogs with the same substitution 

pattern as SK-03-92, however, 4-bromo substituted phenols were both easier to synthesize and 

were generally more commercially available.  For these reasons we started the original trials 

using 1-(5-bromo-2-hydroxyphenyl)ethan-1-one (30, Scheme 3-8) which had been previously 

purchased for another project. 

Scheme 3-8: Proposed Heck reaction. 
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 This reaction also hinged on the synthesis of the olefin 31.  This was conveniently 

accomplished starting from the aldehyde 18 (Scheme 3-9), previously synthesized and used for 

the scale-up of SK-03-92.  The synthesis of olefin 31 proceeded with little difficulty from a 

Wittig reaction employing methyltriphenylphosphonium bromide and sodium methoxide. 

Scheme 3-9: Synthesis of olefin 31. 

 

 Unlike the vinyl iodides previously used, the olefin 31 was sufficiently stable at room 

temperature to permit a much easier purification procedure.  The styrene analog was a white 

crystalline solid, however, it was found that storage on the benchtop over the course of several 

days led to decomposition to a yellow viscous oil that was assumed to be polymerization of the 

olefin.  Storage at 0 ºC kept olefin 31 analytically pure for over 6 months, thus addition of a 

polymerization inhibitor was unnecessary. 

 With both reactants in hand the conditions for the initial palladium mediated reaction 

were considered.  In general Heck reactions prefer electron-poor (unactivated) aryl bromides and 

electron-rich (activated) olefins.134, 151  In our case, however, the substituted 4-bromo phenols 

were electron-rich and the 2-vinylbenzo[b]thiophene 31 was electron-poor.  Because of this it 

was assumed that heating would be necessary, so many solvents were initially tried at or above 

their boiling points in sealed vessels. 

 Although base plays many roles in the Heck reaction, the most crucial role is removing 

the acidic proton produced (in this case HBr) to permit the catalytic cycle to continue.  Sodium 
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acetate has found use in a number of Heck reactions and as a weaker base was unlikely to cause 

problems with either the aryl bromide or olefin. 

 For palladium (II) species it was important to reduce the palladium to palladium (0) with 

phosphine ligands to initiate the catalytic process.  There is an extensive library of phosphine 

ligands available and many are suited for specific reactions.152  In this trial only two simple 

phosphine ligands were explored, triphenylphosphine and tri(o-tolyl)phosphine.  The two ligands 

are by far the most widely used ligands in palladium catalyzed coupling reactions.  Palladium (0) 

catalysts could be used with no additional ligand as they are already in the correct oxidation 

state. 

 Solvents were chosen mainly with regard to their ability to dissolve the starting materials 

as, in general, homogenous reactions are more likely to succeed.  With these factors in mind, a 

number of reaction trials were completed (Table 3-1). 
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Table 3-1: Heck reaction trials. 

 

Trial Palladium Ligand Base Solventa Temp. (ºC) Conversion (%)b 

1 Pd(OAc)2 P(Ph)3 NaOAc THF 70 0 

2 "" P(o-tol)3 NaOAc THF 70 0 

3 "" P(Ph)3 NaOAc ACN 95 0 

4 "" P(o-tol)3 NaOAc ACN 95 0 

5 "" P(Ph)3 NaOAc DMA 150 0d 

6 "" P(o-tol)3 NaOAc DMA 150 0d 

7 PdCl2 P(Ph)3 NaOAc THF 70 0 

8 "" P(o-tol)3 NaOAc THF 70 0 

9 "" P(Ph)3 NaOAc ACN 95 0 

10 "" P(o-tol)3 NaOAc ACN 95 0 

11 "" P(Ph)3 NaOAc DMA 150 0d 

12 "" P(o-tol)3 NaOAc DMA 150 3 

13 PdP(Ph3)4 --- NaOAc DMA 100 5 

14 "" --- NaOAc DMA 150 0d 

15 H.Palladc --- NaOAc DMA 150 5 

16 "" --- NaOAc DMA/5% H2O 150 95 

17 "" --- NaOAc DMA/5% H2O 100 24 

18 "" --- NaOH (aq.) DMA/5% H2O 150 93 

19 "" --- Cs2CO3 DMA/5% H2O 150 96 

20 "" --- NaOAc DMA/10% H2O 150 96 
a freshly distilled and degassed via freeze-thaw, b determined by HPLC, c Herrmann’s palladacycle, d large amounts 
of palladium black – likely decomposition. 

Analysis of the data in Table 3-1 indicated that under most conditions no conversion to 

the stilbene analog was noted, however when a small amount of water was added to 

dimethylacetamide as the solvent, there was nearly full conversion.  The idea to add water to the 

conditions was conceived from trials 12, 13, and 15 where a small but noted conversion took 
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place.  Of all the solvents tested, dimethylacetamide was the most hygroscopic, therefore, it was 

thought that perhaps in the cases in which some conversion was noted, water may have somehow 

entered the reaction.  The role of water in the reaction is not fully understood, and indeed, reports 

in the literature only posits that water may increase the rate of palladium catalyzed reactions in 

some cases,153-155 although the reasons behind this are somewhat elusive.  In general, it is thought 

that water can stabilize intermediates and thus accelerate the reaction,156 although few reactions 

were found where water was necessary for any conversion.  In the case of this reaction, 5-10% 

water was found to give almost full conversion.  It is unclear how much water is necessary for 

conversion and there was no attempt to quantify this amount. 

 Herrmann’s palladacycle (Figure 3-2) is a cyclopalladated complex discovered by 

Herrmann in 1997.157  Since this catalyst exists as palladium (II) at room temperature, this 

catalyst exhibits far greater air and temperature stability compared to other common palladium 

catalysts such as palladium tetrakis which readily decomposes at room temperature.  Herrmann’s 

palladacycle has a unique property in that at elevated temperatures, approximately 80 ºC, the 

catalyst reduces to a form of palladium (0) suitable for Heck reactions without any additional 

ligand.  Because of these properties, it was an interesting catalyst choice for the trial reaction.  

Indeed, when palladium acetate with ligands or palladium tetrakis was heated over 100 ºC, 

necessary for conversion, large quantities of palladium black resulted, which indicated 

decomposition of the catalyst.  When Herrmann’s palladacycle was used, however, the reaction 

mixture only changed color after prolonged heating at 150 ºC, and in some cases never became 

the dark black color which indicated catalyst decomposition. 
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Figure 3-2: Herrmann’s palladacycle. 

 

 While the role of base is critical in Heck reactions, little difference was seen in switching 

from the relatively weak base, sodium acetate, to the relatively strong base, sodium hydroxide.  It 

should be noted, however, that aryl bromides are not always stable in strongly basic solutions, 

and in these cases heating was found to cause premature decomposition of some aryl bromides 

which led to lower yields.  In the trial case, however, the bromide was rather stable and 

conversion was not greatly affected.  Because high conversion was seen with sodium acetate and 

in general the stability of aryl bromides was not investigated prior to submitting them to the 

reaction conditions, sodium acetate seemed to be the best choice as the base.  The nitrogen-based 

bases are also often used in Heck reactions and many other palladium catalyzed reactions that 

require base, however, at the high temperature conditions necessary for conversion, nitrogen 

based bases were deemed too volatile and not worth investigating due to the already high 

conversion rate observed with sodium acetate. 

 It should also be noted that Herrmann’s palladacycle employs P(o-tolyl)3 ligands, the 

same ligands employed in trials 2,4,6,8,10, and 12.  In fact, Herrmann’s palladacycle was 

conveniently synthesized in the lab by treating palladium acetate with tri(o-tolyl)phosphine 

under gentle heating (Scheme 3-10) on a 5 gram scale.  The difference in the trials, however, was 
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that the phosphine ligand was added in excess which drives the conversion to Pd(P(o-tolyl)3)4, 

similar in structure to palladium tetrakis, which is also thermally unstable and readily 

decomposes to palladium black when subjected to high temperatures.  Because of the convenient 

synthesis of the palladacycle and its relative stability, the attempt to use palladium acetate along 

with just one molar equivalent of the phosphine ligand (synthesizing the palladacycle in situ) was 

not attempted.  It was assumed that such a reaction would result in similar conversion if the other 

conditions for trial 20 were followed. 

Scheme 3-10: Synthesis of Herrmann’s palladacycle. 

Pd(OAc)2 (1 eq) + P(o-tolyl)3 (1 eq) toluene, 50 ºC
0.5-1 h

Herrmann's palladacycle
 

 Optimization of the palladium catalyzed reaction was successful and was next attempted 

with a variety of other aryl bromides.  

 2. New thianaphthene analogs and their SAR. 

As discussed earlier, substituted 4-bromophenols are less expensive, easier to synthesize, 

and generally more commercially available when compared to other aryl substitution patterns; 

thus the initial focus of this SAR was this substitution pattern (Table 3-2).  Heck reactions are 

extremely versatile and it should be noted that this method, now optimized for substituted 

phenols, should work with any substitution patterns given they are stable to the reaction 

conditions.  In the first series of reactions, most of them employed substituted 4-bromophenols as 

starting materials, however, some other substitution patterns were also employed.  In a later 

section other substitution patterns will be discussed in more detail and are of critical importance 

to provide potent antibacterial stilbenes. 
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Table 3-2: First series of analogs synthesized. 

 
Compound R1 R2 RX Yield (%)a 

32 OH CHO --- 91 
33 OH F --- 91 
34 OH H --- 90 
35 -OCH2O- --- 95 
36 OH OMe --- 93 
37 OMe OH --- 89 
38 OH Cl --- 92 
39 Cl OH --- 90 
40 OH CN --- 91 
41 OH NO2 --- 80 

42 OH Cl R4 = Cl 93 

43 OH OMe R3 = OMe 75 

44 OH OCF3 --- 85 
45 OH OEt --- 90 
46 OH OiPr --- 90 
47 OH COOH --- 93 
48 OMe COOH --- 91 

a Yield of isolated and purified product. 

 Four different compounds were prepared without a phenol in the R1 position; 35, 37, 39, 

and 48.  Additionally, compounds 42 and 43 are tri-substituted analogs, which illustrates some of 

the versatility of the Heck reaction.  Similarly to SK-03-92, these compounds could be further 

purified after column chromatography by crystallization from isopropanol, however, this was 

only done if a larger scale synthesis was employed.  Indeed, when 36 and 38 were scaled up to a 

1-gram scale using identical reaction conditions to their small-scale preparation, similarly 

excellent yields were observed.  Thus the Heck catalyzed reaction was not only an efficient 
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process for constructing a library of stilbenoid analogs, but also for scale-up for pharmacological 

studies when necessary. 

 From this first series of analogs several important antibacterials were identified with 

activity against gram-positive bacteria, some of which were more active then lead compound 

SK-03-92.  Summarized in the following tables are the structures and MIC values for novel 

antimicrobials synthesized utilizing Heck coupling detailed in Table 3-2. 

Table 3-3: MICs for compounds 32, 33, and 34a. 

Bacterial Strain 

   

S. aureus >128 >128 32 

E. faecalis >128 >128 32 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 >128 

M. chelonae >128 >128 >128 

M. fortuitum >128 >128 128 

M. kansasii >128 >128 >128 

M. avium >128 >128 >128 

M. smegmatis >128 >128 128 

M. marinum >128 >128 >128 

aValues in µg/mL 
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 Unfortunately, the trial ketone 32 previously discussed was not active against any 

bacterial strains.  The fluorine analog 33 was also inactive and the simple phenol 34 

demonstrated only meager activity on the gram-positive strains.  Initial setbacks such as this 

were expected, however, and the SAR continued with another group of compounds (Table 3-4). 

Table 3-4: MICs for compounds 35, 36, and 37a. 

Bacterial Strain S
35

O

O    

S. aureus >128 1 >128 

E. faecalis >128 1 128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 16 >128 

M. chelonae >128 16 >128 

M. fortuitum >128 8 >128 

M. kansasii >128 32 >128 

M. avium >128 16 >128 

M. smegmatis >128 8 >128 

M. marinum >128 8 >128 

aValues in µg/mL 

 Similarly to the prior SAR, lack of a phenol in the case of the 1,3-dioxole ligand 35 

resulted in no activity.  In general, a few compounds which lack phenolic groups were 



75 
 

synthesized and screened to both validate the SAR, as well as test the theory that a phenol was 

necessary for potency.  Analog 36 is indeed very similar to SK-03-92, however, it differed in the 

position of the phenol.  However, the phenol in this position increased the activity about 2-4 fold 

against gram-positive and mycobacterium species.  Perhaps more interesting, however, was the 

lack of activity of 37, which was very similar in structure to both SK-03-92 and 36.  This small 

change seemed to indicate that the target can accept the phenol changing position, but not the 

methoxy group.  This may indicate that the active site for these ligands has a larger space to 

accommodate hydrogen bond donors, but has a conserved space for functional groups ortho to 

the phenol. 

 The next set of analogs (Table 3-5) was prepared to determine the effects of changes in 

the position of substituents as well.  The chloro analog 38 represents one of the most active 

compounds developed, to date.  The chlorine group differs from methoxy group at the same 

position in a number of notable fashions.  First, chlorine is an electron withdrawing group by 

induction while the methoxy group is an electron donating group by resonance.  Secondly, 

chlorine is at best a weak hydrogen bond acceptor while the methoxy group is a very strong 

hydrogen bond acceptor.  Thus, electronic character and H-bond acceptor character do not seem 

to influence the activity in a meaningful way.  Another difference between the chloro and 

methoxy groups is size, with chloro being smaller; this may explain the similar activity between 

these two compounds.  Ligand 39, with a similar switching of positions of chloro and hydroxy 

groups seen earlier, also exhibited a much weaker MIC value.  The basis for this selective 

activity is still undetermined, but it seems that it points to interactions between the small 

molecule and a specific target in the bacteria.  This is interesting as earlier findings suggested 
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that these compounds may act on more than one target, however, extreme activity loss from a 

simple substitution points to a specific target or selective metabolic step instead. 

Table 3-5: MICs for compounds 38, 39, and 40a. 

Bacterial Strain 

   

S. aureus 0.5 64 32 

E. faecalis 0.5 64 32 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 >128 

M. chelonae >128 >128 >128 

M. fortuitum >128 >128 >128 

M. kansasii >128 >128 >128 

M. avium >128 >128 >128 

M. smegmatis >128 >128 >128 

M. marinum >128 >128 >128 

aValues in µg/mL 

 In regard to active chloro 38, it is also of interest that the chloro substitution greatly 

diminished activity against the mycobacterium species as compared to the similar methoxy 

analog 36.  This was interesting considering that activity against gram-positive bacteria from the 

prior SAR almost always was followed by a linear-type activity against mycobacterium species.  
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Given the similar nature of gram-positive bacteria and mycobacterium, this activity was not 

surprising.  Given that no compounds from the prior SAR were active against gram-negative 

bacteria, it was hypothesized that the mode of action was somehow related to the cell walls of 

both the gram-positive bacteria and mycobacteria.  Thus the lack of activity of 38 to 

mycobacterium could give some insight into the cellular target, whether it is a single target or 

multiple targets. 

 Finally, synthesis of the cyano compound 40 was similar to the nitrile analog 26, 

however, in this case the phenol was easy to prepare in one step.  While it showed some activity, 

it was not active enough to warrant synthesis of the nitrile at other positions at this time. 
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Table 3-6: MICs for compounds 41, 42, and 43a. 

Bacterial Strain 

  

S. aureus 128 32 32 

E. faecalis 128 8 32 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 >128 

M. chelonae >128 >128 >128 

M. fortuitum >128 >128 >128 

M. kansasii >128 >128 >128 

M. avium >128 >128 >128 

M. smegmatis >128 >128 >128 

M. marinum >128 >128 >128 

aValues in µg/mL 

 Outlined in Table 3-6 are the details of the SAR of three more analogs of interest.  The 

nitro analog 41 was synthesized to test whether or not a strong electron withdrawing group in the 

R2 position increased activity similar to the chloro group.  It was found, however, that the nitro 

analog 41 was not very active at all with MIC’s of 128 µg/mL against the gram-positive strains.  

Both 42 and 43 probe the idea of tri-substituted analogs.  Both, however, exhibited weaker 

activity then their disubstituted parent compounds.  In future SAR studies it may be beneficial to 
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try a range of tri-substituted analogs to improve solubility, metabolism, and other pharmaceutical 

parameters, however, this remains to be seen. 

 The next set of compounds were prepared to attempt to demonstrate that size was directly 

related to activity (Table 3-7). 

Table 3-7: MICs for compounds 44, 45, and 46a. 

Bacterial 
Strain 

S. aureus >128 8 >128 

E. faecalis >128 8 >128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. 
intracellulare 

>128 32 16 

M. chelonae >128 32 16 

M. fortuitum >128 32 16 

M. kansasii >128 32 8 

M. avium >128 32 16 

M. smegmatis >128 16 32 

M. marinum 8 16 4 

aValues in µg/mL 

The trifluoromethoxy analog 44 was inactive in all assays except that of M. marinum, 

however, this could be a case of experimental error or a bad strain.  It was interesting that the 
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trifluoromethoxy analog was far less active even though fluoride is generally a good bioisostere 

for hydrogen, however, CF3 is more similar in size to isopropyl and thus sterics may play a large 

role in the potency of this analog.  The electronic character of trifluoromethoxy also differs from 

that of a methoxy group, which may also explain the loss of activity. 

The ethoxy analog 45 retained some activity, however was less active then both the 

methoxy and chloro analogs.  Ethoxy, similar to methoxy, also retained activity in the 

mycobacterium assays, however. 

Finally, the isopropoxy analog 46 was seemingly the most interesting of the set even 

given it had no activity on the gram-positive strains tested.  Ligand 46 was found to retain 

mycobacterium activity even though it exhibited no gram-positive activity.  Since the chloro 

derivative was very active against gram-positive bacteria, but had no activity against 

mycobacterium, the isopropoxy was inversely active against mycobacterium but not gram-

positive bacteria.  This seems to suggest that the mode of action for gram-positive bacteria is 

independent of the mycobacterium species. 

 This suggests, as suggested from earlier work, that some of these compounds act on 

multiple targets.  The targets in gram-positive and mycobacterium strains, however, could be 

very similar as indeed they share an evolutionary past.  Uncovering these targets, however, 

remains a struggle and will be detailed in future sections. 

 The final table from this first series of compounds (Table 3-8) includes two carboxylic 

acid derivatives 47 and 48.  The third compound included, 49, is from the next series of 

compounds discussed in Table 3-9. 
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Table 3-8: MICs for compounds 47, 48, and 49a. 

Bacterial Strain 

  

S. aureus >128 8 >128 

E. faecalis >128 8 >128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 >128 

M. chelonae >128 >128 >128 

M. fortuitum >128 >128 >128 

M. kansasii >128 >128 >128 

M. avium >128 >128 >128 

M. smegmatis >128 >128 >128 

M. marinum >128 >128 >128 

aValues in µg/mL 

Similar to prior results, the non-phenolic analog 47 was not active.  The para-phenolic 

acid 48, however, was active against gram-positive bacteria, while similarly to the chloro 

derivative lacked activity on the mycobacterium strains.  Similarly to chloro, the carboxylic acid 

is electron withdrawing, which may play a role in this activity profile. 

The pyridine derivative 49, though inactive, led to the next series of compounds, the 

pyridines.  Pyridine analogs were synthesized in the hope of discovering a more water soluble 
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active analog that would be more useful for future in vivo work.  The optimized Heck reaction 

was found to work with good to excellent yields of these pyridine derivatives.  Only four 

pyridine analogs were prepared for this study, but these pyridine analogs may prove useful for 

future SAR studies, especially if more in vivo work is planned because of increased water 

solubility which should enhance bioavailability. 

Table 3-9: Pyridine series of analogs synthesized. 

 
Compound R1 Yield (%) 

49 COOMe 82 
50 OMe 90 
51 OH 90 
52 COOH 87 

 

 Although only four analogs were prepared, based on the yields it seems likely that a great 

deal of other N-containing analogs are possible.  It was found that phenolic analog 51 was rather 

unstable and over the course of several days on the benchtop it was no longer analytically pure, 

therefore it is best stored in the freezer.  In general, the work-up procedure for the stilbenoid 

derivatives involved washing with dilute acid; in the case of pyridines this would obviously be 

problematic.  However, washing with just water only led to a negligible loss of yield.  Analysis 

of the data in Table 3-8 illustrated pyridine 49 had no activity in any strains tested.  Indeed it was 

assumed that perhaps only the phenol derivative 51 would show activity based on the past SAR.  

It was surprising to find that 51 also lacked activity, but the carboxylic acid derivative 52 was 

still active in both gram-positive and mycobacterium strains (Table 3-10).  In the case of the 
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meta-phenol 51, it is conceivable that the unstable nature of this analog causes it to degrade prior 

to exerting any antibacterial properties. 

Table 3-10: MICs for compounds 50, 51, and 52a. 

Bacterial Strain 

S. aureus >128 128 8 

E. faecalis >128 128 8 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 32 

M. chelonae >128 >128 32 

M. fortuitum >128 >128 64 

M. kansasii >128 >128 32 

M. avium >128 >128 64 

M. smegmatis >128 >128 64 

M. marinum >128 >128 32 

aValues in µg/mL 

 The meta-carboxy pyridine analog 52 was the first case of a non-phenolic derivative to 

show activity.  Two possibilities exist for this activity.  First, perhaps the acidic -OH in the 

carboxylate is a good replacement for the acidic phenolic -OH.  Second, it is possible this 

compound acts as a zwitterion and the NH+ mimics the phenol (Figure 3-3).  This zwitterionic 
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form may more closely mimic the structure of SK-03-92.  In any case, an active pyridine analog 

is promising for future SAR studies and if an ~8-fold more active pyridine analog is discovered, 

and it has suitable PK properties, it may be a viable lead compound for preclinical studies. 

Figure 3-3: Zwitterionic form of 52. 

 

 3. New styrenes and substitution patterns. 

 Although this optimized Heck reaction was an excellent method to synthesize stilbenes 

from a wide selection of aryl bromides, after a number of active analogs were discovered it was 

prudent to again modify the ‘right-hand-side’ to see if potency could be further enhanced.  As 

previously described (Scheme 3-9) synthesis of styrenes was quick and in high yields from 

aldehydes.  Some styrenes of interest were even commercially available, for example 4-vinyl-

1,1'-biphenyl (58). Thus a number of new styrenes were synthesized to be used in the Heck 

reaction to provide a growing variety of stilbenoid compounds in rational drug design. 

 The first new styrene derivative investigated was the indole (Scheme 3-11).  Indoles are 

widely known for exhibiting excellent PK properties and are privileged substructures of a 

number of pharmaceutical drugs.158-161  Because of the previously discussed poor ADME 

properties of SK-03-92, analogs that can perhaps improve these properties were pursued. 
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Scheme 3-11: Synthesis of 2-vinylindole. 

 

 Since the 1H-indole-2-carboxylic acid starting material was inexpensive, the first two 

steps, first to the alcohol 53 and then to the aldehyde 54 were scaled up to gram-scale from the 

start.  Similarly to the thianaphthene analog 31, 2-vinylindole 55 was synthesized in high yield.  

One striking difference between 31 and 53, however, was their acid stability.  The indole 53 

readily decomposed and gave a deep purple color when treated with even minimal amounts of 

acid.  This is commonly observed with benzylic alcohol analogs of indoles at position 2 via loss 

of water. 

 The N-methyl derivative of aldehyde 54 was also synthesized, which gave the N-methyl 

indole derivative 57 (Scheme 3-12).  This was done to probe the substitution of the NH indole 

position for future possible analogs. 

Scheme 3-12: Synthesis of 1-methyl-2-vinyl-1H-indole 57. 

 

 Another styrene of interest was the 2-vinylbenzofuran (60), since it is very similar to the 

lead styrene 2-vinylbenzo[b]thiophene 31 31.  Synthesis of this analog followed similarly to the  
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route for the thianaphthene derivative in that the aldehyde (59) was preferably synthesized since 

it was expensive to purchase commercially (Scheme 3-13). 

Scheme 3-13: Synthesis of 2-vinylbenzofuran 60. 

 

 Substitution of new groups on the original thianaphthene analog 31 itself was also 

explored.  The most easily substituted position seemed to be the 5-position and substitution with 

both fluoro and chloro groups were explored.  Unfortunately, substituted thianaphthenes are 

expensive and it was necessary to synthesize them from substituted thiols (Scheme 3-14).  These 

reactions were found to be messy and low-yielding, however, the substituted thiols were 

inexpensive enough to scale the reactions up to get enough material to continue on to the desired 

final substituted styrenes. 

Scheme 3-14: Synthesis of substituted thianaphthenes. 

 

 Once the substituted thianaphthenes were synthesized, synthesis of the 2-vinyl analogs 

followed the same route to the lead vinyl analog 31 (Scheme 3-15).  Similarly to 31, high yields 

of the substituted 2-vinylthianaphthenes 61 and 62 were obtained and the material was similar in 

terms of stability and appearance.  Future SAR studies may also focus on substitution in both this 

5-position and other positions based on availability of substituted thiols.  It should be noted that 
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3-substituted thiols will likely generate two different isomers when cyclized that may prove very 

difficult to separate, thus focus initially on 4-substituted thiols (this work) or 2-substituted thiols 

would be preferred. 

Scheme 3-15: Synthesis of substituted styrenes. 

 

 Summarized in Figure 3-4 are the styrenes that are now available for synthesis of 

stilbenes via the optimized Heck reaction. 

Figure 3-4: Styrenes synthesized and/or commercially available. 

 

 Synthesis using a new substitution pattern was also investigated in this second series of 

compounds.  Using the convenient hydroxy/methoxy substitution pattern found to lead to active 

compounds, depicted in Figure 3-5 below are all of the possible substitution patterns that can be 

explored using the Heck reaction. 
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Figure 3-5: Substitution patterns. 

 

 Previously it was shown that the methoxy group was preferably meta to the “R” group 

(S1-S4), therefore, these were the preferred substitution patterns to try first.  Pattern S1 was the 

substitution pattern employed in the synthesis of SK-03-92 while S2 was the substitution pattern 

employed for the optimized Heck reaction described in this chapter.  Pattern S3 was a novel 

substitution pattern and given the ortho/para directing nature of the phenol, synthesis of the 

substituted aryl bromide was routine (Scheme 3-16).  Synthesis of S4 was completed on a small-

scale for another project, however, as of yet it has not been applied to this project.  Pattern S9 has 

also been partially explored with two compounds lacking activity, while S5-8 and S10 might be 

considered for future SAR studies. 

Scheme 3-16: Synthesis of 2-bromo-4-methoxyphenol. 
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 With these new starting materials in hand, the synthesis of another series of analogs was 

accomplished.  Summarized in Table 3-11 is the synthesis of these new analogs. 

Table 3-11: Second series of analogs synthesized. 

 
Compound R1 R2 RX Styrene Yield (%) 

63 OH OMe --- 55 83 
64 OH OMe --- 57 89 
65 OH Cl --- 58 84 

66 H OMe R4 = OH 31 86 

67 H OMe R4 = OH 55 81 

68 H OMe R4 = OH 60 86 
69 OH OMe --- 61 87 
70 OH Cl --- 61 87 
71 OH Cl --- 62 92 
72 OH OMe --- 62 88 

73 NH2 OMe R4 = Cl 31 75 

74 H OMe R3 = OH 62 92 
  

The indole analogs 63 and 67 were both not acid sensitive, unlike their parent styrene 55.  

The N-methyl analog 57 was also not acid sensitive.  This is of importance because acid stability 

in vivo is an important quality for a drug-candidate.  Compounds that readily decompose when 

subjected to changes in pH are likely to quickly decompose in vivo (stomach, 2; gut, 9-10) and 

likely not reach their target in time to elicit an effect.  The relative instability of the styrene 

indole, in this case, is likely simply related to the relative reactivity of the olefin, which is 

quenched on annulation with the aryl bromides.  Polymerization reactions with styrenes, likely 

the major mode of decomposition, is well known.162-164 
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Table 3-12: MICs for compounds 63, 64, and 65a. 

Bacterial Strain 

 

S. aureus 4 32 >128 

E. faecalis 4 32 >128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare 32 32 >128 

M. chelonae 32 32 >128 

M. fortuitum 32 32 >128 

M. kansasii 32 32 >128 

M. avium 16 32 >128 

M. smegmatis 16 32 >128 

M. marinum 32 32 >128 

aValues in µg/mL 

 The major focus from this series of compounds were phenolic derivatives with either 

methoxy or chloro substituents, since in the first series these were found to be the most potent.  

Yields were generally high for all the analogs prepared, again showing the utility of the 

optimized Heck reaction in the synthesis of a wide variety of analogs with Herrmann’s catalyst. 

 A number of new analogs were discovered that exhibited activity against gram-positive 

bacteria from this second series.  Based on these findings it is clear that the SAR is honing in on 
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the, as of yet, unknown targets and future SAR studies should be successful in discovering even 

more active analogs. 

 Described in Table 3-12, the indole derivative 63 had similar activity to the two lead 

compounds 36 and 38.  Although the activity of 63 is somewhere between 4-8-fold lower then 

lead compounds 36 and 38, it is well within the margins for an antibiotic drug candidate.  The 

indole moiety may also prove to have better ADME properties and thus have better in vivo 

performance compared to other analogs.  The N-methyl analog 64 was much less active, and thus 

it seems the N-methyl styrene is not a good choice for future SAR studies.  The commercially 

available styrene 58 was used to synthesize compound 65, which was found to have no activity 

for any tested strains, thus this styrene is also a poor choice for future SAR studies. 

 It is also worth noting that like the other hydroxy/methoxy derivatives, both 63 and 64 

retained mycobacterium activity.  Interestingly, the mycobacterium activity of 64 was found to 

be the same as its activity against gram-positive bacteria (32 µg/mL) and very similar to the 

activity of 63 on these same mycobacterium species.  This again may indicate that a similar yet 

distinct mode of action is involved between the two different subspecies of bacteria. 

 Detailed in Table 3-13 are both a new substitution pattern as well as use of different 

styrenes in an attempt to gain more insight into the SAR.  Across the board these three analogs 

(66, 67, and 68) seem to display similar activities with the different styrenes employed.  In a 

previous SAR, a derivative with the benzofuran substitution pattern was found to be inactive.  

Regardless, benzofurans should also be explored in any future SAR based on these data. 
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Table 3-13: MICs for compounds 66, 67, and 68a. 

Bacterial Strain 

   

S. aureus 4 4 4 

E. faecalis 4 8 4 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare 32 64 32 

M. chelonae 64 32 64 

M. fortuitum 32 64 32 

M. kansasii 64 32 32 

M. avium 64 64 64 

M. smegmatis 32 64 32 

M. marinum 32 64 32 

aValues in µg/mL 

 The new substitution pattern, phenol ortho to the bridge, was also found to retain activity.  

Although the activity was slightly lower, again it is within the range of other pharmaceutical 

antibiotics.  Although not quantified, the solubility of this new substitution pattern in water and 

aqueous acidic soliutions seemed to be higher than that of past compounds, perhaps due to the 

influence of the phenol which is in close proximity to the hydrophobic side chain. 
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Table 3-14: MICs for compounds 69, 70, and 71a. 

Bacterial Strain 

 

S. aureus 128 32 4 

E. faecalis 128 4 2 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 >128 

M. chelonae >128 >128 >128 

M. fortuitum >128 >128 >128 

M. kansasii >128 >128 >128 

M. avium >128 >128 >128 

M. smegmatis >128 >128 >128 

M. marinum >128 >128 >128 

aValues in µg/mL 

 Detailed in Table 3-14 are some of the substituted thianaphthene analogs synthesized.  

Interestingly the ring D chloro substituted 69 lost all activity when compared to the related active 

analog 36.  This may indicate that the molecular volume must not be increased too drastically.  

Indeed 70 and 71 show similar trends.  The ring D chloro analog 70 was less active then the ring 

D fluoro analog 71, and both are less active then the related parent analog 38.  It was also 
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interesting to note that similar to what has been observed in the SAR, the ring A chloro analogs 

70 and 71 again lack mycobacterium activity but still show gram-positive activity. 

Table 3-15: MICs for compounds 72, 73, and 74a. 

Bacterial Strain 
S

72

F

HO

MeO

  
 

S. aureus 8 >128 0.5 

E. faecalis 32 >128 0.5 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. intracellulare >128 >128 64 

M. chelonae >128 >128 64 

M. fortuitum >128 >128 32 

M. kansasii >128 >128 64 

M. avium >128 >128 64 

M. smegmatis >128 >128 32 

M. marinum >128 >128 64 

aValues in µg/mL 

 Detailed in Table 3-15 are the values for the final set of compounds from this second 

series.  The ring D fluoro analog 72 again seems to indicate that molecular volume is important 

because it is more active than then ring D chloro analog 69, yet less active then the related 
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compound 36.  A more detailed analysis of molecular volume will be discussed in an upcoming 

chapter.  The analog 73 attempted to replace the phenolic function with a more soluble amine, 

which lost all activity as the SAR would predict.  Gratifyingly, ring D fluoro analog 74 showed 

increased activity when compared to its parent compound SK-03-92 and similar activity to the 

important lead compounds 36 and 38. 

III. CONCLUSION. 

In summary, a new transition metal catalyzed Heck reaction was optimized for the 

synthesis of novel stilbenoid analogs.  This method was found to be extremely versatile in the 

one-step synthesis of a number of structurally similar, yet distinct analogs.  Moreover, the 

starting materials necessary for the reaction were either commercially available or easily 

synthesized in the lab with common starting materials. 

This reaction was found to work best with ‘Herrmann’s palladacycle’, a cyclic palladium 

dimer that, at room temperature, exists as the relatively stable and air tolerable palladium (II) 

species.  At elevated temperatures, generally over 80 ºC, studies indicated that the palladacycle 

was altered and reduced to the active palladium (0) catalyst, which was found to be stable 

enough for use at 150 ºC, a temperature at which other Pd catalysts readily decomposed. 

A break-through in this reaction was the addition of water which permitted nearly full 

conversion of the starting materials with Herrmann’s catalyst at 150 ºC.  Without the addition of 

water conversions were generally less than 10%, with many reactions resulting in zero 

conversion. 

Using this reaction, a number of new antibiotic analogs were prepared that had potent 

activity less than 10 µg/mL against gram-positive bacterial strains, a general target for new drug 
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candidates.  These include analogs 36, 38, 45, 48, 52, 63, 66, 67, 68, 71, and 74.  Many of these 

new lead compounds were assayed against drug-resistant strains of gram-positive bacteria, the 

results of which will be discussed in a later section. 

A significant number of new analogs can be prepared via the method outlined in this 

chapter and the general idea behind this SAR was both to advance our current understanding of 

the SAR as well as provide potential new directions for future SAR work, with the final aim of a 

clinical candidate with activity against MDR MRSA, VISA, VRSA, etc. 

IV. EXPERIMENTAL 

 1. In vitro MIC assays. 

In vitro minimum inhibitory concentration (MIC) determinations were performed 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines,115 for most of the 

bacteria that were screened. Tetracycline, ciprofloxacin, and erythromycin controls were 

included as control antibiotics for the gram-positive bacteria MICs and correlated with 

established MIC values. All anti-Mycobacterium activity evaluations were performed using MIC 

assays in Middlebrook 7H9 broth with 10% oleic acid albumin dextrose complex (OADC) as 

previously described114. Rifampin was used as the positive control for the mycobacterial MICs. 

All MIC numbers are a compilation of the geometric means from three separate runs. For the 

broad characterization against S. aureus, strains that have been typed by a variety of means were 

used116. 

 2. General procedure for the optimized Heck reaction. 

 As previously noted Herrmann’s palladacycle is both air and temperature stable and thus 

it was not necessary to weigh it under an inert atmosphere.  All solid materials were charged to a 
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10 mL sealable reaction vessel under argon with a magnetic stir-bar.  The vessel was purged by 

vacuum three times, backfilling with argon after each evacuation. 

In a separate flask dimethylacetamide mixed with 10% water was frozen under argon via 

dry ice/acetone.  Once frozen, the flask was evacuated with high vacuum and slowly warmed to 

rt.  Vigorous evolution of bubbles confirmed removal of gases from the solvent.  This was 

repeated three times or until minimal evolution of bubbles was observed.  The solvent was kept 

under argon and was found suitable for use over many weeks as long as it was kept under an 

inert gas. 

 The solvent (3mL) was added to the reaction vessel under argon and the flask was 

immediately heated to 150 ºC in an oil bath.  In many cases the color of the reaction mixture 

slowly darkened over a period of 3h, at which time it was generally a dark black color.  After 3h 

the reaction vessel was cooled to rt, diluted with EtOAc (10mL), filtered through a plug of celite, 

washed with dilute acid (or water where acidic solutions were problematic), dried (Na2SO4), and 

solvent was removed to a crude residue.  In general compounds were purified by FCC as 

described, but if necessary they could be further purified by crystallization from isopropanol. 

 3. Characterization data. 

 Both 1H and 13C NMR spectra were recorded on a Bruker DPX-300 or DRX-500 

instrument where noted.  HRMS scans were recorded with a Shimadzu LCMS-IT-TOF or similar 

instruments run at the Shimadzu Analytical Chemistry Center of Southeastern Wisconsin.  In 

silico cLogP values and topological polar surface area values (tPSA) were calculated with 

ChemBioDraw Ultra v. 14. 
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(E)-1-(5-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-hydroxyphenyl)ethan-1-one (32, Table 3-3, 

entry 1) 

 

The general procedure was followed (3 h).  The 1-(5-bromo-2-hydroxyphenyl)ethan-1-one 30 

(134.2 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), 

sodium acetate (102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 

mmol, 0.025 eq) were charged to a vial containing oxygen free solvent (10% water in 

dimethylacetamide, 3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with 0.5 N aq HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and solvent was removed in vacuo to provide a crude red solid.  The solid was purified 

by flash column chromatography on silica gel (30% EtOAc in hexanes) to provide the pure 

ketone 32 in 91% yield as an off-white solid (167 mg): 1H NMR (300 MHz, CDCl3) δ 12.36 (s, 

1H), 7.81 (d, J = 1.7 Hz, 1H), 7.79 (d, J = 2.6 Hz, 1H), 7.72 (dd, J = 6.0, 2.8 Hz, 2H), 7.39 – 7.30 

(m, 2H), 7.29 – 7.25 (m, 2H), 7.03 (d, J = 8.7 Hz, 1H), 6.96 (d, J = 16.0 Hz, 1H), 2.72 (s, 3H); 

13C NMR (75 MHz, CDCl3) δ 146.75, 145.98, 143.22, 140.33, 138.71, 130.90, 129.29, 124.54, 

124.48, 123.25, 122.49, 122.19, 120.62, 120.21, 114.69, 108.39, 55.95; HRMS (ESI) (M - H), 

Calcd. for C18H13O2S 293.0636; Found 293.0625. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-fluorophenol (33, Table 3-3, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-fluorophenol (119.2 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure fluoro analog 33 in 91% yield as a white solid (153 

mg): 1H NMR (500 MHz, DMSO) δ 10.14 (s, 1H), 7.96 – 7.85 (m, 1H), 7.84 – 7.74 (m, 1H), 

7.51 (dd, J = 12.7, 1.9 Hz, 1H), 7.45 (d, J = 16.5 Hz, 1H), 7.42 (s, 1H), 7.34 (pd, J = 7.1, 1.4 Hz, 

2H), 7.27 (dd, J = 8.3, 1.7 Hz, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 16.5 Hz, 1H); 13C NMR 

(126 MHz, DMSO) δ 151.70 (d, J = 240.8 Hz), 145.60 (d, J = 12.5 Hz), 143.17 (s), 140.48 (s), 

138.45 (s), 130.09 (s), 128.81 (d, J = 6.4 Hz), 125.26 (s), 125.18 (s), 124.15 (s), 123.92 (s), 

123.52 (s), 122.81 (s), 121.24 (s), 118.33 (s), 114.31 (d, J = 18.6 Hz); HRMS (ESI) (M + H), 

Calcd. for C16H12FOS 271.0593; Found 271.0599. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)phenol (34, Table 3-3, entry 3) 

 

The general procedure was followed (3 h).  The 4-bromophenol (108 mg, 0.624 mmol, 1 eq), 2-

vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 mmol, 

2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a vial 

containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide an off-white solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure p-phenol 34 in 90% yield as a white solid (142 mg): 

1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, 1H), 7.94 – 7.84 (m, 1H), 7.76 (dd, J = 6.4, 2.3 Hz, 

1H), 7.47 (d, J = 8.5 Hz, 2H), 7.42 – 7.27 (m, 4H), 6.93 (d, J = 16.1 Hz, 1H), 6.79 (d, J = 8.5 Hz, 

2H); 13C NMR (75 MHz, DMSO-d6) δ 158.26, 143.58, 140.55, 138.27, 131.19, 128.65, 127.74, 

125.12, 125.06, 123.75, 122.88, 122.75, 119.63, 116.13; HRMS (ESI) (M + H), Calcd. for 

C16H13OS 253.0687; Found 253.0681. 

 

 



101 
 

(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)benzo[d][1,3]dioxole (35, Table 3-4, entry 1) 

 

The general procedure was followed (3 h).  The 5-bromobenzo[d][1,3]dioxole (125.5 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(10% EtOAc in hexanes) to provide the pure dioxole 35 in 95% yield as a white solid (166 mg): 

1H NMR (300 MHz, DMSO-d6) δ 7.96 – 7.86 (m, 1H), 7.79 (dd, J = 6.0, 2.8 Hz, 1H), 7.47 (d, J 

= 16.1 Hz, 1H), 7.42 (s, 1H), 7.39 – 7.28 (m, 3H), 7.09 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 10.1 Hz, 

1H), 6.93 (d, J = 1.5 Hz, 1H), 6.06 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 148.41, 147.86, 

143.19, 140.46, 138.43, 131.23, 130.83, 125.25, 125.17, 123.90, 123.52, 122.79, 122.57, 121.19, 

108.94, 105.93, 101.68; HRMS (ESI) (M - H), Calcd. for C17H13O2S 281.0636; Found 282.0638. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-methoxyphenol (36, Table 3-4, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure methoxy phenol 36 in 93% yield as a white solid 

(164 mg): 1H NMR (300 MHz, CDCl3) δ 7.83 – 7.77 (m, 1H), 7.75 – 7.66 (m, 1H), 7.40 – 7.29 

(m, 2H), 7.23 (s, 1H), 7.20 (d, J = 16.2 Hz, 1H), 7.06 (d, J = 10.2 Hz, 2H), 6.95 (dd, J = 12.0, 3.9 

Hz, 2H), 5.70 (s, 1H), 3.98 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 146.75, 145.98, 143.22, 

140.33, 138.71, 130.90, 129.29, 124.54, 124.48, 123.25, 122.49, 122.19, 120.62, 120.21, 114.69, 

108.39, 55.95; HRMS (ESI) (M - H), Calcd. for C17H13O2S 281.0636; Found 281.0629. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-methoxyphenol (37, Table 3-4, entry 3) 

 

The general procedure was followed (3 h).  The 5-bromo-2-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure methoxy phenol 37 in 89% yield as a white solid 

(157 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.11 (s, 1H), 7.89 (d, J = 7.0 Hz, 1H), 7.76 (d, J = 

8.1 Hz, 1H), 7.42 (s, 1H), 7.38 – 7.25 (m, 3H), 7.07 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 

9.4 Hz, 1H), 6.88 (d, J = 16.2 Hz, 1H), 3.80 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 148.65, 

147.11, 143.35, 140.50, 138.36, 131.12, 129.69, 125.16, 123.81, 123.29, 122.76, 120.48, 119.39, 

113.39, 112.60, 56.08; HRMS (ESI) (M + H), Calcd. for C17H15O2S 283.0793; Found 283.0787 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-chlorophenol (38, Table 3-5, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-chlorophenol (129.5 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure chloro phenol 38 in 92% yield as a grey solid (164 

mg): 1H NMR (300 MHz, DMSO-d6) δ 10.44 (s, 1H), 7.90 (d, J = 6.8 Hz, 1H), 7.85 – 7.73 (m, 

1H), 7.68 (s, 1H), 7.46 (d, J = 16.3 Hz, 1H), 7.43 (m, 2H), 7.40 – 7.27 (m, 2H), 6.98 (d, J = 8.4 

Hz, 1H), 6.92 (d, J = 16.1 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 153.57, 143.17, 140.45, 

138.45, 129.70, 129.25, 128.42, 127.11, 125.25, 125.16, 123.91, 123.55, 122.80, 121.23, 120.69, 

117.29; HRMS (ESI) (M + H), Calcd. for C16H12ClOS 287.0297; Found 287.0298. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-chlorophenol (39, Table 3-5, entry 2) 

 

The general procedure was followed (3 h).  The 5-bromo-2-chlorophenol (129.5 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure chloro phenol 39 in 90% yield as a yellow solid 

(161 mg): 1H NMR (300 MHz, DMSO-d6) δ 10.28 (s, 1H), 7.98 – 7.85 (m, 1H), 7.85 – 7.74 (m, 

1H), 7.52 (s, 1H), 7.49 (d, J = 16.4 Hz, 1H), 7.42 – 7.29 (m, 3H), 7.20 – 7.07 (m, 2H), 6.94 (d, J 

= 16.1 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 153.65, 142.62, 140.34, 138.70, 136.77, 

130.57, 129.99, 125.53, 125.24, 124.63, 124.11, 123.38, 122.87, 119.97, 118.93, 114.89; HRMS 

(ESI) (M + H), Calcd. for C16H12ClOS 287.0297; Found 287.0291. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-hydroxybenzonitrile (40, Table 3-5, entry 3) 

 

The general procedure was followed (3 h).  The 5-bromo-2-hydroxybenzonitrile (123.6 mg, 

0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure nitrile 40 in 91% yield as a white solid 

(157 mg): 1H NMR (300 MHz, DMSO-d6) δ 11.33 (s, 1H), 7.96 – 7.88 (m, 2H), 7.85 – 7.74 (m, 

2H), 7.52 (d, J = 16.1 Hz, 1H), 7.43 (s, 1H), 7.40 – 7.28 (m, 2H), 7.04 (d, J = 8.7 Hz, 1H), 6.95 

(d, J = 16.1 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 160.36, 142.91, 140.39, 138.52, 133.21, 

131.87, 128.96, 128.70, 125.38, 125.20, 124.01, 123.94, 122.84, 122.05, 117.23, 117.07, 99.82; 

HRMS (ESI) (M + H), Calcd. for C17H12NOS 278.0640; Found 278.0642. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-nitrophenol (41, Table 3-6, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-nitrophenol (136.1 mg, 0.624 mmol, 

1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 

1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged 

to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

yellow solid.  The solid was purified by flash column chromatography on silica gel (50% EtOAc 

in hexanes) to provide the pure nitrophenol 41 in 80% yield as a brown solid (148 mg): 1H NMR 

(300 MHz, DMSO-d6) δ 8.15 (d, J = 1.5 Hz, 1H), 7.96 – 7.89 (m, 1H), 7.86 (dd, J = 8.8, 1.7 Hz, 

1H), 7.83 – 7.75 (m, 1H), 7.57 (d, J = 16.1 Hz, 1H), 7.47 (s, 1H), 7.41 – 7.30 (m, 2H), 7.15 (d, J 

= 8.7 Hz, 1H), 7.03 (d, J = 16.1 Hz, 1H). [phenol 1H not observed]; 13C NMR (75 MHz, DMSO-

d6) δ 152.24 (phenolic), 142.79, 140.37, 138.62, 137.63, 133.16, 128.74, 128.43, 125.44, 125.21, 

124.21, 124.06, 123.61, 122.86, 122.69, 119.99; HRMS (ESI) (M + H), Calcd. for C16H12NO3S 

298.0538; Found 298.0535. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2,5-dichlorophenol (42, Table 3-6, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2,5-dichlorophenol (151 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow/grey solid.  The solid was purified by flash column chromatography on silica 

gel (20% EtOAc in hexanes) to provide the pure dichlorophenol 42 in 93% yield as a grey solid 

(186 mg): 1H NMR (300 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.97 (s, 1H), 7.94 – 7.89 (m, 1H), 

7.85 – 7.79 (m, 1H), 7.63 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.36 (p, J = 5.5 Hz, 2H), 7.09 (d, J = 

16.3 Hz, 1H), 7.06 (s, 1H); 13C NMR (75 MHz, DMSO-d6) δ 154.12, 142.65, 140.36, 138.55, 

131.36, 127.84, 126.20, 125.63, 125.29, 124.76, 124.47, 124.23, 124.20, 122.89, 120.48, 117.32; 

HRMS (ESI) (M + H), Calcd. for C16H11Cl2OS 320.9908; Found 320.9912. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2,6-dimethoxyphenol (43, Table 3-6, entry 3) 

 

The general procedure was followed (3 h).  The 4-bromo-2,6-dimethoxyphenol (145.4 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a brown solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure dimethoxyphenol 43 in 75% yield as a yellow solid 

(146 mg): 1H NMR (500 MHz, DMSO) δ 8.66 (s, 1H), 7.93 – 7.89 (m, 1H), 7.79 (dd, J = 7.1, 1.5 

Hz, 1H), 7.48 (d, J = 15.7 Hz, 1H), 7.41 (s, 1H), 7.39 – 7.29 (m, 2H), 6.96 (s, 2H), 6.95 (d, J = 

16.0 Hz, 1H), 3.84 (s, 6H); 13C NMR (126 MHz, DMSO) δ 148.62 (2C), 143.59, 140.59, 138.33, 

136.73, 131.84, 127.19, 125.15, 125.12, 123.82, 122.93, 122.79, 120.28, 104.93 (2C), 56.51 

(2C); HRMS (ESI) (M + H), Calcd. for C18H17O3S 313.0898; Found 313.0892. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-(trifluoromethoxy)phenol (44, Table 3-7, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-(trifluoromethoxy)phenol (160.4 mg, 

0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a brown solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure trifluoromethoxy 44 in 85% yield as a 

white solid (178 mg): 1H NMR (300 MHz, DMSO-d6) δ 10.45 (s, 1H), 7.91 (dd, J = 6.0, 2.9 Hz, 

1H), 7.82 – 7.75 (m, 1H), 7.59 (s, 1H), 7.52-7.48 (m, 1H), 7.51-7.45 (d, J = 16.1 Hz, 1H), 7.44 

(s, 1H), 7.39 – 7.29 (m, 2H), 7.03 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 16.1 Hz, 1H); 13C NMR (75 

MHz, DMSO-d6) δ 150.35, 143.07, 140.43, 138.49, 136.77, 129.66, 128.74, 127.34, 125.29, 

125.17, 123.94, 123.70, 122.81, 122.57, 121.77, 121.53, 118.33; HRMS (ESI) (M + H), Calcd. 

for C17H12F3O2S 337.0510; Found 337.0513. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-ethoxyphenol (45, Table 3-7, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-ethoxyphenol (135.5 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a red solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure ethoxyphenol 45 in 90% yield as a yellow solid 

(166 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.20 (s, 1H), 7.88 (d, J = 7.1 Hz, 1H), 7.76 (d, J = 

7.6 Hz, 1H), 7.46 – 7.27 (m, 4H), 7.24 (s, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.92 (d, J = 16.1 Hz, 

1H), 6.81 (d, J = 8.1 Hz, 1H), 4.10 (q, J = 6.9 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H); 13C NMR (75 

MHz, DMSO-d6) δ 147.96, 147.50, 143.64, 140.58, 138.30, 131.54, 128.28, 125.11, 125.04, 

123.75, 122.81, 122.75, 120.97, 119.85, 116.17, 111.85, 64.35, 15.25; HRMS (ESI) (M + H), 

Calcd. for C18H17O2S 297.0949; Found 297.0957. 
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(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-isopropoxyphenol (46, Table 3-7, entry 3) 

 

The general procedure was followed (3 h).  The 4-bromo-2-isopropoxyphenol (144.2 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow oil.  The oil was purified by flash column chromatography on silica gel (20% 

EtOAc in hexanes) to provide the pure isopropoxyphenol 46 in 90% yield as a yellow-white 

solid (174 mg): 1H NMR (500 MHz, DMSO) δ 9.12 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.77 (d, J 

= 7.5 Hz, 1H), 7.40 (d, J = 15.9 Hz, 1H), 7.39 (s, 1H), 7.37 – 7.29 (m, 2H), 7.26 (s, 1H), 7.06 (d, 

J = 8.2 Hz, 1H), 6.93 (d, J = 16.1 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 4.65 (dt, J = 12.1, 6.0 Hz, 

1H), 1.30 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO) δ 149.07, 146.10, 143.66, 140.59, 

138.31, 131.49, 128.31, 125.13, 125.07, 123.77, 122.86, 122.77, 121.26, 119.89, 116.53, 114.81, 

71.15, 22.44; HRMS (ESI) (M + H), Calcd. for C19H19O2S 311.1106; Found 311.1110. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-hydroxybenzoic acid (47, Table 3-8, entry 1) 

 

The general procedure was followed (3 h).  The 5-bromo-2-hydroxybenzoic acid (135.4 mg, 

0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a orange solid.  The solid was purified by flash column chromatography on 

silica gel (50% EtOAc in hexanes) to provide the pure acid phenol 47 in 93% yield as an off-

white solid (172 mg): 1H NMR (300 MHz, DMSO-d6) δ 8.01 (d, J = 1.4 Hz, 1H), 7.89 (d, J = 

6.8 Hz, 1H), 7.83 – 7.64 (m, 2H), 7.43 (d, J = 16.1 Hz, 1H), 7.42 (s, 1H), 7.37 – 7.25 (m, 2H), 

6.99 (d, J = 16.2 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H). [acidic and phenolic protons not observed]; 

13C NMR (75 MHz, CDCl3) δ 172.13, 162.47, 143.40, 140.51, 138.42, 132.67, 130.54, 129.17, 

127.02, 125.13, 125.12, 123.81, 123.30, 122.77, 120.45, 117.84, 116.20; HRMS (ESI) (M + H), 

Calcd. for C17H13O3S 297.0585; Found 297.0589. 
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(E)-5-(2-(benzo[b]thiophen-2-yl)vinyl)-2-methoxybenzoic acid (48, Table 3-8, entry 2) 

 

The general procedure was followed (3 h).  The 5-bromo-2-methoxybenzoic acid (144.2 mg, 

0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure acid methoxy 48 in 91% yield as an off-

white solid (176 mg): 1H NMR (300 MHz, DMSO-d6) δ 12.77 (s, 1H), 7.91 (d, J = 1.9 Hz, 2H), 

7.78 (d, J = 6.9 Hz, 2H), 7.52 (d, J = 16.1 Hz, 1H), 7.45 (s, 1H), 7.34 (p, J = 7.3 Hz, 2H), 7.15 

(d, J = 8.8 Hz, 1H), 7.02 (d, J = 16.1 Hz, 1H), 3.85 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 

167.67, 158.27, 143.14, 140.44, 138.53, 131.50, 129.75, 129.13, 128.89, 125.29, 125.16, 123.94, 

123.81, 122.82, 122.31, 121.69, 113.29, 56.38; HRMS (ESI) (M + H), Calcd. for C18H15O3S 

311.0742; Found 311.0743. 
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Methyl (E)-5-(2-(benzo[b]thiophen-2-yl)vinyl)nicotinate (49, Table 3-8, entry 3) 

 

The general procedure was followed (3 h).  The methyl 5-bromonicotinate (134.8 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide a brown/red solid.  The solid was purified by flash column chromatography on silica gel 

(49% EtOAc and 1% TEA in hexanes) to provide the pure pyridine methylester 49 in 82% yield 

as a brown solid (151 mg): 1H NMR (300 MHz, CDCl3) δ 9.11 (s, 1H), 8.89 (s, 1H), 8.48 (t, J = 

1.9 Hz, 1H), 7.81 (dd, J = 8.1, 5.1 Hz, 1H), 7.76 (dt, J = 5.5, 3.2 Hz, 1H), 7.51 (d, J = 16.1 Hz, 

1H), 7.43 – 7.32 (m, 3H), 7.28 (s, 1H), 7.00 (d, J = 16.1 Hz, 1H), 4.02 (s, 3H); 13C NMR (75 

MHz, DMSO-d6) δ 166.96, 152.21, 149.49, 142.36, 140.60, 139.12, 133.87, 132.73, 127.40, 

126.25, 125.98, 125.84, 125.53, 125.36, 124.49, 123.06, 52.82; HRMS (ESI) (M + H), Calcd. for 

C17H14NO2S 296.0745; Found 296.0739. 
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(E)-3-(2-(Benzo[b]thiophen-2-yl)vinyl)-5-methoxypyridine (50, Table 3-9, entry 1) 

 

The general procedure was followed (3 h).  The 3-bromo-5-methoxypyridine (117.5 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(19% EtOAc and 1% TEA in hexanes) to provide the pure methoxy pyridine 50 in 90% yield as 

a red/brown solid (150 mg): 1H NMR (300 MHz, DMSO-d6) δ 8.41 (s, 1H), 8.21 (d, J = 2.6 Hz, 

1H), 7.99 – 7.91 (m, 1H), 7.88 – 7.83 (m, 1H), 7.80 (d, J = 16.0 Hz, 1H), 7.70 (s, 1H), 7.57 – 

7.49 (m, 1H), 7.41 – 7.32 (m, 2H), 7.06 (d, J = 16.2 Hz, 1H), 3.89 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 154.29, 142.54, 140.27, 139.96, 138.79, 138.11, 133.23, 127.48, 125.65, 125.27, 

124.95, 124.70, 124.23, 122.91, 118.80; HRMS (ESI) (M + H), Calcd. for C16H14NOS 268.0796; 

Found 268.0789. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)pyridin-3-ol (51, Table 3-9, entry 2) 

 

The general procedure was followed (3 h).  The 5-bromopyridin-3-ol (108.6 mg, 0.624 mmol, 1 

eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 

mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a 

vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

yellow solid.  The solid was purified by flash column chromatography on silica gel (29% EtOAc 

and 1% TEA in hexanes) to provide the pure pyridine phenol 51 in 90% yield as a brown solid 

(142 mg): 1H NMR (300 MHz, DMSO-d6) δ 10.09 (s, 1H), 8.29 (s, 1H), 8.07 (s, 1H), 7.98 – 

7.90 (m, 1H), 7.85 – 7.78 (m, 1H), 7.65 (d, J = 16.2 Hz, 1H), 7.53 (s, 1H), 7.38 (dd, J = 11.7, 7.6 

Hz, 3H), 7.00 (d, J = 16.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 154.29, 142.54, 140.27, 

139.96, 138.79, 138.11, 133.23, 127.48, 125.65, 125.27, 124.95, 124.70, 124.23, 122.91, 118.80; 

HRMS (ESI) (M + H), Calcd. for C15H12NOS 254.0640; Found 254.0645. 
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(E)-5-(2-(Benzo[b]thiophen-2-yl)vinyl)nicotinic acid (52, Table 3-9, entry 3) 

 

The general procedure was followed (3 h).  The 5-bromonicotinic acid (126.1 mg, 0.624 mmol, 1 

eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 

mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a 

vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

brown/red solid.  The solid was purified by flash column chromatography on silica gel (49% 

EtOAc and 1% TEA in hexanes) to provide the pure pyridine acid 52 in 87% yield as a light 

brown solid (153 mg): 1H NMR (300 MHz, CDCl3) δ 13.59 (s, broad, 1H), 9.04 (s, 1H), 8.96 (s, 

1H), 8.54 (s, 1H), 8.00 – 7.94 (m, 1H), 7.90 (d, J = 16.3 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.58 (s, 

1H), 7.38 (dd, J = 5.9, 3.2 Hz, 2H), 7.16 (d, J = 16.3 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 

166.66, 152.15, 149.52, 142.33, 140.20, 138.98, 133.96, 132.75, 127.29, 126.22, 126.18, 125.82, 

125.62, 125.30, 124.39, 122.96; HRMS (ESI) (M + H), Calcd. for C16H12NO2S 282.0589; Found 

282.0582. 
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2-vinylbenzo[b]thiophene 31 (31, Scheme 3-9) 

 

The The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium 

bromide (2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  

The benzo[b]thiophene-2-carbaldehyde (1.11 g, 6.84 mmol, 1eq) was dissolved in THF (5mL) 

and added dropwise to the solution.  After 3h examination by TLC (10% EtOAc in hexanes) 

indicated no starting aldehyde remained and the reaction was quenched with 0.5N aq HCl 

(10mL).  The organic layer was extracted and the aq layer was subsequently extracted with 

EtOAc (15mL x 2).  The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and 

the solvent removed in vacuo to yield an off-white solid.  The solid was purified by flash column 

chromatography on silica gel (hexanes) to provide the pure thiostyrene 31 in 98% yield as a 

white solid (1076 mg): 1H NMR (500 MHz, CDCl3) δ 7.87 – 7.79 (m, 1H), 7.79 – 7.72 (m, 1H), 

7.43 – 7.32 (m, 2H), 7.22 (s, 1H), 6.98 (dd, J = 17.3, 10.8 Hz, 1H), 5.74 (d, J = 17.3 Hz, 1H), 

5.37 (d, J = 10.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 143.16, 140.08, 138.93, 130.66, 

124.85, 124.48, 123.63, 123.14, 122.34, 116.00; HRMS (ESI) (M + H), Calcd. for C10H9S 

161.0425; Found 161.0431. 

2-Vinyl-1H-indole (55, Figure 3-4) 
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The The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium 

bromide (2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  

The 1H-indole-2-carbaldehyde (993 mg, 6.84 mmol, 1eq) was dissolved in THF (5mL) and 

added dropwise to the solution.  After 3h analysis by TLC (10% EtOAc in hexanes) indicated no 

starting aldehyde remained and the reaction mixture was quenched with water (10mL).  The 

organic layer was extracted and the aq layer was subsequently extracted with EtOAc (15mL x 2).  

The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and the solvent removed 

in vacuo to yield a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (hexanes, 1% TEA) to provide the pure indole styrene 55 in 92% yield as a yellow 

solid (901 mg): 1H NMR (500 MHz, CDCl3) δ 8.08 (s, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.44 – 7.31 

(m, 2H), 7.31 – 7.23 (m, 1H), 6.82 (dd, J = 17.8, 11.2 Hz, 1H), 6.66 (s, 1H), 5.60 (d, J = 17.8 Hz, 

1H), 5.38 (d, J = 11.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 136.74, 136.48, 128.88, 127.66, 

122.96, 120.96, 120.28, 112.44, 110.99, 103.20; HRMS (ESI) (M + H), Calcd. for C10H10N 

144.0813; Found 144.0845. 

1-Methyl-2-vinyl-1H-indole (57, Figure 3-4) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 1-

methyl-2-vinyl-1H-indole (1.07 g, 6.84 mmol, 1eq) was dissolved in THF (5mL) and added 

dropwise to the solution.  After 3h examination by TLC (10% EtOAc in hexanes) indicated no 



121 
 

starting aldehyde remained and the reaction was quenched with 0.5N aq HCl (10mL).  The 

organic layer was extracted and the aq layer was subsequently extracted with EtOAc (15mL x 2).  

The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and the solvent removed 

in vacuo to yield an off-white solid.  The solid was purified by flash column chromatography on 

silica gel (hexanes) to provide the pure methylindole styrene 57 in 98% yield as a white solid 

(1076 mg): 1H NMR (500 MHz, Acetone) δ 7.56 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 

7.23 – 7.13 (m, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.92 (dd, J = 17.4, 11.3 Hz, 1H), 6.73 (s, 1H), 5.87 

(dd, J = 17.4, 1.3 Hz, 1H), 5.36 (dd, J = 11.3, 1.2 Hz, 1H), 3.75 (s, 3H); 13C NMR (126 MHz, 

Acetone) δ 138.39, 138.06, 127.91, 126.20, 121.55, 120.24, 119.57, 115.47, 109.42, 98.63, 

29.15; HRMS (ESI) (M + H), Calcd. for C11H12N 158.0970; Found 158.0975. 

2-Vinylbenzofuran (60, Figure 3-4) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 

benzofuran-2-carbaldehyde (1.00 g, 6.84 mmol, 1eq) was dissolved in THF (5mL) and added 

dropwise to the solution.  After 3h examination by TLC (10% EtOAc in hexanes) indicated no 

starting aldehyde remained and the reaction was quenched with 0.5N aq HCl (10mL).  The 

organic layer was extracted and the aq layer was subsequently extracted with EtOAc (15mL x 2).  

The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and the solvent removed 

in vacuo to yield a yellow oil.  The oil was purified by flash column chromatography on silica 

gel (hexanes) to provide the pure benzofuran styrene 60 in 85% yield as a clear oil that slowly 
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solidifies in a freezer (838 mg): 1H NMR (300 MHz, CDCl3) δ 7.56 (d, J = 7.6 Hz, 1H), 7.49 (d, 

J = 8.1 Hz, 1H), 7.27 (m, 2H), 6.75 – 6.62 (dd, J = 17.4 Hz, J = 11.4 Hz, 1H), 6.63 (s, 1H), 6.00 

(d, J = 17.4 Hz, 1H), 5.42 (d, J = 11.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 154.86, 154.78, 

128.83, 125.30, 124.64, 122.79, 120.98, 115.71, 111.02, 104.74; HRMS (ESI) (M + H), Calcd. 

for C10H9O 145.0653; Found 145.0652. 

5-Chloro-2-vinylbenzo[b]thiophene 31 (61, Figure 3-4) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 5-

chlorobenzo[b]thiophene-2-carbaldehyde (1.35 g, 6.84 mmol, 1eq) was dissolved in THF (5mL) 

and added dropwise to the solution.  After 3h examination by TLC (10% EtOAc in hexanes) 

indicated no starting aldehyde remained and the reaction was quenched with 0.5N aq HCl 

(10mL).  The organic layer was extracted and the aq layer was subsequently extracted with 

EtOAc (15mL x 2).  The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and 

the solvent removed in vacuo to yield an off-white solid.  The solid was purified by flash column 

chromatography on silica gel (hexanes) to provide the pure chloro thiostyrene 61 in 96% yield as 

a white solid (1278 mg): 1H NMR (300 MHz, CDCl3) δ 7.67 (dd, J = 5.1, 3.3 Hz, 2H), 7.29 (dt, J 

= 4.8, 3.9 Hz, 1H), 7.08 (s, 1H), 6.91 (dd, J = 17.3, 10.8 Hz, 1H), 5.72 (d, J = 17.3 Hz, 1H), 5.37 

(d, J = 10.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 145.06, 141.16, 136.96, 130.64, 130.29, 

125.13, 123.22, 123.03, 122.15, 116.78; HRMS (ESI) (M + H), Calcd. for C10H8ClS 195.0035; 

Found 195.0032. 
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5-Fluoro-2-vinylbenzo[b]thiophene 31 (62, Figure 3-4) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 5-

fluorobenzo[b]thiophene-2-carbaldehyde (1.23 g, 6.84 mmol, 1eq) was dissolved in THF (5mL) 

and added dropwise to the solution.  After 3h examination by TLC (10% EtOAc in hexanes) 

indicated no starting aldehyde remained and the reaction was quenched with 0.5N aq HCl 

(10mL).  The organic layer was extracted and the aq layer was subsequently extracted with 

EtOAc (15mL x 2).  The organic layer was washed with brine (10mL x 2), dried (Na2SO4), and 

the solvent removed in vacuo to yield an off-white solid.  The solid was purified by flash column 

chromatography on silica gel (hexanes) to provide the pure fluoro thiostyrene 62 in 95% yield as 

a white solid (1159 mg): 1H NMR (300 MHz, CDCl3) δ 7.69 (dd, J = 8.8, 4.8 Hz, 1H), 7.38 (dd, 

J = 9.4, 2.4 Hz, 1H), 7.12 (s, 1H), 7.08 (dd, J = 8.8, 2.5 Hz, 1H), 6.92 (dd, J = 17.3, 10.8 Hz, 

1H), 5.72 (d, J = 17.3 Hz, 1H), 5.37 (d, J = 10.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 160.94 

(d, J = 241.4 Hz), 145.56 (s), 141.02 (d, J = 9.5 Hz), 134.22 (d, J = 1.5 Hz), 130.40 (s), 123.32 

(d, J = 9.3 Hz), 122.60 (d, J = 4.3 Hz), 116.60 (s), 113.44 (d, J = 25.2 Hz), 109.02 (d, J = 23.0 

Hz); HRMS (ESI) (M + H), Calcd. for C10H8FS 179.0331; Found 179.0334. 
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(E)-4-(2-(1H-Indol-2-yl)vinyl)-2-methoxyphenol (63, Table 3-11, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinyl-1H-indole (89.4 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 

mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a 

vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

yellow solid.  The solid was purified by flash column chromatography on silica gel (19% EtOAc 

and 1% TEA in hexanes) to provide the pure indole stilbene 63 in 83% yield as a brown solid 

(137 mg): 1H NMR (300 MHz, DMSO-d6) δ 11.27 (s, 1H), 9.18 (s, 1H), 7.47 (d, J = 7.7 Hz, 

1H), 7.32 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 1.4 Hz, 1H), 7.12 – 7.01 (m, 3H), 7.01 – 6.88 (m, 2H), 

6.79 (d, J = 8.1 Hz, 1H), 6.49 (s, 1H), 3.85 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 148.43, 

147.15, 137.79, 137.58, 129.01, 128.99, 128.17, 122.05, 120.57, 120.20, 119.55, 117.05, 116.12, 

111.21, 109.60, 102.20, 56.05; HRMS (ESI) (M + H), Calcd. for C17H16NO2 266.1181; Found 

266.1183. 
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(E)-2-Methoxy-4-(2-(1-methyl-1H-indol-2-yl)vinyl)phenol (64, Table 3-11, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 1-methyl-2-vinyl-1H-indole (98 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 

1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged 

to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

brown solid.  The solid was purified by flash column chromatography on silica gel (19% EtOAc 

and 1% TEA in hexanes) to provide the pure methylindole stilbene 64 in 89% yield as a brown 

solid (155 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.21 (s, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.42 (d, 

J = 8.2 Hz, 1H), 7.29 (d, J = 1.5 Hz, 1H), 7.27 – 6.94 (m, 5H), 6.84 – 6.73 (m, 2H), 3.86 (s, 3H), 

3.84 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 148.33, 147.36, 139.42, 138.09, 131.45, 129.11, 

128.10, 121.38, 120.91, 120.07, 119.92, 116.02, 114.64, 110.50, 110.02, 97.71, 56.20, 30.16; 

HRMS (ESI) (M + H), Calcd. for C18H18NO2 280.1338; Found 280.1345. 
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(E)-4-(2-([1,1'-Biphenyl]-4-yl)vinyl)-2-chlorophenol (65, Table 3-11, entry 3) 

Cl

HO

Chemical Formula: C20H15ClO
Molecular Weight: 306.79

Log P: 6.07
tPSA: 20.23

c

 

The general procedure was followed (3 h).  The 4-bromo-2-chlorophenol (129.5 mg, 0.624 

mmol, 1 eq), 4-vinyl-1,1'-biphenyl (112.5 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 

1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged 

to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide a yellow oil.  The oil was purified by flash column chromatography on silica gel (20% 

EtOAc in hexanes) to provide the pure biphenyl stilbene 65 in 84% yield as a white solid (164 

mg): 1H NMR (300 MHz, DMSO-d6) δ 10.35 (s, 1H), 7.75 – 7.61 (m, 7H), 7.54 – 7.31 (m, 4H), 

7.27 – 7.10 (m, 2H), 6.98 (d, J = 8.4 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 153.19, 140.13, 

139.31, 136.91, 130.09, 129.41, 128.21, 127.88, 127.71, 127.33, 127.27, 126.88, 126.63, 120.59, 

117.29; HRMS (ESI) (M + H), Calcd. for C20H16ClO 307.0890; Found 307.0885. 
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(E)-2-(2-(Benzo[b]thiophen-2-yl)vinyl)-4-methoxyphenol (66, Table 3-12, entry 1) 

 

The general procedure was followed (3 h).  The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) 

and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo 

to provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure o-hydroxy stilbene 66 in 86% yield as a bright 

yellow-green solid (151 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.48 (s, 1H), 7.90 (d, J = 8.3 Hz, 

1H), 7.84 – 7.73 (m, 1H), 7.59 (d, J = 16.2 Hz, 1H), 7.44 (s, 1H), 7.34 (p, J = 7.5 Hz, 2H), 7.21 

(d, J = 16.1 Hz, 1H), 7.17 (s, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.75 (dd, J = 8.8, 2.7 Hz, 1H), 3.74 

(s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 152.86, 149.69, 143.83, 140.53, 138.40, 126.27, 

125.26, 125.16, 123.94, 123.70, 123.59, 122.81, 122.43, 117.19, 116.11, 110.99, 55.92; HRMS 

(ESI) (M + H), Calcd. for C17H15O2S 283.0793; Found 283.0790. 
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(E)-2-(2-(1H-Indol-2-yl)vinyl)-4-methoxyphenol (67, Table 3-12, entry 2) 

 

The general procedure was followed (3 h).  The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinyl-1H-indole (89.4 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 

mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a 

vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and brine (2 x 10 

mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to provide a 

yellow solid.  The solid was purified by flash column chromatography on silica gel (19% EtOAc 

and 1% TEA in hexanes) to provide the pure indole stilbene 67 in 81% yield as a bright green 

solid (134 mg): 1H NMR (300 MHz, DMSO-d6) δ 11.39 (s, 1H), 9.38 (s, 1H), 7.48 (d, J = 7.7 

Hz, 1H), 7.39 (d, J = 16.7 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 16.7 Hz, 1H), 7.16 – 

7.02 (m, 1H), 6.96 (t, J = 7.3 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.71 (dd, J = 8.7, 2.7 Hz, 1H), 

6.52 (s, 1H), 3.74 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 152.86, 149.45, 137.91, 137.79, 

128.91, 124.68, 123.08, 122.18, 120.30, 119.61, 119.56, 117.01, 115.13, 111.37, 110.70, 102.84, 

55.86; HRMS (ESI) (M + H), Calcd. for C17H16NO2 266.1181; Found 266.1178. 
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(E)-2-(2-(Benzofuran-2-yl)vinyl)-4-methoxyphenol (68, Table 3-12, entry 3) 

 

The general procedure was followed (3 h).  The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 2-vinylbenzofuran (90 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 

mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were charged to a 

vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under an argon 

atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC for 3h, 

cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered through 

a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure benzofuran stilbene 68 in 86% yield as a bright 

yellow solid (143 mg): 1H NMR (500 MHz, DMSO) δ 9.53 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 

7.59 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 16.4 Hz, 1H), 7.32 (d, J = 16.4 Hz, 1H), 7.33 – 7.29 (m, 

1H), 7.26 – 7.21 (m, 1H), 7.18 (d, J = 3.0 Hz, 1H), 6.92 (s, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.76 

(dd, J = 8.8, 3.0 Hz, 1H), 3.75 (s, 3H); 13C NMR (126 MHz, DMSO) δ 155.89, 154.66, 152.85, 

150.01, 129.38, 125.75, 125.10, 123.60, 123.54, 121.41, 117.24, 116.52, 116.37, 111.24, 111.06, 

105.41, 55.91; HRMS (ESI) (M + H), Calcd. for C17H15O3 267.1021; Found 267.1026. 
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(E)-4-(2-(5-Chlorobenzo[b]thiophen-2-yl)vinyl)-2-methoxyphenol (69, Table 3-13, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyphenol (127 mg, 0.624 

mmol, 1 eq), 5-chloro-2-vinylbenzo[b]thiophene 31 (121.5 mg, 0.624 mmol, 1 eq), sodium 

acetate (102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 

0.025 eq) were charged to a vial containing oxygen free solvent (10% water in 

dimethylacetamide, 3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with 0.5 N aq HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and solvent was removed in vacuo to provide a yellow solid.  The solid was purified by 

flash column chromatography on silica gel (20% EtOAc in hexanes) to provide the pure 5-

chlorothiophenyl analog 69 in 87% yield as a yellow solid (174 mg): 1H NMR (300 MHz, 

DMSO-d6) δ 9.31 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 1.4 Hz, 1H), 7.42 (d, J = 16.1 

Hz, 1H), 7.37 (s, 1H), 7.33 (dd, J = 8.6, 1.7 Hz, 1H), 7.27 (s, 1H), 7.05 (d, J = 8.1 Hz, 1H), 6.97 

(d, J = 16.1 Hz, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.85 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 

148.37, 147.89, 145.93, 141.99, 136.78, 132.40, 130.13, 128.10, 124.87, 124.37, 123.00, 121.94, 

121.22, 119.52, 116.08, 110.61, 56.12; HRMS (ESI) (M + H), Calcd. for C17H14ClO2S 317.0403; 

Found 317.0404. 
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(E)-2-Chloro-4-(2-(5-chlorobenzo[b]thiophen-2-yl)vinyl)phenol (70, Table 3-13, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-chlorophenol (129.5 mg, 0.624 

mmol, 1 eq), 5-chloro-2-vinylbenzo[b]thiophene 31 (121.5 mg, 0.624 mmol, 1 eq), sodium 

acetate (102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 

0.025 eq) were charged to a vial containing oxygen free solvent (10% water in 

dimethylacetamide, 3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with 0.5 N aq HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and solvent was removed in vacuo to provide a yellow solid.  The solid was purified by 

flash column chromatography on silica gel (20% EtOAc in hexanes) to provide the pure 5-

chlorothiophenyl analog 70 in 87% yield as an off-white solid (174 mg): 1H NMR (300 MHz, 

DMSO-d6) δ 10.47 (s, 1H), 7.93 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 1.8 

Hz, 1H), 7.54 – 7.28 (m, 4H), 6.98 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 16.1 Hz, 1H); 13C NMR (75 

MHz, DMSO-d6) δ 153.77, 145.47, 141.86, 136.94, 130.59, 130.16, 129.05, 128.59, 127.27, 

125.07, 124.42, 123.14, 122.66, 120.85, 120.72, 117.29; HRMS (ESI) (M + H), Calcd. for 

C16H11Cl2OS 320.9908; Found 320.9914. 
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(E)-2-Chloro-4-(2-(5-fluorobenzo[b]thiophen-2-yl)vinyl)phenol (71, Table 3-13, entry 3) 

S

HO

Cl

Chemical Formula: C16H10ClFOS
Molecular Weight: 304.76

Log P: 5.59
tPSA: 20.23

c

F

 

The general procedure was followed (3 h).  The 4-bromo-2-chlorophenol (129.5 mg, 0.624 

mmol, 1 eq), 5-fluoro-2-vinylbenzo[b]thiophene 31 (111 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure 5-fluorothiophenyl analog 71 in 92% 

yield as an off-white solid (175 mg): 1H NMR (500 MHz, DMSO) δ 10.48 (s, 1H), 7.94 (dd, J = 

8.8, 5.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.62 (dd, J = 9.8, 2.5 Hz, 1H), 7.47 (d, J = 15.9 Hz, 

1H), 7.45 (dd, J = 8.3, 2.2 Hz, 1H), 7.40 (s, 1H), 7.20 (td, J = 9.0, 2.6 Hz, 1H), 6.99 (d, J = 8.4 

Hz, 1H), 6.96 (d, J = 16.1 Hz, 1H); 13C NMR (126 MHz, DMSO) δ 160.87 (d, J = 239.2 Hz), 

153.75 (s), 145.89 (s), 141.64 (d, J = 9.9 Hz), 134.15 (s), 130.38 (s), 129.11 (s), 128.57 (s), 

127.28 (s), 124.41 (d, J = 9.5 Hz), 123.15 (d, J = 4.2 Hz), 121.02 (s), 120.73 (s), 117.30 (s), 
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113.54 (d, J = 24.8 Hz), 109.32 (d, J = 23.0 Hz); HRMS (ESI) (M + H), Calcd. for C16H11ClFOS 

305.0203; Found 305.0210. 

(E)-4-(2-(5-Fluorobenzo[b]thiophen-2-yl)vinyl)-2-methoxyphenol (72, Table 3-14, entry 1) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 5-fluoro-2-vinylbenzo[b]thiophene 31 (111 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure 5-fluorothiophenyl analog 72 in 88% 

yield as a yellow solid (165 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.31 (s, 1H), 7.92 (dd, J = 

8.7, 5.0 Hz, 1H), 7.60 (dd, J = 9.9, 2.1 Hz, 1H), 7.42 (d, J = 16.1 Hz, 1H), 7.37 (s, 1H), 7.26 (s, 

1H), 7.18 (td, J = 9.1, 2.3 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 16.1 Hz, 1H), 6.79 (d, J 

= 8.1 Hz, 1H), 3.85 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 160.86 (d, J = 239.0 Hz), 148.36 

(s), 147.84 (s), 146.33 (s), 141.75 (d, J = 9.8 Hz), 133.97 (s), 132.18 (s), 128.13 (s), 124.33 (d, J 
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= 9.4 Hz), 122.40 (d, J = 4.3 Hz), 121.17 (s), 119.65 (s), 116.07 (s), 113.29 (d, J = 25.1 Hz), 

110.60 (s), 109.16 (d, J = 23.2 Hz), 56.11 (s); HRMS (ESI) (M + H), Calcd. for C17H14FO2S 

301.0699; Found 301.0692. 

(E)-4-(2-(Benzo[b]thiophen-2-yl)vinyl)-2-methoxyaniline (73, Table 3-14, entry 2) 

 

The general procedure was followed (3 h).  The 4-bromo-2-methoxyaniline (126.1 mg, 0.624 

mmol, 1 eq), 2-vinylbenzo[b]thiophene 31 (100 mg, 0.624 mmol, 1 eq), sodium acetate (102.4 

mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) were 

charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) under 

an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 150 ºC 

for 3h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was filtered 

through a plug of celite and the filtrate was washed successively with water (2 x 10 mL) and 

brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed in vacuo to 

provide a yellow solid.  The solid was purified by flash column chromatography on silica gel 

(20% EtOAc in hexanes) to provide the pure amine 73 in 75% yield as a brown solid (131 mg): 

1H NMR (300 MHz, DMSO-d6) δ 7.87 (d, J = 7.2 Hz, 1H), 7.79 – 7.69 (m, 1H), 7.40 – 7.24 (m, 

4H), 7.12 (s, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.88 (d, J = 16.1 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 

5.09 (s, 2H), 3.84 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 146.80, 144.13, 140.72, 139.15, 



135 
 

138.07, 132.32, 125.07, 124.91, 124.78, 123.53, 122.68, 121.85, 121.59, 117.66, 113.74, 108.72, 

55.81; HRMS (ESI) (M + H), Calcd. for C17H16NOS 282.0953; Found 282.0956. 

(E)-3-(2-(5-Fluorobenzo[b]thiophen-2-yl)vinyl)-5-methoxyphenol (74, Table 3-14, entry 3) 

S

F

HO

OMe

Chemical Formula: C17H13FO2S
Molecular Weight: 300.35

Log P: 4.9
tPSA: 29.46
c

 

The general procedure was followed (3 h).  The 3-bromo-5-methoxyphenol (126.7 mg, 0.624 

mmol, 1 eq), 5-fluoro-2-vinylbenzo[b]thiophene 31 (111 mg, 0.624 mmol, 1 eq), sodium acetate 

(102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.016 mmol, 0.025 eq) 

were charged to a vial containing oxygen free solvent (10% water in dimethylacetamide, 3 mL) 

under an argon atmosphere.  The vial was sealed with a septum and the mixture was heated to 

150 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one portion.  The suspension was 

filtered through a plug of celite and the filtrate was washed successively with 0.5 N aq HCl (2 x 

10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and solvent was removed 

in vacuo to provide a yellow solid.  The solid was purified by flash column chromatography on 

silica gel (20% EtOAc in hexanes) to provide the pure 5-fluorothiophenyl analog 74 in 92% 

yield as an off-white solid (172 mg): 1H NMR (300 MHz, DMSO-d6) δ 9.54 (s, 1H), 7.97 – 7.93 

(m, 1H), 7.65 – 7.61 (m, 1H), 7.54 – 7.43 (m, 2H), 7.25 – 7.19 (m, 1H), 6.93 (d, J = 15.9 Hz, 

1H), 6.70 (s, 1H), 6.62 (s, 1H), 6.31 (s, 1H), 3.75 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 

160.86 (d, J = 237.75 Hz), 161.15 (s), 159.14 (s), 145.55 (s), 141.54 (d, J = 9.75 Hz), 138.42 (s), 
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134.31 (s), 131.87 (s), 124.46 (d, J = 9.75 Hz), 123.87 (d, J = 3.75 Hz), 122.78 (s), 113.74 (d, J = 

24.75 Hz), 109.42 (d, J = 22.5 Hz), 106.94 (s), 103.63 (s), 102.18 (s), 55.53 (s); HRMS (ESI) (M 

+ H), Calcd. for C17H14FO2S 301.0699; Found 301.0703. 
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CHAPTER FOUR 

ALDOL CONDENSATION PRODUCTS AND THEIR ANTIMICROBIAL 

PROPERTIES: STRUCTURALLY SIMILAR TO BOTH STILBENOID AND 

ACRYLATE ACTIVE COMPOUNDS 

I. INTRODUCTION AND BACKGROUND. 

The aldol condensation is a carbon-carbon bond forming reaction in which an enol or 

enolate anion reacts with a carbonyl compound, followed by dehydration to give a conjugated 

enone (Scheme 4-1).165  This reaction was discovered in the late 19th century and is still one of 

the most important C-C bond forming reactions in organic chemistry.165-166  It is particularly 

useful for large-scale preparation of materials due to the inexpensive reagents involved. 

Scheme 4-1: Aldol condensation mechanisms. 

 

 Earlier in the SAR of stilbenoid compounds it was discovered that another class of 

compounds, acrylates, also showed activity against mycobacteria with lead compound SK-04-

57ac.120  These acrylates were further investigated through a second SAR and compounds with 

potent activity against gram-positive bacteria and mycobacteria were discovered, the most active 

being TI-01-37ac (Table 4-1).91 
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Table 4-1: Acrylate activitya. 

Bacterial Strain 

  

S. aureus >512 1 

E. faecalis >512 2 

P. aeruginosa >128 64 

E. coli >512 16 

M. intracellulare N.T. 4 

M. chelonae N.T. 8 

M. fortuitum N.T. 16 

M. kansasii N.T. 8 

M. avium N.T. 16 

M. smegmatis 16 4 

M. marinum N.T. 4 

                        aValues in µg/mL, N.T. = not tested 

 Interestingly TI-01-37ac was the first compound synthesized that had broad activity 

against gram-positive, gram-negative, and mycobacterium species.  This activity, however, was 

later linked to the cytotoxic nature of these compounds, which was likely due to the Michael-

acceptor nature of the α,ß-unsaturated carbonyl system.167-170  In fact, when the carbon double-

bond was saturated, the compound which resulted had no activity for all strains tested – unlike 

saturation of the stilbene double-bond which, while it decreased potency, were still active (see 
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Chapter 2).  Analysis of further NMR studies confirmed that various anilines formed Michael 

adducts with these acrylate compounds in an irreversible manner. 

 Regardless, modification of the stilbenoid core structure to include this α,ß-unsaturated 

function was still explored to see if further modification of the bridge portion was advantageous, 

accompanied by less cytotoxicity. 

II. CHEMISTRY AND RESULTS. 

As discussed in the Introduction, the aldol condensation can lead to α,ß-unsaturated 

compounds with a wide variety of substituents.  In this case, the focus was on modification of the 

current lead compounds by changing the ‘bridge’ portion to include this α,ß-unsaturated function 

(Figure 4-1). 

Figure 4-1: Target compounds. 

 

 Synthesis of such compounds would require an aldehyde and a methyl ketone, and since 

benzo[b]thiophene-2-carbaldehyde (18) was already synthesized and the phenolic methyl 

ketones were commercially available and relatively inexpensive, a series of three new analogs 

were prepared (Table 4-2). 

 Synthesis of these analogs was found to proceed smoothly and purification by 

crystallization from ethanol resulted in isolation of analytically pure material with no need of 

flash column chromatography.  These enone compounds, however, were found to be less soluble 
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then the already rather insoluble stilbenoid compounds in suitable in vitro/in vivo solvent 

preparations. 

Table 4-2: Synthesis of enone analogs. 

 
Compound R Yield (%) 

75 OMe 89 
76 Cl 93 

77 NO2 81 
 

 Examination of the data in Table 4-3 details the activity of these enone analogs against 

the standard bacterial strains tested.  The methoxy analog 75 retained similar activity to its 

related stilbenoid analog 36 while the chloro analog 76 does not retain activity compared to the 

potent stilbenoid analog 38.  This variability might be explained by the poor solubility of these 

compounds, however, since considerable effort is required to keep them in solution.  The nitro 

analog 77, for example, readily precipitates out of a DMSO/water solution even at very low 

concentrations which certainly could hinder MIC screens.  However, it is important to note that 

both the methoxy analog 75 and the nitro analog 77 were potent antimicrobials against S. aureus. 
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Table 4-3: Enone analog activities.a 

Bacterial 
Strain 

   

S. aureus 0.5 128 2 

E. faecalis 1 64 128 

P. aeruginosa >128 >128 >128 

E. coli >128 >128 >128 

M. 
intracellulare 

16 32 64 

M. chelonae 32 32 64 

M. fortuitum 16 64 128 

M. kansasii 8 128 >128 

M. avium 16 64 128 

M. smegmatis 32 >128 128 

M. marinum 4 16 64 

aValues in µg/mL 

 Synthesis of more analogs in this series was halted due to a number of reasons.  First and 

foremost, availability of substituted methyl ketones, although generally inexpensive, was low.  

Secondly, the low solubility exhibited by these compounds was not promising, since they 

seemed even less soluble then the related stilbenoid derivatives.  Finally, cytotoxicity concerns 

from both studies on 75 (to be discussed in the next chapter) and previous studies on SK-04-57ac 

and TI-01-37ac were considered a hurdle based on the Michael acceptor pharmacophore in these 

analogs. 



142 
 

III. CONCLUSION. 

In conclusion, a synthesis of enone compounds structurally similar to the lead stilbenoid 

compounds was accomplished using an aldol condensation reaction.  Three different analogs 

were synthesized, one of which had similar activity to the best current lead compounds.  This 

analog, 75, was structurally related to an earlier lead compound 36.  Given this potent activity, 

75 was also considered a lead compound in this work, however it may not be as desirable as the 

related stilbene analogs due to cytotoxicity and solubility issues. 

 These issues, however, could be addressed in future SAR work by removing the α,ß-

unsaturated nature of this compound via various methods to determine whether or not activity 

can be retained, especially if this substitution leads to better water solubility. 

 As also noted, selection of methyl ketones was rather low, however they could also be 

conveniently synthesized via a Fries rearrangement reaction or other similar reactions.  Attempts 

to synthesize the enone analogs of the stilbenoids with different substitution patterns (66, 67, and 

68 for example) may also prove useful in future work. 

IV. EXPERIMENTAL. 

 1. In vitro MIC assays. (completed by Dr. Bill Schwan) 

In vitro minimum inhibitory concentration (MIC) determinations were performed 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines,115 for most of the 

bacteria that were screened. Tetracycline, ciprofloxacin, and erythromycin were included as 

control antibiotics for the gram-positive bacterial MIC values and correlated with established 

MIC values. All anti-Mycobacterium activity evaluations were performed using MIC assays in 
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Middlebrook 7H9 broth with 10% oleic acid albumin dextrose complex (OADC) as previously 

described.114 Rifampin was used as the positive control for the mycobacterial MIC values. All 

MIC numbers are a compilation of the geometric means from three separate runs. For the broad 

characterization against S. aureus, strains that have been typed by a variety of means were used 

by Schwan et al116. 

 2. Characterization data. 

 Both 1H and 13C NMR’s were recorded on a Bruker DPX-300 or DRX-500 instrument 

where noted.  HRMS scans were recorded on a Shimadzu LCMS-IT-TOF or similar instruments 

run at the Shimadzu Analytical Chemistry Center of Southeastern Wisconsin.  In silico cLogP 

values and topological polar surface area values (tPSA) were calculated with ChemBioDraw 

Ultra v. 14. 

 (E)-3-(Benzo[b]thiophen-2-yl)-1-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one (75, Table 

4-3, entry 1) 

 

The 1-(4-hydroxy-3-methoxyphenyl)ethan-1-one (500mg, 3 mmol, 1eq) and benzo[b]thiophene-

2-carbaldehyde (500mg, 3.08 mmol, 1.02eq) were dissolved in acetone (20mL) at rt.  Potassium 

hydroxide (338mg, 6 mmol, 2eq, crushed) was added in one portion and the slurry heated to 

reflux.  The reaction was followed by TLC (50% EtOAc in hexanes, silica gel) and was complete 

after 3 h.  The mixture was cooled with an ice bath and quenched with excess aq 0.5N HCl 

(50mL).  The solution which resulted was extracted with EtOAc (50mL x 2), washed with brine 
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(50mL x 2), and the organic layer was dried (Na2SO4).  The solvent was removed in vacuo which 

resulted in in a yellow solid (921mg, 99% yield).  The solid was further purified by 

crystallization from hot EtOH to give yellow microcrystals of the enone 75 (834mg, 90.5% 

recovery, 89% overall yield):1H NMR (300 MHz, DMSO-d6) δ 10.14 (s, 1H), 7.98 (d, J = 15.1 

Hz, 1H), 8.04 – 7.92 (m, 2H), 7.92 – 7.84 (m, 1H), 7.74 (dd, J = 8.3, 1.8 Hz, 1H), 7.60 (d, J = 1.7 

Hz, 1H), 7.60 (d, J = 15.3 Hz, 1H), 7.49 – 7.37 (m, 2H), 6.95 (d, J = 8.3 Hz, 1H), 3.88 (s, 3H); 

13C NMR (75 MHz, DMSO-d6) δ 186.84, 152.62, 148.35, 140.52, 140.11, 139.95, 136.35, 

130.33, 129.62, 126.89, 125.54, 125.03, 124.20, 123.52, 123.16, 115.55, 111.97, 56.13; HRMS 

(ESI) (M + H), Calcd. for C18H15O3S 311.0742; Found 311.0749. 

(E)-3-(Benzo[b]thiophen-2-yl)-1-(3-chloro-4-hydroxyphenyl)prop-2-en-1-one (76, Table 4-3, 

entry 2) 

 

The 1-(3-chloro-4-hydroxyphenyl)ethan-1-one (512mg, 3 mmol, 1eq) and benzo[b]thiophene-2-

carbaldehyde (500mg, 3.08 mmol, 1.02eq) were dissolved in acetone (20mL) at rt.  Potassium 

hydroxide (338mg, 6 mmol, 2eq, crushed) was added in one portion and the slurry heated to 

reflux.  The reaction was followed by TLC (50% EtOAc in hexanes, silica gel) and was complete 

after 3 h.  The mixture was cooled with an ice bath and quenched with excess aq 0.5N HCl 

(50mL).  The solution which resulted was extracted with EtOAc (50mL x 2), washed with brine 

(50mL x 2), and the organic layer was dried (Na2SO4).  The solvent was removed in vacuo which 

resulted in a yellow solid (932mg, 98.6% yield).  The solid was further purified by crystallization 
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from hot EtOH to give yellow microcrystals of enone 76 (878mg, 94% recovery, 93% overall 

yield): 1H NMR (300 MHz, DMSO-d6) δ 11.32 (s, 1H), 8.16 (d, J = 2.0 Hz, 1H), 8.06 – 7.95 (m, 

3H), 8.00 (d, J = 14.6 Hz, 1H), 7.95 – 7.85 (m, 1H), 7.61 (d, J = 15.3 Hz, 1H), 7.51 – 7.37 (m, 

2H), 7.12 (d, J = 8.5 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 186.22, 158.46, 140.38, 140.31, 

139.90, 137.07, 131.19, 130.67, 130.03, 129.89, 126.99, 125.57, 125.11, 123.20, 123.16, 120.87, 

116.97; HRMS (ESI) (M + H), Calcd. for C17H12ClO2S 315.0247; Found 315.0243. 

(E)-3-(Benzo[b]thiophen-2-yl)-1-(4-hydroxy-3-nitrophenyl)prop-2-en-1-one (77, Table 4-3, 

entry 3) 

 

The 1-(4-hydroxy-3-nitrophenyl)ethan-1-one (543.5mg, 3 mmol, 1eq) and benzo[b]thiophene-2-

carbaldehyde (500mg, 3.08 mmol, 1.02eq) were dissolved in acetone (20mL) at rt.  Potassium 

hydroxide (338mg, 6 mmol, 2eq, crushed) was added in one portion and the slurry heated to 

reflux.  The reaction was followed by TLC (50% EtOAc in hexanes, silica gel) and was complete 

after 3 h.  The mixture was cooled with an ice bath and quenched with excess aq 0.5N HCl 

(50mL).  The solution which resulted was extracted with EtOAc (50mL x 2), washed with brine 

(50mL x 2), and the organic layer was dried (Na2SO4).  The solvent was removed in vacuo which 

resulted in a yellow solid (898mg, 92% yield).  The solid was further purified by trituration in 

hot EtOH to give a yellow powder of enone 77 (795mg, 88.5% recovery, 81% overall yield): 1H 

NMR (300 MHz, DMSO-d6) δ 12.04 (s, 1H), 8.62 (d, J = 2.0 Hz, 1H), 8.27 (dd, J = 8.8, 2.1 Hz, 

1H), 8.03 (d, J = 15.3 Hz, 1H), 7.98 (d, J = 10.2 Hz, 2H), 7.92 – 7.85 (m, 1H), 7.60 (d, J = 15.2 
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Hz, 1H), 7.50 – 7.36 (m, 2H), 7.26 (d, J = 8.8 Hz, 1H); 13C NMR (75 MHz, DMSO-d6) δ 

185.98, 156.13, 140.40, 140.22, 139.84, 137.75 (2C), 135.05, 131.09, 128.84, 127.08, 126.66, 

125.56, 125.16, 123.18, 122.69, 119.63; HRMS (ESI) (M + H), Calcd. for C17H12NO4S 

326.0487; Found 326.0483. 
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CHAPTER FIVE 

ACTIVITY OF THE MOST ACTIVE COMPOUNDS AGAINST RESISTANT 

STRAINS, PRELIMINARY CYTOXICITY DATA, PRELIMINARY IN VIVO 

DATA, MECHANISM OF ACTION STUDIES, AND PRELIMINARY 

PHARMACOPHORE MODELING 

I. INTRODUCTION. 

As previously discussed, twelve new compounds with activity averaging below 10 

µg/mL for gram-positive strains were identified in this SAR study.  These compounds, pictured 

below (Figure 5-1), represent potential targets for further pharmaceutical development. 

Figure 5-1: Most active compounds from this SAR. 

 

 The two gram-positive strains tested, however, were not antibiotic resistant strains and 

are very susceptible to current antibiotics on the market.  This necessitates screening these 
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compounds against tested against drug-resistant strains to confirm they have potential use as a 

new and novel therapy for bacterial infections which may not develop resistance. 

 A combination of eight antibiotic resistant strains were used by Schwan et al. in a follow-

up assay to test many of the most active compounds from this series.  These include three strains 

of multi-drug resistant S. aureus (MDR-MRSA), rifampin resistant S. aureus (RifR-MRSA), 

vancomycin intermediate resistant S. aureus (VISA-MRSA), community-acquired methicillin 

resistant S. aureus (MW2-MRSA), and two strains of vancomycin resistant enterococci (VRE).  

These strains represent some of the most highly virulent and deadly gram-positive bacterial 

strains and many are contracted and isolated directly from hospitalized patients. 

 Controls in the form of commercial pharmaceutical antibiotics were also tested in these 

same assays.  These eight doctor-prescribed antibiotics are Gentamicin, Ampicillin, Oxacillin, 

Ciprofloxacin, Vancomycin, Erythromycin, Tetracycline, and Rifampin.  These drugs were 

earlier described in Chapter 1 and represent some of the most prescribed drugs that are currently 

on the market. 

 It was previously determined (Chapter 2) that SK-03-92, a parent compound to the 

analogs described in this work, was not cytotoxic both in vitro and in vivo, even up to doses as 

high as 2000 mg/kg.  While these results only indicate that SK-03-92 is not cytotoxic, it also 

implies that analogs of SK-03-92 should not be cytotoxic as well, especially if no known 

cytotoxic moieties are introduced into the core structure.  Preliminary cytotoxicity studies were 

still initiated with five of the most active analogs along with vancomycin as a control.  These 

analogs were tested in a CellTiter-Glo toxicity assay to determine cell viability after incubation 

with the compounds of interest. 
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 Preliminary in vivo work has also been done on both compounds 36 and 38.  This work 

involved a lung infection model with mice dosed either intranasal (IN) or intraperitoneal (IP).  

The results from this preliminary work are somewhat promising, but it is clear much work has 

yet to be done in this area to confirm it with a reasonable n value. 

 Mechanism/mode of action studies were also initiated on both compounds 36 and 38.  In 

general, the most convenient method of determining the mode of action is by first isolating 

strains that acquire resistance via repeated sub-MIC dosing.  Genomic information on these 

resistant strains can then be used to determine the mode of action and perhaps even the 

mechanism of action. 

 Finally, a preliminary pharmacophore model was constructed from compounds 

synthesized in this work.  Pharmacophore models can be extremely helpful in the design of new 

compounds and in the elucidation of a binding site, if one exists. 

II. RESULTS AND DISCUSSION. 

 1. In vitro data on resistant strains. 

As mentioned five compounds were selected for preliminary cytotoxicity studies.  These 

five compounds were some of the mostactive compounds found via this new SAR and include 

compounds 36, 38, 45, 48, and 75 (Table 5-1).  Of these compounds 36, 38, and 75 are by far the 

most active with MIC values around 1 µg/mL, rivaling that of Vancomycin and other 

commercial antibiotics.  Excitingly, all compounds tested were equipotent against the drug-

resistant strains, with no significant variability.  In fact, for the particularly dangerous 

Vancomycin resistant enterococci (VRE) strains, the analogs prepared via this SAR were 

more active then every commercial antibiotic tested aside from Rifampin.  As discussed 
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earlier, Rifampin develops resistance very quickly and thus is used only in the most dire 

situations, generally co-administered with another antibiotic. 

The variability of commercialized antibiotics seen in Table 5-1 is also alarming and 

speaks to the delicate nature of antibiotic use in infections.  These strains are prevalent in 

hospital settings and it is unnerving to know that a particularly resistant strain could be the cause 

of an infection.  It is not possible by visible inspection to discern whether or not a particular 

infection is caused by drug-resistant bacteria or susceptible non-drug resistant strains.  The 

choice of the wrong treatment can both increase the likelihood of spreading the infection to other 

patients, as well as conferring additional resistance to the bacteria in question.  Doctors must 

choose the best course of treatment and wait for biological testing of the bacterial strain in 

question to determine whether it is drug-resistant or not; this is valuable time and, unfortunately, 

the cause for the alarming number of deaths from MRSA infections.171-173
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 Examination of the data in Table 5-1 clearly indicated that of the five compounds tested, 

all were very potent against the dangerous drug-resistant strains of gram-positive bacteria.  

Particularly interesting is the potent activity against VRE strains of which only rifampin was 

found to be more active than four of the five selected analogs.  In fact, the MIC of chloro stilbene 

analog 38 was almost universally under 1 µg/mL, better then all controls except for rifampin.  

However, in the rifampin resistant strain, MC7769 RifR MRSA, compound 38 was 256-fold 

more active than rifampin! 

 The methoxy enone analog 75 was also very active against all strains tested, similarly to 

compound 38, however 75 was also slightly cytotoxic.  This was almost certainly due to the 

Michael-acceptor nature of this compound, similar to the acrylate compounds discussed earlier.  

It should be noted, however, that 1 µg/mL for 75 is a MIC value of approximately 3 µM, 

therefore the antimicrobial activity was still 16-fold greater than the IC50 of the cytotoxicity.  

This indicated that while cytotoxicity might be a problem in vivo, the activity of the compound is 

likely due, in major part, to the antibiotic properties rather than the cytotoxic properties.  

Alternative analogs such as 36 and 38 are both very potent and also show no inherent 

cytotoxicity, so they remain as promising treatment options which require further testing. 

 An additional thirteen analogs were also tested against these resistant strains (Table 5-2).  

A number of these analogs were earlier found to be active against the non-resistant strains, but 

some were also tested as negative controls, for example phenol analog 34 and chloro analog 39.  

These compounds have not yet been tested for cytotoxicity, but again it is important to note that 

prior data heavily implies that these compounds, none of which are Michael-acceptors, should be 

safe and non-cytotoxic. 
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 Of these analogs, many were found to exhibit average MIC values of less than 10 µg/mL 

against these resistant strains.  This is potent enough to explore further.  The ring D chloro 

analogs 69 and 70 interestingly exhibited very potent activity against MC7606 MDR MRSA, 

however, were clearly less active against the other strains.  This strange behavior has not yet 

been explained, however difficulty solubilizing these compounds was noted and perhaps the lack 

of activity is due more to solubility issues, further testing of these compounds is on-going in 

bacterial assays that do not rely upon aqueous dissolution of an analog prior to treatment.  The 

ring D fluoro analog 74 was the most active compound to date, with some MIC value in the 0.25 

µg/mL range.
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 2. Preliminary in vivo data on 36 and 38. 

While this in vitro data is promising, in vivo data is also necessary since potential drugs 

must be efficacious in mammalian systems.  Preliminary in vivo studies were completed on two 

of the most active compounds that were developed early in this SAR, 36 and 38. 

 These compounds were tested in a S. aureus lung infection model at a dosage of 10 

mg/kg intranasally.  The results from this preliminary in vivo exposure indicate that a number of 

problems still exist with these compounds in vivo in regard to vehicle choice, similarly to SK-03-

92, however they seemed to be at least partially efficacious (Table 5-3). 

Table 5-3: Preliminary in vivo data from a lung infection model. 

Trial  Mouse 1  Mouse 2  Mouse 3  Mouse 4 

Vehicle  0  0  0  ‐‐‐ 

Vehicle + MRSA  D  D  D  4 

36 + MRSA  D  3‐4  4  D 

38 + MRSA  D  D  4  D 
D = dead; 0=healthy; 1=less active; 2=hunched, less active; 

3=ruffled, hunched, inactive; 4- ruffled, hunched, inactive, gaunt 
 

 A major problem in this experiment was dissolving the compound prior to treatment, as 

mentioned.  According to the team administering the compound, in this particular experiment 

compound 36 seemed more soluble in the vehicle whereas 38 was not fully dissolved.  For 

intranasal exposure undissolved solids entering the lungs can cause lung trauma which can 

actually increase the spread of infection and indeed 38 was found to not be particularly 

efficacious in this experiment.  The compound 36, which was seemingly more well-dissolved, 

appeared to have a small effect on the outcome of the mice.  Two mice survived as opposed to 

just one and one of the mice had a better clinical score then what was seen in the MRSA control.  
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Based on these findings, another preliminary in vivo experiment was planned using these two 

compounds. 

 A second in vivo experiment followed in a similar fashion to the first, however in this 

case compounds were also administered intraperitoneal (IP) as well as intranasal (IN) (Figure 5-

2).  Similarly to the first trial, our collaborators had issues fully dissolving the compounds, in this 

case the ‘more soluble’ solution obtained was that of compound 38. 

Figure 5-2: In vivo lung infection model data. 

 

02-010 = 36; 02-063 = 38 
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 Our collaborators again noted that the poor results of IN exposure were likely due to 

solids left undissolved in the administered vehicle.  In this case, however, a modest decrease in 

CFUs was noted when the ‘better dissolved’ 38 was administered IP.  Although these results are 

far from ideal, they at least show that these compounds have some efficacy in vivo and if 

explored with a better vehicle or if more active compounds with a better pharmacokinetic profile 

are discovered these could potentially lead to a drug that is efficacious in these in vivo lung 

infection models. 

 3. Mechanism of action studies. 

 One of the original goals of this work was to not only develop more potent analogs, but 

also study the mode and/or mechanism of action (MoA) of these compounds.  Mode of action 

refers to the cellular site of action, such as cell walls or protein synthesis.  Mechanism of action 

refers to the actual cellular target, such as a specific protein target.  As an example, penicillin’s 

mode of action is inhibition of bacterial cell wall synthesis, while it is mechanism of action is 

inhibition of penicillin-binding proteins (PBPs).  This distinction is often not clarified in sources 

and the acronym MoA is used interchangeably to discuss the cellular response to these 

compounds.  It should be noted that resistance to a mode of action for a specific compound is 

never observed, but rather resistance to its mechanism of action.  Consequently, there is an 

important distinction between the two in terms of actual cellular response.  In the case of this 

work, no distinction is necessary since data on both mode and mechanism of action have proven 

difficult to obtain for the reasons described below. 

MoA studies are often carried out dosing a bacterial colony several times with the 

compound of interest in a concentration slightly lower than its MIC value.  In theory, the bacteria 
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that survive these repeated exposures may have some desirable trait that permits them to be 

resistant or at least partially resistant to the compounds employed.  The repeated exposure helps 

ensure that these resistant groups are allowed to reproduce and repopulate faster than the drug 

susceptible groups.174-176  Once a resistant colony is grown, genomic testing can reveal definitive 

differences between them and the wild-type susceptible strains, these differences can help 

identify the mode of action and perhaps even the mechanism of action.177 

 Although this general method is useful for determining MoA, it has one critical problem 

– if resistance can be easily conferred in vitro, it will inevitably be conferred in nature.  This 

indeed has been a major problem for antibiotics, as previously noted, the number of resistant 

strains is growing at an incredible rate.  

 In the case of these novel stilbenoid compounds, however, many repeated in vitro 

experiments have been attempted over the course of several years and resistant strains have not 

been produced.  This may indicate that these compounds act on a number of different 

pathways and that when one builds resistance, the others are still susceptible to the 

compounds.  It may also indicate that the target itself cannot, or at least does not easily, 

confer resistance. 

 While this is exciting in terms of actual pharmaceutical use, it has made determining the 

mechanism of action much more difficult and in fact not possible, to date.  As of yet, no MoA 

has been determined for these compounds, however as mentioned earlier based on the lack of 

activity against gram-negative bacteria they may prove to act on a target associated with cell 

walls.  One important result from this work, however, was the determination that both methoxy 

analog 36 and chloro analog 38 were both bactericidal on all tested strains of S. aureus.  
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Bactericidal non-cytotoxic agents are far more advantageous since they have the ability to clear 

the infection rather than simply slowing it down in contrast to bacteriostatic agents. 

 A survey of recent literature178 suggests that “macromolecular synthesis assay” studies 

can be used to help deduce plausible modes of action.  Administration of an increasing in vitro 

dose of a compound and measuring the bacterial production of key cellular products such as 

DNA, RNA, protein, cell wall and lipid synthesis can be used along with a known control 

antibiotic that acts on those pathways to help determine if the compound acts on any of those 

specific sites.  Methods such as these can potentially help lead to the discovery of the MoA for 

this new and novel library of compounds.  These studies rely on radioactive biomarkers, such as 

tritiated thymidine, to determine bacterial uptake after treatment. 

 One potential target for these novel compounds, however, are tyrosinases.  Tyrosinases 

are enzymes that catalyze the formation of quinones, leading to a downstream process that ends 

with the synthesis of melanin.  Stilbenes and other similar structures are known tyrosinase 

inhibitors179.  In mammals, tyrosinases are known to be restrictive and selective to only L-form 

tyrosines, however is other life forms, bacteria for example, they are much less restrictive180.  

This mechanism can explain the similar activity seen with analogs 36 and SK-03-92 (see Scheme 

5-1). 

Scheme 5-1: Potential reaction of tyrosinase with 36 and SK-03-92. 
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 4. Preliminary pharmacophore model and size/volume discussion. 

 It was previously noted that an increase/decrease in activity was seen when certain 

characteristics such as substitution pattern or size of the molecule was altered in a number of 

ways.  A pharmacophore model can take these activities and correlate them with the structure of 

the compound to help elucidate clear structural similarities between active compounds and 

inactive compounds.  This model can also estimate positions of key molecular sites, assuming 

these compounds act on a specific target, which can permite a more directed SAR study.  All of 

the compounds from this work along with a number of compounds from the previous SAR were 

used to create a preliminary pharmacophore model (Figure 5-3). 

Figure 5-3: Pharmacophore model of all compounds described in this work. 
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 This model is based on a selection of 52 different ligands, many from this work, 

including active and inactive ligands.  The software used to construct this pharmacophore (MOE) 

applies a binary selection process; consequently, for this study any compounds with activity 

under 10 µg/mL were considered active while any compounds with activity over 10 µg/mL were 

considered inactive.  The consideration of all compounds with an MIC equal to or less than 32 

µg/mL as active has resulted in much lower accuracy scores.  Although the sample size is low 

and it is still unclear whether or not these compounds act via a specific site, the pharmacophore 

analysis still appears rather accurate.  “Acc2” (teal) refers to an acceptor site, which satisfies the 

phenolic H-bond donor seen in most active compounds.  “Hyd” (green) refers to a hydrophobic 

area while “Aro” (orange) refers to aromatic regions.  Because the “bridge” portion and ring B/C 

portion were for the most part kept static, it is not clear that these regions are necessarily 

hydrophobic or aromatic regions in terms of the target. 
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 What is most interesting with the model is the orientation of ring A in comparison to ring 

B/C.  Analysis of the model indicated that these areas are preferably at a slight angle to each 

other rather than planar.  Earlier in Figure 2-6 the idea that orientation of rings B/C was briefly 

discussed.  It should be noted if a naphthene group were slightly rotated, as in the 

pharmacophore model above, the fit would not be as strong as the 5-membered ring heterocycles.  

This may explain the lower activity seen in the case of naphthene and other related 6-member 

rings.  This model is at best a coarse simplification of a potential binding site, assuming again 

that it is only one specific site.  However, if in the future a mode of action is determined, 

pharmacophore analysis may be useful in determining the exact mechanism of action.  

Additionally, this model can potentially help with future SAR studies. 

 Earlier the activities of 36, 44, 45, and 46 were compared based on the size of alkoxy 

substituents; this is easier to view with 3D energy minimized conformers as shown in Figure 5-4.  

The orientation of these ligands was calculated in a similar manner to the pharmacophore model 

discussed above. 
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Figure 5-4: Alkoxy size and activity comparison. 

 

 At the top-left is compound 36, one of the most active compounds discovered with an 

MIC of 1 µg/mL.  At the top-right is compound 44, the CF3 analog of 36 that was found to be 

completely inactive.  The CF3 group is of similar size to isopropyl, with some studies placing it 

in between the size of ethyl and isopropyl groups.181  This is in agreement with the lack of 

activity observed for this compound.  The bottom-right is the ethoxy analog 45, which still 

retains potent activity of 8 µg/mL.  From the 3D structure one can see that the ethyl group is off-

set from ring A, however it is somewhat in-line with ring B/C, giving an overall smaller 

molecular volume then the isopropoxy 46 (bottom-left).  Based on this analysis, it seems that one 

of the methyl groups in the isopropyl analog 46 may push out into an undesirable space that 

greatly affects the activity, whereas the methyl group in the ethoxy analog 45 does not to such an 

extent. 
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 It was also postulated earlier that the activity of the enone compounds was also based on 

size or volume.  Analysis of the energy minimization and alignment of these molecules indicated 

that they are all relatively similar, thus the stark difference in activity (Table 4-3) is likely due to 

electronic character or perhaps even solubility issues (Figure 5-5).  Indeed, it was observed that 

these compounds were very insoluble, and incomplete solvation prior to plating could lead to a 

discrepancy in the results. 

Figure 5-5: Overlay of enone compounds 75, 76, and 77. 

 

 The red with grey represents the OCH3 group from compound 75, green represents the 

chloro group from compound 76, and blue with red represents the NO2 group from compound 

77.  Although the NO2 is slightly larger and out-of-plane, it was still found to retain activity 

against S. aureus whereas the smaller chloro group was completely inactive.  These factors may 

revolve around solubility issues as well, so these compounds have also been sent to a screening 
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system which should be able to perform the assay in 100% DMSO, limiting any issues related to 

solubility.  These results are still pending. 

 5. Future SAR studies. 

 From the results gathered from this SAR, it is believed that further SAR development 

should lead to both a more diverse selection of active compounds and even more potent analogs.  

Preferably a new SAR should also focus on the solubility issues observed from this study.  

Particular focus on the indole analogs may lead to active compounds with better overall PK 

characteristics as well. 

 As discussed, this was the second SAR study executed on this antimicrobial project.  In 

the first SAR study, just four compounds were discovered with MIC values below 10 µg/mL.  In 

this work fourteen new analogs with average MIC values below 10 µg/mL have been developed.  

As the SAR develops, it is clear a higher percentage of active compounds can be discovered, 

hopefully with a better solubility profile. 

 Considerable effort was taken in this SAR to make broad new changes to discover the 

scope of activity.  It was found that two different new substitution patterns from this work 

resulted in very active antimicrobials, while the original substitution patterns also retains activity.  

These patterns, shown below (Figure 5-6), should be priorities for future SAR work. 

Figure 5-6: Ring A lead fragments. 

 



 

166 
 

 Additionally, new ring B/C ligands were also tested with positive results.  Benzofuran 

substituted and indole substituted ligands both proved to provide active analogs, substituted 

thianaphthenes also gave potent compounds.  Substitution of the thianapthene at other positions 

is of importance and awaits further study.  Some of these ring B/C lead fragments are shown in 

Figure 5-7. 

Figure 5-7: Ring B/C lead fragments. 

 

 Based on this alone, many new compounds can be synthesized.  The focus on more 

soluble pyridine analogs may also be approached.  Since analog 52 already exhibited some 

activity, substitution on the various ring B/C fragments may prove valuable in the ring A 

pyridine series (Figure 5-8). 

Figure 5-8: Pyridine suggestions. 

 

 It was also earlier determined that SK-03-92 had poor metabolic stability and was rapidly 

metabolized in rodents.  A more thorough analysis of metabolic products through in vitro 

metabolism studies may shed light on the positions which are most readily metabolized.  

Techniques can be used to substitute these positions (F, for example) in the hope that a more 
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metabolically stable analog still retains potent activity.  These compounds may be more 

advantageous in in vivo applications. 

III. CONCLUSION. 

In conclusion, stilbenes with potent activity against wild-type gram-positive bacteria 

were assayed against a number of resistant strains of gram-positive bacteria and were found to be 

very potently active against all drug-resistant strains tested.  Analysis of these results suggest that 

these compounds may be a new class of antibiotics and perhaps even work by a novel 

mechanism of action.  Controls in the form of commercial antibiotics were also tested against the 

same strains and the compounds synthesized in this work show a clear significance when 

compared to each control. 

Some preliminary in vivo testing of two of the most active compounds discovered in this 

work was also initiated.  The results from this preliminary work were mixed.  The compounds 

did seem to show efficacy in infection models, but solubility issues were a problem and currently 

it is unknown whether the new compounds also have other poor PK properties similar to the first 

lead compound SK-03-92.  The results do indicate that further testing with different analogs may 

prove beneficial, especially analogs with improved solubility.  The metabolism of these 

compounds should also be investigated to determine if other simple substitutions can both inhibit 

metabolism while also retaining activity. 

Pharmacophore analysis of the ligands discovered in this work was also explored.  The 

model itself seems accurate with respect to our SAR approach and can potentially help lead a 

new SAR in developing more potent analogs.  Additionally, 3D energy-minimized models can 



 

168 
 

clearly identify activity relationships between different analogs.  These issues must be constantly 

weighed when deciding on which new analogs to synthesize. 

Finally, this SAR has opened up a new pathway for further SAR development.  

Suggestions on which compounds may prove to be potently active and/or more soluble were 

discussed.  A focus on the three main substitution patterns seems most prudent, along with the 

active pyridine ring A substitution pattern.  The coupling of these factors with a diverse set of 

ring B/C ligands should both enrich the SAR and give rise to a number of new active compounds 

with better clinical qualities. 
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CHAPTER SIX 

INTRODUCTION TO DIHYDROBENZOFURANS 

I. INTRODUCTION. 

Dihydrobenzofurans are ubiquitous in nature and represent a vast array of natural 

products, many that are also bioactive1.  The dihydrobenzofuran skeleton is comprised of a 

benzene ring fused to a 5-member oxygen heterocycle (Figure 6-1).  In 2009 alone more than 

500 dihydrobenzofuran-containing natural products were reported according to a reaxys search.2  

Dihydrobenzofuran containing natural products have been reported to exhibit activity against a 

number of diseases including, but not limited to, cancer3, tuberculosis4, malaria5, and cataracts.6  

The compounds that act on direct targets such as HIF-17, α-glucosidase8, aldose reductase7, 5-

LOX9, COX-29, NF-κß10, and the muscarinic M3 receptor11 are also known.  Some other 

dihydrobenzofuran natural products have shown antioxidant behavior and cytoprotective 

properties.12  A number of others exert insecticidal activity.13  A selection of some 

dihydrobenzofuran natural products can be found in Figure 6-2. 

Many synthetic dihydrobenzofurans have been found to possess biological activity, some 

of which are currently used as pharmaceutical drugs.  A selection of some synthetic 

dihydrobenzofuran compounds are depicted below in Figure 6-3.  This diverse biological activity 

and ubiquity in nature make dihydrobenzofurans an interesting structural target for future 

synthetic work. 
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Figure 6-1: Structure of Dihydrobenzofuran. 

 

 Due to the diversity of dihydrobenzofuran natural products and a growing library of 

bioactive synthetic dihydrobenzofurans, they represent an interesting avenue for studies of new 

synthetic methods.  Reviewed in this chapter is a summary of some of the current methods to 

synthesize the dihydrobenzofuran skeleton, whereas the next chapter will detail a new and 

interesting one-step route to novel dihydrobenzofurans. 

Figure 6-2: Some dihydrobenzofuran natural products. 
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Many of the natural products shown in Figure 2 possess bioactivity.  Cedralin A is active 

against two cancer cell lines (HL-60 and K562) and was isolated from Cedrela sinensis, a 

broadleaf tree native to China and Korea.14  The leaves, fruit, and roots of this tree have been 

used in oriental medicine since ancient times for a number of diseases.15  Benfur is a known 

antimitotic agent active against a number of cancer cell lines and was isolated from a species of 

shrub (Dracaena).16  The resin from these shrubs was used in traditional medicine as an 

anticancer agent17, of which benfur was found to be the active component.  It is particularly 

interesting since it induces cell death in malignant T-cells, but does not harm primary T-cells.  

Liliflol A was isolated from Magnolia liliiflora, a flowering tree native to China.18-19  It was 

found to inhibit both COX-2 and 5-LOX, targets for non-steroidal anti-inflammatory drugs 

(NSAIDs) and potential treatments for asthma, respectively.9  Fomannoxin was isolated from 

Heterobasidion occidentale, a pathogenic fungus.20  It is a potent phytotoxin that aids in the root 

rotting process associated with H. occidentale infection in trees.21  The last two 

dihydrobenzofuran natural products are isolates from Senecio vulgaris and Microglossa pyrifolia 

respectively, extracts of which both show bioactivity.22-23  These two recently isolated 

dihydrobenzofurans have not been tested for bioactivity as of yet. 

The biodiversity of dihydrobenzofurans also led to the synthesis of a diverse selection of 

synthetic derivatives in which some are used as pharmaceutical drugs. 
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Figure 6-3: Some synthetic dihydrobenzofurans. 

 

 The 5-APDB is a known psychoactive compound similar to MDMA (colloquially known 

as ecstasy).24-26  In vitro studies show 5-APDB is a selective serotonin releasing agent (SSRA) 

with an IC50 value of 130 nM.25  Although there are reports of recreational use, anecdotal reports 

describe the effects of 5-APDB as much milder then related amphetamines and 5-APDB may 

represent an interesting scaffold for future drug development.  Efaroxan is an α2-adrenergic 

receptor antagonist and imidazoline receptor antagonist that was initially thought to be useful in 

the treatment of progressive supranuclear palsy.27  Later double-blind human trials showed no 

significant cognitive enhancement in patients given the drug.28  It is still routinely used, however, 

as an α2-blocker for in vitro/in vivo studies.29  Prucalopride is a first-in-class 5-HT4 receptor 

agonist used in patients with chronic constipation.30  It is currently approved for use in Europe, 

Canada, and Israel under the brand name Resolor.31  Other 5-HT4 receptor agonists have 

experienced issues with selectivity at therapeutic dosages, many of which act on 5-HT1B/D or the 

hERG channel and have associated cardiovascular side-effects.32  Prucalopride is effectively 

selective for only 5-HT4 with >150-fold lower affinity for other receptors.  The final compound 
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listed as ‘anti-cancer’ has been found to be cytotoxic to a number of cancer cell lines.  In vitro 

studies have shown that this cytotoxic activity is even greater than the anti-cancer drug cisplatin, 

routinely used for a number of chemotherapies.33 

 These are just a small selection of bioactive synthetic dihydrobenzofurans from the 

literature.  It should also be noted that natural and synthetic opiates, such as morphine, also 

contain the dihydrobenzofuran skeleton (Figure 6-4).  These represent some of the most 

prescribed drugs on the market.34  While synthetic opiates are generally synthesized from a 

natural opiate such as morphine or codeine, in which the dihydrobenzofuran skeleton has already 

been formed through biological processes, the total synthesis of natural opiates often revolves 

around formation of the benzofuran ring and will be discussed in this chapter as well.35 

Figure 6-4: Structure of Morphine. 

 

II. SYNTHESIS OF DIHYDROBENZOFURANS. 

Chemists have developed an array of methods for accessing the dihydrobenzofuran 

skeleton.  Many of which, however, require starting materials that are not commercially available 

and must be synthesized through multi-step procedures.  This review of the literature will focus 



 

198 
 

on some of the main pathways to construct the dihydrobenzofuran skeleton, although the list is 

not exhaustive by any means. 

1. Synthesis by Dehydration. 

 If a route begins with a molecule which contains both a phenol and an alcohol 

functionality in the designated positions (1), intramolecular dehydration can yield 

dihydrobenzofurans (Scheme 6-1).  The use of a Mitsunobu type dehydration to perform this 

transformation was first reported by Aristoff in 1984.36  The near complete inversion of 

configuration together with high yields are major advantages of the Mitsunobu reaction.37  In the 

case shown below, p-toluenesulfonic acid (p-TsOH) catalyzed the reaction giving an inseperable 

68/32 mixture of diastereomeric cis and trans dihydrobenzofurans 2 and 3 respectively, whereas 

the Mitsunobu protocol involving triphenylphosphine (PPh3) and diethyl azodicarboxylate 

(DEAD) resulted in both a high yield (80%) and high diastereomeric control of 2 (95:5).38 

Scheme 6-1: Mistunobu type dehydration/cyclization. 

 

 Disadvantages of the above reaction were the limited scope with substituted phenols and 

the necessity to synthesize many of these phenols prior to the cyclization.  DEAD is also 

unstable and potentially explosive and the amount of by-products produced by this reaction, 
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triphenylphosphine oxide and diethyl hydrazinedicarboxylate are of considerable mass and 

render the reaction not suitable for scale-up because of waste disposal. 

 One solution to these issues was resolved with the use of a Vilsmeier reagent and this was 

followed by trimethylamine (TEA) for the cyclization of hydroxyphenols to afford 

dihydrobenzofurans via formation of an imidate ester, followed by displacement with 

phenoxide.39  This method was particularly useful for scale-up, and has been used for the scale-

up of the synthesis of 4-vinyl-2,3-dihydrobenzofuran by Bristol-Myers Squibb.40  Outlined in 

Scheme 6-2 below is depicted an example of this reaction process. 

Scheme 6-2: Vilsmeier cyclization method. 

 

 When the Mitsunobu cyclodehydration conditions were used with aldehyde 4 there was 

no conversion to the desired dihyrobenzofuran 5.  By contrast, the Vilsmeier method was 

successful in the synthesis of the dihydrobenzofuran analog in 54% yield.41  Similarly to the 

Mitsunobu method, the Vilsmeier method also requires highly specific starting materials that in 

general are not commercially available, although it does offer an expanded scope in comparison. 

2. Synthesis by radical cyclizations. 

 An interesting radical reaction which involved substituted 2-bromophenols as starting 

materials, which are also used in the new work to be discussed in the next chapter, is 
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accomplished by first synthesis of 8, which was subsequently cyclized via a radical mechanism 

to the dihydrobenzofuran 9 (Scheme 6-3).42 

Scheme 6-3: Radical cyclization to dihydrobenzofurans. 

 

 The disadvantage to reactions of this nature are of course the toxicity of tin reagents and 

the necessity to both synthesize bromide 8 prior to cyclization, as well as the necessity to prepare 

6.  Moreover, radical reactions are known to readily dimerize on some occasions.  The 2-

bromophenols are advantageously commercially available, however, and used in the next chapter 

to synthesize related dibydrobenzofurans using a very different transition metal catalyzed 

prodedure. 

 It is important to note that the synthesis of bromide 8 required an electron-withdrawing-

group (EWG), typical of most Bayliss-Hillman reactions.43  This further limited the scope of 

these reactions.  In addition, it was noted by the authors that use of tributyltinhydride leads to tin 

by-products that are sometimes difficult to separate from the reaction products; this is a common 

problem when employing tributyltinhydride.44 

 Other radical type reactions involving similar pathways are also available in the 

literature.45-48  Many of these reactions are low-yielding and/or have a restricted scope, similar to 

the reaction detailed above. 
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3. Biomimetic synthesis. 

 Biomimetic synthesis aims to use the very same biosynthetic pathways that are used in 

biological systems to synthesize compounds.  Use of biomimetic synthesis has grown over the 

years and is used extensively for the synthesis of many natural products.49-51  It is also a common 

approach to form the distinct dihydrobenzofuran skeleton in a number of biologically active 

compounds.52 

 Biological systems make extensive use of the ability of phenols and related analogs to 

form reactive quinones in situ.  This process can be extended to benchtop chemistry using 

oxidants.  Synthesis of benzofuran neo-lignans could be obtained in good yields and high 

stereoselectivities by oxidation of para-methoxy substituted phenols with iodobenze bis-

trifluoroacetate in the presence of electron-rich styrene derivatives (Scheme 6-4).53  This 

approach, which couples a quinone and a styryl moiety has been extensively adopted and has 

been used in the preparation of a number of dihydrobenzofurans.54-57 

Scheme 6-4: Quinone mediated synthesis. 

 

 As described earlier, a number of similar methods to synthesize dihydrobenzofurans via a 

similar oxidative method exists.  These methods, however, rely on formation of quinones and in 

general low yields are observed when the substitution pattern of the phenol is altered in such a 

way that formation of the quinone is supressed. 
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4. Synthesis by epoxide ring opening. 

 Asymmetric synthesis of epoxides is a well-known and versatile method of synthesizing 

novel compounds pioneered by Sharpless and Jacobsen among others.58  In the case of 

dihydrobenzofurans, it was found that ring opening in the presence of an intramolecular phenol 

gave excellent yields and excellent ee of the corresponding dihydrobenzofurans.  Detailed in 

Scheme 6-5 is a reaction scheme in which Shi epoxidation led to the enantioenriched silane 14 

which was subsequently deprotected with tetrabutylammonium fluoride (TBAF).  The ring 

opening was quickly followed by cyclization to the dihydrobenzofuran 15.59  This approach was 

used in the total synthesis of the dihydrobenzofuran containing natural product (+)-marmesin 

(Figure 6-5) found to be a novel inhibitor of angiogenesis.60 

Scheme 6-5: Enantioselective synthesis using Shi epoxidation. 
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Figure 6-5: Structure of (+)-marmesin. 

 

In a similar manner, Sharpless asymmetric epoxidation (SAE) has also been used to 

construct the dihydrobenzofuran skeleton by a ring opening cyclization method (Scheme 6-6).61  

This method was successfully used in the total synthesis of the dihydrobenzofuran natural 

product heliannuol G (Figure 6-6).62  These methods are advantageous for total synthesis, 

however, as with other methods discussed thus far, they require very specialized starting 

materials to form the 5-membered furan ring. 

Scheme 6-6: Sharpless asymmetric epoxidation method. 

 

 After asymmetric induction, deprotection of the phenol followed by ring opening/closure 

catalyzed by base gave the dihydrobenzofuran diol 18 in good yield with inversion of symmetry.  

The natural product heliannuol G was originally identified in sunflower (Helianthus annuus) 

seed extracts of which were found to be bioactive, however there is no evidence in the literature 

that the dihydrobenzofuran is the bioactive component of the extract.63 
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Figure 6-6: Structure of heliannuol G. 

 

 A final similar approach to the cyclization via the epoxidation ring opening is a method 

which involved Sharpless asymmetric dihydroxylation (Scheme 6-7).64 

Scheme 6-7:  Synthesis of 23 via the Sharpless asymmetric dihydroxylation. 
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 This method was successful in the synthesis of 23, a core structure of a variety of natural 

products including avicenol A65 and brosimacutin G.66 

5. Total synthesis of Morphine. 

 Morphine is an opioid alkaloid that acts directly on the central nervous system (CNS) to 

reduce pain.67  In 2013 an estimated 523,000 kilograms of morphine were produced from natural 
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sources, many of which were used to synthesize related analogs such as codeine and oxycodone.  

These are pain medications routinely prescribed.68  Morphine, as earlier described, also contains 

the dihydrobenzofuran skeleton and many total synthetic routes have been developed to construct 

this functionality. 

 The first total synthesis of morphine was reported by Gates in 1952, with an overall yield 

of 0.06% over 31 steps.  The dihydrobenzofuran skeleton was introduced after the so-called 

“Gates intermediate” was constructed; this is illustrated in Scheme 6-8.69  Bromination of the 

“Gates Intermediate” followed by conversion to the hydrazino intermediate 24 was followed by 

acid catalyzed conversion to the cyclized ether 25 in a yield of 8% over the three steps. 

Scheme 6-8: Gates total synthesis of morphine, C-O bond forming step. 

 

 The “Gates Intermediate” was subsequently used in a number of total syntheses of 

morphine.70  As shown, construction of the dihydrobenzofuran ring system occurred in very low 

yield and this was subsequently improved by Rice from a similar starting position.  The Rice 

synthesis of the dihydrobenzofuran skeleton is illustrated in Scheme 6-9.71 
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Scheme 6-9: Rice total synthesis of morphine, C-O bond forming step. 

 

 In this case, Rice formed the C-O ring of the ether by first brominating in the same 

position as shown in hydrazone 24 followed by base catalyzed cyclization.  This was followed by 

debromination and N-methylation which resulted in an overall yield of 27 in 79% yield over the 

three steps, a clear advantage compared to the prior synthesis by Gates. 

This much higher yield of the dihydrobenzofuran system was an important factor in the 

Rice synthesis which was known as the most efficient synthetic route to morphine.72  The Rice 

synthesis was also a more efficient route with only 18 linear steps.  Later, Rice developed the 

famous NIH synthesis of morphine which was later licensed by Mallinkroft to prepare morphine 

or codeine on kilogram scales, if necessary. 

 More recent examples of the total synthesis of morphine have focused attention on 

transition metal catalyzed reactions.73  Trost reported an interesting route which involved an 

intramolecular Heck coupling as a key step in formation of the dihydrobenzofuran skeleton 

(Scheme 6-10).74  Trost’s synthesis included four transition metal catalyzed steps in a 13-step 

linear synthesis, which illustrated the utility of transition metal catalyzed reactions as useful tools 

for shortening synthetic routes.  The Trost synthesis is one of the shortest total synthetic routes to 

morphine, but employs toxic metals that may limit its use in pharmaceutical grade preparation. 
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Scheme 6-10: Trost total synthesis of morphine, C-O bond forming step. 

 

 This traditional Heck-mediated intramolecular reaction from bromide 28 employed the 

phosphine ligand 1,3-bis(diphenylphosphino)propane (dppp) to form the active palladium zero 

catalyst; dihydrofuran 29 was formed in excellent yield of (91%).  This led to the shortest 

nonbiomimetic total synthesis of (-)-galanthamine to date. 

6. Synthesis via transition metal catalysis. 

 Since the reactions described in the next chapter are transition metal catalyzed, a more 

thorough description of transition metal catalyzed reactions from the literature which led to 

dihydrobenzofurans will be presented.  This is also by no means an exhaustive list of transition 

metal catalyzed reactions leading to dihydrobenzofurans, but is a description of some major 

pathways. 

 The first reaction discussed will be the Ullman reaction, generally used to couple aryl 

halides at high temperatures.75  It also represents a well-known and widely used method for the 

synthesis of aryl ethers, although the intramolecular version of these reactions are less widely 

used.  In general, these reactions have a relatively small scope, however they do represent 

possible strategies for the synthesis of dihydrobenzofurans.  Described in Scheme 6-11 are an 
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Ullman type reaction which employed catalytic copper chloride to provide an excellent yield of 

dihydrobenzofuran 23.76 

Scheme 6-11: Intramolecular Ullman cyclization. 
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 Advances in this type of intramolecular conversion were reported more recently which 

involved reactions between an aldehyde and a silane to furnish a silyl ether which could be 

converted into the corresponding alkoxide (Scheme 6-12).77  This approach avoided the 

formation of hydrated products, and greatly increased the overall yield of dihydrobenzofurans 

compared to the earlier route (Scheme 6-11).  This method also permitted construction of more 

substituted dihydrobenzofurans as a variety of aldehydes could be employed.  It should be noted, 

however, that the overall scope of these reactions were still relatively small as the Ullman type 

coupling conditions were rather harsh. 
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Scheme 6-12: Advances in the Ullman reaction. 
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 While copper catalyzed reactions were ideal from a cost perspective, other transition 

metals such as palladium gave access to a wider scope of transition metal catalyzed processes.78  

Decades of research into palladium mediated reactions has led to an ever evolving number of 

new reactions to synthesize interesting chemical entities.79  Two decades ago Buchwald 

developed an intramolecular C-O bond formation process with an aryl bromide and an alcohol.  

This reaction was carried out using catalytic amounts of palladium acetate along with a bidentate 

phosphorous based ligand (generally Tol-BINAP or DPPF) and a base (generally K2CO3 or 

tBuONa) in toluene between 80-100 ºC to give the corresponding heterocycles, including 

dihydrobenzofurans (n = 1) in fair to very good yields (Scheme 6-13).80 

 This approach, however, was only efficient when tertiary alcohol substrates were used, 

wherein R1 and R2 were both not hydrogen. 
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Scheme 6-13: Buchwald C-O coupling. 

 

 When primary or secondary alcohols were used significant amounts of the corresponding 

debrominated aldehydes (R1 = R2 = H) and ketones (R1 = H), respectively, were formed in place 

of the cyclization.  This occurred after coordination of palladium to the alcohol and ß-hydride 

elimination took place, effectively stopping the reductive elimination to the desired cyclized 

dihydobenzofuran 36.  This process is illustrated in Scheme 6-14. 

Scheme 6-14: ß-Hydride elimination in primary/secondary alcohols. 

re
du

cti
ve

eli
m

in
ati

on

 

 This problem was overcome by the investigation of several different phosphorous based 

ligands, of which it was found that bulky, electron-rich ligands could be successfully employed 
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even with primary or secondary alcohols.81  The ligand of choice for this conversion was the tert-

butyl binaphthyl ligand 38 depicted in Figure 6-7. 

Figure 6-7: Buchwald ligand for use with primary/secondary alcohols. 

 

 Yields from 71-85% were reported using this ligand in similar reactions to those outlined 

in Scheme 6-13 involving both primary and secondary alcohols, although it was noted that yields 

with secondary alcohols were generally lower and required higher temperatures.  Electron-rich 

and bulky ligands are excellent choices for restricting ß-hydride elimination since reductive 

elimination favors electron-rich ligands and bulky ligands can help prevent ß-hydride elimination 

by shielding a coordination site from hydrogen.82 

 More recently, similar reactions which involved palladium-mediated C-H activation have 

been reported.  Similar to the original Buchwald method, these reactions work best with tertiary 

alcohols and lower yields were observed for secondary alcohols.83  The report did not mention 

the use of primary alcohols.  Regardless, this is a novel method for the synthesis of 

dihydrobenzofurans.  This reaction process is illustrated in Scheme 6-15.  Interestingly, this 

method permits the use of aryl bromides, for example 39, which after C-H activation/cyclization 

can permit further substitution on the aromatic ring via use of the bromide.84 
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Scheme 6-15: C-H activation of homo-benzylic alcohols. 

 

 Heck-type chemistry was explored in part 1 of this work, however, it is also applicable in 

the synthesis of dihydrobenzofurans.  One interesting example is the reductive Heck cyclization 

reaction, which permits stereoselective preparation of the framework for the natural product 

furaquinocin A (Scheme 6-16).85 

Scheme 6-16: Reductive Heck cyclization pathway to furaquinocin A. 
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 Oxidative Heck coupling generally involves the reaction of an unfunctionalized arene 

directly with an olefin, which differs from the traditional Heck reaction in that a halogen is not 

necessary.86  This is attractive for highly substituted arenes where halogenation may not proceed 

smoothly.  Recent work has expanded the scope of these reaction to include dihydrobenzofurans 

and benzofurans from electron-rich arenes (Scheme 6-17).87 

Scheme 6-17: Oxidative Heck reactions. 

 

 When tetrasubstituted olefins are employed (R ≠ H), synthesis of the dihydrobenzofuran 

was favored, whereas when R = H, formation of the benzofuran was favored.  Unfortunately, 

because electrophilic Pd(II) is involved in the reaction mechanism, this method is limited to the 

use of very electron-rich aromatic systems and low to 0% yields were reported with electron 

deficient systems. 

 Detailed in Scheme 6-18 are four other Heck-type reactions that lead to 

dihydrobenzofurans.  The first reaction details the intramolecular coupling of an allylic ether of 

o-halophenols, which advantageously leaves an unsaturated side chain that can be further 

substituted if desired.88  The next reaction involves the intramolecular carbonylative Heck 

cyclization of aryldiazonium salts leaving a carboxylic acid side chain that can be modified by 
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various means.89  Aryl bromides, for example 42, were investigated in a number of 

cyclization/coupling reactions.  Heck cyclization followed by Stille coupling in the presence of 

1,3-dimethyl-1,2-imidazolidinone (DMI) yielded the 3,3 disubstituted dihydrobenzofuran 43 in 

good yield.90  Finally, a reaction involving Heck cyclization and concomitant cyanation with 

K4Fe(CN)6 as a cyanide source was reported.91  In general, these reactions are important due to 

the ability to further functionalize the products after formation of the dihydrobenzofuran 

skeleton. 

Scheme 6-18: Various Heck catalyzed dihydrobenzofuran reactions. 
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6. The Larock dihydrobenzofuran method. 

In the early 1980’s Dieck reported that 1,3-dienes coordinated with palladium zero 

complexes which permitted nucleophilic substitution to take place (Scheme 6-19).92  Larock 

capitalized on this work and reported the heteroannulation of 1,3-dienes with substituted 

iodophenols in the presence of catalytic amount of palladium acetate to give dihydrobenzofurans 

in good yields in 1990.93  This reaction is perhaps the most similar to the work to be presented in 

the next chapter, thus a more critical analysis of its mechanism and scope will be presented. 

Scheme 6-19: Dieck’s 1,3-diene reaction. 

 

 Dieck also reported that reactions with an o-iodoaniline, in place of the iodobenzene and 

an amine, gave the corresponding dihydroindoles (Scheme 6-20).  This was the work that led 

directly to the future work which resulted in the Larock indole synthesis. 

Scheme 6-20: Dieck’s dihydroindole reaction. 

 

 An in-depth analysis of this reaction mechanism was not reported by Dieck, rather they 

simply postulated that the close proximity of the amino group to the π-allylic moiety in the 

intermediate complex was necessary for intramolecular cyclization since experiments with 
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iodobenzene 46, isoprene 47, and aniline resulted in only the butadiene 48 with no amine 

formation.  As previously noted, Larock expanded on this cyclization involving 1,3-dienes and 

synthesized a number of dihydrobenzofurans along with a few nitrogen-containing heterocycles.  

Detailed in Scheme 6-21 is this reaction process and includes, as reported, a likely mechanism 

for this transformation. 

Scheme 6-21: Larock 1,3-diene cyclization. 
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 Based on this work there was little doubt that the heteroannulation proceeded via the 

intermediate aryl- and π-allylpalladium intermediates depicted in Scheme 6-21 (ligands on 

palladium omitted for clarity).  However, it was impossible to tell whether or not the 

intramolecular palladium displacement was proceeding through a direct back-side displacement 

(path A) or via front-side halide displacement and subsequent reductive elimination (path B).  

From studies involving 1,3-cyclohexadienes it was determined, at least in the case of 1,3-
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cyclohexadiene, when 5-membered rings were formed, path B was the major pathway which 

involved reductive elimination. 

 This study was revisited by Larock in 201094, at which point certain advancements were 

made which permitted higher yields and an expanded scope.  A more thorough mechanistic study 

was also employed and a catalytic cycle was proposed for the formation of dihydrobenzofurans.  

Outlined in Scheme 6-22 is this advancement, which principally revolved around the use of 2-

iodo acetates instead of the prior 2-iodophenols.  A more advanced bidentate ligand (dppe) was 

also employed in this reaction. 

Scheme 6-22: Advancements in the Larock 1,3-diene cyclization. 

 

 It was shown that these new conditions which involved the acetate gave consistently 

higher yields compared to the phenol under identical reaction conditions.  The prior reaction 

(Scheme 6-21) also suffered from a rather poor scope in which electron-rich aryl iodides either 

gave low yields or did not react at all; with the acetates good yields with more electron-rich aryl 

iodides were observed.  For example, in the prior reaction 2-iodo-4-methoxyphenol afforded 

mainly dehalogenated product and only negligible amounts of the desired dihydrobenzofuran 73.  

However, 2-iodo-4-methoxyphenyl acetate with 72 gave a yield of 58% of the desired 

dihydrobenzofuran 73 when used in the updated and optimized Larock process (Scheme 6-23). 
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Scheme 6-23: Dihydrobenzofurans from electron-rich aryl iodides. 

 

 Similar results were obtained with other electron-rich aryl iodides in this report; however, 

in the text only 2-iodo-4-methoxyphenol was mentioned in reference to failures with electron-

rich iodophenols.  A proposed mechanism detailing the influence of these acetate groups was 

also reported (Figure 6-8).  It should be noted, however, that none of the proposed aryl-palladium 

intermediates in this catalytic cycle have been isolated and confirmed. 

Figure 6-8: Proposed catalytic cycle for the Larock’s synthesis of dihydrobenzofurans.94 
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 Initial oxidative addition of the iodoarene 61 to the palladium zero active catalyst 

provides the aryl-palladium intermediate 62 after abstraction of the iodide by Ag2CO3.  It was 

postulated by Larock that this coordination led to higher reactivity towards alkene 63, which was 

presumably responsible for the high yields observed in some trials.  This cationic arylpalladium 

complex 62 next adds to the 1,3-diene 63 in a syn-fashion to give the π-allylpalladium complex 

64 which coordinated with the acetoxy oxygen atom leading to the formation of the cyclical aryl 

palladium complex.  This proposed coordination of the acetate was likely the mechanism that 

slows formation of the undesired stilbene via a normal Heck coupling mechanism.  This 

coordination restricted rotation of the allyl C-C bonds, presumably, and was postulated to be 

responsible for the stereoselectivity observed when trans-trans-2,4-hexadiene was utilized.  

Deacylation of the starting iodoarene 61 was not observed under the reaction conditions, hence 

why it was reported that deacylation occured between 64 and 65.  A high correlation was seen 

between the acidity of the phenolic precursors of the iodoarenes and annulation yields, which 

further supported the deacylation at this step.  Finally, complex 65 underwent reductive 

elimination to give the desired dihydrobenzofuran 66 with regeneration of the palladium zero 

catalyst. 

 It should be noted that of the 15 examples given in the report of Larock, many were under 

70% yield.  In general, these lower yields were associated with more electron-rich iodoarenes, 

similar to issues seen prior to this method which involved the use of iodophenols instead of 

iodoacetates.  The byproducts of this reaction, similarly to the previous reaction, were the Heck-

type stilbene products. 
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III. CONCLUSION. 

In conclusion, a number of natural and synthetic dihydrobenzofurans have proven to 

possess biological activity for a wide variety of disease indications; some are used as potent and 

selective pharmaceutical drugs.  Interest in the identification of natural dihydrobenzofurans, the 

total synthesis of dihydrobenzofuran natural products, medicinal chemistry SAR applications 

involving dihydrobenzofurans, and new methods for the synthesis of dihydrobenzofurans are 

increasingly popular areas of study. 

Detailed in this introduction are a number of both natural and synthetic 

dihydrobenzofurans, many of which have biological activity.  A scifinder search of the 

dihydrobenzofuran skeleton revealed thousands of natural products with the dihydrobenzofuran 

functionality, many of which also possess bioactivity.  These compounds are novel scaffolds for 

future research and methods for synthesis of these or similar analogs are of importance. 

A number of methods for the synthesis of dihydrobenzofurans were also detailed.  Some 

of these methods were described only in reference to the synthesis of some natural products, 

however, some were more general.  Even in the general cases, many of these reactions had a 

rather small scope due to the complex nature of the starting material employed.  In many cases, 

synthesis of the dihydrobenzofuran skeleton was only accomplished after a multi-step synthetic 

procedure.  In many of these cases the placement of substituents in the starting materials, 

especially on the arene side chain of the dihydrobenzofuran, was either not explored or required 

specific moieties.  For example, in many cases, some presented here, methoxy groups in the 4-

position are necessary to help facilitate quinone formation.  Although many natural 

dihydrobenzofurans also contain a methoxy group in this position, and likely follow similar 
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biological processes for formation of the dihydrobenzofuran core structure, this restriction can be 

resolved via transition metal catalyzed reactions. 

Larock published a method very similar to the method to be described in this work; 

however, there are many core differences that will be described below.  Based on our findings, it 

is unlikely that the mechanism involved in the work of Larock is the same as the mechanism to 

be described herein, however the similarity in starting materials is interesting.  Dieck and Larock 

both reported that coordination of palladium to a phenolic system can influence the cyclization to 

dihydrobenzofurans and other heteroannulations.  This method led to a diverse selection of 

dihydrobenzofurans, although issues with electron-rich arenes were noted.  The work to be 

presented in the next chapter aims to expand the scope of transition metal catalyzed reactions in a 

similar manner to obtain dihydrobenzofurans, but by a 1-step mechanism which involves 

commercially available and easily accessible starting materials. 
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CHAPTER SEVEN 

A NEW TRANSITION METAL CATALYZED PROCESS FOR THE 

SYNTHESIS OF DIHYDROBENZOFURANS 

I. INTRODUCTION. 

Detailed in Chapter 3 the Heck reaction was employed in the synthesis of a number of 

stilbenoid compounds with antibiotic activity.  The catalytic cycle for the Heck reaction was 

studied in detail, but is shown again in Figure 7-1 for reference.  For a more detailed explanation 

of the steps depicted below please see Chapter 3. 

Figure 7-1: General catalytic cycle of the Heck reaction. 
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 In summary, step a represents activation of a precatalyst to an active palladium zero 

catalyst, this step can be avoided if a direct palladium zero source was used.  Detailed in process 

b was the oxidative addition, followed by syn-addition in step c.  This was followed by ß-hydride 

elimination d and reductive elimination e to give the desired compound while reactivating the 

catalyst to continue in the catalytic cycle. 

 In general, as described in Chapter 3, both high conversion and excellent yields were 

observed for many of the stilbenes synthesized.  In a few particular cases, however, while yields 

were still generally high, a prominent and easily purified dihydrobenzofuran byproduct was 

observed.  These cases involved the reaction of 2-bromo-4-methoxyphenol 67 with styrenes 

under the same catalytic conditions employed for the synthesis of the stilbenes (Scheme 7-1). 

Scheme 7-1: 2-bromo-4-methoxyphenol in the Heck reaction. 
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 It should be noted that some of these compounds appear in part 1 of this work, however 

they have been re-numbered for clarity in this section. 

 The interesting dihydrobenzofuran 83 was purified and was the only major byproduct in 

this reaction.  Since they were less polar than the stilbenoid derivatives, these 

dihydrobenzofurans were easily purified by flash column chromatography.  However, with only 

a 7% yield this conversion was not high enough to be considered a new method for the synthesis 

of dihydrobenzofurans. 

II. CHEMISTRY AND RESULTS. 

 It was originally thought that the reaction mechanism for this process was similar to that 

which Larock had previously published.94  In this case, palladium would have inserted into the 

heterocyclic aromatic thiophene ring system to form the aryl palladium species presented in 

Chapter 6.  Although this did not seem very plausible, synthesis of the methyl ester acetate 85, 

used in Larock’s synthesis, was tested under the reaction conditions to ascertain whether or not it 

affected the yield of the dihydrobenzofuran (Scheme 7-2). 

Scheme 7-2: Synthesis of the Larock acetate 85. 
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 The acetate 85 was purified by crystallization from isopropanol and the 1H/13C NMR 

spectra were identical to the published reports.94  When 85 was reacted under the same reaction 
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conditions of Scheme 7-1, however, this resulted in only synthesis of the stilbenoid acetate 

derivative 86 (Scheme 7-3) with no dihydrobenzofuran 87 observed even on examination of the 

crude material by NMR spectroscopy.  While this does not rule out a similar mechanism to prior 

works reported by Larock, it certainly suggests a different mechanism may be operating in this 

transformation. 

Scheme 7-3: Palladium catalyzed reaction with acetate 85. 

 

 Following this work, a more thorough investigation of the reaction conditions was 

initiated to attempt to improve the yield of the dihydrobenzofuran product while minimizing the 

yield of the stilbene.  The successful results from this study are detailed in Table 7-1 (see entry 

13). 
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Table 7-1: Optimization trials. 

 

# Pda L Base Solventb Temp (ºC) 82 (%)c 83 (%)c 

1 H.P.d --- NaOAc DMA/10% H2O 150 86e 7e 

2 "" --- NaOAc DMA/10% H2O 200 84 9 

3 "" --- NaOAc DMA/10% H2O 100 0 0 

4 "" --- NaOAc DMA/10% H2O 130 45 22 

5 "" --- NaOH (aq.) DMA/10% H2O 130 42 15 

6 "" --- NaOH (aq.) DMA/10% H2O 100 0 0 

7 PdCl2 --- NaOAc DMA/10% H2O 150 10 trace 

8 Pd(OAc)2 --- NaOAc DMA/10% H2O 150 11 trace 

9 PdP(Ph3)4 --- NaOAc DMA/10% H2O 150 0 0 

10 H.P.d --- Cs2CO3 DMA/10% H2O 150 89 10 

11 "" --- Cs2CO3 DMA/10% H2O 130 45 42 

12 "" --- Cs2CO3 DMA 150 14 75 

13 "" --- Cs2CO3 DMA 130 trace 95 
a 5 mol% Pd used, b all solvents were degassed by freeze/thaw prior to use, c conversion 
determined by HPLC, d H.P. = Herrmann’s palladacycle, e isolated yield 

Gratifyingly, optimization indicated that indeed the dihydrobenzofuran 83 could be 

synthesized in excellent yields while minimizing the conversion of the undesired stilbene 

byproduct.  More surprisingly, however, was that the dihydrobenzofuran was synthesized more 

readily at lower temperatures and without the inclusion of water, which was necessary for 

optimal conversion to the stilbenes in the earlier work.  It was interesting to note, however, that 

conversion to the stilbene was noted in trial 12 even in the absence of water.  It was presumed 
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that the change in substitution pattern from earlier Heck trials in Chapter 3 permitted this 

conversion to 82, although it was still rather low. 

It was also interesting to note that in trials 7 and 8, palladium (II) species still gave the 

desired stilbenoid product, although again in low yield.  Palladium (II) species were not 

investigated in the absence of a ligand in the original Heck reaction trials in Chapter 3, although 

the low yield for these cases did not warrant further investigation.  It was interesting to note, 

however, that palladium (II) species were able to catalytically provide the stilbenes, whereas the 

catalytic cycle dictates that palladium zero must be the active catalyst.  This can be rationalized 

by the ability of palladium (II) species to undergo conversion to palladium zero just prior to 

formation of palladium black – which can essentially be described as clusters of ligandless 

palladium.  Just after de-ligation of ligands, but prior to clustering, these ligandless palladium 

species have been previously shown to catalytically promote palladium zero reactions such as the 

Heck reaction.95 

Herrmann’s palladacycle (Figure 7-2) was again found to be the most suitable catalyst for 

this conversion.  It is apparent that this palladacycle is inherently well-suited for reactions with 

these electron-rich aryl bromides. 

Figure 7-2: Herrmann’s palladacycle. 
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Gratifyingly, nearly complete conversion to the desired dihydrobenzofuran was observed 

by simply changing the base, removing water, and lowering the temperature slightly.  It was 

presumed that this effect of temperature was related to either the reductive elimination of the 

stilbene or the ß-hydride elimination step, both of which would presumably lead to the stilbene 

product.  When that critical temperature was not reached, palladium had the ability to coordinate 

with the phenol and conversion to the dihydrobenzofuran was accomplished.  A more thorough 

description of a proposed mechanism will be presented later in the Chapter. 

In fact, it was found the influence of temperature was incredibly important for these 

reactions.  Four different styrenes were employed in this study (Figure 7-3) and it was found that 

careful control of the temperature from 100-130 ºC was critical for high yields with minimization 

of the undesired stilbene products. 

Figure 7-3: Styrenes employed in this study. 

 

 Both styrenes 81 and 88 were used in the prior SAR study described in Part 1.  Styrene 

89 was commercially available and styrene 90 was conveniently synthesized from ethanone 91 

(Scheme 7-4). 

Scheme 7-4: Synthesis of 90. 
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 Three different aryl halides were also employed in the initial study, the previously 

mentioned 2-bromo-4-methoxyphenol 80 along with 2-iodophenol 92 and the iodomethyl ester 

93 (Figure 7-4).  Thus twelve new and novel dihydrobenzofurans were synthesized via this 

method.  Further work and an interesting byproduct from the styrene 89 will also be described 

below. 

Figure 7-4: Aryl halides used in this study. 
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 It should be noted that 2-bromophenol was also employed in the process and works as 

well as 2-iodophenol, however 2-bromophenol is a liquid which is more difficult to handle at 

room temperature then the solid 2-iodophenol.  In the case of the iodomethyl ester 93, it was 

available in the lab from a previous project, consequently, the bromo derivative was not 

employed.  A subsequent study to be discussed later used three different aryl bromides similar to 

80 with no issues, moreover, it seems that bromides are just as suitable as iodides for this new 

reaction to dihydrobenzofurans.  This is in contrast to method of Larock94 which only 

employed aryl iodides, presumably out of necessity. 
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Table 7-2: Scope of the reaction.a 

Entry Arene Styrene Temp. (ºC) Product Yieldb 

1 

 
 

130 
 

87% 

2 80 
 

110 
 

75% 

3 80 
 

100 

 

89% 

4 80 

 

130 

 

90% 

5 

 
 

130 
 

86% 

6 92 
 

110 
 

73% 

7 92 
 

100 

 

92% 

8 92 

 

130 

 

94% 

9 

 
 

130 
 

72% 

10 93 
 

110 
 

77% 

11 93 
 

100 

 

82% 

12 93 

 

130 

  

 91% 

a Cs2CO3, DMA, Herrmann’s palladacycle  b isolated yield 
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 The iodomethyl ester 93 was also an interesting substrate since it bears an electron 

withdrawing group, in constrast to the electron donating nature of the methoxy analog 80.  It 

should also be noted that under the basic reaction conditions, the methyl ester remained intact in 

all cases with no trace of the carboxylic acid even on examination of the crude material by NMR 

spectroscopy.  The acetate version of 93 was the most prominent aryl iodide employed in the 

Larock publication (4 of 15 examples), therefore, it also served as a direct comparison to that 

work. 

Examination of the initial study illustrated the scope of this reaction (Table 7-2).  Clearly 

aryl bromides are applicable, as opposed to the report of Larock which seemingly required aryl 

iodides94.  Furthermore, excellent yields with electron-rich arenes are easily accessible with no 

need to first synthesize the acetate of the phenol.  Although this mechanism likely differs from 

that in Larock’s work, these important distinctions were considered when developing the 

reaction to assess its novelty and importance. 

It was also important to note that the original hypothesis in the study by Larock that the 

heterocyclic nature of the reactant was necessary for conversion with some coordination between 

the aromatic 1,3 diene system seemed to be less plausible here, when the reactions between the 

naphthyl styrenes 89 and 90 are considered.  Although the thiophene and benzofuran systems are 

aromatic in nature, they are considerably more reactive than naphthalene, and this fact was 

considered early in the study here.  The commercially available 2-vinylnaphthalene 89 was 

reacted under a number of catalytic systems to attempt to determine the best possible conditions 

and catalyst for the conversion.  Subsequently it was determined that the original conditions 

(Table 7-2 and 100 ºC) with Herrmann’s palladacycle gave the best yields of dihydrobenzofuran, 

although even in this case low conversion to the stilbene was still observed. 
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Detailed in Table 7-3 are some of the catalytic systems and conditions employed with 2-

vinylnaphthalene 89. 

Table 7-3: Catalytic systems employed with naphthyl styrene 89. 

 

# Pda L Base Additive 89 (%)b 106 (%)b 96 (%)b 

1 H.P.c --- Cs2CO3 --- 1 5 86 

2 Pd(OAc)2 p(otolyl)3 Cs2CO3 --- 29 18 44 

3 "" dppf Cs2CO3 --- 35 34 30 

4 "" R-BINAP Cs2CO3 --- 45 15 25d 

5 Pd(dba)2 --- Cs2CO3 --- 75 15 10 

6 PdCl2 --- Cs2CO3 --- 41 11 44 

7 PdCl2 (1 eq) --- Cs2CO3 --- 51 31 18 

8 Wilk. cat.e --- Cs2CO3 --- 91 5 4 

9 Pd(PPh3)4 --- Cs2CO3 --- 72 20 8 

10 H.P.c --- Cs2CO3 LiCl 15 11 65 

11 "" --- NaH --- 50 0.5 0 

12 "" --- Cs2CO3 K2S2O8 80 10 10 

13 "" --- Cs2CO3 4-TBC 100 0 0 
a 5 mol% Pd used unless otherwise noted, b conversion determined by HPLC, c H.P. = 
Herrmann’s palladacycle, d no asymmetric induction observed by chiral HPLC, e Wilk. cat. = 
Wilkinson’s catalyst 

 Although analysis of all of the reactions in table 7-3 provide some insight into the 

reaction mechanism and scope, none were as useful as the original conditions in Table 7-2, 

which gave excellent conversion and yield of the naphthyl dihydrobenzofuran 96.  It was 

interesting to note that palladium zero catalysts such as Pd(dba)2 and Pd(PPh3)4 (trials 5 and 9) 
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both gave low conversions to both the stilbene and the cyclized product, whereas palladium (II) 

catalysts (trials 2, 3, 4, 6, and 7) with or without ligands gave better overall conversions.  The use 

of PdCl2 also exhibited little difference in conversion when used stoichiometrically or 

catalytically, however, ratios of stilbene to dihydrobenzofuran were almost inverse to one 

another.  There is no current explanation for this behavior.  Sodium hydride as a base was found 

to decompose the starting styrene 89 and only trace conversion was noted.  From examination of 

the above data the future focus should center on Pd(OAc)2, PdCl2, and especially Herrmann’s 

palladacycle as catalysts of choice. 

 Preliminary attempts to observe asymmetric induction using R-BINAP were also 

unsuccessful leading to a 50:50 mixture of enantiomers (trial 4).  It should be noted that in the R-

BINAP case, the reaction turned black after a few minutes at 100 ºC which presumably indicated 

conversion to palladium black.  As described earlier, palladium (II) can decompose to form 

active palladium zero catalysts at elevated temperature.  It is possible that the palladium BINAP 

complex was not formed or decomposed under the reaction conditions and the conversion noted 

was due to the formation of these palladium black active catalysts. 

 In parallel with this work, a novel new compound was also observed in the synthesis of 

the dihydrobenzofuran 104, and is pictured below in Table 7-4.  Strangely, the benzofuran 107 

was observed in higher yields with lower reaction temperatures.  This was not observed in other 

cases and may represent an unusual characteristic of this specific reaction, however, it was still 

interesting to note the formations of these different products based on temperatures changes 

alone. 
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Table 7-4: Reactions with methyl ester 93 and napthene 89. 

 
Entry Temp. (ºC) 107 (%)a 104 (%)a 108 (%)a 

1 70 75 25 0 

2 110 15 82 0 

3 140 <5 <5 86 

      a determined by HPLC 

 Because conversion to the benzofuran 107 at low temperatures was not expected, a 

crystal structure was obtained to be certain that this was the material (Figure 7-5). 

Figure 7-5: Crystal structure of 107. 
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Examination of the crystal structure of benzofuran 107 indicated that the assigned 

structure was correct, however as noted, similar behavior with other arenes and styrenes has not 

yet been observed.  This reaction was repeated with similar results and might represent a strange 

case of palladium based chemistry.  A plausible mechanism for ligand 107 will be discussed in a 

future section. 

Detailed in the introduction are a number of reactions that had restrictions on the 

substitution patterns of the arene ring.  Many of these reactions focus on the ability to form 

quinones of phenols and required methoxy groups in the 4-position for good yields.  It has been 

shown that this new reaction process works well with 4-methoxy bromophenols, however, 

substitution at other positions had not yet been evaluated.  Based on the necessity of an ortho-

halophenol, there are four different suitable positions for mono-substitution of the ring system.  

These are shown in Figure 7-6. 

Figure 7-6: Possible substitution patterns for bromophenols. 

 

 For this initial study methoxy groups were chosen as the most suitable R-group due to 

both the availability of the substituted phenols and its electronic characteristics.  As previously 

discussed, transition metal chemistry in general experiences problems with the oxidative addition 

of electron-rich substrates, consequently the use of methoxy as a general guideline to test the 

scope of this reaction was deemed appropriate. 
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 The 2-bromo-4-methoxyphenol 80 was already employed with a number of different 

styrenes in excellent yields (Table 7-2), therefore R = methoxy 111 was already adequately 

tested.  This left R = methoxy 109, 110, and 112.  Although these aryl bromides are 

commercially available, the starting materials necessary for synthesis were already in hand for R 

= methoxy 109 and 110, consequently while waiting to receive R = methoxy 112 the other 

bromides were quickly and conveniently synthesized. 

 In general, synthesis of aryl bromides was carried out with a brominating agent.  Given 

the electronic character of phenols, the ortho and para positions were the most activated sites for 

bromination.  There are many literature reports for mono-bromination of phenols and a number 

of pathways towards these compounds involve inexpensive reagents in high yields.96 The 

synthesis of 2-bromo-6-methoxyphenol 114 was carried out with 2-methoxyphenol 113 by 

slowly adding it to a suspension of tert-butylamine (tBuNH2) and bromine (Br2) at -78 ºC 

(Scheme 7-5).  The low temperature and addition of tert-butylamine slows the reaction down 

considerably, halting the formation of other brominated derivatives while also promoting ortho 

bromination.  In contrast, the same reaction at room temperature in the absence of tert-

butylamine resulted in almost full conversion to the para-directed bromide 4-bromo-2-methoxy 

phenol, employed earlier in Part 1 for the synthesis of potent antimicrobials. 

Scheme 7-5: Synthesis of ortho-substituted aryl bromide 114. 
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 The bromide was further purified by flash column chromatography with a final yield of 

81%.  It should be noted that column chromatography was only used as a precaution, since after 

the work-up the bromide was nearly analytically pure.  Palladium mediated reactions can 

sometimes be poisoned by extremely small quantities of (in)organic materials97, consequently, 

one had to insure the starting materials were as pure as possible prior to use; this was of utmost 

importance for these trial reactions. 

Synthesis of 116 was accomplished by starting with 3-methoxyphenol 115 and adding N-

bromosuccinimide (NBS) (Scheme 7-6).  To control the bromination, NBS was added in portions 

over a period of 4 hours.  The yields were similarly high, 92% for aryl bromide 116, even after 

purification by flash column chromatography. 

Scheme 7-6: Synthesis of aryl bromide 116. 

 

 It was determined that the best styrene to use for these trial reactions was 2-

vinylbenzo[b]thiophene 81, since these reactions produced the smallest amount of stilbenoid 

byproduct and generally provided the best overall yields of the dihydrobenzofurans.  As 

illustrated in Table 7-2, high yields were afforded for all styrenes tested, therefore it was deemed 

unnecessary to synthesize an exhaustive library using these new bromides.  The details from 

these experiments are depicted in Table 7-5. 
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Table 7-5: Experiments between an ortho bromophenol and a thienyl styrene. 

Entry Arene Styrene Temp. (ºC) Product Yielda 

1 

 

130 

 

87% 

2 130 

 

83% 

3 130 
 

84% 

4 

 

130 

 

65% 

a isolated yield 

 Examination of the data in this Table illustrated that substitution on the arene ring was 

well tolerated.  The lowest yields were noted for arene 120, which was not surprising considering 

the proximity of the electron-donating methoxy group to the site of coordination to palladium.  In 

this case more careful control of the temperature may lead to higher yields, however a 

comprehensive optimization of this reaction was not investigated.  It was clear from this process 

that this reaction sequence exhibited a wide scope for arenes, even electron-rich substituted aryl 

bromides, however, some difficulties were noted in the scope of the styrenes. 

 The natural product corsifuran 121 (Figure 7-7) was a prime target for a 1-step synthesis 

via the reaction process detailed in this work.  However, under these conditions, only the 
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stilbenoid product was obtained.  A number of different catalytic systems were attempted, but 

none with much success, however, future work may uncover the right conditions for this 

transformation. 

Figure 7-7: Structure of corsifuran. 

 

 Earlier it was determined that careful reduction of the temperature could lead to 

enrichment of the dihydrobenzofuran over the undesired stilbenoid.  This was not successful in 

this reaction as conversion to the stilbene was noted even at 70 ºC while no conversion was 

observed prior to reaching this temperature.  A number of different phosphine-based ligands 

were also investigated; however, synthesis of the natural product has not been accomplished by 

this method as of yet.  Similar trials were also attempted with vinylbenzene with similarly 

negative results.  Presumably the 4-methoxystyrene is a poor substrate for this reaction sequence 

and when employed high conversion to the stilbenoid byproduct was observed at all temperature 

ranges tested. 

 It was postulated earlier that control of the temperature led to the dihydrobenzofurans and 

points to an activation energy difference between the expected stilbenoid product (ß-hydride 

elimination followed by reductive elimination) and the cyclized product.  In the case of 

unactivated styrenes, such as the styrenes employed in this study, presumably the activation 

energy for formation of the cyclized product was slightly lower than the activation energy 

necessary for ß-hydride elimination and thus the cyclized products are major products at lower 
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temperatures.  In contrast, more activated styrenes such as 4-methoxystyrene and vinylbenzene 

may have lower activation energies for ß-hydride elimination, thus at any temperature the 

stilbenoid products are the major products whereas the cyclized products are not observed. 

 Careful selection of reagents, especially phosphine-based ligands, may be able to alter 

this behavior for more activated olefins.  It is unclear which ligands might be most beneficial, 

however, bulky ligands that may help block coordination of hydrogen might be of use.  Currently 

the exact mechanism by which this reaction occurs is not known, however future mechanistic 

work may provide useful strategies for use of activated olefins. 

III. PROPOSED MECHANISM. 

When first discovered, these reactions were thought to be correlated to the reactions 

detailed earlier by Larock.  Investigation into the scope of the reaction revealed this may not be 

the case.  In the reaction process of Larock, aryl iodides were necessary and conversion of the 

phenol to an acetate facilitated better yields and a more extensive scope with electron-rich 

arenes.  The reaction developed here, however, was suitable for aryl bromides and electron-rich 

phenols without the need to synthesize the acetates.  In fact, the acetates themselves only led to 

conversion to the undesired stilbene, with no conversion to the dihydrobenzofuran of interest.  

Consideration of all these factors combined, it is believed that this reaction goes by a related, but 

distinct mechanism. 

Synthesis of the stilbene compounds likely occurred via the normal Heck reaction 

mechanism discussed earlier.  When the temperature was lowered, conversion to the stilbene was 

retarded and conversion to the desired dihydrobenzofuran was observed.  From this perspective, 

this new mechanism certainly acts prior to the reductive elimination of the stilbene and also must 
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occur after migratory insertion of the styrene.  Between these steps it is clear that palladium must 

coordinate to the phenol to help facilitate the formation of the 5-membered heterocyclic ring. 

If this coordination occurred after migratory insertion, the dihydrobenzofuran can be 

obtained.  The palladium complex 122 exists after migratory insertion of the alkene.  In a normal 

Heck reaction this would be followed by ß-hydride elimination and reductive elimination to a 

stilbene product.  In this case, however, coordination of the phenol to palladium (123) followed 

by base mediated abstraction of the phenolic hydrogen atom may lead to the palladium complex 

124.  Subsequent reductive elimination (r.e.) would lead to the desired dihydrobenzofuran 125.  

This mechanism, however, does not account for the removal of the halide, which is generally 

removed in Heck reactions by formation of H-X and neutralization with base.  The Larock 

mechanism presumes the removal of halide after oxidative addition of the arene (figure 6-7).  If 

this were the case in this reaction, it would seem a similar mechanism to that reported by Larock 

would be plausible (Scheme 7-7). 

Scheme 7-7: Coordination after migratory insertion. 
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 Accounting for hydrogen atoms is important for both this mechanistic process, and 

attempts to discuss the mechanism of the benzofuran 107.  In the dihydrobenzofuran case, the 

reaction process starts with 4 hydrogen atoms and ends up with 3 (Scheme 7-8). 

Scheme 7-8: Hydrogen accounting, dihydrobenzofuran. 

 

 The mechanism detailed in Scheme 7-7 assumes that the phenolic H1 is the lone hydrogen 

atom that does not end up in the final product 100.  This is logical since the phenolic hydrogen is 

the most acidic hydrogen and it also presumes that ß-hydride elimination does not occur, giving 

the dihydrobenzofuran.  Accounting for hydrogens in the other reaction which resulted in the 

synthesis of the benzofuran 107 is more difficult (Scheme 7-9). 

Scheme 7-9: Hydrogen accounting, benzofuran 107. 

 

 As shown, 3 hydrogen atoms are lost under the reaction conditions and only 1 remains in 

the final benzofuran product 107.  It can be assumed that 1 hydrogen atom is lost via ß-hydride 

elimination, and perhaps the phenolic hydrogen by base, however the loss of the third hydrogen 



 

243 
 

atom is troubling.  Another possibility is the loss of H2 by dehydrogenation, however subjecting 

the cyclized dihydrobenzofuran product 104 to the identical reaction conditions does not result in 

formation of the benzofuran product 107.  Perhaps before reductive elimination, H2 is somehow 

removed from the organo-complex and inserted into palladium, followed by reductive 

elimination of the benzofuran.  This would necessarily have to occur in the intermediate 

palladium complex 126, since the cyclized product itself does not seem to dehydrogenate when 

resubmitted to the reaction conditions. 

Scheme 7-10: Benzofuran proposed mechanism. 

 

 Further work in this area must be carried out to understand this.  Some support in the 

literature for oxidation of phenols to dihydrobenzofurans and benzofurans has previously been 

reported98, however, as discussed resubmission of the dihydrobenzofuran product 104 to the 

reaction conditions did not result in formation of any benzofuran product 107 by HPLC, 

therefore it would necessarily have to occur either when complexed to palladium prior to 

reductive elimination or perhaps through some oxidative reaction that may occur during the 

catalytic cycle. 
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IV. FUTURE WORK. 

Methods that can help to prove the mechanism, both for the dihydrobenzofurans and the 

more difficult benzofuran 107, might also help improve the scope of the reaction by directing 

optimization of reaction conditions.  One potential method for experimentally determining the 

mechanism would be to subject deuterium labeled styrenes to the reaction conditions.  This can 

be accomplished using relatively inexpensive starting materials such as DMF-d7 and the readily 

synthesized methyl-d3-triphenylphosphonium bromide.  These starting materials can be used to 

synthesize a wide variety of deuterated styrenes that can presumably shed light on the exact 

reaction mechanism by monitoring the inclusion of deuterium in the final products.  Some of the 

more easily accessible deuterated sytrenes are shown below in Figure 7-8. 

Figure 7-8: Deuterated styrenes. 
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 Furthermore, deuteration of the phenol, although very difficult because of exchange with 

water in the air, might also be possible to ascertain the fate of the phenolic hydrogen atom in this 

new reaction.  This can perhaps be accomplished by heating the acidic phenol in deuterium oxide 

and removing water in vacuo several times under vacuum.  Since the solvent and base employed 

are both aprotic, exchange back to hydrogen under the reaction conditions should not occur if 

moisture is completely eliminated. 

 Elucidation of an accurate mechanism can also be pursued in parallel to attempts to 

introduce asymmetry into the dihydrobenzofuran ring system.  Palladium catalyzed reactions 
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generally act via mechanisms that can permit asymmetric induction by careful selection of 

asymmetric ligands and/or precatalysts.99  As detailed earlier, R-BINAP as a ligand was 

employed without success.  A large library of phosphine based asymmetric ligands exists, 

however, and many asymmetric precatalysts are also routinely used.  Particular focus on 

asymmetric palladacycles like Herrmann’s palladacycle that have similar palladium (II) to 

palladium zero chemistry presumably would be the most interesting selections. 

 Extending the scope of these reactions by introduction of new and interesting styrenes 

may also be attempted.  The current scope involves rather unactivated styrenes, and trials with 

more activated styrenes were met with less success.  Introduction of additives or different ligands 

could help expand the scope of the styrenes to also include activated styrenes.  This aim would 

benefit greatly, however, from a mechanism that rests on more experimental proof. 

V. CONCLUSION. 

In conclusion, a new and novel transition metal catalyzed reaction to form 

dihydrobenzofurans was discovered in the process of synthesizing novel small molecule 

antibiotics.  This reaction was further successfully optimized to afford excellent yields of the 

novel dihydrobenzofurans while minimizing the conversion to the less interesting stilbene by-

products.  Synthesis of a variety of styrenes expanded the scope of the reaction process to 

include both heterocyclic styrenes and carbocycles; an important distinction as initially it was 

felt the reaction would only be applicable to heterocycles. 

The proposed mechanism of this new reaction may be very similar to the mechanism 

postulated in the prior work of Larock, however, if so it would represent a significant expansion 

of the scope.  The original reaction was only suitable for aryl iodides and focused solely on 1,3-



 

246 
 

dienes, whereas the reaction detailed in this work gave excellent yields with aryl bromides and 

styrenes. 

Another new and interesting reaction was also discovered in the case of methyl ester 93 

and the napthyl styrene 89.  The benzofuran 107 was a major product under low temperature 

reaction conditions whereas the dihydrobenzofuran 104 was obtained at slightly higher 

temperatures.  Furthermore, high temperature reactions favored the stilbene product 108 over 

both the benzofuran 107 and the dihydrobenzofuran 104.  A mechanism for this conversion was 

proposed, however, with a word of caution as it does not seem to match any known mechanisms 

of Pd chemistry, on the other hand it may be new. 

Finally, substitution of the arene ring in the dihydrobenzofurans was tested by moving a 

methoxy group around the ring.  These electron-rich arenes all gave good yields, with only the 

methoxy analog 117 giving a yield under 70%.  This was likely due to the ortho positioning of 

the methoxy group which may restrict oxidative addition to the palladium species, which is 

seemingly unrelated to the ring forming mechanism of this reaction. 

This reaction offers a new route to interesting dihydrobenzofurans and with further 

optimization may lead to an expanded scope that includes a more diverse selection of styrenes as 

well as asymmetric induction. 

VI. EXPERIMENTAL. 

Both 1H and 13C NMR spectra were recorded on a Bruker DPX-300 or DRX-500 

instrument where noted.  HRMS scans were recorded with a Shimadzu LCMS-IT-TOF or similar 

instruments. 
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2-Vinylbenzo[b]thiophene (81, Figure 7-3) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1 eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1 eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 

benzo[b]thiophene-2-carbaldehyde (1.11 g, 6.84 mmol, 1 eq) was dissolved in THF (5mL) and 

added dropwise to the solution.  After 3h, analysis by TLC (10% EtOAc in hexanes, silica gel) 

indicated no starting aldehyde remained and the reaction was quenched with aq 0.5N HCl 

(10mL).  The organic layer was extracted and the aq layer was subsequently extracted with 

EtOAc (15mL x 2).  The combined organic layers were washed with brine (10mL x 2), dried 

(Na2SO4), and the solvent was removed in vacuo to give an off-white solid.  The solid was 

purified by flash column chromatography on silica gel (hexanes) to provide the pure 2-

vinylthianaphthene 81 in 98% yield as a white solid (1076 mg):  1H NMR (500 MHz, CDCl3) δ 

7.87 – 7.79 (m, 1H), 7.79 – 7.72 (m, 1H), 7.43 – 7.32 (m, 2H), 7.22 (s, 1H), 6.98 (dd, J = 17.3, 

10.8 Hz, 1H), 5.74 (d, J = 17.3 Hz, 1H), 5.37 (d, J = 10.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) 

δ 143.16, 140.08, 138.93, 130.66, 124.85, 124.48, 123.63, 123.14, 122.34, 116.00; HRMS (ESI) 

(M + H), Calcd. for C10H9S 161.0425; Found 161.0431 

2-Vinylbenzofuran (88, Figure 7-3) 
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The sodium methoxide (406.6 mg, 7.53 mmol, 1.1 eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1 eq), and THF (25mL) were stirred under argon at rt for 0.5h.  The 

benzofuran-2-carbaldehyde (1.00 g, 6.84 mmol, 1 eq) was dissolved in THF (5mL) and added 

dropwise to the solution.  After 3h, analysis by TLC (10% EtOAc in hexanes, silica gel) 

indicated no starting aldehyde remained and the reaction was quenched with aq 0.5N HCl 

(10mL).  The organic layer was extracted and the aq layer was subsequently extracted with 

EtOAc (15mL x 2).  The combined organic layers were washed with brine (10mL x 2), dried 

(Na2SO4), and the solvent was removed in vacuo to give a yellow oil.  The oil was purified by 

flash column chromatography on silica gel (hexanes) to provide the pure 2-vinylbenzofuran 88 in 

85% yield as a clear oil that slowly solidifies in a freezer to a white solid (838 mg):  1H NMR 

(300 MHz, CDCl3) δ 7.56 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.27 (m, 2H), 6.75 – 6.62 

(dd, J = 17.4 Hz, J = 11.4 Hz, 1H), 6.63 (s, 1H), 6.00 (d, J = 17.4 Hz, 1H), 5.42 (d, J = 11.2 Hz, 

1H); 13C NMR (75 MHz, CDCl3) δ 154.86, 154.78, 128.83, 125.30, 124.64, 122.79, 120.98, 

115.71, 111.02, 104.74; HRMS (ESI) (M + H), Calcd. for C10H9O 145.0653; Found 145.0652 

2-(Prop-1-en-2-yl)naphthalene (90, Figure 7-3) 

 

The sodium methoxide (406.6 mg, 7.53 mmol, 1.1 eq), methyltriphenylphosphonium bromide 

(2.69 g, 7.53 mmol, 1.1eq), and THF (25mL) were stirred under argon at rt for 0.5hr.  The 1-

(naphthalen-2-yl)ethan-1-one (1.16 g, 6.84 mmol, 1 eq) was dissolved in THF (5mL) and added 

dropwise to the solution.  After 3h analysis by TLC (10% EtOAc in hexanes, silica gel) indicated 
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no starting aldehyde remained and the reaction was quenched with aq 0.5N HCl (10mL).  The 

organic layer was extracted and the aq layer was subsequently extracted with EtOAc (15mL x 2).  

The combined organic layers were washed with brine (10mL x 2), dried (Na2SO4), , and the 

solvent was removed in vacuo to give an off-white solid.  The solid was purified by flash column 

chromatography on silica gel (hexanes) to provide the pure methyl naphthyl styrene 90 in 92% 

yield as a white solid (1059 mg):  1H NMR (500 MHz, CDCl3) δ 7.97 – 7.83 (m, 4H), 7.79 – 

7.73 (m, 1H), 7.57 – 7.49 (m, 2H), 5.62 (s, 1H), 5.28 (s, 1H), 2.35 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 143.06, 138.40, 133.45, 132.87, 128.31, 127.76, 127.58, 126.18, 125.89, 124.33, 

123.96, 113.09, 21.95; HRMS (ESI) (M + H), Calcd. for C13H13 169.1017; Found 169.1012 

Methyl 4-acetoxy-3-iodobenzoate (85, Scheme 7-2) 

 

The methyl 4-hydroxy-3-iodobenzoate (84, 1.00g, 3.6 mmol, 1 eq) was stirred in DCM (10 mL) 

at rt.  Then pyridine (570mg, 7.2 mmol, 2 eq) was added in one portion and the solution was 

stirred for 5 min.  Acetyl chloride (314mg, 4 mmol, 1.1 eq) was then added dropwise by syringe 

over a period of 30 min.  The solution was stirred for 2 h, analyzed by TLC (30% EtOAc in 

hexanes, silica gel) which indicated the starting material was consumed, and the mixture was 

quenched by addition of water (10 mL).  The organic layer was extracted and the aq layer was 

extracted with DCM (10 mL x 2).  The combined organic layers were washed with water (10 
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mL), brine (10 mL), dried over dried (Na2SO4), , and the solvent was removed in vacuo to give a 

white solid.  The white solid was recrystallized from IPA to give the acetate 85 as pure white 

needles (935mg, 81%):  mp: 153-156 ºC; 1H NMR (300 MHz, CDCl3) δ 8.26 (d, J = 1.9 Hz, 

1H), 7.97 (dd, J = 8.4, 2.0 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 2.33 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 167.87, 164.99, 151.86, 134.68, 129.86, 129.30, 123.74, 116.36, 52.43, 

20.71.  The spectral data of 85 were identical to the reported values.94 

2-Bromo-6-methoxyphenol (114, Scheme 7-5) 

 

The tert-butylamine (3.53g, 0.048 mol, 2 eq) was dissolved in toluene (10 mL) at -30 ºC.  

Bromine (3.86g, 0.024 mol, 1 eq) was slowly added to the solution at -30 ºC which resulted in a 

slightly turbid solution.  The solution was further cooled to -78 ºC with dry ice/acetone and the 

2-methoxyphenol (113, 3.00g, 0.24 mol, 1 eq), dissolved in toluene (5 mL), was added dropwise 

over 30 min.  The reaction was monitored by TLC (10% EtOAc in hexanes, silica gel) and was 

complete after 4 h at -78 ºC.  The solution was warmed to rt, quenched with a sat. aq Na2S2O4 

solution (2 mL) mixed with water (15 mL), and extracted.  The aq layer was then extracted with 

DCM (10 mL x 2).  The combined organic layers were washed with water (15 mL), brine (15 

mL), and dried (Na2SO4).  The solvent was removed in vacuo to provide an off-white powder.  

The solid was further purified by flash column chromatography (silica gel, 5% EtOAc in 

hexanes) to furnish aryl bromide 114 in 81% yield as a white powder (4.0g).  The mp (63ºC) was 

in excellent agreement with the literature value.100 
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2-Bromo-5-methoxyphenol (116, Scheme 7-6) 

 

The 3-methoxyphenol (115, 3.00g, 0.24 mol, 1 eq) was dissolved in DCM (600 mL) and N-

bromosuccinimide (NBS, 4.3 g, 0.024 mol, 1 eq) was added in 4 equal portions over a period of 

2 h.  After the final addition of NBS, the solution was stirred for 2 additional h and monitored by 

TLC (20% EtOAc in hexanes).  After 2 h analysis by TLC indicated the reaction was complete 

and the solvent was removed in vacuo to give an off-white powder.  The crude solid was purified 

by flash column chromatography (silica gel, 20% EtOAc in hexanes) to furnish aryl bromide 116 

in 92% yield as a white powder (4.5g):  1H NMR (300 MHz, CDCl3) δ 7.33 (d, J = 8.8 Hz, 1H), 

6.62 (d, J = 2.9 Hz, 1H), 6.43 (dd, J = 8.8, 2.9 Hz, 1H), 5.64 (bs, 1H), 3.78 (s, 3H). 

(E)-2-(2-(Benzo[b]thiophen-2-yl)vinyl)-4-methoxyphenol (82, Scheme 7-1) 

 

The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 

mg, 0.624 mmol, 1 eq), sodium acetate (102.4 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial containing oxygen free 
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solvent (10% water in dimethylacetamide, 3 mL) under an argon atmosphere.  The vial was 

sealed with a septum and the mixture was heated to 150 ºC for 3 h, cooled to rt, and EtOAc 

(10mL) was added in one portion.  The suspension was filtered through a plug of celite and the 

filtrate was washed successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The 

organic layer was dried (Na2SO4) and the solvent was removed in vacuo to provide a crude 

yellow solid.  The solid was purified by flash column chromatography on silica gel (20% EtOAc 

in hexanes) to provide the pure hydroxyl stilbene 82 in 86% yield as a bright yellow-green solid 

(151 mg):  1H NMR (300 MHz, DMSO) δ 9.48 (s, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.84 – 7.73 (m, 

1H), 7.59 (d, J = 16.2 Hz, 1H), 7.44 (s, 1H), 7.34 (p, J = 7.5 Hz, 2H), 7.21 (d, J = 16.1 Hz, 1H), 

7.17 (s, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.75 (dd, J = 8.8, 2.7 Hz, 1H), 3.74 (s, 3H); 13C NMR (75 

MHz, DMSO) δ 152.86, 149.69, 143.83, 140.53, 138.40, 126.27, 125.26, 125.16, 123.94, 123.70, 

123.59, 122.81, 122.43, 117.19, 116.11, 110.99, 55.92; HRMS (ESI) (M + H), Calcd. for 

C17H15O2S 283.0793; Found 283.0790 

2-(Benzo[b]thiophen-2-yl)-5-methoxy-2,3-dihydrobenzofuran (94, Table 7-2, entry 1) 

 

The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 
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successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure methoxy dihydrobenzofuran 94 in 87% yield as a white solid (153 mg):  mp: 100-102 ºC; 

1H NMR (300 MHz, CDCl3) δ 7.85 – 7.78 (m, 1H), 7.78 – 7.71 (m, 1H), 7.42 – 7.29 (m, 1H), 

6.81 (d, J = 8.6 Hz, 1H), 6.74 (dd, J = 8.7, 2.5 Hz, 1H), 6.09 – 5.98 (m, 1H), 3.80 (s, 1H), 3.69 

(dd, J = 15.7, 9.2 Hz, 1H), 3.41 (dd, J = 15.7, 7.3 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 

154.57, 152.84, 146.17, 139.39, 139.20, 127.67, 125.08, 125.00, 124.23, 123.06, 122.05, 113.57, 

111.62, 109.68, 80.22, 56.05, 38.36; HRMS (ESI) (M + H), Calcd. for C17H15O2S 283.0793; 

Found 283.0794 

5-Methoxy-2,3-dihydro-2,2'-bibenzofuran (95, Table 7-2, entry 2) 

 

The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzofuran (90 mg, 0.624 

mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 

mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free 

dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 
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pure methoxy dihydrobenzofuran 95 in 75% yield as a white solid (125 mg):  mp: 84-86 oC; 1H 

NMR (500 MHz, CDCl3)  7.57 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.30-7.33 (m, 1H), 

7.23-7.26 (m, 1H), 6.79-6.86 (m, 3H), 6.73 (dd, J = 2.5, 8.5 Hz, 1H).  5.89 (t, J = 8.5 Hz, 1H), 

3.80 (s, 3H), 3.59 (d, J = 9.0 Hz, 2H); 13C NMR (75 MHz, CDCl3)  155.8, 155.2, 154.5, 153.1, 

127.8, 126.9, 124.6, 122.9, 121.2, 113.1, 111.4, 111.1, 109.5, 109.5, 104.4, 77.4, 56.0, 35.0; 

HRMS (ESI-TOF m/z) for C17H14O3 calcd 267.1010 found 267.1016 (M+H)+.   

5-Methoxy-2-(naphthalen-2-yl)-2,3-dihydrobenzofuran (96, Table 7-2, entry 3) 

 

2-bromo-4-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylnaphthalene (96 mg, 0.624 

mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 

mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free 

dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure methoxy dihydrobenzofuran 96 in 89% yield as a white solid (153 mg): mp: 121-123 ºC; 1H 

NMR (300 MHz, CDCl3) δ 7.92 – 7.81 (m, 4H), 7.59 – 7.45 (m, 3H), 6.84 (dt, J = 6.9, 4.9 Hz, 

2H), 6.77 (dd, J = 8.5, 2.6 Hz, 1H), 5.94 (t, J = 8.8 Hz, 1H), 3.81 (s, 3H), 3.70 (dd, J = 15.8, 9.4 

Hz, 1H), 3.30 (dd, J = 15.7, 8.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 154.39, 153.88, 139.32, 
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133.23, 133.13, 128.67, 128.06, 127.73, 127.52, 126.30, 126.08, 124.68, 123.62, 113.11, 111.27, 

109.29, 84.38, 56.07, 38.91; HRMS (ESI) (M + H), Calcd. for C19H17O2 277.1229; Found 

277.1224 

5-Methoxy-2-methyl-2-(naphthalen-2-yl)-2,3-dihydrobenzofuran (97, Table 7-2, entry 4) 

O

MeO

Chemical Formula: C20H18O2

Molecular Weight: 290.36

 

The 2-bromo-4-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-(prop-1-en-2-yl)naphthalene 

(105 mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 110 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude off-white solid.  The solid 

was purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide 

the pure methoxy dihydrobenzofuran 97 in 90% yield as a white solid (163 mg):  mp: 125-127 

ºC; 1H NMR (300 MHz, CDCl3) δ 8.01 – 7.80 (m, 4H), 7.62 – 7.43 (m, 3H), 6.88 (d, J = 8.3 Hz, 

1H), 6.74 (d, J = 8.5 Hz, 2H), 3.77 (s, 3H), 3.53 (d, J = 15.6 Hz, 1H), 3.44 (d, J = 15.5 Hz, 1H), 

1.87 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 154.20, 153.08, 144.00, 133.08, 132.46, 128.27, 

128.19, 127.51, 127.44, 126.17, 125.86, 123.29, 122.88, 113.09, 111.40, 109.48, 89.30, 56.03, 

45.07, 29.11; HRMS (ESI) (M + H), Calcd. for C20H19O2 291.1385; Found 291.1382 
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2-(Benzo[b]thiophen-2-yl)-2,3-dihydrobenzofuran (98, Table 7-2, entry 5) 

 

The 2-iodophenol (137.3 mg, 0.62 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 mg, 0.624 mmol, 

1 eq), cesium carbonate (407 mg, 1.25 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 

0.016 mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free 

dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure dihydrobenofuran in 86% yield as a white solid (135.4 mg):  mp: 95-96 oC; 1H NMR (500 

MHz, CDCl3)  7.82 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.32-7.38 (m, 3H), 7.25 (d, J 

= 7.0 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.91-6.96 (m, 2H), 6.07 (t, J = 8.5 Hz, 1H), 3.73 (dd, J = 

9.5, 15.5 Hz, 1H), 3.47 (dd, J = 7.0, 15.5 Hz, 1H); 13C NMR (75 MHz, CDCl3)  158.9, 145.4, 

139.6, 139.3, 128.4, 125.9, 124.9, 124.5, 124.4, 123.7, 122.5, 121.4, 121.0, 109.7, 80.3, 38.3; 

HRMS (ESI-TOF m/z) for C16H12O3S calcd 253.0850 found 253.0859 (M+H)+. 

2,3-Dihydro-2,2'-bibenzofuran (99, Table 7-2, entry 6) 
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The 2-iodophenol (137.3 mg, 0.624 mmol, 1 eq), 2-vinylbenzofuran (90 mg, 0.624 mmol, 1 eq), 

cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.0156 

mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free dimethylacetamide 

(3 mL) under an argon atmosphere.  The vial was sealed with a septum and the mixture was 

heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one portion.  The 

suspension was filtered through a plug of celite and the filtrate was washed successively with aq 

0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and the 

solvent was removed in vacuo to provide a crude yellow solid.  The solid was purified by flash 

column chromatography on silica gel (5% EtOAc in hexanes) to provide the pure 

dihydrobenzofuran 99 in 73% yield as a white solid (107.6 mg):  mp: 73-75 oC; 1H NMR (300 

MHz, CDCl3)  7.58 (d, J = 7.2 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.17-7.34 (m, 4H), 6.88-6.96 

(m, 2H), 6.80 (s, 1H), 5.90 (t, J = 8.4 Hz, 1H), 3.62 (d, J = 8.7 Hz, 2H); 13C NMR (75 MHz, 

CDCl3)  159.0, 155.7, 155.2, 128.3, 127.8, 125.9, 124.8, 124.6, 122.9, 121.2, 120.9, 111.4, 

109.7, 104.5, 77.4, 34.5; HRMS (ESI-TOF m/z) for C16H12O2 calcd 237.0900 found 237.0910 

(M+H)+.   

2-(Naphthalen-2-yl)-2,3-dihydrobenzofuran (100, Table 7-2, entry 7) 

 

The 2-iodophenol (137 mg, 0.624 mmol, 1 eq), 2-vinylnaphthalene (96 mg, 0.624 mmol, 1 eq), 

cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 mg, 0.0156 

mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free dimethylacetamide 

(3 mL) under an argon atmosphere.  The vial was sealed with a septum and the mixture was 
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heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one portion.  The 

suspension was filtered through a plug of celite and the filtrate was washed successively with aq 

0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried (Na2SO4) and the 

solvent was removed in vacuo to provide a crude yellow solid.  The solid was purified by flash 

column chromatography on silica gel (5% EtOAc in hexanes) to provide the pure 

dihydrobebzofuran 100 in 92% yield as a white solid (141 mg):  mp: 95-97 ºC; 1H NMR (500 

MHz, CDCl3) δ 7.94 – 7.83 (m, 4H), 7.53 (dd, J = 11.4, 6.3 Hz, 3H), 7.24 (dd, J = 12.5, 7.4 Hz, 

2H), 6.95 (dd, J = 12.0, 7.7 Hz, 2H), 5.97 (t, J = 8.9 Hz, 1H), 3.74 (dd, J = 15.6, 9.6 Hz, 1H), 

3.34 (dd, J = 15.6, 8.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 159.72, 139.27, 133.22, 133.15, 

128.72, 128.30, 128.07, 127.75, 126.51, 126.34, 126.12, 124.95, 124.75, 123.63, 120.77, 109.48, 

84.20, 38.47; HRMS (ESI) (M + H), Calcd. for C18H15O 247.1123; Found 247.1126 

2-Methyl-2-(naphthalen-2-yl)-2,3-dihydrobenzofuran (101, Table 7-2, entry 8) 

 

The 2-iodophenol (137.3 mg, 0.624 mmol, 1 eq), 2-(prop-1-en-2-yl)naphthalene (105 mg, 0.624 

mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s palladacycle (14.6 

mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and oxygen free 

dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a septum and 

the mixture was heated to 110 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added in one 

portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude off-white solid.  The solid 
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was purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide 

the pure dihydrobenzofuran 101 in 94% yield as a white solid (152 mg):  mp: 103-104 ºC; 1H 

NMR (300 MHz, CDCl3) δ 7.99 (s, 1H), 7.86 (m, 3H), 7.59 (dd, J = 8.6, 1.6 Hz, 1H), 7.50 (p, J = 

6.5 Hz, 2H), 7.23 – 7.13 (m, 2H), 6.99 (d, J = 7.9 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 3.57 (d, J = 

15.5 Hz, 1H), 3.47 (d, J = 15.5 Hz, 1H), 1.90 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 158.91, 

143.98, 133.12, 132.50, 128.33, 128.22, 127.55, 126.48, 126.22, 125.91, 125.11, 123.32, 122.91, 

120.53, 109.68, 89.21, 44.67, 29.21; HRMS (ESI) (M + H), Calcd. for C19H17O 261.1279; Found 

261.1281 

Methyl 2-(benzo[b]thiophen-2-yl)-2,3-dihydrobenzofuran-5-carboxylate (102, Table 7-2, 

entry 9) 

 

The methyl 4-hydroxy-3-iodobenzoate (173.53 mg, 0.624 mmol, 1 eq), 2-

vinylbenzo[b]thiophene (100 mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 

eq), and Herrmann’s palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial 

which contained dry and oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  

The vial was sealed with a septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and 

EtOAc (10mL) was added in one portion.  The suspension was filtered through a plug of celite 

and the filtrate was washed successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  

The organic layer was dried (Na2SO4) and the solvent was removed in vacuo to provide a crude 

yellow solid.  The solid was purified by flash column chromatography on silica gel (5% EtOAc 

in hexanes) to provide the pure product in 72% yield as a white solid (140 mg):  mp: 140-142 oC; 
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1H NMR (300 MHz, CDCl3)  7.95-7.97 (m, 2H), 7.52-7.83 (m, 2H), 7.32-7.40 (m, 3H), 6.91 (d, 

J = 8.7 Hz, 1H), 6.16 (t, J = 7.8 Hz, 1H), 3.91 (s, 3H), 3.75 (dd, J = 9.3, 15.9 Hz, 1H), 3.47 (dd, J 

= 7.2, 15.9 Hz, 1H); 13C NMR (75 MHz, CDCl3)  166.8, 162.8, 144.3, 139.6, 139.1, 131.4, 

126.7, 126.4, 124.7, 124.5, 123.8, 123.3, 122.5, 121.8, 109.4, 81.4, 51.9, 37.5; HRMS (ESI-TOF 

m/z) for C18H14O3S calcd 311.0730 found 311.0736 (M+H)+. 

Methyl 2,3-dihydro-[2,2'-bibenzofuran]-5-carboxylate (103, Table 7-2, entry 10) 

 

The methyl 4-hydroxy-3-iodobenzoate (173.53 mg, 0.624 mmol, 1 eq), 2-vinylbenzofuran (90 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure methyl ester dihydrobenzofuran 103 in 77% yield as a white solid (142 mg):  mp: 102-104 

oC; 1H NMR (300 MHz, CDCl3)  7.93-7.96 (m, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 7.8 

Hz, 1H), 7.22-7.35 (m, 2H), 6.88 (d, J = 8.4 Hz, 1H), 6.81 (s, 1H), 5.98 (t, J = 8.7 Hz, 1H), 3.91 

(s, 3H), 3.63 (d, J = 9.6 Hz, 2H); 13C NMR (75 MHz, CDCl3)  166.8, 162.9, 155.2, 154.7, 
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131.3, 127.7, 127.6, 126.7, 126.5, 124.3, 123.3, 123.0, 121.3, 111.5, 109.3, 105.0, 78.4, 51.9, 

33.7; HRMS (ESI-TOF m/z) for C18H14O4 calcd 295.0975 found 295.0965 (M+H)+. 

Methyl 2-(naphthalen-2-yl)-2,3-dihydrobenzofuran-5-carboxylate (104, Table 7-2, entry 11) 

 

The methyl 4-hydroxy-3-iodobenzoate (173.53 mg, 0.624 mmol, 1 eq), 2-vinylnaphthalene (96.3 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 110 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure product in 82% yield as a white solid (155 mg):  mp: 120-122 oC; 1H NMR (300 MHz, 

CDCl3)  7.84-7.96 (m, 6H), 7.44-7.48 (m, 3H), 6.92 (d, J = 8.4 Hz, 1H), 6.01 (t, J = 8.4 Hz, 

1H), 3.89 (s, 3H), 3.74 (dd, J = 9.6, 15.6 Hz, 1H), 3.32 (dd, J = 7.5, 15.6 Hz, 1H); 13C NMR (75 

MHz, CDCl3)  166.9, 163.7, 138.4, 133.2, 133.1, 131.3, 128.8, 128.1, 128.0, 127.7, 126.9, 

126.7, 126.4, 126.2, 124.8, 124.7, 123.3, 123.0, 109.1, 85.3, 51.8, 37.6, 29.7; HRMS (ESI-TOF 

m/z) for C20H16O3 calcd 305.1160 found 305.1172 (M+H)+.   
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Methyl 2-methyl-2-(naphthalen-2-yl)-2,3-dihydrobenzofuran-5-carboxylate (105, Table 7-2, 

entry 12) 

 

The methyl 4-hydroxy-3-iodobenzoate (173.5 mg, 0.624 mmol, 1 eq), 2-(prop-1-en-2-

yl)naphthalene (105 mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and 

Herrmann’s palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which 

contained dry and oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial 

was sealed with a septum and the mixture was heated to 110 ºC for 3 h, cooled to rt, and EtOAc 

(10mL) was added in one portion.  The suspension was filtered through a plug of celite and the 

filtrate was washed successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The 

organic layer was dried (Na2SO4) and the solvent was removed in vacuo to provide a crude off-

white solid.  The solid was purified by flash column chromatography on silica gel (5% EtOAc in 

hexanes) to provide the pure methyl ester dihydrobenzofuran 105 in 91% yield as a white solid 

(181 mg):  mp: 125-126 ºC; 1H NMR (300 MHz, CDCl3) δ 8.01 – 7.91 (m, 2H), 7.91 – 7.81 (m, 

4H), 7.60 – 7.46 (m, 3H), 6.98 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 3.58 (d, J = 15.6 Hz, 1H), 3.48 

(d, J = 15.6 Hz, 1H), 1.90 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 166.98, 162.89, 143.15, 133.03, 

132.55, 131.30, 128.49, 128.19, 127.55, 126.98, 126.94, 126.36, 126.09, 123.00, 122.83, 109.36, 

90.95, 51.83, 43.93, 29.19; HRMS (ESI) (M + H), Calcd. for C21H19O3 319.1334; Found 

319.1336 
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Methyl 2-(naphthalen-2-yl)benzofuran-5-carboxylate (107, Table 7-4, entry 1) 

 

The methyl 4-hydroxy-3-iodobenzoate (173.53 mg, 0.624 mmol, 1 eq), 2-vinylnaphthalene (96.3 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 70 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure benzofuran 107 in 75% yield as a white solid (141.5 mg):  mp: 188-190 oC; 1H NMR (300 

MHz, CDCl3)  8.38 (s, 1H), 8.35 (s, 1H), 8.04 (dd, J = 1.5, 8.7 Hz, 1H), 7.84-7.95 (m, 4H), 

7.49-7.60 (m, 3H), 7.18 (s, 1H), 3.96 (s, 3H); 13C NMR (75 MHz, CDCl3)  167.4, 157.6, 157.5, 

133.6, 133.5, 129.4, 128.7, 128.6, 127.9, 127.2, 126.9, 126.3, 125.5, 124.3, 123.4, 122.8, 111.1, 

102.2, 52.2; HRMS (ESI-TOF m/z) for C20H14O3 calcd 303.1006 found 303.1016 (M+H)+. 

Methyl (E)-4-hydroxy-3-(2-(naphthalen-2-yl)vinyl)benzoate (108, Table 7-4, entry 3) 
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The methyl 4-hydroxy-3-iodobenzoate (173.53 mg, 0.624 mmol, 1 eq), 2-vinylnaphthalene (96.3 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 140 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure hydroxyl stilbene 108 in 86% yield as a white solid (163 mg):  mp: 193-195 oC; 1H NMR 

(300 MHz, DMSOD6)  10.81 (s, 1H), 8.23 (s, 1H), 8.05 (s, 1H), 7.84-7.93 (m, 4H), 7.75 (dd, J 

= 1.5, 8.4 Hz, 1H), 7.45-7.54 (m, 4H), 7.00 (d, J = 8.4 Hz, 1H), 3.84 (s, 3H); 13C NMR (75 MHz, 

CDCl3)  166.5, 159.7, 135.3, 133.7, 132.9, 130.4, 129.6, 128.7, 128.6, 128.3, 128.0, 126.8, 

126.7, 126.4, 124.4, 124.0, 123.7, 121.1, 116.3, 51.9; HRMS (ESI-TOF m/z) for C20H16O3 calcd 

305.1180 found 305.1172 (M+H)+. 

2-(Benzo[b]thiophen-2-yl)-7-methoxy-2,3-dihydrobenzofuran (118, Table 7-5, entry 2) 

 

The 2-bromo-6-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 
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oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure methoxy dihydrobenzofuran 118 in 83% yield as a white solid (146 mg): mp: 106-107 ºC; 

1H NMR (300 MHz, CDCl3) δ 7.87 – 7.78 (m, 1H), 7.78 – 7.72 (m, 1H), 7.43 – 7.29 (m, 3H), 

6.97 – 6.79 (m, 3H), 6.18 – 6.05 (m, 1H), 3.93 (s, 3H), 3.73 (dd, J = 15.5, 9.3 Hz, 1H), 3.48 (dd, 

J = 15.5, 7.6 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 147.32, 145.08, 144.67, 139.68, 139.26, 

127.18, 124.50, 124.36, 123.68, 122.47, 121.74, 121.69, 117.07, 111.81, 80.94, 56.12, 38.75; 

HRMS (ESI) (M + H), Calcd. for C17H15O2S 283.0793; Found 283.0789 

2-(Benzo[b]thiophen-2-yl)-6-methoxy-2,3-dihydrobenzofuran (119, Table 7-5, entry 3) 

 

The 2-bromo-5-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 
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(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 

pure methoxy dihydroxybenzofuran 119 in 84% yield as a white solid (148 mg):  mp: 100-101 

ºC; 1H NMR (300 MHz, CDCl3) δ 7.87 – 7.79 (m, 1H), 7.79 – 7.68 (m, 1H), 7.41 – 7.30 (m, 3H), 

7.12 (d, J = 7.9 Hz, 1H), 6.56 – 6.46 (m, 2H), 6.08 (dd, J = 9.0, 7.4 Hz, 1H), 3.81 (s, 3H), 3.65 

(dd, J = 15.1, 9.2 Hz, 1H), 3.37 (dd, J = 15.1, 7.1 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 160.64, 

160.17, 145.38, 139.61, 139.24, 124.86, 124.52, 124.40, 123.67, 122.48, 121.38, 117.76, 106.65, 

96.43, 81.25, 55.53, 37.64; HRMS (ESI) (M + H), Calcd. for C17H15O2S 283.0793; Found 

283.0798 

2-(Benzo[b]thiophen-2-yl)-4-methoxy-2,3-dihydrobenzofuran (120, Table 7-5, entry 4) 

 

The 2-bromo-3-methoxyphenol (126.7 mg, 0.624 mmol, 1 eq), 2-vinylbenzo[b]thiophene (100 

mg, 0.624 mmol, 1 eq), cesium carbonate (407 mg, 1.248 mmol, 2 eq), and Herrmann’s 

palladacycle (14.6 mg, 0.0156 mmol, 0.025 eq) were charged to a vial which contained dry and 

oxygen free dimethylacetamide (3 mL) under an argon atmosphere.  The vial was sealed with a 

septum and the mixture was heated to 130 ºC for 3 h, cooled to rt, and EtOAc (10mL) was added 

in one portion.  The suspension was filtered through a plug of celite and the filtrate was washed 

successively with aq 0.5 N HCl (2 x 10 mL) and brine (2 x 10 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo to provide a crude yellow solid.  The solid was 

purified by flash column chromatography on silica gel (5% EtOAc in hexanes) to provide the 
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pure product in 65% yield as a white solid (114 mg):  mp: 110-112 ºC; 1H NMR (300 MHz, 

CDCl3) δ 7.87 – 7.79 (m, 1H), 7.79 – 7.72 (m, 1H), 7.42 – 7.29 (m, 3H), 7.17 (t, J = 8.1 Hz, 1H), 

6.58 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 8.3 Hz, 1H), 6.15 – 6.04 (m, 1H), 3.87 (s, 3H), 3.67 (dd, J = 

15.7, 9.4 Hz, 1H), 3.39 (dd, J = 15.7, 7.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 160.20, 156.53, 

145.51, 139.66, 139.28, 129.47, 124.47, 124.37, 123.67, 122.47, 121.32, 112.91, 103.49, 102.96, 

80.81, 55.43, 35.71; HRMS (ESI) (M + H), Calcd. for C17H15O2S 283.0793; Found 283.0794 
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CHAPTER EIGHT 

INTRODUCTION AND BACKGROUND 

I. INTRODUCTION TO GABA AND GABA RECEPTORS. 

Gamma (γ)-aminobutyric acid (GABA, Figure 8-1) is the chief inhibitory 

neurotransmitter in the mammalian central nervous system.1  GABA binding to specific 

transmembrane receptors in the plasma membrane is associated with the opening of ion channels 

that allow the flow of either negatively charged chloride ions into the cell or positively charged 

potassium ions out of the cell.2  This negative change in transmembrane potential generally 

causes hyperpolarization of the neuron.3  Three receptor classes for GABA are known, the 

GABAA receptor4, in which the receptor is part of a ligand-gated ion channel complex and the 

GABAB receptor5, G protein-coupled receptors that open or close ion channels via intermediary 

G proteins.  There are also GABAC receptors that are ligand gated, but devoid of the allosteric 

benzodiazepine binding site of interest; GABAC receptors are also known as GABAA-rho 

receptors and some consider them a subset of GABAA
6.  Discussed in this work are ligands that 

selectively activate specific α6β3γ2 GABAA receptors via the allosteric benzodiazepine binding 

site to provide important physiological effects. 

Figure 8-1: Structure of Gamma (γ)-Aminobutyric acid (GABA). 
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GABAergic neurons, neurons that produce GABA, exhibit chiefly inhibitory action at 

receptors in adult vertebrates.7  Medium spiny neurons, depicted in Figure 8-2, are a typical 

example of GABAergic cells in the central nervous system (CNS).8  GABA is synthesized in 

these neurons and others via enzyme catalyzed decarboxylation of glutamic acid (Scheme 8-1) 

and does not readily pass the blood-brain-barrier.9 

Figure 8-2: Medium spiny cells (mouse brain).10 (Modified from the Figure in reference 10) 

 

Scheme 8-1: Biosynthesis of GABA. 
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 The GABAA receptor, a transmembrane heteropentameric ion channel, has been shown to 

affect a number of pharmacological responses when activated.11  These include, but are not 

limited to, anxiety,12 epilepsy,13 insomnia,14 depression,15 bipolar disorder,16-17 schizophrenia,18 

and Alzheimer’s disease19.  The response is dependent on the specific composition of GABAA 

subunits which make up the GABAA receptor.20-21  To date, there are currently 19 individual 

GABAA receptor subunits which have been identified; α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3
22 with 

additional unidentified subunits plausible.  These subunits can arrange in either a hetero- or 

homo-pentameric ring.  Currently, only a small handful of subunit formations have been 

positively identified to form a functional receptor, with many others highly likely or plausible.23-

24  The most common and intensively studied arrangement of the GABAA receptor consists of α1-

6β1-3γ2 in a 2:2:1 stoichiometric ratio.25 

The GABAA receptor, much like other members of the cys-loop superfamily, possesses a 

characteristic loop formed by 13 highly conserved amino acids between two cysteine (Cys) 

residues which form a disulfide bond near the N-terminal extracellular domain of the alpha 

subunit pictured in Figure 8-3.12, 26  These monomeric units form the pentameric chloride ion 

channel also pictured in Figure 8-3. 
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Figure 8-3: Structure of the GABAA receptor. 

 

The GABAA receptor has numerous binding sites located at the synaptic cleft and also 

within the pore.  Activation of the GABAA receptor complex can occur from the binding of a 

variety of compound classes at these various sites including β-carbolines27, barbiturates28, 

ethanol29, and benzodiazepines30, as well as pyrazoloquinolinones among others.31-32  Located at 

the synaptic cleft of the abundant α1-6β1-3γ2 receptors, arranged αβαβγ clockwise when viewed 

from the extracellular region (Figure 8-4), are the GABA binding sites at the α-β+ interfaces; the 

benzodiazepine binding site (BZs) is found at the γ-α+ interface.33-35  The more recently 

discovered CGS 9895 binding site is located at the β-α+ interface in which a number of 

pyrazoloquinolinones have been shown to bind to and activate the GABAA receptor.36-37  In 

addition, neurosteroids38, ethanol39, and other compounds may also bind in the interior of the 

pore. 
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Figure 8-4: Binding sites on the GABAA receptor. 

 

 

Figure 8-5: Structures of diazepam and flumazenil. 

 

Traditional benzodiazepines such as diazepam (Figure 8-5) which contain the pendent 

phenyl C ring, tend to bind non-selectively to the α1-3,5β1-3γ2 GABAA receptors at the BZ site.34, 40  
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This class of compounds has been frequently prescribed as a medication for various CNS 

disorders such as anxiety and convulsions for over half a century.41-42  They offer many 

advantages in drug therapy since they are rapidly absorbed though the gastrointestinal tract when 

taken orally and generally reach maximum blood concentrations within a couple hours of 

ingestion.43-44  In addition, benzodiazepines are able to readily cross the blood-brain-barrier and 

be distributed throughout the brain.45  When used as an emergency anticonvulsant, certain 

benzodiazepines can reach levels of detection within five minutes, but tolerance to this effect 

develops very rapidly in humans.46  Other advantages of benzodiazepines include minimal liver 

microsomal enzyme inhibition which can cause drug-drug interactions47, and they lack serious 

toxicity concerns even at high concentrations48.  Unfortunately, there are also a number of 

adverse effects that can be produced by benzodiazepines such as drowsiness, sedation, ataxia, 

muscle-relaxation, amnesia, dependence, withdrawal issues, as well as tolerance to the 

anticonvulsant effects limiting their use for chronic treatment of convulsions.49-51  These adverse 

effects are a result of benzodiazepines which are non-selective and activate multiple GABAA 

receptor subtypes simultaneously. 

The pharmacological response to the activation of the α1-6β1-3γ2-GABAA receptors is 

dependent on the composition of the subunits that form the receptor (Table 8-1), where the α 

subunit in regard to Bz modulation is the major determining factor.52  Over the past decades, 

studies using GABAA receptor single-point knock-in mice have been able to identify the actions 

of the different α subunits located within the brain by rendering particular benzodiazepine 

receptors insensitive to modulation with benzodiazepines.23  These studies have been done by 

replacing a single histidine amino acid of the α subunit with an arginine.  In both α1 and α2 
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subunits, the replacement is a H101R, while the replacements are H126R for α3 and H105R in α5 

subunits.53 

Table 8-1: Subtype selective effects of GABAA receptors. 

Subtype Associated Effect 
  Sedation, anterograde amnesia, some 

anticonvulsant action, ataxia, tolerance, 
and addiction. 

 Anxiolytic, perhaps hypnotic (EEG), 
maybe some muscle relaxation at higher 

doses, antihyperalgesic effects. 

 Some anxiolytic action, anticonvulsant 
action at higher doses.  Maybe some 
muscle relaxation at higher doses. 

 Diazepam-insensitive (DI) site. 

 Cognition, temporal and spatial memory 
(Maybe memory component of anxiety). 

 Diazepam-insensitive (DI) site. 

 

GABAA receptors which contain the α1 subunit have been shown to mediate anterograde 

amnesia, motor impairment, and sedative effects, as well as part of the anticonvulsant action.21  

The anxiolytic action and some anticonvulsant activity stems from the activation of the α2 

subunits54, while contribution to the anxiolytic-like effects and possible muscle relaxation at 

higher receptor occupancy appear to involve agonist action at the α3 subunit.55  Memory and 

spatial learning, as well as other cognitive effects, are influenced by the α5 subtype.56  

Antihyperalgesic effects also stem from the α2 subunit57; however, the site of this action appears 

to occur, at least with Hz-166, from activation of the GABAA receptors that are located primarily 

in the spinal cord as opposed to the brain.57  A recent triple-point knock-in mutation study was 
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carried out and was shown to confirm that the specific α2 subunit was the source of the 

antihyperalgesic response.58 

The abundance of specific α subtype of the α1-6β2/3γ2 GABAA receptors are not equally 

distributed throughout the brain. Many studies have reported using [3H]-muscimol binding 

studies that are followed by immunoprecipitation with specific subunit antibodies in rat brains59, 

immunohistochemistry60, or by monitoring the total decrease in GABAA receptors after knockout 

studies in mice61.  The α1 subtype is the most prevalent throughout the brain and accounts for 40-

50% of the α GABAA subtypes.62  The α2 and α3 subtype assemblies account for up to, but not 

more than, 35% and 14%, respectively and are found in the mesolimbic system.63  Receptors 

containing the α5 subtype are the least abundant of the diazepam-sensitive GABAA receptors 

accounting for about 5% of all α subtypes within the brain, the majority of which are located in 

the hippocampus.64 

In addition to the diazepam-sensitive GABAA receptor subtypes (α1-3,5β2/3γ2), there are 

also two diazepam-insensitive sites in which the binding pocket cannot accommodate the 

pendent phenyl (C) ring of various benzodiazepines.  Benzodiazepines, such as flumazenil 

(Figure 8-5), which lack the pendent C ring can bind to both the diazepam-sensitive and 

diazepam-insensitive GABAA receptor binding sites. These two DI subtypes are the α4 and α6 

subtypes and they account for a smaller percentage of functional GABAA receptors than the 

diazepam-sensitive subtypes. The α4 subtype makes up 6% of all subtypes65 and the α6 subtype is 

found primarily in the cerebellum and the olfactory bulb.66  Although these have been studied, 

the pharmacological effects that are affected by benzodiazepines at these two subtypes are still 

relatively unknown.67  GABAA receptors are also found in the peripheral nervous system. A 

major effect of GABA here involves tonic inhibition,68 but potential uses of benzodiazepines 
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targeting GABAA receptors in the peripheral nervous system have been noted within the lungs, 

intestines, and other areas of the body.69-70 

 The diazepam-insensitive sites are of particular interest due to the lack of data on the role 

they play in vivo.  The work herein targets the α6 diazepam-insensitive site and aims to determine 

the biological response of the first α6 selective compounds discovered, compounds originally 

prepared at Milwaukee as potential selective GABAA receptor agents.71  These compounds are 

related to the earlier discussed pyrazoloquinoline ‘CGS’ compounds discovered in the 1970’s 

and 1980’s that were found to elicit similar effects to other GABAA receptor ligands.  The CGS 

8216 and CGS 9896 ligands (Figure 8-6) represent some of the most investigated 

pyrazoloquinolines of the CGS series.72  Both were found to elicit long-lived anxiolytic effects 

with less sedation when compared to traditional benzodiazepines.  The radioligand binding 

assays on CGS 8216 confirm potent binding at all receptor subtypes α1-6ß3γ2, with the least 

potent Ki found to be at the α6 receptor subtype (Table 8-2).  CGS 9896 was found to also bind 

strongly to brain membranes, with an average Ki of 0.5 nM (Table 8-1). 

Figure 8-6: Structures of CGS 8216 and CGS 9896. 
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Table 8-2: Binding profiles of CGS compounds. 

 Ki (nM) 
Compound α1ß3γ2 α2ß3γ2 α3ß3γ2 α4ß3γ2 α5ß3γ2 α6ß3γ2 
CGS 8216 0.05 0.08 0.12 35 0.25 17 
CGS 9896 0.5 ± 0.1 (brain membranes) 

 

 Receptor binding, however, does not necessarily cause an allosteric change in the binding 

site necessary for activation of the chloride ion channel.  Based on in vivo data in mice, it was 

determined that CGS 8216 exhibited the properties of a weak inverse agonist while CGS 9896 

exhibited properties of a mixed agonist/antagonist, very different activities for compounds that 

clearly bound well to most receptor subtypes.  Further in vitro testing via frog oocytes revealed 

that CGS 8216 activated the ion channel weakly across the spectrum of α1-5ß3γ2 subtypes while it 

was somewhat selective for the α6ß3γ2 subtype (Figure 8-7).  CGS 9896, on the other hand, 

exhibited a lack of selectivity, which presumably leads to its classification as a mixed 

agonist/antagonist in vivo (Figure 8-7).    The in vivo properties observed for both CGS 8216 and 

CGS 9896 could also be mediated through other receptor subtypes that have not yet been tested. 

Figure 8-7: Alpha selectivity of CGS 8216 and CGS 9896 at α1-6ß3γ2 GABAA receptors. 
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The pharmacological response due to the modulation of ligands is dependent not only on 

which α receptor subtype the ligand binds to, but also the effect it has on the concentration influx 

of chloride ions through the receptor pore.21  Under normal physiological conditions, a neuron 

may become hyperpolarized leading to an action potential and a signal is fired (Figure 8-8). As 

GABA binds to the GABAA receptor and causes a conformational change in the receptor, 

chloride ions are allowed to travel through the pore. These chloride ions flow into the 

postsynaptic area and lower the membrane potential, which decreases the likelihood of an action 

potential being reached and inhibits neuronal signaling. Benzodiazepines and other allosteric 

ligands can influence the chloride ion flux in three separate ways; however, GABA must also be 

present since these ligands alone cannot induce a channel opening themselves.73  A positive 

allosteric modulator (PAM) alters the conformation of the GABAA receptor which results in an 

increase of chloride ion flux, further inhibiting neuronal firing. PAMs are different from 

orthosteric agonists such as muscimol, since agonists bind to the GABA binding site while all 

allosteric modulators bind at a separate site.74  Negative allosteric modulators (NAMs) are also 

termed “inverse agonists” because the influx of chloride ions is reduced, increasing the chance of 

the action potential being reached and firing.75  The third class of ligands are null modulators, 

more commonly referred to as antagonists, which have no discernable effect on the influx of 

chloride ions. Instead, these antagonists generally have a strong binding affinity for the 

benzodiazepine receptor and limit the ability for other ligands to bind and influence the 

membrane potential.37 
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Figure 8-8: Membrane potential over time. 

 

II. ALPHA 6 Bz/GABA(A) POTENTIAL BIOLOGICAL ACTIVITY. 

Prior to the synthesis and discovery of α6 selective PAMs, which are to be discussed in 

the next chapter, determination of the biological response attributed to α6 GABAA receptors was 

generally accomplished by gene knockout experiments in mice.76  These gene-disruption 

methods leave mice with the inability to construct the α6 polypeptide.  Binding studies which 

involved [3H]Ro15-4513 (Figure 8-9) revealed that the homozygous α6 knockout mice still have 

many binding sites for benzodiazepines, however, the displacement via diazepam was markedly 

different in the homozygous α6 knockout mice compared to wild-type (Figure 8-10). 
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Figure 8-9: Structure and binding of Ro15-4513 to BZ/GABAA receptors. 
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 Ki (nM) 
Compound α1ß3γ2 α2ß3γ2 α3ß3γ2 α4ß3γ2 α5ß3γ2 α6ß3γ2 
Ro15-4513 4.8±1.2 7.3±3.2 2.4±1.4 0.13±0.05 5.1±0.9 8.2±1.7 

 

 Examination of these binding data indicate that Ro15-4513 binds relatively strongly to all 

α1-6ß3γ2 receptors, unlike diazepam which does not bind strongly to the diazepam-insensitive α4 

and α6 sites.77  Saturation with diazepam can therefore help distinguish the presence of 

diazepam-insensitive sites via displacement studies.  Analysis of Figure 8-10 shows the 

displacement of Ro15-4513 by diazepam in both wild-type (+/+), heterozygous α6 knockout 

mice (+/-), and homozygous α6 knockout mice.  Row “a” is total binding of [3H]Ro15-4513, row 

“b” is displacement via diazepam, and row “c” is thionin staining.76  Examination of the results 

show that in the homozygous knockout mice (-/-) Ro15-4513 was completely displaced by 

diazepam whereas in the wild-type (+/+) mice Ro15-4513 was displaced in most regions, but not 

in the cerebral granule cell layer.  The cerebral granule layer is thought to contain the highest 

concentration of α6 receptors.  It is important to note, however, that data collected from the 

homozygous α6 knockout mice suggested that the total number of GABAA receptors was not 

significantly different from wild-type, which suggested that other GABAA subunits substitute for 
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the missing α6 subunits via compensatory effects.  This up-regulation of other subunits could 

cause changes in the behavior of the mice that renders the genetic study incomplete. 

Figure 8-10: [3H]Ro15-4513 binding and displacement with diazepam. 

 

Many of these studies have focused on ethanol tolerance in mice, with mixed results.78  

Some other studies have shown an increased level of ataxia and impairment from diazepam in 

the α6 knockout mice.79  

Identification of mutations in the α6 gene in humans has also led to possible disease 

treatments for childhood absence epilepsy80, psychological stress81, alcoholism82, and obesity83.  

These mutations effectively cause a down-regulation in the number of α6 receptors in the CNS, 
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and the wide variety of diseases associated with these mutations suggests that the α6 site may be 

an important target for future drug discovery research.84 

III. CONCLUSION. 

GABAA receptors are a diverse set of receptors located in the CNS that mediate a number 

of different biological processes.  The pentameric transmembrane receptor consists of 5 subunits 

arranged around a central pore.  The pore opening and closing mediates the flow of chloride 

anions into and out of the cells, causing an inhibitory response.  The bulk of these receptors are 

comprised of α1-6ß3γ2 subunits, and each α unit effects distinct biological effects.  This work is 

focused on the α6 receptor, a so-called diazepam-insensitive receptor subclass that has only been 

studied by in vivo knockout experiments in mice or population studies that have identified 

mutations in the α6 gene. 

Novel pyrazoloquinolines ligands similar to the CGS series have been discovered that, 

unlike the prior CGS series, are subtype selective for the α6ß3γ2 receptor.  These ligands have 

proven that the α6 subtype, much like the other GABAA subtypes, has a diverse and interesting 

biological profile.  The SAR and biological effects of these ligands will be presented in the next 

chapter. 

 

 

 

 



 

298 
 

CHAPTER NINE 

DESIGN, SYNTHESIS, AND SCALE-UP OF NOVEL 

PYRAZOLOQUINOLINONES: α6 SUBTYPE SELECTIVE POSITIVE 

ALLOSTERIC MODULATORS 

I. INTRODUCTION TO PYRAZOLOQUINOLINONES 

Drug discovery efforts into the CGS series of compounds led to a variety of 

pyrazoloquinilones synthesized in an attempt to discover new and interesting subtype selective 

ligands.  Many of these compounds bound to BzR with extremely high affinity, some of which 

with greater affinity then diazepam such as the previously discussed CGS 9896.  After this 

discovery, a wide range of pyrazoloquinolinones have been designed and synthesized to correlate 

the substitution pattern and structure with the intrinsic activity of a ligand.  Thienyl-

pyrazoloquinolinone (S-135, Figure 9-1) was reported by Takada and Shindo as a potent and 

orally active inverse agonist at BzR, however the related regioisomers S1 and S2 (Figure 9-1) 

demonstrated weak inverse agonist and agonist activity, respectively.  The agonistic activity of 

S2 (R = methyl) was also less potent then CGS 9896.  A more thorough structure-activity 

relationship (SAR) study into introduction of alkyl substituents of increasing size onto the parent 

thienyl-pyrazoloquinolinone nucleus indicated that activity varied from inverse agonist, to 

antagonist/null modulator, to agonist depending on the size of the alkyl group. 
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Figure 9-1: Structure of S-135 and other related thienyl-pyrazoloquinolinones. 

 

 Although many of these original pyrazoloquinolinone ligands were active in vivo as 

anxiolytic/anticonvulsant agents and were well absorbed and crossed the blood-brain-barrier, the 

future for this series as clinical agents was limited due to very poor water solubility.  However, 

the unique topology of the pyrazoloquinolinone core structure accompanied with potent in vitro 

affinity made them an excellent template for further refinement of pharmacophore models for the 

GABAA receptor.  Depicted in Figure 9-2 is CGS 9896 (dotted line) and diazepam (thick line) in 

a unified pharmacophore model based on the binding affinity of numerous other ligands.  

Brackets (i.e. [A]) represent each ring system (see Figure 9-1) for clarity.  Sites H1 and H2 

represent hydrogen bond donor sites on the receptor protein complex while A2 represents a 

hydrogen bond acceptor site necessary for potent inverse activity in vivo.  L1, L2, L3 and LDi 

are four lipophilic regions in the binding pharmacophore.  Descriptors S1, S2, and S3 are regions 

of negative steric repulsion with the protein. 
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Figure 9-2: The Milwaukee-based unified pharmacophore model. 

 

 Based on this fit, the anchor points A2, H1, H2, and L1 could be employed to estimate 

the distance between the various receptor descriptors.  The pyrazoloquinilinones fit into this 

model almost perfectly, compared to other ligands.  Moreover, SAR studies aimed at modifying 

the hydrogen bond donor characteristics of the NH in ring B gave compounds with 3 orders of 

magnitude less binding affinity, reinforcing the idea that the A2 site is a hydrogen bond acceptor.  

The H1 site, thought to be hydrogen bond donor site, was also investigated by an SAR by 

replacing the carbonyl group in ring C with other non-hydrogen bond accepting functional 

groups.  This also resulted in a loss of binding affinity.  This strong in silico based evidence 



 

301 
 

prompted further SAR studies into novel pyrazoloquinilinones via use of the unified 

pharmacophore/receptor model.68 

Figure 9-3: Schematic representation of pyrazoloquinolinones in the receptor model. 

 

 Based on the strong fit of the pyrazoloquinilinone backbone to the A2, H1, H2, and L1 

receptor descriptors, synthesis of ligands that probe the LDi and L2 regions were explored.  A 

number of ligands were prepared with different substituents on both ring A and ring D.

a = 6.735Å; b = 9.980Å; c = 5.860Å
d = 5.734Å; e = 5.218Å; f = 7.317Å

H2

H1

A2

L1

L1 is 0.5 Å above the plane 

of the pyrazoloquinoline 

ring system.

a

b

c

d

e

f

H1 is on the plane of the 
pyrazoloquinoline ring 
system
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 Depicted in Table 9-1 are a number of ligands which bound strongly to most receptor 

subtypes, however selective binding was not observed.  As previously discussed, binding affinity 

data only accesses whether or not a ligand binds to a receptor, not the effect that the ligand has 

on the receptor.  Oocyte data, however, can distinguish between positive allosteric modulators, 

negative allosteric modulators (inverse agonists), and antagonists/null modulators.  The oocyte 

graphs for CGS 8216 and CGS 9896 are found in Chapter 8, the graphs for the rest of the 

compounds listed in Table 9-1 can be found below in Figure 9-4. 

Figure 9-4: Oocyte graphs for compounds listed in Table 9-1. 
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 Based on examination of these oocyte graphs, a variety of compounds showed some 

selectivity for α6 receptors including compounds 3, 4, 6, 7, 9, 10, and 11.  However, in many 
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cases these activities were either weak or only applicable at high concentrations.  In the case of 

Compound 6, however, this α6 selectivity was potent even down to the 100nM concentration, 

clearly the most selective α6 ligand discovered so far.  Importantly, 100-200nM was felt to be a 

pharmacologically relevant concentration.  Compound 11 was also of interest, although it was 

clearly not as selective at α6 at high concentrations, the strong agonist effect on α6 receptors at or 

around druggable ranges (100nM – 1 µM) also made it an interesting candidate for future work. 

II. SYNTHESIS OF PYRAZOLOQUINOLINONES 

1. Synthesis and scale-up of Compound 6 for pharmaceutical evaluation. 

The pyrazoloquinilinones discussed thus far were all synthesized in the past via the same 

method starting with the use of substituted amines followed later by heating with substituted aryl 

hydrazines.  This method is described in Scheme 9-1 below representing the synthesis of 

Compound 6. 

Scheme 9-1: Original synthesis of Compound 6. 
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 Since both Compound 6 and Compound 11 were of interest due to their α6 agonist 

subtype selective activity, scale-up to multi-gram quantities for more extensive in vivo biological 

screening was necessary.  The original synthesis, however, suffered from low yields that made 

scale-up difficult.  Several strategies were employed to increase the yield to a degree at which it 

was possible to synthesize multi-gram quantities of ligands 6 and 11 in a timely fashion. 

 The first process improvement, depicted in Scheme 9-2, centered around simply isolating 

the intermediate product 18 in the first step.  This was accomplished by heating amine 13 and 

diester 14 at 120 ºC under vacuum to afford 18 in nearly stoichiometric amounts.  After the 

reaction was complete, the mixture was cooled, which led to the precipitation of the product.  

This was followed by slurrying the solids in hexanes to permit filtration of the intermediate 18. 

Scheme 9-2: Process improvement in the synthesis of Compound 6 – first step. 

 

 The intermediate 18 was then slurried in diphenyl ether and heated to 250 ºC with a small 

amount of 4-tert-butylcatechol (4TBC) added as a potential antioxidant, which seemed to 

increase the overall yields for this step (Scheme 9-3).  The 4TBC also inhibits polymerization, 

which may also play a role at such high temperatures. 
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Scheme 9-3: Process improvements – second step. 

 

 Compound 15 was found to be incredibly insoluble in most solvents and was therefore 

used as is without further purification.  The original procedure involved heating in neat POCl3 

which generally led to excellent yields, however on a larger scale the removal of POCl3 was less 

practical and it was found that similarly excellent yields were obtained when using 2 equivalents 

of POCl3 in toluene (Scheme 9-4).  In this case, the chlorinated product 16, was simply isolated 

by removal of toluene after the reaction was complete.  Further purification could be 

accomplished by column chromatography or crystallization from EtOAc/hexanes if necessary; 

however, in general the product was pure enough at this stage to continue to the next step. 

Scheme 9-4: Process improvements – third step. 

 

 In the original synthesis free-base phenyl hydrazines were used to form the 5-member 

heterocyclic ring (Scheme 9-1).  While this worked well for many new analogs on small-scale, 

on scale-up low yields were observed and suspected to be due to decomposition of the phenyl 

hydrazine prior to conversion to the product.  Many phenylhydrazines, including 17, are more 
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readily purchased as the hydrochloride salts which are far more stable at room temperature.  It 

was found that using the hydrochloride salt and generating the free-base in situ by the addition of 

excess triethylamine (TEA) gave high yields of the final target ligand Compound 6 (Scheme 9-

5).  Problems associated with this step, however, included the production of 2 equivalents of 

triethylamine hydrochloride which could be difficult to fully remove from the final product. 

Scheme 9-5: Process improvements – final step. 

 

 Removal of triethylamine hydrochloride was generally accomplished via an aqueous 

crystallization method.  The Compound 6 was slurried and heated in ethanol (1g Compound 6 

/10mL EtOH) and water was slowly titrated into the slurry at reflux until a clear solution was 

obtained (generally 10-15% water by volume).  The solution was then cooled to room 

temperature and microcrystals began to form.  At room temperature the volume was doubled by 

addition of water, the slurry cooled to 0 ºC, and filtered.  In most cases this removed all traces of 

triethylamine hydrochloride.  In the case of Compound 11, purification by dissolution in DMSO 

and precipitation with water, however, was sometimes necessary to remove trace amounts of 

triethylamine hydrochloride. 

 These improvements permitted the efficient scale-up of both Compound 6 and 

Compound 11, necessary for synthesis of sufficient quantities for in vivo experiments to help 
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elucidate the role α6 subtypes play in the central nervous system.  In total, about 25 grams of 

both Compound 6 and Compound 11 were prepared via these methods. 

2. Design and synthesis of new analogs. 

 This new process permitted a more efficient synthesis of a number of new ligands.  These 

new ligands were designed to enhance potency, enhance metabolic stability, and/or increase 

water solubility by the addition of new functional groups to the ring A and/or ring D portions.  

Earlier SAR work had shown the core ring B/C functionalities were necessary for potent binding 

to the BZ receptor and thus were kept constant for this new SAR.  As previously discussed, 

based on the pharmacophore receptor model it seems as though functionalities in ring A and ring 

D protrude into a lipophilic pocket that is, in general, more accepting of a variety of 

functionalities.  The ligands synthesized in this work are detailed in Table 9-2. 

Table 9-2: New analogs synthesized for α6 subtype selective activity. 

    

 Compound R8 R7 R6 X9 X8 X7 X6 R4’ R3’ R2’ X3’ 

Compound 6  H OCH3 H C C C C OCH3 H H C 

Compound 11  Cl H H C C C C OCH3 H H C 

19 DK-I-56-1 H OCH3 H C C C C OCD3 H H C 

20 RV-I-029 H OCD3 H C C C C OCH3 H H C 

21 DK-I-60-3 H OCD3 H C C C C OCD3 H H C 

22 DK-I-94-1 H OCD3 H C C C C H OCD3 H C 

23 DK-I-88-1 H OCH3 H C C C C H H OCD3 C 

24 DK-I-90-1 H OCD3 H C C C C H H OCD3 C 
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25 CW-03-030 H OCH3 H C N C C OCH3 H H C 

26 DK-II-13-1 H OCH3 H C C C C OCH3 H H N 

27 DK-I-86-1 H OCD3 H C C C C OCH3 H H N 

28 DK-II-60-1 H OCH3 H C C C C OCD3 H H N 

29 RV-I-37 H OCD3 H C C C C H H H C 

30 MM-I-03 Br H F C C C C OCH3 H H C 

31 DK-I-93-1 Cl H H C C C C OCD3 H H C 

32 LAU 159 Cl H H C C C C H OCH3 H C 

33 DK-I-59-1 Cl H H C C C C H OCD3 H C 

34 LAU 165 Cl H H C C C C H H OCH3 C 

35 DK-I-87-1 Cl H H C C C C H H OCD3 C 

36 DK-II-18-1 Cl H H C C C C OCH3 H H N 

37 DK-II-59-1 Cl H H C C C C OCD3 H H N 

38 LAU 463 H Br H C C C C OCH3 H H C 

39 DK-I-58-1 H Br H C C C C OCD3 H H C 

40 DK-I-92-1 H Br H C C C C H OCD3 H C 

41 DK-I-89-1 H Br H C C C C H H OCD3 C 

42 DK-II-48-1 H Br H C C C C OCH3 H H N 

43 DK-II-58-1 H Br H C C C C OCD3 H H N 

44 LAU 176 OCH3 H H C C C C OCH3 H H C 

45 DK-I-95-3 OCD3 H H C C C C OCD3 H H C 

46 DK-I-97-1 OCD3 H H C C C C H OCD3 H C 

47 DK-98-1 OCD3 H H C C C C H H OCD3 C 

48 RV-I-071 H H H N C C C OCH3 H H H 

49 MM-I-06 H CF3 H C C C C OCH3 H H C 

50 MM-I-08 H CF3 H C C C C Cl H H C 

51 MM-I-09 H CF3 H C C C C NO2 H H C 

52 MM-I-10 H CF3 H C C C C OCF3 H H C 

53 MM-I-11 H CF3 H C C C C F H H C 

54 MM-I-12 H CF3 H C C C C H OCH3 H C 

55 MM-I-13 Br H F C C C C Cl H H C 

56 MM-I-18 Br H F C C C C F H H C 

57 CW-02-073 H OCH3 CH3 C C C C OCH3 H H C 

58 CW-02-078 H OCH3 CH3 C C C C H H H C 

59 CW-02-079 H OCH3 CH3 C C C C OCF3 H H C 

60 CW-02-082 H OCH3 H C C C C OCF3 H H C 

61 CW-03-033 H Cl H C N C C OCH3 H H C 
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 Early efforts to enhance metabolic stability by introduction of a deuterated methoxy 

group were gratifyingly successful, a more in-depth analysis of this increased stability will 

be presented in Chapter 10.  Ligands 19-24, 27-29, 31, 33, 35, 37, 39-41, 43, and 45-47 all 

contain a deuterated methoxy group in either ring A, ring D, or both rings.  Examination of early 

in vitro experiments indicated that the deuterated methoxy analogs had the same/very similar 

agonistic activity as the parent methoxy analogs (OCH3), as expected, thus many future analogs 

included deuterated methoxy groups to enhance metabolic stability. 

 Introduction of pyridine rings in either ring A or ring D was also explored in the hope of 

enhancing water solubility by synthesis of the hydrochloride salts, generally known to be more 

water soluble.  The pyridine analogs were indeed much more soluble in water then the related 

parent ligand, however, as of this report synthesis of the hydrochloride salts has proven difficult.  

Early in vitro testing, to also be presented in Chapter 10, showed that ring A pyridines, at least in 

the case of compound 25, do not retain potent α6 activity/selectivity.  Analogs substituted with 

ring D pyridine groups have been shown to retain activity and selectivity to α6, which provides 

potentially new more soluble compounds for in vivo experimentation.  In general, the pyridine 

analogs were found to ~20 times more soluble then the related analogs.  This is thought to be 

exclusively due to the polarity of the pyridine compounds, generally with in silico clogP values 

much lower than their parent counterparts.  For example, the clogP of Compound 6 is 2.06 

while the pyridine analog 26 has a clogP of 1.43, a significant difference on a logarithmic scale. 

 In general, CNS drugs tend to have high clogP values (~3).  This high lipophilicity 

permits these drugs to more easily cross the blood-brain-barrier, thus lowering the clogP in the 

case of pyridine analogs may influence in vivo activity negatively, however the rather rigid 

nature of these small organic molecules may allow them to still easily cross the blood-brain-
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barrier in lieu of lower lipophilicity, at which point the increased water solubility may prove 

useful. 

 A variety of other analogs were also prepared that probe different sites on ring A and ring 

D by substitution with typical medicinal chemistry techniques.  These included altering the 

electronic nature of the functionalities and/or altering the size of different functionalities. 

 It should be noted that this study is still in its infancy and many of the compounds 

reported have not yet been tested yet in the in vitro oocyte assay to determine activity and 

selectivity at α6 subtypes.  All biological data compiled thus far will be presented in Chapter 10 

for the compounds discussed above. 

III. CONCLUSION 

In conclusion, ligands were discovered for the first time that are selectively active at α6 

subtype selective GABA(A) receptors.  These receptors, up to this point, exhibited a relatively 

unknown function in the CNS that was only explored by experiments which involved mutations.  

The lead compounds, Compound 6 and Compound 11  were scaled up in sufficient quantities 

for extensive in vivo work and the important process improvements permitted for more efficient 

preparation of the lead compounds as well as new analogs. 

New analogs were designed with the goal of enhancing potency, metabolic stability, and 

water solubility.  The original CGS compounds (prepared by Ciba Geigy) discussed in Chapter 8 

also had very poor water solubility, this was part of the reason they were never marketed as 

replacements for benzodiazepines.  Work on the in vitro activity of many of these compounds is 

still on-going, however, a number of additional analogs with interesting in vitro properties have 



 

313 
 

been discovered since the initial discovery of Compound 6 and Compound 11 in Milwaukee.  

These new compounds will be discussed in the next chapter. 

IV. EXPERIMENTAL 

Both 1H and 13C NMR spectra were recorded on a Bruker DPX-300 or DRX-500 

instrument where noted.  HRMS scans were recorded with a Shimadzu LCMS-IT-TOF mass 

spectrometer or similar instruments.  Silica gel, unless otherwise noted, was employed for flash 

chromatography and TLC.  Anhydrous solvents were employed unless otherwise noted. 

Synthesis of Compounds by General Procedure A: A substituted aniline (1 mmol) was mixed 

thoroughly with DEEMM (1 mmol) and heated under argon to 120 ºC, at which point ethanol 

was distilled and removed from the reaction vessel. After heating the mixture for 2-3h and 

examination by TLC (30% EtOAc in hexanes) indicated complete consumption of the starting 

aniline, diphenyl ether was added and the reaction vessel was heated to 250 ºC for 2-3h. After 

complete cyclization to the desired quinoline the reaction vessel wass cooled to rt, hexanes were 

added, and the solid material which formed was filtered. No further purification was performed 

on this material. To the quinoline (1 mmol) was added POCl3 (10 eq) and the mixture was stirred 

at an appropriate temperature to give the chlorinated quinoline. The chlorinated quinoline was 

further purified by flash column chromatography (20% EtOAc in hexanes, silica gel) generally to 

furnish a white/off-white solid. The chlorinated quinoline (1 mmol) was mixed with xylene, 

triethylamine (2.5 mmol), and an appropriate hydrazine hydrochloride salt (1.5 mmol) and 

heated to reflux for 3-24h. When the reaction was complete by TLC (10% MeOH in EtOAc) the 

mixture was cooled to 0 ºC, filtered, and the solid was washed with copious amounts of water. 

The solid was then washed with hexanes and allowed to dry. The solid was then recrystallized, 
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generally from a 5:1 mixture of EtOH:water, to furnish fluffy yellow/orange/red microcrystals of 

suitable purity for biological testing. Further purification can be accomplished by dissolving the 

solid in DMSO and slowly adding water and/or dissolving it in a basic solution (pH > 10) and 

slowly acidifying to pH < 6 to precipitate out the product.  

Ethyl-4-hydroxy-7-methoxy (d3) quinolone-3-carboxylate. A mixture of 3-(methoxy-

d3)aniline (1.26 g, 0.01 mol) and diethyl ethoxy methylenemalonate (DEMM, 4.32 g, 0.02 mol) 

in 50 mL of diphenyl ether were heated to 120°C for 1h. The ethanol which formed was distilled 

off. The solution was then heated to 245-250°C. The heating was continued for 4h. The contents 

were cooled to room temperature and hexane (50 mL) was added and the solids were collected 

by filtration. The compound was washed with ethyl acetate:hexane [(2:1), 50 mL] and dried. The 

yield was 2.37 g, 95%. Compound is off white and has very poor solubility. The compound was 

used as such for the next reaction: 1H NMR (300 MHz, DMSO) 12.123 (s, 1H), 8.489(s, 1H), 

8.072-8.040(d, 1H, J= 9.6), 7.018-6.996(s, 2H), 4.239-4.170(q, 2H, J= 6.9), 1.301-1.254(t, 3H, 

J= 6.9), 3.876(s, 3H); 13C (75 MHz, DMSO) 165.29, 162.74, 145.27, 141.24, 127.99, 121.78, 

114.63, 100.58, 59.95 and 14.80; HRMS m/z calculated for C13H11D3NO4 251.1111 found 

251.1110.  

4-Chloro-7-methoxy (d3) quinolin-3-carboxylate. The starting Ethyl-4-hydroxy-7-methoxy 

(d3) quinolone-3-carboxylate (2.5 grams, 0.01 mol) was heated in neat POCl3 at 80°C for 2h. 

The excess POCl3 was distilled off under reduced pressure. The residue was dissolved in dry 

dichloromethane (25mL) and the solvent was distilled off under reduced pressure. The cycle was 

repeated 3 times to remove all the HCl and POCl3. Due to unstable nature of this compound it 

was used without further purification (2.55 g, 95%): 1H NMR (500 MHz, CDCl3) 9.19 (s, 1H), 

8.32-8.30(d, 1H, J= 10.0), 7.48 (s, 1H), 7.36-7.34(t, 1H), 4.52-4.48(q, 2H, J= 10), 1.301-1.49-
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1.46(t, 3H, J= 10); 13C (75 MHz, CDCl3)164.46, 162.87, 151.28, 150.63, 143.94, 126.86, 

121.73, 121.36, 120.69, 107.27, 61.95, 55.14, 14.29; HRMS m/z calculated for C13H10D3ClNO3 

269.0772 found 269.0770. 

A general procedure for the synthesis of pyrazoloquinolinones. A mixture of 4-chloro-7- 

methoxy(d3)quinolin-3-carboxylate 3 (0.01 mol, 0.324g), substituted phenylhydrazine 

hydrochloride (0.012 mol) and TEA (0.012 m,0.12 g ) in xylene (40mL) was heated to reflux for 

4h. The reaction mixture was cooled to rt. The precipitated compound was collected by filtration 

and purified by crystallization.  

Synthesis of LAU159, LAU165, and LAU463: 8-Chloro-2-(3-methoxyphenyl)-2H-

pyrazolo[4,3-c]quinolin-3(5H)-one (LAU159). In a 8 mL-vial with magnetic stirrer and screw 

cap, ethyl 4,8-dichloroquinoline-3- carboxylate (135mg, 0.5 mmol, 1 eq), 3-(methoxy)phenyl 

hydrazine (83mg, 0.6 mmol, 1.2 eq) and triethylamine (61 mg, 0.6 mmol, 1.2 eq) were dissolved 

in dry N,Ndimethylacetamide (3 mL). The reaction mixture was heated to 140°C for 16 hours. 

After completion of the reaction the volatiles were removed by evaporation and the solid residue 

was washed with acetone and water to afford the pure product as a yellow solid (108mg, 66%): 

m.p.: ~ 340°C, with partial decomposition above 300°C; 1H NMR (200 MHz, DMSO-d6): 12.95 

(bs, 1H), 8.72 (d, J = 5.2Hz, 1H), 8.15 (s, 1H), 7.84 - 7.70 (m, 4H), 7.33 (t, J = 8.1Hz, 1H), 6.75 

(d, J = 8.1Hz, 1H), 3.80 (s, 3H); 13C NMR (50 MHz, DMSO-d6): δ= 161.5 (s), 159.5 (s), 141.9 

(s), 141.0 (s), 139.5 (d), 134.2 (s), 130.6 (s), 130.2 (d), 129.5 (d), 121.6 (d), 121.1 (d), 119.9 (s), 

110.9 (d), 109.5 (d), 106.3 (s), 104.4 (d), 55.1 (q); HRMS: [M+H]+ m/z (predicted) = 326.0691, 

m/z (measured) = 326.0688. 

8-Chloro-2-(2-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one (LAU165). In an 8 

mL vial with magnetic stirrer and screw cap, ethyl 4,6-dichloroquinoline- 3-carboxylate (135 
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mg, 0.5 mmol, 1 eq), 2-methoxyphenylhydrazine (83 mg, 0.6 mmol, 1.2 eq) and triethylamine 

(63 mg, 0.6 mmol, 1.2 eq) were dissolved in dry N,Ndimethylacetamide (3 mL). The reaction 

mixture was heated to 140 °C for 16h. After completion of the reaction the reaction mixture was 

evaporated to dryness. The crude product was purified by flash-column chromatography (45 g 

silica 60, eluent EtOAc/MeOH 5%), the co-eluting triethylamine hydrochloride was 

subsequently removed by washing with water. Yield: 28% (0.14 mmol, 46 mg, 28%) as a yellow 

solid:  m.p. 310 - 313 °C with partial decomposition; 1H-NMR (200 MHz, DMSO-d6) δ = 3.73 

(s, 3H), 7.03 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 7.29-7.45 (m, 2H), 7.62-7.73 (m, 2H), 

8.01 (d, J = 1.6 Hz, 1H), 8.65 (s, 1H), 12.78 (s, 1H); 13C-NMR (50 MHz, DMSO-d6) δ = 55.6 

(q), 105.3 (s), 112.5 (d), 120.2 (d), 120.3 (s), 120.9 (d), 121.4 (d), 127.7 (s), 129.3 (d), 129.4 (d), 

129.7 (d), 130.3 (s), 134.0 (s), 139.1 (d), 141.4 (s), 155.1 (s), 161.6 (s); HRMS: [M+H] calcd 

326.0691 m/z 326.0678. 

7-Bromo-2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one (LAU463). The ethyl 

7-bromo-4-chloroquinoline-3-carboxylate (200 mg, 0.64 mmol, 1 eq) and (4-

methoxyphenyl)hydrazine (110 mg, 0.80 mmol, 1.2 eq) were dissolved in dimethylacetamide 

(5mL). The reaction was carefully purged with argon several times, triethylamine (1 eq) was 

added, and the reaction was heated to 140°C for 24 hours. The solvent was removed via 

Kugelrohr distillation of the crude mixture. Washing of the residue with acetone gave the 

product as an orange-yellow solid (121mg, 51%): m.p.: >330 °C with decomposition; 1H NMR 

(400 MHz, DMSO-d6) δ 12.78 (s, 1H), 8.74 (d, J = 5.8 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 8.06 

(d, J = 8.6 Hz, 2H), 7.89 (d, J = 2.0 Hz, 1H), 7.69 (dd, J = 8.5, 2.0 Hz, 1H), 7.02 (d, J = 8.6 Hz, 

2H), 3.79 (s, 3H); 13C NMR (101 MHz, DMSO) δ 161.3 (s), 156.5 (s), 142.4 (s), 140.1 (d), 
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136.9 (s), 133.8 (s), 129.7(d), 124.5 (d), 123.0 (s), 122.2 (d), 120.9 (d), 118.2 (s), 114.3 (d), 

107.2 (s), 55.7 (q). 

7-Methoxy-2-(pyrazin-2-yl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3- one (DCBS126). In a 

8 mL vial equipped with a magnetic stirrer and screw cap, the ethyl 4-chloro-7- 

methoxyquinoline-3-carboxylate (70 mg, 0.26 mmol, 1 eq) and 2-hydrazinopyrazine (32 mg, 

0.29 mmol, 1.1 eq) were dispersed in 1.5 mL ethanol, triethylamine (40 μL, 0.29 mmol, 1.1 eq) 

was added, and the reaction mixture was heated to reflux under argon. After 20 h the reaction 

mixture was rinsed with water (4mL), filtered, and the precipitate was washed with EtOAc:PE 

(1:1, 15mL). The yellow solid was dried under reduced pressure to give the desired product 

giving a yellow solid (45mg, 58%): m.p.: >300 °C with decomposition; 1H NMR (400 MHz, 

DMSOd6) δ 3.88 (s, 3H), 7.16 – 7.23 (m, 2H), 8.13 (dd, J = 8.5, 0.8 Hz, 1H), 8.44 (d, J = 2.5 Hz, 

1H), 8.56 (dd, J = 2.5, 1.5 Hz, 1H), 8.75 (s, 1H), 9.51 (d, J = 1.4 Hz, 1H), 12.74 (br s, 1H); 13C 

NMR (101 MHz, DMSO-d6) δ 55.6 (q), 102.1 (d), 105.0 (s), 112.2 (s), 115.5 (d), 123.9 (d), 

136.6 (d), 137.3 (s), 140.0 (d), 140.1 (d), 142.8 (d), 144.9 (s), 148.0 (s), 160.8 (s), 162.4 (s); 

HRMS: Calc.[M+H]+ m/z 294.0992, m/z (measured) = 294.0992. 

N-(4-Hydroxyphenyl)acetamide [DK-I-2-1]. To a mixture of 4-aminophenol (50.0 g, 458.2 

mmol) and tetrahydrofuran (200 mL) acetic anhydride (49.1 g, 481.1 mmol) was added dropwise 

over 30 min while keeping the temperature below 50 ºC. The reaction mixture was then stirred 

for 30 min at 50 ºC and then cooled to rt. The reaction mixture was then diluted with hexanes 

(200 mL) to precipitate the product. After stirring for 1 h, the solid product was filtered and 

washed twice with hexanes (50 mL x 2). The solid was dried to afford the product as a white 

crystalline solid DK-I-2-1 (62.7 g, 90.0%): mp 170-171 ºC; 1H NMR (300 MHz, DMSO) δ 9.64 

(s, 1H), 9.13 (s, 1H), 7.34 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 1.98 (s, 3H); 13C NMR 
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(75 MHz, DMSO) δ 167.95, 153.57, 131.49, 121.26, 115.44, 24.19; LRMS m/z calculated for 

C8H10NO2 (M + H)+ 152.17 found 152.15.  This material was used in a later step. 

N-(3-Hydroxyphenyl)acetamide [DK-I-3-1]. To a mixture of 3- aminophenol (25.0 g, 229.1 

mmol) and tetrahydrofuran (100 mL) acetic anhydride (24.5 g, 240.5 mmol) was added dropwise 

over 30 min while keeping the temperature below 50 ºC. The reaction mixture was then stirred 

for 30 min at 50ºC and then cooled to rt. The reaction mixture was then diluted with hexanes 

(100 mL) to precipitate the product. After stirring for 1 h, the solid product was filtered and 

washed twice with hexanes (25 mL x 2). The solid was dried to afford the product as a white 

crystalline solid DK-I-3-1  (33.2 g, 96.0%): mp 145-148 ºC; 1H NMR (300 MHz, DMSO) δ 9.77 

(s, 1H), 9.32 (s, 1H), 7.18 (s, 1H), 7.04 (t, J = 8.0 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.42 (dd, J = 

7.9, 2.1 Hz, 1H), 2.01 (s, 3H); 13C NMR (75 MHz, DMSO) δ 168.60, 158.01, 140.81, 129.72, 

110.55, 110.18, 106.60, 24.50; LRMS m/z calculated for C8H10NO2 (M + H)+ 152.17 found 

152.15. This material was used in a later step. 

N-(2-Hydroxyphenyl)acetamide [DK-I-30-1]. To a mixture of 2- aminophenol (25.0 g, 229.1 

mmol) and tetrahydrofuran (100 mL) acetic anhydride (24.5 g, 240.5, mmol) was added 

dropwise over 30 min while keeping the temperature below 50 ºC. The reaction mixture was then 

stirred for 30 min at 50ºC and then cooled to rt. The reaction mixture was then diluted with 

hexanes (100 mL) to precipitate the product. After stirring for 1 h, the solid product was filtered 

and washed twice with hexanes (25 mL x 2). The solid was dried to afford the product as a light 

brown solid DK-I-30-1 (33.1 g, 95.7%): mp 211-213 ºC; 1H NMR (300 MHz, DMSO) δ 9.75 (s, 

1H), 9.31 (s, 1H), 7.67 (d, J = 7.7 Hz, 1H), 6.85 (ddd, J = 33.6, 14.6, 7.2 Hz, 3H), 2.10 (s, 3H); 

13C NMR (75 MHz, DMSO) δ 169.44, 148.34, 126.88, 125.08, 122.80, 119.40, 116.38, 24.05; 
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LRMS m/z calculated for C8H10NO2 (M + H)+ 152.17 found 152.15. This material was used in a 

later step. 

N-(4-Methoxy-d3-phenyl)acetamide [DK-I-6-1]. To a mixture of N-(4- 

hydroxyphenyl)acetamide DK-I-2-1 (62.0 g, 410.1 mmol), potassium carbonate (113.4 g, 615.2 

mmol) and acetone (230 mL) methyl iodide (D3) (100 g, 689.8 mmol) was added dropwise over 

30 min. The reaction mixture was then stirred for 24 h at 20-25 ºC. The reaction mixture was 

then diluted with ethyl acetate (300 mL) and water (300 mL). The biphasic mixture which 

resulted was allowed to stand for 15 min and the layers were separated. The aq layer was 

extracted with ethyl acetate (200 mL) and then the combined organic layers were washed with 

10% potassium carbonate solution (200 mL). The organic layer was then dried over magnesium 

sulfate. The solvents were then removed in vacuo and the product residue was slurried with 

hexanes (200 mL). The solid product was then filtered and washed twice with hexanes (50 mL x 

2). The solid was dried to afford the product as an off-white solid DK-I-6-1 (71.7 g, 99%): mp 

125-126 ºC; 1H NMR (300 MHz, DMSO) δ 9.77 (s, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 

9.0 Hz, 2H), 3.38 (s, 3H), 2.00 (s, 3H); 13C NMR (75 MHz, DMSO) δ 168.20, 155.48, 132.94, 

121.01, 114.21, 24.23; LRMS m/z calculated for C9H9D3NO2 (M + H)+ 169.20 found 169.20. 

This material was used in a later step. 

N-(3-Methoxy-d3-phenyl)acetamide [DK-I-8-1]. To a mixture of N-(3- 

hydroxyphenyl)acetamide DK-I-3-1 (35.0 g, 231.5 mmol), potassium carbonate (64.0 g, 463.1 

mmol) and acetone (140 mL) methyl iodide (D3) (50.3 g, 347.3 mmol) was added dropwise over 

30 min. The reaction mixture was then stirred for 24 h at 20-25 ºC. The reaction mixture was 

then diluted with ethyl acetate (150 mL) and water (150 mL). The biphasic mixture which 

resulted was allowed to stand for 15 min and the layers were separated. The aq layer was 
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extracted with ethyl acetate (100 mL) and then the combined organic layers were washed with 

10% potassium carbonate solution (100 mL). The organic layer was then dried over magnesium 

sulfate. The solvents were then removed in vacuo and the product residue was slurried with 

hexanes (100 mL). The solid product was then filtered and washed twice with hexanes (50 mL x 

2). The solid was dried to afford the product as an off-white solid DK-I-8-1 (38.9 g, 99%): mp 

89-91 ºC; 1H NMR (300 MHz, DMSO) δ 9.89 (s, 1H), 7.27 (s, 1H), 7.18 (t, J = 8.1 Hz, 1H), 

7.10 (d, J = 8.2 Hz, 1H), 6.60 (dd, J = 7.8, 2.0 Hz, 1H), 2.03 (s, 3H); 13C NMR (75 MHz, 

DMSO) δ 168.76, 159.93, 140.96, 129.89, 111.71, 108.76, 105.30, 24.53; LRMS m/z calculated 

for C9H9D3NO2 (M + H)+ 166.20 found 166.15. This material was used in a later step. 

N-(2-Methoxy-d3-phenyl)acetamide [DK-I-31-1]. To a mixture of N-(2- 

hydroxyphenyl)acetamide DK-I-30-1 (30.0 g, 198.5 mmol), potassium carbonate (54.9 g, 396.9 

mmol) and acetone (140 mL) methyl iodide (D3) (50.3 g, 347.3 mmol) was added dropwise over 

30 min. The reaction mixture was then stirred for 24 h at 20-25 ºC. The reaction mixture was 

then diluted with ethyl acetate (150 mL) and water (150 mL). The biphasic mixture which 

resulted was allowed to stand for 15 min and the layers were separated. The aq layer was 

extracted with ethyl acetate (100 mL) and then the combined organic layers were washed with 

10% potassium carbonate solution (100 mL). The organic layer was then dried over magnesium 

sulfate. The solvents were then removed in vacuo and the product residue was slurried with 

hexanes (100 mL). The solid product was then filtered and washed twice with hexanes (50 mL x 

2). The solid was dried to afford the product as an off-white solid DK-I-31-1 (31.9 g, 99%): mp 

82-83 ºC; 1H NMR (300 MHz, DMSO) δ 9.10 (s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.22 – 6.97 (m, 

2H), 6.97 – 6.79 (m, 1H), 2.08 (s, 3H); 13C NMR (75 MHz, DMSO) δ 168.87, 149.98, 127.87, 



 

321 
 

124.63, 122.45, 120.57, 111.50, 24.30; LRMS m/z calculated for C9H9D3NO2 (M + H)+ 166.20 

found 169.19. This material was used in a later step. 

4-Methoxy-d3-aniline [DK-I-67-1]. A mixture of N-(4-methoxy-d3- phenyl)acetamide DK-I-6-

1 (20.0 g, 118.9 mmol), 12 M hydrochloric acid (20 mL, 240 mmol), and water (60 mL) was 

heated at 90-95 ºC for 2 h. The reaction mixture was then cooled to 20-25 ºC and the pH was 

adjusted to 14 with a solution of sodium hydroxide (20g, 500 mmol) and water (20 mL). The 

product was then extracted from the aqueous layer four times with dichloromethane (50 mL x 4). 

The combined organic layers were then dried over magnesium sulfate. Evaporation of the 

solvents on a rotovap afforded the product as a dark orange oil DK-I-67-1 (14.4 g, 96%): 1H 

NMR (300 MHz, DMSO) δ 5.75 – 5.62 (m, 2H), 5.62 – 5.47 (m, 2H), 3.50 (s, 2H); 13C NMR 

(75 MHz, DMSO) δ 150.34, 141.51, 114.62, 113.89; LRMS m/z calculated for C7H7D3NO (M + 

H)+ 127.25 found 127.25. This material was used in a later step. 

3-Methoxy-d3-aniline [DK-I-41-1]. A mixture of N-(3-methoxy-d3- phenyl)acetamide DK-I-8-

1 (20.0 g, 118.9 mmol), 12 M hydrochloric acid (20 mL, 240 mmol), and water (60 mL) was 

heated at 90-95 ºC for 2 h. The reaction mixture was then cooled to 20-25 ºC and the pH was 

adjusted to 14 with a solution of sodium hydroxide (20g, 500 mmol) and water (20 mL). The 

product was then extracted from the aqueous layer four times with dichloromethane (50 mL x 4). 

The combined organic layers were then dried over magnesium sulfate. Evaporation of the 

solvents on a rotovap afforded the product as a golden yellow oil DK-I-41-1 (13.5 g, 90%): 1H 

NMR (300 MHz, CDCl3) δ 7.10 (t, J = 8.0 Hz, 1H), 6.35 (dddd, J = 11.9, 11.2, 3.4, 2.0 Hz, 3H), 

4.00 (s, 2H); 13C NMR (75 MHz, CDCl3) δ 160.78, 147.54, 130.16, 108.14, 104.22, 101.28; 

LRMS m/z calculated for C7H6D3NO (M + H)+ 127.25 found 127.25. This material was used in 

a later step. 
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Ethyl-6-chloro-4-hydroxyquinoline-3-carboxylate [DK-I-34-1]. A mixture of 4-chloroaniline 

(45.5 g, 356.7 mmol), diethyl ethoxymethylenemalonate (80.9 g, 374.1 mmol) and diphenyl 

ether (200 mL) was slowly heated to 230 ºC. The evolved ethanol was collected in a Dean-Stark 

trap. Once the ethanol formation ceased, the reaction mixture was heated for an additional 30 

min at 230 ºC. The reaction mixture was then cooled to 80 ºC and diluted with ethanol (200 mL). 

Upon cooling to 20-25ºC the solid product was collected by filtration and washed twice with 

ethanol (50 mL x 2) and twice with hexanes (50 mL x 2). The solid was dried to afford the 

product as an off-white crystalline solid DK-I-34-1 (85.1 g, 95%): 1H NMR (300 MHz, TFA) δ 

11.66 (s, 1H), 9.32 (d, J = 4.5 Hz, 1H), 8.62 (d, J = 2.5 Hz, 1H), 8.12 (d, J = 13.0 Hz, 2H), 4.82 – 

4.55 (m, 2H), 1.53 (dd, J = 11.8, 7.0 Hz, 3H); 13C NMR (75 MHz, TFA) δ 172.51, 167.19, 

144.95, 138.35, 137.62, 137.58, 123.58, 121.35, 120.82, 105.30, 64.70, 11.96; LRMS m/z 

calculated for C12H11ClNO3 (M+H)+ 252.10 found 252.10. This material was used in a later step. 

Ethyl-4-hydroxy-7-methoxyquinoline-3-carboxylate [DK-I-39-1]. A mixture of 3-

methoxyaniline (50.0 g, 406.0 mmol), diethyl ethoxymethylenemalonate (87.8 g, 406.0 mmol) 

and diphenyl ether (200 mL) was slowly heated to 230 ºC. The evolved ethanol was collected in 

a Dean-Stark trap. Once the ethanol formation ceased, the reaction mixture was heated for an 

additional 30 min at 230ºC. The reaction mixture was then cooled to 80 ºC and diluted with 

ethanol (200 mL). Upon cooling to 20-25 ºC the solid product was collected by filtration and 

washed twice with ethanol (50 mL x 2) and twice with hexanes (50 mL x 2). The solid was dried 

to afford the product as a light brown solid DK-I-39-1 (37.1 g, 37%): 1H NMR (300 MHz, TFA) 

δ 11.63 (s, 1H), 9.22 (d, J = 6.3 Hz, 1H), 8.56 (dd, J = 9.1, 6.7 Hz, 1H), 7.66 – 7.54 (m, 1H), 

7.47 (d, J = 4.2 Hz, 1H), 4.69 (dd, J = 13.8, 6.9 Hz, 2H), 4.13 (d, J = 6.4 Hz, 3H), 1.57 (q, J = 

6.8 Hz, 3H); 13C NMR (75 MHz, TFA) δ 171.88, 167.91, 167.62, 144.49, 142.43, 126.28, 
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121.92, 114.05, 103.81, 99.24, 64.28, 55.45, 12.00; LRMS m/z calculated for C13H14NO4 

(M+H)+ 248.15 found 248.15. This material was used in a later step. 

Ethyl-7-bromo-4-hydroxyquinoline-3-carboxylate [DK-I-49-1]. A mixture of 3-bromoaniline 

(8.7 g, 58.1 mmol), diethyl ethoxymethylenemalonate (10.9 g, 58.1 mmol) and diphenyl ether 

(40 mL) was slowly heated to 230 ºC. The evolved ethanol was collected in a Dean-Stark trap. 

Once the ethanol formation ceased, the reaction mixture was heated for an additional 30 min at 

230 ºC. The reaction mixture was then cooled to 80 ºC and diluted with ethanol (40 mL). Upon 

cooling to 20-25 ºC the solid product was collected by filtration and washed twice with ethanol 

(10 mL x 2) and twice with hexanes (10 mL x 2). The solid was dried to afford the product as a 

light brown solid DK-I-49-1 (11.5 g, 77%): 1H NMR (300 MHz, TFA) δ 11.64 (s, 1H), 9.38 (s, 

1H), 8.57 (d, J = 8.9 Hz, 1H), 8.43 (s, 1H), 8.15 (d, J = 8.9 Hz, 1H), 4.75 (q, J = 7.1 Hz, 2H), 

1.60 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, TFA) δ 173.48, 167.33, 145.75, 139.71, 134.19, 

134.06, 125.60, 122.70, 118.57, 105.08, 64.74, 12.01; LRMS m/z calculated for C12H10BrNO3 

(M+H)+ 296.12 found 296.05. This material was used in a later step. 

Ethyl-4-hydroxy-7-methoxy-d3-quinoline-3-carboxylate [DK-I-54-1]. A mixture of 3-

methoxy-d3-aniline DK-I-41-1 (10 g, 81.2 mmol), diethyl ethoxymethylenemalonate (21.1 g, 

97.4 mmol) and diphenyl ether (100 mL) was slowly heated to 230 ºC. The evolved ethanol was 

collected in a Dean-Stark trap. Once the ethanol formation ceased, the reaction mixture was 

heated for an additional 30 min at 230 ºC. The reaction mixture was then cooled to 80 ºC and 

diluted with hexanes (100 mL). Upon cooling to 20-25 ºC the solid product was collected by 

filtration and washed twice with hexanes (50 mL x 2). The solid was dried to afford the product 

as a brown solid DK-I-54-1 (13.0 g, 64%): 1H NMR (300 MHz, TFA) δ 11.64 (s, 1H), 9.23 (s, 

1H), 8.57 (d, J = 9.3 Hz, 1H), 7.59 (dd, J = 9.4, 2.3 Hz, 1H), 7.48 (d, J = 2.2 Hz, 1H), 4.71 (q, J 
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= 7.2 Hz, 2H), 1.58 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, TFA) δ 171.89, 167.92, 167.64, 

144.50, 142.44, 126.28, 121.93, 114.05, 103.81, 99.25, 64.29, 12.01; LRMS m/z calculated for 

C13H11D3NO4 (M+H)+ 251.25 found 251.20. This material was used in a later step. 

Ethyl-4-hydroxy-6-methoxy-d3-quinoline-3-carboxylate [DK-I-70-1]. A mixture of 4-

methoxy-d3-aniline DK-I-67-1 (10 g, 81.2 mmol), diethyl ethoxymethylenemalonate (21.1 g, 

97.4 mmol) and diphenyl ether (100 mL) was slowly heated to 230 ºC. The evolved ethanol was 

collected in a Dean-Stark trap. Once the ethanol formation ceased, the reaction mixture was 

heated for an additional 30 min at 230 ºC. The reaction mixture was then cooled to 80 ºC and 

diluted with hexanes (100 mL). Upon cooling to 20-25 ºC the solid product was collected by 

filtration and washed twice with hexanes (50 mL x 2). The solid was dried to afford the product 

as a light brown solid DK-I- 70-1 (9.9 g, 49%). 1H NMR (300 MHz, TFA) δ 11.66 (s, 1H), 9.15 

(s, 1H), 8.05 (d, J = 9.2 Hz, 1H), 7.97 – 7.74 (m, 2H), 4.67 (q, J = 7.1 Hz, 2H), 1.67 – 1.39 (m, 

3H); 13C NMR (75 MHz, TFA) δ 171.68, 167.54, 160.89, 141.86, 134.62, 129.91, 121.73, 

121.28, 104.58, 102.17, 64.41, 11.97; LRMS m/z calculated for C13H11D3NO4 (M+H)+ 251.25 

found 251.20. This material was used in a later step. 

Ethyl 6-bromo-8-fluoro-4-hydroxyquinoline-3-carboxylate [MM-I-01]. 3- Bromo-5-

fluoroaniline (10 g, 52.6 mmol) was heated with diethyl ethoxymethylene malonate (11.2 mL, 

55.3 mmol) at 125°C. After heating for 2 h, downtherm A (50 mL) was added and the mixture 

was heated up to 255°C for 2 h. The reaction was cooled to rt and diluted with hexane (50 mL). 

The mixture was stirred for 5 min. The precipitate was filtered and washed with hexane to yield 

the product as a brown colored solid MM-I-01 (13.60 g, 82%): mp 285 – 286 °C; 1H NMR (300 

MHz, DMSO) δ 12.65 (s, 1H; H- 11), 8.40 (s, 1H; H-8), 8.04 (s, 1H; H-6), 8.00 (dd, J = 10.1, 2.0 
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Hz, 1H; H-2), 4.23 (q, J = 7.1 Hz, 2H; H-18), 1.28 (t, J = 7.1 Hz, 3H; H-17); HRMS m/z 

calculated for C12H9NO3FBr 313.9823 found 313.9833. This material was used in a later step. 

Ethyl 4-hydroxy-7-(trifluoromethyl)quinoline-3-carboxylate [MM-I-04]. 3-

(Trifluoromethyl)aniline (10 g, 62.1 mmol) was heated with diethyl ethoxymethylene malonate 

(12.6 mL, 62 mmol) at 125 °C for 1 h. Then, downtherm A (50 mL) was added and the mixture 

was heated up to 255 °C for 2.5 h. After heating, the reaction was cooled to rt and diluted with 

hexane (50 mL). The mixture was stirred for 5 min. The precipitated was filtered and washed 

with hexane to provide the product as a white colored solid MM-I-04 (16.51 g, 93%): mp 340 – 

341 °C; 1H NMR (300 MHz, DMSO) δ 12.51 (s, 1H; H-11), 8.70 (s, 1H; H-8), 8.35 (d, J = 8.3 

Hz, 1H; H-6), 8.00 (s, 1H; H-3), 7.72 (d, J = 8.1 Hz, 1H; H-1), 4.24 (q, J = 14.3, 7.1 Hz, 2H; H-

20), 1.29 (t, J = 7.0 Hz, 3H; H-19); HRMS m/z calculated for C13H10NO3F3 286.0686 found 

286.0691. This material was used in a later step. 

Ethyl-4,6-dichloroquinoline-3-carboxylate [DK-I-35-1]. A mixture of ethyl-6-chloro-4-

hydroxyquinoline-3-carboxylate DK-I-34-1 (85.1 g, 338.1 mmol), N,Ndimethylformamide (1.0 

mL, 12.9 mmol), and dichloromethane (640 mL) was heated to 35- 40ºC. Oxalyl chloride (47.2 

g, 371.9 mmol) was added dropwise to the reaction mixture over 30 min. The reaction mixture 

was then heated for 6 h at reflux (38-40 ºC). The resulting pale yellow solution was then cooled 

to 20-25 ºC. The reaction mixture was then neutralized by slowly adding a 25% solution of 

potassium carbonate (75 g) in water (300 mL). The layers were then separated and the aqueous 

layers extracted with dichloromethane (200 mL). The combined organic layers were then washed 

with a 25% solution of potassium carbonate (50 g) in water (200 mL). The combined organic 

layers were then dried over magnesium sulfate. The solvents were then removed in vacuo and the 

product residue was slurried with hexanes (200 mL). The solid product was then filtered and 
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washed twice with hexanes (50 mL x 2). The solid was dried to afford the product as an offwhite 

solid DK-I-35-1 (81.9 g, 90%): 1H NMR (300 MHz, DMSO) δ 9.13 (s, 1H), 8.30 (d, J = 2.2 Hz, 

1H), 8.14 (d, J = 9.0 Hz, 1H), 7.97 (dd, J = 9.0, 2.3 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 

7.1 Hz, 3H); 13C NMR (75 MHz, DMSO) δ 164.01, 150.53, 147.73, 141.04, 134.30, 133.34, 

132.20, 126.53, 124.37, 124.08, 62.59; LRMS m/z calculated for C12H9Cl2NO2 (M+H)+ 270.12 

found 270.10. This material was used in a later step. 

Ethyl-4-chloro-7-methoxyquinoline-3-carboxylate [DK-I-40-1]. A mixture of ethyl-4-

hydroxy-7-methoxyquinoline-3-carboxylate DK-I-39-1 (37.1 g, 150.0 mmol), 

N,Ndimethylformamide (0.5 mL, 6.5 mmol), and dichloromethane (150 mL) was heated to 35-

40 ºC. Oxalyl chloride (20.9 g, 165.0 mmol) was added dropwise to the reaction mixture over 30 

min. The reaction mixture was then heated for 2h at reflux (38-40 ºC). The resulting brown 

solution was then cooled to 20-25 ºC. The reaction mixture was diluted with dichloromethane 

(150 mL) and then neutralized by slowly adding a 25% solution of potassium carbonate (75 g) in 

water (300 mL). The layers were then separated and the aqueous layers extracted with 

dichloromethane (100 mL). The combined organic layers were then washed with a 25% solution 

of potassium carbonate (75 g) in water (300 mL). The combined organic layers were then dried 

over magnesium sulfate. The solvents were then removed in vacuo and the product residue was 

slurried with hexanes (200 mL). The solid product was then filtered and washed twice with 

hexanes (50 mL x 2). The solid was dried to afford the product as an off-white solid DK-I-40-1 

(36.3 g, 91%): 1H NMR (300 MHz, DMSO) δ 9.08 (s, 1H), 8.25 (d, J = 9.2 Hz, 1H), 7.57 – 7.37 

(m, 2H), 4.41 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, 

DMSO) δ 164.32, 162.83, 151.62, 150.81, 142.02, 126.85, 122.12, 121.11, 120.56, 108.36, 
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62.15, 56.45, 14.49; LRMS m/z calculated for C13H13ClNO3 (M+H)+ 266.70 found 266.15. This 

material was used in a later step. 

Ethyl-7-bromo-4-chloroquinoline-3-carboxylate [DK-I-52-1]. A mixture of ethyl-7-bromo-4-

hydroxyquinoline-3-carboxylate DK-I-49-1 (11.0 g, 37.1 mmol), N,Ndimethylformamide (0.1 

mL, 1.3 mmol), and dichloromethane (50 mL) was heated to 35-40 ºC. Oxalyl chloride (5.2 g, 

40.9 mmol) was added dropwise to the reaction mixture over 30 min. The reaction mixture was 

then heated for 1h at reflux (38-40 ºC). The resulting brown solution was then cooled to 20-25 

ºC. The reaction mixture was diluted with dichloromethane (150 mL) and then neutralized by 

slowly adding a 25% solution of potassium carbonate (12.5 g) in water (50 mL). The layers were 

then separated and the aqueous layers extracted with dichloromethane (50 mL). The combined 

organic layers were then washed with a 25% solution of potassium carbonate (12.5 g) in water 

(50 mL). The combined organic layers were then dried over magnesium sulfate. The solvents 

were then removed in vacuo and the product residue was slurried with hexanes (50 mL). The 

solid product was then filtered and washed twice with hexanes (25 mL x 2). The solid was dried 

to afford the product as an off-white solid DK-I-54-1 (7.2 g, 61%): 1H NMR (300 MHz, DMSO) 

δ 9.15 (s, 1H), 8.36 (d, J = 1.9 Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 7.98 (dd, J = 9.0, 1.9 Hz, 1H), 

4.44 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, DMSO) δ 164.04, 151.40, 

149.74, 142.34, 132.67, 131.88, 127.50, 126.64, 124.70, 123.96, 62.55, 14.46; LRMS m/z 

calculated for C12H9BrClNO2 (M+H)+ 314.56 found 314.05. This material was used in a later 

step. 

Ethyl-4-chloro-7-methoxy-d3-quinoline-3-carboxylate [DK-I-57-1]. A mixture of ethyl-4-

hydroxy-7-methoxy-d3-quinoline-3-carboxylate DK-I-54-1 (13.0 g, 51.9 mmol), phosphorus 

oxychloride (8.8 g, 57.1 mmol) and toluene (52 mL) was heated to 80-90 ºC. The reaction 
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mixture was then held for 1 h at 80-90 ºC). The resulting brown solution was then cooled to 20-

25 ºC. The reaction mixture was then diluted with hexanes (50 mL). The solids were collected by 

filtration and washed twice with hexanes (50 mL each). The solids were then dissolved in 

dichloromethane (100 mL) and then neutralized by slowly adding a 25% solution of potassium 

carbonate (12.5 g) in water (50 mL). The layers were then separated and the aqueous layers 

extracted with dichloromethane (50 mL). The combined organic layers were then washed with a 

25% solution of potassium carbonate (12.5 g) in water (50 mL). The combined organic layers 

were then dried over magnesium sulfate. The solvents were then removed in vacuo and the 

product residue was slurried with hexanes (50 mL). The solid product was then filtered and 

washed twice with hexanes (25 mL x 2). The solid was dried to afford the product as an off-

white solid DK-I-57-1 (11.5 g, 82%): 1H NMR (300 MHz, DMSO) δ 9.07 (s, 1H), 8.23 (d, J = 

9.2 Hz, 1H), 7.54 – 7.38 (m, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); 13C NMR 

(75 MHz, DMSO) δ 164.29, 162.85, 151.53, 150.75, 142.41, 126.84, 122.11, 121.07, 120.56, 

108.27, 62.15, 14.49; LRMS m/z calculated for C13H10D3ClNO3 (M+H)+ 269.70 found 269.15. 

This material was used in a later step. 

Ethyl-4-chloro-6-methoxy-d3-quinoline-3-carboxylate [DK-I-73-2]. A mixture of ethyl-4-

hydroxy-6-methoxy-d3-quinoline-3-carboxylate DK-I-70-1 (10.0 g, 40.0 mmol), phosphorus 

oxychloride (6.7 g, 44.0 mmol) and toluene (40 mL) was heated to 80-90 ºC. The reaction 

mixture was then held for 1 h at 80-90 ºC). The resulting brown solution was then cooled to 20-

25 ºC. The reaction mixture was then diluted with hexanes (40 mL). The solids were collected by 

filtration and washed twice with hexanes (20 mL each). The solids were then dissolved in 

dichloromethane (100 mL) and then neutralized by slowly adding a 25% solution of potassium 

carbonate (10 g) in water (40 mL). The layers were then separated and the aqueous layers 
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extracted with dichloromethane (50 mL). The combined organic layers were then washed with a 

25% solution of potassium carbonate (10 g) in water (40 mL). The combined organic layers were 

then dried over magnesium sulfate. The solvents were then removed in vacuo and the product 

residue was slurried with hexanes (50 mL). The solid product was then filtered and washed twice 

with hexanes (25 mL x 2). The solid was dried to afford the product as an off-white solid DK-I-

73- 2 (8.5 g, 79%): 1H NMR (300 MHz, DMSO) δ 8.95 (s, 1H), 8.03 (d, J = 9.1 Hz, 1H), 7.67 – 

7.45 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, DMSO) δ 

164.49, 159.57, 147.25, 145.36, 139.99, 131.67, 126.91, 125.20, 123.87, 102.96, 62.36, 14.47; 

LRMS m/z calculated for C13H10D3ClNO3 (M+H)+ 269.70 found 269.15. This material was used 

in a later step. 

Ethyl 6-bromo-4-chloro-8-fluoroquinoline-3-carboxylate [MM-I-02]. The Ethyl 6-bromo-8-

fluoro-4-hydroxyquinoline-3-carboxylate MM-I-01 (1 g, 3.2 mmol) was placed in a flask with 

POCl3 (4 mL). The mixture was heated at 70°C for 3 h. The excess of POCl3 was evaporated by 

reduced pressure and the remaining oil was quenched with saturated solution of NaHCO3. Then, 

the aqueous solution was extracted with CH2Cl2 (3 x 50 mL) and the combined organic layers 

were dried (Na2SO4). The solvent was removed under reduce pressure and the residue was 

purified by silica gel chromatography to give the compound as a white solid MM-I-02 (0.79 g, 

75%): 1H NMR (300 MHz, CDCl3) δ 9.23 (s, 1H; H-8), 8.40 (s, 1H; H-6), 7.70 (dd, J = 9.1, 1.9 

Hz, 1H; H-2), 4.54 (q, J = 7.1 Hz, 2H; H- 18), 1.49 (t, J = 7.1 Hz, 3H; H-17). HRMS m/z 

calculated for C12H8NO2FClBr 331.9484 found 331.9487. This material was used in a later step. 

Ethyl 4-chloro-7-(trifluoromethyl)quinoline-3-carboxylate [MM-I-05]. The reaction was 

performed following the same procedure as for MM-I-02 except the reaction was performed in 

bigger scale. Ethyl 4-hydroxy-7-(trifluoromethyl)quinoline-3- carboxylate MM-I-04 (5 g, 18 
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mmol) was heated with POCl3 (10 mL) at 70°C for 3 h. MM-I- 05 was obtained as a white solid 

(5.1 g, 93%): mp 71 – 73 °C; 1H NMR (300 MHz, CDCl3) δ 9.30 (s, 1H; H-8), 8.56 (d, J = 8.9 

Hz, 1H; H-6), 8.46 (s, 1H; H-3), 7.89 (dd, J = 8.9, 1.5 Hz, 1H; H-1), 4.54 (q, J = 7.1 Hz, 2H; H-

20), 1.50 (t, J = 7.1 Hz, 3H; H-19); 13C NMR (75 MHz, CDCl3) δ 163.96 (s), 151.35 (s), 148.54 

(s), 143.47 (s), 133.53 (q), 127.84 (s), 127.60 (q), 126.92 (s), 124.69 (s), 124.01 (q), 118.86 (s), 

62.45 (s), 14.21 (s); HRMS m/z calculated for C13H9NO2F3Cl 304.0347 found 304.0353. This 

material was used in a later step. 

2-Methoxy-d3-5-nitropyridine [DK-II-44-1]. To a mixture of potassium tert-butoxide (13.3 g, 

11.8 mmol) and methanol-d4 (50 mL) was slowly added 2-chloro-5- nitropyridine (15.0 g, 94.6 

mmol). The exothermic reaction warmed to 50 ºC and then was refluxed at 65ºC for 2 h to 

complete the reaction. The reaction mixture was then cooled to 20-25 ºC and poured into water 

(750 mL). After stirring the mixture for 1 h the solid product was filtered and washed twice with 

water (25 mL x 2). The solid was dried to afford the product as a light yellow powder DK-II-44-

1 (13.0g, 87%). 1H NMR (300 MHz, DMSO) δ 9.08 (s, 1H), 8.47 (d, J = 9.1 Hz, 1H), 7.03 (d, J 

= 9.1 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 167.45, 145.02, 139.99, 135.01, 111.67; LRMS 

m/z calculated for C6H4D3N2O3 (M+H)+ 158.19 found 158.20. This material was used in a later 

step. 

5-Amino-2-methoxy-d3-pyridine [DK-II-45-1]. A mixture of 2-methoxy-d3- 5-nitropyridine 

DK-II-44-1 (13.0 g, 82.7 mmol), iron powder (15.9 g, 284.7 mmol), water (5 mL) and ethanol 

(50 mL) was heated to reflux (78 ºC). Once at reflux, concentrated hydrochloric acid (1 mL, 83.3 

mmol) was added dropwise. The reaction mixture was then refluxed for 4 h to complete the 

reaction. Upon cooling to 20-25 ºC, the mixture was filtered to remove the iron and the solids 

were washed 3 times with ethanol (25 mL x 3). Sodium bicarbonate (5.0 g) was added to the 
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filtrate and the ethanol was removed in vacuo. Water (50 mL) and dichloromethane (50 mL) 

were added to dissolve the residue. The layers were separated and the aq layer was extracted 

twice with dichloromethane (50 mL x 2). The combined organic layers were dried over 

magnesium sulfate. The solvents were then removed in vacuo and the product was obtained as a 

clear orange-red oil DK-II-45-1 (10.0 g, 95.1%): 1H NMR (300 MHz, DMSO) δ 7.57 (d, J = 2.7 

Hz, 1H), 7.05 (dd, J = 8.6, 2.9 Hz, 1H), 6.56 (d, J = 8.7 Hz, 1H), 4.74 (s, 2H); 13C NMR (75 

MHz, DMSO) δ 156.29, 139.77, 131.63, 126.85, 110.42; LRMS m/z calculated for C6H6D3N2O 

(M+H)+ 128.15 found 128.15. This material was used in a later step. 

4-Methoxy-d3-phenylhydrazine [DK-I-29-2]. A mixture of N-(4-methoxyd3- 

phenyl)acetamide DK-I-6-1 (30 g, 178.4 mmol), concentrated hydrochloric acid (72 mL), and 

water (72 mL) was heated to and held at 90 ºC for 2 h to hydrolyze the amide functionality. The 

reaction mixture was then cooled to 0 to 5ºC and a solution of sodium nitrite (12.9 g, 187.7 

mmol) and water (25 mL) was slowly added dropwise to the reaction mixture. Upon completion 

of the addition, the reaction mixture was stirred for an additional 15 min at 0 to 5 ºC. The 

reaction mixture was then cooled to -25 to -20ºC and a solution of tin (II) chloride (74.4 g, 392.4 

mmol) and concentrated hydrochloric acid (150 mL) was added dropwise to the reaction mixture 

over 30 min. Upon completion of the addition, the reaction mixture was stirred for an additional 

4 h at -25 to -20 ºC. The reaction mixture was then diluted with diethyl ether (300 mL) and the 

solids were filtered and washed three times with diethyl ether (100 mL x 3). The tin adduct of the 

product was then dissolved in a mixture of sodium hydroxide (60 g), water (250 mL) and 

dichloromethane (250 mL). After stirring for 2 h at 0 to 5 ºC, the solids completely dissolved. 

The layers were separated and the aq layer was extracted three times with dichloromethane 

(100mL x 3). The combined organic layers were then dried over magnesium sulfate. The 
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solvents were then removed in vacuo and the product residue was slurried with hexanes (50 mL). 

The solid product was then filtered and washed twice with hexanes (50 mL x 2). The solid was 

dried to afford the product as a pale orange crystalline solid DK-I-29-2 (16.6 g, 66%): 1H NMR 

(300 MHz, MeOD) δ 6.91 – 6.85 (m, 2H), 6.85 – 6.78 (m, 2H), 4.88 (s, 3H); 13C NMR (75 

MHz, DMSO) δ 152.05, 147.27, 114.60, 113.38; LRMS m/z calculated for C7H8D3N2O (M+H)+ 

142.25 found 142.25. This material was used in a later step. 

3-Methoxy-d3-phenylhydrazine [DK-I-26-3]. A mixture of N-(3-methoxyd3- 

phenyl)acetamide DK-I-8-1 (25 g, 148.6 mmol), concentrated hydrochloric acid (60 mL), and 

water (60 mL) was heated to and held at 90 ºC for 2 h to hydrolyze the amide functionality. The 

reaction mixture was then cooled to 0 to 5 ºC and a solution of sodium nitrite (10.8 g, 156.1 

mmol) and water (21 mL) was slowly added dropwise to the reaction mixture. Upon completion 

of the addition, the reaction mixture was stirred for an additional 15 min at 0 to 5 ºC. The 

reaction mixture was then cooled to -25 to -20 ºC and a solution of tin (II) chloride (62.0 g, 327.0 

mmol) and concentrated hydrochloric acid (125 mL) was added dropwise to the reaction mixture 

over 30 min. Upon completion of the addition, the reaction mixture was stirred for an additional 

2 h at -25 to -20 ºC. The reaction mixture was then diluted with diethyl ether (250 mL) and the 

solids were filtered and washed three times with diethyl ether (100 mL x 3). The tin adduct of the 

product was then dissolved in a mixture of sodium hydroxide (20 g), water (100 mL) and 

dichloromethane (100 mL). After stirring for 1 h at 0 to 5 ºC, the solids completely dissolved. 

The layers were separated and the aq layer was extracted three times with dichloromethane 

(50mL x 3). The combined organic layers were then dried over magnesium sulfate. The solvents 

were then removed in vacuo to afford the product as an orange-red oil DK-I-26-3 (5.4 g, 26%): 

1H NMR (300 MHz, DMSO) δ 6.98 (t, J = 8.0 Hz, 1H), 6.65 (s, 1H), 6.51 – 6.27 (m, 2H), 6.16 
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(d, J = 7.9 Hz, 1H), 3.91 (s, 2H); 13C NMR (75 MHz, DMSO) δ 160.68, 154.54, 129.69, 104.96, 

102.72, 97.52; LRMS m/z calculated for C7H8D3N2O (M+H)+ 142.14 found 142.15. This 

material was used in a later step. 

2-Methoxy-d3-phenylhydrazine [DK-I-43-3]. A mixture of N-(2-methoxyd3- 

phenyl)acetamide DK-I-31-1 (25 g, 148.6 mmol), concentrated hydrochloric acid (60 mL), and 

water (60 mL) was heated to and held at 90 ºC for 2 h to hydrolyze the amide functionality. The 

reaction mixture was then cooled to 0 to 5 ºC and a solution of sodium nitrite (10.7 g, 156.1 

mmol) and water (21 mL) was slowly added dropwise to the reaction mixture. Upon completion 

of the addition, the reaction mixture was stirred for an additional 15 min at 0 to 5 ºC. The 

reaction mixture was then cooled to -25 to -20 ºC and a solution of tin (II) chloride (62.0 g, 327.0 

mmol) and concentrated hydrochloric acid (125 mL) was added dropwise to the reaction mixture 

over 30 min. Upon completion of the addition, the reaction mixture was stirred for an additional 

2 h at -25 to -20 ºC. The reaction mixture was then diluted with diethyl ether (300 mL) and the 

solids were filtered and washed three times with diethyl ether (100 mL x 3). The tin adduct of the 

product was then dissolved in a mixture of sodium hydroxide (20 g), water (100 mL) and 

dichloromethane (100 mL). After stirring for 1 h at 0 to 5 ºC, the solids completely dissolved. 

The layers were separated and the aq layer was extracted three times with dichloromethane 

(100mL x 3). The combined organic layers were then dried over magnesium sulfate. The 

solvents were then removed in vacuo and the product residue was slurried with hexanes (50 mL). 

The solid product was then filtered and washed twice with hexanes (25 mL x 2). The solid was 

dried to afford the product as a pale pink solid DK-I-43-3 (12.5 g, 60%): 1H NMR (300 MHz, 

DMSO) δ 7.01 (dd, J = 7.8, 1.3 Hz, 1H), 6.92 – 6.71 (m, 2H), 6.61 (td, J = 7.7, 1.4 Hz, 1H), 5.92 

(s, 1H), 3.92 (s, 2H); 13C NMR (75 MHz, DMSO) δ 146.33, 141.94, 121.26, 117.23, 111.20, 
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110.07; LRMS m/z calculated for C7H8D3N2O (M+H)+ 142.30 found 142.30. This material was 

used in a later step. 

5-Hydrazinyl-2-methoxypyridine [DK-I-82-3]. A mixture of 5-amino-2- methoxypyridine (10 

g, 80.6 mmol), concentrated hydrochloric acid (24 mL), and water (24 mL) was cooled to 0 to 5 

ºC and a solution of sodium nitrite (5.8 g, 84.6 mmol) and water (12 mL) was slowly added 

dropwise to the reaction mixture. Upon completion of the addition, the reaction mixture was 

stirred for an additional 15 min at 0 to 5 ºC. The reaction mixture was then cooled to -25 to -20 

ºC and a solution of tin (II) chloride (33.6 g, 177.2 mmol) and concentrated hydrochloric acid (70 

mL) was added dropwise to the reaction mixture over 30 min. Upon completion of the addition, 

the reaction mixture was stirred for an additional 2 h at -25 to -20 ºC. The reaction mixture was 

then diluted with dichloromethane (100 mL). A solution of potassium hydroxide (100 g) in water 

(200 mL) was added dropwise to the reaction mixture at 0 to 5 ºC over 30 min. After stirring for 

1 h at 0 to 5 ºC, the solids completely dissolved. The layers were separated and the aq layer was 

extracted four times with dichloromethane (50mL x 4). The combined organic layers were then 

dried over magnesium sulfate. The solvents were then removed in vacuo and the product residue 

was slurried with hexanes (20 mL). The slurry was placed in a freezer at -20 ºC for 24 h to fully 

precipitate the product. The solid product was then filtered and washed twice with hexanes (10 

mL x 2). The solid was dried to afford the product as a pale yellow-brown solid DK-I-82-3 (7.8 

g, 70%): 1H NMR (300 MHz, DMSO) δ 7.70 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 6.61 (d, J = 8.8 

Hz, 1H), 6.41 (s, 1H), 3.97 (s, 2H), 3.73 (s, 3H); 13C NMR (75 MHz, DMSO) δ 156.98, 144.09, 

129.85, 125.25, 110.22, 53.19; LRMS m/z calculated for C6H10N3O (M+H)+ 140.24 found 

140.25. This material was used in a later step. 
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5-Hydrazinyl-2-methoxy-d3-pyridine [DK-II-56-1]. A mixture of 5-amino- 2-methoxy-d3-

pyridine DK-II-45-1 (10 g, 78.6 mmol), concentrated hydrochloric acid (24 mL), and water (24 

mL) was cooled to 0 to 5ºC and a solution of sodium nitrite (5.7 g, 82.5 mmol) in water (12 mL) 

was slowly added dropwise to the reaction mixture. Upon completion of the addition, the 

reaction mixture was stirred for an additional 15 min at 0 to 5 ºC. The reaction mixture was then 

cooled to -25 to -20 ºC and a solution of tin (II) chloride (32.8 g, 173.0 mmol) and concentrated 

hydrochloric acid (70 mL) was added dropwise to the reaction mixture over 30 min. Upon 

completion of the addition, the reaction mixture was stirred for an additional 2 h at -25 to -20 ºC. 

The reaction mixture was then diluted with dichloromethane (100 mL). A solution of potassium 

hydroxide (100 g), water (200 mL) was added dropwise to the reaction mixture at 0 to 5 ºC over 

30 min. After stirring for 1 h at 0 to 5 ºC, the solids completely dissolved. The layers were 

separated and the aq layer was extracted four times with dichloromethane (50mL x 4). The 

combined organic layers were then dried over magnesium sulfate. The solvents were then 

removed in vacuo and the product residue was slurried with hexanes (20 mL). The slurry was 

placed in a freezer at -20 ºC for 24 h to fully precipitate the product. The solid product was then 

filtered and washed twice with hexanes (10 mL x 2). The solid was dried to afford the product as 

a pale yellow-brown solid DK-II-56-1 (6.4 g, 57%): 1H NMR (300 MHz, DMSO) δ 7.70 (d, J = 

2.8 Hz, 1H), 7.31 – 7.19 (m, 1H), 6.61 (d, J = 8.8 Hz, 1H), 6.42 (s, 1H), 4.00 (s, 2H); 13C NMR 

(75 MHz, DMSO) δ 157.01, 144.07, 129.87, 125.27, 110.22; LRMS m/z calculated for C6H7D3O 

(M+H)+ 143.25 found 143.25. This material was used in a later step. 

7-Methoxy-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[Compound 6]. A mixture of ethyl-4-chloro-7-methoxyquinoline-3-carboxylate DK-I-40-1 (4 g, 

15.1 mmol), 4-methoxyphenylhydrazine hydrochloride (3.15 g, 18.1 mmol), triethylamine 
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(3.66g, 36.1 mmol) and xylenes (32 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (32 mL). The 

reaction mixture was then refluxed at 80ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder Compound 6 (2.0 g, 41%): 1H NMR (300 MHz, DMSO) 

δ 12.59 (s, 1H), 8.65 (s, 1H), 8.10 (t, J = 8.7 Hz, 3H), 7.34 – 7.12 (m, 2H), 7.01 (d, J = 9.1 Hz, 

2H), 3.87 (s, 3H), 3.78 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.45, 160.85, 156.22, 143.11, 

139.33, 137.42, 134.10, 124.05, 120.68, 115.77, 114.25, 112.68, 106.87, 102.26, 55.98, 55.68; 

LRMS m/z calculated for C18H16N3O3 (M+H)+ 322.25 found 322.25. 

7-Methoxy-d3-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [RV-I-

029]. A mixture of ethyl-4-chloro-7-methoxy-d3-quinoline-3- carboxylate DK-I-57-1 (2 g, 7.4 

mmol), 4-methoxyphenylhydrazine hydrochloride (1.56 g, 8.9 mmol), triethylamine (1.81g, 17.6 

mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder RV-I-029 (1.0 g, 41%): 1H NMR (300 MHz, DMSO) δ 

12.59 (s, 1H), 8.65 (s, 1H), 8.10 (t, J = 8.7 Hz, 3H), 7.17 (d, J = 2.0 Hz, 2H), 7.01 (d, J = 8.9 Hz, 

2H), 3.78 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.45, 160.86, 156.22, 143.11, 139.32, 

137.42, 134.11, 124.05, 120.68, 115.76, 114.25, 112.66, 106.87, 102.25, 55.68; LRMS m/z 

calculated for C18H13D3N3O3 (M+H)+ 325.30 found 325.30. 
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7-Methoxy-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

56-1]. A mixture of ethyl-4-chloro-7-methoxyquinoline-3-carboxylate DK-I-40-1 (2 g, 7.4 

mmol), 4-methoxy-d3-phenylhydrazine DK-I-29-2 (1.25 g, 8.9 mmol), triethylamine (0.90g, 8.9 

mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-56-1 (1.5 g, 62.5%): 1H NMR (300 MHz, DMSO) δ 

12.60 (s, 1H), 8.66 (s, 1H), 8.10 (t, J = 9.7 Hz, 3H), 7.18 (s, 2H), 7.01 (d, J = 8.4 Hz, 2H), 3.88 

(s, 3H); 13C NMR (75 MHz, DMSO) δ 160.73, 160.43, 156.39, 143.09, 139.34, 137.43, 134.08, 

124.08, 120.68, 115.80, 114.24, 112.69, 106.87, 102.28, 56.00; LRMS m/z calculated for 

C18H13D3N3O3 (M+H)+ 325.30 found 325.30. 

7-Methoxy-d3-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-60-3]. A mixture of ethyl-4-chloro-7-methoxy-d3-quinoline-3- carboxylate DK-I-57-1 (2 

g, 7.4 mmol), 4-methoxy-d3-phenylhydrazine DK-I-29-2 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-60-3 (1.2 g, 50.0%): 1H NMR (300 MHz, DMSO) δ 

12.57 (s, 1H), 8.65 (s, 1H), 8.10 (t, J = 9.0 Hz, 3H), 7.17 (d, J = 5.7 Hz, 2H), 7.01 (d, J = 9.0 Hz, 



 

338 
 

2H); 13C NMR (75 MHz, DMSO) δ 161.45, 160.85, 156.21, 143.12, 139.37, 137.48, 134.10, 

124.05, 120.69, 115.76, 114.24, 112.68, 106.86, 102.30; LRMS m/z calculated for 

C18H10D6N3O3 (M+H)+ 328.15 found 328.15. 

7-Methoxy-d3-2-(3-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-94-1]. A mixture of ethyl-4-chloro-7-methoxy-d3-quinoline-3- carboxylate DK-I-57-1 (2 

g, 7.4 mmol), 3-methoxy-d3-phenylhydrazine DK-I-26-3 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-94-1 (1.5 g, 62.0%): 1H NMR (300 MHz, DMSO) δ 

12.62 (s, 1H), 8.66 (s, 1H), 8.13 (d, J = 9.4 Hz, 1H), 7.93 – 7.73 (m, 2H), 7.34 (t, J = 8.2 Hz, 

1H), 7.18 (d, J = 6.7 Hz, 2H), 6.74 (d, J = 8.2 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.13, 

161.02, 159.97, 143.50, 141.73, 139.59, 137.58, 129.94, 124.18, 115.84, 112.56, 111.30, 109.60, 

106.83, 104.81, 102.32; LRMS m/z calculated for C18H10D6N3O3 (M+H)+ 328.25 found 328.25. 

7-Methoxy-d3-2-(2-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-90-1]. A mixture of ethyl-4-chloro-7-methoxy-d3-quinoline-3- carboxylate DK-I-57-1 (2 

g, 7.4 mmol), 2-methoxy-d3-phenylhydrazine DK-I-43-3 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 
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hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-90-1 (1.8 g, 75.0%): 1H NMR (300 MHz, DMSO) δ 

12.47 (s, 1H), 8.57 (s, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.51 – 7.24 (m, 2H), 7.22 – 6.93 (m, 4H); 

13C NMR (75 MHz, DMSO) δ 162.19, 160.63, 155.66, 142.97, 139.04, 137.26, 129.88, 129.67, 

128.51, 123.87, 120.65, 115.49, 112.96, 112.91, 105.83, 102.15; LRMS m/z calculated for 

C18H10D6N3O3 (M+H)+ 328.30 found 328.30. 

7-Methoxy-2-(2-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

88-1]. A mixture of ethyl-4-chloro-7-methoxy-quinoline-3- carboxylate DK-I-40-1 (2 g, 7.5 

mmol), 2-methoxy-d3-phenylhydrazine DK-I-43-3 (1.28 g, 9.0 mmol), triethylamine (0.91g, 9.0 

mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-88-1 (1.6 g, 65.6%): 1H NMR (300 MHz, DMSO) δ 

12.46 (d, J = 4.9 Hz, 1H), 8.57 (d, J = 5.8 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.40 (t, J = 7.8 Hz, 

1H), 7.31 (d, J = 7.6 Hz, 1H), 7.15 (dd, J = 9.7, 6.0 Hz, 3H), 7.03 (t, J = 7.5 Hz, 1H), 3.87 (s, 

3H); 13C NMR (75 MHz, DMSO) δ 184.22, 162.19, 160.62, 155.66, 142.95, 139.04, 137.26, 

129.88, 129.66, 128.51, 123.88, 120.65, 115.49, 112.97, 112.94, 105.83, 102.15, 55.94; LRMS 

m/z calculated for C18H13D3N3O3 (M+H)+ 325.24 found 325.25. 

8-Chloro-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin- 3-one [Comp 11]. 

A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DK-I-35-1 (2 g, 7.4 mmol), 4-

methoxyphenylhydrazine hydrochloride (1.55 g, 8.9 mmol), triethylamine (1.80g, 17.8 mmol) 
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and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder Comp 11 (1.7 g, 71.0%): 1H NMR  (300 MHz, DMSO) δ 12.95 (d, J 

= 5.6 Hz, 1H), 8.72 (d, J = 6.2 Hz, 1H), 8.14 (d, J = 2.1 Hz, 1H), 8.08 (d, J = 9.0 Hz, 2H), 7.70 

(dt, J = 8.9, 5.5 Hz, 2H), 7.02 (d, J = 9.1 Hz, 2H), 3.79 (s, 3H); 13C NMR (75 MHz, DMSO) δ 

161.37, 156.48, 141.97, 139.79, 134.59, 133.87, 131.04, 130.46, 122.08, 121.50, 120.89, 120.48, 

114.29, 106.86, 55.71; LRMS m/z calculated for C17H13ClN3O2 (M+H)+ 326.25 found 326.25. 

8-Chloro-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

93-1]. A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DK-I- 35-1 (2 g, 7.4 mmol), 4-

methoxy-d3-phenylhydrazine DK-I-29-2 (1.25 g, 8.9 mmol), triethylamine (0.90g, 8.9 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solids was dried to afford the 

product as a yellow powder DK-I-93- 1 (1.3 g, 53.6%): 1H NMR (300 MHz, DMSO) δ 12.89 (s, 

1H), 8.74 (s, 1H), 8.24 – 7.89 (m, 3H), 7.86 – 7.56 (m, 2H), 7.02 (d, J = 8.9 Hz, 2H); 13C NMR 

(75 MHz, DMSO) δ 161.38, 156.49, 141.98, 139.86, 134.59, 133.84, 131.05, 130.49, 122.09, 

121.52, 120.91, 120.49, 114.29, 106.88; LRMS m/z calculated for C17H10D3ClN3O2 (M+H)+ 

329.15 found 329.15. 
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8-Chloro-2-(3-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin- 3-one [LAU 159]. 

A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DK-I-35-1 (2 g, 7.4 mmol), 3-

methoxyphenylhydrazine hydrochloride (1.55 g, 8.9 mmol), triethylamine (1.80g, 17.8 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol  (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder LAU 159 (0.7 g, 30.0%): 1H NMR (300 MHz, DMSO) δ 12.85 (s, 

1H), 8.69 (s, 1H), 8.15 (d, J = 1.9 Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.70 (dt, J = 9.0, 5.4 Hz, 

2H), 7.34 (t, J = 8.1 Hz, 1H), 6.83 – 6.65 (m, 1H), 3.81 (s, 3H); 13C NMR (75 MHz, DMSO) δ 

161.99, 159.98, 142.44, 141.52, 140.02, 134.81, 131.11, 130.62, 129.97, 122.17, 121.62, 120.42, 

111.47, 110.04, 106.80, 104.96, 55.59; LRMS m/z calculated for C17H13ClN3O2 (M+H)+ 326.20 

found 326.20. 

8-Chloro-2-(3-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

59-1]. A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DK-I- 35-1 (2 g, 7.4 mmol), 3-

methoxy-d3-phenylhydrazine hydrochloride DK-I-26-2 (1.45 g, 8.1 mmol), triethylamine (1.87g, 

18.5 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-59-1 (2.0 g, 87.0%): 1H NMR (300 MHz, DMSO) δ 
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12.85 (s, 1H), 8.71 (s, 1H), 8.17 (s, 1H), 8.00 – 7.49 (m, 4H), 7.35 (t, J = 7.7 Hz, 1H), 6.77 (d, J 

= 7.4 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.01, 160.01, 142.48, 141.54, 140.10, 134.76, 

131.15, 130.72, 130.01, 122.14, 121.68, 120.45, 111.42, 110.04, 106.87, 104.95; LRMS m/z 

calculated for C17H10D3ClN3O2 (M+H)+ 329.10 found 329.10. 

8-Chloro-2-(2-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

87-1]. A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DK-I- 35-1 (2 g, 7.4 mmol), 2-

methoxy-d3-phenylhydrazine DK-I-43-3 (1.25 g, 8.9 mmol), triethylamine (0.9g, 8.9 mmol) and 

xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting yellow-

orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction mixture was 

then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were collected by 

filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes (2.5 mL x 2) 

and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the product as a 

yellow powder DK-I-87-1 (1.0 g, 41.0%): 1H NMR (300 MHz, DMSO) δ 12.74 (s, 1H), 8.66 (s, 

1H), 8.03 (s, 1H), 7.69 (p, J = 9.0 Hz, 2H), 7.42 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.17 

(d, J = 8.3 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.15, 155.64, 

141.87, 139.59, 134.48, 130.83, 130.23, 129.91, 129.85, 128.22, 121.91, 121.40, 120.76, 120.68, 

113.00, 105.81; LRMS m/z calculated for C17H10D3ClN3O2 (M+H)+ 329.0882 found 329.20. 

7-Bromo-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin- 3-one [LAU 463]. 

A mixture of ethyl-7-bromo-4-chloro-quinoline-3-carboxylate DK-I-52-1 (2 g, 6.3 mmol), 4-

methoxyphenylhydrazine hydrochloride (1.33 g, 7.6 mmol), triethylamine (1.54g, 15.3 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 
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collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder LAU 463 (1.4 g, 60.0%): 1H NMR (300 MHz, DMSO) δ 12.75 (s, 

1H), 8.74 (s, 1H), 8.09 (dd, J = 17.7, 8.8 Hz, 3H), 7.89 (d, J = 1.6 Hz, 1H), 7.68 (dd, J = 8.6, 1.6 

Hz, 1H), 7.02 (d, J = 9.1 Hz, 2H), 3.79 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.37, 156.47, 

142.38, 140.08, 136.98, 133.85, 129.65, 124.51, 122.95, 122.22, 120.87, 118.22, 114.31, 107.21, 

55.71; LRMS m/z calculated for C17H13BrN3O2 (M+H)+ 370.0191 found 370.15. 

7-Bromo-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

58-1]. A mixture of ethyl-7-bromo-4-chloro-quinoline-3-carboxylate DK-I-52-1 (2 g, 6.3 mmol), 

4-methoxy-d3-phenylhydrazine DK-I-29-2 (1.08 g, 7.6 mmol), triethylamine (0.77g, 7.6 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder DK-I-58-1 (1.0 g, 42.0%): 1H NMR (300 MHz, DMSO) δ 12.75 (s, 

1H), 8.74 (d, J = 4.9 Hz, 1H), 8.09 (dd, J = 17.8, 8.7 Hz, 3H), 7.88 (s, 1H), 7.69 (d, J = 8.4 Hz, 

1H), 7.01 (d, J = 8.8 Hz, 2H); 13C NMR (75 MHz, DMSO) δ 161.35, 156.49, 141.88, 140.06, 

136.95, 133.83, 129.65, 124.51, 122.93, 122.18, 120.86, 118.22, 114.24, 107.22; LRMS m/z 

calculated for C17H10D3BrN3O2 (M+H)+ 373.0377 found 373.05. 

7-Bromo-2-(3-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

92-1]. A mixture of ethyl-7-bromo-4-chloro-quinoline-3-carboxylate DK-I-52-1 (1.5 g, 4.8 

mmol), 3-methoxy-d3-phenylhydrazine DK-I-26-3 (0.81 g, 5.7 mmol), triethylamine (0.58g, 5.7 
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mmol) and xylenes (12 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (12 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-92-1 (0.7 g, 40.0%): 1H NMR (300 MHz, DMSO) δ 

12.78 (s, 1H), 8.76 (s, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.95 – 7.76 (m, 3H), 7.71 (d, J = 8.6 Hz, 

1H), 7.35 (t, J = 8.2 Hz, 1H), 6.76 (d, J = 8.3 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.00, 

160.00, 142.81, 141.51, 140.33, 137.11, 130.03, 129.75, 124.65, 123.22, 122.26, 118.16, 111.39, 

109.98, 107.20, 104.92; LRMS m/z calculated for C17H10D3BrN3O2 (M+H)+ 373.0377 found 

373.10. 

7-Bromo-2-(2-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-I-

89-1]. A mixture of ethyl-7-bromo-4-chloro-quinoline-3-carboxylate DK-I-52-1 (2 g, 6.3 mmol), 

2-methoxy-d3-phenylhydrazine DK-I-43-3 (1.08 g, 7.6 mmol), triethylamine (0.77g, 7.6 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder DK-I-89-1 (1.2 g, 50.6%): 1H NMR (300 MHz, DMSO) δ 12.60 (s, 

1H), 8.64 (d, J = 16.3 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.86 (s, 1H), 7.64 (d, J = 8.5 Hz, 1H), 

7.41 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.04 (t, J = 7.5 Hz, 

1H); 13C NMR (75 MHz, DMSO) δ 162.14, 158.75, 155.64, 142.23, 139.79, 136.89, 129.84, 
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129.45, 128.23, 124.36, 122.64, 122.04, 120.69, 118.50, 112.99, 106.18; LRMS m/z calculated 

for C17H10D3BrN3O2 (M+H)+ 373.0377 found 373.10. 

8-Methoxy-d3-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-95-3]. A mixture of ethyl-4-chloro-6-methoxy-d3-quinoline-3- carboxylate DK-I-73-2 (2 

g, 7.4 mmol), 4-methoxy-d3-phenylhydrazine DK-I-29-2 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-95-3 (0.9 g, 37.0%): 1H NMR (300 MHz, DMSO) δ 

12.77 (s, 1H), 8.64 (s, 1H), 8.11 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 9.1 Hz, 1H), 7.57 (s, 1H), 7.28 

(d, J = 9.1 Hz, 1H), 7.02 (d, J = 8.8 Hz, 2H); 13C NMR (75 MHz, DMSO) δ 161.59, 157.98, 

156.34, 143.00, 138.11, 134.10, 130.13, 121.70, 120.92, 120.50, 119.95, 114.23, 105.70, 102.96; 

LRMS m/z calculated for C18H10D6N3O3 (M+H)+ 328.1569 found 328.25. 

8-Methoxy-d3-2-(3-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-97-1]. A mixture of ethyl-4-chloro-6-methoxy-d3-quinoline-3- carboxylate DK-I-73-2 (2 

g, 7.4 mmol), 3-methoxy-d3-phenylhydrazine DK-I-26-3 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 
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afford the product as a yellow powder DK-I-97-1 (1.8 g, 74.0%): 1H NMR (300 MHz, DMSO) δ 

12.80 (s, 1H), 8.65 (s, 1H), 7.99 – 7.80 (m, 2H), 7.67 (d, J = 9.1 Hz, 1H), 7.59 (s, 1H), 7.41 – 

7.21 (m, 2H), 6.76 (d, J = 8.2 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.25, 159.98, 158.04, 

143.42, 141.76, 138.36, 130.26, 129.94, 121.73, 120.45, 120.10, 111.53, 109.64, 105.70, 105.11, 

103.16; LRMS m/z calculated for C18H10D6N3O3 (M+H)+ 328.1569 found 328.30. 

8-Methoxy-d3-2-(2-methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-98-1]. A mixture of ethyl-4-chloro-6-methoxy-d3-quinoline-3- carboxylate DK-I-73-2 (2 

g, 7.4 mmol), 2-methoxy-d3-phenylhydrazine DK-I-43-3 (1.26 g, 8.9 mmol), triethylamine 

(0.90g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-98-1  (0.5 g, 20.0%): 1H NMR (300 MHz, DMSO) 

δ 12.65 (s, 1H), 8.57 (s, 1H), 7.65 (d, J = 9.1 Hz, 1H), 7.54 – 7.28 (m, 3H), 7.28 – 7.21 (m, 1H), 

7.16 (d, J = 8.3 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 162.38, 157.83, 

155.76, 142.92, 137.98, 130.05, 129.94, 129.83, 128.54, 121.50, 120.75, 120.65, 119.64, 112.91, 

104.61, 102.88; LRMS m/z calculated for C18H10D6N3O3 (M+H)+ 328.1569 found 328.30. 

7-Methoxy-2-(6-methoxypyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-

II-13-1]. A mixture of ethyl-4-chloro-7-methoxy-quinoline-3- carboxylate DK-I-40-1 (2 g, 7.5 

mmol), 5-hydrazinyl-2-methoxypyridine DK-I-82-3 (1.26 g, 9.0 mmol), triethylamine (0.91g, 9.0 

mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 
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reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-II-13-1 (1.2 g, 49.0%): 1H NMR (300 MHz, DMSO) 

δ 12.65 (s, 1H), 8.92 (d, J = 2.4 Hz, 1H), 8.68 (s, 1H), 8.43 (dd, J = 9.0, 2.6 Hz, 1H), 8.24 – 7.91 

(m, 1H), 7.29 – 7.02 (m, 2H), 6.92 (d, J = 9.0 Hz, 1H), 3.88 (s, 6H); 13C NMR (75 MHz, 

DMSO) δ 161.74, 160.98, 160.43, 143.86, 139.71, 137.45, 137.37, 131.88, 130.77, 124.13, 

115.94, 112.59, 110.56, 106.22, 102.30, 56.00, 53.71; LRMS m/z calculated for C17H15N4O3 

(M+H)+ 323.1144 found 323.25. 

7-Methoxy-d3-2-(6-methoxypyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-I-86-1]. A mixture of ethyl-4-chloro-7-methoxy-d3-quinoline-3- carboxylate DK-I-57-1 (2 

g, 7.4 mmol), 5-hydrazinyl-2-methoxypyridine DK-I-82-3 (1.24 g, 8.9 mmol), triethylamine 

(0.90 g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-I-86-1 (1.0 g, 41.0%): 1H NMR (300 MHz, DMSO) δ 

12.69 (s, 1H), 8.92 (s, 1H), 8.69 (s, 1H), 8.43 (d, J = 9.0 Hz, 1H), 8.12 (d, J = 9.4 Hz, 1H), 7.18 

(s, 2H), 6.92 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.75, 161.01, 

160.44, 143.88, 139.73, 137.46, 137.39, 131.88, 130.79, 124.15, 115.96, 112.57, 110.58, 106.22, 

102.31, 53.72; LRMS m/z calculated for C17H12D3N4O3 (M+H)+ 326.1330 found 326.20. 
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7-Methoxy-2-(6-methoxy-d3-pyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-II-60-1]. A mixture of ethyl-4-chloro-7-methoxy-quinoline-3- carboxylate DK-I-40-1 (2 g, 

7.5 mmol), 5-hydrazinyl-2-methoxy-d3-pyridine DK-II-56-1 (1.28 g, 9.0 mmol), triethylamine 

(0.91 g, 9.0 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-II-60-1 (1.2 g, 49.0%): 1H NMR (300 MHz, DMSO) 

δ 12.68 (s, 1H), 8.91 (d, J = 2.1 Hz, 1H), 8.68 (s, 1H), 8.42 (dd, J = 9.0, 2.4 Hz, 1H), 8.16 – 8.03 

(m, 1H), 7.18 (d, J = 5.9 Hz, 2H), 6.92 (d, J = 9.0 Hz, 1H), 3.87 (s, 3H); 13C NMR (75 MHz, 

DMSO) δ 161.74, 160.98, 160.44, 143.85, 139.69, 137.44, 137.39, 131.86, 130.77, 124.13, 

115.94, 112.58, 110.54, 106.22, 102.29, 56.00; LRMS m/z calculated for C17H12D3N4O3 

(M+H)+ 326.1330 found 326.30. 

8-Chloro-2-(6-methoxypyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-II-

18-1]. A mixture of ethyl-4,6-dichloro-7-methoxy-3-carboxylate DKI- 35-1 (2 g, 7.4 mmol), 5-

hydrazinyl-2-methoxypyridine DK-I-82-3 (1.24 g, 8.9 mmol), triethylamine (0.90 g, 8.9 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 

mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder DK-II-18-1 (1.0 g, 41.0%): 1H NMR (300 MHz, DMSO) δ 12.96 (s, 
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1H), 8.92 (d, J = 2.6 Hz, 1H), 8.77 (s, 1H), 8.42 (dd, J = 8.9, 2.6 Hz, 1H), 8.14 (s, 1H), 7.89 – 

7.60 (m, 2H), 6.93 (d, J = 9.0 Hz, 1H), 3.89 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.62, 

160.64, 142.70, 140.12, 137.57, 134.58, 131.66, 131.15, 130.92, 130.64, 122.11, 121.58, 120.38, 

110.59, 106.25, 53.74; LRMS m/z calculated for C16H12ClN4O2 (M+H)+ 327.0649 found 327.25. 

8-Chloro-2-(6-methoxy-d3-pyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-II-59-1]. A mixture of ethyl-4,6-dichloro-quinoline-3-carboxylate DKI- 35-1 (2 g, 7.4 

mmol), 5-hydrazinyl-2-methoxy-d3-pyridine DK-II-56-1 (1.26 g, 8.9 mmol), triethylamine (0.90 

g, 8.9 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The 

resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-II-59-1 (1.4 g, 57.0%): 1H NMR (300 MHz, DMSO) 

δ 12.92 (s, 1H), 8.90 (d, J = 1.7 Hz, 1H), 8.74 (d, J = 9.1 Hz, 1H), 8.40 (dd, J = 8.9, 2.4 Hz, 1H), 

8.09 (s, 1H), 7.78 – 7.61 (m, 2H), 6.90 (d, J = 8.9 Hz, 1H); 13C NMR (75 MHz, DMSO) δ 

161.60, 160.63, 142.67, 140.06, 137.55, 134.55, 131.64, 131.13, 130.87, 130.60, 122.07, 121.56, 

120.37, 110.55, 106.26; LRMS m/z calculated for C16H9D3ClN4O2 (M+H)+ 330.25 found 

330.25. 

7-Bromo-2-(6-methoxypyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one [DK-II-

48-1]. A mixture of ethyl-7-bromo-4-chloroquinoline-3-carboxylate DK-I-52-1 (2 g, 6.3 mmol), 

5-hydrazinyl-2-methoxypyridine DK-I-82-3 (1.06 g, 7.6 mmol), triethylamine (0.77 g, 7.6 mmol) 

and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. The resulting 

yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The reaction 
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mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids were 

collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and hexanes 

(2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to afford the 

product as a yellow powder DK-II-48-1 (1.6 g, 67.0%): 1H NMR (300 MHz, DMSO) δ 12.81 (s, 

1H), 10.29 – 10.27 (m, 1H), 8.89 (s, 1H), 8.75 (s, 1H), 8.40 (dd, J = 8.9, 2.2 Hz, 1H), 8.09 (d, J = 

8.5 Hz, 1H), 7.86 (s, 1H), 7.68 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.9 Hz, 1H), 3.88 (s, 3H); 13C 

NMR (75 MHz, DMSO) δ 161.63, 160.61, 143.11, 140.38, 137.53, 136.95, 131.65, 130.88, 

129.74, 124.54, 123.15, 122.26, 118.12, 110.61, 106.58, 53.74; LRMS m/z calculated for 

C16H12BrN4O2 (M+H)+ 371.19 found 371.20. 

7-Bromo-2-(6-methoxy-d3-pyridin-3-yl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[DK-II-58-1]. A mixture of ethyl-7-bromo-4-chloroquinoline-3-carboxylate DK-I-52-1 (1.20 g, 

3.8 mmol), 5-hydrazinyl-2-methoxy-d3-pyridine DK-II-56-1 (0.65 g, 4.6 mmol), triethylamine 

(0.46 g, 4.6 mmol) and xylenes (16 mL) was heated to reflux (138 ºC) and held at reflux for 2 h. 

The resulting yellow-orange slurry was cooled to 100 ºC and diluted with ethanol (16 mL). The 

reaction mixture was then refluxed at 80 ºC for 30 min and then cooled to 20-25 ºC. The solids 

were collected by filtration and washed twice with a 1:1 mixture of ethanol (2.5 mL x 2) and 

hexanes (2.5 mL x 2) and then washed twice with hexanes (5 mL x 2). The solid was dried to 

afford the product as a yellow powder DK-II-58-1 (0.5 g, 35.0%): 1H NMR (300 MHz, DMSO) 

δ 12.77 (s, 1H), 8.88 (d, J = 2.3 Hz, 1H), 8.75 (d, J = 8.4 Hz, 1H), 8.39 (dd, J = 8.9, 2.5 Hz, 1H), 

8.07 (d, J = 8.5 Hz, 1H), 7.83 (s, 1H), 7.65 (d, J = 8.6 Hz, 1H), 6.90 (d, J = 8.9 Hz, 1H); 13C 

NMR (75 MHz, DMSO) δ 161.60, 160.60, 143.08, 140.33, 137.51, 136.93, 131.63, 130.83, 

129.70, 124.50, 123.11, 122.24, 118.10, 110.56, 106.58; LRMS m/z calculated for 

C16H9D3BrN4O2 (M+H)+ 374.19 found 374.20. 
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7-Methoxy(d3)-2-(phenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one [RV-I- 37]. A mixture of 

ethyl-4-chloro-7-methoxy-d3-quinoline-3-carboxylate DK-I-57-1 (0.01 mol, 0.324g), 

phenylhydrazine hydrochloride (0.012 mol, 0.172g ) and TEA (0.012 mol, 0.12 g ) in 40 mL 

xylene was refluxed for 4h, cooled to room temperature. The precipitated compound was 

collected by filtration. The compound was recrystallized from methanol as a yellow colored 

compound RV-I-37, yield 75 %, 0.22 g: mp > 260°C dec. 1H NMR (500 MHz, MeOD) 8.5 (s, 

1H), 8.236(d, 1H, J=9.0Hz), 8.102(d, 2H, J= 9.0), 7.492-7.236(m, 5H,); 13C (125 MHz, MeOD) 

161.4, 160.8, 156.2, 143.1, 139.3, 137.4, 137.1, 134.1, 124.0, 120.6, 115.8, 114.2, 112.6, 106.8, 

102.2, 78.5, 55.69; HRMS m/z calculated for C17H11D3N3O2 295.1274 found 295.1272. 

2-(4-Methoxyphenyl)-2H-pyrazolo[4,3-c][1,5]naphthyridin-3(5H)-one [RV-I-071]. A 

mixture of ethyl 4-chloro-1,5-naphthyridine-3-carboxylate (0.01 mol, 0.236 g), 4-

methoxyphenylhydrazine hydrochloride (0.012 mol, 0.153g), triethylamine (0.012mol, 0.12 g) 

and xylenes (40 mL) was heated to reflux (138ºC) and held at reflux for 4 hours. The resulting 

yellow-orange slurry was cooled to room temperature and the solids were collected by filtration. 

The solids washed twice with 20 ml water. Drying of the solid afforded the product as a yellow 

powder RV-I-071 (0.268 g): 1H NMR (300 MHz, DMSO) δ 12.9 (s, 1H), 8.79 (s, 1H), 8.77 (s, 

1H), 8.11-8.10(d, 2H, J= 9.0), 8.08 (s, 1H), 7.70-7.68 (m, 1H), 7.05- 7.03(d, 2H, J= 9.0), 3.80 (s, 

3H); 13C NMR (75 MHz, DMSO) δ 161.49, 160.85, 156.56, 148.79.11, 143.06, 139.81, 136.60, 

133.97,132.95, 127.93, 125.21, 120.91, 114.33, 109.42, 55.72; HRMS m/z calculated for 

C16H12N4O2 (M+H)+ 293.1039 found 293.1037. 

8-Bromo-6-fluoro-2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin- 3(5H)-one [MM-I-03]. 

A mixture of 0.5 g (1.5 mmol) of ethyl 6-bromo-4-chloro-8- fluoroquinoline-3-carboxylate MM-

I-02, 0.31 g (1.8 mmol) of (4-methoxyphenyl)hydrazine hydrochloride and Et3N (2 mL) was 
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placed in a flask with xylene (8 mL) and heated for 4 h. The reaction was cooled at rt and 

filtered. The solid was washed several times with hexane and water. Then, the solid was 

dissolved in a base solution 3 N NaOH and stirred for 15 min. The base solution was neutralized 

with 3 N HCl and filtrated. The solid was recrystallized using hot ethanol and dried in vacuo, 

affording a yellow solid MM-I-03 (0.28 g, 48%): mp 333-334°C; 1H NMR (300 MHz, DMSO) δ 

8.51 (s, 1H; H-6), 8.09 (s, 1H; H-8), 8.03 (d, J = 8.9 Hz, 2H; H-15 and H-19), 7.89 (d, J = 10.5 

Hz, 1H; H-2), 7.01 (d, J = 9.0 Hz, 2H; H-16 and H-18), 3.78 (s, 3H; H-24); 13C NMR (75 MHz, 

DMSO) δ 161.11 (s), 156.65 (s), 140.93 (s), 139.49 (s), 133.57 (s), 124.37 (s), 124.19 (s), 122.02 

(s), 121.00 (s), 120.61 (s), 119.08 (q, J = 3.3, 1.9 Hz), 118.82 (s), 118.34 (s), 118.22 (s), 114.32 

(s), 107.83 (s), 55.73 (s); HRMS m/z calculated for C17H11N3O2FBr 388.0091 found 388.0094. 

2-(4-Methoxyphenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3-c]quinolin- 3(5H)-one [MM-I-

06]. Treatment of ethyl 4-chloro-7-(trifluoromethyl)quinoline-3-carboxylate MM-I-05 (0.5 g, 1.5 

mmol) with (4-methoxyphenyl)hydrazine hydrochloride (0.57 g, 1.8 mmol) and TEA (2 mL) in 8 

mL of xylene under reflux for 4 h afforded the corresponding product. The reaction was cooled 

at rt and filtered. The solid was washed several times with hexane and water. An acid-base 

crystallization was needed to remove the triethylamine salt, and it afforded yellow crystals MM-

I-06 (0.51 g, 82 %): mp 315 – 316°C; 1H NMR (300 MHz, DMSO) δ 12.93 (s, 1H; H-7), 8.84 

(s, 1H; H-8), 8.40 (d, J = 8.4 Hz, 1H; H-6), 8.08 (d, J = 9.1 Hz, 2H; H-15 and H-19), 8.03 (s, 1H; 

H-3), 7.83 (d, J = 8.1 Hz, 1H; H-1), 7.03 (d, J = 9.1 Hz, 2H; H-16 and H-18), 3.79 (s, 3H; H-22); 

13C NMR (75 MHz, DMSO) δ 161.38 (s), 156.60 (s), 141.99 (s), 140.79 (s), 135.83 (s), 133.75 

(s), 130.23 (s), 129.80 (s), 125.96 (s), 124.05 (s), 122.66 (q), 122.35 (s), 122.12 (s), 121.00 (s), 

117.21 (q), 114.34 (s), 107.42 (s), 55.71 (s); HRMS m/z calculated for C18H12N3O2F3 360.0954 

found 360.0943. 
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2-(4-Chlorophenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3-c]quinolin- 3(5H)-one [MM-I-08]. 

The reaction of 0.5 g (1.6 mmol) of ethyl 4-chloro-7-(trifluoromethyl)quinoline-3-carboxylate 

MM-I-05 with (4-chlorophenyl)hydrazine hydrochloride (0.47 g, 3.2 mmol) and 2 mL of Et3N in 

8 mL of xylene at reflux for overnight afforded the product. The recrystallization of solid gave 

yellow crystals MM-I-08 (0.44 g, 75%): mp 346 – 347°C; 1H NMR (300 MHz, DMSO) δ 12.98 

(s, 1H; H-7), 8.84 (s, 1H; H-8), 8.34 (d, J = 8.3 Hz, 1H; H-1), 8.21 (d, J = 8.9 Hz, 2H; H-15 and 

H-19), 7.98 (s, 1H; H-3), 7.80 (d, J = 8.3 Hz, 1H; H-6), 7.47 (d, J = 8.9 Hz, 2H; H-18 and H-16); 

13C NMR (75 MHz, DMSO) δ 161.92 (s), 142.71 (s), 141.03 (s), 139.11 (s), 135.84 (s), 130.51 

(s), 130.08 (s), 129.08 (s), 128.45 (s), 125.88 (s), 124.11 (s), 122.72 (q), 122.27 (s), 121.92 (s), 

120.40 (s), 117.15 (q), 107.15 (s). HRMS m/z calculated for C17H9N3OF3Cl 364.0459 found 

364.0453. 

2-(4-Nitrophenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)- one [MM-I-09]. In 

a flask containing ethyl 4-chloro-7-(trifluoromethyl)quinoline-3-carboxylate MM-I-05 (0.2 g, 

0.66 mmol), (4-nitrophenyl)hydrazine (0.25 g, 1.3 mmol) and xylene (8 mL), was added 2 mL of 

Et3N and the flask was immediately placed in oil bath previously heated at 150°C. After 4 h of 

heating, the solid was collected by filtration and washed with hexane and water. The same 

procedure of acid-base crystallization was used affording reddish solid MM-I-09 (0.035 g, 15 

%): mp > 350°C; 1H NMR (300 MHz, DMSO) δ 13.09 (s, 1H; H-7), 8.89 (s, 1H; H-8), 8.41 (d, J 

= 9.1 Hz, 2H; H-16 and H-18), 8.35 (d, J = 8.4 Hz, 1H; H-6), 8.27 (d, J = 9.1 Hz, 2H; H-15 and 

H-19), 7.95 (s, 1H; H-3), 7.82 (d, J = 8.2 Hz, 1H; H-1); HRMS m/z calculated for C17H9N4O3F3 

375.0700 found 375.0695. 

2-(4-(Trifluoromethoxy)phenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3- c]quinolin-3(5H)-one 

[MM-I-10]. A mixture of ethyl 4-chloro-7-(trifluoromethyl)quinoline-3- carboxylate MM-I-05 
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(0.3 g, 1 mmol) with (4-(trifluoromethoxy)phenyl)hydrazine hydrochloride (0.48 g, 2 mmol) and 

Et3N (2 mL) in 8 mL of xylene was heated at reflux for overnight. The solid was collected by 

filtration and washed with hexane and water. The solid was dissolved in 3 N NaOH solution (10 

mL) and precipitated with 3 N HCl (11 mL) solution. Then, a recrystallization using 15 mL 

EtOH and 2 mL of water was used and afforded yellow crystals MM-I-10 (0.25 g, 60%): mp 286 

– 287°C; 1H NMR (300 MHz, DMSO) δ 8.86 (s, 1H; H-8), 8.36 (d, J = 8.4 Hz, 1H; H-6), 8.29 

(d, J = 9.0 Hz, 2H; H-15 and H-19), 7.99 (s, 1H; H- 3), 7.81 (d, J = 8.3 Hz, 1H; H-1), 7.43 (d, J = 

8.8 Hz, 2H; H-16 and H-18); 13C NMR (75 MHz, DMSO) δ 161.98 (s), 144.85 (s), 142.85 (s), 

141.22 (s), 139.27 (s), 135.96 (s), 130.54 (s), 130.11 (s), 124.12 (s), 122.78 (s), 122.29 (q, J = 2.8 

Hz), 121.98 (s), 120.37 (s), 117.25 (q, J = 8.4, 4.7 Hz), 107.07 (s); HRMS m/z calculated for 

C18H9N3O2F6 414.0672 found 414.0674. 

2-(4-Fluorophenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3-c]quinolin- 3(5H)-one [MM-I-11]. 

Treatment of ethyl 4-chloro-7-(trifluoromethyl)quinoline-3-carboxylate MM-I-05 (0.2 g, 0.66 

mmol) with (4-fluorophenyl)hydrazine hydrochloride (0.22 g, 1.3 mmol) and Et3N (2 mL) in 8 

mL of xylene under reflux for overnight afforded the corresponding product. The yellow crystals 

MM-I-11 (0.15 g, 65%) were obtained by recrystallization with hot EtOH: mp 296 – 297 °C; 1H 

NMR (300 MHz, DMSO) δ 12.98 (s, 11H; H-7), 8.84 (s, 11H; H-8), 8.36 (d, J = 8.3 Hz, 1H; H-

6), 8.19 (dd, J = 9.0, 5.1 Hz, 2H; H-15 and H-19), 8.00 (s, 1H; H-3), 7.81 (d, J = 8.4 Hz, 1H; H-

1), 7.27 (t, J = 8.9 Hz, 2H; H-16 and H-18); 13C NMR (75 MHz, DMSO) δ 161.69 (s), 160.85 

(s), 157.66 (s), 142.41 (s), 140.94 (s), 136.74 (s), 135.78 (s), 130.21 (q), 124.09 (d), 124.07 (s), 

122.73 (q), 121.99 (s), 120.97 (d), 117.14 (q), 115.95 (s), 115.65 (s), 107.21 (s); HRMS m/z 

calculated for C17H9N3OF4 348.0755 found 348.0766. 
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2-(3-Methoxyphenyl)-7-(trifluoromethyl)-2H-pyrazolo[4,3-c]quinolin- 3(5H)-one [MM-I-

12]. The reaction of 0.5 g (1.6 mmol) of ethyl 4-chloro-7- (trifluoromethyl)quinoline-3-

carboxylate MM-I-05 with (3-methoxyphenyl)hydrazine hydrochloride (0.575 g, 4.1 mmol) and 

2 mL of Et3N in 15 mL of xylene at reflux for overnight afforded the product. Recrystallization 

gave yellow crystals MM-I-12 (0.762 g, 46 %): mp > 350 °C; 1H NMR (500 MHz, DMSO) δ 

8.85 (s, 1H, H-8), 8.43 (d, J = 8.3 Hz, 1H, H-6), 8.04  (s, 1H, H-15), 7.88 – 7.80 (m, 3H, H-1 H-3 

and H-19), 7.37 (t, J = 8.2 Hz, 1H, H-18), 6.79 (dd, J = 8.2, 2.4 Hz, 1H, H-17), 3.82 (s, 3H, H-

22). 

8-Bromo-2-(4-chlorophenyl)-6-fluoro-2H-pyrazolo[4,3-c]quinolin-3(5H)- one [MM-I-13]. A 

mixture of ethyl 6-bromo-4-chloro-8-fluoroquinoline-3-carboxylate MM-I-02 (0.2 g, 0.64 mmol) 

with (4-chlorophenyl)hydrazine hydrochloride (0.18 g, 1.2 mmol) and Et3N (2 mL) in 8 mL of 

xylene was heated at reflux for overnight. The solid was collected by filtration and washed with 

hexane and water. The solid was dissolved in 10 mL of DMSO. The solution was poured in 30 

mL of H2O, and filtered in order to remove the triethylamine salt. Then, a recrystallization using 

15 mL EtOH and 2 mL of water was used and afforded yellow crystals MM-I-13 (0.17 g, 70%): 

1H NMR (300 MHz, DMSO) δ 8.54 (s, 1H, H-8), 8.22 (d, J = 8.9 Hz, 2H, H-15 and H-19), 8.11 

(s, 1H, H-6), 7.92 (dd, J = 10.6, 1.8 Hz, 1H, H-2), 7.50 (d, J = 8.9 Hz, 2H, H-16 and H-18). 

8-Bromo-6-fluoro-2-(4-fluorophenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)- one [MM-I-18]. 

Treatment of ethyl 6-bromo-4-chloro-8-fluoroquinoline-3-carboxylate MM-I- 02 (0.2 g, 0.64 

mmol) with (4-fluorophenyl)hydrazine hydrochloride (0.22 g, 1.3 mmol) and Et3N (2 mL) in 8 

mL of xylene under reflux overnight afforded the corresponding product. The yellow crystals 

MM-I-18 (0.120 g, 50 %) were obtained by recrystallization with hot EtOH: 1H NMR (300 
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MHz, DMSO) δ 13.02 (s, 1H, H-7), 8.55 (s, 1H, H-8), 8.25 – 8.15 (m, 2H, H-15 and H-19), 8.12 

(s, 1H, H-6), 7.93 (dd, J = 10.6, 1.9 Hz, 1H, H-2), 7.29 (t, J = 8.9 Hz, 2H, H-16 and H-18). 

7-Methoxy-2-(4-(trifluoromethoxy)phenyl)-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[CW-02-082]. To a clean and dry flask ethyl 4-chloro-7-methoxyquinoline- 3-carboxylate DK-I-

40-1 (531 mg, 2 mmol, 1 eq), (4-(trifluoromethoxy)phenyl)hydrazine hydrochloride (686 mg, 3 

mmol, 1.5 eq), xylene (10 mL), and TEA (607 mg, 6 mmol, 3 eq) were charged. The mixture 

was immediately transferred to pre-heated oil bath (150 ºC) and heated for 12h at which point it 

was cooled to 0 ºC via ice/water bath and hexanes (20 mL) were added in one portion. The 

yellow solid was filtered and dried (1.35g product + TEA*HCl). The mixture was purified via 

general purification method A and B. The solid was dried overnight under high vacuum 

obtaining the pure product in 75% yield (563 mg) as a yellow powder CW-02-082: 1H NMR 

(300 MHz, DMSO) δ 12.71 (s, 1H), 8.71 (s, 1H), 8.33 (s, 2H), 8.12 (s, 1H), 7.45 (s, 2H), 7.18 (s, 

2H), 3.88 (s, 3H); 13C NMR (75 MHz, DMSO) δ 162.18, 161.10, 144.50, 144.48, 143.97, 

139.93, 139.60, 137.61, 124.15, 121.98, 120.12, 115.95, 112.52, 106.45, 102.37, 56.00; HRMS 

(ESI) (M + H),Calcd. for C18H13F3N3O3 376.0909, Found 376.0914. 

7-Methoxy-2-(4-methoxyphenyl)-6-methyl-2,5-dihydro-3H-pyrazolo[4,3- c]quinolin-3-one 

[CW-02-073]. To a clean and dry flask ethyl 4-chloro-7-methoxy-8- methylquinoline-3-

carboxylate (560 mg, 2 mmol, 1 eq), (4-methoxyphenyl) hydrazine hydrochloride (524 mg, 3 

mmol, 1.5 eq), xylene (10 mL), and TEA (607 mg, 6 mmol, 3 eq) were charged. The mixture 

was immediately transferred to pre-heated oil bath (150 ºC) and heated overnight at which point 

it was cooled to 0 ºC via ice/water bath and hexanes (20 mL) were added in one portion. The 

yellow solid was filtered and dried (1.15g product + TEA*HCl). The mixture was purified via 

general purification method B. The solid was dried for 12h under high vacuum obtaining the 
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pure product in 70% yield (470 mg) as a yellow solid: 1H NMR (300 MHz, DMSO) δ 11.80 (s, 

1H), 8.37 (s, 1H), 8.08 (dd, J = 8.9, 5.1 Hz, 3H), 7.29 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 9.1 Hz, 

2H), 3.92 (s, 3H), 3.78 (s, 3H), 2.36 (s, 3H); 13C NMR (75 MHz, DMSO) δ 161.39, 158.24, 

156.22, 143.58, 139.11, 135.37, 134.09, 121.18, 120.66, 114.33, 114.25, 112.80, 111.11, 106.53, 

56.65, 55.68, 10.03; HRMS (ESI) (M + H), Calcd. for C19H18N3O3 336.1348; Found 336.1240. 

7-Methoxy-6-methyl-2-phenyl-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin- 3-one [CW-02-078]. 

To a clean and dry flask ethyl 4-chloro-7-methoxy-8-methylquinoline-3- carboxylate (560 mg, 2 

mmol, 1 eq), phenylhydrazine hydrochloride (434 mg, 3 mmol, 1.5 eq), xylene (10 mL), and 

TEA (607 mg, 6 mmol, 3 eq) were charged. The mixture was immediately transferred to pre-

heated oil bath (150 ºC) and heated overnight at which point it was cooled to 0 ºC via ice/water 

bath and hexanes (20 mL) were added in one portion. The yellow solid was filtered and dried 

(1.17g product + TEA*HCl). The mixture was purified via general purification method A. The 

solid was dried overnight under high vacuum obtaining the pure product in 84% yield (513 mg) 

as yellow crystals: 1H NMR (500 MHz, DMSO) δ 11.86 (s, 1H), 8.42 (s, 1H), 8.22 (d, J = 8.2 

Hz, 2H), 8.11 (d, J = 8.8 Hz, 1H), 7.45 (t, J = 7.9 Hz, 2H), 7.33 (d, J = 8.9 Hz, 1H), 7.17 (t, J = 

7.3 Hz, 1H), 3.95 (s, 3H), 2.39 (s, 3H); 13C NMR (126 MHz, DMSO) δ 162.00, 158.41, 144.04, 

140.60, 139.43, 135.49, 129.15, 124.29, 121.32, 118.98, 114.42, 112.77, 111.22, 106.48, 56.71, 

10.08; HRMS (ESI) (M + H), Calcd. for C18H16N3O2 306.1243; Found 306.1237. 

7-Methoxy-6-methyl-2-(4-(trifluoromethoxy)phenyl)-2,5-dihydro-3Hpyrazolo[ 4,3-

c]quinolin-3-one [CW-02-079]. To a clean and dry flask ethyl 4-chloro-7- methoxy-8-

methylquinoline-3-carboxylate (560 mg, 2 mmol, 1 EQ), (4-(trifluoromethoxy) phenyl) 

hydrazine (689 mg, 3 mmol, 1.5 eq), xylene (10 mL), and TEA (607 mg, 6 mmol, 3 eq) were 

charged. The mixture was immediately transferred to pre-heated oil bath (150 ºC) and heated 
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overnight at which point it was cooled to 0 ºC via ice/water bath and hexanes (20 mL) were 

added in one portion. The yellow solid was filtered and dried (1.14g product + TEA*HCl). The 

mixture was purified via general purification method B. The solid was dried overnight under 

high vacuum obtaining the pure product in 68% yield (530 mg) as a yellow powder: 1H NMR 

(300 MHz, DMSO) δ 11.92 (d, J = 5.8 Hz, 1H), 8.44 (d, J = 6.3 Hz, 1H), 8.33 (d, J = 9.1 Hz, 

2H), 8.09 (d, J = 8.9 Hz, 1H), 7.45 (d, J = 8.9 Hz, 2H), 7.32 (d, J = 9.0 Hz, 1H), 3.94 (s, 3H), 

2.37 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 162.11, 158.52, 144.48, 144.44, 139.74, 139.57, 

135.51, 122.35, 122.00, 121.34, 120.10, 114.51, 112.64, 111.31, 106.11, 56.70, 10.05; HRMS 

(ESI) (M + H), Calcd. for C19H15F3N3O3 390.1066; Found 390.1068. 

7-Methoxy-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3- c][1,6]naphthyridin-3-one 

[CW-03-030]. To a clean and dry flask ethyl 4-chloro-7- methoxy-1,6-naphthyridine-3-

carboxylate (78 mg, 0.29 mmol, 1 eq), (4- methoxyphenyl)hydrazine hydrochloride (76 mg, 

0.435 mmol, 1.5 eq), xylene (5 mL), and TEA (89 mg, 0.87 mmol, 3 eq) were charged. The 

mixture was immediately transferred to pre-heated oil bath (150 ºC) and heated overnight at 

which point it was cooled to 0 ºC via ice/water bath and hexanes (20 mL) were added in one 

portion. The yellow solid was filtered and dried (product + TEA*HCl). The mixture was purified 

via FCC (7% MeOH in DCM) and general purification method A. The solid was dried overnight 

under high vacuum obtaining the pure product in 47% yield (44 mg) as orange crystals: 1H NMR 

(300 MHz, DMSO) δ 12.60 (s, 1H), 9.06 (s, 1H), 8.67 (s, 1H), 8.02 (d, J = 9.1 Hz, 2H), 7.02 (d, 

J = 9.1 Hz, 2H), 6.89 (s, 1H), 3.96 (s, 3H), 3.79 (s, 3H); 13C NMR (75 MHz, DMSO) δ 164.59, 

161.30, 156.46, 144.09, 143.92, 141.36, 141.25, 133.63, 120.84, 114.32, 110.13, 108.40, 96.94, 

55.72, 54.49; HRMS (ESI) (M + H), Calcd. for C17H15N4O3 323.1144; Found 323.1138. 
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7-Chloro-2-(4-methoxyphenyl)-2,5-dihydro-3H-pyrazolo[4,3- c][1,6]naphthyridin-3-one 

[CW-03-033]. To a clean and dry flask ethyl 4,7-dichloro-1,6- naphthyridine-3-carboxylate (120 

mg, 0.443 mmol, 1 eq), (4-methoxyphenyl)hydrazine hydrochloride (116 mg, 0.664 mmol, 1.5 

eq), xylene (5 mL), and TEA (135 mg, 1.33 mmol, 3 eq) were charged. The mixture was 

immediately transferred to pre-heated oil bath (150 ºC) and heated overnight at which point it 

was cooled to 0 ºC via ice/water bath and hexanes (15 mL) were added in one portion. The 

yellow solid was filtered and dried (product + TEA*HCl). The mixture was purified via FCC 

(7% MeOH in DCM) and general purification method B. The solid was dried overnight under 

high vacuum obtaining the pure product in 61% yield (88 mg) as an orange solid: 1H NMR (300 

MHz, DMSO) δ 12.87 (s, 1H), 9.21 (s, 1H), 8.81 (s, 1H), 8.03 (d, J = 9.1 Hz, 2H), 7.61 (s, 1H), 

7.03 (d, J = 9.1 Hz, 2H), 3.79 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 161.08, 156.70, 150.07, 

146.16, 143.21, 141.60, 140.52, 133.41, 121.00, 114.38, 114.10, 113.06, 109.77, 55.73; HRMS 

(ESI) (M + H), Calcd. for C16H12ClN4O2 327.0649; Found 327.0654. 

Purification Method A: The crude compound was heated to reflux in ethanol (10mL/g) and a 

solution of ethanol/water (50% H2O, 50% ethanol) was slowly added until all the compound was 

completely dissolved at reflux. Once dissolved, water was added dropwise at reflux until the 

solution became slightly cloudy. The solution was cooled slowly to rt and in most cases 

microcrystals began to accumulate. The solution was further cooled to 0ºC via an ice-bath, 

filtered, and the solids were washed with cold aq solution of ethanol/water (50% H2O, 50% 

ethanol) and dried overnight. If necessary, compounds were further dried under high vacuum. 

Purification Method B: The crude compound was dissolved in a minimal amount of DMSO and 

water was added until the compound was completely precipitated from the DMSO solution. The 

product was filtered and washed with water. The amorphous powder was ground with a mortar 
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and pestle and dried under high vacuum for 24h or until little trace of water was present in the 

HNMR spectrum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

361 
 

CHAPTER TEN 

IN VITRO AND IN VIVO CHARACTERISTICS OF NOVEL, SELECTIVE, 

AND POTENT α6 POSITIVE ALLOSTERIC MODULATORS 

I. IN VITRO EXPERIMENTS AND RESULTS. 

The first step in the determination of whether or not these novel pyrazoloquinlinones 

have the necessary activity/selectivity at the α6ß3γ2 receptor is to complete oocyte assays on the 

α1-6ß3γ2 receptors.  Unfortunately, these oocyte assays are very time consuming, thus data on the 

novel compounds prepared in the earlier section is still incomplete.  However, data on a number 

of compounds has been completed and more compounds selective to α6 receptors have been 

discovered. 

Where oocyte data has not yet been possible or is incomplete, other in vitro assays are 

also being used to determine other pharmalogical characteristics of these novel ligands.  

Currently, assays to determine water solubility and metabolic rate of these novel ligands are 

routinely run on new analogs.  In the future, a more complete pharmacokintetic (PK) analysis of 

ligands identified as strong leads will also be accomplished. 

1. Oocyte data. 

The oocyte data for compounds 6 and 11 are presented in Figures 10-1 and 10-2, 

respectively, for comparison.  As described in chapter 9, Compound 6 acts almost exclusively at 

α6 receptors while it is nearly silent at α1-5ß3γ2.  Compound 11, while not as selective as 

Compound 6, exhibited much more potent activity on α6 receptor subtypes in vitro. 
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Figure 10-1: Compound 6, oocyte efficacy data. 

 

Figure 10-2: Compound 11, oocyte efficacy data. 

Compound 11

N
H

NN

OCl

OCH3

Compound 11  

 New compounds with complete oocyte data include LAU 159 (32) and LAU 463 (38).  

These compounds along with their oocyte efficacy data are presented in Figures 10-3 and 10-4 

respectively. 
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Figure 10-3: LAU 159, oocyte efficacy data. 

 

Figure 10-4: LAU 463, oocyte efficacy data. 

 

 Incomplete efficacy data, that is n < 3 and/or only α6ß3γ2 receptors have been determined 

on a variety of other novel analogs (Table 10-1).  A number of these ligands act as selective α6 

agonists, including DK-I-56-1 (19) and RV-I-29 (20).  Both of which are deuterated derivatives 

of the lead ligand Compound 6.  The slightly lower and statistically relevant efficacy of 20 is 

thought to be due to a slightly impure sample.  Prior to in vivo testing 20 was more thoroughly 

purified.  Compound 6 is included for reference. 
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Table 10-1: Oocyte efficacy data obtained; to date. 

Compound at 1mM 
α6ß3γ2 α1ß3γ2 α1ß3 α5ß3γ2 

10 mM 

Compound 6   
300±30 NT NT NT 

570±100 140±30 180±30 220±20 

DK-I-56-1 (19) 
270±30 NT NT 

NT 
500±80 170±15 140±20 

RV-I-29 (20) 
190±20 

NT NT NT 
370±40 

DK-I-60-3 (21) 
280±40 NT NT NT 
600±100 200±10 180±70 390±40 

DK-I-94-1 (22) 
NT 

NT 
NT 

NT 
~220 ~200 

CW-03-030a (25) 
120±10 NT 

NT NT 
210±15 220±20 

DK-I-86-1 (27) 
160±15 NT NT NT 
230±30 100±10 ~110 80±10 

DK-I-59-I (33) 
NT 

NT 
NT 

NT 
160±30 ~110 

DK-I-87-1 (35) 
~100 

NT 
~80 NT 

NT NT NT 

DK-I-58-1 (39) 
150±15 

NT 
NT NT 

400±60 ~140 400±25 

DK-I-92-1 (40) 
NT 

NT 
  

NT 
~220 ~200 

NT = not tested     
 

 While it is clear that the deuterated analogs of lead ligand Compound 6 retain α6 activity, 

of the other novel ligands tested so far many are only weakly efficacious at α6 subtypes.  This 

adds valuable information for future SAR studies, for example comparison of 25 and 27 show a 

statistically relevant difference in selectivity dependent upon the position of the pyridine ring 

(Figure 10-5). 
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Figure 10-5: Pyridine ring positioning. 

 

 Although 27 is a deuterated analog, it has been previously shown that the deuterium 

atoms do not influence efficacy nor the subtype selectivity in a statistically relevant fashion.  

However, the position of the pyridines rings, ring A in 25 and ring D in 27, effects a relevant 

change in selectivity for α6.  While both show only mild efficacy at α6, 27 retains selectivity 

whereas pyridine 25 was found to also exhibit mild efficacy at the α1 receptor subtype, which 

could lead to some negative side effects including sedation, ataxia, and addiction.  This valuable 

information will aid in the future design of ring D analogs, which should lead to more soluble 

compounds that retain both activity and α6 selectivity. 

2. Solubility data. 

 The pyridine analogs discussed above were synthesized for the sole basis to improve 

water solubility for future in vivo studies.  Since the ring A pyridine 25 was found to be 

nonselective in preliminary in vitro oocyte efficacy assays, the solubility of this compound was 

not tested.  The first four compounds examined were tested to show the enhanced solubility of 

pyridine analog 27; in the future the solubility of many more analogs will be tested. 
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Table 10-2: Solubility data on select compounds. 

 

Compounds Water solubility (ng/µL) 
DK-I-56-1 (19) 11.40 
DK-I-60-3 (21) 16.00 
DK-I-86-1 (27) 211.00 
DK-I-58-1 (39) 9.20 

Determined by HPLC  
 

 From these data it can be seen that the pyridine analog 27 is nearly 20 times more water 

soluble then the other analogs.  As described earlier, the oocyte efficacy of 27 indicated that 

selectivity at α6 was retained, however, it was less efficacious then the related α6 selective 

ligands discovered thus far.  The increase in solubility, however, may be a crucial component for 

future in vivo work.  Moreover, this indicated that pyridine analogs are an important target for 

future SAR studies since these pyridine analogs may have better oral bioavailability then other 

lead compounds.  Unfortunately, synthesis of the hydrochloride salts of these pyridine analogs 

has been complicated because demethylation of the pyridine OCH3 group has been observed 

when the compound was subjected to acidic conditions.  Analogs with the pyridine nitrogen and 

methoxy group meta to one another are currently being prepared; synthesis of the hydrochloride 

salts of these analogs may be more straightforward. 
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3. Metabolic data. 

 Deuterated methoxy groups have been shown to slow down metabolism for a number of 

different drug candidates.  The methoxy groups present in Compound 6 were thought to likely 

contribute to metabolism of these compounds.  Illustrated in Table 10-3 and 10-4 are metabolic 

data obtained in vitro on both human liver microsomes and mouse liver microsomes, 

respectively.  It was shown that deuterated analogs exhibit a significantly longer half-life then 

the non-deuterated analogs.  The first 4 compounds in each table 10-3 and 10-4, compounds 6, 

19, 20, and 21 are perhaps the most indicative of this increase in metabolic stability.  Illustrated 

in Figure 10-6 are the structures of these ligands. 

Figure 10-6: Analogs with key metabolic stability. 

N
H

NN

O

OCD3

H3CO 19 N
H

NN
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D3CO 21N
H

NN

O

OCH3
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H

NN

O

OCH3

D3CO 206  

 As described in Table 10-3, lead ligand Compound 6 was shown to have a half-life of 

~200 minutes, whereas the ring D mono-deuterated analog 19 was shown to have a half-life of 

~500 minutes – nearly double that of the parent compound.  The ring A mono-deuterated analog 

20 was found to have a half-life of ~3000 minutes and the di-deuterated analog 21 was fond to 

have a half-life of ~700 minutes.  This increase in metabolic stability is relevant and important 

for in vivo work, which should lead to a longer time of effect in vivo compared to Compound 6. 
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II. IN VIVO EXPERIMENTS AND RESULTS. 

 Novel pyrazoloquinolinones with α6 efficacy and α6 subtype selectivity were chosen for 

in vivo studies in a number of mouse assays to probe the neurological activity of these ligands 

(Figure 10-7).  The first assay to be discussed is the measurement of the concentration 

distribution between plasma and brain of each ligand in mice.  This pharmacokinetic (PK) 

analysis helps determine the uptake of the drug when injected intraperitoneally (i.p.), as well as 

the free concentration reached in the brain of the mouse.  Since these ligands are presumed to 

only act on the central nervous system, crossing the blood-brain-barrier is necessary for a 

pharmacological response.  The free fraction in the brain is what binds to the receptor, thus this 

fraction is also very important. 

 Since these compound bind and act via the BZ site at α6ß3γ2 receptors, it was also 

extremely important to determine whether or not these novel selective ligands have the usual 

effects that are associated with benzodiazepines such as diazepam.  These effects include ataxia, 

dependence, and sedation among others.  These effects are viewed as negative side-effects for a 

number of indications, including those under study here.  Assays that help determine whether or 

not benzodiazepine-like effects were seen with these novel pyrazoloquinolinone analogs were 

thus completed.  These will also be discussed in detail in the sections to follow. 

 Assays that have helped elucidate the role of α6 receptors tested for this study include 

pre-pulse inhibition assays, migraine assays, and IoN-CCL rat assays.  These assays will be 

described in detail in this section.  Future assays that are currently being completed or planned 

will also be discussed. 
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Figure 10-7: Ligands chosen for in vivo studies. 

 

1. Plasma/Brain distribution data. 

 As described earlier, blood-brain-barrier penetration is essential to potent activity for all 

CNS active ligands.  This can be measured in vivo by dosing animals and at predetermined time 

intervals collecting blood samples from both the body and the brain.  Moreover, estimates of the 

free brain concentration, that is the ligand not bound to proteins, can also be determined by these 

assays.  While protein binding is a common phenomenon in CNS drugs for transport; on the 

other hand, when bound to protein it is unlikely that the ligand will bind to the α6ß3γ2 receptor 

subtype in question.  This binding, however, is generally reversible and often in equilibrium with 
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the ‘free fraction’ of ligand, thus moderate protein binding is often not a major concern for CNS 

drugs. 

Figure 10-8: Plasma/Brain distribution of Compound 6 in rats. 

 

 The lead compound, Compound 6, was found to have adequate brain concentration for a 

candidate to target the CNS.  Moreover, it was found that a steady concentration of ligand was 

still present 12 hours post dosing.  This may signify these compounds will be long-lasting in 

vivo.  Analysis of the data for the deuterated analog DK-I-56-1 indicated a similar concentration 

in vivo to Compound 6 when dosed i.p., however, with a slightly lower half-life (Figure 10-9).  

Estimation of the free brain concentration indicated that a substantial amount of ligand was not 

protein bound. 
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Figure 10-9: Plasma/Brain distribution of DK-I-56-1 in rats. 

 

Figure 10-10: Plasma/Brain distribution of DK-I-86-1 in rats. 
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 Unlike Compound 6 and DK-I-56-1, examination of the data for the ring D pyridine 

analog DK-I-86-1 indicated a much lower plasma concentration with a Cmax of just 1256 

ng/mL.  This is compared to Compound 6 which had a Cmax of 3667 ng/mL, nearly 3 times 

higher.  However, analysis of the data indicated DK-I-86-1 still obtains a substantial brain 

concentration (Cmax = 215 ng/mL) with the longest half-life of all ligands tested (9 hours).  

These beneficial characteristics, along with better water solubility, make DK-I-86-1 an 

interesting candidate for future in vivo studies. 

Figure 10-11: Plasma/Brain distribution of DK-I-56-1 in mice. 
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 Studies of DK-I-56-1 in mice have shown a dose dependence relating to the 

concentration of ligand in both plasma and brain (Figure 10-11).  Interesting to note is the 

extreme increase of brain concentration of DK-I-56-1 when a 30 mg/kg dosage was used.  While 

these results clearly show that DK-I-56-1 is a suitable drug candidate for both rats and mice, it is 

clear that in mice higher doses, such as 30 mg/kg as used in this study, provided higher brain 

concentrations in a dose response curve manner. 

2. Battery of common BZ ligand in vivo studies. 

 Since ligands that activate the BZ site have been known to elicit a number of undesirable 

side-effects, it was important to determine if these novel α6 selective ligands also exhibited some 

of these negative side-effects especially from activation of α1ß2/3γ2 subtypes.  A number of assays 

have been carried out to help determine these effects and the rotorod assay is one of the most 

important assays to test for the α1 receptor-mediated ataxia and sedation (Figure 10-12).  While 

not only measuring the ability of the mouse/rat to stay on the rod, grip strength can be measured 

as well in regard to muscle relaxation (Figure 10-13).  

Figure 10-12: Rotarod performance with Compound 6. 
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Figure 10-13: Grip strength performance with Compound 6. 

 

 Analysis of the data from these initial tests indicated that at a dose of 3 mg/kg there was 

essentially no difference in rotarod timing or grip strength seen on administration of Compound 

6.  These positive results indicate that unlike a number of typical benzodiazepine drugs, 

Compound 6 is unlikely to be ataxic or cause any gross motor coordination difficulties. 
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Figure 10-14: Test for a sedation effect of Compound 6. 

 

Figure 10-15: Open arms distance in elevated plus maze. 
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Figure 10-16: Open arms duration in elevated plus maze. 

 

Figure 10-17: Rearing number. 
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 Analysis of the assays described above in Figures 10-14, 10-15, 10-16, and 10-17 detail 

common assays for benzodiazepine ligands.  Analysis of the sedation data in Figure 10-14 

confirmed that Compound 6 has no sedative effect, in agreement with the data from the rotarod 

assay.  The elevated plus maze assay is an attempt to assay anxiety in mice.  Mice that spend 

more time in the “open arm” section of the elevated maze are thought to feel less anxiety then 

mice that stay in the “closed arm” portion.  From these data, it was shown that Compound 6 

exhibited a dose-response anti-anxiety effect on mice, clearly a beneficial effect.  The rearing in 

a closed maze pertains to the number of times a mouse goes on their rear legs to view their 

surroundings; analysis of the data in Figure 10-17 indicated that Compound 6 at both 3 and 10 

mg/kg exhibited little difference from vehicle. 

 These assays together show that Compound 6, and likely α6 receptors in general, have 

positive biological effects while at the same time do not include the negative effects exhibited by 

other non-selective benzodiazepines – specifically α1 ligands which are known to be sedative, 

addictive, ataxic, amnesic, and cause tolerance and addiction.  The anti-anxiety effect of 

Compound 6 was unexpected, since this usually emanates in mice via α2 and α3 receptor 

subtypes and will have to be verified in a Vogel conflict test of anxiolysis. 

3. Studies of prepulse inhibition (PPI). 

 Prepulse inhibition (PPI) is a neurological phenomenon in which a weaker pulse, 

generally acoustic, inhibits the startle response to a subsequent stronger pulse.  In this study, 

sensorimotor gating deficits which manifest themselves in neurological diseases such as 

schizophrenia, OCD, and Tourette syndrome were studied by impairing mice with 

methamphetamine and subsequently measuring the effect on PPI.  Methamphetamine is a 
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recreational and addictive stimulant drug that when administered can result in a behavior similar 

to symptoms of schizophrenia or other sensorimotor gating deficits.  In terms of PPI, when under 

the effects of methamphetamine, the ‘prepulse’ no longer inhibits the response to the ‘pulse’ 

showing the mice to be experiencing more erratic behavior.  Rescuing the PPI is thus defined as 

reducing this erratic behavior to the point where the ‘prepulse’ is again able to inhibit a response 

to the ‘pulse’ in a significant fashion.  Illustrated in Figure 10-18 is an example of the 

methamphetamine PPI mouse model.  The designation C6 refers to Compound 6 and C11 refers 

to Compound 11. 

Figure 10-18: PPI results with Compound 6 and Compound 11. 

 

 The white bars under the label “Vehicle” represent the prepulse inhibition % seen in mice 

when a short prepulse (71 dB or 77 dB) was played followed by a louder pulse (115 dB).  To put 

the difference in noise levels in perspective 71 dB is similar to a normal conversation, 77 dB is 
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similar to the sound of a vacuum cleaner, and 115 dB is similar to a car horn at a short distance.  

From analysis of the graph it is clear that the short prepulse inhibited the response in mice to the 

louder pulse by about 55% for 71-115 dB and about 70% for 77-115 dB, indicating that the 

measured ‘startle’ from mice was 55-70% less intense when a prepulse was played versus when 

the louder 115 dB pulse was played without the prepulse. 

 The black bars under the label “Vehicle” represent the inhibition when mice were treated 

with methamphetamine.  It is clear that under the effects of methamphetamine, the prepulse does 

not cause a significant inhibition response to the louder pulse.  This more erratic behavior is what 

can be attributed to patients with schizophrenia, in fact studies support that almost all 

schizophrenic patients have a lower PPI% then non-schizophrenic control groups (eye blink test). 

 The grey bars labeled “Furo” represent administration of furosemide, a known GABAA 

antagonist/NAM that acts particularly strongly at the α6 site.  Furosemide was used as a control 

to assess whether or not the effects seen were the results of α6 modulation or interactions with 

other sites in the brain.  It was shown that furosemide given directly into the brain slightly 

rescued PPI% in mice under the effects of methamphetamine; however, these effects may be 

explained by the method in which furosemide was administered.  Furosemide (pictured in Figure 

10-19) does not readily cross the blood-brain-barrier because it is a very hydrophilic molecule 

thus necessitating direct injection into the brain.  This can perhaps effect the concentration of 

methamphetamine in the brain which could explain the modest rescue of PPI.  More importantly, 

however, administration of furosemide negatively affected the rescue response seen from the 

administration of Compound 6 and Compound 11, especially in the 77-115 dB assay.  This 

suggests that the PPI effects of Compound 6 and Compound 11 are mediated by α6 subtypes.  



 

382 
 

This is an important result in terms of psychiatric diseases such as schizophrenia, OCD, and tic 

diseases including Tourette syndrome among a number of other potential applications. 

Figure 10-19: Structure of furosemide, an α6ß3γ2 receptor antagonist. 

 

 It was shown that both Compound 6 and Compound 11 administered i.p. at 10 mg/kg 

were able to rescue PPI to a significant margin in mice under the influence of methamphetamine.  

Prior data has shown that Compound 6 was not sedative or motor impairing (Chapter 10 section 

2), consequently, these results indicate that Compound 6, or α6 subtypes in general, have the 

ability to rescue PPI in animals with sensorimotor gating deficits.  A similar assay was 

subsequently completed comparing these results to some of the other new and novel α6 selective 

ligands discovered thus far (Figure 10-20). 
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Figure 10-20: PPI rescue of other α6 PAM’s. 

 

 Examination of this assay indicated that the α6 ligands administered i.p. at 10 mg/kg had 

no effect on mice that were not under the influence of methamphetamine, again showing that 

these selective and potent ligands have very little, if any, negative side-effects.  This ability to 

rescue PPI while at the same time showing no negative side-effects is strong evidence that these 

ligands may be important pharmaceutical agents for patients with sensorimotor gating deficits. 
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4. Studies on the effects of Compound 6 on migraines. 

 It has been demonstrated that c-Fos-ir neurons in the trigeminal nucleus caudalis (TNC) 

are associated with pain related to migraines.  Specifically, the location of the TNC may offer an 

anatomical explanation to the ‘back-of-the-head’ pain associated with severe migraines.85  

Depicted in Figure 10-21 are data that show c-Fos positive numbers can be influenced by cranial 

injection of capsaicin, the chemical component of hot peppers that causes the associated burning 

sensation.  It was found that i.p. injection of Compound 6 at both 3 mg/kg and 10 mg/kg 

significantly reduced the c-Fos positive number, essentially lowering the pain sensation 

associated with the capsaicin vehicle.  This demonstrates that these novel α6 ligands can play a 

potential role in negating the effects of a severe migraine. 

 The GABAA α6 receptor has been implicated in the past as a potential inhibitor of 

trigeminal nociceptive pain based on gene knockout studies; these results confirm this with a true 

α6 selective ligand with pharmaceutical potential.  Examination of these results proompted 

further testing in an IoN-CCI model which tests for the possibility that these ligands could treat 

trigeminal neuralgia and trigeminal neuropathy.86 
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Figure 10-21: Reduction of c-Fos positive numbers increased by injection of capsaisin. 

 

5. IoN-CCI studies. 

 Infraorbital nerve chronic constriction injury (IoN-CCI) is a common neuropathic pain 

model.  The unilateral ligature of the infraorbital nerve (IoN) in rats, as an animal model of 

peripheral neuropathic pain, and more specifically, trigeminal neuralgia and trigeminal 

neuropathy, was performed as described by Desuere and Hans.87  The effects of subchronic 

treatment were tested with a nanoemulsion formulation of DK-I-56-1 (19) injected i.p. at 10 

mg/kg.  Examination of Figure 10-22 illustrates the results of this experiment. 
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Figure 10-22: IoN-CCI experiment results. 

 

 Rats were injected daily for 14 consecutive days post-surgery with DK-I-56-1 and 

positive effects were seen through day 21, indicating that the novel α6 selective deuterated 

analog of Compound 6  (DK-I-56-1) effectively modulated pain in IoN-CCI rats.  Sham 

surgeries (circles) represent rats that went through the entire surgical process, however, the 

infraorbital nerve was not ligated, thus pain associated with the surgery itself can be accounted 

for in the control. 
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 Over the course of this assay face grooming in mice was also measured (Figure 10-23), 

another assay to assess whether or not negative side-effects of these ligands were present.  It was 

found that the mice treated with DK-I-56-1 did not differ significantly to the other control mice.  

This is more confirmation that these selective ligands show no signs of the usual benzodiazepine 

related side-effects. 

Figure 10-23: Face grooming in DK-I-56-1 treated IoN-CCI rats. 

 

III. CONCLUSION. 

In conclusion, it has been shown that subtype selective α6 ligands have potential as novel 

and selective pharmaceutical agents to treat a number of neurological disorders including 

nociceptive pain, OCD, Tourette syndrome, schizophrenia, and anxiety disorders among others.  

In vitro studies have shown potent efficacy at the specific α6ß3γ2 subtype in oocytes, increased 
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solubility by addition of a pyridine ring while maintaining selectivity, and a significant increase 

in metabolic stability with the introduction of deuterium to ring-A or ring-D methoxy groups.  

These in vitro studies laid the ground work for in vivo testing in mice and rats. 

 The first in vivo studies described herein were initiated to determine some of the 

pharmacokinetic parameters of these compounds, principally the concentration reached in 

plasma and brain tissue when administered i.p. in mice.  Analysis of these data indicated that 

these selective ligands readily passed the blood-brain-barrier and were thus good candidates for 

further in vivo work.  Studies were then initiated to determine whether or not these subtype 

selective α6 ligands showed any of the usual negative effects seen with benzodiazepines such as 

diazepam.  Analysis of these studies indicated that Compound 6, the first reported α6 subtype 

selective ligand, exhibited little or no negative side-effects when dosed i.p. in mice.  In fact, a 

potential anti-anxiety indication was the only result that differed from vehicle (Figures 10-15 and 

10-16), clearly a positive effect. 

 These promising results led to further in vivo testing in models of prepulse inhibition, 

migraine, and IoN-CCI assays.  Analysis of all three assays showed novel potential use of these 

selective α6 ligands for the treatment of different neurological diseases.  Future work will include 

improving solubility as well as a more thorough PK study to assess drugable characteristics of 

these ligands.  While Compound 6 and its related deuterated analogs already show great 

promise in delivering a CNS drug with little to no negative side-effects, efforts to discover more 

soluble, selective, and potent drug candidates is still ongoing.  In particular, future assays to test 

oral bioavailability and the design of new analogs with enhance bioavailability are particularly 

exciting. 
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