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ABSTRACT 

HISTONE DEACETYLASE INHIBITION INDUCES APOPTOSIS AND CELL CYCLE 

DYSREGULATION IN HUMAN AND MURINE CANCER CELL LINES 

by  

Joseph Skurski 

The University of Wisconsin - Milwaukee, 2017 
Under the Supervision of Dr. Douglas Steeber, Ph.D. 

 

Carcinogenesis is a complex multistep process that requires tumor cells to grow rapidly 

while overcoming growth inhibitory signals and sustained challenges from the host immune 

response. Mutations within promoter or enhancer regions, along with epigenetic changes, can 

induce aberrant expression of genes that regulate differentiation, cell cycle, and apoptosis, all 

of which enhance potential for cellular transformation. In recent years, our understanding of 

the biological processes that influence the activation and repression of transcription have 

evolved to highlight the role of chromatin architecture, and how chromatin remodeling may be 

utilized for the potential therapeutic benefit of genetic disease. Histone deacetylase inhibitors 

(HDACi) are small molecule drugs that affect the balance between acetylation and 

deacetylation of proteins, ultimately influencing cellular processes including gene transcription. 

There are currently three FDA-approved HDACi on the market (FK228, SAHA, Panobinostat) for 

cancer treatment, all of which have high systemic toxicity. Therefore, there is need for 

development of less toxic HDACi with improved tumor specificity. HDACi can exert anti-tumor 

effects by inducing transcriptional changes in tumor suppressors through modulating 

acetylation of histones and/or transcription factors. We hypothesize that the high systemic 
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toxicity of the current HDACi is due to their non-selective HDAC activity and that more class-

specific HDACi would result in less potent effects in cellular proliferation, death, and off target 

activity. The present studies tested this hypothesis by comparing effects of multiple HDACi on 

cell cycle progression and cell death in the murine breast 4T1, human prostate DU145, and 

human myelomonocytic U937 cancer cell lines. Systemic toxicity was assessed ex vivo using 

primary murine leukocyte populations. Further, cytotoxic effects of HDACi were tested in 

myeloid derived suppressor cell populations harvested from 4T1 tumor – bearing mice. Using 

flow cytometry and fluorescence microscopy, we demonstrate that FK228 and Panobinostat 

induced apoptosis and cell cycle dysregulation of cancer cell populations in vitro. Ongoing 

studies are elucidating the mechanisms of cell death and determining the off target effects of 

these HDACi.   
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Chapter 1 - Introduction 

1. Aims and Significance 

 Cancer is a major global public health problem and is currently the second leading cause 

of death in the United States (Siegel et al., 2016). The number of estimated diagnoses of new 

cases of invasive cancer in the United States in 2016 was 1,685,210, or the equivalent of 4,600 

new cancer diagnoses each day (Siegel et al., 2016). In 2016, these estimated cases resulted in 

roughly 595,690 deaths in the United States with lung, bronchus, prostate, and colorectal 

cancers being the deadliest cancers in men while lung, breast, and colorectal cancers are the 

deadliest among women (Siegel et al., 2016). Women in the United States face a 12.3% risk of 

lifetime diagnosis of breast cancer (Siegel et al., 2016). While there is currently an array of 

treatment options available to breast cancer patients in the United States and abroad, many 

approaches lack specificity and therefore contribute to systemic toxicity that may diminish 

quality of life. There is a distinct need for more targeted therapeutic options that utilize tumor-

specific markers to selectively target malignant cells, leaving healthy tissues unaffected. Both 

human epidermal growth factor receptor (HER2) and estrogen receptors (ERs) are common 

markers that are overexpressed in a variety of breast cancers (Nahta et al., 2006). ER-positive 

breast cancers are susceptible to endocrine-based treatments targeting either estrogen or ER, 

and treatment options have demonstrated improved survival rates in both disease-free and 

overall survival (Nahta et al., 2006) . Additionally, monoclonal antibodies targeted against HER2, 

such as trastuzumab, have been shown to improve patient outcomes (Burstein et al., 2003). 
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Despite these advancements there are still several challenges to be met. For example, 

multidrug resistance remains problematic, while HER2 is only overexpressed in approximately 

25% of invasive breast cancers (Knuefermann et al., 2003). Of further concern to the 

development of new therapies is the genetic heterogeneity and biological complexity of 

cancerous cell populations.  

 Carcinogenesis is a complex multistep process that requires tumor cells to grow rapidly 

while overcoming growth inhibitory signals and sustained challenges from the host immune 

response. Tumor cells must also be able to replicate indefinitely and evade apoptosis, while 

achieving sustained growth and survival by maintaining a suitable intake of oxygen and 

nutrients from the host (Johnstone, 2002). Mutations that result in the constitutive activation 

of oncogenes and inactivation of tumor suppressor genes are critical events that can contribute 

to the continued growth of the tumor. Aberrant gene expression also plays an important role in 

the development and growth of cancerous cell populations. Mutations within promoter or 

enhancer regions, along with epigenetic changes, can induce aberrant expression of genes that 

regulate differentiation, cell cycle, and apoptosis, all of which enhance the potential for cellular 

transformation (Johnstone, 2002). In recent years, our understanding of the biological 

processes that influence the activation and repression of transcription have evolved to highlight 

the role of chromatin architecture, and how chromatin remodeling may be utilized for the 

potential therapeutic benefit of genetic disease. In cancer, many of the molecular events that 

cause irregular gene expression due to altered chromatin structure have been elucidated, and it 

has been shown that aberrant acetylation of histone tails is strongly linked to carcinogenesis 

(Johnstone, 2002).   
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Understanding how gene expression can be regulated allows for the development of 

novel molecular tools which may be used to reprogram transcription and inhibit tumor cell 

growth and progression. Histone deacetylase inhibitors (HDACi) are small molecule drugs that 

modulate the balance between histone acetylation and deacetylation, ultimately influencing 

gene transcription through altering chromatin conformation. HDACi can exert anti-tumor 

effects by inducing transcriptional changes in tumor suppressors through modulating 

acetylation of histones and/or transcription factors (Weichert et al., 2008). We hypothesized 

that more HDAC-selective inhibitors will result in less potent effects in cellular proliferation, 

death, and off-target activity than broad spectrum inhibitors. In contribution to the growing 

body of research regarding HDACi as a viable therapeutic strategy for a variety of cancers, the 

research proposed herein sought to: 

1. Assess the efficacy of clinically approved HDACi FK228 and Panobinostat in the 4T1, 

DU145, and U937 tumor cell lines. 

2. Characterize the potential pathways of cell death produced by these compounds. 

3. Assess the off target effects of these compounds upon primary murine leukocytes ex 

vivo.  

4. Determine the efficacy of these compounds in reducing immunosuppression in the 

tumor microenvironment by examining their potential cytotoxic effects upon 

myeloid derived suppressor cells (MDSCs) in the mouse 4T1 tumor model. 

These aims were tested using qualitative techniques such as fluorescence microscopy and 

through a quantitative approach in flow cytometry. All in vitro analysis were performed using 

established tumor cell lines.  
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2. Rationale 

Overexpression of HDACs in human tumors can serve as a biomarker for cancerous versus 

healthy tissue (Minamiya et al., 2011). In multiple cancers including prostate, colorectal, breast, 

lung, liver, and gastric, overexpression of individual HDACs correlates with decreases in both 

disease-free and overall survival, and can be used to predict poor patient prognosis 

independent of tumor type and disease progression (Rikimaru et al., 2007). The aberrant 

expression of HDACs has been linked to key oncogenic events, such as the epigenetic repression 

of the tumor suppressor gene CDKN1A (cyclin-dependent kinase inhibitor 1A), along with genes 

encoding DNA damage repair enzymes such as BRCA1 and ATR (Liu et al., 2009). Genetic 

knockdown of individual HDACs including HDAC1, -2, -3, and -6 in multiple cancers such as 

colon, breast, and lung has resulted in apoptosis and cell cycle arrest (Duan et al., 2005). These 

events indicate that HDAC activity may be a key contributor to cell survival in multiple cancers. 

Further, the deacetylation of the tumor suppressor p53 by HDACs has been shown to decrease 

transcriptional activity, and the upregulation of oncogenes such as BCL2 is induced by HDAC-

mediated deacetylation of the transcription factors SP1 and C/EBP (Bhaskara et al., 2008). The 

possibility of targeting the aberrant transcriptional processes that lead to neoplasia may 

provide an opportunity for therapeutic intervention at a crucial juncture of the transformation 

process. Since this approach may affect several molecular pathways, chromatin remodeling 

through HDACi may potentially be more powerful than a targeted disruption of any single 

pathway.  
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3. Literature Review 

 3 a. HDACs in Epigenetic Modification 

Epigenetics refers to heritable changes in gene expression that do not involve changes 

to the underlying DNA sequence. These changes can occur through a variety of mechanisms, 

including post-translational modifications of DNA-associated proteins. The fundamental 

structure of chromatin is the nucleosome, which is composed of a 146bp DNA strand wrapped 

around a core histone octamer (Deubzer et al., 2013). Histone proteins serve to compact 

lengthy strands of genomic DNA into structures that can be contained within the eukaryotic 

nucleus. These proteins can be post-translationally modified by a number of mechanisms 

including lysine acetylation and ubiquitination, serine phosphorylation, sumoylation, and lysine 

and arginine methylation (West and Johnstone, 2014). These structural changes to the histone 

surface influence their interactions with chromatin and chromatin-associated proteins, 

impacting transcriptional activity. The most relevant post-translational modifications to HDACi-

based therapies are histone acetylation and deacetylation. These reversible processes are 

regulated by two classes of enzymes: histone acetyl transferases (HATs) and HDACs. HATs and 

HDACs perform opposite functions; HATs catalyze the transfer of an acetyl group from acetyl 

co-A to the -amino site of lysine, neutralizing the positive charge of the histone resulting in an 

open chromatin conformation, facilitating increased DNA transcription (West and Johnstone, 

2014). HDAC activity deacetylates lysine residues encouraging interactions between the 

negatively charged DNA and the positively charged histones. This results in a closed chromatin 

conformation that represses transcription.  
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 There are 11 known HDACs with Zn2+-dependent (classes I, II, and IV) active sites. (Table 

1). Class I HDACs associate with multiprotein repressor complexes, and include HDACs 1-3 and 8 

(Leder and Leder, 1975). Class I HDACs are expressed ubiquitously in all cells, act almost 

exclusively in the nucleus, and have histone substrates (West and Johnstone, 2014). The 

deletion of HDACs 1 and 2 together, but not each separately, has been shown to cause cell 

death in tumor cells as well as produce neural precursor maturation defects (Lindemann et al., 

2007). HDAC2 has been shown to suppress apoptosis in tumor cells, and there is increasing 

evidence for a role of HDAC1 and HDAC2 in the DNA damage response (Lindemann et al., 2007). 

Deletion of HDAC3 has been associated with interruption of cell cycle progression, DNA 

damage, and deficiencies in repair and apoptosis (Lindemann et al., 2007). Class II HDACs are 

comprised of HDACs 4-7, 9, and 10. These HDACs can be present in either the cytoplasm or the 

nucleus, and can often shuttle between these locations (Newbold et al., 2008). Class II HDACs 

are further subdivided into two subcategories: class IIa (HDACs 4, 5, 7, and 9), and class IIb 

(HDACs 6 and 10). Class II HDACs often regulate tissue specific processes, playing roles in the 

vascular and nervous systems, bone, and skeletal muscle (Newbold et al., 2008). The sole class 

IV HDAC is HDAC11. HDAC11 is found in the nucleus and cytoplasm, and is also overexpressed 

in several carcinomas and its depletion has been shown to cause apoptosis in cancer cells 

(Insinga et al., 2005).  
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Table 1. Aberrant HDAC expression in multiple types of cancers 

HDAC  Cancer Expression  

HDAC 1 (Class I) Gastric, breast, colorectal, lung, liver 

HDAC 2 (Class I) Gastric, prostate, colorectal, CTCL 

HDAC 3 (Class I) Gastric, breast, colorectal, decreased in liver 

HDAC 4 (Class IIa) Unknown 

HDAC 5 (Class IIa) Medullablastoma, decreased in lung 

HDAC 6 (Class IIb) Breast, CTCL, decreased in lung 

HDAC 7 (Class IIa) Acute lymphoblastic leukemia, decreased in lung 

HDAC 8 (Class I) Neuroblastoma 

HDAC 9 (Class II) Medullablastoma, acute lymphoblastic leukemia 

HDAC 10 (Class IIb) Unknown 

HDAC 11 (Class IV) Breast, renal, liver 

 

 

  

3 b. HDACi in the Treatment of Cancers 

HDACi can induce tumor cell apoptosis, growth arrest, senescence, differentiation, 

increased immunogenicity, and inhibit angiogenesis (Nebbioso et al., 2005). Despite this broad 

range of effects, it has proven difficult to elucidate a specific mechanism of action responsible 

for all antitumor effects caused by HDACis due to the vast diversity among tumor types, as well 

as the diversity of specificity profiles among different classes of HDACi. Variability in biological 

effects and therapeutic outcomes can undoubtedly be attributed in part to the genetic 

heterogeneity characteristic of a wide variety of cancers. HDACi were initially described on their 
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ability to induce tumor cell differentiation; however, as the field expanded tumor cell apoptosis 

has come to be the most reported biological outcome of treatment (Duan et al., 2005). 

Preclinical models have established a direct link between HDACi-induced tumor cell apoptosis 

and therapeutic efficacy (Zhang et al., 2008); however, the role of the intrinsic apoptotic 

pathway mediated by inhibition of anti-apoptotic Bcl-2 family proteins vs the extrinsic pathway 

mediated by death receptors and their ligands remains contentious (Liu et al., 2009). Histone 

hyperacetylation observed at the promoters of apoptosis-inducing genes such as TNFSF10 and 

BMF following HDACi treatment suggests that there is a link between altered gene expression 

and apoptosis. This hyperacetylation may influence changes in the activity of certain 

transcription factors, such as SP1 and C/EBP, leading to the downregulation of anti-apoptotic 

protein Bcl-2 (Ungerstedt et al., 2005).  

HDACi have also been shown to induce mitotic cell death of transformed tumor cells by 

causing mitotic defects. Through increasing histone acetylation, the structure and function of 

the centromere and pericentric heterochromatin are disrupted, causing a loss of binding to 

heterochromatin binding proteins (Weichert et al., 2008). Histone acetylation can also interfere 

with histone phosphorylation, disrupting the function of mitotic spindle proteins such as BubR1, 

hBUB1, CENP-F, and CENP-E (Weichert et al., 2008). HDACi treatment has also been shown to 

cause the degradation of the mitotic serine/threonine kinases aurora A and B, as well as 

survivin, which plays a paradoxical role in apoptosis and mitosis (Tan et al., 2006). Following 

treatment with HDACi, tumor cells show a transient arrest at prometaphase, followed by 

aberrant mitosis which results in death via apoptosis or mitotic cell death (Tan et al., 2006). 
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Therefore, it is reasonable to hypothesize that treatment of established cancer cell lines with 

HDACi will result in increased apoptosis and decreased proliferation.  

HDACi can also induce cell death through autophagy. Previous studies have demonstrated 

that HeLa cells with Apaf-1 knockout or BcL-XL overexpression cultured with the HDACi 

suberoylanilide hydroxamic acid (SAHA, a clinically approved HDACi) or butyrate (a short chain 

fatty acid HDACi, non-FDA-approved) succumbed to autophagic cell death (Bradner et al., 

2010). More recently, combination treatments using OSU-HDAC42, a novel HDACi, along with 

SAHA have been shown to induce autophagy in hepatocellular carcinoma cells as evidenced by 

transmission electron microscopy, immunofluorescence and LC3-II recruitment (Krug et al., 

2015). The authors concluded that this combination approach induced autophagy through the 

downregulation of Akt/mTOR signaling and induction of the ER stress response (Krug et al., 

2015).  

Accumulation of reactive oxygen species (ROS) has also been demonstrated in transformed 

cells cultured with HDACi including SAHA, FK228, Trichostatin A (TSA) (a class I and II HDACi), 

butyrate, and entinostat (an HDACi inhibiting HDAC1 and HDAC3 currently in clinical trials) 

(Furumai et al., 2002). This accumulation of ROS may be central to the selective induction of cell 

death in transformed cells but not in healthy tissue. HDACi up-regulates the expression of TBP-

2, which binds to and inhibits thioredoxin activity, contributing to ROS accumulation in 

transformed but not in normal cells (Butler et al., 2002). Trx is an inhibitor of apoptosis-signal 

regulating kinase 1 (ASK1). ASK1 promotes apoptosis through the SET1-JNK and MKK3/MKK6p-

38 signaling cascades, promoting the expression of the proapoptotic protein Bim by a positive 
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feedback of E2F1 activity (Ashkenazi and Dixit, 1998). Therefore, HDACi-induced Trx inhibition 

by TBP2 activates ASK1, which promotes cell death by apoptosis.  

3 c. HDACi in the Clinic 

There has been much investigation regarding the clinical use and efficacy of HDACi as a 

cancer therapeutic option in recent years. There are currently four distinct classes of HDACi 

that are in clinical development: hydroxamic acids, cyclic peptides, short chain fatty acids, and 

benzamides (Krusche et al., 2005), each of which modulates histone acetylation levels in a 

reversible chemical process (Figure 1). SAHA (a hydroxamate-based inhibitor) was the first 

HDACi to be approved by the FDA (2006) for the treatment of refractory cutaneous T cell 

lymphoma. While initially believed to inhibit all class I, II, and IV HDACs in the low nanomolar 

range, more recent data suggests that SAHA may have only a weak inhibitory effect upon class 

IIa HDACs (Bossy-Wetzel and Green, 1999). SAHA has been shown to induce cellular 

differentiation in erythroleukemia cells and cause increased levels of p21, leading to G1 cell 

cycle arrest which inhibits cell growth in a variety of tumor cells, and animal models with 

limited toxicity (Aron et al., 2003). Being the first FDA-approved HDACi, SAHA has been studied 

in a number of clinical trials both in monotherapy and in combination with other compounds. 

FK228 was the second HDACi approved by the FDA (2009). Isolated from Chromobacterium 

violaceum, FK228 is a cyclic peptide with powerful activity, displaying inhibitory effects in the 

low nanomolar range. FK228 is a natural prodrug which is activated upon incorporation into the 

target cell through the reduction of an intramolecular disulfide bond by cellular reducing 

activity involving glutathione (Passmore et al., 2001). This compound has been shown to inhibit 
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human and mouse tumor growth in a variety of cancers through the inhibition of class I HDACs 

(Passmore et al., 2001).   
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http://www.als.net/news/dot12-emerging-

potential-for-hdacs-in-als 

Figure 1. Molecular structure of the HDACi TSA and Trapoxin 

illustrating their role in affecting histone acetylation levels. 
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Chapter 2 – Analysis of Cell Death and Cell Cycle Following HDAC Inhibition 

To investigate the cytotoxicity and mechanisms of cell death caused by treatment of human 

and murine cancer cell lines with HDACi, cell viability, apoptosis, and autophagy assays were 

performed. Additionally, cell cycle analyses were employed to elucidate the potential effects of 

HDACi treatment upon the cell cycle.  

1. Materials and Methods 

 1 a. Cells 

 The murine 4T1 mammary tumor cell line was originally isolated from a spontaneous 

breast tumor in BALB/c mice (Pulaski and Ostrand-Rosenberg, 2001). The 4T1 cell line has been 

chosen for its ability to human stage IV breast cancer, displaying highly metastatic behavior in 

mice. The 4T1 line has also been shown to induce the generation of myeloid-derived suppressor 

cells in mice. The cells utilized as described in this proposal have been obtained from ATCC 

(Manassas, VA, USA). The 4T1 cells were maintained in RPMI 1640 medium, supplemented with 

10% FBS (Atlanta Biologicals, Lawrenceville, GA, USA), 2mM L-glutamine, 100 units/mL 

penicillin, and 100 ug/mL streptomycin (all from Life Technologies, Grand Island, NY, USA). Cells 

were subcultured at approximately 70% confluency. 

 The human U937 cell line was used as a model for histiocytic lymphoma, as all currently 

approved HDACi have been approved for non-solid tumors. The U937 cell line was derived in 

1974 from malignant cells recovered through pleural effusion of a patient with histiocytic 

lymphoma (Passmore et al., 2001). This line is one of only a few human cell lines that expresses 

monocytic characteristics exhibited by cells of histiocytic origin (Passmore et al., 2001). The 
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cells were subcultured at 400,000 cells/ml in the same media and conditions as the 4T1 cell line 

described above, with the addition of 55µM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO).  

 In addition, the DU145 cell line was used to model highly metastatic prostate cancer. 

DU145 is a human cancer cell line that was originally isolated from a metastatic site in the brain 

(Wei et al., 2007). The DU145 cell line has previously been found to be sensitive to HDACi 

treatment and was cultured in the same media conditions as the 4T1 cell line described above 

(Pesce et al., 2015).  

 1 b. MTT Assay 

The anti-proliferative effect of FK228 and Panobinostat was tested on the 4T1 and 

DU145 cell lines using the MTT assay. MTT, a yellow tetrazole, is reduced by mitochondrial 

succinate dehydrogenase to purple formazan in living cells. 200 µl of cell suspension (70,000 

cells/ml) was plated into a 96 well plate and incubated for 24 hr at 37°C and 5% CO2. FK228 or 

Panobinostat (along with a 0.1% DMSO control) was added at various concentrations and 

incubated for another 48 hr. Cells were then washed twice with PBS followed by incubation 

with 200 µl of MTT solution (250 µg/ml) for 4 hr. The MTT solution was then aspirated, and the 

formazan crystals were solubilized by the addition of 200 µl of DMSO and by rotating the plate 

on a shaker for 10 min. Absorbance was determined at 570 nm with a reference wavelength of 

690 nm using a microtiter plate reader (Infinite M200 Pro TECAN). All treatments were 

performed in triplicate. The anti-proliferative effect of FK228 or Panobinostat was expressed as 

the relative cell number (% control).  



 
15 

Relative cell number = (experimental absorbance – background 

absorbance)/(absorbance of DMSO control – background absorbance) x 100.  

 1 c. Cell Death 

 To identify and quantify cell death taking place after HDACi treatments, live/dead assays 

using calcein AM and propidium iodide (PI) were performed. Non-fluorescent membrane 

permeable calcein AM dye is converted to fluorescent calcein through intracellular esterase 

activity in live cells. PI is membrane impermeant and will not enter live cells with intact 

membranes. PI enters through degraded plasma membrane in damaged cells and increases in 

fluorescence through the intercalation with nucleic acids. After staining cells, results can be 

obtained qualitatively through fluorescence microscopy and quantitatively through flow 

cytometry. 4T1 cells were harvested at approximately 70% confluency and plated at a density 

of 35,000 cells/well into a twenty-four well plate. Cells were then stained with calcein AM at 

1µM for 30 min and incubated at 37°C, and with PI at 2µM for 15 min before being visualized by 

fluorescence microscopy as described above. In other experiments, cells were treated as above 

and then washed with and resuspended in PBS prior to analysis by flow cytometry. A minimum 

of 10,000 cells were collected for each sample on a BD FACSCalibur flow cytometer running BD 

CellQuest™ Pro software. 

1 d. Apoptosis 

To characterize the mechanisms of death induced by HDAC inhibitors, calcein 

AM/Annexin V assays were performed to detect apoptosis. During apoptosis phosphatidyl 

serine (PS) is translocated from the inner to the outer leaflet of the plasma membrane. Annexin 
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V  binds specifically to PS in a calcium – dependent mechanism, allowing binding events to be 

visualized by fluorescence microscopy and quantified via flow cytometry. To quantify apoptotic 

activity of the 4T1 cells following treatment with FK228, PS expression was analyzed via flow 

cytometry through annexin V staining. 

 Similar to the calcein AM/PI assay, qualitative results were achieved through 

fluorescence microscopy while flow cytometry was used for quantitative data collection. Cells 

were washed with cold PBS and adjusted to a concentration of 1x106 cells/ml. 100µl of cell 

suspension (1x105 cells) was stained with calcein AM (1µM) for 30 min, and 5µl of 

phycoerythrin (PE)-conjugated annexin V [in 1X binding buffer (0.1 M HEPES, pH 7.4; 1.4 M 

NaCl; 25 mM CaCl2)] for 15 min at 25°C in the dark with 5 µl 7-Aminoactinomycin D (7AAD is a 

high affinity DNA intercalator). All reagents from BD Biosciences, San Jose, CA, USA. 400µl of 

binding buffer was added to the suspension and the samples were analyzed by flow cytometry 

within 1 hr. 

1 e. Cell Cycle Analysis 

 To further assess the cytotoxic effects of HDACi treatment on cell lines, cell cycle 

analyses were performed. With the data collected from these experiments, it may be possible 

to delineate cytotoxic effects of treatments from effects that may be merely anti-proliferative. 

Cells were washed with PBS and the concentration adjusted to 0.5x106 cells/ml. Cells were then 

resuspended in 70% ice-cold ethanol that was added dropwise while vortexing. Cells were then 

incubated on ice for 30 min before being washed with PBS. Cells were then washed with PBS 

and stained with PI staining solution (500µl of 1mM PI stock, 150µl RNase 100µg/ml, 9.5 ml 
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0.1% glucose in PBS), and incubated for 30 min at 37°C in the dark. The cells were again washed 

with PBS and resuspended in 400µl PBS. Samples were then analyzed via flow cytometry.                 

 1 f. Autophagy 

 To further interrogate the mechanism of cell death caused by HDACi treatment, 

autophagy assays were also performed. Cells were plated in a 24 well plate at a concentration 

of 35,000 cells/well and grown overnight. Cells were treated with HDACi or DMSO control for a 

24 hr incubation. 30 µM chloroquine was used as a positive control. Cells were washed with 

PBS, fixed in 4% paraformaldehyde in PBS for 10 min. Cells were washed with PBS and 

permeabilized with Tris buffered saline (TBS) containing 0.1% Tween 20 and 1% bovine serum 

albumin (BSA) for 1 hr at 4°C. Cells were washed with PBS, and stained with anti-LC3B 

polyclonal rabbit IgG (Thermo Fisher) at a dilution of 1:1000 and incubated at 4°C for 4 hr. Cells 

were washed with TBS and 1% BSA before incubation with Alexa Fluor 488-conjugated goat 

anti-rabbit IgG (Jackson Labs) at a dilution of 1:500 for 1 hr at 4°C. Cells were washed with PBS 

and counter stained with DAPI nuclear stain at a concentration of 3µM for 15 min at room 

temperature in the dark, before a final wash with PBS. Cells were then imaged via fluorescence 

microscopy.  

1 g. Statistical Analysis 

Data are presented as mean ± SEM unless stated otherwise. Significant differences 

between sample means were calculated using a Mann – Whitney U test with p<0.05 being 

considered statistically significant.  
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2. Results 

To obtain effective concentration (IC50) values for FK228 and Panobinostat in the 

DU145 cell line, the MTT assay was performed. FK228 produced a powerful anti-proliferative 

effect, suppressing cellular proliferation in the DU145 cell line even at 0.00001 µM. The IC50 of 

FK228 in the DU145 cell line was 0.006 µM. Panobinostat displayed a dose-dependent effect 

upon cellular proliferation, as relative cell number increased from the 10 µM dose to the 0.1% 

DMSO control, yielding an IC50 of 1.875 µM. The results from the MTT assay show that both 

FK228 and Panobinostat can have a strong antiproliferative effect on DU145 cells. To assess the 

effects of treatment with HDACi on cell viability in the 4T1 model, cells were treated with FK228 

in multiple concentrations and stained with calcein-AM and PI. Figure 2 shows a dose-

dependent effect of FK228 in 4T1 cells at a 24 hr time point, causing an increase in PI-stained 

populations (dead) and a decrease in calcein staining (live) as the concentration of FK228 

increased. To quantify cell viability following treatment of 4T1 cells with FK228, calcein AM and 

PI staining was performed and analyzed via flow cytometry. 

Following a 48 hr treatment with FK228, 4T1 cells showed increased cytotoxicity at the 

10 nM concentration (Figure 3). At the 1nM concentration of FK228, the PI-positive population 

increased from 19% to 28%, relative to the DMSO control. This staining pattern suggests that 

treatment with FK228 causes plasma and nuclear membrane degradation increasing cell death.  

To clarify the mechanism of cell death following exposure of 4T1, DU145, and U937 cells 

to FK228 and Panobinostat, PS expression was assayed as a marker for apoptosis. Further, by 

labelling with annexin V, cells were assayed for early, late, and total apoptosis. Cell populations 
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that stained positive for PS only were considered to be in early apoptosis, while cell populations 

that stained positive for both PS and 7AAD were considered to be in late apoptosis. The sum of 

both populations was taken as the measure of total apoptotic populations.  After a 24 hr 

exposure to 10 µM Panobinostat, PS expression increased in 4T1 cells compared to DMSO 

control (Figure 4A and B). After a 24 exposure, both FK228 and Panobinostat showed significant 

increases in early and total apoptosis compared to DMSO control (Figure 4C). Similar results 

were observed in the DU145 cell line; however, 0.1 µM FK228 treatment did not result in a 

statistically significant difference from DMSO in late or total apoptotic populations (Figure 4D). 

Increases in early and total apoptosis were observed for both doses of FK228 and Panobinostat 

in U937 cells (Figure 4E).  

  To determine effects of HDACi treatment on cell cycle, 4T1, DU145, and U937 tumor 

cell lines were treated with FK228, Panobinostat, or DMSO, stained with PI and analyzed by 

flow cytometry. After a 24 hr incubation, 4T1 cells appeared to undergo cell cycle arrest in the 

G0/G1 phase (Figure 5C-D). Cell cycle analyses can also be used to approximate the portion of 

apoptotic cells in a population.  

These results suggest that treatment with FK228 inhibits cell cycle progression in 

addition to producing cytotoxicity. Over a 24 hr time exposure, treatment of 4T1, DU145, and 

U937 cell lines with FK228 or Panobinostat all resulted in large increases in apoptosis compared 

to DMSO controls (Figure 5B-G). 4T1 cells treated with 1 µM or 0.1 µM FK228 resulted in a cell 

cycle arrest in the G0/G1 phase in addition to increased apoptosis (Figure 5B). 4T1 cells treated 

with 10 µM Panobinostat resulted in increased apoptosis compared to DMSO control along 
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with a reduction in the G0/G1 phase and an increase in S phase, indicating a possible cell cycle 

arrest in S phase (Figure 5C). 1 µM Panobinostat treatment of 4T1 cells caused an increase in 

apoptosis with no effects on the cell cycle (Figure 5C). DU145 cells treated with 1 µM or 0.1 µM 

FK228 also showed an increase in apoptosis compared to DMSO controls, with a large decrease 

in G0/G1 (Figure 5D). This decrease in G0/G1 phase was accompanied by a significant increase 

in cells in the S and G2/M phase (Figure 5D). DU145 cells treated with 10 µM or 1 µM 

Panobinostat showed similar results, leading to an increase in apoptosis accompanied by 

decreases in G0/G1 phase, and increases in S and G2/M (Figure 5E). U937 cells treated with 1 

µM or 0.1 µM FK228 resulted in dramatically increased apoptosis compared to DMSO control, 

accompanied by very little to no change in cell cycle (Figure 5F). U937 cells treated with 10 µM 

or 1 µM Panobinostat also resulted in large increases in apoptosis compared to DMSO, with 

modest effects on the cell cycle (Figure 5G).  

To further interrogate the mechanisms of cell death caused by treatments with HDACi, 

autophagy assays were performed by imaging LC3B recruitment to the autophagosome through 

immunofluorescence.  30 µM Chloroquine was used as a positive control, while 0.1% DMSO 

served as the negative control. Both 4T1 and DU145 cells showed high levels of LC3B 

recruitment following a 24 hr treatment with 30 µM chloroquine as expected (Figures 6 and 7). 

DMSO controls for both 4T1 and DU145 cells showed basal distribution of LC3B (Figures 6 and 

7). 4T1 cells treated with FK228 and Panobinostat resulted in increased levels of LC3B 

recruitment compared to DMSO controls (Figure 6). DU145 cells also showed similar increases 

in LC3B recruitment compared to DMSO controls (Figure 7). 
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3. Discussion 

 The results of these studies show that both FK228 and Panobinostat are powerful HDAC 

inhibitors with strong antiproliferative effects. After assessing the impact of these inhibitors 

upon cellular proliferation, the potential for cytotoxicity and cell death was examined next. 

Through calcein/PI staining, 4T1 cells displayed high levels of cell death following exposure to 

FK228 at the 24 hr mark (Figure 2). The effect appeared to be dose dependent. At the 48 hr 

mark, cell death continued as the amounts of PI positive cell staining increased in the 4T1 cell 

line (Figure 3). 

 Following the examination of cell death through HDAC inhibition, the mechanism was 

then explored. PS exposure was assayed as a marker for apoptosis and detected by flow 

cytometry. In the 4T1, DU145, and U937 cell lines, 24 hr treatment with FK228 or Panobinostat 

resulted in large increases in PS expression compared to DMSO controls (Figure 4). This increase 

suggests that HDAC inhibition caused cell death in vitro through apoptosis. These results were 

confirmed through cell cycle analysis (Figure 5). All treatments showed increases in apoptosis 

compared to DMSO controls in the 4T1, DU145, and U937 cell lines (Figure 5). This cell death 

was also accompanied by cell cycle dysregulation and arrest in the 4T1 and DU145 cell lines 

(Figure 5). The U937 cell line did not show any cell cycle arrest following exposure to 

Panobinostat, only high levels of apoptosis (Figure 5). Treatment with FK228 yielded small 

decreases in G0/G1 phase in the U937 cell line, also accompanied by high levels of apoptosis. 

From these results, it is reasonable to conclude that the HDACi treatments were highly 

cytotoxic in the U937 cell line, with no substantial affects upon the cell cycle.  
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To further interrogate the cell death mechanism utilized following HDAC inhibition, 4T1 

and DU145 cells were assayed for autophagy through LC3B recruitment (Figure 6). Both FK228 

and Panobinostat treatments resulted in elevated LC3B recruitment in 4T1 and DU145 cell lines; 

however, it appeared that Panobinostat treatments caused the greatest recruitment (Figure 6). 

These results suggest that while apoptosis clearly plays a large role in cell death upon exposure 

to HDACi, autophagy seems to also take place, particularly following exposure to Panobinostat.  
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Figure 2. 4T1 cells exhibited dose-dependent cytotoxicity following treatment with FK228 at 

24 hr.  

4T1 cells were treated with the indicated doses of FK228 or equivalent volume of DMSO as 

vehicle control. Calcein/PI staining was visualized by fluorescence microscopy and all images 

were taken at the same exposure setting. Green = calcein, red = PI.  
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Figure 3. FK228 treatment induces cytotoxicity in 4T1 cells.  

4T1 cells were treated with FK228 or DMSO control for 48 hr, stained with calcein AM and PI 

and analyzed via flow cytometry. Numbers indicate the percent of cells found within the 

indicated gate.  
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Figure 4. Treatment of 4T1, DU145, and U937 cells with FK228 or Panobinostat increased 
apoptotic populations.  

Cells treated with HDACi or DMSO control for 24 hr, stained with annexin V – PE and 7AAD for 
apoptosis analysis and analyzed via flow cytometry. 

 A) 4T1 cells treated with 0.1% DMSO control, B) 4T1 cells treated with 10 µM Panobinostat, C) 
4T1 cells, D) DU145 cells, and E) U937 cells.  

Results represent means ± SEM for three to four independent experiments. * indicates 
differences between values from treatment groups compared to the corresponding DMSO 
control were significantly different; P <0.05.  
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Figure 5. Treatment of 4T1, DU145, and U937 cells with FK228 or Panobinostat resulted in 
apoptosis and cell cycle dysregulation. 
 
Cells treated with HDACi or DMSO control for 24 hr, stained with PI for cell cycle analysis and 
analyzed via flow cytometry.  
 
A) 4T1 cells treated with 0.1% DMSO, B) 4T1 treated with FK228, C) 4T1 treated with 
Panobinostat, D) DU145 treated with FK228, E) DU145 treated with Panobinostat, F) U937 
treated with FK228, and G) U937 treated with Panobinostat.  
 
Results represent means ± SEM for three to four independent experiments. * indicates 
differences between values from treatment groups compared to DMSO control were 
significantly different; P <0.05. Apoptotic populations were gated separately from that of the 
cell cycle analysis.  
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Figure 6. Treatment of 4T1 cells with FK228 or Panobinostat resulted in increased autophagy.  

4T1 cells were treated with the chloroquine or indicated doses of FK228 or equivalent volume of 

DMSO as vehicle control and stained with anti-LC3B antibody to detect autophagy. Staining was 

visualized by fluorescence microscopy and all images were taken at the same exposure setting. 

Size bar = 50 microns. Green = LC3B localization, blue = DAPI counterstain (nuclear).  
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Figure 7. Treatment of DU145 cells with FK228 or Panobinostat results in autophagy.  

DU145 cells were treated with chloroquine or the indicated doses of FK228 or equivalent volume 

of DMSO as vehicle control and stained with anti-LC3B antibody to detect autophagy. Staining was 

visualized by fluorescence microscopy and all images were taken at the same exposure setting. 

Size bar = 50 microns. Green = LC3B localization, blue = DAPI counterstain (nuclear).  
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Chapter 3 – The Effects of HDAC Inhibition on Myeloid Derived Suppressor Cells (MDSC) 

A major barrier to cancer immunotherapeutic treatments in general has come from the 

complex, immunosuppressive microenvironment that envelops solid tumors. MDSC populations 

play an instrumental role in this immunosuppression. This chapter seeks to assess the potential 

cytotoxic effects of HDACi on MDSC populations taken from 4T1 tumor – bearing BALB/c mice, 

to examine the feasibility for HDACi treatment in solid tumors. To assess cytotoxicity, cell 

viability and cell count assays were performed. In addition, HDACi treatments were performed 

upon conventional murine leukocyte populations as a measure of off target activity ex vivo. 

1. Materials and Methods 

1 a. Myeloid Derived Suppressor Cell Viability 

To examine the effects of FK228 and Panobinostat upon MDSC populations, cell viability 

assays were performed. To generate MDSCs, female BALB/c mice were injected with 4T1 cells 

(1x104 cells in 50 µl) in supplement free RPMI medium subcutaneously into the mammary fat 

pad. After four weeks, spleen tissue was harvested from the tumor-bearing mice. To achieve a 

single – cell suspension, spleen tissue was mechanically disrupted in PBS, filtered through a 70 

µm filter mesh, and resuspended in red blood cell lysis buffer (Thermo Fisher) 10x stock diluted 

to 1x in PBS. Cells were then washed twice more with PBS before being seeded into a 24 well 

plate (0.5x106 cells/well) containing 500 µl RPMI 1640 medium, supplemented with 10% FBS 

(Atlanta Biologicals, Lawrenceville, GA, USA), 2mM L-glutamine, 100 units/mL penicillin, and 

100 ug/mL streptomycin (all from Life Technologies, Grand Island, NY, USA) with 55µM 2-

mercaptoethanol (Sigma-Aldrich, St. Louis, MO). FK228 and Panobinostat concentrations were 
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then made 2x and 500 µl of each concentration was added to each well (or a 0.1% DMSO 

control). After a 24 hr incubation, cells were then washed with PBS and stained with rat anti-

mouse Ly6G and Ly6C (myeloid monocytic markers) IgG (BD Pharmingen) at a 1:00 dilution for 

30 min on ice. Cells were then washed with PBS before the addition of 5 µl 7AAD before 

analysis by flow cytometry.  

1 b. Primary Leukocyte Cell Viability 

Single – cell suspension was achieved from the spleen of a non-tumor-bearing BALB/c 

mouse as described above. Cells were then treated with FK228, Panobinostat, or 0.1% DMSO 

and cultured for 24 hr at 37°C and 5% CO2 in RPMI 1640 medium, supplemented with 10% FBS 

(Atlanta Biologicals, Lawrenceville, GA, USA), 2mM L-glutamine, 100 units/mL penicillin, and 

100 ug/mL streptomycin (all from Life Technologies, Grand Island, NY, USA) with 55µM 2-

mercaptoethanol (Sigma-Aldrich, St. Louis, MO). To assess viability after HDACi treatments, 

live/dead assays using calcein AM and propidium iodide (PI) were performed. Cells were 

stained with 0.5 µM calein AM and 2 µM PI for 15 min, washed with PBS and resuspended in 

400 µl PBS for analysis via flow cytometry.  Cells were then stained with PE-conjugated rat anti-

mouse B220, FITC-conjugated rat anti-mouse CD4, PE-conjugated rat anti-mouse CD8, and FITC 

conjugated rat anti-mouse CD11b (all from BD Pharmingen). All samples were analyzed via flow 

cytometry on “Hi” setting (a rate of 60 µl/min) for 3:00 min. Cell number/sample was  

calculated by: (400 µl) x (event count)/180 µl = cell number.   
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2. Results  

 To determine the sensitivity of MDSC to HDACi treatment, MDSC harvested from 4T1 

tumor-bearing mice were used. Figure 10A depicts a high proportion of live calcein-positive 

cells (greater than 90%) with a relatively small population of PI-positive dead cells prior to 

treatment with FK228. In contrast, roughly 55% of the cells were dead (staining positive for PI) 

following 24 hr of 10 nM FK228 treatment (Figure 8B). These results suggest that treatment of 

MDSC with FK228 dramatically reduces viability. Following a 24 hr incubation with FK228 or 

Panobinostat, both cell number and cell viability decreased sharply compared to DMSO controls 

(Figure 9A-B). 

 We next sought to determine the effects of FK228 and Panobinostat on primary murine 

lymphocyte populations as a measure of off target activity. After a 24 hr incubation with FK228 

or Panobinostat, conventional primary murine leukocyte populations only experienced a 

modest if any reduction in relative cell number as a percentage of DMSO control (Figure 10A). 

After a 48 hr incubation with FK228 or Panobinostat cell numbers decreased (Figure 10B); 

however, none of these decreases were statistically significant. Therefore, neither FK228 or 

Panobinostat had significant off target effects upon primary murine leukocyte populations ex 

vivo. 
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3. Discussion 

 Following treatment with FK228 or Panobinostat, MDSC populations showed marked 

decreases in both absolute cell number and cell viability compared to DMSO controls (Figure 9). 

These results are consistent with the high levels of apoptosis that followed treatment of U937 

cells with FK228 or Panobinostat (Figure 5), suggesting a susceptibility of cell populations 

derived of myeloid lineage to cytotoxicity due to HDAC inhibition. The strong effect that both 

FK228 and Panobinostat had on cell number and viability of MDSC further suggests that HDAC 

expression may change along the myeloid developmental pathway, and that HDAC expression 

in MDSC populations may be similar to that found in tumor cell populations.  

 It is also worth noting that while HDAC inhibition is not a tumor-selective mechanism, 

conventional primary murine leukocyte populations exposed to FK228 or Panobinostat did 

appear to be much less sensitive following exposure in the same concentrations at the same 

time points. These results suggest that aberrant HDAC expression in the 4T1 and DU145 cell 

lines causes these cells to be more susceptible to HDAC inhibition.  
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Figure 8. FK228 treatment produced cytotoxicity in mononuclear cells harvested from 4T1 

tumor – bearing mice.  

Splenocytes were harvested from 4T1 tumor – bearing mice and treated with FK228 or 0.1% 

DMSO control, stained with calcein AM and PI in a viability assay and analyzed via flow 

cytometry.  

 A) Cells treated with 0.1% DMSO control at 0 hr B) Cells following incubation with 10 nM 

FK228 for 24 hr. Numbers indicate the percentage of cells located within the indicated gate. 
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Figure 9. HDACi treatment for 24 hr produced cytotoxicity in myeloid derived suppressor 

cells.  

Myeloid derived suppressor cells were harvested from the spleen of 4T1 tumor-bearing mice, 

treated with HDACi or equivalent volume DMSO control for 24 hr, stained with anti-

Ly6G/Ly6C antibodies, and analyzed via flow cytometry. 

A) Total cell number of MDSC, B) Percentage of MDSC remaining at the end of culture.   

Results represent means ± SEM for three to four independent experiments. * indicates 

differences between values from treatment groups compared to DMSO control were 

significantly different; P <0.05. 
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Figure 10. Treatment of primary murine leukocytes with FK228 or Panobinostat had only a 

modest effect on cell viability. 

Primary murine leukocytes were harvested from BALB/c mice and treated with HDACi or 

equivalent volume DMSO control for 24 or 48 hr. Cells were then stained for CD4, CD8, 

B220, or CD11b and analyzed via flow cytometry.  

A) 24 hr, B) 48 hr. 

Results represent means ± SEM for three to four independent experiments. * indicates 
differences between values from treatment groups compared to DMSO control were 
significantly different; P <0.05. Horizontal dashed line indicates 100% control value.  
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Chapter 4 – Conclusions  

 The studies herein show that both FK228 and Panobinostat show powerful anti-

proliferative and cytotoxic effects in 4T1, DU145, and U937 cell lines. 24 hr treatments of both 

FK228 and Panobinostat caused high levels of cell death in all three cell lines, mostly through 

apoptosis. Although apoptosis did appear to be the main cell death mechanism through which 

most cellular damage occurred following treatments with FK228 and Panobinostat, autophagy 

appeared to increase as a result of HDACi treatment, and therefore may contribute to the 

increased cell death. Autophagy was most common in DU145 cells treated with a high dose (10 

µM) of Panobinostat, indicating that the different mechanisms of the two drugs has an effect 

on cell death. Both FK228 and Panobinostat also showed strong effects on the cell cycle of all 

three cell lines, resulting in increased apoptosis and cell cycle arrest. Interestingly, MDSC 

populations also had a strong response to FK228 and Panobinostat treatment compared to the 

DMSO controls. MDSC populations experienced a sharp decrease in cell number and viability 

following 24 hr drug treatments indicating MDSC populations may also express HDACs 

aberrantly. From these results it is reasonable to postulate that HDACi treatment may result in 

less immunosuppression in the solid tumor microenvironment, a yet untested idea as there are 

currently no inhibitors approved for the treatment of solid tumors.  

 In contrast to the results obtained from treatments of MDSC populations, neither FK228 

nor Panobinostat appeared to have a significant effect on primary murine leukocytes (Figure 

10). When compared to the viability of 4T1 and DU145 cell lines following exposure to FK228 or 

Panobinostat, primary murine leukocytes showed a modest response. These results suggest 

that off target activity was limited in vitro. This may be due to normal HDAC expression in non-
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cancerous cells, along with the lowered metabolic activity of primary leukocytes ex vivo. 

However in vivo treatment with HDACi could have a more significant effect on immature 

populations of these cells. Taken together, the results of these studies show that HDAC 

inhibitors induce a powerfully cytotoxic response in the 4T1, DU145, and U937 cell lines, while 

also drastically reducing the viability of MDSC populations that are found in the complex 

microenvironment of solid tumors. These results suggest that HDAC inhibitors may warrant 

further investigation into the treatment of solid tumors.  
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