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ABSTRACT 

ROBUST LATENT ABILITY ESTIMATION BASED ON ITEM RESPONSE 

INFORMATION AND MODEL FIT 

 

by 

 

Hotaka Maeda 

 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Bo Zhang 

 

Aberrant testing behaviors may result in inaccurate person trait estimation. To counter its 

effects, a new robust ability estimation procedure called downweighting of aberrant responses 

estimation (DARE) is developed. This procedure downweights both uninformative items and 

model-misfitting response patterns. The purpose of this study is to present DARE and to evaluate 

its performance against other robust methods, including biweight (Mislevy & Bock, 1982) and 

biweight-MAP (BMAP; Maeda & Zhang, 2017b). The traditional maximum likelihood (MLE) 

and maximum a-posteriori (MAP) methods are also included as baseline methods. A Monte 

Carlo simulation is conducted with the design variables being test length, type of aberrant 

behaviors, percentage of aberrant examinees, and percentage of aberrant items. Person-fit 

analyses using 𝑙𝑧
∗ (Snijders, 2001) and 𝐻𝑇 (Sijtsma, 1986) are incorporated as a realistic initial 

step to determine the aberrant examinees that might benefit from robust estimation methods. 

Results showed that DARE effectively decreased the root-mean-squared-error (RMSE) and bias 

of the estimates compared to MAP among examinees detected using the 𝑙𝑧
∗ at the .01 α cutoff. 

DARE was the most accurate method in many conditions involving aberrant behavior when the 

test length was 40 or 60 items. At 20 items, all robust methods were ineffective. DARE performs 

well when 1) a high-achieving examinee show a mild spuriously low scoring behavior, or 2) a 
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low-achieving examinee show a mild spuriously high scoring behavior. When used 

appropriately, DARE is superior to all pre-existing methods in limiting the negative 

consequences of aberrant behavior.  
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CHAPTER 1: INTRODUCTION 

Problem 

In many educational and psychological measurement situations, accurately estimating an 

examinee’s level on the latent trait of interest is of utmost importance. Item response theory 

(IRT) aims to achieve such a goal by modeling the interaction between an examinee and a test 

item with a probabilistic function. Like all model-based approaches, the accuracy of IRT trait 

estimation depends on the degree of model-data fit. For example, for examinees who have 

cheated on some items, a standard IRT model would not be able to account for such aberrant 

response patterns, resulting in an overestimate of the person trait level. As another example, 

younger students tend to make careless mistakes, such as inadvertently misreading the 

instruction for an item. Using a standard model for them would lead to an underestimate of the 

latent trait. Aberrant test behaviors contaminate item responses and make the otherwise routine 

task of person trait estimation quite challenging for both aberrant and non-aberrant examinees.  

Aberrant test behaviors can manifest in numerous ways, such as cheating, guessing, 

fatigue, carelessness, excessive creativeness, misunderstanding the instructions, test anxiety, 

high/low motivation, clinical pathology, tendency to select extreme options, working too 

methodically, or ignoring negatively worded items (Meijer & Sijtsma, 2001; Rupp, 2013). Some 

of these behaviors may result in test scores that are too high, such as cheating and lucky 

guessing, while others such as fatigue or excessive test anxiety may result in spuriously low test 

scores. Some behaviors may affect the entire test (e.g., clinical pathology) while others may 

affect only a portion of the test (e.g., fatigue). 

Faced with the possibility of aberrant behaviors, one approach is to identify the 

examinees with aberrant responses and remove them from subsequent analyses. In that regard, 
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person-fit analyses come into play. Numerous person-fit statistics have been proposed to 

evaluate whether a response pattern fits a test model (Meijer & Sijtsma, 2001). These statistics 

provide a statement about the appropriateness of a measurement model. In the event of model-

data misfit, however, most person-fit statistics are unable to reveal the nature of the aberrant 

behaviors.   

One exception is the analyses based on the person response function (PRF; Trabin & 

Weiss, 1983). The PRF gives the probability of a correct answer for an individual with a fixed 

ability as a function of item difficulty. For a given ability level, as item difficulty increases, the 

probability of a correct response should decrease. Therefore, the PRF should be non-increasing 

when the model fits the data. By comparing the observed and expected PRF, one may be able to 

determine the general pattern of person misfit. For example, misfit of difficult items may provide 

evidence that the examinee has obtained correct answers through cheating or lucky guessing. On 

the contrary, misfit of easy items may indicate careless errors. Statistical procedures have been 

developed to test the non-increasingness of the PRF (e.g., Emons, Sijtsma, & Meijer, 2005; 

Sijtsma & Meijer, 2001), and to quantify its slope where a steep decreasing angle indicates good 

person-fit (e.g., Reise, 2000; Strandmark & Linn, 1987). The combination of 1) global person-fit 

testing, 2) graphical PRF examination, and then 3) local PRF examinations has been proposed as 

the most comprehensive person-fit analysis (Emons et al., 2005). 

Once aberrant response patterns have been detected, the irregularities in the contaminated 

data can be modeled using robust ability estimation methods, which downweight items that 

contain little information (Mislevy & Bock, 1982; Schuster & Yuan, 2011; Waller, 1974). These 

methods can be used to reduce the influence of potential aberrant responses while still retaining 

most of the trait information embedded in the responses. Recently, Maeda and Zhang (2017b) 
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proposed Bayesian alternatives to the existing robust estimation methods that downweight items 

with little information. They showed in their simulation study that the Bayesian extension often 

substantially improves the estimation accuracy.  

Purpose 

Existing robust estimation methods have been shown to be useful in reducing the ability 

estimation bias due to aberrant responding, but their effectiveness is limited and measurement 

error remains high for many testing conditions (Maeda & Zhang, 2017b; Meijer & Nering, 1997; 

Schuster & Yuan, 2011). A particular limitation of current methods is that they downweight all 

uninformative response items, which may cause high loss of information among the non-aberrant 

responses. Meanwhile, the PRF literature provides potential techniques for identifying aberrant 

responses. By drawing insights from both the robust estimation and PRF literature, it may be 

possible to create a procedure that downweights uninformative items as well as items with 

misfitting observed responses. Those responses that do not fit the model may be particularly 

likely to be aberrant. Hence, the main purpose of this study is to develop such a procedure and to 

evaluate its effectiveness in handling various aberrant testing results.  

Significance 

The importance of this research is fourfold. First, ability estimates are used in high stake 

decisions like proficiency classification and group comparison. This study explores new ways to 

provide more accurate ability estimates for examinees with aberrant behaviors when re-testing or 

dropping the score is unfeasible. Any improvement in ability estimation can significantly 

improve the utility of test scores. Second, when ability estimates are contaminated by aberrance, 

they tend to lower the effectiveness of parametric person-fit statistics that rely on accurate ability 

estimates (e.g., Meijer & Nering, 1997; Reise, 1995). Improving ability estimation may improve 
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the identification of aberrant behaviors. In a recent example (Maeda & Zhang, 2017a), the power 

of the copying index omega (Wollack, 1997) increased with better ability estimation. Third, the 

detection and removal of aberrant examinees may improve item parameter estimation, which in 

turn will improve ability estimation for non-aberrant examinees, who are usually the 

overwhelming majority of test takers. Finally, the proposed method may help identify the 

specific item responses that are aberrant. This information can be of interest in other analyses, 

such as exploring the source of aberrance.  
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CHAPTER 2: LITERATURE REVIEW 

Studying Aberrant Testing Behaviors  

To systematically study the effects of aberrant behaviors on ability estimation, the 

process in which an aberrant behavior may occur needs to be operationalized. Only then can 

Monte Carlo simulations be designed to emulate aberrant behaviors in real testing conditions. So 

far, researchers have come up with a wide variety of operationalized definitions of aberrant 

behaviors. According to Rupp (2013), the simulation of aberrant responses in previous studies 

often aim to answer the following questions: 

1. How many or what percentage of persons respond aberrantly? 

2. What kinds of persons respond aberrantly? 

3. To how many items do they respond aberrantly? 

4. To what kinds of items do they respond aberrantly? 

5. How do they respond aberrantly to selected items? 

In theory, the higher the percentage of aberrant examinees, the larger the error in item 

parameter and ability estimation and the lower the power in detecting aberrant response patterns. 

This has been confirmed by Karabastos (2003) where the percent of aberrant respondents were 

simulated as 5%, 10%, 25%, and 50%. Both sensitivity and specificity in detecting aberrant 

response patterns decreased as more examinees were contaminated. While 1% (e.g., Armstrong 

& Shi, 2009) to 100% (e.g., de la Torre & Deng, 2008) aberrant examinees has been studied, the 

most typical cases seem to be around 10% (Rupp, 2013). 

In addition, previous research has examined the consequences of aberrant behavior across 

all ability levels (e.g., Cui & Leighton, 2009; Glas & Dagohoy, 2007) as well as in specific 

ranges (e.g., Meijer, 1996; Zhang & Walker, 2008). For instance, aberrant behaviors that tend to 
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cause spuriously high scores (e.g., cheating and lucky guessing) are more likely to occur with 

examinees with low ability, though medium or high ability examinees may also make lucky 

guesses or even cheat. In that sense, examining results by ability levels may be particularly 

valuable for revealing the nature of the aberrant behaviors (e.g., de la Torre & Deng, 2008; 

Drasgow, Levine, & McLaughlin, 1987; Meijer & Nering, 1997).  

Once target examinees have been selected, aberrant behavior must be operationalized. 

The severity of aberrant behavior has high impact on both the power of detecting aberrant 

examinees and the accuracy of ability estimation (Rupp, 2013), thus is an important design 

variable in simulation studies. In practice, aberrance is often simulated by imposing a certain 

value of conditional probability of a correct response. While some researchers alter all test items 

(e.g., Schuster & Yuan, 2011), others select some items either randomly (e.g., Drasgow et al., 

1987; Levine & Rubin, 1979) or deterministically (e.g., Karabastos, 2003). Researchers usually 

study only one type of aberrant behavior for one examinee (Rupp, 2013). Although multiple 

aberrant behaviors (e.g., cheating plus misreading instructions) can occur simultaneously in 

practice, these kinds of behaviors are difficult to simulate.  

For example, Karabastos (2003) simulated cheating by imputing 18% of the most 

difficult items as correct by setting 𝑃𝑖
∗ = 1 where 𝑃𝑖

∗ is the probability of a correct response for 

an aberrant item 𝑖. In contrast, careless errors were operationalized by assigning 𝑃𝑖
∗ = .5 to 41% 

of the easiest items. In these cases, aberrant behavior was modeled as dependent on item 

difficulty. Alternatively, Schuster and Yuan (2011) used Copas's (1988) model to simulate 

aberrance for all items:  

 𝑃𝑖
∗ = (1 − 𝛾)𝑃𝑖 + 𝛾𝑄𝑖, (1) 



 

 

7 

  

where, 𝑃𝑖 represents the probability of a correct response based on a measurement model, 𝑄𝑖 =

1 − 𝑃𝑖, and 𝛾 is a value from 0 to 1 that represents the severity of aberrant behavior. Liu, 

Douglas, and Henson (2009) used a similar approach except 𝑄𝑖 was replaced with 𝐴 which was 

fixed as either 1 or 0 to simulate spuriously high or low scores, respectively. It is worth noting 

that this method of simulating aberrant responses does not necessarily change the original model-

generated response. 

 One interesting observation is that all the above aberrance simulation methods have a 

differential effect as a function of item difficulty. This is true regardless of whether aberrant 

items are selected by item difficulty or not. For example, using 𝛾 = .2 in Copas's (1988) model, 

if 𝑃𝑖 = .1, then 𝑃𝑖
∗ = .26. Comparatively, if 𝑃𝑖 = .5, then 𝑃𝑖

∗ = .5. Therefore, 𝑃𝑖
∗ > 𝑃𝑖 for very 

difficult items (e.g., 𝑃𝑖 = .1), while 𝑃𝑖
∗ = 𝑃𝑖 for items with medium difficulty (e.g, 𝑃𝑖 = .5). As 

another example, if 𝑃𝑖
∗ is fixed at .2, easier items (e.g., 𝑃𝑖 = .9) will be affected much more 

severely than harder items (e.g., 𝑃𝑖 = .1), as |.9 − .2| > |.1 − .2|. 

For this reason, aberrant behavior may cause item misfit as a function of item difficulty in 

both simulation studies and real testing situations. In fact, person response function (PRF; Trabin 

& Weiss, 1983) is grounded on this idea. Examining the model fit of the items by their difficulty 

could hint at the nature of the aberrant behavior that may have caused the misfitting response 

pattern. For example, misfit of difficult items may provide partial evidence that the examinee has 

obtained the correct answers through cheating or lucky guessing. Evaluating model fit using the 

PRF will be further discussed in the next section. 
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Person-Fit Statistics 

Person-fit, also known as person appropriateness, refers to the fit of a response pattern to 

a test model (Meijer & Sijtsma, 2001). Person-fit methods aim to identify model misfit at the 

individual level, which is distinctly different from the overall fit of a model or the fit of an item 

to all examinees. That is to say, overall model fit does not require all persons to fit. Person-fit 

methods strive to identify examinees who have responded aberrantly by identifying atypical 

response patterns. Importantly, a person detected as misfitting according to a person-fit statistic 

is not necessarily aberrant. This is because non-aberrant examinees can be erroneously detected 

as misfitting, while some aberrant examinees can remain undetected. In this sense, the term 

“misfitting person” is distinct from “aberrant person”. To detect the myriad of possible aberrant 

behavior patterns, a large number of person fit statistics have been proposed and studied for 

various measurement models. These statistics can be either parametric or non-parametric. 

Parametric Person-Fit Statistics 

Parametric person-fit statistics detect aberrant examinees by using estimates from the IRT 

model. The most general unidimensional IRT model is the 3-parameter logistic (3PL) model 

(Birnbaum, 1968), expressed as  

 𝑃(𝑋𝑖 = 1|𝜃) = 𝑐𝑖 +
1−𝑐𝑖

1+exp[−1.7𝑎𝑖(𝜃−𝑏𝑖)]
 , (2) 

where 𝑋𝑖 = 1 indicates a correct response to item 𝑖, 𝜃 is the ability level, 𝑎𝑖 is the discrimination 

parameter, 𝑏𝑖 is the  difficulty parameter, 𝑐𝑖 is the pseudo-guessing parameter, and 1.7 is a 

scaling factor. In the absence of guessing, 𝑐𝑖will be set to 0 and Equation 2 will be reduced to the 

2-parameter logistic (2PL) model. One example of an item without guessing is a short answer 

question scored dichotomously. The 1-parameter logistic (1PL) model further assumes the 
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discrimination parameter 𝑎𝑖 to be constant across all items. Finally, when only the difficulty is 

modeled, the model reduces to the simplest form known as the Rasch (1960) model, written as 

 𝑃(𝑋𝑖 = 1|𝜃) =
1

1+exp[−(𝜃−𝑏𝑖)]
. (3) 

Assumptions under all these IRT models include monotonicity, unidimensionality, and local 

independence. Monotonicity is met when 𝑃(𝑋𝑖 = 1|𝜃) is a non-decreasing function of 𝜃. The 

unidimensionality assumptions require that all test items measure only one latent trait. The local 

independence assumption states that once 𝜃 is accounted for, responses to test items should be 

independent. More formally, let the vector of item response random variables be 𝐗 =

(𝑋1, 𝑋2, … , 𝑋𝑘) and its realization be 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑘). Given the local independence 

assumption, the probability or likelihood of observing the response vector 𝐱 can be expressed as 

 𝑃(𝐗 = 𝐱|𝜃) = ∏ 𝑃𝑘
𝑖=1 (𝑋𝑖 = 1|𝜃)𝑥𝑖[1 − 𝑃(𝑋𝑖 = 1|𝜃)]1−𝑥𝑖 . (4) 

Many parametric person-fit statistics make use of this likelihood function. For instance, the 𝑙0 

statistic introduced by Levine and Rubin (1979) is expressed as 

 𝑙0 = ∑ [𝑘
𝑖=1 𝑥𝑖ln𝑃𝑖 + (1 − 𝑥𝑖)ln(1 − 𝑃𝑖)], (5) 

where 𝑃𝑖 is an abbreviation of 𝑃(𝑋𝑖 = 1|𝜃) in Equation 2. As shown, 𝑙0 is the sum of the log-

likelihood of the observed responses across the entire test for an examinee, which directly 

measures the fit of the data to the model. However, 𝑙0 varies by 𝜃 and its sampling distribution is 

unknown, thus cannot be used for detecting the aberrant patterns conveniently. In order to 

overcome these limitations, Drasgow, Levine, and Williams (1985) standardized the 𝑙0 and 

developed the 𝑙𝑧 statistic, expressed as 

 𝑙𝑧 =
𝑙0−𝐸(𝑙0)

√𝑉𝑎𝑟(𝑙0)
, (6) 
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where 𝐸(𝑙0) is the expected 𝑙0, and the denominator is the standard error of 𝑙0. The expectation 

can be computed as 

 𝐸(𝑙0) = ∑ [𝑘
𝑖=1 𝑃𝑖ln𝑃𝑖 + (1 − 𝑃𝑖)ln(1 − 𝑃𝑖)], (7) 

and the variance can be derived by  

 𝑉𝑎𝑟(𝑙0) = ∑ 𝑃𝑖
𝑘
𝑖=1 (1 − 𝑃𝑖) [ln

𝑃𝑖

1−𝑃𝑖
]

2

. (8) 

The 𝑙𝑧 was assumed to follow the standard normal distribution. Compared to eight other person-

fit indices under the 2PL and 3PL models, Drasgow et al. (1987) found that 𝑙𝑧 showed controlled 

Type I error and the highest overall detection rates of aberrant behavior across ability levels. 

However, others have argued that 𝑙𝑧 is negatively skewed when the estimate of 𝜃 is used in place 

of the true 𝜃 (Molenaar & Hoijtink, 1990; Nering, 1995). In such a case, Type I error rates tend 

to be too conservative and power suffers accordingly. For these reasons, Snijders (2001) 

proposed 𝑙𝑧
∗, which corrects the mean and variance of 𝑙𝑧 when 𝜃̂ is used in the calculation. 

According to Magis, Raiche, and Beland (2012), the 𝑙𝑧
∗ is calculated as 

 𝑙𝑧
∗ =

𝑙0(𝜃̂)−𝐸[𝑙0(𝜃̂)]+𝑐𝑘(𝜃̂)+𝑟0(𝜃̂)

√𝑉𝑎𝑟̃[𝑙0(𝜃̂)]

, (9) 

where 𝜃̂ is the estimate of 𝜃, 𝑙0(𝜃̂) is 𝑙0 calculated using 𝜃̂, and 

 𝑉𝑎𝑟̃[𝑙0(𝜃̂)] = ∑ 𝑤𝑖̃
𝑘
𝑖=1 (𝜃̂)2𝑃𝑖(1 − 𝑃𝑖),  (10) 

 𝑤𝑖̃(𝜃̂) = 𝑤𝑖(𝜃̂) − 𝑐𝑘(𝜃̂)𝑟𝑖(𝜃̂),  (11) 

 𝑤𝑖(𝜃̂) = ln
𝑃𝑖

1−𝑃𝑖
, and (12) 

 𝑐𝑘(𝜃̂) =
∑ 𝑃𝑖

𝑘
𝑖=1 ′𝑤𝑖(𝜃̂)

∑ 𝑃𝑖
𝑘
𝑖=1 ′𝑟𝑖(𝜃̂)

,  (13) 

where 𝑃𝑖′ is the first derivative of 𝑃𝑖 with respect to 𝜃. The functions 𝑟0(𝜃̂) and 𝑟𝑖(𝜃̂) depend on 

the estimation method of 𝜃 and the measurement model, where they must satisfy the equation 
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 𝑟0(𝜃̂) + ∑ [𝑘
𝑖=1 𝑋𝑖 − 𝑃𝑖]𝑟𝑖(𝜃̂) = 0. (14) 

For example, if 𝜃̂ is the maximum likelihood estimate (MLE) of 𝜃, then 

 𝑟0(𝜃̂) = 0 and 𝑟𝑖(𝜃̂) =
𝑃𝑖′

𝑃𝑖′(1−𝑃𝑖′)
.  (15) 

For the 2PL model using MLE of 𝜃 across test lengths, ability levels, and 𝛼 conditions, empirical 

Type I error rates for 𝑙𝑧
∗ were closer to 𝛼 than that for 𝑙𝑧 (Snijders, 2001). The Type I error was 

recovered for all cases except for short tests (15 items or fewer) with the 𝛼 levels lower than .05. 

de la Torre and Deng (2008) contended that Snijders (2001) corrected only the mean and 

variance of 𝑙𝑧, so the distribution of 𝑙𝑧
∗ was still negatively skewed, especially when the test was 

short. They proposed a method to define the sampling distribution through resampling and found 

improved Type I error rates that closely reflected the nominal level in all studied conditions. 

Other researchers have continued to improve and extend the 𝑙𝑧 and the 𝑙𝑧
∗ statistic. For example, 

Sinharay (2016a) showed how to incorporate various estimation methods for 𝜃 in calculating 𝑙𝑧
∗. 

Also, Sinharay (2016b) discussed resampling-based approaches to correcting the 𝑙𝑧
∗ that are 

generalizations of the method presented by de la Torre and Deng (2008). Meanwhile, 𝑙𝑧 have 

been applied to less common IRT models (e.g., Lee, Stark, Chernyshenko, 2014) or subtests 

(Drasgow, Levine, & McLaughlin, 1991).  

Overall, likelihood-based person-fit statistics have been well-studied and are often cited 

as the most popular person-fit statistics (e.g., de la Torre & Deng, 2008; Magis, Raiche, & 

Beland, 2012).  These statistics are generally easy to compute. Their sampling distributions are 

well defined. They can handle missing data and perfectly correct and incorrect response patterns. 

One drawback, however, is that they are based on parameter estimates of the exact model whose 

validity is in question. Thus, researchers have proposed non-parametric person-fit statistics that 

do not rely on model estimates.  
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Non-Parametric Person-Fit Statistics 

Non-parametric person-fit statistics are also called group-based person-fit statistics 

because they compare the examinee's responses to the other responses in the sample. Many of 

these statistics are based on the deterministic Guttman (1944, 1950) model. According to the 

Guttman model, 

 𝑃(𝑋𝑖 = 1|𝜃) = {
1 for 𝜃 ≥ 𝑏𝑖

0  for 𝜃 < 𝑏𝑖,
 (16) 

where 𝑏𝑖 is the item difficulty parameter on the same scale as 𝜃. Under this model, a Guttman 

error is committed when any items 𝑖 and ℎ that satisfies 𝑏𝑖 < 𝑏ℎ have the observed responses 

𝑋𝑖 = 0 and 𝑋ℎ = 1 because the response patterns do not conform to the model. Most non-

parametric person-fit statistics based on the Guttman model use the equation below (Meijer, 

2001). Let the items on a test of length 𝑘 be arranged in descending ordered by the proportion of 

correct responses, 𝜋1 ≥ 𝜋2 ≥. . . ≥ 𝜋𝑘 . Then, the standardized weighted proportion of Guttman 

errors is 

 𝐵 =
∑ 𝑤𝑖

𝑠
𝑖=1 −∑ 𝑋𝑖

𝑘
𝑖=1 𝑤𝑖

∑ 𝑤𝑖
𝑠
𝑖=1 −∑ 𝑤𝑖

𝑘
𝑖=𝑘−𝑠+1

,  (17) 

where 𝑠 is the sum of item scores and 𝑤𝑖 is a weight that is defined by the particular person-fit 

statistic. Usually, 𝐵 = 0 indicates perfect conformity to the Guttman model and 𝐵 = 1 indicates 

complete model misfit. 

For example, the Modified Caution Index (MCI; Harnisch & Linn, 1981) is obtained by 

setting 𝑤𝑖 = 𝜋𝑖. The Caution Index (C; Sato, 1975) is obtained by setting 𝑤𝑖 = 𝜋𝑖, then 

multiplying ∑ 𝑤𝑖
𝑘
𝑖=𝑘−𝑠+1  by 𝑠 and the other three terms by 𝑘. The U3 statistic (Flier, 1980, 1982) 

is obtained by setting 𝑤𝑖 = ln[𝜋𝑖/(1 − 𝜋𝑖)]. Karabastos (2003) evaluated the performance of 

these statistics. The MCI, C, and U3 were among the best performing statistics in detecting 
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cheating, creative responding, lucky guessing, careless errors, and random responding. The best 

performing person-fit statistic in that study was also non-parametric, called the 𝐻𝑇 statistic 

(Sijtsma, 1986). The 𝐻𝑇 for examinee 𝑛 is given as 

 𝐻𝑛
𝑇 =

∑ 𝛽𝑛𝑚𝑛≠𝑚 −𝛽𝑛𝛽𝑚

∑ max𝑛≠𝑚 {𝛽𝑚(1−𝛽𝑛),𝛽𝑛(1−𝛽𝑚)}
,  (18) 

where 𝛽𝑛 and 𝛽𝑚 are the proportion correct score for examinee 𝑛 and 𝑚 respectively, and 𝛽𝑛𝑚 is 

the proportion of items to which both examinees 𝑛 and 𝑚 answered correctly. 𝐻𝑇 ranges from 1 

to -1, where 𝐻𝑇 = 1 indicates perfect fit to Guttman model. Similar to Karabastos (2003), 

Tendeiro and Meijer (2014) also found that the 𝐻𝑇 was the best of seven person-fit indices in 

detecting aberrant behavior. The finding that the 𝐻𝑇was not correlated strongly with the sum 

score provides further evidence of its utility. 

Based on these studies, non-parametric person-fit statistics frequently have higher power 

than their parametric peers. One possible reason is that parametric statistics often have deflated 

Type I error rates when estimated item parameters are used in the calculation (e.g., Tendeiro & 

Meijer; 2014), which inevitably reduces their power. On the other hand, non-parametric statistics 

have their own limitations. As they are generally based on cut-off values rather than sampling 

distributions, defining these cut values is not always easy and values used can vary by testing 

conditions, thus inconvenient for use in practice. Additionally, they often cannot handle perfect 

correct or incorrect response patterns. Presence of missing data can pose additional challenge.  

Person Response Function 

Parametric or non-parametric, the above person-fit statistics all suffer one major 

shortcoming: they are unable to reveal the possible cause of the aberrant behavior. Analyses 

using the person response function (PRF; Trabin & Weiss, 1983) may overcome this limitation. 

The PRF gives the probability of a correct answer for an individual with a fixed 𝜃 as a function 
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of item difficulty 𝛿𝑖. The 𝛿𝑖 can be the 𝑏𝑖 from the IRT models or other difficulty measures 

(Sijtsma & Meijer, 2001). The PRF is assumed to be a non-increasing function of 𝛿𝑖. It can be 

further assumed that items have an invariant item ordering (Sijtsma & Junker, 1996), meaning 

the item response functions do not intersect. This assumption holds when all items fit the 1PL or 

the Rasch model, but may be violated under the 2PL and 3PL models. By comparing the 

observed and expected PRF, the analyst may be able to determine the pattern of person misfit in 

relation to the item difficulty. 

To create the PRF, all 𝑘 items are ordered from the easiest to the hardest, such that 

 𝛿1 ≤ 𝛿2 ≤ ⋯ ≤ 𝛿𝑘,  (19) 

where, under the invariant item ordering assumption, it holds that 

 𝑃1 ≥ 𝑃2 ≥ ⋯ ≥ 𝑃𝑘,  (20) 

for all 𝜃, where 𝑃𝑖 is an abbreviation of 𝑃(𝑋𝑖 = 1|𝜃). These items are divided into 𝑀 non-

overlapping subtests denoted as 𝑆𝑗 (𝑆1, 𝑆2, … , 𝑆𝑀), each containing 𝑡 items. Then, 𝑆1 =

{1,2, … , 𝑡}, 𝑆2 = {𝑡 + 1, … ,2𝑡}, … , 𝑆𝑀 = {𝑘 − 𝑡 + 1, … , 𝑘}, and 𝑀 × 𝑡 = 𝑘. The expected PRF is 

found by calculating the expected number of correct responses in subtest 𝑗, which is 

 𝑡−1 ∑ 𝑃𝑖𝑖∈𝑆𝑗
.  (21) 

Also, the observed PRF is given by 

 𝑡−1 ∑ 𝑋𝑖𝑖∈𝑆𝑗
.  (22) 

Therefore, the difference between the observed and expected PRF for subtest 𝑗 is 

 𝐷𝑗(𝜃) = 𝑡−1 ∑ [𝑖∈𝑆𝑗
𝑋𝑖 − 𝑃𝑖].  (23) 

Examples of the observed and expected PRF across six subtests for a hypothetical 

examinee with 𝜃 = 0 are illustrated in Figure 1. If the examinee fits the model well, 𝐷𝑗(𝜃) will 

be near 0 for all subtests. However, in the presence of aberrant testing behaviors, say cheating 
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that allowed an examinee to obtain spuriously high scores, 𝐷𝑗(𝜃) ≥ 0 should be expected for 

most 𝑗. Also, careless mistakes can cause spuriously low scores, for which the PRF may show 

𝐷𝑗(𝜃) ≤ 0 for most 𝑗. Another indication of person-misfit is a flat observed PRF relative to the 

expected PRF (Lumsden, 1977; Reise, 2000; Trabin & Weiss, 1983). A flat PRF can also be 

described as having 𝐷𝑗(𝜃) ≤ 𝐷𝑢(𝜃) where 𝑢 is any subtest that contain items that are more 

difficult than those in 𝑗. Finally, the greatest absolute discrepancies between the observed and 

expected PRF for the spuriously high case usually occurs in the difficult subtests, while the 

opposite is true for the spuriously low situation.   

 
Figure 1.  Example expected and observed person response functions (PRF) for an examinee 

with 𝜃 = 0. 

 

To investigate the usefulness of the PRF, Trabin and Weiss (1983) used data from a 

vocabulary test with 216 multiple-choice items among 151 examinees. The 𝑏𝑖 from a 3PL model 

was used for 𝛿𝑖. The test was divided into 9 subtests (𝑀 = 9), each containing 24 items (𝑡 = 24). 
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To statistically test the difference of the observed and expected PRF, a 𝜒2 goodness-of-fit test 

with 𝑑𝑓 = 𝑀 − 2 was conducted at 𝛼 = .05, calculated as 

 𝜒2 = ∑
[∑ (𝑖∈𝑆𝑗

𝑋𝑖−𝑃𝑖)]2

∑ 𝑃𝑖𝑖∈𝑆𝑗

𝑀
𝑗=1 .  (24) 

Trabin and Weiss (1983) detected 15 misfitting examinees. Looking at the expected and 

observed PRFs for each individual allowed them to speculate the specific aberrant behavior that 

occurred. For example, “testwiseness” may describe a student skilled in guessing, which may 

manifest as high scores on very difficult items. Another PRF with low scores on easy items may 

indicate careless test-taking behavior.. 

Since then, researchers have attempted to estimate the slope of the PRF. Strandmark and 

Linn (1987) achieved this by adding to the typical 2PL model, a slope parameter that was 

allowed to vary by individual. On the other hand, Reise (2000) proposed that the multilevel 

logistic regression can be used to estimate the PRF slope by treating the items as nested within 

the individuals, and predicting the responses from 𝛿𝑖 and 𝜃̂. Using the empirical Bayes 

estimation method, steeper PRF slopes (i.e., more negative) were associated with higher person-

fit based on the 𝑙𝑧 statistic (Pearson 𝑟 = −.65). The procedure also allows inclusion of additional 

predictor variables that may aid the researcher in understanding the aberrant behavior. 

More recently, Sijtsma and Meijer (2001) proposed a non-parametric statistic 𝜌 based on 

the hypergeometric distribution to test the non-increasingness of the PRF slope. Although 𝜌 was 

less powerful in detecting aberrance than the non-parametric person-fit statistic U3 (Van der 

Flier, 1982), 𝜌 was still useful for understanding what sorts of aberrant behavior may have 

occurred. Emons, Sijtsma, and Meijer (2005) extended the research on PRFs by presenting a 

three-step non-parametric person-fit analysis. First, they used the U3 statistic to assess global 

person-fit of 1,641 children to four cognitive development tests, each containing 45 to 65 items. 



 

 

17 

  

They discussed the analysis of six particular cases who were determined deviant. The observed 

PRF for each individual was presented graphically using standard normal kernel smoothing. 

Areas of the PRF that showed visual evidence of increasingness were tested for non-

increasingness using the 𝐺 statistic (Emons, 2003). 𝐺 is simply the total number of Guttman 

errors in the 𝐽 items that fall in between the range of interest in the PRF, calculated as 

 𝐺 = ∑ ∑ (ℎ
𝑖=1

𝐽
ℎ=1 1 − 𝑋𝑖)𝑋ℎ,  (25) 

where 𝑖 ≤ ℎ, and therefore 𝛿𝑖 ≤ 𝛿ℎ. Using the Wilcoxon's rank-sum distribution, 𝑃(𝐺 ≥

𝑔| ∑ 𝑥𝑖
𝐽
𝑖=1 , 𝐽) was found and compared to 𝛼 = .05, where 𝑔 is the realization of 𝐺 and 𝑥𝑖 is the 

realization of 𝑋𝑖. The authors identified that many of the observed increasing PRF slopes were in 

fact statistically significantly increasing. Based on the location of the increasingness in the PRF, 

the authors were able to speculate possible testing behaviors that caused the aberrance. 

It is worth pointing out that testing for the non-increasingness of the PRF may fail to 

identify PRFs that are aberrant but not decreasing quickly enough. This limitation can be 

overcome by modeling the PRF as a non-increasing logistic curve and estimating the angle of the 

slope (e.g., Strandmark & Linn, 1987; Reise, 2000), but this approach may fail to identify 

important locations in the observed PRF that may actually be increasing. Lastly, a big challenge 

to most parametric PRF analyses is to accurately calculate the expected PRF because 𝜃 must be 

estimated in practice.  

Robust Ability Estimation 

A common ability estimation method under the IRT is the maximum likelihood 

estimation (MLE) method, which produces consistent, asymptotically efficient, and normally 

distributed estimates as long as there is a mix of both correct and incorrect responses (Birnbaum, 

1968; Hambleton & Swaminathan, 1985). Let the vector of item response random variables be 
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𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑘) and its realization be 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑋𝑖 = 1 and 𝑋𝑖 = 0 denotes 

a correct and incorrect response on item 𝑖, respectively. Given the local independence 

assumption, the log likelihood of a response vector 𝐗 is 

 𝑙 = ∑ [𝑘
𝑖=1 𝑋𝑖ln𝑃𝑖 + (1 − 𝑋𝑖)ln(1 − 𝑃𝑖)]  (26) 

where 𝑃𝑖 is the probability of a correct response on item 𝑖 based on a measurement model. The 

MLE of ability is simply the 𝜃 that maximize the likelihood or log-likelihood function. To find 

the maxima of equation 26, one can take the first derivative of the log-likelihood with respect to 

𝜃 and setting it to zero, or 

 ∑
𝑑𝑙𝑖

𝑑𝜃

𝑘
𝑖=1 = ∑ [

𝑋𝑖−𝑃𝑖

𝑃𝑖(1−𝑃𝑖)
]𝑘

𝑖=1
𝑑𝑃𝑖

𝑑𝜃
= 0,  (27) 

where 𝑙𝑖 is the log-likelihood of item 𝑖. This equation can be solved by applying the Newton-

Rapson algorithm. In case that 𝐗 has been contaminated by an aberrant behavior, standard MLE 

𝜃̂ will not be able to account for its adverse effect.  

When an examinee's response pattern is detected as aberrant, Smith (1985) listed the 

following possible actions: 

1. Drop the score and retest the examinee. 

2. Make a justification that the measurement error is small enough and report 𝜃̂ as it is.  

3. Report multiple 𝜃̂s using model-fitting subtests. 

4. Modify item responses and re-estimate 𝜃. 

Option 1 requires multiple sittings for the examinee; not practical in most testing conditions. 

Option 2 can be highly subjective. Moreover, measurement error is unlikely to be small for an 

aberrant response pattern. It is also hard to argue for using an estimate based on a wrong model. 

Option 3 not only increases measurement error due to the shortened test length but also makes 

scores incomparable. To sum up, options 1-3 are not ideal.  
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The fourth option looks most appealing. Given that most high stakes tests use a large 

number of items, it may be possible to modify or remove responses to some items so that the 

accuracy of 𝜃̂ is satisfactory. One approach is to downweight the contributions of potentially 

aberrant responses to the likelihood function (Mislevy & Bock, 1982; Schuster & Yuan, 2011). 

The weighted maximum likelihood estimate is the value of 𝜃 that satisfies the equation 

 ∑ 𝑔𝑘
𝑖=1 (𝑟𝑖) (

𝑑𝑙𝑖

𝑑𝜃
) = 0,  (28) 

where 𝑟𝑖 is a residual value and 𝑔(𝑟𝑖) is the weight function resulting in values from 0 to 1. If 

𝑔(𝑟𝑖) = 1 for all 𝑖, then equations 27 and 28 will be equivalent. To extend the previous work by 

Waller (1974) and Wainer and Wright (1980), Mislevy and Bock (1982) introduced the biweight 

estimation method which modifies the likelihood function so that all items, regardless of the 

observed responses, are downweighted when the difficulty parameter of the item is far from the 

estimated ability. In a biweight estimate, 𝑟𝑖 = 𝑎𝑖(𝜃 − 𝑏𝑖) in a 2PL model and 

 𝑔(𝑟𝑖) = {[1 − (
𝑟𝑖

𝐵
)

2

]
2

for |𝑟𝑖| ≤ 𝐵

0  for |𝑟𝑖| > 𝐵,

 (29) 

where the tuning coefficient 𝐵 = 4 was recommended by Mislevy and Bock. Decreasing 𝐵 

heightens the intensity of response downweighting. Their simulation study showed that the 

biweight estimate is less biased than the MLE for a variety of conditions when aberrant 

responses are present. However, Schuster and Yuan (2011) explained that the biweight 

estimation is not guaranteed to converge to an estimate when almost all responses are correct (or 

incorrect). This is because the biweight method allows zero weights, and sometimes the non-

zero-weighted items become all incorrect or all correct. Therefore, they introduced the Huber 

weight estimate where 𝑟𝑖 was kept the same but the weight function was modified to 
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 𝑔(𝑟𝑖) = {
1 for |𝑟𝑖| ≤ 𝐵
𝐵

|𝑟𝑖|
 for |𝑟𝑖| > 𝐵,

 (30) 

where the tuning coefficient 𝐵 = 1 was recommended. Decreasing 𝐵 heightens the intensity of 

response downweighting. Unlike the biweight approach, Huber weight estimation avoids placing 

a zero weight to any item. Schuster and Yuan (2011) showed in their simulation that both 

downweighting approaches limit the bias caused by aberrant responses compared to MLE, 

particularly for examinees with extreme 𝜃′𝑠. Huber weight and biweight methods are about 

equally effective. 

These methods work because they limit the less informative item responses from 

affecting the estimate. For example, if the MLE 𝜃̂ is 2, Huber weight and biweight methods 

heavily downweight the contribution of all easy items (e.g., 𝑏𝑖 < −1) on 𝜃̂. These items contain 

little information about this person's 𝜃 because correct responses are almost certain to happen; 

yet, incorrect responses due to aberrant behaviors can have a heavy influence on 𝜃̂. For the non-

aberrant items, downweighting will remove only a small amount of information, which may be 

compensated by the information gain from handling the aberrant responses. Therefore, these 

downweighting estimation methods attempt to limit the aberrant responses from influencing 𝜃̂, 

while minimizing the detrimental effects of downweighting the valid responses. 

Both Reise (1995) and Meijer and Nering (1997) attempted to use the biweight 

estimation method to improve person-misfit detection using the 𝑙𝑧 statistic (Drasgow et al., 

1985). Both studies compared the biweight method with MLE and expected a-posteriori (EAP) 

methods. EAP is a Bayesian estimation method that combines prior information with the 

likelihood to form a posterior distribution of 𝜃 (Hambleton & Swaminathan, 1985). The 

posterior density 𝑓(𝜃|𝐱) can be expressed as 
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 𝑓(𝜃|𝐱) ∝ 𝐿(𝐱|𝜃)𝑓(𝜃),  (31) 

where 𝐿(𝐱|𝜃) is the likelihood function and 𝑓(𝜃) is the prior of 𝜃. The mean of the posterior 

distribution is the EAP estimate, while the mode is the maximum a-posteriori (MAP) estimate. If 

𝑓(𝜃) is a constant, the posterior is proportional to the likelihood and the MLE and MAP 

estimates will be equivalent. While the prior distribution depends on the prior knowledge one has 

on the target parameter, 𝑁(0,1) is often used due to its proximity to the default scale of the trait 

implemented in many computer programs. When an appropriate informative prior is used, EAP 

and MAP should be more accurate than MLE. 

Reise (1995) found that when the biweight estimate was used instead of MLE or EAP, 

the change in the power of the 𝑙𝑧 statistic was minimal. Meijer and Nering (1997) argued that 

Reise's disappointing results may be due to the fact that aberrant responses were simulated by 

setting the probability of a correct response for aberrant items as 𝑃∗ = .5. Such a manipulation 

has minimal effects on examinees with 𝜃 near 0 (i.e., 𝑃 is close to .5 anyway) and only moderate 

effects on those with extreme 𝜃’s. Meijer and Nering hence simulated aberrant responses under 

three conditions:  𝑃∗ = .5 for all 𝜃, 𝑃∗ = 1 among 𝜃 ≤ 0, and 𝑃∗ = .2 among 𝜃 ≥ 0. They found 

evidence supporting their hypotheses and the detection rates improved particularly for 

individuals with an extreme 𝜃 (e.g., 𝜃 = 2 and 𝜃 = −2). However, if a more accurate 𝜃̂ can be 

found, the power of person-fit statistics could improve further (Reise, 2000).  

To further the area, Maeda and Zhang (2017b) recently developed the biweight-MAP 

(BMAP) and Huber weight-MAP (HMAP), which combines the elements of robust estimation 

with Bayesian methodology. BMAP and HMAP are the modes of the posterior distribution with 

a downweighted likelihood using the biweight and Huber weight, respectively. The procedure 

aims to use the information from the prior distribution to compensate for the information loss 
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due to aberrant responses, and resist the detrimental effects of downweighting the fitting items 

by either weighting method.  

BMAP and HMAP can be calculated using the Newton-Rapson algorithm. In essence, for 

the 2PL model with a 𝑁(𝜇, 𝜎2) prior, the improved estimate 𝜃𝑣 for the 𝑣th iteration is 

 𝜃𝑣 = 𝜃𝑣−1 −
∑[𝑔(𝑟𝑖)𝑣𝑎𝑖(𝑋𝑖−𝑃̂𝑖)]−

𝜃−𝜇

𝜎2

− ∑[𝑔(𝑟𝑖)𝑣𝑎𝑖
2𝑃̂𝑖(1−𝑃̂𝑖)]−

1

𝜎2

. (32) 

where the numerators and the denominators are the first and second derivatives of the posterior 

probability with respect to 𝜃, respectively. When calculating the BMAP, the weight 𝑔(𝑟𝑖) is 

defined as the biweight (Equation 29), while Huber weights (Equation 30) are used for HMAP. 

The algorithm usually converges in a few iterations. For more details of these two new estimates, 

refer to Maeda and Zhang (2017b). A Monte Carlo simulation showed that, out of all the studied 

robust and non-robust ability estimates (i.e., MLE, MAP, biweight, BMAP, and HMAP), BMAP 

had the smallest root-mean-squared-error under the 10% and 20% aberrant items conditions. 

Despite these promising results, BMAP may still be improved by taking into account the model-

fit of the observed responses. By downweighting responses that are particularly misfitting, it may 

be possible to further correct the bias due to the aberrant responses.  
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CHAPTER 3: PROPOSED ROBUST ABILITY ESTIMATION METHOD 

In this chapter, a new robust ability estimation method for aberrant examinees is 

presented. The procedure iteratively identifies and downweights potentially aberrant responses 

based on low item information and poor model fit until the response vector fits the model 

sufficiently well. Identification of aberrant responses is based on the person response function 

(Trabin & Weiss, 1983), while uninformative items receive downweighting based on the BMAP 

(Maeda & Zhang, 2017b). This method is named the downweighting of aberrant responses 

estimation (DARE) method. DARE consists of the following six steps. 

Step 1: Person-Fit Testing and Initial Ability Estimation 

First, global person-fit is assessed to identify examinees that require robust ability 

estimation. A good person-fit statistic will detect as many aberrant but as few non-aberrant 

examinees as possible. One example is the 𝑙𝑧
∗ based on the MAP estimate using the .01 

significance level (Maeda & Zhang, 2017b). Once potentially aberrant examinees are detected, 

the initial ability estimates can be obtained by the BMAP method using the tuning coefficient 

𝐵 = 4 as recommended by previous studies (Maeda & Zhang, 2017b; Mislevy & Bock, 1982).  

Step 2: Assembling Subtests 

Similar to constructing the observed PRF (Trabin & Weiss, 1983), the test is divided into 

subtests. Let the vector of a response pattern be 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑘) and its realization be 𝐱 =

(𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑋𝑖 = 1 and 𝑋𝑖 = 0 denotes a correct and incorrect response on item 𝑖, 

respectively. Order all 𝑘 items from the easiest to hardest, using the initial BMAP estimate 𝜃̂, 

shown as 

 𝛿1 ≤ 𝛿2 ≤ ⋯ ≤ 𝛿𝑘,  (33) 
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where 𝛿𝑖 is the conditional probability 𝑃(𝑋𝑖 = 0|𝜃̂). Alternatively, 𝛿𝑖 can also be the proportion 

of incorrect responses in the sample or the estimated item difficulty from the IRT model. 

However, such choices would require the assumption of invariant item ordering (Sijtsma & 

Junker, 1996). By conditioning 𝛿𝑖 on 𝜃̂, the need for assuming invariant item ordering is partly 

avoided, but not completely due to the error in 𝜃 estimation.  

Test items are assigned to 𝑀 non-overlapping subtests in order denoted as 𝑆𝑗 

(𝑆1, 𝑆2, … , 𝑆𝑀), each containing 𝑡𝑗 items, thus 𝑆1 = {1,2, … , 𝑡1}, 𝑆2 = {𝑡1 + 1, … , 𝑡1 +

𝑡2}, … , 𝑆𝑀 = {𝑘 − 𝑡𝑀 + 1, … , 𝑘}. The average proportion of correct responses for every 𝑆𝑗 is 

expected to be non-increasing, shown as 

 𝑡1
−1 ∑ 𝑃𝑖∈𝑆1𝑖∈𝑆1

≥ 𝑡2
−1 ∑ 𝑃𝑖∈𝑆2𝑖∈𝑆2

≥ ⋯ ≥ 𝑡𝑀
−1 ∑ 𝑃𝑖∈𝑆𝑀𝑖∈𝑆𝑀

,  (34) 

where 𝑃𝑖∈𝑆𝑗
 is the abbreviation of 𝑃 (𝑋𝑖∈𝑆𝑗

= 1|𝜃̂). The main reason to assemble subtests by 𝑃𝑖 

is that aberrant behavior often affects items based on the item difficulty. As not all items are 

affected, grouping items by difficulty will increase the power to detect the aberrant responses.  

The following points should be considered when forming subtests. First, the difficulty 

level of items in a subtest should be nearly homogeneous. Second, subtests should be large 

enough so that there is adequate power to assess person-fit. Finally, while it is convenient to have 

subtests of equal size, this is not required. Given these considerations, pilot results show that 

𝑀 = 3 subtests with equal numbers of items is a good balance between subtest length and item 

difficulty homogeneity in most tests with 20 to 60 items.  

Step 3: Identifying the Least Fitting Subtest 

This step identifies the least fitting subtest using local person-fit statistics. To quantify the 

local fit of the responses, the 𝑙𝑧𝑤 is calculated for each subtest independently using the BMAP 

estimate 𝜃̂. In this step, 𝜃̂ is based on all the responses in the test rather than the responses in 
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each subtest because such estimates can be highly unreliable due to the short test length. The 𝑙𝑧𝑤 

is a weighted version of the 𝑙𝑧, where the weight 𝑤𝑖 for item 𝑖 is inserted into Equations 5 to 8 in 

the calculation:  

 𝑙𝑧𝑤 =
𝑙0w−𝐸(𝑙0w)

√𝑉𝑎𝑟(𝑙0w)
, (35) 

where the 𝑙0w is the weighted log-likelihood, 𝐸(𝑙0w) is its expected value, and 𝑉𝑎𝑟(𝑙0w) is its 

variance. Initially, 𝑤𝑖 = 1 for all items, but may decrease to as low as 0 in later iterations within 

DARE. The weighted log-likelihood is found simply by multiplying the log-likelihood for each 

item by 𝑤𝑖: 

 𝑙0w = ∑ 𝑤𝑖[𝑖∈𝑆𝑗
𝑥𝑖ln𝑃𝑖 + (1 − 𝑥𝑖)ln(1 − 𝑃𝑖)]. (36) 

Therefore, the modification to the expected value equation (Equation 7) is straight forward: 

 𝐸(𝑙0w) = ∑ 𝑤𝑖[𝑖∈𝑆𝑗
𝑃𝑖ln𝑃𝑖 + (1 − 𝑃𝑖)ln(1 − 𝑃𝑖)]. (37) 

Finally, 𝑉𝑎𝑟(𝑙0w) is found from the fact that it is equivalent to 𝐸[(𝑙0w − 𝐸(𝑙0w))2], which can 

be reduced to 

 𝑉𝑎𝑟(𝑙0w) = ∑ 𝑤𝑖
2𝑃𝑖𝑖∈𝑆𝑗

(1 − 𝑃𝑖) [ln
𝑃𝑖

1−𝑃𝑖
]

2

. (38) 

Like the 𝑙𝑧, the 𝑙𝑧𝑤 is assumed to follow the standard normal distribution when the 

parameters are known and there are many items. However, unlike the 𝑙𝑧, the 𝑙𝑧𝑤 is able to take 

into account the weights calculated in DARE. Also, as perfectly correct and incorrect response 

patterns are likely to appear in subtests, parametric person-fit statistics such as the 𝑙𝑧𝑤 may work 

better than some non-parametric methods.  

A highly negative 𝑙𝑧𝑤 indicates that the subtest has a flat observed PRF relative to the 

expected PRF, representing person misfit (Lumsden, 1977; Reise, 2000; Trabin & Weiss, 1983). 

The 𝑙𝑧𝑤 for a subtest will be highly negative if the observed PRF is higher than expected when 
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the expected PRF is less than .5, or when the observed PRF is lower than expected when the 

expected PRF is more than .5. The subtest with the lowest 𝑙𝑧𝑤 is the least fitting subtest, labeled 

as 𝑆𝐴.  

Step 4: Downweight One Misfitting Response  

Theoretically, all responses in 𝑆𝐴 that meet the condition 𝑃(𝑋𝑖 = 𝑥𝑖|𝜃̂) < .5 and 𝑤𝑖 > 0 

can be considered as potentially aberrant and may have contributed to person-misfit. The next 

step is to downweight one of them. The item with the lowest 𝑎 parameter estimate is selected and 

its 𝑤𝑖 is simply subtracted by 0.1. This item is a reasonable choice because it has the most stable 

item response function across 𝜃 (i.e., flat), which is important given that 𝑃(𝑋𝑖 = 𝑥𝑖|𝜃̂) may be 

an inaccurate estimate of 𝑃(𝑋𝑖 = 𝑥𝑖|𝜃). In addition, this item also contains low discriminating 

power; downweighting it has a small drawback in case that it is actually a non-aberrant response. 

The item with the lowest 𝑃(𝑋𝑖 = 𝑥𝑖|𝜃̂) is potentially a good candidate for downweighting as 

well, but this criteria is not used because the biweights in the BMAP procedure already places 

the lowest weights on these items. 

Step 5: Evaluate Ability Estimate and Person-Fit 

The next step is to re-evaluate the ability estimate and global person-fit using the new 

weights. First, the BMAP is re-calculated with modifications to the biweights. The tuning 

coefficient is set at 𝐵 = 5, which is larger than the recommended 𝐵 = 4  (Mislevy & Bock, 

1982). This downweights slightly less intensely than the typical biweight method, leaving room 

for further downweighting from 𝑤𝑖. Further, the biweights are multiplied by 𝑤𝑖. Therefore, the 

weight function 𝑔(𝑟𝑖) in Equation 29 is modified to 

 𝑔(𝑟𝑖, 𝑤𝑖) = {𝑤𝑖 [1 − (
𝑟𝑖

5
)

2

]
2

for |𝑟𝑖| ≤ 5

0  for |𝑟𝑖| > 5.

 (39) 
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The BMAP is re-calculated using the modified biweights 𝑔(𝑟𝑖, 𝑤𝑖), and the new estimate is 

labeled as 𝜃̂𝑣. Using the new ability estimate 𝜃̂𝑣 and the updated weights 𝑤𝑖, global person-fit is 

evaluated by calculating 𝑙𝑧𝑤 using all responses (i.e., with all subtests combined). To be clear, 

the modified biweights 𝑔(𝑟𝑖, 𝑤𝑖) are never used in the person-fit analysis. 

Step 6: Deciding the Convergence 

Steps 2 to 5 are iterated until global person-fit is satisfactory. Every iteration, one 

response is downweighted by 0.1 and 𝜃̂ is updated and used to assess the person-fit. Once the 

global person-fit statistic satisfies the pre-determined cutoff value, such as 𝑙𝑧𝑤 > −1.645, the 

algorithm stops. Basing the convergence on a global person-fit statistic is advantageous because 

the downweighting should intensify as the severity of the aberrant behavior increases. In 

contrast, this severity is independent of the weights used in Huber weight (Schuster & Yuan, 

2011), biweight (Mislevy & Bock, 1982), HMAP, and BMAP methods (Maeda & Zhang, 

2017b). Once the response pattern is sufficiently fitting, 𝜃̂𝑣 from the final iteration is the final 

ability estimate of that person.  
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CHAPTER 4: METHODS 

A Monte Carlo simulation was conducted to examine the effectiveness of DARE in 

improving ability estimation for misfitting persons. The study design included conditions 

commonly examined in the person-fit literature (Rupp, 2013). Design variables were test length, 

percentage of aberrant examinees, percentage of aberrant items, and type of aberrant behaviors. 

These design variables were not fully crossed. Instead, the study conditions were made up of 

four components (see Table 1). 

 

Table 1. 

Study conditions 

Design Variables 
Non-Aberrant 

Conditions 

Aberrant 

Conditions 

Supplemental 

Conditions 1 

Supplemental 

Conditions 2 

Test Length 20, 40, 60 20, 40, 60 60 60 

Aberrant Behavior None SH, SL, Mixed Mixed Mixed 

Aberrant Examinees 0% 10%, 30% 10%, 30% 30% 

Aberrant Items 0% 10%, 20%, 30% 50% 10%, 20%, 30% 

Variance of Item 

Difficulty 
1 1 1 4 

Number of 

Conditions 
3 54 2 3 

 

Test Characteristics 

Currently, the BMAP method has been studied only with 60-item tests (Maeda & Zhang, 

2017b). This was extended to 20, 40, and 60 item tests in the current study. Item discrimination 

(𝑎𝑖) parameters were randomly sampled from a 𝑙𝑛𝑁(0.4, 0.5) distribution truncated within the 

interval [0.6, 3], while the difficulty (𝑏𝑖) parameters were randomly sampled from a 𝑁(0, 1) 

distribution truncated within the interval [-3, 3]. These specifications ensured all test items had 

adequate discrimination and covered a well-spread difficulty continuum. In theory, since very 

difficult and very easy items are highly informative about the examinee’s aberrant behavior 
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(Reise & Due, 1991), the robust methods should perform better when the item difficulty 

distribution is flatter than centrally focused. To explore this matter, supplemental conditions 

were added where the difficulty parameters were sampled from a 𝑁(0, 4) distribution truncated 

within the interval [-3, 3]. The 𝑎𝑖 and 𝑏𝑖 were generated independent of each other, and sampled 

independently for each item in each replication. Therefore, the general test structure was fixed 

but different items were used in each replication in order to increase the generalizability of the 

findings.  

Aberrant Response Behaviors 

The percentage of examinees with aberrant behaviors in each data set were simulated at 

three levels: 0%, 10%, or 30%. This percentage is a critical factor in influencing the accuracy of 

item parameter estimates and the aberrance detection rate (Rupp, 2013). For each aberrant 

examinee, the percentage of items suffering from aberrance was also studied at three levels: 

10%, 20%, and 30%. This percentage signifies the severity of aberrant behavior. Additionally, to 

examine the extremely severe conditions, two 50% aberrant items conditions were added. Under 

these extreme conditions, as there were equal numbers of aberrant and non-aberrant responses, 

all robust estimation methods may fail and accurate ability estimation may be impossible. 

Different from previous studies that targeted specific behaviors such as cheating or 

creative responding, this study investigated three types of general aberrant response patterns: 

spuriously low (SL), spuriously high (SH), and mixed (both SL and SH; Rupp, 2013). SL results 

from behaviors that lead to spuriously low test scores, such as misreading instructions, lack of 

motivation, and fatigue. To simulate SL, correct answers were changed to incorrect with a .8 

probability, synonymous to random guessing on a 5-option multiple-choice item (.2 probability 

of a correct response), regardless of the ability level. SH represents aberrant behaviors that result 
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in increased test scores, such as cheating, possessing pre-knowledge of the answers, and 

excessive lucky guessing. To simulate SH, incorrect responses were randomly changed to 

correct. Finally, data sets in the mixed condition contained equal numbers of SL and SH 

examinees. Examinees that received aberrant responses were selected independently of examinee 

ability. As an exception, examinees were not simulated as aberrant if they started with fewer 

correct or incorrect model-fitting responses than the targeted number of aberrant responses. For 

instance, in a 20-item test, examinees with a total score lower than six were not selected in 

simulating 30% SL aberrant behavior.  

Data Generation and Model Estimation 

The sample size was fixed at 1,000 for all conditions. This is the most commonly studied 

sample size in the person-fit literature (Rupp, 2013). Additionally, it should be large enough to 

provide accurate parameter estimates for the 2PL model (Morizot, Ainsworth, & Reise, 2007). 

The person ability parameter 𝜃 was randomly sampled from a 𝑁(0,1) distribution. Initial item 

responses were generated based on the 2PL model. These responses were modified for aberrant 

examinees according to their assigned conditions. MULTILOG 7.0 (Thissen, 1991) was used for 

item parameter estimation. To achieve stable results, 1,000 replications were conducted for every 

condition.  

Person-Fit Testing 

Two person-fit statistics were used to assess global person-fit using the PerFit package 

(Tendeiro, 2015) in R (R Core Team, 2015). The 𝑙𝑧
∗ statistic (Snijders, 2001) was included in the 

study because of its high performance and popularity (e.g., Magis et al., 2012). The 𝑙𝑧
∗ was 

calculated based on the MAP estimate of 𝜃. The 𝐻𝑇 statistic (Sijtsma, 1986) was also included 

for its high power (Karabastos, 2003; Tendeiro & Meijer, 2014). The cutoff value for 𝐻𝑇 was 
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calculated in every simulation replication based on 10,000 responses generated using the 

estimated item parameters. Response vectors with all incorrect and all correct scores were 

automatically labeled as fitting because the 𝐻𝑇 cannot be calculated for these examinees. The 

Type I error rates were calculated as the rejection rate for the examinees simulated without 

aberrance, while the power rate was from those with aberrance.  

It is not always easy to determine the alpha level for the person fit statistics in robust 

estimation. Robust ability estimation aims to improve the ability estimates for examinees with 

aberrant testing behaviors. Meanwhile, it can hurt estimation for examinees without aberrant 

behaviors due to the information loss resulting from downweighting their responses. One way to 

achieve equilibrium in this situation is by adjusting the α level. Maeda and Zhang (2017b) 

proposed the .01 α level as the most appropriate threshold for the BMAP method. At this level, 

enough true positives are detected while false positives are limited. They also found that 

examinees detected at this threshold benefit from using the BMAP over the standard MAP while 

those above the cutoff do not. As Maeda and Zhang’s (2017b) study was limited to tests with 60 

items, this study revisited this issue by examining cutoff values at α of .05, .025, and .01 for all 

three test lengths. 

It is important to point out that in the context of robust estimation, the controlled Type I 

error and high power, while desirable, are not necessarily indications of ideal performance for 

the person-fit statistics. More important was whether the detected individuals will benefit from 

applying DARE. To answer that question, the estimation accuracy of MAP, BMAP, and DARE 

was compared graphically across the percentiles of 𝐻𝑇 and 𝑙𝑧
∗ null distributions.  
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Ability Estimation for Misfitting Examinees 

Examinees detected as misfitting had their 𝜃 re-estimated using five methods: MLE, 

MAP, biweight, BMAP, and DARE. Note that Huber weight (Schuster & Yuan, 2011) and 

HMAP (Maeda & Zhang, 2017b) were not used due to their similarity to biweight and BMAP. 

All Bayesian methods were conducted using the informative 𝑁(0,1) prior, as typically done in 

practice (Hambleton & Swaminathan, 1985). As recommended, tuning coefficients for biweight 

and BMAP were set at 𝐵 = 4 (Mislevy & Bock, 1982). For DARE, the number of the subtests 

was fixed at three. The number of items in subtests 1 and 3 were a third of the test length 

rounded to the nearest whole number, and the rest of the items were placed in subtest 2. The 

global person-fit convergence criterion was fixed at 𝑙𝑧𝑤 > −1.645, which is based on a one-

tailed .05 α level, commonly used for evaluating person-fit. Note that this criterion does not need 

to coincide with the one used in the initial person-fit analysis. From one theoretical perspective, a 

criterion as high as 𝑙𝑧𝑤 ≥ 0 could be reasonable because this indicates average fit. However, 

such a liberal criterion was not used due to its tendency to downweight more non-aberrant 

responses. All estimates were bounded within the interval [-4, 4] to prevent extreme values. 

Ability estimation was programmed in R, using a portion of the code written by Maeda and 

Zhang (2017b), Schuster and Yuan (2011), and Rose (2010).  

Dependent Variables 

To evaluate the ability estimation accuracy, two statistics were used: root-mean-squared-

error (RMSE) and bias. RMSE was calculated as 

 √𝐸[(𝜃̂ − 𝜃)2],  (40) 

while bias was calculated as 

 𝐸(𝜃̂ − 𝜃). (41)  
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For perspective, when estimation is perfect (i.e., 𝜃 = 𝜃̂ for every person), RMSE is 0. On the 

other hand, if 𝜃̂ is the average of 𝜃 for every examinee (i.e., an extremely poor estimate), RMSE 

is simply the standard deviation of the true 𝜃 distribution, or 1 in the current study. Therefore, 

estimates are not at all useful when RMSE exceeds 1 in this study. In contrast, as bias is 

directional, a bias of 0 does not mean 𝜃 = 𝜃̂ for every person. Instead, it shows that the average 

of 𝜃̂ equals the average of 𝜃. Based on these considerations, low RMSE is important for 

interpreting individual estimates while low absolute bias is more useful for group-level 

estimation.   

RMSE and bias were computed for the whole sample for all conditions as well as for nine 

equally spaced groups of 𝜃 between -2.0 and 2.0 for some conditions. Ability group assignment 

proceeded by rounding examinee 𝜃 to the nearest .5. The exceptions were that the first group 

included all examinees with 𝜃 < −1.75 while the last group included all examinees with 𝜃 >

1.75. As the detection rates of 𝑙𝑧
∗ are extremely dependent on 𝜃 (de la Torre & Deng, 2008), 

examining the results both marginal to and conditioned on 𝜃 can be highly valuable. 

In order to further understand the weights 𝑤𝑖 applied in DARE, two additional statistics 

were calculated for all conditions. Average weights on aberrant items for a single examinee was 

calculated as  

 ∑
𝑤𝑖

𝑎𝑖∈𝐴 ,  (42) 

where 𝑤𝑖 is the DARE weights for item 𝑖, 𝐴 is the set of aberrant items, and 𝑎 is the number of 

aberrant items. Also, average weights on non-aberrant items was defined as 

 ∑
𝑤𝑖

𝑘−𝑎𝑖∉𝐴 ,  (43) 

where 𝑘 is the total number of items. Average weights on aberrant items were calculated only for 

the aberrant examinees, while the average weights on non-aberrant items were calculated for all 
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examinees. These statistics were averaged across all examinees in each condition, separated by 

whether the examinee was aberrant. The values ranged from 1 to 0, where 1 indicated that no 

downweighting happened to the item while 0 indicated that the item was removed from the 

likelihood function. If the observed effectiveness of DARE coincides with its theoretical 

justification, the above statistics should show that the aberrant items have received more 

downweighting (lower weights) than the non-aberrant items among the aberrant examinees. 
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CHAPTER 5: RESULTS 

Detection Rates of Aberrant Response Patterns 

The 𝐻𝑇 person-fit statistic for the 20-item tests controlled Type I error rates when 

aberrant behaviors were not present in the data (see Table 2). Type I error gradually deflated as 

the percentage of aberrant examinees and items increased. Overall, power was low, ranging 

from .021 to .275. Power increased with the increase of aberrant items but decreased with the 

increase of aberrant examinees. As expected, power was lower at the lower α levels and the drop 

was considerable. Finally, the detection rates were slightly lower for the SL aberrant behavior 

type compared to the SH and mixed conditions.  

 

Table 2. 

𝐻𝑇 Type I Error and Power (20 Items) 

AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

None 0% 0% .010   .025   .051             
SH 10% 10% .009 .029  .022 .071  .044 .131 

  20% .008 .047  .020 .116  .040 .203 
  30% .007 .068  .019 .166  .038 .275 
 30% 10% .008 .022  .018 .053  .035 .102 
  20% .006 .027  .015 .073  .028 .140 
  30% .005 .032  .012 .090  .024 .173 
           

SL 10% 10% .009 .027  .023 .063  .046 .115 
  20% .009 .040  .021 .100  .043 .176 
  30% .008 .059  .020 .142  .040 .242 
 30% 10% .008 .021  .019 .051  .037 .095 
  20% .007 .026  .016 .069  .032 .130 
  30% .006 .032  .014 .087  .027 .163 
           

Mix 10% 10% .009 .029  .023 .068  .045 .125 
  20% .009 .044  .021 .108  .042 .190 
  30% .008 .064  .020 .152  .039 .253 
 30% 10% .008 .021  .019 .052  .036 .099 
  20% .007 .026  .015 .069  .030 .133 

    30% .005 .032   .013 .091   .025 .170 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high 
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As shown in Table 3, the 𝑙𝑧
∗ person-fit statistic showed similar patterns. Type I error rates 

were better controlled when aberrant behaviors were not present, but deflated more dramatically 

than 𝐻𝑇 as the percentage of aberrant examinees and items increased. The power patterns were 

also similar. The values ranged from .041 to .302, slightly but consistently higher than that of 𝐻𝑇 

for the corresponding conditions.  

 

Table 3. 

𝑙𝑧
∗ Type I Error and Power (20 Items) 

AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

None 0% 0% .017   .031   .051             
SH 10% 10% .012 .075  .024 .115  .041 .164 

  20% .010 .133  .021 .188  .037 .246 
  30% .010 .179  .020 .240  .035 .302 
 30% 10% .008 .045  .016 .078  .029 .118 
  20% .005 .077  .011 .120  .021 .170 
  30% .004 .098  .010 .145  .019 .198 
           

SL 10% 10% .013 .064  .025 .099  .043 .141 
  20% .011 .113  .022 .164  .038 .222 
  30% .010 .160  .020 .221  .035 .286 
 30% 10% .009 .041  .018 .071  .032 .107 
  20% .006 .065  .013 .105  .024 .151 
  30% .004 .086  .010 .133  .019 .188 
           

Mix 10% 10% .012 .071  .024 .111  .042 .156 
  20% .010 .129  .021 .182  .037 .240 
  30% .009 .178  .019 .241  .034 .306 
 30% 10% .007 .047  .016 .078  .029 .118 
  20% .005 .075  .010 .117  .020 .168 

    30% .003 .100   .008 .150   .016 .206 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high 

 

Results for the 40-item and 60-item conditions are presented in Tables 4 to 7.  While the 

patterns observed for the 20-item tests persisted, increased test length decreased Type I error 
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rates and increased power. The 𝑙𝑧
∗ continued to show higher power than 𝐻𝑇. The pattern of lower 

power for SL persisted for these longer tests.  

 

Table 4. 

𝐻𝑇 Type I Error and Power (40 Items) 

AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

None 0% 0% .010   .025   .051             
SH 10% 10% .009 .045  .022 .104  .043 .181 

  20% .008 .095  .019 .205  .038 .319 
  30% .007 .143  .017 .293  .034 .427 
 30% 10% .007 .032  .017 .076  .032 .136 
  20% .005 .046  .012 .118  .023 .209 
  30% .004 .057  .009 .158  .017 .280 
           

SL 10% 10% .010 .038  .023 .089  .045 .156 
  20% .009 .074  .020 .164  .040 .266 
  30% .008 .120  .019 .251  .037 .378 
 30% 10% .008 .028  .018 .067  .035 .121 
  20% .007 .045  .014 .108  .027 .189 
  30% .005 .064  .012 .154  .022 .259 
           

Mix 10% 10% .009 .042  .022 .096  .044 .168 
  20% .008 .085  .020 .185  .039 .293 
  30% .007 .131  .018 .270  .036 .396 
 30% 10% .008 .031  .017 .073  .033 .131 
  20% .006 .045  .013 .112  .025 .198 

    30% .004 .057   .010 .151   .019 .259 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high 
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Table 5. 

𝑙𝑧
∗ Type I Error and Power (40 Items) 

AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

None 0% 0% .015   .030   .051             
SH 10% 10% .010 .112  .022 .167  .039 .227 

  20% .009 .225  .018 .296  .034 .368 
  30% .008 .294  .017 .368  .031 .438 
 30% 10% .006 .066  .013 .109  .025 .159 
  20% .003 .124  .008 .181  .017 .243 
  30% .003 .168  .007 .229  .014 .293 
           

SL 10% 10% .011 .091  .023 .140  .041 .196 
  20% .009 .186  .019 .255  .035 .326 
  30% .008 .269  .017 .347  .031 .424 
 30% 10% .007 .056  .015 .094  .028 .140 
  20% .004 .104  .009 .159  .019 .220 
  30% .003 .146  .007 .210  .014 .279 
           

Mix 10% 10% .011 .105  .022 .157  .039 .215 
  20% .008 .216  .018 .288  .033 .361 
  30% .007 .302  .016 .382  .030 .457 
 30% 10% .005 .069  .012 .109  .024 .159 
  20% .003 .123  .007 .181  .015 .244 

    30% .002 .170   .005 .238   .011 .309 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high 
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Table 6. 

𝐻𝑇 Type I Error and Power (60 Items) 

  𝜎2 AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

1 None 0% 0% .010   .026   .052              

 SH 10% 10% .009 .065  .022 .139  .043 .228 

 
  20% .008 .145  .018 .281  .037 .408 

 
  30% .006 .231  .016 .407  .032 .540 

 
 30% 10% .007 .043  .015 .096  .029 .167 

 
  20% .005 .075  .011 .171  .020 .282 

 
  30% .003 .088  .007 .228  .015 .376 

            

 SL 10% 10% .009 .053  .022 .115  .044 .195 

 
  20% .008 .115  .020 .229  .039 .345 

 
  30% .008 .195  .018 .352  .035 .488 

 
 30% 10% .008 .038  .017 .084  .032 .147 

 
  20% .006 .068  .013 .148  .024 .243 

 
  30% .005 .107  .011 .222  .019 .345 

            

 Mix 10% 10% .009 .058  .022 .127  .043 .209 

 
  20% .008 .135  .019 .258  .038 .376 

 
  30% .007 .212  .017 .373  .034 .501 

 
  50% .006 .384  .014 .570  .029 .680 

 
 30% 10% .007 .042  .016 .093  .031 .159 

 
  20% .005 .071  .011 .159  .021 .259 

 
  30% .004 .093  .009 .216  .016 .340 

      50% .002 .155   .005 .346   .010 .499 

4 Mix 30% 10% .004 .091  .009 .163  .019 .245 

 
  20% .002 .169  .004 .283  .009 .389 

      30% .001 .191   .003 .356   .006 .481 

Note. 𝜎2=variance of the item difficulty parameter; AE=aberrant examinees; AI=aberrant items; 

AB=aberrant behaviors; SL=spuriously low; SH=spuriously high 
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Table 7. 

𝑙𝑧
∗ Type I Error and Power (60 Items) 

 𝜎2 AB AE AI 
α=.01   α=.025   α=.05 

Type I Power   Type I Power   Type I Power 

1 None 0% 0% .015   .029   .051              

 SH 10% 10% .010 .149  .021 .214  .038 .285 

 
  20% .007 .300  .017 .378  .032 .453 

 
  30% .007 .382  .015 .457  .029 .525 

 
 30% 10% .005 .086  .011 .136  .022 .195 

 
  20% .002 .171  .006 .237  .013 .307 

 
  30% .002 .225  .005 .293  .011 .360 

            

 SL 10% 10% .010 .119  .022 .176  .039 .243 

 
  20% .008 .250  .017 .330  .033 .407 

 
  30% .007 .359  .015 .445  .029 .525 

 
 30% 10% .006 .071  .013 .116  .025 .170 

 
  20% .003 .141  .007 .204  .015 .273 

 
  30% .002 .201  .005 .274  .011 .351 

            

 Mix 10% 10% .010 .138  .021 .201  .038 .267 

 
  20% .007 .290  .016 .370  .031 .448 

 
  30% .006 .402  .014 .484  .027 .556 

 
  50% .005 .529  .012 .605  .024 .668 

 
 30% 10% .004 .087  .011 .136  .022 .193 

 
  20% .002 .169  .006 .237  .012 .309 

 
  30% .001 .237  .004 .315  .008 .393 

      50% .001 .346   .002 .430   .006 .507 

4 Mix 30% 10% .003 .139  .006 .202  .013 .270 

 
  20% .001 .269  .003 .348  .006 .425 

      30% .001 .355   .002 .431   .004 .501 

Note. AB=aberrant behaviors; 𝜎2=variance of the item difficulty parameter; AE=aberrant 

examinees; AI=aberrant items; SL=spuriously low; SH=spuriously high 

 

In Tables 6 and 7, the exploratory 50% aberrant item conditions on the 60-item tests are 

presented. Results show that these conditions had the highest power rates and the lowest Type I 

error rates for both 𝐻𝑇 and 𝑙𝑧
∗. Additionally, tests with more extreme item difficulties where the 

difficulty parameters were sampled from 𝑁(0,4) instead of 𝑁(0,1) showed considerable power 

increases while Type I error was deflated further. Overall, the person-fit analysis show that Type 

I error rates tend to be deflated for aberrant response patterns and 𝑙𝑧
∗ has consistently higher 
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power than 𝐻𝑇, although power was rarely over 0.5 for the majority of the conditions. Given the 

deflated Type I error, observed power may be underestimated. How the detected individuals 

benefited from applying DARE is explored in the next section.  

Appropriate α Level for Robust Ability Estimation 

To determine the optimal α level for person-fit detection, the estimation bias and RMSE 

of DARE, BMAP, and MAP were examined across the tails of the 𝐻𝑇 and 𝑙𝑧
∗ null distributions. 

Bias and RMSE were calculated independently for each study condition, which were aggregated 

using boxplots and means. In Figure 2, bias is shown by the type of aberrant behavior and the 

null distribution percentile.  As expected, the SH condition always showed positive bias, SL 

condition showed negative bias, and the mixed condition showed almost no bias. The quartiles of 

bias were more extreme for worse-fitting examinees. Most notably, on average, the DARE and 

BMAP methods showed less bias compared to MAP only when examinees met the < 1 person-fit 

percentile criterion.  
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Figure 2. Boxplot of ability estimation bias based on person-fit thresholds and aberrant behavior 

type 

 

Figure 3 on RMSE tells almost the same story. On average, the DARE and BMAP 

methods decreased the RMSE over MAP only for examinees meeting the < 1 person-fit 

percentile criterion. As a result, similar to Maeda and Zhang (2017b), all proceeding results use 

the .01 α cutoff to show the effects of using robust ability estimation methods among detected 

examinees. 
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Figure 3. Boxplot of ability estimation RMSE based on person-fit thresholds and percent 

aberrant items 

 

Ability Estimation Bias 

 In this section, ability estimation bias are presented by test length. Under each length, 

results based on both 𝐻𝑇 and 𝑙𝑧
∗ are provided. While 𝑙𝑧

∗ showed higher power overall, there were 

situations where 𝐻𝑇 outperformed. Besides, showing that  𝑙𝑧
∗ has more power than 𝐻𝑇 does not 

necessarily prove that 𝑙𝑧
∗ is superior for the robust estimation purposes. For example, compared 

to 𝑙𝑧
∗, 𝐻𝑇 may be better at detecting mildly aberrant examinees who benefit significantly from 

robust methods. Therefore, an empirical investigation of these issues is useful.  

Table 8 shows the bias among examinees detected with 𝐻𝑇 under the 20-item test 

condition. The shaded cell represent the least bias for each condition. When no aberrant 
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behaviors were present, none of the five estimation methods were biased. When aberrant 

behaviors were present, the SH conditions showed positive bias, the SL conditions showed 

negative bias, and the mixed condition showed slight positive bias. These directions were 

expected given the nature of aberrant behaviors. The biweight method was usually the most 

biased, followed by MLE. When the percent of aberrant items were 10% or 20%, BMAP and 

DARE were slightly less biased than MAP overall. This advantage disappeared when the 

percentage of aberrant items reached 30%. The difference in bias between BMAP and DARE 

were minute.  

 

Table 8. 

Ability Estimation Bias among Examinees Detected with 𝐻𝑇 (20 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.00 -0.02 0.01 0.00 0.00 
        

SH 10% 10% 0.14 0.10 0.09 0.06 0.06 
  20% 0.36 0.52 0.26 0.23 0.22 
  30% 0.61 0.94 0.52 0.53 0.51 
 30% 10% 0.24 0.31 0.15 0.11 0.11 
  20% 0.46 0.79 0.34 0.30 0.29 
  30% 0.71 1.41 0.58 0.62 0.62 
        

SL 10% 10% -0.12 -0.12 -0.07 -0.04 -0.04 
  20% -0.26 -0.35 -0.19 -0.16 -0.15 
  30% -0.46 -0.68 -0.37 -0.36 -0.35 
 30% 10% -0.20 -0.24 -0.12 -0.08 -0.09 
  20% -0.39 -0.61 -0.27 -0.24 -0.23 
  30% -0.60 -1.09 -0.47 -0.48 -0.48 
        

Mix 10% 10% 0.00 -0.05 0.01 0.01 0.01 
  20% 0.04 0.04 0.04 0.03 0.03 
  30% 0.13 0.21 0.11 0.12 0.11 
 30% 10% 0.04 0.07 0.02 0.01 0.02 
  20% 0.07 0.06 0.07 0.06 0.06 

    30% 0.19 0.33 0.17 0.17 0.16 

Note. AE=aberrant examinees; AI=aberrant items; AB=aberrant behaviors; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 

BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

absolute bias values for each row are highlighted. 
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 Similar to the 𝐻𝑇 results, without aberrant behaviors, none of the estimation methods 

showed bias when the 𝑙𝑧
∗ was used in the 20-item test (see Table 9). When aberrant behaviors 

were present, however, the results deviated from the corresponding 𝐻𝑇 conditions. Overall, the 

bias was slightly larger, which may be because 𝑙𝑧
∗ detected more misfitting response patterns. In 

the 10% and 20% aberrant items conditions, the biweight method was often the least biased, 

MAP usually showed the most bias by a small margin (i.e., 0.0 to 0.02), while MLE, BMAP, and 

DARE showed about the same degree of bias. In contrast, in the 30% aberrant items conditions, 

bias was high across the board, indicating that none of the robust methods were effective.  

 

Table 9. 

Ability Estimation Bias among Examinees Detected with  𝑙𝑧
∗  (20 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.00 -0.01 0.00 0.00 -0.01 
        

SH 10% 10% 0.11 0.03 0.13 0.11 0.11 
  20% 0.39 0.33 0.40 0.36 0.35 
  30% 0.70 0.77 0.70 0.71 0.68 
 30% 10% 0.14 0.06 0.18 0.17 0.18 
  20% 0.45 0.38 0.49 0.47 0.47 
  30% 0.76 0.88 0.78 0.83 0.84 
        

SL 10% 10% -0.08 -0.03 -0.10 -0.08 -0.08 
  20% -0.29 -0.25 -0.30 -0.27 -0.26 
  30% -0.54 -0.58 -0.55 -0.54 -0.53 
 30% 10% -0.11 -0.03 -0.14 -0.13 -0.14 
  20% -0.35 -0.30 -0.38 -0.37 -0.38 
  30% -0.59 -0.68 -0.62 -0.65 -0.67 
        

Mix 10% 10% 0.01 -0.01 0.01 0.01 0.01 
  20% 0.08 0.07 0.08 0.07 0.07 
  30% 0.10 0.12 0.10 0.11 0.10 
 30% 10% 0.03 0.00 0.04 0.03 0.03 
  20% 0.12 0.08 0.12 0.11 0.10 

    30% 0.16 0.16 0.16 0.16 0.14 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 
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BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

absolute bias values for each row are highlighted. 

Compared to the 20-item conditions with 𝐻𝑇, similar estimation biases were observed in 

the corresponding 40-item test conditions (see Table 10). The key differences were that the 

biases were larger overall, and the effectiveness of BMAP and DARE improved. In particular, 

the bias of DARE was the lowest in almost all conditions.  

 

Table 10. 

Ability Estimation Bias among Examinees Detected with 𝐻𝑇 (40 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% -0.01 -0.02 0.00 0.00 0.00 

        

SH 10% 10% 0.23 0.22 0.17 0.12 0.11 

  20% 0.55 0.64 0.47 0.41 0.39 

  30% 0.92 1.18 0.83 0.84 0.81 

 30% 10% 0.39 0.44 0.27 0.19 0.19 

  20% 0.71 0.95 0.57 0.49 0.47 

  30% 1.04 1.53 0.90 0.90 0.87 

        

SL 10% 10% -0.17 -0.17 -0.13 -0.09 -0.08 

  20% -0.40 -0.42 -0.35 -0.28 -0.27 

  30% -0.67 -0.80 -0.62 -0.59 -0.55 

 30% 10% -0.33 -0.36 -0.22 -0.16 -0.16 

  20% -0.56 -0.68 -0.46 -0.39 -0.38 

  30% -0.78 -1.05 -0.70 -0.69 -0.66 

        

Mix 10% 10% 0.03 0.02 0.03 0.02 0.02 

  20% 0.11 0.12 0.09 0.08 0.08 

  30% 0.22 0.30 0.19 0.21 0.20 

 30% 10% 0.07 0.09 0.05 0.04 0.04 

  20% 0.17 0.21 0.14 0.13 0.11 

  30% 0.33 0.44 0.29 0.30 0.28 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 

BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

absolute bias values for each row are highlighted. 
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 Comparably, when 𝑙𝑧
∗ was used with the 40-item conditions, the DARE method showed 

the smallest bias in many conditions (see Table 11). However, biweight estimation sometimes 

showed superior performance over DARE, such as in the 10% aberrant examinee / 10% aberrant 

item conditions, and 30% aberrant examinee / 10% and 20% aberrant item conditions. While the 

performance of BMAP was comparable to DARE for 10% aberrant items conditions, BMAP was 

inferior by up to .03 and .05 for the 20% and 30% aberrant items conditions, respectively. 

 

Table 11. 

Ability Estimation Bias among Examinees Detected with  𝑙𝑧
∗  (40 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.00 -0.01 0.00 0.00 -0.01 
        

SH 10% 10% 0.20 0.12 0.22 0.16 0.16 
  20% 0.56 0.53 0.57 0.52 0.49 
  30% 0.92 0.98 0.91 0.92 0.87 
 30% 10% 0.25 0.15 0.28 0.22 0.22 
  20% 0.62 0.56 0.64 0.59 0.57 
  30% 0.95 0.99 0.95 0.97 0.94 
        

SL 10% 10% -0.15 -0.09 -0.16 -0.12 -0.12 
  20% -0.44 -0.38 -0.45 -0.39 -0.37 
  30% -0.73 -0.74 -0.73 -0.70 -0.67 
 30% 10% -0.20 -0.12 -0.22 -0.18 -0.18 
  20% -0.49 -0.42 -0.51 -0.46 -0.45 
  30% -0.74 -0.76 -0.75 -0.75 -0.73 
        

Mix 10% 10% 0.03 0.02 0.04 0.03 0.03 
  20% 0.10 0.10 0.10 0.10 0.09 
  30% 0.13 0.16 0.13 0.14 0.13 
 30% 10% 0.07 0.05 0.07 0.06 0.05 
  20% 0.15 0.13 0.15 0.14 0.12 

    30% 0.18 0.18 0.18 0.18 0.16 

Note. AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 

BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

absolute bias values for each row are highlighted. 

 

When the test length was increased to 60 items, using 𝐻𝑇, DARE continued to show the 

least bias in almost all conditions (see Table 12). The performance of DARE was often followed 
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by BMAP, MAP, MLE, then biweight, in that order. The exceptions to these were the 50% 

aberrant items conditions, where MAP showed the lowest bias. As expected, widening the spread 

of item difficulty (i.e., variance of 4) worked favorably for all three robust estimation methods.  

 

Table 12. 

Ability Estimation Bias among Examinees Detected with 𝐻𝑇 (60 Items) 

𝜎2 AB AE AI MLE Biweight MAP BMAP DARE 

1 None 0% 0% 0.00 0.00 0.00 0.00 0.00 
         

 SH 10% 10% 0.28 0.25 0.23 0.17 0.16 

 
  20% 0.66 0.69 0.60 0.53 0.49 

 
  30% 1.05 1.25 0.99 1.00 0.95 

 
 30% 10% 0.46 0.46 0.36 0.26 0.26 

 
  20% 0.81 0.94 0.72 0.64 0.60 

 
  30% 1.18 1.52 1.06 1.06 1.02 

         

 SL 10% 10% -0.21 -0.18 -0.17 -0.12 -0.11 

 
  20% -0.48 -0.47 -0.44 -0.37 -0.34 

 
  30% -0.77 -0.85 -0.74 -0.72 -0.66 

 
 30% 10% -0.37 -0.37 -0.29 -0.21 -0.21 

 
  20% -0.62 -0.67 -0.56 -0.48 -0.46 

 
  30% -0.85 -1.00 -0.80 -0.79 -0.75 

         

 Mix 10% 10% 0.06 0.06 0.05 0.03 0.03 

 
  20% 0.16 0.17 0.14 0.14 0.12 

 
  30% 0.25 0.32 0.23 0.25 0.24 

 
  50% 0.39 0.57 0.35 0.40 0.42 

 
 30% 10% 0.08 0.07 0.08 0.06 0.05 

 
  20% 0.21 0.24 0.18 0.17 0.15 

 
  30% 0.38 0.48 0.34 0.35 0.32 

      50% 0.71 0.96 0.64 0.68 0.71 

4 Mix 30% 10% 0.11 0.07 0.11 0.07 0.07 
   20% 0.26 0.25 0.25 0.23 0.19 

      30% 0.42 0.48 0.39 0.41 0.38 

Note. 𝜎2=variance of the item difficulty parameter; AB=aberrant behaviors; AE=aberrant 

examinees; AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum 

likelihood estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; 

DARE=downweighting of aberrant responses estimation; the lowest absolute bias values for 

each row are highlighted. 
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 In the 60-item conditions using 𝑙𝑧
∗ to detect aberrant examinees, DARE was almost 

always associated with the lowest bias. The only exceptions were the 10% aberrant items 

conditions where the biweight method outperformed (see Table 13).  

 

Table 13. 

Ability Estimation Bias among Examinees Detected with 𝑙𝑧
∗  (60 Items) 

𝜎2 AB AE AI MLE Biweight MAP BMAP DARE 

1 None 0% 0% 0.00 0.00 0.00 0.00 0.00 
         

 SH 10% 10% 0.25 0.17 0.26 0.20 0.19 

 
  20% 0.64 0.60 0.64 0.59 0.54 

 
  30% 1.00 1.07 0.99 1.01 0.96 

 
 30% 10% 0.32 0.22 0.34 0.27 0.26 

 
  20% 0.69 0.64 0.70 0.65 0.62 

 
  30% 1.03 1.06 1.04 1.05 1.01 

         

 SL 10% 10% -0.19 -0.12 -0.20 -0.15 -0.14 

 
  20% -0.51 -0.45 -0.51 -0.45 -0.41 

 
  30% -0.81 -0.82 -0.81 -0.79 -0.73 

 
 30% 10% -0.26 -0.17 -0.27 -0.21 -0.21 

 
  20% -0.56 -0.49 -0.57 -0.51 -0.49 

 
  30% -0.81 -0.82 -0.82 -0.80 -0.78 

         

 Mix 10% 10% 0.06 0.04 0.06 0.04 0.04 

 
  20% 0.12 0.13 0.12 0.12 0.11 

 
  30% 0.12 0.15 0.12 0.14 0.13 

 
  50% -0.01 0.04 -0.01 0.02 0.04 

 
 30% 10% 0.09 0.06 0.09 0.07 0.06 

 
  20% 0.16 0.15 0.16 0.15 0.13 

 
  30% 0.16 0.17 0.16 0.17 0.15 

      50% -0.08 -0.08 -0.08 -0.07 -0.06 

4 Mix 30% 10% 0.10 0.07 0.11 0.07 0.07 
   20% 0.17 0.15 0.17 0.15 0.13 

      30% 0.10 0.10 0.10 0.11 0.09 

Note. 𝜎2=variance of the item difficulty parameter; AB=aberrant behaviors; AE=aberrant 

examinees; AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum 

likelihood estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; 

DARE=downweighting of aberrant responses estimation; the lowest absolute bias values for 

each row are highlighted. 
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Overall, across all conditions, all robust methods showed less bias than MAP when the 

test length was increased. DARE was often associated with the lowest bias, followed closely by 

BMAP. The biweight method showed the most obscure results in that its bias was favorable 

when used with 𝑙𝑧
∗ but not with 𝐻𝑇. The decrease in bias by using DARE instead of MAP was 

about equal for 𝑙𝑧
∗  and 𝐻𝑇.  

Ability Estimation RMSE 

 For the 20-item test with 𝐻𝑇, as expected, the RMSE of the ability estimates increased 

quickly with more aberrant items (see Table 14). Overall, MLE and biweight estimates 

consistently had much higher RMSE than MAP, BMAP, and DARE. In particular, the RMSE of 

the biweight method was always intolerably high (i.e., much higher than 1), frequently reaching 

over 2.0. When no aberrant behaviors were present, MAP had the lowest RMSE at 0.47, while 

BMAP and DARE had slightly higher RMSE at 0.50 and 0.51, respectively. MAP also had the 

lowest RMSE for most 10% aberrant examinee conditions by a small margin, while BMAP had 

the lowest RMSE for most 30% aberrant examinee conditions. Across most conditions, the 

RMSE of DARE was the highest among these three methods, but the differences were negligible.  
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Table 14. 

Ability Estimation RMSE among Examinees Detected with 𝐻𝑇 (20 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.78 1.75 0.47 0.50 0.51 
        

SH 10% 10% 0.80 1.80 0.53 0.53 0.54 
  20% 0.93 1.90 0.69 0.68 0.69 
  30% 1.14 2.14 0.93 0.97 0.98 
 30% 10% 0.79 1.85 0.57 0.55 0.56 
  20% 0.92 2.01 0.73 0.70 0.72 
  30% 1.13 2.35 0.93 0.97 1.01 
        

SL 10% 10% 0.79 1.77 0.52 0.53 0.53 
  20% 0.87 1.84 0.63 0.62 0.63 
  30% 1.03 1.99 0.81 0.83 0.84 
 30% 10% 0.80 1.83 0.56 0.55 0.56 
  20% 0.90 1.94 0.68 0.65 0.67 
  30% 1.07 2.16 0.84 0.86 0.89 
        

Mix 10% 10% 0.81 1.80 0.53 0.54 0.54 
  20% 0.94 1.88 0.69 0.67 0.68 
  30% 1.16 2.10 0.94 0.95 0.95 
 30% 10% 0.84 1.85 0.62 0.57 0.58 
  20% 1.04 2.05 0.83 0.77 0.77 

    30% 1.31 2.39 1.10 1.09 1.08 

Note. RMSE=root-mean-squared-error; AB=aberrant behaviors; AE=aberrant examinees; 

AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum likelihood 

estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; DARE=downweighting of 

aberrant responses estimation; the lowest RMSE values for each row are highlighted. 

 

Among examinees detected with 𝑙𝑧
∗ for the 20-item test, the RMSE of MLE and biweight 

was much lower than in the corresponding 𝐻𝑇 conditions (see Table 15). However, the RMSE of 

the biweight method was still too high to be useful. MLE, MAP, and BMAP often had the lowest 

RMSE in most conditions, and the differences between the three were typically very small. The 

RMSE for DARE was overall slightly higher than these three methods. Otherwise, the patterns of 

RMSE were similar to the corresponding 𝐻𝑇 conditions. 
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Table 15. 

Ability Estimation RMSE among Examinees Detected with 𝑙𝑧
∗  (20 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.40 0.98 0.37 0.45 0.51 
        

SH 10% 10% 0.47 1.01 0.47 0.48 0.53 
  20% 0.71 1.10 0.71 0.68 0.71 
  30% 1.01 1.41 0.99 1.01 1.03 
 30% 10% 0.47 1.07 0.50 0.50 0.55 
  20% 0.69 1.04 0.73 0.70 0.75 
  30% 0.96 1.31 0.98 1.02 1.07 

SL 10% 10% 0.45 1.00 0.45 0.47 0.53 
  20% 0.62 1.06 0.62 0.61 0.64 
  30% 0.85 1.27 0.84 0.86 0.88 
 30% 10% 0.46 1.06 0.48 0.48 0.53 
  20% 0.66 1.09 0.67 0.64 0.69 
  30% 0.83 1.26 0.85 0.88 0.93 

Mix 10% 10% 0.48 1.02 0.48 0.47 0.52 
  20% 0.73 1.11 0.72 0.68 0.70 
  30% 1.03 1.43 1.00 0.99 1.00 
 30% 10% 0.55 1.03 0.58 0.52 0.55 
  20% 0.87 1.15 0.88 0.80 0.80 

    30% 1.19 1.50 1.18 1.15 1.13 

Note. RMSE=root-mean-squared-error; AB=aberrant behaviors; AE=aberrant examinees; 

AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum likelihood 

estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; DARE=downweighting of 

aberrant responses estimation; the lowest RMSE values for each row are highlighted. 

 

 Among examinees detected with 𝐻𝑇, when the test length was increased from 20 to 40 

items, BMAP and DARE improved effectiveness in decreasing the RMSE relative to MAP (see 

Table 16). BMAP and DARE equally and consistently showed lower RMSE than MAP in the 

10% and 20% aberrant items conditions. MAP had the superior RMSE when aberrant behavior 

was not present in the data. MAP, BMAP, and DARE were about equally accurate at 30% 

aberrant items conditions. The exception was that compared to MAP, BMAP and DARE had 

lower RMSE by 0.04 and 0.07, respectively, in the 30% aberrant examinee, 30% aberrant item, 

and mixed type conditions. Similar to the 20-item conditions, MLE and biweight methods were 

still inaccurate. 
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Table 16. 

Ability Estimation RMSE among Examinees Detected with 𝐻𝑇 (40 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.65 1.20 0.38 0.43 0.43 
        

SH 10% 10% 0.73 1.24 0.51 0.49 0.49 
  20% 0.95 1.42 0.77 0.73 0.73 
  30% 1.26 1.82 1.11 1.13 1.13 
 30% 10% 0.78 1.32 0.57 0.51 0.52 
  20% 1.01 1.60 0.83 0.76 0.76 
  30% 1.28 2.05 1.10 1.10 1.11 
        

SL 10% 10% 0.70 1.22 0.48 0.47 0.47 
  20% 0.84 1.29 0.67 0.62 0.62 
  30% 1.04 1.49 0.92 0.91 0.90 
 30% 10% 0.75 1.30 0.54 0.50 0.50 
  20% 0.89 1.41 0.73 0.67 0.67 
  30% 1.05 1.62 0.92 0.91 0.92 
        

Mix 10% 10% 0.73 1.23 0.51 0.49 0.49 
  20% 0.96 1.39 0.79 0.73 0.72 
  30% 1.23 1.71 1.08 1.09 1.07 
 30% 10% 0.82 1.31 0.62 0.54 0.55 
  20% 1.10 1.55 0.95 0.84 0.83 

    30% 1.42 1.99 1.27 1.23 1.20 

Note. RMSE=root-mean-squared-error; AB=aberrant behaviors; AE=aberrant examinees; 

AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum likelihood 

estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; DARE=downweighting of 

aberrant responses estimation; the lowest RMSE values for each row are highlighted 

 

 Much like in the 𝐻𝑇 40-item conditions, when 𝑙𝑧
∗ was used to detect aberrant examinees, 

BMAP and DARE equally and consistently showed lower RMSE than MAP in the 10% and 20% 

aberrant items conditions. However, MLE and biweight showed much higher estimation 

accuracy in these conditions than when 𝐻𝑇 was used. The RMSE for MLE was nearly the same 

as that of MAP in all conditions. Biweight still showed the highest RMSE out of all the methods 

studied.  

 

  



 

 

54 

  

Table 17. 

Ability Estimation RMSE among Examinees Detected with 𝑙𝑧
∗  (40 Items) 

AB AE AI MLE Biweight MAP BMAP DARE 

None 0% 0% 0.28 0.59 0.27 0.32 0.37 
        

SH 10% 10% 0.44 0.62 0.45 0.41 0.43 
  20% 0.75 0.87 0.76 0.71 0.71 
  30% 1.10 1.29 1.09 1.11 1.10 
 30% 10% 0.45 0.64 0.48 0.43 0.45 
  20% 0.75 0.80 0.77 0.71 0.72 
  30% 1.05 1.16 1.06 1.07 1.08 
        

SL 10% 10% 0.40 0.62 0.41 0.38 0.41 
  20% 0.65 0.76 0.65 0.60 0.61 
  30% 0.92 1.06 0.91 0.89 0.89 
 30% 10% 0.42 0.66 0.45 0.41 0.43 
  20% 0.64 0.75 0.67 0.61 0.63 
  30% 0.86 1.00 0.87 0.87 0.89 
        

Mix 10% 10% 0.44 0.63 0.46 0.41 0.43 
  20% 0.78 0.86 0.78 0.71 0.70 
  30% 1.10 1.28 1.08 1.08 1.05 
 30% 10% 0.53 0.65 0.57 0.47 0.47 
  20% 0.90 0.91 0.91 0.81 0.78 

    30% 1.22 1.32 1.21 1.19 1.15 

 

 

Note. RMSE=root-mean-squared-error; AB=aberrant behaviors; AE=aberrant examinees; 

AI=aberrant items; SL=spuriously low; SH=spuriously high; MLE=maximum likelihood 

estimation; MAP=maximum a-posteriori; BMAP=biweight-MAP; DARE=downweighting of 

aberrant responses estimation; The lowest RMSE values for each row are highlighted. 

 

Increasing the test length from 40 to 60 items in the 𝐻𝑇 conditions decreased the overall 

RMSE for all methods, but much of the relative patterns still remained the same (see Table 18). 

One notable change was that DARE was now associated with the lowest RMSE in almost all 

aberrant behavior conditions. BMAP was the next highest in accuracy, while MAP was the third. 

An exception to this was in the 10% aberrant examinee 30% aberrant items conditions, where 

BMAP showed higher RMSE than MAP. RMSE in the 50% aberrant items conditions for all 

methods were excessively high. In the conditions where the item difficulty parameters were 
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sampled from a 𝑁(0,4) distribution, both BMAP and DARE had much lower RMSE than MAP 

by up to 0.19.  

 

Table 18. 

Ability Estimation RMSE among Examinees Detected with 𝐻𝑇  (60 Items) 

𝜎2 AB AE AI MLE Biweight MAP BMAP DARE 

1 None 0% 0% 0.52 0.93 0.34 0.38 0.38 
 SH 10% 10% 0.67 0.98 0.51 0.46 0.47 
   20% 0.96 1.22 0.83 0.78 0.76 
   30% 1.29 1.66 1.19 1.21 1.19 
  30% 10% 0.76 1.07 0.59 0.51 0.52 
   20% 1.04 1.37 0.89 0.81 0.79 
   30% 1.35 1.87 1.20 1.19 1.18 
 SL 10% 10% 0.62 0.95 0.47 0.44 0.44 
   20% 0.79 1.04 0.70 0.64 0.62 
   30% 1.02 1.30 0.96 0.95 0.92 
  30% 10% 0.68 1.03 0.53 0.48 0.48 
   20% 0.85 1.14 0.76 0.68 0.68 
   30% 1.01 1.34 0.95 0.94 0.93 
 Mix 10% 10% 0.67 0.97 0.51 0.47 0.46 
   20% 0.93 1.16 0.82 0.75 0.73 
   30% 1.24 1.55 1.15 1.15 1.12 
   50% 1.95 2.59 1.85 2.06 2.10 
  30% 10% 0.77 1.03 0.63 0.53 0.53 
   20% 1.11 1.33 1.00 0.88 0.84 
   30% 1.41 1.75 1.32 1.28 1.23 

      50% 2.08 2.68 1.97 2.10 2.16 

4 Mix 30% 10% 0.64 0.62 0.63 0.48 0.48 
   20% 1.09 1.06 1.05 0.92 0.86 

      30% 1.53 1.67 1.47 1.44 1.37 

Note. RMSE=root-mean-squared-error; 𝜎2=variance of the item difficulty parameter; 

AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 

BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

RMSE values for each row are highlighted. 

 

In the 𝑙𝑧
∗ conditions with the 60-item tests, DARE typically showed the lowest RMSE in 

all 20% and 30% aberrant items conditions (see Table 19). In these conditions, the difference in 

RMSE between DARE and MAP was greatest in the mixed behavior condition. BMAP was 
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often associated with the lowest RMSE in most 10% aberrant items conditions, but DARE was 

close behind (i.e., up to a 0.02 difference). MAP and MLE had the lowest RMSE in the 0% and 

50% aberrant items conditions. Although there were some exceptions, biweight was typically the 

least accurate method.  

 

Table 19. 

Ability Estimation RMSE among Examinees Detected with 𝑙𝑧
∗  (60 Items) 

𝜎2 AB AE AI MLE Biweight MAP BMAP DARE 

1 None 0% 0% 0.24 0.45 0.23 0.27 0.31 
 SH 10% 10% 0.44 0.50 0.45 0.39 0.40 
   20% 0.78 0.82 0.78 0.73 0.71 
   30% 1.14 1.27 1.13 1.15 1.13 
  30% 10% 0.47 0.51 0.49 0.42 0.43 
   20% 0.79 0.77 0.80 0.74 0.73 
   30% 1.11 1.16 1.11 1.11 1.10 
 SL 10% 10% 0.38 0.49 0.40 0.35 0.37 
   20% 0.66 0.69 0.67 0.60 0.59 
   30% 0.94 1.04 0.94 0.92 0.90 
  30% 10% 0.42 0.52 0.44 0.38 0.40 
   20% 0.67 0.68 0.69 0.62 0.62 
   30% 0.89 0.95 0.90 0.89 0.89 
 Mix 10% 10% 0.44 0.50 0.45 0.39 0.39 
   20% 0.79 0.81 0.78 0.72 0.69 
   30% 1.12 1.26 1.10 1.11 1.07 
   50% 1.81 2.28 1.77 1.98 2.00 
  30% 10% 0.54 0.52 0.56 0.45 0.45 
   20% 0.91 0.86 0.91 0.82 0.78 
   30% 1.22 1.28 1.21 1.19 1.14 

      50% 1.87 2.13 1.84 1.97 2.01 

4 Mix 30% 10% 0.58 0.49 0.61 0.47 0.46 
   20% 1.02 0.94 1.01 0.89 0.83 

      30% 1.41 1.46 1.39 1.38 1.31 

Note. RMSE=root-mean-squared-error; 𝜎2=variance of the item difficulty parameter; 

AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; SL=spuriously low; 

SH=spuriously high; MLE=maximum likelihood estimation; MAP=maximum a-posteriori; 

BMAP=biweight-MAP; DARE=downweighting of aberrant responses estimation; the lowest 

RMSE values for each row are highlighted. 
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 Overall, assessment of estimation accuracy across all conditions and methods were 

similar between RMSE and bias; high RMSE was often associated with high bias, and vice 

versa. The rankings of the estimation accuracy among the five studied methods for a given 

condition were consistently similar between RMSE and bias, with the exception of biweight 

having the lowest bias in many conditions while having the highest RMSE in almost all 

conditions. All robust methods showed improved RMSE relative to MAP when the test length 

increased. In the 10% to 30% aberrant items conditions, DARE was the most frequently 

associated with the lowest RMSE, followed closely by BMAP. The biweight method was largely 

ineffective in decreasing RMSE relative to MAP in almost all conditions. Similar to bias, the 

decrease in RMSE by using DARE instead of MAP was about equal for 𝑙𝑧
∗  and 𝐻𝑇. Therefore, 

given that 𝑙𝑧
∗ had consistently higher power and lower Type I error than 𝐻𝑇, DARE may 

synergize better with 𝑙𝑧
∗. By using 𝑙𝑧

∗ rather than 𝐻𝑇, DARE can lower the ability estimation bias 

and RMSE among more examinees with aberrant behavior while avoiding decreases in 

estimation accuracy among the non-aberrant examinees. Therefore, all proceeding analyses were 

focused on using the 𝑙𝑧
∗ with DARE.  

Ability Estimation Bias by Ability Levels  

 In this section, ability estimation bias is presented by ability levels for limited testing 

conditions. The goal was to determine whether the effects of robust estimation on bias observed 

in the previous sections applied similarly to all ability levels. Since high bias and/or RMSE was 

observed for MLE and biweight, they were excluded. Also excluded were the 0% and 50% 

aberrant items conditions where robust estimation methods were ineffective. The 60-item SH and 

mixed aberrant behavior conditions were selected for illustration purpose. Under these 

conditions, DARE performed fairly well.  
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 Examinees were grouped first by the true 𝜃 then by the MAP estimate of 𝜃. Grouping by 

true 𝜃 can reveal differential effects of the robust methods among examinees at various trait 

levels. In the situations where this is the case, further actions may be necessary to obtain accurate 

estimates for every ability level. Unfortunately, the true 𝜃 will not be always helpful as it is 

generally unknown in practice. One obvious substitute is the MAP estimate. For example, if 

DARE is shown to be effective only among examinees with MAP of near 0, practitioners can 

actually use this finding to improve ability estimation for those examinees.  

 Figure 4 shows the estimation bias by the ability level using the true 𝜃 for the SH 

conditions. Within each box, the top percentage values indicate the distribution of all detected 

examinees, while the bottom percentages are for the detected true aberrant examinees. It seems 

that BMAP and DARE had improved bias compared to MAP only among examinees with low 𝜃. 

For these examinees, DARE was slightly less biased than BMAP in the 20% and 30% aberrant 

items conditions. MAP was superior to BMAP and DARE for examinees with 𝜃 of 0 or more. 

These seemingly disappointing results were actually not disappointing at all. Due to the nature of 

aberrance, most detected examinees (i.e., usually over 70%), especially those that were actually 

aberrant, had low 𝜃. This pattern was more pronounced as the percentage of aberrant examinees 

and items increased. For example, the 30% aberrant examinee 20% aberrant item conditions in 

Figure 4 show that only 16% of the detected examinees had 𝜃 of 0 or more.  Therefore, DARE 

effectively reduced estimation bias compared to BMAP and MAP in the most essential levels of 

𝜃. An additional observation is that all estimation methods showed increased bias at the low 

levels of 𝜃. This was expected because examinees need incorrect responses for them to 

spuriously increase test scores.   
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Figure 4. Ability estimation bias by 𝜃 (60 items, SH behavior). Examinees detected by 𝑙𝑧
∗ at the 

.01 level of α are included. Within each box, the top percentage values indicate the distribution 

of all detected examinees, while the bottom percentages are for the aberrant examinees.  

 

Figure 5 presents the same results as Figure 4, but using the MAP estimates. The majority 

of examinees detected in the SH behavior conditions had an ability estimate around -1.0 to 0.0. 

These examinees benefited the most from DARE. In some infrequent cases, when aberrant 

correct responses spuriously increased the examinee MAP to about 0.0 or more, BMAP and 

DARE were unable to revise these response patterns. The combination of Figures 4 and 5 

showed that DARE was most effective for examinees with both 𝜃 and spuriously increased MAP 

estimate of less than 0.0.  
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Figure 5. Ability estimation bias by MAP ability (60 items, SH behavior). Examinees detected 

by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top percentage values indicate the 

distribution of all detected examinees, while the bottom percentages are for the aberrant 

examinees. 

 

 In the 60-item mixed aberrant behavior conditions, all estimation methods continued to 

show increased bias at the extreme levels of 𝜃 (see Figure 6). BMAP and DARE showed less 

bias than MAP at all levels of 𝜃, especially in the extreme ends. DARE was less biased than 

BMAP in the 20% and 30% aberrant items conditions. The distribution of detected examinees as 

well as the distribution of detected aberrant examinees was spread out across all 𝜃 levels.  
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Figure 6. Ability estimation bias by 𝜃 (60 items, mixed behavior). Examinees detected by 𝑙𝑧

∗ at 

the .01 level of α are included. Within each box, the top percentage values indicate the 

distribution of all detected examinees, while the bottom percentages are for the aberrant 

examinees. 

 

Examining the same conditions by MAP instead of 𝜃 revealed a very different pattern 

(see Figure 7). For example, the distribution of detected examinees tended to gather in the center 

of the distribution (i.e., -0.5 to 0.5), especially in the 30% aberrant items conditions. 

Interestingly, BMAP and DARE were more biased than MAP in some situations, such as 30% 

aberrant examinee 20% aberrant item condition at MAP of -2.0, -1.5, 1.5, and 2.0. However, 

only a handful of people were in those MAP categories (i.e., 4% total), which showed that 

DARE and BMAP were effective in reducing bias for the majority of the examinees.  
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Figure 7. Ability estimation bias by MAP ability (60 items, mixed behavior). Examinees detected 

by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top percentage values indicate the 

distribution of all detected examinees, while the bottom percentages are for the aberrant 

examinees. 

  

 Bias by 𝜃 in the mixed aberrant behavior conditions with item difficulty parameters 

sampled from a 𝑁(0,4) distribution showed similar patterns to those observed in the 

corresponding conditions with a 𝑁(0,1) distribution. However, wider (see Figure 8) compared to 

narrower (see Figure 6) spread of item difficulty was associated with improved effectiveness of 

both BMAP and DARE. These improvements were pronounced among examinees with extreme 

𝜃. Finally, DARE was clearly more effective than BMAP in the 20% and 30% aberrant items 

conditions.  
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Figure 8. Ability estimation bias by 𝜃 with item difficulty variance of 4 (60 items, mixed 

behavior). Examinees detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top 

percentage values indicate the distribution of all detected examinees, while the bottom 

percentages are for the aberrant examinees. 

 

 The pattern of bias by MAP with item difficulty parameters sampled from a 𝑁(0,4) 

distribution showed interesting results (see Figure 9). BMAP and DARE were effective in 

decreasing bias compared to MAP in the 10% aberrant items condition. In the 20% and 30% 

aberrant items condition, DARE had the lowest bias in the center of the distribution where most 

people belonged (i.e., MAP of -0.5 to 0.5). However, with 30% aberrant items, BMAP was never 

as good as MAP regardless of the examinee MAP level.  These results were inconsistent with 

Figure 8 and Table 12 under the same conditions, where BMAP showed bias that was at least as 

low as MAP. Perhaps the positive and negative biases of examinees were canceling each other to 

show low bias from limited perspectives. Similar to previous results, BMAP and DARE had 

worse bias than MAP at the extreme levels of MAP.  
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Figure 9. Ability estimation bias by MAP ability with item difficulty variance of 4 (60 items, 

mixed behavior). Examinees detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, 

the top percentage values indicate the distribution of all detected examinees, while the bottom 

percentages are for the aberrant examinees. 

 

 

Ability Estimation RMSE by Ability Levels  

Similar to the previous section, the ability estimation RMSE of MAP, BMAP, and DARE 

among examinees detected with 𝑙𝑧
∗ were further examined by true and MAP ability levels. In the 

60-item SH behavior conditions, RMSE was generally higher for examinees with lower 𝜃. These 

examinees benefited most from BMAP and DARE compared to MAP, while MAP was superior 

among detected examinees with 𝜃 of about 0.0 or more.  
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Figure 10. Ability estimation RMSE by 𝜃 (60 items, SH behavior). Examinees detected by 𝑙𝑧

∗ at 

the .01 level of α are included. Within each box, the top percentage values indicate the 

distribution of all detected examinees, while the bottom percentages are for the aberrant 

examinees. 

 

 

 Examining the same data by levels of MAP showed a similar pattern where BMAP and 

DARE was associated with lower RMSE than MAP among examinees with MAP of about 0.0 or 

less, which was typically no less than 60% of the detected examinees (see Figure 11). MAP had 

the lowest RMSE among examinees with MAP of over 0.0. BMAP usually had slightly lower 

RMSE than DARE in the 10% aberrant items conditions, while DARE was slightly more 

effective in the 20% and 30% aberrant items conditions.  
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Figure 11. Ability estimation RMSE by MAP ability (60 items, SH behavior). Examinees 

detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top percentage values 

indicate the distribution of all detected examinees, while the bottom percentages are for the 

aberrant examinees. 

 

 RMSE by 𝜃 in the mixed aberrant behavior conditions showed patterns completely 

different from that of the SH conditions (see Figure 12). In all of these conditions, using BMAP 

or DARE instead of MAP was effective in reducing RMSE among examinees with 𝜃 of under -

0.5 or over 0.5. This effectiveness increased as the 𝜃 became more extreme, which was important 

because a considerable proportion (e.g., 30%) of examinees had extreme 𝜃 values. Finally, 

DARE had lower RMSE than BMAP in the 20% and 30% aberrant items conditions across the 

entire range of 𝜃.  
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Figure 12. Ability estimation RMSE by 𝜃 (60 items, mixed behavior). Examinees detected by 𝑙𝑧

∗ 

at the .01 level of α are included. Within each box, the top percentage values indicate the 

distribution of all detected examinees, while the bottom percentages are for the aberrant 

examinees. 

 

 

 Further, at all levels of MAP in the 60-item mixed behavior 10% aberrant items 

conditions, BMAP and DARE were associated with lower RMSE than MAP (see Figure 13). 

However, in the 20% and especially 30% aberrant items conditions, BMAP and DARE 

performed poorly compared to MAP among examinees with extreme MAP values. However, not 

many examinees had such extreme MAP estimates. In fact, almost all examinees in the 20% and 

30% aberrant items conditions had MAP of about -0.5 to 0.5, and this was where it was most 

beneficial to use DARE instead of MAP and BMAP. The combination of Figures 12 and 13 

showed that, for the mixed aberrant behavior situations, using DARE was the best choice to 
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obtain a low RMSE, especially among examinees with a 𝜃 distant from 0.0 and estimated MAP 

of near 0.0.  

 

 
Figure 13. Ability estimation RMSE by MAP ability (60 items, mixed behavior). Examinees 

detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top percentage values 

indicate the distribution of all detected examinees, while the bottom percentages are for the 

aberrant examinees. 

 

 

The pattern of RMSE by 𝜃 with item difficulty parameters sampled from a 𝑁(0,4) 

distribution rather than a 𝑁(0,1) distribution showed increased effectiveness of using BMAP and 

DARE instead of MAP (see Figure 14). In addition, the advantage of using DARE instead of 

BMAP was extremely clear.  Otherwise, the pattern observed in the comparable conditions 

remained the same. 
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Figure 14. Ability estimation RMSE by 𝜃 with item difficulty variance of 4 (60 items, mixed 

behavior). Examinees detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, the top 

percentage values indicate the distribution of all detected examinees, while the bottom 

percentages are for the aberrant examinees. 

 

 

Similarly, RMSE by MAP with item difficulty parameters sampled from a 𝑁(0,4) 

distribution showed comparable patterns to the corresponding 𝑁(0,1) distribution conditions but 

with an added effectiveness of using BMAP and DARE instead of MAP (see Figure 15). Again, 

the advantage of using DARE instead of BMAP was evident. Therefore, the combination of 

Figures 14 and 15 shows that the effectiveness of DARE over BMAP and MAP may increase 

when the item difficulty parameters have a flat distribution with relatively large numbers of very 

easy and very difficult items.  
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Figure 15. Ability estimation RMSE by MAP ability with item difficulty variance of 4 (60 items, 

mixed behavior). Examinees detected by 𝑙𝑧
∗ at the .01 level of α are included. Within each box, 

the top percentage values indicate the distribution of all detected examinees, while the bottom 

percentages are for the aberrant examinees. 

 

Average DARE Weights 

 The weights 𝑤𝑖 used in DARE to downweight misfitting items were examined for their 

effectiveness in downweighting items that were simulated as aberrant instead of non-aberrant. In 

the 20-item condition without aberrant behavior where 𝑙𝑧
∗ was used for detection, the average 

weight for the items was .92 (see Table 20). Similarly, in the conditions with aberrant behavior, 

the weights placed on the items among the non-aberrant examinees consistently stayed around 

.92 to .94. As expected, among the aberrant examinees, the aberrant items were always given a 

lower weight on average (i.e., .73 to .85) than non-aberrant items (i.e., .90 to .95). The difference 

in average weights between aberrant and non-aberrant items were slightly higher when the 

severity of aberrant behavior in the data set were low, such as the 10% aberrant examinees 10% 

aberrant items conditions. This shows that the aberrant items were easier to detect when there 

were not many aberrant items overall in the entire data set.  
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Table 20. 

Average DARE Weights among Examinees Detected with 𝑙𝑧
∗  (20 Items) 

AB AE AI 
  Aberrant Examinees   

Non-Aberrant Examinees 
  Aberrant Items Non-Aberrant Items   

None 0% 0%     .92 
        

SH 10% 10%  .74 .94  .92 
  20%  .75 .93  .92 
  30%  .80 .91  .92 
 30% 10%  .80 .94  .93 
  20%  .80 .93  .93 
  30%  .85 .90  .94 
        

SL 10% 10%  .74 .94  .92 
  20%  .74 .94  .92 
  30%  .78 .92  .92 
 30% 10%  .79 .94  .92 
  20%  .80 .93  .94 
  30%  .83 .91  .94 
        

Mix 10% 10%  .73 .94  .92 
  20%  .73 .94  .92 
  30%  .77 .92  .92 
 30% 10%  .75 .95  .92 
  20%  .76 .94  .93 

    30%   .78 .93   .94 

Note. DARE=downweighting of aberrant responses estimation; AB=aberrant behaviors; 

AE=aberrant examinees; AI=aberrant items; SL=spuriously low; SH=spuriously high 

 

 Increasing the test length from 20 to 40 items increased all DARE weights on average by 

about .01 to .02 (see Table 21). Otherwise, the relative pattern of the weights remained the same. 

Among the aberrant examinees, aberrant items continued to have lower weights (i.e., .75 to .85) 

compared to non-aberrant items (i.e., .92 to .96). 
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Table 21. 

Average DARE Weights among Examinees Detected with 𝑙𝑧
∗  (40 Items) 

AB AE AI 
  Aberrant Examinees   

Non-Aberrant Examinees 
  Aberrant Items Non-Aberrant Items   

None 0% 0%     .93 
        

SH 10% 10%  .76 .95  .94 
  20%  .77 .94  .94 
  30%  .81 .92  .94 
 30% 10%  .80 .96  .95 
  20%  .80 .94  .96 
  30%  .85 .92  .96 
        

SL 10% 10%  .76 .95  .94 
  20%  .77 .95  .94 
  30%  .79 .93  .94 
 30% 10%  .81 .95  .94 
  20%  .81 .95  .96 
  30%  .83 .93  .96 
        

Mix 10% 10%  .75 .95  .94 
  20%  .75 .95  .94 
  30%  .79 .93  .94 
 30% 10%  .77 .96  .95 
  20%  .77 .96  .96 

    30%   .80 .94   .96 

Note. DARE=downweighting of aberrant responses estimation; AE=aberrant examinees; 

AI=aberrant items; AB=aberrant behaviors; SL=spuriously low; SH=spuriously high 

 

 Similarly, increasing the test length from 40 to 60 items increased all DARE weights on 

both aberrant and non-aberrant items by about .01 in many conditions (see Table 22). Otherwise, 

the relative pattern of the weights remained the same. The exception was the 50% aberrant items 

conditions among the aberrant examinees where the aberrant items received higher weights than 

the non-aberrant items by .03. This showed that the high proportion of aberrant items caused the 

aberrant items to be classified as slightly more model fitting than the non-aberrant items. This 

may suggest that aberrance cannot be detected at all when the percentage of aberrant responses 

reach such severity.  In addition, when the item difficulty parameters were sampled from a 

𝑁(0,4) distribution rather than 𝑁(0,1), the difference between aberrant and non-aberrant items 
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increased by .04 to .07. Therefore, the aberrant items were easier to detect when the item 

difficulty values had a wider spread. 

 

Table 22. 

Average DARE Weights among Examinees Detected with 𝑙𝑧
∗  (60 Items) 

𝜎2 AB AE AI 
  Aberrant Examinees   Non-Aberrant 

Examinees   Aberrant Items Non-Aberrant Items   

1 None 0% 0%     .94 
         

 SH 10% 10%  .77 .96  .95 
   20%  .77 .95  .95 
   30%  .81 .92  .95 
  30% 10%  .80 .96  .96 
   20%  .81 .95  .97 
   30%  .84 .92  .97 
         

 SL 10% 10%  .77 .96  .95 
   20%  .77 .95  .95 
   30%  .79 .94  .95 
  30% 10%  .81 .96  .95 
   20%  .81 .96  .96 
   30%  .83 .94  .97 
         

 Mix 10% 10%  .75 .96  .95 
   20%  .76 .95  .95 
   30%  .80 .93  .95 
   50%  .91 .88  .95 
  30% 10%  .78 .97  .96 
   20%  .78 .96  .97 
   30%  .81 .95  .97 
   50%  .92 .89  .97 

4 Mix 30% 10%   .71 .97   .95 
   20%  .73 .97  .96 

     30%   .78 .94   .96 

Note. DARE=downweighting of aberrant responses estimation; 𝜎2=variance of the item 

difficulty parameter; AB=aberrant behaviors; AE=aberrant examinees; AI=aberrant items; 

SL=spuriously low; SH=spuriously high 
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 Overall, these results indicate that the DARE procedure was identifying aberrant items as 

theoretically designed, where the aberrant items typically received weights that were about 10% 

to 20% lower than non-aberrant items. For the most part, the non-aberrant items received about 

the same degree of downweighting regardless of whether the examinee was truly aberrant.  
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CHAPTER 6: DISCUSSION 

 Most modern robust estimation methods downweight uninformative items regardless of 

the observed response. The rationale for such a practice is that when these responses are not 

aberrant, they provide little information about the latent trait level. However, if they are aberrant, 

they can cause large measurement error. Two drawbacks with such an approach is that 1) 

uninformative items still typically provide a substantial amount of information, and 2) not all 

uninformative responses are aberrant. These are especially true for non-aberrant or mildly 

aberrant examinees. This study presents the development of an aberrant response detection 

technique that is a complementary addition to the pre-existing robust estimation methods. The 

proposed robust ability estimation procedure, downweighting of aberrant responses estimation 

(DARE), downweights items based on the degree of model misfit as well as the amount of item 

information. This approach ensures that uninformative items with a high possibility of being 

aberrant are downweighted the most. This study also evaluates other popular robust and non-

robust estimation methods, including maximum likelihood estimation (MLE), biweight (Mislevy 

& Bock, 1982), maximum a-posteriori (MAP), and biweight-MAP (BMAP; Maeda & Zhang, 

2017b). 

This study incorporates the person-fit analysis as a realistic initial step to identify the 

potentially aberrant examinees that might benefit from robust estimation methods. The person-fit 

detection results show that Type I error rates using both 𝑙𝑧
∗  and 𝐻𝑇are almost always deflated 

when aberrant behavior are present, and 𝑙𝑧
∗ has consistently higher power than 𝐻𝑇. The results 

indicate that the decrease in bias and RMSE by using DARE instead of MAP is about equal for 

𝑙𝑧
∗  and 𝐻𝑇. However, given that 𝑙𝑧

∗ has consistently higher power and lower Type I error than 

𝐻𝑇, 𝑙𝑧
∗ is superior to 𝐻𝑇 because DARE can improve the ability estimate for more aberrant 
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examinees, while avoiding decreases in estimation accuracy among the non-aberrant examinees. 

The higher power of 𝑙𝑧
∗ than 𝐻𝑇 is actually surprising as previous studies suggest the opposite 

(Karabastos, 2003; Tendeiro & Meijer, 2014). One possible reason is Karabastos’s study was 

based on the Rasch model, while the current study used the 2-parameter logistic model (2PL). In 

addition, Tendeiro and Meijer (2014) reported higher Type I error rates for 𝐻𝑇 (about .06 across 

all conditions at the .05 α level) than the current study, which may reflect differences in the 

methods used to identify the 𝐻𝑇 cutoff value. 

Based on 𝑙𝑧
∗, DARE most effectively decreases the RMSE and bias among examinees 

detected at the .01 α cutoff. This is consistent with the threshold reported by Maeda and Zhang 

(2017b). Given such a low alpha level, the detection power of 𝑙𝑧
∗ is undesirably low, typically 

only detecting a third or less of the aberrant examinees. The effectiveness of DARE and all other 

robust estimation methods should improve if the person-fit analysis can detect more aberrant 

examinees. For example, in some testing situations, only certain forms of aberrant behavior may 

be suspected, such as copying (Wollack, 1997) or speededness (Shao & Cheng, 2015). Strategies 

specifically designed to detect those behaviors (e.g., the Omega statistic; Wollack, 1997) may be 

more powerful than generic person-fit statistics such as the 𝑙𝑧
∗. In such cases, an appropriately 

modified version of DARE may have the potential to show larger effects than what was observed 

in this study.  

Also, detection power may increase if robust methods are used to increase the accuracy 

of the ability estimate used in the parametric person-fit analysis. Some researchers have tried this 

with the biweight method and showed promising results (Meijer & Nering, 1997; Reise, 1995). 

Given that DARE was found to be more accurate than biweight under most examined conditions 

in this study, using DARE for initial person-fit analyses may be fruitful. Finally, the power of 𝑙𝑧
∗ 
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decreases as the percent of aberrant examinees increases, which may indicate inaccurate 

estimation of item parameters. Methods to improve item parameter estimation, such as removing 

misfitting examinees from the item parameter estimation process, may improve the power of 

person-fit analyses and ultimately improve the performance of DARE.   

Overall, ability estimation accuracy based on bias and RMSE converges for most 

conditions. MAP is associated with the lowest bias and RMSE when no aberrant examinee is 

present. In general, DARE is the most accurate for tests with 60 items. At the 40-item level, 

DARE and BMAP have about equally the lowest RMSE, but DARE has slightly lower bias than 

BMAP. At the 20-item level, the effectiveness of all robust methods is questionable. Therefore, 

the usefulness of DARE depends on test length. Furthermore, DARE has the largest advantage 

over MAP in the mixed behavior conditions. Having a balance of both spuriously high and low 

scoring aberrant examinees may help item difficulty parameter estimation, which in turn helps 

DARE detect the aberrant items. Additionally, DARE works better for tests with larger spread of 

item difficulties (variance of 4 vs. 1). Practically, this means that a reasonable way to improve 

the person-fit analysis and robust estimation is to include a few extremely easy and hard items in 

the test.    

When examined by the ability level, in the 60-item mixed aberrant behavior situations,  

DARE is more effective than MAP when applied to examinees with an extreme 𝜃 (i.e., less than 

-1.0 or more than 1.0) and estimated MAP of near 0.0 (i.e., -0.5 to 0.5). Also, in the spuriously 

high behavior condition, DARE is most effective when 𝜃 is very low (i.e., less than -1.0) and the 

MAP is between -1.0 and 0.0. Although not presented, the results for the spuriously high 

conditions are similar to that for the spuriously low conditions. These findings show that DARE 

performs well when 1) a high-achieving person obtains spuriously incorrect responses, which 
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results in no less than about an average ability estimate, or 2) a low-achieving person obtains 

spuriously correct responses, which results in no more than about an average ability estimate. 

Cases like this with mild aberrant behavior seem to be commonly occurring (Rupp, 2013). On 

the other hand, DARE seems to have a difficult time dealing with the aberrant response patterns 

from extremely high or low ability estimates (e.g., MAP of less than -2.0 or over 2.0), regardless 

of the true ability. These findings have important implications in test uses, such as proficiency 

classification. For example, in a context where cheating is suspected, DARE will not be effective 

in improving classification accuracy if the cut score is set high, such as the 90th percentile. 

However, at the 50th percentile cutoff, DARE will be extremely useful in preventing 

underachieving cheaters from passing the test.  

Finally, to shed some light on the nature of the aberrant behavior, one may examine the 

weights that DARE applies to each item. In this study, aberrant items have received weights that 

were about 10% to 20% lower than non-aberrant items. This is true even in the 20-item 

conditions where the performance of DARE is not always superior to other methods. In other 

words, as theoretically designed, DARE is capable of distinguishing between aberrant and non-

aberrant responses.   

 

Limitations 

 This simulation study has been designed to be as realistic as possible by using estimated 

item parameters and conducting person-fit analyses to detect examinees for robust ability 

estimation. However, item analyses were not performed. In practice, low quality items should be 

identified and may be removed. Also, although the items in the study were generated based on 

the 2PL model, the 3PL model may fit better for some items after the aberrance was added, such 
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as those with many spuriously incorrect responses. Taking this extra step prior to person-fit 

analyses may alter the effectiveness of DARE.  

 Further, like any simulation study, the tests simulated in the current study are relatively 

simple in that the non-aberrant responses fit a unidimensional 2PL model perfectly. In reality, 

tests often measure more than one dimension, use polytomous items and testlets, and have 

missing responses. Extension of the robust estimation methods to these more realistic conditions 

are necessary. Other conditions not explored in this study include aberrant behaviors that cause 

both spuriously correct and incorrect responses (i.e., spuriously mixed responses; Rupp, 2013), 

behaviors that only affect items of a certain difficulty, cases where the item parameters have 

been pre-calibrated, or cases where additional useful information about the examinees is 

available (e.g., scores on a similar test). 

 Finally, a potential problem with DARE and other robust estimation methods is that 

downweighting some items may result in a change in the test content. For example, a 

unidimensional mathematics test can contain equal numbers of algebra and geometry items, and 

DARE may end up downweighting algebra items more so than geometry. In this case, the 

resulting mathematics ability estimate may be more representative of geometry than the equal 

combination of geometry and algebra. The chance that this will occur may increase if one section 

is more difficult than the other. Possible solutions include 1) constraining DARE to downweight 

each sub content area equally, 2) upweighting some well-fitting items in the sub content area that 

received heavy downweighting, or 3) reporting the ability estimate within each sub content area.  

 



 

 

80 

  

Conclusion 

Test responses can be contaminated by aberrant behaviors. Ignoring such behaviors can 

result in inaccurate test scores and score interpretations for both aberrant and non-aberrant test 

takers. Effective techniques that can identify aberrant examinees and correct their test scores are 

immensely valuable. So far, much of the literature on aberrant behaviors has focused on how to 

detect the aberrant response patterns. The current study provides a better solution to correct 

contaminated test scores.  
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APPENDIX: R Code to Calculate DARE 

The R function DARE is presented. This function uses item response data and item 

parameters and outputs the DARE ability estimates and the weights. The function BMAP is 

presented for calculations of the BMAP estimate because this is required when using DARE. 

Using the default settings are recommended. Missing data are treated as missing completely at 

random and their effects on the likelihood function are disregarded. Finally, an example is 

presented. 

 

Arguments 

DAT Person by item data.frame or matrix. 

ITEMPAR Item by parameter 2-parameter logistic model parameter matrix. Item 

discrimination is in the first column, and item difficulty is in the second 

column. 

crit.lzw Conversion criterion for global lzw. Defaults to -1.645 

TuCo Tuning coefficient. Defaults to 5. 

crit.newton Newton-Raphson convergence criterion. Defaults to .0001. 

prior.mean Bayesian prior normal distribution mean. Defaults to 0. 

prior.std Bayesian prior normal distribution  standard deviation. Defaults to 1. 

max.iter1 Maximum number of DARE iterations. Defaults to 99999. 

max.iter2 Maximum number of Newton-Raphson iterations. Defaults to 25. 

Increment Degree of downweighting in every DARE iteration. Defaults to .1. 

limit.upper Upper limit of ability estimates. Defaults to 4. 

limit.lower Lower limit of ability estimates. Defaults to -4. 

 

Value 

Theta Vector of DARE ability estimate for each person. 

Weight Person by item DARE weight matrix. 
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Code 

 

################################################################ 

### Create DARE Function 

DARE <- function( 

  DAT, 

  ITEMPAR, 

  crit.lzw = -1.645, 

  TuCo = 5, 

  crit.newton = .0001, 

  prior.mean = 0, 

  prior.std = 1, 

  max.iter1 = 99999, 

  max.iter2 = 25, 

  Increment = .1, 

  limit.upper = 4, 

  limit.lower = -4){ 

   

  ### Create a Function to Calculate lz for Subtests 

  LZcalc <- function(x){ 

    (sum(x[,1])-sum(x[,2]))/sum(x[,3])^.5 

    } 

 

  ### Get Number of Columns and Rows 

  k <- ncol(DAT) 

  N <- nrow(DAT)   

   

  ### Initialize Output 

  Out <- rep(NA,N) 

  Weight <- matrix(NA,nrow = N, ncol = k) 

   

  ### Initial BMAP Estimate 

  EST <- BMAP( 

    DAT = DAT, 

    ITEMPAR = ITEMPAR, 

    EST = rep(0,nrow(DAT)), 

    TuCo = 4, 

    prior.mean = prior.mean, 

    prior.std = prior.std, 

    crit.newton = crit.newton, 

    max.iter = max.iter2,  

    limit.upper = limit.upper, 

    limit.lower = limit.lower) 

   

  ### Make 3 Subtests of About the Same Length 

  len <- round(k/3) 
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  SubtestNum <- rep(2,k) 

  SubtestNum[1:len] <- 1 

  SubtestNum[(k-len+1):k] <- 3 

   

  ### Begin Person Loop 

  for(i in 1:N){  

    if(is.na(EST[i])) next 

    u0 <- unlist(DAT[i,])  

    theta0 <- EST[i] 

    theta1 <- EST[i] 

    w <- rep(1,k) 

     

    ### Begin DARE Loop to Determine w 

    for(j in 1:max.iter1){  

      Z <- ITEMPAR[,1]*(theta0-ITEMPAR[,2]) 

      ppp1 <- 1/(1+exp(-Z)) 

      ppp0 <- 1-ppp1 

      ppp <- ppp1 

      ppp[u0 == 0 & !is.na(u0)] <- 1-ppp[u0 == 0 & !is.na(u0)] 

       

      #Set Missing Data Probabilities to 1.  

      #This Removes Their Effects on the Likelihood 

      ppp[is.na(u0)] <- 1 

      ppp0[is.na(u0)] <- 1 

      ppp1[is.na(u0)] <- 1 

      ORDER <- rev(order(ppp1)) 

       

      ### Find 1 Misfitting Subtest 

      l0 <- log(ppp)*w 

      Exp <- log(ppp1)*ppp1*w+log(ppp0)*ppp0*w 

      Var <- ppp1*ppp0*w^2*(log(ppp1/ppp0)^2) 

      lzwSubtests <- c(by(cbind(l0,Exp,Var)[ORDER,], 

        SubtestNum,LZcalc)) 

      SelectSubtest <- which.min(lzwSubtests) 

       

      ### Find 1 Misfitting Item  

      ItemSet <- ORDER[c(1:k)[SubtestNum == SelectSubtest]] 

      ItemSet <- ItemSet[ppp[ItemSet] < .5 & w[ItemSet]>.01] 

      SelectItem <- ItemSet[which.min(ITEMPAR[ItemSet,1])] 

 

      ### Downweight Item 

      w[SelectItem] <- round(w[SelectItem]-Increment,3) 

 

      ### Begin BMAP Newton-Raphson loop       

      #Remove Effects of Missing Data on the Likelihood 

      for(l in 1:max.iter2){   

        Z <- ITEMPAR[,1]*(theta0-ITEMPAR[,2]) 
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        ppp1 <- 1/(1+exp(-Z)) 

        r <- Z 

        g <- w*(1-(r/TuCo)^2)^2 

        g[abs(r) > TuCo]=0 

        num <- sum(c(g*ITEMPAR[,1]*(u0-ppp1))[!is.na(u0)]) – 

          (theta0-prior.mean)/prior.std^2 

        den <- -1*sum(c(g*ITEMPAR[,1]^2*ppp1*(1- 

          ppp1))[!is.na(u0)])- 1/prior.std^2 

        theta1 <- theta0-num/den 

 

        ### Convergence Criteria 

        if(abs(theta1-theta0) < crit.newton|is.na(theta1)) break 

        if(theta1 > limit.upper) { 

          theta1 <- limit.upper  

          break 

        } 

        if(theta1 < limit.lower) { 

          theta1 <- limit.lower 

          break 

        } 

      theta0 <- theta1 

      } # End BMAP Newton-Raphson loop 

       

      ### Find Global lzw 

      Z <- ITEMPAR[,1]*(theta0-ITEMPAR[,2]) 

      ppp1 <- 1/(1+exp(-Z)) 

      ppp0 <- 1-ppp1 

      ppp <- ppp1 

      ppp[u0 == 0 & !is.na(u0)] <- 1-ppp[u0 == 0 & !is.na(u0)] 

      #Set Missing Data Probabilities to 1.  

      #This Removes Their Effects on the Likelihood 

      ppp[is.na(u0)] <- 1 

      ppp0[is.na(u0)] <- 1 

      ppp1[is.na(u0)] <- 1 

      l0 <- sum(log(ppp)*w) 

      Exp <- sum(log(ppp1)*ppp1*w+log(ppp0)*ppp0*w) 

      Var <- sum(ppp1*ppp0*w^2*(log(ppp1/ppp0)^2)) 

      lzw <- (l0-Exp)/Var^.5 

       

      ### Assess Global Person-Fit       

      if(lzw > crit.lzw | is.na(lzw)) break 

    } # End DARE loop to determine w 

     

    ### Save Output 

    Out[i] <- theta0      

    Weight[i,] <- w 

    } # End Person Loop 
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  return(list(Theta = Out, Weight = Weight)) 

} 

 

################################################################ 

### Create BMAP Function 

BMAP <- function( 

  DAT, 

  ITEMPAR, 

  EST = rep(0,nrow(DAT)), 

  TuCo = 4, 

  prior.mean = 0, 

  prior.std = 1, 

  crit.newton = .0001, 

  max.iter = 25, 

  limit.upper = 4, 

  limit.lower = -4){ 

   

  ### Get Number of Columns and Rows 

  k <- ncol(DAT) 

  N <- nrow(DAT)    

   

  ### Initialize Output 

  Out <- rep(NA,N) 

   

  for(i in 1:N){ 

    u0 <- unlist(DAT[i,]) 

    theta0 <- EST[i] 

     

    ### Begin BMAP Newton-Raphson Loop 

    #Remove Effects of Missing Data on the Likelihood 

    for(l in 1:max.iter){   

      Z <- ITEMPAR[,1]*(theta0-ITEMPAR[,2]) 

      ppp1 <- 1/(1+exp(-Z)) 

      r <- Z 

      g <- (1-(r/TuCo)^2)^2 

      g[abs(r) > TuCo] <- 0 

      num <- sum(c(g*ITEMPAR[,1]*(u0-ppp1))[!is.na(u0)]) – 

        (theta0-prior.mean)/prior.std^2 

      den <- -1*sum(c(g*ITEMPAR[,1]^2*ppp1* 

        (1ppp1))[!is.na(u0)])- 1/prior.std^2 

      theta1 <- theta0-num/den 

       

      ### Convergence Criteria 

      if(abs(theta1-theta0)<crit.newton|is.na(theta1))  break 

      if(theta1 > limit.upper) { 

        theta1 <- limit.upper  
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        break 

      } 

      if(theta1 < limit.lower) { 

        theta1 <- limit.lower 

        break 

      } 

       

      ### Save New Theta Value 

      theta0 <- theta1 

    } # End BMAP Newton-Raphson Loop 

     

    Out[i] <- theta1 

  } #End Person Loop 

  return(Out) 

} 

 

################################################################ 

### EXAMPLE 

 

#Generate Parameters 

set.seed(71690) 

Npeople <- 10 

Nitems <- 10 

TrueAbility <- rnorm(Npeople) 

itempar <- matrix(c(rlnorm(Nitems,.4,.5),rnorm(Nitems)),ncol=2) 

colnames(itempar) <- c("a","b") 

 

#Create Data 

dat <- matrix(nrow=Npeople,ncol=Nitems) 

for(i in 1:Npeople){ 

  for(j in 1:Nitems){ 

    Z <- itempar[j,1]*(TrueAbility[i]-itempar[j,2]) 

    p <- 1/(1+exp(-Z)) 

    dat[i,j] <- sample(c(1,0),size=1,prob=c(p,1-p)) 

    } 

  } 

 

#Run DARE 

out <- DARE(DAT=dat,ITEMPAR=itempar) 

 

#DARE Ability Estimates 

out$Theta 

 

#DARE Weights 

out$Weight 
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