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ABSTRACT

3D RECONSTRUCTION OF PROTEINS AND VIRUSES FROM ANGULAR
CORRELATIONS OF THE SCATTERED INTENSITIES

by

Fatemehsadat Jamalidinan

University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor George Hanson

There is a remarkable shortage of the detailed knowledge of membrane proteins at

atomic resolution despite the fact that they are the targets of many of today’s drugs.

The reason is that membrane proteins tend to have large hydrophobic surfaces which

ensure their correct positioning in a membrane. However, this seems to make

crystallization difficult, and this makes traditional methods of structure determination

by X-ray crystallography difficult. In this thesis, we take advantage of this very fact to

suggest an alternative method for structure determination by X-ray scattering of the

projected structures of membrane proteins in their natural environments. Although in

such environments the proteins are not perfectly aligned as in a crystal, we find that

the algorithm suggested by Kurta and Pedrini appears to promise structure

determination, perhaps down to atomic resolution.

We also suggest and develop how the method may be extended to obtain general

(non-symmetric) 3D structures by exploiting the curved nature of Ewald spheres at

lower energy. The extension of the 2D idea into 3D is straightforward, since a curved

Ewald sphere also consists of a set of rings (one expects the different rings have

different qz components). We can get the intensities in 3D reciprocal space as that is

exactly what we need for 3D structure recovery via a phasing program. Of course, the

construction of intensity data on a uniform grid in 3D reciprocal space (required by a

typical phasing program) requires a girdding program. The registry between the
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Im(q)′s on different q′s can be found as before if one knows Bm(q1, q2) from the

experiment, as can be found from a set of diffraction patterns of the same energy. Of

course, varying the energy then gives us the 3D reciprocal space for a range of q′zs, just

what we need for getting info about the 3D structure.

In the second part of this thesis, we have reconstructed icosahedral images of the

Coliphage PR772 and Rice Dwarf (RDV) viruses from the angular correlations of

experimental data. We calculate the correlations using the standard method that

Hanbury, Brown and Twiss developed in astronomy. The pattern of dominant

icosahedral angular momentum quantum numbers that results is a strong indication of

the icosahedral nature of the capsid. Having first determined by objective means that

the structure of the capsid has icosahedral symmetry, we then recover a dodecahedral

diffraction volume from which we correctly reconstruct an icosahedral structure using

our phasing algorithm. We quantify the quality of the reconstructed image using the

Fourier shell correlation curve of two independent datasets. For PR772, the FSC curve

stays above 0.5 throughout the range of experimental data, which suggests that the

resolution is still determined by the limitations of the experimental data rather than by

the reconstruction method. For RDV, the resolution is around 200 Å. We also calculated

an Rspllit quantity that compares two randomly split diffraction patterns for PR772 and

RDV data and, as expected, they remained low. In a nutshell, three most important

things to come out of this work are:

1-We recover the 2D structure of an individual membrane proteins up to atomic

resolution using our suggested 2D phasing algorithm.

2-We develop an idea for producing 3D images using 2D diffraction patterns by

combining multi-wavelength data from a soft X-ray fluctuation scattering experiment

on membrane proteins partially oriented in a membrane, for the first time.

3- We also determine the the three-dimensional structure of PR772 and RDV viruses

from experimental data, using our new 3D method.
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Part I

Determining the Structure of Membrane

Proteins In Situ
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Chapter 1

Introduction

Membrane proteins Fig.1.1 are proteins situated at the membrane of the cell or at the

lipid bilayer. Although membrane proteins are the targets of most of today’s drugs,

the protein data bank (PDB) (Berman et al., 2000) has a remarkably small percentage

of the atomic-scale structures of such proteins. This is primarily due to the fact that

the premier method of protein structure determination, namely X-ray crystallography,

requires the formation of crystals. This is difficult with molecules such as membrane

proteins, which have hydrophobic surfaces which are integral to their functions. This

very feature is the one responsible for the fact that they are found in nature within lipid

membranes. This project points out that the very feature responsible for the difficulty

of forming crystals may be exploited for a different method of structure determination

in situ in a membrane making use of the properties of the newly developed X-ray free

electron laser (XFEL) together with the algorithm described here for structure recovery.

In short, if it is difficult to crystallize a membrane protein, why not produce copies of

the protein in environments in which they are found naturally where one can exploit

the advantage of scattering by a large number of such molecules even if they are not

ideally aligned as in a crystal. In the case of membrane proteins in situ, one can try

to exploit the fact that although they are not precisely aligned with respect to three

mutually perpendicular axes, they are in a state of single-axis alignment. Up to now, an

accurate theory of reconstruction of the diffraction pattern of a single particle from the

diffraction patterns of multiple particles randomly oriented about a single axis normal

to the membrane has not been exploited, although an earlier attempt was made that had
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FIGURE 1.1: Membrane proteins are proteins that interact with, or are part
of, biological membranes. They include integral membrane proteins that
are permanently anchored to the membrane and peripheral membrane pro-
teins which are only temporarily attached to the lipid bilayer or to integral

proteins (Johnson and Cornell, 1999).

a much worse resolution (Saldin et al., 2010).

FIGURE 1.2: Schematic diagram of an experiment to determine the pro-
jected structure of a black lipid membrane. The X-rays are incident from

the right and detected on the left.

A black lipid membrane is generally formed by painting a bilipid solution across a

hole in a Teflon plate with a sable artist’s brush. This looks like a soap film except in

parts where it looks black due to the formation of a single bilipid membrane of width

much smaller than a wavelength of light. This is a laboratory construction of a bilipid
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membrane that is frequently found in nature. The function of an ion-channel protein

is to transport ions between the inside and outside of a living cell through pores in the

protein perpendicular to the membrane. The orientation of the protein about this axis

is irrelevant for its function and is best considered random. Nevertheless, even in such

a single-axis alignment, it is possible to increase the useful signal to determine the pro-

jected structure of a single protein by illuminating a large number of them simultane-

ously, as in a crystal, which we describe next. By generalizing the 2D theory involving

the so-called 3-point triple correlations, we suggest and develop a fully 3D theory of

recovering the structure of a particle in an x-ray free electron laser from the angular

correlations of its scattered intensity, independent of its symmetry. We demonstrate this

theory by recovering the 3D diffraction volume of symmetric K-channel protein (Alam

and Jiang, 2009) and asymmetric lactose permease (Abramson et al., 2003) using the al-

gorithm described in this part. We also calculated the structures directly from the PDB

and compared the two. Remarkable agreement was found.
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Chapter 2

Calculated Diffraction Patterns

The discovery of the structure and function of the K-channel membrane protein (Alam

and Jiang, 2009) in the passage of ions between the inside and outside of a cell and its

role in neurotransmission led to the 2003 Nobel Prize in chemistry, awarded to Roder-

ick MacKinnon (MacKinnon et al., 1998). This is an ideal protein for our study since

evolution has made the central pore perpendicular to the membrane, but there is no

particular advantage to fixing the orientation of the molecule about the pore. Conse-

quently, it should be regarded as being randomly oriented about this axis. This is ideal

for studying randomness of particle orientations at a dimension lower to that in which

they are found in a general SAXS experiment or in an experiment with an X-ray free

electron laser, for example, in which the beam usually hits a molecule randomly ori-

ented in SO(3) which is the group of all rotations about the origin of three-dimensional

Euclidean space R3 under the operation of composition.This naturally gives rise to a

form of single axis alignment ideal for the demonstration in this project.

We simulated the diffraction pattern due to a large number of molecules of random

orientations by superposing single particle diffraction patterns. Strictly speaking for

coherent radiation from an XFEL, one needs to add the scattered amplitudes from mul-

tiple proteins. Suppose the scattered amplitude (structure factor) of the j th protein at

position rj is Fj . Then, the total scattered amplitude is |A(q)|2 where

|A(q)|2 = |
∑
j

Fj(q) exp (iq.rj)|2 =
∑
j

|Fj(q)|2 +
∑
j6=k

F∗j (q)Fk(q) exp [iq.(rj − rk)] (2.1)

5



FIGURE 2.1: Diffraction pattern |A(qx, qy)| of the K-channel protein viewed
from a direction parallel to the pore. The structure factor F is calculated as
usual from the structural data in a PDB file together with the Cromer-Mann

representation of the atomic form factors.

The randomness of particle positions causes the second term above to become negli-

gible compared to the first diagonal term over most of the q range. The sum in the first

term is like a sum over the intensity contributions of the individual particles. Note that

this is why it is generally unnecessary to consider the positions of multiple randomly

positioned particles. The positions only correspond to random phases making contri-

butions to only the cross terms amongst different particles, and which tend to become

negligible for a large number of randomly positioned particles (as one would expect in

the black-lipid membrane). The high, narrow coherent peaks in the correlations around

the origin of reciprocal space (and its Fridel-related points) can usually be avoided on

reconstruction. A plot of |A(q)| vs q is shown in Fig. 2.1 and may be thought of as con-

stituting the diffraction pattern due to a single particle. Although the diffraction pattern

from an individual protein may have structure (see Fig. 2.1) from which the projected

structure of the protein may be recovered by an iterative phasing algorithm, the com-

posite diffraction pattern is expected to look more like the set of concentric rings seen in

Fig. 2.2. Nevertheless, as we see below, it is possible to reconstitute a diffraction pattern

of the form of Fig. 2.1 from that of Fig. 2.2 using the angular correlation methods we

describe in next section.
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FIGURE 2.2: Calculated diffraction pattern from 10 randomly oriented par-
ticles in an experiment performed in the configuration of Fig. 1.2.

As we mentioned before, the structure of the K-channel protein (Alam and Jiang,

2009) is deposited in the Protein Data Bank, PDB, (Berman et al., 2000). We were thus

able to calculate a diffraction pattern of a single K-channel protein (Alam and Jiang,

2009) for x-rays incident parallel to the pore. Such a pattern is, of course, diffuse, with

no Bragg spots, and is shown in Fig. 2.1. In our previous work, we calculated this

pattern to about 6 Å resolution. Due to the more ambitious aim of the present work, we

simulated this diffraction pattern to 1.5 Å resolution.

In a 2D case, under assumption of a flat Ewald sphere (Fig. 2.3), the structure so-

lution process will yield the projected density of the molecule in question up to an ar-

bitrary orientation. While the determination of a 2D projection of a structure is of aca-

demic interest, relevant biological interpretations can only be obtained from 3D models.

In this case, we obtain a 3D structure from partially aligned molecules using a multi-

wavelength strategy because for a curved Ewald sphere (Fig. 2.3), q is always 3D. Each

2D image samples the 3D diffraction volume via the following formula

q = sqrt(q2x + q2y + q2z) (2.2)

in which

7



FIGURE 2.3: Flat Ewald Sphere vs. Curved Ewald Sphere. At moder-
ate x-ray energies which are more common with XFELs, the shape of the
Ewald sphere becomes more and more curved and approaches the shape
of a saucer. As the x-ray energies rise, the diffraction pattern becomes bet-

ter and better approximated by a plane in reciprocal space.

qx = 2π × (x/sqrt(x2 + y2 + 1))/λ

qy = 2π × (y/sqrt(x2 + y2 + 1))/λ

qz = 2π × (1/sqrt(x2 + y2 + 1)− 1.0)/λ

(2.3)

where x and y are the pixel coordinates, and λ is wavelength.

In order to test the proposed procedure, synthetic data was constructed from the

symmetric K-channel protein (Alam and Jiang, 2009) and asymmetric lactose permease

(Abramson et al., 2003). The assumed experimental geometry was an instrument capa-

ble of recording X-rays up to a scattering angle of 80 degrees. The data was computed

down to 4 resolution. In total, 20 wavelengths between 0.2 to 2.5keV ( 0.2, 0.21, 0.23,

0.24, 0.25, 0.26, 0.28, 0.29, 0.31, 0.33, 0.36, 0.42, 0.45, 0.5, 0.56, 0.62, 0.71, 0.83, 1, 1.25,

1.67 and 2.50 keV.) were used in the simulation. The simulated diffraction patterns cor-

responding to the single particle and multi-particle of a K-channel protein (Alam and

Jiang, 2009) and lactose permease (Abramson et al., 2003) are shown, respectively, in

Fig. 2.4 and Fig. 2.5 .
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(A) E=0.2 Kev (B) E=0.21 Kev (C) E=0.23 Kev

(D) E=0.24 Kev (E) E=0.25 Kev (F) E=0.26 Kev

(G) E=0.28 Kev (H) E=0.29 Kev (I) E=0.31 Kev

(J) E=0.33 Kev (K) E=0.36 Kev (L) E=0.42 Kev

(M) E=0.45 Kev (N) E=0.5 Kev (O) E=0.56 Kev

(P) E=0.62 Kev (Q) E=0.71 Kev (R) E=0.83 Kev
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(S) E=1 Kev (T) E=1.25 Kev (U) E=1.67 Kev

(V) E=2.5 Kev

FIGURE 2.4: Simulated diffraction pattern from x-rays incident down the
central pore of a single K-channel protein molecule in log-scale (Left). Sim-
ulated diffraction pattern from 10 randomly positioned and oriented model

K-channel proteins in log-scale(Right).

(A) E=0.2 Kev (B) E=0.21 Kev (C) E=0.23 Kev

(D) E=0.24 Kev (E) E=0.25 Kev (F) E=0.26 Kev
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(G) E=0.28 Kev (H) E=0.29 Kev (I) E=0.31 Kev

(J) E=0.33 Kev (K) E=0.36 Kev (L) E=0.42 Kev

(M) E=0.45 Kev (N) E=0.5 Kev (O) E=0.56 Kev

(P) E=0.62 Kev (Q) E=0.71 Kev (R) E=0.83 Kev

(S) E=1 Kev (T) E=1.25 Kev (U) E=1.67 Kev

(V) E=2.5 Kev

FIGURE 2.5: Simulated diffraction pattern from x-rays incident down the
central pore of a single lactose permease in log-scale (Left). Simulated
diffraction pattern from 10 randomly positioned and oriented lactose per-

mease in log-scale(Right).
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Chapter 3

Theory

We have earlier reported (Saldin et al., 2010) that it is possible to recover a single particle

diffraction pattern like the one above from multiple proteins randomly oriented about

an axis by the use of a phasing algorithm that constrains the solution to measured angu-

lar correlations and a positivity condition on the reconstructed intensities. An iterative

phasing algorithm was then able to find from this single particle diffraction pattern the

projected density of the protein. The new development since (Saldin et al., 2010) is the

proposal of a closed form expression for both the amplitudes and phases of the cir-

cular harmonic coefficients to determine a single particle diffraction pattern from the

so-called three-point triple correlations by Kurta et al. (Kurta et al., 2013) and Pedrini et

al.(Pedrini et al., 2013). Of course, the use of three-point triple correlations requires si-

multaneous non-zero intensities in three pixels which may be unlikely in low-intensity

diffraction patterns. However since the pair correlations in question are the result of

averaging over many azimuthal angles and over many diffraction patterns, the method

may be feasible in practice, especially at powerful XFELs like the European XFEL due

to come online in 2017.

The design specification for the focal diameter of X-rays from the Linac Coherent

Light Source (LCLS), the world’s first XFEL, which commenced operation a few years

ago, is ∼ 100 nm. A K-channel protein has a width of about 5 nm, a factor of some

20 times smaller. Consequently, one could increase the measured signal by scattering a

large number of K-channel proteins, which in principle, may be found within the focus

of an XFEL beam. The problem is that, unlike in a crystal, the proteins are not likely in

12



the same rotational state about the normal to the membrane. We show in this research

that this is of no consequence, as the rotational average overall diffraction patterns of

the angular correlations is the same for particles of random orientations.

In X-ray crystallography, one exploits scattering from a large number of molecules

to enhance the weak scattering of X-rays for structure determination. In that applica-

tion, all protein molecules have to be identically oriented. We point out that through

the evaluation of angular correlations, perfect alignment is unnecessary to exploit the

advantage of increased scattering from an ensemble of identical particles.

3.1 Two Dimensional Method

For a set of experimental diffraction patterns, the average pair correlation function may

be defined by

C2 (q1, q2; ∆φ) =< J (q1, φ) J (q2, φ+ ∆φ) >φ (3.1)

Where q1 and q2 refer to two resolution shells. J refers to intensity. The < .. >φ symbol

means averages are taken over all values of φ.

Where the molecules are randomly oriented about an axis normal to the membrane

(and parallel to an incident X-ray beam) each particle can be thought of as giving rise to

identical diffraction patterns, just randomly oriented about the surface normal. If one

adds together many such randomly oriented but otherwise identical diffraction pat-

terns, the resulting pattern looks something like Fig. 2.2, namely a set of rings of inten-

sity. If the aim is a determination of the projected structure of a single particle, a first

step would be a determination from this multi-particle diffraction pattern of a single

particle diffraction pattern. Although we have shown this in principle before (Saldin et

al., 2010) the particular method of structure recovery that we used involved two consec-

utive iterative phasing algorithms (the first to determine the single particle diffraction

pattern from the multiple particles, and the second to determine the projected structure
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from the single particle diffraction pattern). The use of two consecutive phasing algo-

rithms introduces errors in the single particle diffraction pattern which magnify errors

in the second step, namely the determination of the projected structure of the protein

from the reconstructed single particle diffraction pattern. The subsequent work of Kurta

et al. (Kurta et al., 2013) and Pedrini et al .(Pedrini et al., 2013) showed how it is possible

to determine the single particle diffraction pattern essentially analytically from the an-

gular correlations. This gives rise to much fewer numerical errors in reconstructing the

protein in real-space, as we now demonstrate. Indeed the resolution of such an image

is great enough that one can essentially see the projection of atomic resolution features.

This also shows that despite the fact that there are multiple particles, in this case, there

does not seem to be a fundamental resolution limit of such correlation methods. Like-

wise one can define, as did Kurta et al. (Kurta et al., 2013) and Pedrini et al. (Pedrini

et al., 2013), a three-point triple-correlation function by:

C3(q1, q2, q3,∆φ1,∆φ2) =< J(q1, φ)J(q2, φ+ ∆φ1)J(q3, φ+ ∆φ2) >φ (3.2)

The polar coordinates of the three points in question are given by the arguments of the

intensities I , and the symbol < ... >φ stands for averaging all values of φ.

It should be noted that the angular correlations themselves (3.1) are between intensi-

ties on the same diffraction patterns, and thus insensitive to shot-to-shot intensity vari-

ations, a problem with an X-ray laser. However, an average over the same diffraction

patterns is much less sensitive to shot-to-shot variations than the correlation between

intensities of different diffraction patterns. All that is required is a reasonable statistical

distribution of the shot-to-shot intensity variations. It should perhaps be pointed out

that this method of determining a diffraction volume from random particle orientations

works from averages over all particles of different orientations and at no stage involves

the determination of the relative orientations of the particles contributing to individual
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diffraction patterns. From the quantities C2 one may compute

Bm(q1, q2) =

∫
C2(q1, q2,∆φ) exp (−im∆φ)d(∆φ) (3.3)

Note that Bm is independent of ∆φ, and can be shown to be equivalent to

< Bm(q1, q2) >DP= I∗m(q1)Im(q2)N (3.4)

in which N is the number of particles and the symbol < ... >DP stands for averaging

over a large number of diffraction patterns and m is quantum number. Also define

Tm1,m2(q1, q2, q3) =

∫
C3(q1, q2, q3,∆φ1,∆φ2) exp (−im1∆φ1) exp (−im2∆φ2)d(∆φ1)d(∆φ2)

(3.5)

Likewise, it can be shown that

< Tm1,m2(q1, q2, q3) >DP= I∗m1+m2
(q1)Im2(q3)Im1(q2) < Am1,m2 >DP (3.6)

where

Am1,m2 =
N∑
i,j,k

exp [i(m1 +m2)ψi −m1ψj −m2ψi] (3.7)

The statistical average of < Am1,m2 >DP in (3.7) tends toward N (number of particles)

for a sufficiently large number of diffraction patterns (Kurta et al., 2013) .

It will be noted that bothBm and Tm1,m2 are functions of the circular harmonic expan-

sion coefficients Im(q) of the expansion of a single particle diffraction pattern, namely

I(q, φ) =
∑
m

Im(q) exp (imφ) (3.8)

Thus reconstructing a single particle diffraction pattern is tantamount to finding the

amplitudes and phases of these coefficients. Note that the same principle applies to the

determination of a single particle diffraction volume from a set of diffraction patterns of

3D random particle orientations in an X-ray free electron laser (XFEL), except that in that
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case one seeks to determine the coefficients of a spherical harmonic expansion, which

in turn determines the intensities on a shell rather than a circle in reciprocal space.

Remarkably, the above equations show that the measurements of C2 and C3 from

the ensemble of diffraction patterns of random particle orientations is sufficient to de-

termine both the amplitudes and phases of the Im(q) coefficients. As we will further

show, this is sufficient to determine the projected structure of a particle to atomic reso-

lution from a diffraction pattern consisting of circular rings as in Fig. 2.2

|Im(q)| =
√
Bm(q, q)/N (3.9)

This has been known for a while. What the recent work of Kurta et al. (Kurta et

al., 2013) and Pedrini et al. (Pedrini et al., 2013) showed is that it is also possible to

find the phases of the Im(q) coefficients from the B’s and the T ’s. It will be seen from

the expression of the T ’s (3.9) that if any two of the expressions for I are known in

amplitude and phase, along with the value of T itself, it is possible to find the third

from Eq. (3.9).

The determination of such coefficients can, therefore, proceed as follows: first, choose

a reference circle of radius qref . In the case of the 4-fold symmetric K-channel protein,

one only needs values of the expansion coefficients with m modulo 4. Suppose the

phase of Im(q) of the azimuthal quantum number m and the ring of radius q is γ(m, q),

then we can start with the fact that γ(4, q) only determines the arbitrary orientation of

the reconstructed image and γ(0, q) = 0. One then makes use of the equation that

arg(Tm(q, q)) = γ(4, q) + γ(m, q)− γ(m+ 4, q) (3.10)

To find the phases for arbitrary m, one can then propagate the solution to all resolu-

tion rings using the properties of the pair correlations. Since the phases of the LHS are

known from the experiment, the phases of the remaining γ’s of the RHS may be found

with an obvious recursion relation for the reference shell qref . This will determine the

value of the coefficient with m = 8. In the next iteration, one can make m2 = 8, while
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FIGURE 3.1: Light Microscopy versus Diffraction. For structure determina-
tion using X-ray diffraction, one needs to use a mathematical lens, Fourier

Transformation (FT), to focus the scattered radiation (Egli, 2010).

keeping the m1 = 4. This will give the coefficients for m= 12 and others. By these means

one can determine the phases of all the relevant Im(qref )’s of the reference ring qref . Then

the values of γ for the same m but different q’s can be found from Eq. (3.8). This way

one can determine the phases of all the resolution rings and all values of m and q. Since

the magnitudes are known, one then knows everything about all the Im(q) coefficients

needed to reconstruct a single particle diffraction pattern (Fig. 3.5) from the angular

correlations that can be found even from the multi-particle diffraction pattern (Fig. 2.2).

3.1.1 Phase Retrieval

Unlike light or electron beams, X-rays cannot be focused. This is the main difference

between optical or electron microscopy and X-ray diffraction (Fig. 3.1). Therefore, the

X-ray crystallographic and diffraction visualization of a particle requires a mathematical

lens (Fourier transformation) that generates a 3D structure from the amplitudes of the

scattered radiation (the structure factors) and the phases (Egli, 2010) . We find the ampli-

tude of scattered radiation via angular correlation technique but the phase information

is lost in the diffraction experiment. Fortunately, several methods allow one to recover

the phases. The most famous and widely used iterative techniques for solving the phase

17



problem are Error Reduction (ER) (Fienup, 1982) , Hybrid Input-Output (HIO) (Fienup,

1982) , Solvent Flipping (SF) (Bauschke, Combettes, and Luke, 2002) , Averaged Succes-

sive Reflection (ASR) (Elser, 2003) , Random Averaged Alternating Reflector (RAAR)

(Luke, 2004), Charge Flipping (Oszlányi and Sütő, 2004), Shrink-Wrap (Marchesini et

al., 2003). Here, we recovered the projected electron density using the combination of

the charge-flipping (Oszlányi and Sütő, 2004) and shrink-wrap algorithm (Marchesini

et al., 2003).

3.1.1.1 Charge-Flipping

This method was proposed by (Oszlányi and Sütő, 2004). Charge flipping operation

is the key part of the charge flipping algorithm. In this method, all scattering density

pixels with density lower than a small positive threshold δ are multiplied by -1 (flipped)

and the rest of the pixels are unchanged. Fig. 3.2 shows the flowchart of the charge-

flipping method. In the first step, the user should assign random starting phases to all

experimental amplitudes and make all unobserved amplitudes equal to zero (Kolb et

al., 2012).

F (0)(h) =


|F (obs)(h)| exp(iφrand(h)) if |F (obs)(h)| is known

0 otherwise
(3.11)

The iteration then proceeds as follows:

1-Using the inverse Fourier transform of F (n), one can calculate the electron density ρ(n).

2-By flipping the density of all pixels with density values below a small positive thresh-

old δ and keeping the rest of the pixels unchanged, one can obtain the modified density

g(n).

g
(n)
i =


ρ
(n)
i if ρ(n)i > δ

−ρ(n)i otherwise
(3.12)

3- Using Fourier transform of g(n), one can calculate the temporary structure factors.
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FIGURE 3.2: The flowchart of the charge flipping method .

G(n)(h) = |G(n)(h)| exp(iφG(h)) (3.13)

4- New structure factors F (n+1) are obtained by combining the experimental ampli-

tudes with the phases φG and setting all non-measured structure factors to zero.

F (n+1)(h) =


|F (obs)(h)| exp(iφG(h)) if |F (obs)(h)| is known

0 otherwise
(3.14)

5-One can go to the next cycle of iteration using the modified structure factors.

3.1.1.2 Shrink-Wrap

This method was proposed by (Fienup, 1982). It tries to find support dynamically

during iterations. One can obtain the autocorrelation function of the object by inverse

Fourier transforming the diffraction pattern. Since the object must fit within the au-

tocorrelation function (Fig. 3.3), the mask obtained from this function is a nice first

estimation of the support. Then one can apply the HIO algorithm (Fienup, 1982) with
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FIGURE 3.3: The object fits inside its autocorrelation.

relaxation parameter β = 0.9. To find the new support mask, every 20 iterations, the re-

constructed image is convolved with a Gaussian of width FWHM = 2.3548. The mask

is then obtained by applying a threshold at 20% of its maximum.

3.1.1.2.1 Hybrid Input-Output (HIO)

This method was proposed by (Fienup, 1982). It is is a modification of the error re-

duction algorithm for retrieving the phases. Fig.3.4 shows the flowchart of the charge-

flipping method. The procedure is the same as charge flipping; with this difference,

here one can use some kind of support (mathematics) to iteratively calculate the phases.

Assume ρ(n) is a trial scattering density in the nth iteration cycle. One can obtain ρ̇(n)

from ρ(n) applying Fourier-transforming ρ(n). Now, one can replace all Fourier ampli-

tudes by the experimentally observed amplitudes, and apply inverse Fourier transform.

Then the density ρ(n+ 1) is defined pixel-wise by the following formula:

ρ
(n+1)
i =


˙ρ(n)i if pixel i belongs to the support

ρ
(n)
i − βρ̇(n) otherwise

(3.15)

in which β is a fixed real relaxation parameter.

3.1.2 Result and Validation

In this project, we used a value β = 0.9. The progress of the iterations can be monitored

by use of the R factor, calculated from the modulus of the Fourier transform of the

current estimate of image and known Fourier modulus.
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FIGURE 3.4: The flowchart of the Hybrid Input-Output (HIO) method .

R =

∑
u,v |Fcal(u, v)− Fobs(u, v)|∑

i |Fobs(u, v)|
(3.16)

where Fcal(u, v) and Fobs(u, v) refer to calculated and observed Fourier modulus, and

(u, v) run through all Fourier space coordinates.

A sharp drop in R versus iteration number is a clear sign of convergence of the al-

gorithm. In this project, we recovered the projected electron density of an individual

protein molecule Fig. 3.6 from the reconstructed diffraction pattern of Fig. 3.5 after

1000 iterations of the combination of the charge-flipping (Oszlányi and Sütő, 2004) and

shrink-wrap algorithm (Marchesini et al., 2003).

We further quantified the quality of our reconstructions with the phase-retrieval

transfer function (PRTF). Phase-retrieval transfer function (PRTF) (Chapman et al., 2006)

compares the magnitude of the complex-valued average of patterns phased with differ-

ent starting guesses to the square root of the measured diffraction pattern.

PRTF (u, v) = | < exp(iφ(u, v)) > | = | < Fcal(u, v)

|Fcal(u, v)|
> | (3.17)

where Fcal(u, v) refers to calculated Fourier modulus and < .. > denotes an average

over independent reconstructions.
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FIGURE 3.5: Single particle diffraction pattern recovered from the multi-
particle diffraction pattern of Fig. 2.2. Note the similarity with Fig. 2.1

FIGURE 3.6: Projected structure of the K-channel protein found from an
iterative phasing algorithm applied to the reconstructed diffraction pattern

of Fig. 3.5
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FIGURE 3.7: Phase-retrieval transfer functions as a function of inverse res-
olution 1/d.

At a particular pixel of the diffraction pattern, if the phases are consistently recon-

structed, the PRTF will be unity because the sum over N patterns will give a magnitude

N times higher than the measured magnitude. If the phases are random, then this sum

will tend to zero. The PRTF is shown in Fig. 3.7, which maintains values of greater than

0.5 to resolutions better than 2 Å .

3.2 Three Dimensional Method

A possibility offered by a technique for 2D structure determination is that it may form

the basis of a technique for the 3D structure determination of membrane proteins from

the angular correlations to high resolution without an assumption of symmetry. Al-

though at higher X-ray energies, as in the example here, the Ewald sphere could be

considered flat, this is no longer true as the X-ray energy falls into the range that is

commonly produced by XFELs. The combination of data from several energies thus

explores 3D reciprocal space.

The wavelength dependent 2D phased intensity expansion coefficient is:

Iλjm (q) =
∞∑
l=0

Ilm(q)Pm
l (qλi/2) (3.18)
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where Ilm(q) is the intensity expansion coefficient of the 3D diffraction volume.

The 3D diffraction volume can be expressed as a linear combination of spherical

harmonics:

I(q, θq, φq) =
∞∑
l=0

l∑
m=−l

Ilm(q)Y m
l (θq, φq) (3.19)

Notice that the latter can be written as:

I(q, θq, φq) =
∞∑
l=0

l∑
m=−l

Ilm(q)Pm
l (cos(θ)) exp(imφ) =

l∑
m=−l

Iλjm exp(imφ) (3.20)

Diffraction geometry dictates:

cos(θq) = qλ/2 (3.21)

where lambda is the wavelength of the incident X-ray. Using 2D methods we can uniquely

determine all phases of the full of set of Iλjm (q) values, up to an arbitrary rotation.

Note that expression (16) depends on the wavelength of the incident X-rays! So, each

set of energy specific Iλjm (q) values can be phased analytically, yielding wavelength-

dependent, curved slices of the diffraction volume. If the wavelength dependent slices

can be oriented with respect to each other, and if the missing wedges of intensities that

lie in between the measured I
λj
m (q) slices do not prohibit subsequent phasing attempts,

a 3D structure can be obtained from such data.

Using the the M-TIP reconstruction algorithm one is able to reconstruct the 3D elec-

tron density .

3.2.0.1 Multi-Tiered Iterative Projections (M-TIP)

This method was proposed by (Donatelli, Zwart, and Sethian, 2015). The iteration

proceeds as follows:

1-Compute its intensity function, given a model density (it should be initially just ran-

dom noise).
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FIGURE 3.8: 3D projected structure of the K-channel protein found from
MTIP algorithm applied to the reconstructed diffraction patterns. Note the

similarity with Fig. 3.9 (Generated by Jeffrey Donatelli).

2-Align each 2D image to the intensity function.

3-Project the intensity function to be consistent with the aligned image. This basically

fills in the diffraction volume in the un-sampled region with the intensity of the previ-

ous density model.

4-Take the inverse Fourier transform to get a new density model.

5-Enforce real-space constraints on the new density model through either the ER or HIO

schemes.

Repeat 1-5 until convergence.

3.2.1 Result and Validation

We reconstructed the 3D electron density of the symmetric K-channel protein (Alam and

Jiang, 2009) and asymmetric lactose permease (Abramson et al., 2003). The results are

shown in (Fig. 3.8 and Fig. 3.10). For the evaluation of this method we reconstructed

the projected structure found from PDB (Fig. 3.9 and Fig. 3.11).
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FIGURE 3.9: 3D projected structure of the K-channel protein found from
PDB (Generated by Jeffrey Donatelli).

FIGURE 3.10: 3D projected structure of the lactose permease found from
MTIP algorithm applied to the reconstructed diffraction patterns. Note the

similarity with Fig. 3.11 (Generated by Jeffrey Donatelli).
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FIGURE 3.11: 3D projected structure of the lactose permease found from
PDB (Generated by Jeffrey Donatelli).
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Chapter 4

Conclusions

The difficulty of crystallizing a membrane protein means that there is limited informa-

tion about this important class of proteins. Instead of trying to crystallize membrane

proteins we suggest an alternative way of getting an enhanced signal from an ensemble

of molecules even if they are not perfectly aligned as in a crystal. This enables a recon-

struction of a single particle diffraction pattern from which an iterative phasing method

reconstructs the projected structure of the particle. The experiment can be performed

on a black lipid membrane used as a model of a membrane in the laboratory. In an

XFEL, since the pulses arrive at the sample at about a 100 Hz frequency, and they are

destructive for the sample, it is important that some kind of stepper motor arrangement

be devised whereby the beam (or sample) is moved across the plate containing the holes

(the support) so that each beam hits a different hole. A similar arrangement has been

used in fixed target methods of XFEL work (Roedig et al., 2016).

What is extraordinary about Fig. 3.6 is that atomic resolution details are visible in

the projected image. This image rivals the best atomic resolution images obtained from

simulated diffraction patterns by single particle methods. This is indicative of the fact

that if single axis assignment is perfect, the correlations can be found accurately from

the experiment, and there is no obvious limit to resolution. A possibility offered by a

technique for 2D structure determination is that it may form the basis of a technique for

the 3D structure determination of membrane proteins from the angular correlations to

high resolution without an assumption of symmetry. Although at higher X-ray energies,

as in the example here, the Ewald sphere could be considered flat, this is no longer true
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as the X-ray energy falls into the range that is commonly produced by XFELs. The com-

bination of data from several energies thus explores 3D reciprocal space. We showed

that the combination of data from different energies will be combined to reconstruct a

fully 3D image without any recourse to symmetry information.

Although the simulated data is a simplification of what is obtained during a real

experiment, the results obtained here serve as proof of principle for a new class of ex-

periments that can be conduction modern light sources, such as an ultra bright diffrac-

tion limited (soft) X-ray light source (Eriksson, Veen, and Quitmann, 2014). The sample

environment to do these measurements at such a source are very similar to a soft X-

ray ptychographic experiment (Shapiro et al., 2013), making this experiment a practical

reality in the near future.
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Part II

Reconstruction of the PR722 and RDV

Viruses from Experimental Data
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Chapter 1

Introduction

The method of angular correlations for molecular structure determination has been

known since the time of Kam (Kam, Shore, and Feher, 1978) for reconstructing a 3D

image from Small Angle X-ray Scattering (SAXS) diffraction patterns. The method also

has been used to address the problem of reconstructing 3D images from the snapshot

diffraction patterns measured with X-ray Free-Electron Laser (XFEL) following the work

of Saldin et al. (Saldin et al., 2009). The first experimental structure determination from

X-ray diffraction patterns was reported by Starodub et al. (Starodub et al., 2012). The

next application to experimental data is the method described in this thesis to the Col-

iphage PR772 virus (Lute et al., 2004) and Rice Dwarf Virus (RDV) (Fukushi, Shikata,

and Kimura, 1962). Our present work is a part of the Single Particle Initiative (SPI) at

the Linac Coherent Light Source (LCLS) in Menlo Park, California, which involves work

aimed at reconstructing just such particles (this includes experimental work and the de-

velopment of theoretical algorithms designed to reconstruct the particles at atomic or

near-atomic resolution). Unlike the crystallographic problem in which the orientation

of the particle may be determined by indexing techniques that depend on the properties

of crystals, in the present case the imaging is done on single uncrystallized particles,

where even that method of determining the orientation does not exist. Consequently

our approach is to consider the angular correlation of the intensities, which are exactly

the same, independent of the particle orientations. Thus any errors in finding the corre-

lations from any one particle will be compensated by another. All one needs is a method
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of reconstructing a particle from the correlations. Since all correlations are the same, in-

dependent of orientations, the actual orientations of the particle may be reconstructed

in an orientation chosen for the investigator’s convenience. Angular correlations were

calculated from the diffraction patterns classified as single hits. We describe a method

in which the particles are assumed randomly oriented. If this assumption is made (not

unreasonable in the context of XFEL experiments) the particle’s structure may be deter-

mined, especially if the diffraction volume is assumed to be symmetrical. We realize

a symmetry assumption may not be justifiable for an entirely unknown structure. We

posit that the structure determination of a virus is not a completely unknown prob-

lem. People have published work on the physical principles of the construction of virus

capsids. In fact, Caspar and Klug (Caspar and Klug, 1962) have suggested that most

regular viruses have particular symmetries, namely to be icosahedral or helical, due

to their methods of formation. We acknowledge a lot of water had passed under the

bridge since the work of Caspar and Klug (Caspar and Klug, 1962), but it is undeniably

true that many common viruses are either nearly icosahedral, as in the present case, or

the recently-discovered zika virus (Sirohi et al., 2016) or approximately helical in the

case of the tobacco mosaic virus. Even if other virus shapes have been determined in

the meanwhile, it would be necessary to explain so striking a shape as an icosahedron.

Caspar and Klug (Caspar and Klug, 1962) offered an elegant explanation that remains

valid today. The inside of a capsid contains all the genetic material for the coding of

the capsid itself. The problem is there is not much space in the inside of a capsid, so

the shape chosen by nature is likely to be one that has the largest volume enclosed to

accommodate the genetic material for the part of the capsid that needs to be coded. It is

true that a sphere encloses more volume per given surface area, but it’s difficult to see

how one can get by coding only for part of a sphere. An icosahedral shape allows the

genetic material to code for just the 20 constituent triangles with strong chemical bonds

on the outside. In the case of an icosahedron, all that needs to be coded is the component

triangles, i.e. 1/20 of the entire surface area of the capsid. The triangles self-assemble

to form the whole capsid as may be confirmed by a model in which a set of plastic
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equilateral triangles with magnetic forces representing unsatisfied chemical bonds are

put in a box and shaken. The triangles self-assemble into the shape of an icosahedral

capsid. Since we can independently confirm that the capsid is icosahedral, it is not un-

reasonable to exploit such symmetry, as is quite routinely done in crystallography. We

report here on the reconstruction of the structure of the icosahedral virus Coliphage

PR772 (Lute et al., 2004) and Rice Dwarf Virus (RDV) (Fukushi, Shikata, and Kimura,

1962) from experimental data of the angular correlations of their intensities. The method

consists first of the reconstruction of the intensity distribution in 3D (the diffraction vol-

ume). The reliability and resolution of the reconstructed diffraction volume were tested

by R-split. Having found the diffraction volume, the next step is the reconstruction of

the electron density by a phasing algorithm, applied to these intensities. Traditionally,

this is followed by the reconstruction of a real space image by an iterative phasing al-

gorithm. We found that not all phasing algorithms are equal to the task. We suggest

and develop a new method which worked for us well. It is alternate cycles of charge-

flipping (Oszlanyi, 2004) and error reduction (Fienup, 1982) with a spherical real-space

support constraint. The reliability and resolution of the reconstructed electron density

were tested by comparing the resulting 3D electron densities by FSC.
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Chapter 2

Instrumentation and Data Collection

Measurements were carried out at the at the Atomic Molecular Optics (AMO) beamline

(Bozek, 2009) of LCLS (Emma et al., 2010). To introduce virus (70 nm diameter) into the

focused XFEL beam with photon energy E = 1.6 keV , they employed the aerodynamic

lens stack system (Bogan et al., 2008) with a gas dynamic virtual nozzle (DePonte et al.,

2008). The distance between sample and detector is 581 mm.

A pair of pnCCD detectors with a resolution of 11.6 nm at the detector edge mea-

sured the data that we used in this project. Assembled detector dimensions in pixels

were 1040 by 1028. Each half of the pnCCD is 1024 by 512 pixels and there is a gap of

12 pixels. Pixel size is 75 µm. More details about the experimental setup and sample

preparation are available in ref(Aquila, 2017). They performed hit finding using LCLS

software called psocake (Damiani et al., 2016) to throw away the blank images. The

hits were then classified into single hits and multiple hits using unsupervised machine

learning similar to that described in (Yoon et al., 2011). The original diffraction patterns

have been down sampled with 4 by 4 binning method.

The resulting data used in this analysis contained 211 single particle diffraction pat-

terns (260 by 257) from Rice Dwarf Virus (RDV) particles 2.2 and 10000 patterns (260 by

257) from Coliphage PR772 particles 2.1.
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FIGURE 2.1: A typical snapshot of PR772. The blue horizontal line is due to
the gap.
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FIGURE 2.2: A typical snapshot of RDV. The blue vertical line is due to the
gap.
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Chapter 3

Theory

This thesis represents the first step in the reconstruction of an image of an entirely non-

symmetric structure. We first find the structure that is close to the actual structure. Then

one can determine the exact structure by a perturbation theory (Pande et al., 2014). Per-

turbation theory only requires an initial structure close to the actual structure and does

not assume symmetry. If we have a sufficient number of the same type (or confirmation)

of 2D diffraction patterns , we are able to reconstruct a 3D structure. The symmetry we

will exploit here is icosahedral symmetry, so a few words seem appropriate at the outset

about icosahedral and icosahedral symmetry.

3.1 Icosahedral and Icosahedral Symmetry

In Euclidean geometry, a Platonic solid is a regular, convex polyhedron. Such a solid is

constructed by an equal number of congruent, regular, polygonal faces meeting at each

vertex. In fact, five platonic solids (a tetrahedron, cube, octahedron, dodecahedron, or

icosahedron) meet those criteria Fig.3.1. The icosahedron has 12 polyhedron vertices, 30

polyhedron edges, and 20 equivalent equilateral triangle faces and it is represented by

the Schlcafli symbol 3, 5.

The symmetry group of a polyhedron in R3 is the set of rotations and reflections

which leave the polyhedron unchanged, in the sense that after the operation, each ver-

tex is located where it or another vertex was previously, and similarly for the edges.

A regular icosahedron has a symmetry group of order 120 including transformations
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FIGURE 3.1: Platonic solids

that combine a reflection and a rotation, out of which 60 are orientation-preserving or

rotational symmetries (Cohan, 1958).

In the polar coordinate, the values of the intensity I are specified q, θ, φ. For the same

value of q, the diffraction volume will be the same in directions of symmetry (θk, φk) for

a set of values of k. As we mentioned above, for icosahedral symmetry, there are 60

different values of k (Cohan, 1958).

The icosahedral harmonics are represented by the linear combinations of spherical

harmonics.

I(j)l (θ, φ) =
∑
m

b
(j)
lmYlm(θ, φ) (3.1)

where l is the quantum number of the orbital angular momentum and m the magnetic

quantum number.The coefficients b(j)lm are given by Zheng et al. (Zheng, Doerschuk, and

Johnson, 1995) for arbitrary j, l, and m.

For a particular order l, letNl be the number of icosahedral harmonics. In particular,

Nl = 0 orNl = 1 for l < 30. The corresponding weights j drop out of the problem. Prior

to Zheng et al. (Zheng, Doerschuk, and Johnson, 1995), Jack and Harrison (Jack and

Harrison, 1975) gave the same coefficients for non-degenerate icosahedral harmonics

that exist for l < 30 and called them alm. Nl = 1 or 2 for 30 ≤ l < 60, so we need to keep

the corresponding weights j.

The diffraction volume is given as a linear combination of icosahedral harmonics

I(q) =
∑
l,j

g
(j)
l (q)I(j)l (θ, φ) (3.2)
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The only thing that needs to be determined from the experimental data are the co-

efficients g(j)l (q). In general, as l becomes greater we have a greater chance of forming

icosahedral harmonics. In fact, from l = 30 to l = 60, there are only three values of I

which are degenerate with two-fold degeneracy. By modeling the electron density with

icosahedral harmonics, Zheng et al. (Zheng, Doerschuk, and Johnson, 1995) showed

that it is possible to get more detailed information about the virus structure using in-

formation present in just solution scattering a fraction of the data available through an

XFEL experiment. It should be noted that Zheng et al. (Zheng, Doerschuk, and John-

son, 1995) do not try to recover the structure purely from the experimental data but use

a different methodology of seeing which model gives intensities that agree best with the

measured intensities.

Of course, it is impossible to form linear combinations of some spherical harmon-

ics to make icosahedral symmetry. The values of l that allow this are l=0, 6, 10, 12, 16

and every even value after that, and so are appropriate values of l for icosahedral har-

monics, which also satisfies Friedel (inversion) symmetry. These are called icosahedral

harmonics

Il(θ, φ) =
∑
m

blmYlm(θ, φ) (3.3)

It is, therefore, arguable that one can construct a diffraction volume of these values

of l and no others for a particle satisfying icosahedral symmetry.

Why this emphasis on icosahedral symmetry? Due to their methods of formation,

Caspar and Klug (Caspar and Klug, 1962) once suggested that regular viruses have ei-

ther icosahedral or helical symmetries. In both cases we have found solutions using

angular correlations (Saldin et al., 2011) ,(Poon et al., 2013), despite using only the di-

agonal correlations q = q′. It will be understood that the method of angular correlation

uses only spherical coordinates. We find this is an appropriate representation of the use

of XFEL radiation as in this case particles are incident in random orientations in addition

to random positions. If one is dealing with the scattered intensities, all particle positions

give rise to the same intensity (the positions being sensitive only to unmeasured phases
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while angular rotations may be dealt with using rotation matrices).

3.2 Angular Correlation

The first advantage in the case of symmetrical particles is the ability to quickly ana-

lyze the symmetry of the particles even before reconstructing them. The fundamental

quantity reconstructed from the data is the angular pair correlations C2(q, q
′; ∆θ) and

triple correlations C3(q, q
′; ∆φ) and then averaging them over all measured diffraction

patterns. Let us denote the averages by< C2(q, q
′; ∆φ >DP and < C3(q, q

′; ∆φ) >DP ,

respectively. In fact, the quantities calculated from the intensities in each diffraction

pattern (scattered intensities) are

C2(q, q
′; ∆φ) =

∫
I(q, φ)I(q′, φ+ ∆θ)dφ (3.4)

and

C3(q, q
′; ∆φ) =

∫
I2(q, φ)I(q′, θ + ∆φ)dφ (3.5)

They are then averaged over all diffraction patterns. We then calculate

Bl(q, q
′) =

∫
< C2(q, q

′; ∆φ) >DP Pl(cos(∆φ))d∆φ (3.6)

where Pl(cos(∆φ) is a Legendre polynomial. Likewise,

Tl(q, q
′) =

∫
< C3(q, q

′; ∆φ) >DP Pl(cos(∆φ))d∆φ (3.7)

Although this is how the Bl(q, q
′) are calculable from the experimental data, in relating

these quantities to the diffraction volume, we try to reconstruct it. We use the indepen-

dently derived expressions

Bl(q, q
′) = gl(q)g

′
l(q
′) (3.8)

Tl(q, q
′) =

∑
l′,l”

b(l′, l, l”)gl′(q
′)gl(q)gl′′(q) (3.9)
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where

b(l′, l, l”) =
∑

m′,m,m”

al′m′almal”m” (3.10)

where the alm are the Harrison coefficients (Jack and Harrison, 1975) to relate Tl(q, q′) to

the diffraction volume and gl(q) are the coefficients that relate to the final volume using

icosahedral harmonics via

I(q) =
∑
l

gl(q)Il(θ, φ) (3.11)

An advantage of the use of icosahedral harmonics is that since each harmonic has

icosahedral symmetry, any linear combination will have it, too. Suppose we use the

usual expression instead (Saldin et al., 2009). The diffraction volume is expanded in-

stead as a function of spherical harmonics in a conventional way, as

I(q) =
∑
lm

Ilm(q)Ylm(θ, φ) (3.12)

The two expressions will be equivalent if

Ilm(q) = almgl(q) (3.13)

In this expression the alm, are the Harrison coefficients of icosahedral harmonics (Jack

and Harrison, 1975), and the gl are coefficients in the expansion of the diffraction volume

with icosahedral harmonics.

In the expression (3.11) the only uncertainty is the sign of gl(q) (it is real). The signs

may be found from an exhaustive search through all signs of gl(q) because the LHS

may be obtained by experiment and the |gl(q)|’s are known. It should be noted that

the number of signs in the icosahedral values of l up to 18 is six, so the number of

combinations is not astronomical and not difficult for a computer. That way we can

search for the best agreement with the experimentally determined LHS. It will be noted

that Bl(q, q
′) and Tl(q, q

′) are calculated by not assuming icosahedral symmetry. The

particular pattern of l values is, however, characteristic of icosahedral symmetry that

many regular viruses are known to have (Caspar and Klug, 1962). On the assumption
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of icosahedral symmetry, however, the fact that the Bl(q, q
′)’s are only functions of l

amongst the angular momentum quantum numbers is no problem with the use of the

Harrison coefficients (Jack and Harrison, 1975). Then one may evaluate the diffraction

volume from (3.11). We can find the magnitudes of gl(q) from

|gl(q)| =
√
Bl(q, q) (3.14)

and then their signs are found through an exhaustive search through all possible signs

of gl(q) in (3.9).

Thus one can overcome the problem that Bl(q, q) is a function of only l amongst

the angular momentum quantum numbers by allowing the alm coefficients to define

the function of the magnetic quantum numbers m. In other words, if one can assume

icosahedral symmetry, one may instead find the diffraction volume via (3.11).

We first determine the symmetry without any assumptions. Having done this, we

are free then to exploit the symmetry to reconstruct the details of the diffraction volume

by using the known icosahedral symmetry to apportion the coefficients characterized

by the value of m in addition to l and use the icosahedral harmonics. The details of the

procedure are found in the paper by Poon and Saldin (Poon and Saldin, 2015). This ap-

proach uses only the diagonal terms q = q′. Note that a further assumption of this sym-

metry is rather like a denoising process, which neglects non-icosahedral components

(Saldin et al., 2011). This is a bit like ignoring the intensities of a manifold in manifold-

embedding methods (Hosseinizadeh et al., 2015). In the approach pioneered by Do-

natelli et al. (Donatelli, Zwart, and Sethian, 2015) a phasing algorithm is used to go

directly from the correlations to the electron density of the sample. This method allows

the reconstruction of non-symmetric reproducible structures. As we mentioned before,

for an icosahedral scatterer, the values of l are l = 0, 6, 10, 12, 16 and every even value

after that. Additionally, they are the only ones which can satisfy both Friedel’s Law and

can form icosahedral harmonics. Since this first application uses the non-degenerate

icosahedral harmonics, it uses angular momentum values only up to lmax = 28. Hence
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qmax=lmax/R=28/350 Å−1= 0.08 Å−1 (in which R is the radius of virus) or a resolution

of 78.5 Å, which is quite adequate at the present experimental resolution of about 116

Å(Aquila, 2017). The angular momentum decomposition of the Bl(q, q) are shown re-

spectively for Pr772 and RDV in Fig. 3.2 and Fig. 3.3. These figures reveal the charac-

teristic icosahedral pattern at least up to l=16. Right now there are plans to increase the

resolution to 5 Å, with new experiments at the LCLS, which will require, in our case,

the use of the degenerate icosahedral harmonics beyond l = 28. However, we believe

this is possible, as demonstrated by Zheng et al. (Zheng, Doerschuk, and Johnson, 1995)

for SAXS. If we average the data in all our measured diffraction patterns, we recover an

SAXS diffraction pattern. So, in fact, the SAXS forms a fraction of XFEL data, and thus

there is no reason we may get more accurate images with the method of Zheng et al.

(Zheng, Doerschuk, and Johnson, 1995).

3.3 Phase Retrieval

The present limitations of the program to non-degenerate harmonics lmax = 28 is unim-

portant in the current application as the maximum angular momentum for the level of

resolution of the experimental data is lmax = 18. Since icosahedral symmetry is an angu-

lar symmetry, it is always possible to expand the diffraction volume in shells of constant

q. This way one can reconstruct a diffraction volume that has perfect icosahedral sym-

metry (Fig. 3.4 and Fig. 3.6). In fact, when the real space is icosahedral (20 triangles)

the diffraction volume is dodecahedral (12 pentagons) which has icosahedral symme-

try. The behavior of different shapes of real and reciprocal space is not uncommon. It is

well known that the reciprocal space of an FCC lattice is BCC and vice versa.

Having found the diffraction volume, the next step is the reconstruction of the elec-

tron density by a phasing algorithm, applied to these intensities. We found that not all

phasing algorithms are equal to the task, but one which worked well for us is alternate

cycles of charge-flipping (Oszlányi and Sütő, 2004) and error reduction (Fienup, 1982)

with a spherical real-space support constraint. In each phasing iteration, a spherical
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support is updated. The support is then obtained by applying a threshold at 20% of its

maximum. In particular, we found this combination worked much better than an algo-

rithm based on charge-flipping (Oszlányi and Sütő, 2004) alone. The results are shown

in Fig. 3.5 and Fig. 3.7. which reveals a distinct icosahedral appearance.
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FIGURE 3.2: Angular momentum decomposition of the angular correla-
tions, Bl(q, q). Since the diagonal values (q = q′) of B depend on the value
of q in addition to l this plot is for B vs. l for a particular value of q (Pr772).
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FIGURE 3.3: Angular momentum decomposition of the angular correla-
tions, Bl(q, q). Since the diagonal values (q = q′) of B depend on the value
of q in addition to l this plot is for B vs. l for a particular value of q (RDV).

FIGURE 3.4: Diffraction volume of the PR722 virus.
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FIGURE 3.5: Electron density of the PR772 virus.

FIGURE 3.6: Diffraction volume of the RDV virus.
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FIGURE 3.7: Electron density of the RDV.
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Chapter 4

Validation

A useful measure of resolution has come to us from cryo-EM (Penczek, 2010). The

Fourier shell correlation (FSC) is defined by

FSC(q) =
∑
qi∈q

F1(qi).F2(qi)
∗/

√∑
qi∈q

|F1(qi)|2.
∑
qi∈q

|F2(qi)|2 (4.1)

Thus the qi represents a set of data points (on a Cartesian grid) within the shell rep-

resenting the radius q. Note that despite its appearance, this result is real since the sum

involving the imaginary part is zero (Penczek, 2010). Here F1 and F2 are the Fourier

transforms of the electron densities calculated from two randomly selected subsets of

data. q is the magnitude of the spatial frequencies and qi ’s are specific voxels corre-

sponding to this spatial frequency. Since the electron densities are real, Friedel’s Law

holds. We find that the FSC’s fall off with q as would be expected. In general when the

FSC = 0.5 the corresponding value of q is a measure of the resolution of the data. (2π/q)

is the resolution. For PR772, the FSC does not become 0.5 until the end of the diffraction

pattern is reached (Fig. 4.1 ) and thus the resolution is limited by the experimental data,

whose resolution is about 116 Åat the center of a side of the measured diffraction data

(Aquila, 2017). For RDV the resolution is about 200 Å(Fig. 4.2 ).

Whereas the FSC is sensitive to phases since it involves taking the scalar product of

structure factors, a quantity that is much more commonly used in X-ray diffraction is

the R-factor that does not include phases. In fact, we also calculated a reliability factor

R-split(q), defined by (White et al., 2012):
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FIGURE 4.1: Fourier shell correlation (Pr772).

FIGURE 4.2: Fourier shell correlation(RDV).
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FIGURE 4.3: Rsplit calculation (Pr772).

FIGURE 4.4: Rsplit calculation (RDV).
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Rsplit(q) =
√

2
∑
qi∈q

[I1(q)− I2(q)]/
∑
qi∈q

[I1(q) + I2(q)] (4.2)

Of course, since this involves only experimentally measured values, this is closer to

quantities obtained only by experiment. In this case the smaller the Rsplit the greater the

consistency of the results. As may be seen from (Fig. 4.3 and Fig. 4.4), Rsplit is nowhere

greater than about 0.06 (for PR772) and 0.14 (for RDV) in the range of experimental data.
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Chapter 5

Conclusion

We emphasize that the calculation of the correlations follows the method pioneered by

Hanbury, Brown and Twiss (Brown and Twiss, 1956) in astronomy and does not as-

sume icosahedral symmetry. This symmetry is only assumed in the reconstruction of

the diffraction volume having first determined the symmetry by objective means. De-

spite our careful justification of the use of the icosahedral approximation, it might be

argued that it is only the virus capsid that is icosahedral and that one should use a

method that is not tied to any particular symmetry. Fortunately, we have developed

such a method during our work on time-resolved structures. We propose using the

icosahedral approximation only to get an initial estimate ρ(r) of the electron density.

If the correct electron density of ρc(r) is associated with the experimental correlations

Bcl(q, q
′), the perturbation in the electron density ∆ρ(r) = ρc(r)− ρ(r) is directly related

to ∆Bl(q, q
′) = Bcl(q, q

′) − Bl(q, q
′) (the latter from the icosahedral approximation). The

current thinking is that the internal genetic material is probably disordered. This means

that unless there are sufficient numbers of the same structure in all orientations, even the

method proposed for dealing with the simultaneous occurrences of variations in both

conformations and orientations (Schwander et al., 2010) is questionable. There is very

little that is known about the structure of the internal genetic material, even whether it

is reproducible. If the point about reproducibility is important, especially as what are

trying to do is to find a 3D structure from its 2D diffraction patterns, it’s difficult to

see how such a reconstruction would be possible if variations of structure for different
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orientations are random. One might ask which of the many structures is being recon-

structed in 3D. Perhaps the only thing possible under such circumstances is to make

the reproducibility assumption in at least two different algorithms and to see whether

a consistent picture emerges. For example, if at least two different methods find the

same structure, including the internal genetic material, this structure is quite likely cor-

rect. We believe that this research is crucial as the first step to a symmetry-independent

structure determination. Even within the icosahedral structure, it is possible (as we have

argued above) that we can use the degenerate icosahedral terms from l=30 to about l=60.

This algorithm has been demonstrated for solution scattering by Zheng et al’s(Zheng,

Doerschuk, and Johnson, 1995) using a fraction of the data available to an XFEL. Our

next step is to see how far we can go with the icosahedral approximation. The idea is

then to use the icosahedral approximation only in the first step of determining a diffrac-

tion volume, which is undertaken only to get close to the correct structure. In the final

stage, which was developed originally for time-resolved structure determination, the

aim is to find a perturbed structure starting from a nearby unperturbed one (Pande et

al., 2014). Then there would be no symmetry assumption whatsoever.
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