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ABSTRACT 

SYNTHESIS, TRANSPORT, AND THERMOELECTRIC STUDIES OF TOPOLOGICAL 
DIRAC SEMIMETAL CD3AS2  FOR ROOM TEMPERATURE WASTE HEAT RECOVERY 

AND ENERGY CONVERSION 
 

by 

The University of Wisconsin-Milwaukee, 2017 
Under the Supervision of Professor Nikolai Kouklin 

 

 

Rising rates of the energy consumption and growing concerns over the climate change 

worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-

thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the 

form of the heat. On this front, increasing electrical power generation through a waste heat 

recovery remains one of the highly promising venues of the energy research. Thermo-electric 

generators (TEGs) directly convert thermal energy into electrical and are the prime candidates 

for application in low-grade thermal energy/ waste heat recovery. The key commercial TE 

materials, e.g. PbTe and Bi2Te3, have room temperature ZT of less than 1, whereas ZT exceeding 

3 is required for a TEG to be economically viable. With the thermoelectric efficiency typically 

within a few percent range and a low efficiency-to-cost ratio of TEGs, there has been a 

resurgence in the search for new class of thermo-electric materials for developing high efficiency 

thermo-to-electric energy conversion systems, with phonon-glass electron-crystal materials 

holding the most promise.  

Herein, we focus on synthesis, characterization and investigation of electrical, thermo-electrical 

and thermal characteristics of crystalline Cd3As2, a high performance 3D topological Dirac 

semimetal with Dirac fermions dispersing linearly in k3-space and possessing one of the largest 
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electron mobilities known for crystalline materials, i.e. ~104-105cm2V-1s-1. Suppression of carrier 

backscattering, ultra-high charge carrier mobility, and  inherently low thermal conductivity make 

this semimetal  a key candidate for demonstrating high, device-favorable S and in turn ZT. 

In this work, a low-temperature vapor-based crystallization pathway was developed and 

optimized to produce free standing 2D cm-size crystals in Cd3As2. Compared to the bulk crystals 

produced in previous studies, e.g. Piper-Polich, Bridgman, or flux method, Cd3As2 samples  were 

synthesized over a considerably shorter time ( only a few hours), were single crystals and highly  

stochiometric. A high thermopower of up to 613 μV K−1 and the electrical conductivity of ~ 105 

S/m were registered within the temperature range of  300–400 K. 

A 1ω-method based on the transfer function was applied to probe a thermal conductivity, k of 

Cd3As2 platelets. The results yield k of ~2.4 W/m.K in the confirmation that the thermal 

conductivity of Cd3As2 crystals is to approach the amorphous limit at the room temperature.  

With its peak thermopower attained at the low temperature range of ~300-400 K, high electrical 

conductivity and amorphous limit thermal conductivity, crystalline Cd3As2 grown via a low-T 

vapor based method demonstrates ZT >3; the results confirm that as-produced Cd3As2 platelets 

hold a high promise and is another phonon-glass electron-crystal TE material for the 

development of next generation, high efficiency thermo-electric generators and refrigerators 

operating under normal conditions. 
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Chapter 1.  

Introduction to thermoelectric materials and devices 

Thermoelectric materials for waste heat recovery 

The increasing rate of global energy consumption and the requirements for clean energy without 

the emission of additional greenhouse gases have sparked significant research into the alternative 

clean and renewable energy sources. In today's world, a full two-thirds of the fuel burned to 

generate power is lost in the form of heat1,2. All heat-power conversion systems produce waste 

heat, which is fundamental to the laws of thermodynamics. 3,4 Capturing this waste heat not only 

will lower the environmental pollution and save natural resources, but it will also reduce demand 

for the primary energy as more power output can be achieved at the same amount of fuel. A 

successful technical solution to the waste heat recovery problem is critically sensitive to the 

temperature of the waste heat as well as underlying economics, i.e. cost aspects. In general, the 

waste heat sources can be divided into high temperature (500—1200°C), medium temperature 

(250—500°C) and low temperature (80—250°C) ones. 5,6,7 

As indicated in Fig. 1-1, almost  90% of the generated waste heat has a temperature below 650 

°C, and only 10% falls within the high-temperature portion of the waste heat stream. 
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Figure 1-1. Potential waste heat broken down by the stream temperature range for waste heat recovery. 

 

 
       High temperature waste heat is often re-used to perform work,  to heat up buildings and to drive 

industrial processes. The recovery of medium-temperature waste heat can be also done 

successfully 8,9 by implementing external combustion engines10 (e.g. Stirling and Ericsson), 

Kalina Cycle11,12, and through Organic Rankine Cycle (ORC)13–18. However, most of low-

temperature waste heat is either discarded in cooling towers or directly to the atmosphere, or 

discharged into the sewer.5 

The development of high efficiency thermoelectric materials is one of the important research 

directions for low-grade thermal energy/waste heat utilization. The thermoelectric effect refers 

to the phenomenon of the direct conversion of temperature differences to electric voltage and 

vice versa. Thermoelectric generators can be used for converting heat generated by many 

sources, such as power plants, solar radiation, automotive exhaust, and industrial processes, to 

electricity. Thermoelectric coolers can also be used to make refrigerators and other cooling 

systems. These solid-stated devices demonstrate several critical advantages over other power 
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generators as they are silent, very reliable, and compact/lightweight, which make them attractive 

for several niche deployments including transportation, space power generation19, electronics 

cooling, and thermo-voltaic cells. Yet, thermoelectric generators with typical efficiency of only 

~5%–8% demonstrate poor efficiency-to-cost ratio, and the problem stems mainly from the poor 

conversion characteristics of the thermoelectric (TE) materials themselves. Therefore, 

improving  thermoelectric efficiency becomes the key issue in this research field. 

In the following sections, a more detailed review of thermoelectric materials is provided. The 

thermodynamic efficiency of TE generators with reference to Carnot efficiency is derived, and 

the methods and approaches to enhance the thermoelectric performance of materials are 

reviewed. In section 2, topological materials as an emerging class of matter in condensed matter 

physics are introduced, and their potential for thermoelectric applications is reviewed. Among 

the materials belonging to this class, the potential of crystalline Cd3As2, the most stable Dirac 

semimetal, for high-performance thermoelectric applications is investigated and discussed.   

 

1.1 Thermoelectric Generators vs. Carnot Engines 

 

In order to discuss the thermodynamic efficiency of thermoelectric generators, first we need to 

review the Carnot cycle efficiency as it is the maximum efficiency for converting a given amount 

of thermal energy into work.20–22 The Carnot efficiency will set a maximum amount for any 

thermal system and will determine the scope for improving the efficiency of thermoelectric 

materials.  

The Carnot cycle is a theoretical thermodynamic cycle consisting of two reversible isothermal 

processes and two reversible adiabatic processes.20,23–25 The reversibility of the processes in a 
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Carnot engine makes it the most efficient heat engine allowed by the second law of 

thermodynamics, and places constraints upon the direction of heat transfer and the attainable 

efficiencies of all heat engines. According to the second law of thermodynamics, ( the Kelvin-

Planck statement24) it is impossible to extract an amount of heat QH from a hot reservoir and use 

it all to do work W. Some amount of heat QC must be exhausted to a cold reservoir. This 

precludes a perfect heat engine. The Carnot efficiency 𝜂!"# is equal to the ratio of the useful 

work W, to the input heat QH. It can be also written in terms of the input temperature TH and the 

exhaust temperature TC. The schematic diagram of the Carnot engine and the equation for its 

efficiency are given in Fig. 1-2. 

      

 

        

 

 

 

 

 

 

Figure 1-2. Schematic diagram of a Carnot Engine. The Carnot efficiency 𝜂!"# is equal to the ratio of the useful 
work W, to the input heat QH. 
 

As equation (1-1) implies, the efficiency of a heat engine is limited by the highest and the lowest 

temperature of the system. The minimum temperature is usually set by the air temperature at the 

inlet to the engine, and the maximum temperature in the cycle is limited by metallurgical 

conditions. For example, the blades of a gas turbine cannot sustain temperatures above 1300 

K26,27, and higher temperatures up to 1600 K can only be obtained with ceramic turbine blades. 

The need for materials that can withstand high temperatures will significantly increase the cost of 

𝜂!"# =
!
!!
= !! !!!

!!
= 1 − !!

!!
            (1-1) 
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the system which will negatively affect the efficiency-to-cost ratio.  Therefore, there is a 

compromise between the thermodynamic efficiency of a system and the economics involved.  

The efficiency of waste heat recovery systems is also limited by the Carnot efficiency. The 

efficiency of power generation from waste heat is heavily dependent on the temperature of the 

waste heat stream. It is usually more economic to re-use the medium- to high-temperature 

portions of the stream (i.e.> 500 F°). Thermoelectric (TE) modules can provide solutions to 

many difficult thermal management problems especially in the case of small-scale applications 

where a low to moderate heat source must be handled. As will be discussed in the next section, 

the TE performance is routinely assessed based on the figure of merit, ZT. The larger the figure 

of merit, the better the efficiency of the thermoelectric cooler or power generator. 

 

1.2 Thermoelectricity, ZT figure of merit, and the Thermoelectric efficiency 

 

There are three well-known major effects involved in the thermoelectric phenomenon: the 

Seebeck, Peltier, and Thomson effects. The Seebeck effect, first discovered by Thomas Johann 

Seebeck in 1821, refers to the generation of an electromotive force by a temperature differential 

or gradient. When a temperature gradient ΔT is applied along a conductive material, the free 

charge carriers (such as electrons in metal or n-Si) at the hot side of the material have higher 

energy than the carriers at the cold side, causing a net diffusion of charge carriers to the cold 

side. As the hot charges diffuse away, eventually, there will be more mobile carriers at the cold 

side than the hot side and an electric field will form. At equilibrium (open circuit regime) the 

carrier diffusion rate from the hot side to the cold side will become equal to that from the cold 

side to the hot side due to this electric field. Thus, as illustrated in Fig. 1-3(a), in equilibrium an 

electrochemical potential will form in response to a temperature gradient along the slab. This 
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electrochemical potential is known as the Seebeck voltage; and the amount of voltage generated 

at temperature difference of 1 K is called the Seebeck coefficient, S= ΔV/ΔT. If the material is 

connected to a circuit, the electrochemical potential will drive a current that can be used to 

perform electrical work. This phenomenon is called ‘‘thermoelectricity’’, and it is the basis of 

thermoelectric power generation. The Peltier effect is the reverse of the Seebeck effect – it refers 

to the temperature difference induced by voltage gradient. The Thomson effect relates the 

reversible thermal gradient and electric field in a homogeneous conductor. 

A thermoelectric module requires two thermoelectric materials to function: an n-type and a p-

type semiconductor. This is so that a continuous circuit can be made whereby current can flow 

and power can be produced. With only one type of thermoelectric material, a voltage would be 

induced but current would never flow. The n-type and p-type semiconductors together form a 

thermoelectric “couple,” but do not form a p-n junction. They must be configured within the 

module such that they are electrically in series, but thermally in parallel as depicted in Fig. 1-3 

(b).  

 

Figure 1-3. (a) Seebeck effect: Electric potential formation in response to the temperature gradient applied along the 
materials. The polarity of the generated electric field depends on the type of the majority carriers in the materials as 
indicated by n-type (electrons) and p-type (holes) in the figure. (b) Schematic of a thermoelectric power generation 
module consisted of an n-type and p-type materials connected electrically in series but thermally in parallel. 
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The key parameter that defines the efficiency of TEG is the thermoelectric dimensionless figure 

of merit ZT. ZT is primarily dependent on three physical properties: thermal conductivity (k), 

electrical conductivity (σ), and Seebeck coefficient (S). ZT equation is given by  

   

 

 

Here, T = (½)(TC + TH ) is the average temperature with TH and TC being the temperature of the 

hot and cold sides, respectively. The quantity S2σ is known as the power factor. For a high ZT 

thermoelectric material, a large power factor S2σ and a low thermal conductivity k is required.  

To derive the thermodynamic efficiency of a thermoelectric generator, we need to build a circuit 

that can deliver power to a load, as illustrated in Fig. 1-3(b). In this case, a resistor RL is used as 

the circuit load. The thermodynamic efficiency of the thermoelectric generator is given by  

𝜂 = !"#$% !"##$%&' !" !"# !"#$ 
!"#$ !"#$%"&' !" !"# !"#$%&'# 

       (1-3) 

The power supplied to the load is just the Joule heating of the load resistor RL which is equal to 

I2RL. The heat absorbed at the hot junction is the Peltier term plus the heat withdrawn from the 

hot junction as described. By combining these terms and assuming that the power supplied to the 

load is only through Joule heating, it can be shown that the maximum efficiency of a TE module 

for electricity generation is28: 

                    

(1-4)	

(1-2)	𝑍𝑇 =
𝑆!𝜎
𝜅  𝑇	
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Where TH is the temperature at the hot junction, TC is the temperature at the surface being cooled, 

and ZT is the figure of merit for thermoelectrics as given in equation (1-2).   

As can be seen, the first term in Eq. (1-4) is the familiar term for the Carnot efficiency, which 

puts a limit on the maximum possible efficiency of thermoelectric materials. The second part 

accounts for losses and irreversible processes, which reduce as the dimensionless figure of merit 

ZT increases in value.  

 

Figure 1-4. The thermodynamic efficiency of thermoelectric materials with different ZT values and the typical 
efficiencies for Rankine and Stirling thermodynamic cycles in different thermal heating schemes as a function of ∆T. 
The cold side temperature is assumed to be 298 K (25 o C). © 2014, Douglas Paul. Adapted from {Thermoelectric 
Energy Harvesting, ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology, 
Dr. Giorgos Fagas (Ed.), InTech, DOI: 10.5772/57092} 
 

 

Fig. 1-4 demonstrates the maximum thermoelectric efficiencies for different ZTs and the typical 

efficiencies for other thermodynamic cycles as a function of ∆T. As seen, today’s thermoelectric 
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generators, with the thermodynamic efficiency of ~8-12% (≅ ZT<1), have significantly less 

efficiency than other power generation technologies based on Rankine or Stirling cycles (η > 

30%). Most of thermodynamic cycles used in thermal power plants are suitable for power 

generation at the large scales (fluids become more viscous or lossy below a certain length scale 

decreasing the total efficiency of the cycle). Hence, for small-scale power generation, e.g. below 

~100 W, thermoelectrics offer some advantages over other thermal cycles. In addition to being 

flexible in size, they have no moving mechanical parts and are significantly more reliable than 

other heat engines that usually require the installation of additional equipment such as 

compressors and turbines.  

Thus, it is of an utmost advantage to have thermoelectric materials with higher efficiencies. 

According to Eq. (1-4), in order to increase the efficiency of a TE generator, one needs to 

improve the ZT figure of merit of the TE materials in that module.  Currently, the goal for having 

advanced TE materials is set at a ZT of ~2 (η ≈ 20%); however, to be competitive with other 

power generation technologies, a ZT of higher than 3 is desired. Several approaches for 

increasing the ZT of thermoelectric materials are reviewed in the following section.  

1.3 Enhancing ZT of thermoelectric materials 

 

In order to achieve high-performance TE materials with a high ZT, a combination of a high 

power factor (S2σ) and a low thermal conductivity is required. Despite having multiple 

parameters to adjust to get a higher ZT, optimizing all the parameters together cannot be 

achieved easily since the electrical and thermal parameters in bulk materials are coupled through 

the Wiedemann-Franz law given by σT/k = (3/π)2 (q/kB)2, where q is the carrier charge and kB is 

Boltzmann constant . As a result, simply improving one parameter does not necessarily result in 
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higher ZT. For example, if the electrical conductivity of a material is too low, we might want to 

increase the carrier concentration; however, increasing the carrier concentration will decrease the 

Seebeck coefficient and also increase the electronic contribution to the thermal conductivity. Fig. 

1-5 illustrates these conflicting trends for n-type Si80Ge20 at 300 K.29 These changes in properties 

will not lead to a net increase in ZT as any changes in favor of one property is accompanied by 

an unfavorable change in the other properties.  

 

 
Figure 1-5. Normalized thermoelectric properties and ZT versus doping concentration at 300K for n-type Si80Ge20. 
Curves are calculated from a numerical model developed by the authors. In the figure k refers to thermal 
conductivity, S refers to the Seebeck coefficient, and σ refers to the electrical conductivity.  Reprinted from [29] 
with permission. Copyright © 2009, Royal Society of Chemistry. 

 

Therefore, alternative approaches for enhancing ZT of TE materials are required. Until recently, 

a primary pathway to enhancing ZT was centered on the idea of slowing the heat diffusion. This 

was done by decoupling the lattice thermal conductivity, kL, from the electronic thermal 

conductivity, ke through introducing phonon scattering interfaces and rattling centers30,31. For an 

optimum result, all phonons with short, medium, and long mean free path (MFP) must be 

targeted. The point defects created through the introduction of dopant atoms on lattice sites 



	 11	

defects can scatter short MFP phonons due to either mass contrast or local bond strain induced 

by the defects.32 The scattering of medium MFP phonons is best achieved through 

nanostructuring. In this case, scattering occurs at the interfaces between the precipitates and the 

matrix and from the mass contrast between the two phases. To scatter the long MFP phonons 

additional mechanisms are needed. This is usually achieved through introduction of mesoscale 

grain boundaries by breaking down the crystals of samples to mesoscopic particles in the range 

of 100 nm to 5 mm. The finite size in a given grain can limit the propagation of phonons with 

long MFP.33 To scatter all MFP ranges from nano- to micro-length scales, all of the above 

techniques must be integrated in a single sample to make an all-scale hierarchical architecture, as 

shown in Fig. 1-6. Such material architecture has the potential to significantly reduce the thermal 

conductivity down to the minimum theoretical limit.  

 

Figure 1-6. All-scale hierarchical architecture to achieve low lattice thermal conductivity down to 
theoretical limit. Reprinted from [33] with permission. Copyright © 2014, Royal Society of Chemistry. 

 

With the lattice thermal conductivity, kL already approaching the fundamental (amorphous 

materials) limit, the focus has shifted toward optimizing the TE power factor S2σ, by modifying 

the density of states, band structure engineering, and by means of quantum confinement.34–36 
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Recent advances in creating nanostructured materials such as superlattices, quantum dots, 

nanowires, and nano-composites have made remarkable progress in the field of thermoelectrics29. 

These materials are able to obtain enhancements in thermoelectric properties, which cannot be 

achieved in traditional bulk materials. Exploiting nanoscale effects would result in large 

increases in the thermoelectric figure of merit, ZT. This is possible because at lower dimensional 

structures, the Wiedemann-Franz rule breaks down and quantum effects can be used to optimize 

the ZT value. 28,29 Dresselhaus’s pioneering work 34 has shed light on various low-dimensional 

systems, including superlattices, nanowires and quantum dots. Venkatasubramanian et al 37 

reported Bi2Te3/Sb2Te3 superlattices with a high-ZT value of up to 2.4. Subsequently, Harman et 

al.38 reported PbTe/PbTeSe quantum dot superlattices with a ZT value of greater than 3.0 at 600 

K.  

While record high ZT values of 2 were achieved in lower dimensional structures, the slow 

fabrication process along with the high cost of mass production have made these nanostructured 

materials impractical for commercial applications. As a result, bulk nanostructured materials 

have become demanding new break-through in thermoelectric materials and device 

engineering29,39. These materials are fabricated using a bulk process rather than a nanofabrication 

process, and could be produced in large quantities, making them a suitable fit to commercial 

setting.  Fig.1-7 shows the figure of merit ZT for the current state of the art thermoelectric 

materials versus temperature. As seen, the reported ZT values for bulk nanostructured materials 

are improved compared with their bulk counterparts, and the highest ZT obtained at room 

temperatures slightly exceeds 1.5. 
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Figure 1-7. Figure of merit ZT of current state of the art thermoelectric materials versus temperature. The dashed 
lines show the maximum ZT values for bulk state of the art materials, and the solid lines show recently reported ZT 
values, many of which were obtained in bulk nanostructured materials. 29 Reprinted from [29] with permission. 
Copyright © 2009, Royal Society of Chemistry. 

 

As implicated above, nano-engineering approaches represent the primary pathway to enhancing 

the ZT; yet, they rely on  the same classes of materials that are already known as bulk 

thermoelectric materials. Along with the efforts to improve the thermoelectric properties of 

existing materials, the search for alternative solutions to increasing ZT and uncovering new 

thermoelectric materials continues. In the next section some of these new materials classes and 

strategies are presented and discussed.  

1.4 Emerging materials for thermoelectric applications 

 
The most investigated candidates for thermoelectric applications so far are doped 

semiconductors and semimetals. Mid last century, an extensive screening of materials led to the 

identification of several alloys and intermetallics based on elements like Bi, Te, Sb, Pb, etc., and  

ZT  of unity at low temperatures (300–500 K) was achieved.40,41Mixed composite structures with 
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increased thermoelectric properties have also been reported. For example, it has been shown that 

alloying Bi2Te3 with other isoelectronic cations and anions would lower the thermal conductivity 

while maintaining the electrical conductivity.42 Alloying the binary tellurides (Bi2Te3, Sb2Te3, 

PbTe and GeTe) continues to be an active area of research.43–46 There has also been a remarkable 

progress in organic thermoelectric (OTE) materials and devices in the past several years.41,47,48 

The majority of organic thermoelectric materials reported to date are based on conductive 

polymers, including conjugated polymers and certain coordination polymers.49–52 The scalability, 

mechanical flexibility, and stability of semiconducting polymers up to 200 °C have made OTE 

materials suitable for economically viable TE generators (TEG).As-synthesized PA: Ix 53,54, 

TDAE-reduced (22%) PEDOT: Tos50, (24%) PEDOT: Tos55, electrochemically-reduced PEDOS-

C6: ClO4
56, and spun-casted PEDOT: PSS57 polymers have been reported to have a power factor 

of higher than 300 μW/mk2  

Another group of materials studied for thermoelectric applications are allotropes of carbon, 

graphene, and carbon nanotubes. 58–63 Despite the high carrier mobility, high thermal conductivity 

up to 5,000 W/mK, and a poor Seebeck coefficient of ~30–60 µV/K, several studies have shown 

that the power factor of graphene could be increased by introducing grain boundaries into 

synthetic graphene through chemical vapor deposition (CVD) and band-structure modulation of 

graphene.61 Pure graphene thermoelectric devices with a Seebeck coefficient of 90 μVK−1,64,65 

Graphene(rGO)/fullerene (C60),66 and graphene/CNT nano-composites67,68 prepared with PEDOT: 

PSS have been also studied by several groups. In almost all studies the composites showed a 

better performance compared to that of pure PEDOT: PSS.69,70  Polymer-based composites of 

carbon nanotubes and graphene also possess several properties71,72 that make them strong 

candidates for uses in low power waste heat recovery applications. CNTs, depending on their 
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sizes and diameters, could help enhance phonon scattering rates, while offering higher Seebeck 

coefficient, and electrical conductivity, whereas the polymer matrix is beneficial due to it’s very 

low thermal conductivity to achieving n high ZT.73–77 Ceramic oxide materials are another group 

of materials that was subject to investigation for potential use in thermoelectric applications. 

Ceramic TEs may enable use of higher service temperature because of their stability at high 

temperatures in oxidizing and corrosive environments. Example materials include Ax CoO2
78,79, 

Ca3 Co4 O9
80–83, SrxBa1–xNb2O6-δ 84and the layered Sr2Nb2O7

85. 86–88 

 
As mentioned earlier and demonstrated by the reported studies in this section, the unifying 

parameter to identifying high-ZT materials (ZT>1), is a lattice thermal conductivity that should 

fall in the range of amorphous material limit without comprising the electrical conductivity, as 

well as a relatively large Seebeck coefficient. Such properties are not easily found at the same 

time in any given material, and as seen so far, usually some material engineering in the form of 

nanostructuring, alloying, creating complex crystal structures, or building superlattices is 

required. While these engineering techniques would result in enhanced thermoelectric properties, 

they would entail higher fabrication cost only to limit their potential for mass-scale deployment. 

Therefore, the key question would be whether there exists a material or a class of materials that 

possesses all the desired characteristics of a high efficiency thermoelectric material, i.e. large 

Seebeck coefficient, high electrical conductivity, and relatively low thermal conductivity, while 

offering easier processing and more economical mass production?  

Very recently it has been discovered that in fact such materials, potentially, exist In part thanks 

to the advances in the condensed matter physics for the discovery of topological insulators (TI). 

In recent years, the discovery of a novel state of quantum matter known as topological insulator 

(TI)89,90 has created a surge of research activities in various fields of science. The topological 
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band structure of these materials gives rise to nontrivial electronic properties not found in other 

materials. As we will see in the following sections, such properties also enable the topological 

materials to hold  great potential for high efficiency thermoelectric applications91–94. 

In the next section, a concise introduction to topological materials and their characteristics is 

presented, and their potential for high efficiency thermoelectric applications and room 

temperature waste heat recovery is discussed.  

 

1.4.1 Topological Materials for Thermoelectric Applications 

In condensed matter physics, the interest has always been in the discovery and classification of 

distinctive phases of matter. In the quantum world, atoms and electrons can form new and 

various states of matter such as crystalline solids, magnets, and superconductors. The discovery 

of quantum Hall (QH) state in 1980s95 has led to a different classification paradigm based on the 

notion of topological order.96,97 QH provided the first example of a quantum state that had no 

broken symmetry. QH is realized in electrons confined in two dimensions in the presence of a 

strong magnetic field and dissipation-less current flows along the sample’s edge. In recent years, 

topological insulators have been found to have similar metallic states to those of a QH system 

that are also transported in a low-dissipation state 

The discovery of topological insulators (TIs) has provided a new research platform in several 

fields including thermoelectrics. TIs have attracted considerable attention in contemporary 

materials science showing gapless helical mass-less Dirac fermions on a two-dimensional (2D) 

surface or one dimensional (1D) edge along which spin-up and spin-down electrons counter-

propagate.  

TIs and good TE materials have common features in their properties. In fact, typical three 

dimensional TIs such as Bi2Se3, Bi2Te3 and Bi2-xSbxTe3 have been studied as promising 
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candidates for TE materials. Recent theoretical studies suggested that additional nontrivial 

conduction channels existing in pure topological surface Dirac states in three-dimensional TIs 

may provide a unique route to enhance ZT. To gain a better understanding of the nontrivial 

topology of TIs, we first take a look at the conventional band theory. 

In conventional band theory98–102 materials are classified into insulators and metals based on the 

existence of a finite band gap. An important concept in the band theory is the Fermi level EF. As 

depicted in Fig. 1-8, the position of the Fermi level with relation to the conduction/valance band 

is a crucial factor in determining electrical properties of materials. The general form of the 

dispersion relation can be written as 

 

𝐸 𝑘 = 𝐸 0 + ℏ!!!

!!∗         (1-5) 

 

Where E is the energy level of the electron, E(0) is the energy of the electron at the ground state, 

k is the wave vector, ℏ is the Planck’s constant, and m* is the effective mass of the electron and is 

defined by  

 

!
!∗ ≡

!!! !
ℏ! !!!

            (1-6) 

 

With some approximation, we can say that an electron in a solid moves like a free electron with 

an effective mass m�. According to Eq. (1-6), as the band curvature becomes larger, the effective 

mass of the electron becomes smaller. The mean velocity of the electron is also given by 

 

𝜐! =
!
ℏ
!" !
!!

       (1-7)     
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Equations (1-6) and (1-7) imply that if we know the shape of the 𝐸 𝑘  curve, we would be able 

to estimate the velocity as well as the effective mass of the electrons. For this reason, the energy 

dispersion relation 𝐸 𝑘  becomes very important in determining the transport properties for 

carriers in solids. This concept will come in handy later when discussing the topological band 

structure.  

 

 

Figure 1-8. Classification of solids according to the conventional Band Theory. The electronic properties of 
materials depends on the existence of a finite band gap and the position of Fermi level with respect to the conduction 
and valance bands. In the conventional Band Theory, the energy dispersion relation 𝐸 𝑘  of solids assumes a 
quadratic form.  
 
In recent years, it has been realized that in transition from insulators to metals, there exists an 

intermediate state in which the conduction and valence band touch only at discrete points, 

leading to a zero band gap and singular points at the Fermi surface. This has led to the 

emergence of a new class of insulators known as topological insulators.103  

Topological insulators are materials with a bulk band gap generated by strong spin–orbit 

coupling (SOC) and topologically protected metallic surface states. This makes these materials 
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insulating in the bulk, but metallic at the surface. A TI can be identified by a few rules: SOC, an 

odd number of band inversions (BIs) between the conduction and the valence band by increasing 

the average nuclear charge, and a sign change of the symmetry of the molecular orbitals. Such 

properties give rise to nontrivial electronic behavior in TIs, and make them excellent candidates 

for thermoelectric studies. 89,104 

In contrast to conventional band insulator, Fig. 1-9 (a), for a topological insulator the spin-orbit 

coupling effect causes the energy of the valance band to become higher than that of the 

conduction band at some k points105, resulting in a “band inversion” in the electronic band 

structure of the TI, Fig. 1-9 (b).  

 

Figure 1-9. (a) For a conventional band insulator, the energy of the valence band will always remain lower than that 
of the conduction band at all k points throughout the Brillouin zone (BZ), and the insulator is topologically trivial. 
(b) Schematic plot for the band inversion mechanism. Band Inversion involves the energy order switching of low 
energy electronic bands around certain k points in the Brillouin zone. Assuming that the two bands do not couple 
when the SOC is absent, they must cross at certain k-points away from Γ. In the presence of the spin-orbit coupling 
(SOC), the two bands will, in general, couple together and open up a gap at the crossing point. As a result, the 
system becomes an insulator. Reprinted from [105] with permission. Copyright © 2014, Materials Research Society. 
 

The presence of a band inversion is a necessary but not a sufficient condition for topological 

phases. A topological phase is defined by a topological number known as the Chern number89,106, 

	
a) 

b) 
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which is a global quantity calculated using the electronic wave function throughout the BZ. 

Although band inversion cannot rigorously define any topological phase, it is in fact very 

suggestive for identifying new topological materials and compounds, and also for understanding 

the topological nature in various topological materials107–109. To understand the remarkable 

properties of TIs, we will first review the charge transport in its predecessor, the quantum Hall 

state. 

The QH effect, also known as the integer quantum Hall effect (IQH)110–112 is a quantum version 

of the Hall effect, which is achieved by applying a strong magnetic field, B in two-dimensional 

electron systems. The strong magnetic field B in a QH system drives the electrons to circulate in 

quantized orbitals. In band theory, the quantization of the electrons’ circular orbits leads to 

quantized Landau levels , and the skipping trajectory at the edges transforms into a quasi-one-

dimensional edge channel encircling the interior of the system97,113, Fig. 1-10 (a). As a result, the 

integer quantum Hall becomes an insulator in the bulk because the Fermi level is located in the 

middle of two Landau levels. On the other hand, the edges of the IQH state feature chiral 1D 

metallic state, leading to remarkable quantized charge transport phenomenon. The direction of 

the edge-state momentum, k is determined by the orientation of the applied magnetic field.114 In 

other words, the direction of the momentum cannot be changed unless the direction of the 

magnetic field is changed. Under such circumstances, when an edge-state electron encounters an 

impurity, instead of being scattered back, i.e. k → −k, it takes a detour and keeps going in the 

same direction as dictated by the direction of the magnetic field. This robust mechanism is called 

chirality, and it protects the edge-states against any system disorder, which is usually inevitable 

in any realistic state.  
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Figure 1-10. (a) Two-dimensional electron system in a perpendicular external magnetic field B forming a quantum 
Hall system; (b) The electronic band structure of a quantum Hall system. A single edge state connects the valence 
band to the conduction band.  

Even at low temperatures, there are some random fluctuations of the electrostatic background 

that tend to induce elastic momentum scattering leading to resistance. However, for an edge-

state, such backscattering processes are not allowed as there is not any other available counter-

propagating state. Such dissipation-less transport mechanism is the essence of the quantum Hall 

effect, and is extremely attractive for electronic devices. The necessary condition for such charge 

transport is the absence of the mobile bulk carriers. Therefore, the edge modes of a quantum Hall 

system must occur in the energy gap between the bulk bands, as shown in Fig. 1-10(b). The 

quantum Hall effect is robust against continuous deformations of the band structure as long as 

the bulk band gap and the edge modes remain intact.114 It is noteworthy that the quantum Hall 

phenomenon is in fact a consequence of breaking the time-reversal symmetry (TRS) as a result 

of the presence of a large external magnetic field. In the QH system, the requirement of a large 

magnetic field, strictly limits the potential applications of the quantum Hall effect. The search for 

a QH-like state with a nonzero Chern number without the need for an external magnetic field led 

to the discovery of a new topological state called the quantum spin Hall (QSH)115–117 state, and 

subsequently the 2D topological insulators (2D-TIs). Topological insulators feature exotic edge-

states in a zero magnetic field without breaking the TRS115,117. This becomes possible due to the 
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intrinsic spin-orbit coupling effect118–121 in such materials. In a simple picture, the spin-orbit 

coupling can be viewed as an intrinsic effective magnetic field Beff that points in the opposite 

directions for the up- and down- spin particles, as illustrated in Fig. 1-11(a). Each spin subsystem 

resembles a quantum Hall insulator with a gapless edge-mode. Combining these two subsystems 

into a single system results in a pair of counter-propagating edge-states in a zero magnetic field, 

as depicted in Fig. 1-11(b). 

 

Figure 1-11. (a) The quantum-spin Hall system can be viewed as two copies of the quantum Hall system with an 
intrinsic effective magnetic field Beff that points in the opposite directions for the up- and down- spin species. (b) 
The electronic band structure of a quantum spin Hall system.  Each quantum Hall subsystem shares a single edge 
state resulting in a pair of edge-states in a zero magnetic field. 

 

Similar to the QH systems, 2D-TIs are also insulating in the bulk, but on the boundary they have 

gapless edge-states that are topologically protected and immune to impurities or geometric 

perturbations120,122–126. The significance of this behavior becomes even more pronounced when 

they are compared with conventional conductors. In conventional systems, in the presence of any 

small perturbation, all propagating states become localized due to a phenomenon known as 

Anderson localization127,128. In a 2D-TI, such localization is not allowed118,129,130 because of the 

robustness of the nontrivial edge-states against any disorder in the system. This is what makes 

the TI system stand out from the ordinary conductors.  

 
	

(a) (b) 
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Although all materials have spin-orbit coupling, only a few of them turn out to be topological 

insulators. The strong spin-orbit coupling in most topological insulators leads to a band inversion 

in the electronic band structure.131–135 The presence of band inversions in the electronic band 

structure of materials was proposed as the general mechanism for finding topological 

insulators107, and it was theoretically predicted and experimentally observed in mercury telluride 

quantum wells119, bismuth antimony alloys136,137, Bi2Se3 and Bi2Te3 bulk crystals108,138,139. To date, 

the 2D topological insulators have mostly been realized at buried interfaces of ultraclean 

semiconductor heterostructures at very low temperatures.  

A critical breakthrough in the experimental and material physics came in when the three-

dimensional analogue of the QSH system was theoretically realized.89,103,140–142 This was a 

remarkable achievement as materials in nature are mostly in the 3D form and also the synthesis 

and fabrication of bulk materials is usually easier. The 3D topological insulators are insulating in 

the bulk region, but have gapless states on the surface of the bulk material, as shown in Fig. 1-12. 

Similar to the edge-states in 2D QSH systems, the metallic topological surface states in 3D-TIs 

are induced by spin–orbit coupling (SOC)143–145 and are protected by time-reversal symmetry. 

Time-reversal symmetry forbids the elastic backscattering of the surface states, and hence the 

dissipation-less transport of the topological surface states is robust against nonmagnetic weak 

disorders.  
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Figure 1-12. Schematic of a 3D topological insulator. 3D TIs support protected Dirac-like propagating states on the 
surface while the inner part of the system behaves as an insulator. Reprinted from [143] with permission. Copyright 
©2013 The Physical Society of Japan. 
 
 
 
On the surface of a 3D-TI, a carrier is free to move in two dimensions, but its spin is locked in 

the direction of the momentum k. The dispersion relation of the surface states in a 3D-TI, 𝐸! can 

be derived by solving the Schrödinger equation and will have the form of: 

 
 

𝐸! = ± !
ℏ
𝒌 = ± !

ℏ
𝑘!! + 𝑘!!     (1-8) 

This equation is for a cone whose vertex is at (𝑘! , 𝑘!) = 0,0  and opens in the 𝐸! direction, as 

illustrated in Fig. 1-13. The ± signs correspond to the positive and negative energy branches.  

 

 

 

 

 

 

 
 

 
 
Figure 1-13. (Left) Plot of the dispersion relation, Ek, for the surface-states of a 3D TI. Ek takes the form of cone. 
(Right) Example of the Kramer’s pair on a constant-energy line Arrows illustrate the locking of momentum k and 
spin s vectors.  

 
It is important to note that the dispersion relation of the metallic surface states in 3D-TIs has a 

linear relation with k, i.e. Ek ~ k. As we saw earlier, in the conventional band theory Ek has a 

quadratic form in the momentum space, i.e. Ek ~ k2. This is another important feature that 
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distinguishes the topological energy bands from their conventional counterparts. The positive 

and negative cones of the surface-states play the role of the conduction and valence bands of the 

surface carriers. This conical energy spectrum is reminiscent of that of relativistic particles 

described by the Dirac equation for spin-1/2 particles146,147. For this reason, the surface states in 

3D-TIs are frequently referred as Dirac fermions148–151. 

The first experimental realization of a topologically nontrivial phase of matter in 3D bulk 

materials came in 2007 by identifying the strong 3D-TI phase in Bi1−xSbx semiconducting alloy 

system137,152,153. Shortly after, with the aid of angle-resolved photo-emission spectroscopy 

(ARPES) technique, the 3D topological surface states were observed in other material systems 

including tetradymite compounds such as Bi2Se3
154, Bi2Te3, and Sb2Te3

139
, thallium-based ternary 

chalcogenides such as TlBiSe2
155–157

, and TlBiTe2
157 as well as Pb-based layered chalcogenides 

such as Pb(Bi1−x Sbx)2Te4
158, and PbBi2Te4

159
. Other candidate materials that have been identified 

to host a three-dimensional TI phase include strained layers of α-Sn and strained HgTe.136,160  

The nontrivial properties of topological insulators make them extremely attractive for electronic 

and optoelectronic applications. The suppression of backscattering of the surface states 

corresponds to exceptional transport mobility and reduced energy consumption, which make TIs 

great candidates for Ultra low power electronics. Other potential applications of TIs include 

novel spintronic devices, optoelectronics such as transparent conductors and wideband 

photodetectors, catalysis applications, and high efficiency thermoelectric applications. 

It is intriguing to note that almost all currently known topological insulators are good 

thermoelectric materials. Advanced thermoelectric materials have an optimized efficiency 

through low thermal conductivity and excellent electrical conductivity. Consequently, heavy-

element compounds tend to have a better performance, because a large atomic mass reduces the 
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thermal conductivity. Moreover, the optimal bandgap of semiconductors for thermoelectric 

applications is typically one order of magnitude higher than the thermal energy of the operation 

temperature, so room-temperature thermoelectric materials are usually narrow-gap semiconduc-

tors. For topological insulators, spin–orbit coupling must be strong enough to modify the 

electronic structure – as spin–orbit coupling strength increases with atomic mass – this indicates 

that narrow-bandgap compounds consisting of heavy elements are the most promising 

candidates. It is therefore natural to explore the potential impact of the surface states of 

topological insulators.  

However, current topological insulators typically have excessive bulk carrier, which prevent the 

bulk from being insulating. This will mask the subtle topological effects from the surface 

electrons; and the small bulk energy gap also prevents them from being used in room 

temperature electronic devices. Therefore, to access the remarkable properties of the surface 

carriers, it is necessary to controllably suppress the bulk conductivity by constraining the chemi-

cal potential to the bulk bandgap. Although doping of these materials has been investigated 

extensively for thermoelectric applications, the strategy cannot be directly adopted for quasi-

insulating crystals owing to their different doping-level requirements (high-performance ther-

moelectric materials are typically doped to a high level to give metallic bulk conductivity).  

The exotic properties of TIs and the limitations in accessing their metallic surface states 

prompted an immense interest in finding new materials other than insulators that could possess 

linear Dirac-like dispersion in their bulk region, i.e. 3D Dirac fermions.  

Through careful studies of topological states, it was revealed that in the transition from a 3D 

topological insulator to a normal insulator, there exists an intermediate state in which the co-

existence of certain crystallographic symmetries161,162 – time-reversal symmetry (TRS), inversion 
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symmetry (IS), and uniaxial rotational symmetry – protects the degeneracy of the band crossings 

giving rise to protected linearly dispersing valence and conduction bands that cross in the 

electronic structure of the bulk material163–166 and form a stable 3D Dirac semimetal phase. 

162,163,165,167,168 In this topological state, the bulk conduction and valence bands touch only at 

discrete (Dirac) points and disperse linearly along all three momentum directions leading to the 

formation of 3D Dirac fermions163,168,169 Being in a semimetallic phase and possessing bulk Dirac 

fermions, these materials are classified as “topological Dirac Semimetals (TDS)”162,170,171. A 

conceptual illustration of the difference between a TI and a Dirac semimetal is given in Fig. 1-

14.  

  

Figure 1-14. A conceptual diagram of the electronic band structure in different phases. In a topological insulator an 
energy gap opens in the bulk region. In Dirac semimetals the bulk conduction and valence bands touch only at 
discrete (Dirac) points and disperse linearly along all three momentum directions leading to the formation of 3D 
Dirac fermions.  

 

The most famous material belonging to the class of TDS is graphene. The geometry of an sp2-

hybridized carbon in graphene is responsible for the formation of the hexagonal honeycomb 

lattice that determines its extraordinary mechanical and electronic properties172, Fig. 1-15(a). 

Intrinsic graphene is a 2D Dirac semimetal in the absence of spin-orbit coupling163. The 

electronic dispersion relation around the Fermi energy in graphene is linear for low energies near 
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the six corners of the two-dimensional hexagonal Brillouin zone173,174 and is given by  E = 

ℏvF|k|173,175 where the Fermi velocity vF ~ 106 m/s. Therefore, 2D Dirac particles in graphene 

travel effectively as massless particles, allowing them to reach much higher speeds than ordinary 

electrons – as high as 106 m s–1. As a result, the electron mobility in graphene is about 105 

cm2/Vs, compared with about 1400 cm2/Vs in silicon176,177. Each of the two equivalent carbon 

atoms within one unit cell of graphene contributes one cosine-shaped band to the electronic 

structure. These bands cross exactly at the Fermi level, where they form a Dirac cone with a 

linear electronic dispersion171,172, Fig. 1-15 (b) 

 

 
 
 
 
 
 
 
 
 

Figure 1-15. (a) Carbon atoms in graphene form a honeycomb lattice with two atoms in the unit cell. The first 
Brillouin zone of the reciprocal lattice contains two nonequivalent Dirac points, K and K’. The relevant states at the 
Fermi level form two touching cones with the tips at K and K’. (b) Each of the two equivalent carbon atoms within 
one unit cell of graphene contributes one cosine-shaped band to the electronic structure that cross exactly at the 
Fermi level forming a Dirac cone with a linear electronic dispersion. Reprinted from [171] with permission. 
Copyright  ©2009 American Physical Society. 
 
 

After the explosion of research in graphene, interest was piqued in realizing this state in a 3D 

system. In general, 3D Dirac semimetals could be obtained by fine-tuning those materials that 

are near the 3D Dirac semimetal state. This could be done through changing their chemical 

composition, tuning the strength of spin-orbit coupling, or with external variables such as 

temperature and pressure.178 Some examples include TlBiSe2−x Sx
179,180, Hg1−xCdxTe181, Bi2−x 
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InxSe3, Pb1−x SnxSe, Pb1−xSnxTe, Bi1−x Sbx , and Hg1−x CdxSe90,104,182 all for a specific value of x. 

However, such Dirac semimetals are usually sensitive to temperature, pressure, and composition 

homogeneity. Therefore, alternative types of 3D Dirac semimetals that are not so sensitive to the 

environmental conditions or the compounds ratio are desired.  

The breakthrough in the search for stable 3D Dirac semimetals has been achieved in the recent 

studies on Na3Bi178,183–185 and Cd3As2
169–171,186–188compounds. In both compounds, a pair of intrinsic 

3D Dirac points stably exists on the kz axis protected by crystalline rotational symmetry, C4 in 

Cd3As2 and C3 in Na3Bi, as shown in Fig. 1-16. Both of these materials possess stable, robust 3D 

Dirac semimetal states as the crossing points in their band structure are not dependent on 

temperature or a specific compositional parameter that could vary at different points in a single 

crystal.185,186,188–191 

 

Figure 1-16. Schematic electronic structures showing the location of 3D Dirac cones in the Brillouin zone in (a) 
Cd3As2, and (b) Na3Bi. Reprinted from [178] with permission. Copyright ©2015 American Physical Society. 
 

Compared with the air-sensitive Na3Bi, Cd3As2 tends to be much more stable at room 

temperature with a high chemical stability against oxidation which makes it an ideal system for 

experimental studies192. 

1.4.2 Crystalline Cd3As2 for Thermoelectric Applications 

Among the II3-V2 types narrow gap semiconductors, Cd3As2 has drawn a lot of attention, in part 

because it was believed to have inverted band structure169,188,193,194, whereas all other compounds 
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Cd3P2, Zn3As2 , and Zn3P2 have normal band ordering. Crystal structure of Cd3As2
169–171has a 

tetragonal unit cell with a=12.67 Å; and c= 25.48 Å; for Z=32 with symmetry of space group 

I41cd, Fig. 1-17 (a,b). In this structure, arsenic ions are approximately cubic close-packed and Cd 

ions are tetrahedrally coordinated, which can be described in parallel to a fluorite structure of 

systematic Cd/As vacancies. There are four layers per unit and the missing Cd-As4 tetrahedra are 

arranged without the central symmetry as shown with the (001) projection view in Fig. 1-17(b), 

with the two vacant sites being at diagonally opposite corners of a cube face. The corresponding 

BZ is shown in Fig. 1-17(c). The center of the BZ is the G point, the centers of the top and 

bottom square surfaces are the Z points, and other high-symmetry points are also noted.  

Similar to most of the semiconductors with antifluorite195 or zinc-blende structures, the low 

energy electronic properties of Cd3As2 are mostly determined by the Cd-5s states (conduction 

bands) and the As-4p states (valence bands), as shown in Fig. 1-17(d). There are two distinct 

features in the band structure of Cd3As2. First, a band inversion occurs around the Γ-point with 

the s state lower than the p states, which is an important sign of nontrivial topology. Also, the 

band structure is semimetallic with a band crossing along the Γ-Z direction170,186,188.  

The C4 rotational symmetry around the kz axis in the Cd3As2 crystal results in two different 

representations, Λ! and Λ!, of the crossing bands. This prohibits hybridization between them and 

prevents the formation of a full band gap in the electronic structure, resulting in the protected 

band crossing. As such, two Dirac points at ± kz are observed in this material. As a result, 

Cd3As2 has a stable symmetry-protected bulk (3D) semimetal phase187 with the Fermi surface 

consisting of a single pair of Fermi points; 169,194 and hence it is considered to be the 3D analogue 

of graphene. 
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Figure 1-17. Brillouin zone symmetry and 3D Dirac cone. (a) Cd3As2 crystalizes in a tetragonal body centre 
structure with space group of I41cd, which has 32 number of formula units in the unit cell. The tetragonal structure 
has lattice constant of a ¼ 12.670 Å, b ¼ 12.670 Å and c ¼ 25.480 Å. (b) The basic structure unit is a four corner-
sharing CdAs3-trigonal pyramid. Reprinted from [170] with permission. Copyright ©2013 American Physical 
Society (c) The bulk BZ and the projected surface BZ along the (001) direction. The red crossings locate at (kx, ky, 
kz) ¼ (0, 0, 0.15(2p)/(c*)) (c* ¼ c/a). They denote the two special k points along the G Z momentum space cut-
direction, where 3D Dirac band-touching points are protected by the crystalline C4 symmetry along the kz axis. (d) 
The band structure of Cd3As2. A band inversion occurs around the Γ-point with the s state (red solid cycle) lower 
than the p states, resulting in the nontrivial topology. The band structure is semimetallic with a band crossing along 
the Γ-Z direction. Reprinted from [186] with permission. Copyright © 2014, Rights Managed by Nature Publishing 
Group. 
 

The high in-plane Fermi velocity along with the massless Dirac fermions in crystalline Cd3As2 

results in a natural high carrier mobility of ~105 cm2 V-1 S-1.196 Transport experiments have 

revealed a hidden protection mechanism that strongly suppresses the backscattering of electrons 

in the absence of magnetic field, leading to an exceptionally long electron mean free path up to 

hundreds of micron meters at low temperatures, thus holding a great prospect for the high TE 

performance.186,197 The carrier back-scattering remains suppressed and the electrical transport is 

dominated by high-energy carriers that favorably affect the thermo-power of Cd3As2.198–201 Since 

the power factor is to increase with the carrier mobility, μ, and weighted density-of- states 
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effective mass, i.e. 𝑆!𝜎 = 𝜇𝑚!
∗!∙!, and the lattice thermal conductivity is predicted to be very 

low, Cd3As2 shows a strong potential for demonstrating high, device-favorable S, and in turn ZT.  

In this work, we perform a fully experimental investigation to confirm that crystalline Cd3As2 

would be indeed an exceptional candidate for advanced high efficiency room temperature TE 

technologies. A reduced-temperature vapor-based crystallization pathway was developed in this 

work to produce free-standing, stoichiometric 2D cm-size crystals of Cd3As2. Following the 

synthesis of single-crystal Cd3As2 platelets, a thorough structural characterization was performed 

to confirm the formation and the quality of our crystals. The method and synthesis procedure as 

well as the results of several structural studies are provided in chapter 2. The study of 

thermoelectric properties of Cd3As2 starts in chapter 3 by analyzing the results of temperature-

dependent transport measurement on Cd3As2 platelets. Using these results, the electrical 

conductivity, Seebeck coefficient, and subsequently the thermo-power of crystalline platelets are 

calculated. Finally, in chapter 4, the 1𝜔 method for measuring the thermal conductivity of 

materials is explained, and its result for the synthesized Cd3As2 samples is reported. Using this 

information, we will assess the ZT figure of merit of our crystalline platelets to make a 

conclusion about the thermoelectric properties of Cd3As2 . Chapter 5 will wrap up the work, and 

suggests a few pathways for future studies.  
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Chapter 2. 
Synthesis of crystalline Cd3As2 platelets 

 

2.1 Background 

As discussed in Chapter 1, the unique band structure and inherent exotic physical properties 

originated from Dirac fermions with linear band dispersion has made Dirac materials, such as 

graphene1 and topological insulators,2 promising candidates for the next generation electronic 

and spintronic devices. Among the Dirac materials, the emerging three-dimensional (3D) Dirac 

semimetals, in particular Cd3As2
3 and Na3Bi4 have become the subject of increasing interest due 

to the fact that not only do they exhibit unexpected properties as a result of their nontrivial 

electronic band structure, but they can also be a versatile platform for the systematic study of 

unusual quantum phase transitions between rich topological quantum states by breaking time 

reversal symmetry or inversion symmetry.4–8 Compared with the air-sensitive Na3Bi, Cd3As2 

tends to be much stable at room temperature with a high chemical stability against oxidation,9 

making it an ideal system for synthesis and studying 3D Dirac materials. 

Soon after the unique properties of Cd3As2 were identified theoretically, such as ultrahigh 

electron mobility,10,11 large thermopower, quantum linear magnetoresistance up to room 

temperature, large negative magnetoresistance due to its novel bulk band structure,3,12–14 quantum 

spin Hall effect in its quantum-well structure,12,15 and possible topological superconductivity 

when doped,3,16 several experimental methods were employed to verify these exotic properties. 

The angle-resolved photoemission spectroscopy (ARPES),4,17–19 scanning tunneling microscopy 

(STM) experiments,20 point contact experiments21,22, and the high-pressure resistance 

measurements7,23–25 are among  the techniques used and reported prior.  
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All these studies relied on the high-quality crystals prepared through various techniques such as 

flux method,11,26–29 static sublimation and Piper-Polich methods30, and crystallization from the 

melt faces (Bridgman Method)31. However, in addition to be time consuming, the need for 

solvent (flux method), cracking and disintegration of crystals (static sublimation and Piper-

Polich methods), phase change and formation of polycrystals with grains of various dimensions 

(Bridgman Method), and other drawbacks had hindered the research expansion and future 

practical applications. In general, there are many technical difficulties in realizing single crystals 

of the II3V2 compounds, especially Cd3As2 due to the solid-solid phase transitions and 

decomposition at the melting temperature.32 Given the melting point of 721 °C for Cd3As2, melt-

based crystal growth techniques have to be ruled out from consideration. Pulsed-laser 

evaporation was offered by Dubowski and Williams as an alternative route33, but the resultant 

samples showed highly reduced, i.e., polycrystalline and amorphous quality.  

Among the suggested alternative methods, synthesis methods based on vapor deposition have 

shown to be a promising pathway towards scalable fabrication of high quality Cd3As2 crystals. 

Hrubý and Petrová described a method of preparation of Cd3As2 single crystals employing 

transport reaction in vapor phase without transport gas, and determined optimum conditions for 

growth of the crystals with the average temperature and the temperature gradient of 535 °C and 

3·3 °C/cm, respectively.34 More recently, Chen et al. reported a chemical vapor deposition 

(CVD) method to fabricate high-quality Cd3As2 belt-like crystals exhibiting a length up to 

millimeter with smooth surfaces by placing the Cd3As2 precursor at around 760 °C.26 In another 

study, Li et al. fabricated  crystalline Cd3As2 nanostructures with various morphologies, 

including triangular, hexagonal, octahedral, and star-like shapes with lateral dimensions ranging 

from several hundred nanometers to tens of micrometers via a vapor–solid growth mechanism.35 
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Binary cadmium arsenide that solidifies as Cd3As2 is known to undergo multiple polymorphic 

solid–solid transitions 𝛽 → 𝛼!! → 𝛼! → 𝛼 at temperatures of 578, 475, and 225 °C, respectively; 

therefore, to avoid any phase transitions during the growth process, the growth temperature 

should be limited to 225 °C. 

With the above considerations, in this work, a low-T chemical-vapor deposition route was used 

to grow Cd3As2  platelets up to cm size in a horizontally oriented hot-wall atmospheric pressure 

chemical vapor deposition (CVD) reactor. The resultant products were subject to visual and 

optical microscope investigation followed by a series of elemental and structural analysis 

through energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and transmission 

electron microscopy (TEM), the results of which are presented in the following sections. Before 

extending on the details of the synthesis and characterization of Cd3As2 crystal, we first briefly 

review the chemical vapor deposition method in the following subsection.  

2.1.1 Chemical Vapor Deposition technique 

The chemical vapor deposition (CVD) is a widely used material-processing technology that   

combines different scientific disciplines such as chemistry, physics, materials science, 

engineering and microelectronics to produce high quality, high-performance, solid materials such 

as thin films, nanostructures like nanowires and quantum dots, high purity bulk crystalline 

materials and powders, as well as composite materials from chemical precursors in the vapor 

phase. The chemical reactions of precursor species occur both in the gas phase and on the 

substrate. Reactions can be promoted or initiated by heat (thermal CVD), higher frequency 

radiation such as UV (photo-assisted CVD) or plasma (plasma-enhanced CVD).  
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In its simplest incarnation, CVD involves flowing a precursor gas or gases into a chamber 

containing one or more heated objects to be coated. Chemical reactions occur on and near the 

hot surfaces, resulting in the deposition of a thin film on the surface. This is accompanied by the 

production of chemical by-products that are exhausted out of the chamber along with unreacted 

precursor gases. The key steps of the basic physicochemical steps in an overall CVD reaction 

are as follows:36,37 

1. Evaporation and transport of reagents (i.e. precursors) in the bulk gas flow region into the 

reactor; 

2. Gas phase reactions of precursors in the reaction zone to produce reactive intermediates and 

gaseous by-products; 

3. Mass transport of reactants to the substrate surface; 

4. Adsorption of the reactants on the substrate surface; 

5. Surface diffusion to growth sites, nucleation and surface chemical reactions leading to film or 

nanostructure formation; 

6. Desorption and mass transport of remaining fragments of the decomposition away from the 

reaction zone. 

There are many variants of CVD. It is done in hot-wall reactors and cold-wall reactors, at sub-

Torr total pressures to above-atmospheric pressures, with and without carrier gases, and at 

temperatures typically ranging from 200-1600°C. A number of forms of CVD are in wide use 

and these processes differ in the means by which chemical reactions are initiated (e.g., activation 

process) and process conditions. CVD encompasses a variety of deposition techniques, including 

a range of thermal processes, enhanced processes involving ions, lasers, hot filaments, or 

combustion reactions to increase deposition rates and/or lower deposition temperatures, plasma 
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enhanced CVD (PECVD), photon- initiated CVD, and atomic layer deposition (ALD),36 CVD 

has a number of advantages as a method for depositing thin films. One of the primary advantages 

is that CVD is generally more conformal than physical vapor deposition, meaning that it covers a 

rough surface relatively uniformly, tracking the morphology rather than resulting in thin, low 

quality coatings on vertical walls of the substrate, as is the case for physical vapor deposition 

(PVD) techniques, such as sputtering or evaporation, which generally require a line-of-sight 

between the surface to be coated and the source. Another advantage of CVD is that, in addition 

to the wide variety of materials that can be deposited, they can be deposited with very high 

purity. This results from the relative ease with which impurities are removed from gaseous 

precursors using distillation techniques. Other advantages of CVD technique include relatively 

high deposition rates, and that it does not require very high vacuum levels, it can generally 

process substrates in larger batches than evaporation, and is more forgiving in terms of its 

tolerance for precision in the process conditions.39 

CVD also has a number of disadvantages. One of the primary disadvantages of the CVD method 

lies in the properties of the precursors. Ideally, the precursors need to be volatile at near-room 

temperatures. This is non-trivial for a number of elements in the periodic table, although the use 

of metal-organic precursors has eased this situation. CVD precursors can also be highly toxic 

(Ni(CO)4 ), explosive (B2H6 ), or corrosive (SiCl4 ). The byproducts of CVD reactions can also 

be hazardous (CO, H2, or HF). Some of these precursors, especially the metal-organic precursors, 

can also be quite costly. The other major disadvantage is the fact that the films are usually 

deposited at elevated temperatures. This puts some restrictions on the kind of substrates that can 

be coated. More importantly, it leads to stresses in films deposited on materials with different 

thermal expansion coefficients, which can cause mechanical instabilities in the deposited films.40  
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For microelectronics manufacturing the benefits generally outweigh the problems. Thus, most 

device makers use CVD when possible rather than, for example, MBE. 

2.2 Experimental Procedure 

In this work a low temperature chemical-vapor deposition (CVD) route was used to grow 

crystalline Cd3As2 platelets up to cm size in a horizontally oriented hot-wall chemical vapor 

deposition (CVD) reactor in atmospheric pressure. Pure, polycrystalline Cd3As2 chunks were 

used as a precursor, quartz and alumina wafers served as growth substrates, and argon was used 

as the carrier gas inside the horizontal CVD tube. Prior to the growth, the furnace was pumped 

and flushed with Argon several times by bringing the base pressure down to ~1 mTorr and 

refilling it with 99% pure argon gas to lower the residual pressure of oxygen and remove water. 

The temperature of the furnace was gradually ramped up from ~25 to 700 °C (measured at the 

middle point of the quartz tube) within an hour, and held constantly for ~1h. To facilitate 

transport of Cd and As vapors, a steady argon flow was maintained within the reactor at the rate 

of ~0.2 SCCM. As schematically shown  in Fig. 2-1, the precursor boat was placed in the ~600-

700 °C zone of the furnace while the substrates were placed downstream closer to the exit end of 

the tube with the temperatures ranging from 150 to 200 °C (measured by a IR-thermometer). 

Except for the tube end points, the temperature gradient  along the tube main axis, |∇𝑇| was on 

average a few degrees per cm. Upon completion, the heater was shut down and the reactor was 

left to cool down naturally at the average rate of ~5 °C min−1 in the presence of argon flow.  

 

Figure. 2-1. Schematic of the CVD furnace horizontal tube and T-profile. 
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The alumina substrate appeared shining to the naked eye, and high-density Cd3As2 needle/belt-

like crystals grown on the inner walls of the quartz tube as well as and on the walls of the 

alumina boat. Loose, shiny pieces of Cd3As2 could be seen inside the boat at the growth zone as 

well. After the growth, the substrate as well as the reactor sidewalls was subject to visual and 

optical microscope inspections. The elemental composition, crystal structure and morphology of 

the grown samples were investigated and the results are provided and discussed in the following 

section.  

 

2.3 Results and Discussion 

2.3.1 Scanning Electron Microscopy of Cd3As2 Platelets 

As a part of assessing the growth mechanism and influence of various conditions, upon the 

completion of the growth, the alumina substrate/boat and the quartz tube sidewalls were always 

subject to visual and opticalinspections. The inspection revealed formation of a particulate film 

at the outlet locations. The film comprised mostly sub-mm diameter amorphous and 

polycrystalline clusters of Cd3As2. Because at the outlet locations (not exceeding a few cm from 

the tube end) the temperature would not exceed ~90 °C, the entering vapors quickly became 

supersaturated with the condition strongly favoring precipitation of small size particulates over 

the crystal growth. In contrast, significantly larger, i.e., cm-size crystals were found ~15 cm 

away from the tube end. At threefold higher temperature, the vapors would be less saturated and 

the rate of crystal nucleation drops with the distance from the reactor ends. Increase in the flow 

rate or reduction of the base pressure were observed to adversely affect the yield (number) and 

size of the platelets.  
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Visual inspections reveal that samples crystallize in two different morphologies: needle- and 

platelet-like, with the latter featuring microscopically flat, highly reflecting top surfaces. A 

further examination of the platelets with ~500X optical microscope confirmed a presence of 

micrometer size crystallites at one of the terminal points, indicating that the platelets originate on 

a seed. Under the above specified conditions, the platelets had length and width of ~1 cm and ~2 

mm, respectively, with the fastest growth rate approaching ~50 μm min−1 along the main axis. 

According to scanning electron microscope (SEM) measurements, Fig. 2-2, performed in a 

Hitachi S4800 Ultra-High Resolution Field Emission SEM, the thickness of these platelets 

approaches only ~10 μm, with an inter-planar growth rate orders of magnitude slower.  

 

Figure 2-2. SEM images of the platelets grown by low-T CVD with panels A–C showing different stages of 
secondary platelet growth initiated along the sidewalls.  

 

2.3.2 Energy Dispersive X-ray Spectroscopy Cd3As2 Platelets 

The site-selected energy dispersive X-ray spectroscopy (EDS) spectra were collected to probe 

chemical composition along the main platelet axis. Except for the tip, the X-ray intensity ratio 

showed only a slight deviation from the ideal, i.e. 60:40 Cd to As atomic percentage split/ratio, 

Fig. 2-3 left, indicating that the platelets are Cd3As2. The Cd composition at the platelet edges 
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where the growth of additional platelets is observed, Fig. 2-3 spot e, approaches ~55%, implying 

that the formation of secondary structures might be triggered by Cd deficiency; the latter is a 

result of the target becoming Cd- depleted past the initial growth stage. While the exact 

mechanism controlling the growth of the secondary platelets is unknown, the micro-loading 

effect is likely to control the growth at later stages. It is worth noting that Cd content rose to 

~69% at the platelet tip, which is likely a result of the precipitation of metallic Cd from Cd-rich 

vapors within the first hour of the growth.  

 

Figure 2-3. Left: site-selected EDS spectra of Cd3As2 platelets; middle: low-magnification SEM image of the 
platelet; right: Cd composition taken along the main axis of the platelet.  
 

Due to overall low T, the entire crystallization process remains kinetically limited, which rules 

out flow rate and profile as regulating the growth of the platelets. On the other hand, the vapors 

entering the outlet region cannot cool down abruptly, so the excess Cd present at the very tip of 

the platelets, similar to the case of nanowires41 is likely to act as a catalyst, potentially explaining 

the elongated geometry of the crystals.  
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2.3.3 Micro-Raman Spectroscopy 

 

To probe the sample quality, Raman spectroscopy was performed on the platelets using a 

Renishaw Raman spectrometer that operates in conjunction with a 20X optical microscope and 

edge filter. The sample was excited using 632.8 nm He–Ne laser line. The backscattered light 

was collected and dispersed by a spectrometer onto a thermoelectrically cooled charge-coupled 

device (CCD) detector array. While Raman phonon bands are expected to be weak in 

semimetals, several strong bands were readily registered in the frequency range of ~1500 cm−1 

with their peaks at 210, 265, 412, 669, and 821 cm−1, Fig. 2-4 pointing to a high crystal quality of 

the material. Two prominent Raman bands at 210 and 265 cm−1 with full-widths at half 

maximum of 18 and 10 cm−1, respectively mimic 195 and 249 cm−1 peaks of bulk Cd3As2 and are 

thus attributed to Raman-allowed phonon modes of bulk Cd3As2. A consistent blue-shift of ~15 

cm−1 that is evident for both modes points to a residual compressive strain induced as a result of 

platelet cooling, Fig. 2-5, the inset. The lowest, high intensity mode at 210 cm−1 (195 cm−1 in 

target) coincides with 196 cm−1 phonon-allowed mode reported by Jandl et al.42  and Weszka et 

al.43,  whereas the largest intensity mode at 265 cm−1 (249 cm−1 in target) was also predicted and 

reported to exist in α-Cd3As2 by Weszka.43  
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Figure 2-4. Room-temperature Raman spectrum of Cd3As2 platelet; the inset shows Raman spectrum of the Cd3As2 
target.  
 

2.3.4 Transmission Electron Microscopy of Cd3As2 Platelets 

The bulk crystal structure of Cd3As2 (a = 1.267 nm and c = 2.548 nm) comprises a face-centered 

cubic lattice for As with six Cd atoms occupying the eight corners of an inner cube (two 

diagonally opposite corners of a cubic face remain empty). Its space group belongs to a 

noncentro-symmetric �!!!" 𝐼4!𝑐𝑑  structure.44,45    

To confirm the formation of single crystals and assess the crystal quality, the platelets were 

subject to transmission electron microscope (TEM) analysis (Hitachi H9000NAR, 300 keV). 

Fig.2-5 presents typical bright field (a) and high-resolution (b) TEM images and selected area 

electron diffraction (SAED) pattern (c) obtained on the platelet in a thin area that includes side 

growth. The patterns obtained from various locations of a flat platelet were identical and quasi-

hexagonal, confirming that samples are single crystals that are terminated with the (112) plane. 

By performing Fourier Transform of high-resolution transmission electron microscopy 
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(HRTEM) images, like the one shown in Fig. 2-5(b), with the aid of existing X-ray powder 

diffraction data, we confirm the average lattice spacing of 0.222 nm for the {440} type 

reflections, and a spacing of 0.225 nm for the {408} type reflections, with an average angle of 

60°. A square-like pattern is seen as a secondary feature, especially in the areas of the secondary 

platelet growth. This pattern can be indexed in the Cd3As2 tetragonal framework as composed of 

{220} and {221} perpendicular planes, in epitaxial orientation relationship to the hexagonal 

pattern as labeled on Fig. 2-5(c). The crystal planes identified in Figure 4b correspond to [221] 

ones of the tetragonal lattice of Cd3As2.45 

 

Figure 2-5. a,b) Low- and high-resolution TEM images of the platelet; c) a corresponding SAED pattern. � 
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Chapter 3.  

 
Transport Properties and Seebeck Coefficient Study of Cd3As2 Platelets 
 
 
 
As discussed previously, the ZT expression shows that for good thermoelectric performance both 

the Seebeck coefficient and electrical conductivity are expected to be high (i.e. large power 

factor) while the thermal conductivity is expected to be low. The Cd3As2 crystal possesses Dirac 

fermions that disperse linearly in k-space and as a result it becomes a crystalline material with 

ultrahigh electron mobility, μ, of about 104 – 106 cm2 V−1s−1.1,2 Since the power factor, 𝑆!𝜎 

strongly depends on the electron mobility i.e. 𝑆!𝜎 ≈ 𝜇 !∗

!!

!.!
 (where 𝑚∗ is the energy-band 

electron effective mass and 𝑚! is the free electron mass),3 Cd3As2 shows a great potential for 

high performance thermoelectric applications. 

Several experimental methods such as the angle-resolved photoemission spectroscopy 

(ARPES)4–7, scanning tunneling microscopy (STM),8 the point contact experiments9, and the 

high-pressure resistance measurements10,11 have been employed to verify the predicted nontrivial 

properties of Cd3As2. In addition to these sophisticated experimental methods, it is also possible 

to indirectly measure some properties through simpler methods such as temperature dependent 

transport and electrical conductance measurements as well as the Hall effect measurements. In 

the case of thermoelectric studies, usually the first round of tests to investigate the TE properties 

of a material is based mainly on transport properties as well as ZT evaluation, which is achieved 

through measuring the thermopower, i.e the Seebeck coefficient of the material. Being the most 

stable 3D topological Dirac semimetal, Cd3As2 has the advantage of being suitable for transport 

measurements and assessing its potential for application in thermoelectrics.  
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In this chapter, the transport properties as well as the TE performance of our Cd3As2, a series of 

temperature dependent transport measurements as well as thermopower measurements were 

carried out  performed on the CVD-grown crystals of  Cd3As2. The measurement setup , test 

conditions and approach are given below; the power factor, , electrical conductivity and the 

Seebeck coefficient of the platelets are obtained as function of T. The data is modeled using a 

bipolar heat transport model, the T-dependent |S| data is used to assess  the band separation in the 

inverted band structure of Cd3As2.  

 
 
3.1 Experimental Procedures 
 
To probe the charge-transport characteristics, the platelets were placed across a ~5 mm gap 

formed by two In electrodes on a Au-coated glass substrate, as illustrated in Fig. 3-1. For 

temperature dependent (T-dependent) transport measurements, the device was mounted in a 

heating/cooling stage (Instec HCS302), and the current–voltage (I–V) characteristics were 

acquired with a Keithley 236 Source–Measure Unit (SMU). The I–V characteristics were 

collected at the temperature range of ~220-620 K and bias range of ±5 mV. 

 
 

 

 

Figure 3-1. Schematic of device configuration for transport measurements. The Cd3As2 platelet was placed across a 
~5 mm gap formed by two In electrodes. 
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The thermopower (the magnitude of Seebeck coefficient, S) measurements were carried out at 

the same temperature range by mounting the measurement module in a Janis closed-cycle 

cryostat featuring an optical access window and operating at a pressure of ~10-4 Torr. The 

measurement setup is illustrated in Fig. 3-2. A T-differential of ~5K (as registered by a thermo-

couple) was induced by illuminating one of the metal terminals with cw-1064 nm solid-state 

laser, and the I-V data was collected using Keithley 236 Source–Measure Unit (SMU). To limit 

the noise, these I-V plots were used to extract the thermally induced voltages that appeared as 

Voc. 

 

 

 

 

 

 

 

 

 

Figure 3-2. The measurement setup used for thermopower (S) measurement of Cd3As2 which consists of a cw-IR 
laser source, Janis closed-cycle cryostat system with optical access window operating under various vacuum 
conditions. The measurements were carried out at temperature range of ~220-620 K in vacuum. A T-differential of 
~5K was induced by illuminating one side of the sample with cw-1064 nm solid-state laser and the I-V data was 
collected at each temperature.  

 

3.2 Results and Discussion 
 

3.2.1 T-dependent current-voltage measurements  

 
The I-V measurements were performed on two platelets, referred as to Sample A and sample B, 

from two different sample batches grown separately. The resultant I-V plots at various 
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temperatures had an Ohmic trend for both platelets. Fig. 3-3 (a) shows the I-Vs obtained from 

sample A. The T-dependent electrical conductance was calculated by differentiating the I-V 

plots, Fig.3-3 (b). The conductance was found to decay monotonically with T in both platelets, 

which is typical of both semimetals and degenerately doped semiconductors.  

 

 
 
Figure 3-3. a) Typical I–V characteristics of Cd3As2 platelet (sample A) obtained in a temperature range of ~220-
620K; b) electrical conductance vs. T for samples A and B. The monotonic decay of the conductance with T in both 
platelets is typical of both semimetals and degenerately doped semiconductors.  
 
 
As it is evident in Fig. 3-3 (b), a shoulder peak appears on the right shoulder of the conductance 

plot for platelet A around ~500K. This peak position coincides with the temperature of 𝛼 → 𝛼! 

phase transition in Cd3As2 which is associated with an increase in the electron mobility.  

 
3.2.2 Temperature dependent Thermo-power Measurements 

 
Recall that the Seebeck coefficient —also known as thermopower, thermoelectric power, and 

thermoelectric sensitivity— of a material is a measure of the magnitude of an induced 

thermoelectric voltage ∆𝑉 in response to a temperature difference ∆𝑇 across that material, and it 

is defined as 
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Therefore, in order to calculate the Seebeck coefficient, the thermoelectric voltage developed per 

unit temperature difference in the sample must be measured. As mentioned above, this was done 

by extracting the open circuit voltage Voc from the I-V data collected from the sample while 

inducing a T-differential of ~5K across the sample, as shown in Fig. 3-4.  

 

 

Figure 3-4. The Seebeck coefficient was calculated by extracting the thermoelectric voltage from the I-V data 
collected from the sample while inducing a T-differential of ~5Kacross the sample using cw-1064 nm solid-state 
laser.  

 

The generated thermoelectric voltage across the Cd3As2 platelet was positive resulting in a 

negative Seebeck coefficient S. As S<0, the samples were confirmed to be n-type doped in line 

with the results of prior studies. 12,13  
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Figure 3-5. Magnitude of Seebeck coefficient vs. T.  The S < 0 indicates that the samples were n-type doped in line 
with the reported results in previous studies. The dashed line is the ambipolar model fit to the experimental data of 
platelet B.  

 

Figure 3-5 shows the T-dependent thermo-power for platelets A and B. As seen, S rises linearly 

with T until reaching a peak at Tmax after which it undergoes a gradual decrease.  This behavior is 

typical of degenerate thermoelectric semiconductors.14,15 In such materials, the magnitude of the 

Seebeck coefficient, |S| initially rises linearly with temperature   followed by a decrease in 

thermopower explaining the peak-shape of S(T) as seen in Fig. 3-5. In doped-semiconductors, 

due to small activation energy, extrinsic charge carriers can be readily excited and dominate the 

thermo-electric properties, and the magnitude of the Seebeck coefficient, |S|, rises with 

temperature as the Fermi levels shifts up or done from its intrinsic position ( Dirac point in Dirac 

semimetals). When the temperature is increased further, the rate of interband electron-hole pair 

generation increases and |S| starts to fall due to the opposing contribution of electrons and holes 

to thermopower.15 The peak of thermopower  remains one of the key signatures of bipolar 

conduction mechanism facilitated by thermal interband excitation of  free electrons and holes in 
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semiconductor systems. The strength of bipolar conduction is controlled by rate of interband e-h 

generation, and as a result,  t|S| vs T data can be used to estimate the energy gap Eg of 

semiconductor materials.14–17 as discussed below. 

Before we proceed with the calculation of the effective band separation, we should note the kink 

on the right shoulder of S, especially evident for platelet A, similar to what was observed in 

conductance plots of Fig. 3-3(b). As we shall see in the next subsection, the thermopower of a 

degenerate n-type semiconductor generally scales with the free electron density as |S | ~ n-2/3. 

This requires us to attribute the shoulder peak in S at T~500K to an increase in the electron 

mobility as a result of the first 𝛼 → 𝛼! phase transition in Cd3As2. It should be also noted that 

since both SA>SB, Fig. 3-5, and σA >σB , Fig. 3-3(b), the electron mobility is estimated to be 

larger in platelet A.  

 

3.2.3 Calculation of the band inversion in Cd3As2 using ambipolar heat transport model 

 
As mentioned in previous chapters, Cd3As2 has drawn much attention recently because of its 

inverted band structure. The crystal structure of Cd3As2 is related to tetragonally-distorted anti-

fluorite structure with 1/4 Cd site vacancy. Similar to most of the semiconductors with anti-

fluorite or zinc-blende structures, the low energy electronic properties of Cd3As2 are mostly 

determined by the Cd-5s states (conduction bands) and the As-4p states (valence bands). The 

band structure of Cd3As2 has two distinct features: 1. There is a band-inversion around Γ point 

with the s-state lower than the p-states which is an important sign of non-trivial topology; and 2. 

It is semi-metallic with band crossing along the Γ-Z direction protected by C4 rotational 

symmetry around kz axis.18  
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Plenkiewicz et al.19 have implemented a perturbation method to and the results point to vacancy 

ordering and BZ folding  as a origin of band-inversion in Cd3As2. Using first-principles 

calculations, Wang et al.18 showed that the existence of one Cd vacancy in cubic anti-fluorite 

structure is to give rise to an inverted band ordering at Γ-point. While theoretical19,20 and 

optical21,22 methods have been used to calculate the band inversion in Cd3As2, as a part of the  |S| 

vs. T fitting we also attempt to  assess the effective band separation in CVD-grown Cd3As2. 

 
As mentioned earlier, the origin of the peak in |S| is the temperature-activated ambipolar heat 

transport. The contribution to the overall Seebeck coefficient (S) by both the positive and 

negative charge carriers can be described by the conductivity weighted average: 

 
 
 
 
 
 

where 𝜇! and 𝜇! are the carriers’ mobility, and 𝑝 and � are the concentration of the two carriers. 

The electrical conductivity of carriers is also given by 𝜎! = 𝜇!𝑝 and 𝜎! = 𝜇!𝑛.  

According to Eq. (3-2), the density of the minority free carriers rises with T (thermally-activated 

electronic transitions), which in turn lowers the net thermopower. The onset and strength of 

minority carrier contribution to the thermopower dependen on the semiconductor band-gap, Eg as 

well as the initial majority carrier (dopant) concentration. The peak value of Seebeck coefficient 

𝑆!"# and the temperature at which it is attained, Tmax can be used to estimate the band gap using 

the Goldsmid-Sharp relation15  

 
 

where e =1.6x10-19 C is the electron charge.  

𝑆 =
!𝜇!𝑝𝑆! − 𝜇!𝑛𝑆!!
𝜇!𝑛 + 𝜇!𝑝

 (3-2) 

𝐸! = 2𝑒𝑆!"#𝑇!"#  (3-3) 
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The Goldsmid-Sharp gap was established based on two main assumptions. First, it was assumed 

that Eg >10 kBT (the parameter εg = Eg/ kBT is called the dimensionless bandgap, which governs 

the strength of bipolar conduction), and second, the majority-to-minority weighted mobility ratio 

was assumed to be equal14. However, while the Goldsmid-Sharp relation can serve as a quick 

estimate of the effective band gap present in the vicinity of EF, it can significantly deviate from 

the actual optical band gap value in heavily doped materials with a large majority to-minority 

weighted mobility ratio23 or in narrow-gap semiconductors where usually Eg < 10 kBT.  

As a result, since Cd3As2 can be considered as a degenerate, narrow-gap (inverted band) 

semiconductor, the Goldsmid-Sharp relation could not be employed to calculate the band 

separation in our samples. Hence, to accurately model the temperature response in this study, the 

data was fitted directly by using Eq. (3-2) as follows.  

For degenerate semiconductors at the low temperature limit of T≲ Eg/kBT, the temperature 

dependence of the Seebeck coefficient is given by24  

 

where m* is the carrier effective mass, n is the carrier concentration, kB  is the Boltzmann 

constant, e is the electron charge, and h is the Planck’s constant.  

From Eq. (3-4) we see that the Seebeck coefficient is inversely proportional to carrier 

concentration, i.e. S ~ n-2/3; therefore, since the minority carriers are fewer in number, they will 

have higher thermo-power contributions. However, at low temperatures, the population of 

minority carriers is small, so they will not contribute much to the overall S. At higher 

temperatures, though, a broadening Fermi distribution leads to an exponential increase in 

minority carrier conductivity resulting in a reduction in the thermopower, giving rise to the 

𝑆 ≅
8𝜋!/!𝑘!!  𝑚∗

3!/!𝑒ℎ!𝑛!/! 𝑇 (3-4) 
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formation of a peak in the |S| curve.15 Eq. (3-4) provides a means to independently assess the 

majority carrier density by fitting the low-T portion of S versus T curve (linear regime) assuming 

that m* on n dependence is established beforehand. The effective mass of Cd3As2 was evaluated 

within the concentration range of ~1017–1018 cm−3 earlier, and m*/m0 was found to vary within ~ 

0.02–0.03.25  

Applying an order of magnitude estimate for effective mass of m*/m0 ≈ 10−2 the fitting results 

yields n ≈ 1017 cm−3 and the electron mobility of ~105 cm2V−1s−1 for platelet B. At higher T, the 

Fermi level shifts down and the intrinsic behavior is recovered (ambipolar regime). The carrier 

density calculations accomplished within the framework of np-equation,26 yield the effective 

band separation of ~90 meV, and S-T data matches reasonably well the experimental results as 

shown in Fig. 3-5. The attempts to fit the data for platelet A were not as successful, mostly 

because of the stronger contribution of the phase transition (right shoulder peak) to S at high T-

range. Despite this, still the correct position of the ambipolar peak for sample A could only be 

attained for the effective band separation of ~370 meV. The obtained values generally agree with 

the results of prior optical absorption studies that point to the existence of multiple bandgaps of 

~0.6 and ~0.13 eV in Cd3As2.21,27 While the free carrier density is to rise as a result of thermally 

activated interband transitions, the carrier mobility and in turn electrical conductivity generally 

become suppressed as temperature rises due to an increase in the rate of the electron–phonon 

scattering, in line with the trends seen in Fig. 3-3(b). 

To further confirm the unexpected TE properties of the Cd3As2 platelets, in the next chapter, we 

will measure the thermal conductivity of our samples and the ZT value will be assessed based on 

the findings for thermal conductivity. 
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Chapter 4.  
 
Thermal conductivity measurement of Cd3As2 Platelets 

In previous chapters, we demonstrated that the crystalline Cd3As2 platelets grown through a low-

T chemical vapor deposition (CVD) method exhibit Ohmic-like transport behavior with a high 

electrical conductance 𝜎 ≈ 10! Ω!!𝑚!! and a large thermo-power 𝑆 ≈ 600 𝜇𝑉𝐾!! at room 

temperature. These two together will result in a large power factor 𝑆!𝜎indicating that Cd3As2 

holds a great promise for high efficiency thermoelectric applications. In order to further confirm 

the significance of TE properties of crystalline Cd3As2, we would need to calculate its figure of 

merit ZT given by:  

 

           

Therefore, in addition to the thermo-power S and the electrical resistance σ, calculating ZT also 

requires measuring the thermal conductivity of Cd3As2 platelets.  

There are various techniques for measuring the thermal conductivity of both bulk1, and thin film 

solid-state materials2. Some of the most common measurement methods for bulk materials 

include: transient hot-wire method,3–5 steady-state resistivity  method,6–8 laser flash diffusivity 

method,9–11 transient plane source method.12–14    

Similarly, for thin film and planar materials there are various electro-thermal and optical 

measurement techniques. The mostly used methods include, modulated methods such the 3ω 

technique,15,16 thermo-reflectance-based techniques in both time-domain (TDTR), and frequency-

domain (FDTR),17–19 and methods based on Raman spectroscopy.20,21  

𝑍𝑇 =
𝑆!𝜎
𝜅  𝑇	 (4-1) 
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For electro-thermal methods, both DC and AC heating can be used. However, using the AC 

method has several advantages over the DC. A major advantage of AC heating is that the 

frequency can be chosen to localize the fluctuating temperature field within the film and 

substrate, whereas in the case of steady DC heating, all of the heat flows through the substrate 

and into the environment. Other advantages of AC method include less sensitivity to radiation 

and convection losses, insensitivity to DC voltage artifacts from thermoelectric effects and low-

frequency drifts, and reducing the substrate contribution to the measurements if the sample is 

mounted on a substrate.22  

In general, selecting a specific measurement technique to characterize thermal properties of 

materials depends on the sample type, size, and configuration, the fundamentals and procedure of 

the testing technique and its limitations for each particular sample, and also the potential error 

sources in each technique, such as the convection and radiation heat losses that might affect the 

final results.23  

Among many experimental methods developed over the past centuries to measure the 

fundamental thermal properties of materials, the 3𝜔 method has proven to be valuable for 

probing thermal properties of various crystals. The popularity of the 3𝜔 method mostly stems 

from its better signal-to-noise ratio enabled by using a narrow-band detection technique, as well 

as the one’s ability to obtain both thermal conductivity k and specific heat c of the sample. In this 

method, either the specimen ( should be sufficiently electrically conductive and possess T-

dependent resistivity)  serves as both heater and the temperature sensor, or alternatively a metal 

strip is deposited on the surface of the specimen to serve as the heater and the sensor if the 

specimen has a very low or zero electrical conductivity.  

In the basic 3𝜔 method, the line heater (the specimen itself or the metal strip) is driven by an AC 
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electric current of the form 𝐼! sin𝜔𝑡, causing a temperature fluctuation 2𝜔 related to the thermal 

properties of the heater and/or its surrounding environment, and subsequently a resistance 

fluctuation at 2𝜔. The AC current at 1𝜔 and the perturbation of the heater resistance at 2𝜔 lead 

to the generation of a voltage signal at 3𝜔.  

The 3𝜔 method requires refined sample preparation and in most cases, some expertise in thin 

film patterning and microlithography, and it also assumes that the circuit is driven by an ideal 

current source. In addition, in order to increase the signal-to-noise ratio of the small 3rd harmonic 

signal, the much larger Ohmic signal at 1𝜔 needs to be cancelled. This is usually achieved by 

either nulling a bridge,24,25 or subtraction with a multiplying digital-to-analog converter,26 or by 

using a digital lock-in amplifier with the capability of detecting higher harmonic signals. These 

requirements limit the use of the 3𝜔 method for thermal properties measurements of some 

sample types and configurations although it is considered one of the finest methods available.  

In 2005, Dames and Chen27 presented a more general framework to measure thermal properties, 

applicable to any thermal system with a line heater/sensor. It was identified that the voltage 

signals at 1𝜔 and 2𝜔 frequencies contained the same information about the thermal properties as 

the 3𝜔 signal did. They also derived and verified a correction factor that permitted the use of a 

voltage source instead of a current source, as it is a more common and more convenient option 

for performing the measurements.  

Given the difficulty ofof implementing  the 3𝜔 method on the Cd3As2 platelets, we instead 

employed the method suggested by Dames and Chen (2005), which will be referred as the 

Dames-Chen method in the rest of this chapter, and used the 1𝜔 signal to measure the thermal 

conductivity of Cd3As2 platelets. This allowed us to eliminate additional steps in the sample 
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preparation as well as the need for higher-harmonic detection.  The theory and details of this 

technique are provided in the following section.  

4.1 𝟏𝝎 Method for Measurement of Thermal Conductivity  

In the Dames-Chen method for measurements of thermal properties, the various traditional 3𝜔 

methods as well as the dc-heating/ac-detection experiments are united under a more general 

framework of thermal and electrical transfer functions. As mentioned above, this framework can 

be applied to any thermal system with a line heater/temperature sensor, and in addition to the 3𝜔 

signal, it also enables the use of lower harmonic signals, i.e. 1𝜔 and 2𝜔, to obtain the 

information related to the thermal properties of the specimen. Using the lower harmonic signals, 

in particular the same frequency response (1𝜔), can facilitate the experiment as no harmonic 

detection will be required, and the noise cancellation can be handled through a simple low pass 

filter.  

4.1.1 General Transfer Function Framework 

To achieve the general transfer function of an electro-thermal system, first the thermal transfer 

function and the electrical transfer function need to be derived separately. We will use the same 

notation as what Dames and Chen used in their paper27 to stay consistent.  

4.1.1.1 Thermal Transfer Function 

A system with a single line heater that is also used as the temperature sensor by detecting the 

changes in the resistance, can be generally described by a linear thermal transfer function 𝑍 that 

relates the average temperature rise of the heater 𝜃!"# to the heat input 𝒬. In the frequency 

domain we can write: 
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                                                   𝜃! = 𝒬!𝑍                                                (4-2) 

where the 𝜔 subscript denotes Fourier-transformed quantities. In the time domain�, this will 

become: 

                                          𝜃!"# 𝑡 = 𝒬 𝑡  ⨂ 𝑍!                                         (4-3) 

where ⨂ denotes convolution and 𝑍! is the inverse Fourier transform of 𝑍. For example, a 

sinusoidal heating at frequency 𝜔!   

                                        𝒬 𝑡 = 𝒬! sin 𝜔!𝑡                                            (4-4) 

leads to a temperature response in the time domain 

𝜃!"# 𝑡 = 𝒬!Re 𝑍 𝜔! sin 𝜔!𝑡 + 𝒬!Im 𝑍 𝜔! cos 𝜔!𝑡                 (4-5) 

The thermal transfer function may be complex and frequency dependent. It contains information 

about the thermal properties of the system, such as thermal conductivity and/or specific heat of 

the heater and/or its surroundings.  

4.1.1.2 Electrical Transfer Function 

By measuring the electrical current I and voltage V across the heater, we can determine the 

thermal properties of the system. First the thermal transfer function must be related to an 

electrical transfer function.  

In general, the electrical resistance of the heater is given by  

                                      𝑅! 𝑡 = 𝑅!! 1+ 𝛼𝜃!"# 𝑡                                     (4-6) 
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where R is the electrical resistance in the limit of zero current and 𝜃!"# is averaged over the 

length of the heater. The temperature fluctuations within the heater must be small enough to be 

able to treat it as a constant. It is easily shown that Eq. (4-6) holds even if the temperature profile 

𝜃 𝑥  varies along the length of the heater, as long as the cross section is uniform. Since 

𝛼𝜃!"# ≪ 1, Q can be approximated as  

                                     𝒬 𝑡 = 𝐼! 𝑡 𝑅!!                                               (4-7) 

From Eqs. (4-6) and (4-7), for the voltage drop across the heater we get  

                         𝑉 𝑡 = 𝐼 𝑡 𝑅!! 1+ 𝛼𝑅!!𝑍!⨂𝐼! 𝑡                             (4-8) 

Finally, by applying the Fourier transform to Eq. (4-8), the voltage drop in the frequency domain 

for any current is given by  

                    

where 𝛿 𝜔  is the Dirac delta function in the frequency domain. 

The superposition method cannot be used here since Eq. (4-9) is nonlinear in I.  Therefore, we 

proceed with a particular case where a sinusoidal current at frequency 𝜔! with a dc offset 𝐼!" is 

used for heating the line heater/sensor: 

              𝐼 𝑡 = 𝐼!" + 𝐼! sin 𝜔!𝑡                                          (4-10) 

If we define 𝜂 = !!"
!!

, then Eq. (4-10) in the frequency will becomes: 

𝐼! = 𝐼! 𝜂2𝜋𝛿 𝜔 + 𝑗𝜋 𝛿 𝜔 + 𝜔! − 𝛿 𝜔−𝜔!                 (4-11) 

𝑉! = !
𝑅!!
2𝜋 ! 𝐼!⨂  !2𝜋𝛿(𝜔) + 𝛼 !

𝑅!!
2𝜋!

(𝐼!⨂ 𝐼!)𝑍!	 (4-9)	
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where 𝑗 = −1. 

By substituting the 𝐼! in Eq. (4-9) by Eq. (4-11), we will get: 

𝑉 𝑡 = 𝑉!" + 𝑉!! 𝑡 + 𝑉!! 𝑡 + 𝑉!! 𝑡                               (4-12) 

which indicates that the voltage response occurs at dc and three harmonics. 

Eq. (4-12) can be also expresses as: 

 

 

 

Here the summation is done over the harmonics n, and 𝑋! and 𝑌! are the in-phase and out-of-

phase components of the electrical transfer function, respectively. In terms of rms quantities, 

which is what usually the lock-in amplifier measures, Eq. (4-13) becomes: 

                      

 

This equation is at the very heart of the Dames-Chen method, and it could be applied to any 

system with a line heater/sensor. It shows that, not only the 3rd harmonic, but other harmonics 

contain key information on the thermal transfer function.  

Since in the present work the 1𝜔 signal was used to obtain the thermal conductivity of Cd3As2 

platelets, from now on we only focus our attention to the first harmonic. Detailed discussions 

𝑉!",!"#
2𝛼𝑅!!! 𝐼!,!"#! = 𝑋!(𝜔!, 𝜂) + 𝑗𝑌!(𝜔!, 𝜂)	 (4-14)	

𝑉(𝑡) = 𝛼𝑅!!! 𝐼!!![𝑋!(𝜔!,𝜂) sin(𝑛𝜔!𝑡) + 𝑌!(𝜔!,𝜂)cos(𝑛𝜔!𝑡)]
!

!!!

	 (4-13) 

	



	 81	

pertaining to using  other harmonics can be found elsewhere [27]. The resulting in-phase 𝑋! and 

out-of-phase 𝑌! components of the electrical transfer function for the 1st electrical harmonic are 

given as follows: 

 

 

 

The in-phase 1𝜔 voltage is more important because it also contains information on the dc 

thermal response in the high- frequency limit. Because of the thermal capacitance effects, most 

thermal transfer functions diminish at high frequencies. Thus 𝑋!,𝑋!,𝑌!,𝑌!,, and 𝑌! are die out at 

high frequencies. But 𝑋! retains a term multiplied by Z(0) which allows the dc thermal response 

to be measured at high frequencies, as  there is always a dc component in the 𝐼!𝑅 heating, even 

at high frequencies. For example, with Idc = 0 (𝜂 = 0), the high-frequency limit of 𝑋! has an 

Ohmic voltage plus Z(0)/2, while in the low-frequency limit the contribution is 3Z(0)/4. The 

opposite limit is 𝐼!" ≫ 𝐼!. In this case the high-frequency limit of 𝑋! is dominated by the 

contribution of 𝜂!𝑍 0 , while the dominant contribution at low frequency is 3𝜂!𝑍 0 . This 

means that in a general result, there is a factor of three difference between low- and high-

frequency resistances. 

Equations (4-15a) and (4-15b) are general solutions that apply to any specimen configuration, 

includinga suspended-wire (SW) configuration , in which  the specimen itself acts as the 

heater/sensor (for conductive specimen), or a line heater on a substrate (LHOS) setup featuring a 

line heater/sensor strip which can be deposited on the substrate (for low- or non-conductive 

𝑋! =
1

2𝛼𝑅!!! 𝐼!,!"#! + !𝜂! +
1
2!𝑍

(0)+ 2𝜂!Re[𝑍(𝜔!)] +
1
4Re

[𝑍(2𝜔!)]	

	

𝑌! =
1
4 Im

[𝑍(2𝜔!)]+ 2𝜂!Im[𝑍(𝜔!)]	
	

(4-15a)	

(4-15b)	
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specimen). Each case requires that  the associated theoretical thermal and electrical transfer 

functions are derived first.  

Given that Cd3As2 platelet is highly conductive ( transport measurement results) , it can act as 

both the line heater and the temperature sensor in a 4-probe suspended-wire (SW) setup as 

illustrated in Fig. 4-1 (a),  which was built and used to measure the thermal conductivity in this 

study. 

 

Figure 4-1. Illustration of the four-probe suspended wire (SW) configuration for measuring the thermal conductivity 
of a Cd3As2 platelet. The platelet is heat sunk to the glass substrate through the four electric contacts, but the part in 
between the two voltage contacts needs to be suspended, to allow the temperature variation.  

 

To proceed, we first derive the thermal and electrical transfer functions for the SW configuration. 

Further information on the LHOS setup can be found in work published  by Dames and Chen 

(2005).27 

4.1.1.3 Theoretical Transfer Function for the Suspended-Wire Setup 

The thermal transfer function for an isolated SW with thermally clamped ends was obtained by 

Lu et al. as a series solution.28 Using a closed-form solution for the spatial temperature profile 

[27]. The resulting thermal transfer function for a wire of length 2l and a cross-sectional area S is 

given: 
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where C is the thermal capacitance of the wire, 𝛽 is given by 

 

and the characteristic diffusion time is 

 

where 𝜅 denotes the thermal diffusivity. 

The shape of this transfer function is reminiscent of a first-order RC system, so it would be more 

convenient to work with an approximate transfer function ZS,approx. instead of the actual, 

highlycomplicated transfer function of Eq. (4-16). 

The transfer function  can be simply written as  

𝑍!",!""#$%. 𝜔! =
𝑅!!
12

1− 𝑗𝜔!𝜏 10
1+ 𝜔!𝜏 10 !  (4-19) 

where the thermal resistance 𝑅!! is: 

             

 

𝑍!" =
(sinh𝛽 − sin 𝛽) + 𝑗[sinh 𝛽 + sin 𝛽 − 𝛽 (cosh𝛽 + cos𝛽)]

𝛽𝐶𝜔!(cos𝛽 + cosh𝛽)
	 (4-16)	

𝛽 = !
𝜔!𝜏
2 	 (4-17) 

𝜏 =
4𝑙!

𝜅 	   (4-18)	

𝑅!! =
2𝑙
𝑘𝑆 

	
(4-20) 
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With this approximate transfer function, the resulting in-phase 𝑋! and out-of-phase 𝑌! 

components for the 1st electrical harmonic are to become: 

 

 

 

 

Equations (4-14), (4-21a), and (4-21b) will be used as the main model to fit the experimental in-

phase and out-of-phase data. Using the value obtained from the experimental data for 𝑅!! along 

with the knowledge of the geometry of the test platelet, the thermal conductivity of the Cd3As2 

platelet can be calculated using Eq. (4-20). 

Finally, we need to address the distinction between using a current source and a voltage source. 

All the above-derived equations  are valid under the assumption that the current source at 1𝜔 is 

ideal. In practice; however, in the case of Cd3As2 platelets, since the resistance of the sample is 

generally small compared with that of the rest of the circuit, it is more convenient to use a 

voltage source, such as a function generator or the sine wave output of a lock-in amplifier, rather 

than an ideal current source.  

4.2 Experimental procedure 

A 4-probe single wire (SW) setup was used as illustrated in Fig. 4-1, to perform thermal 

conductivity measurements based on 1𝜔 − approach. The schematic of the experimental setup is 

shown  in Fig. 4-2. A Stanford Research Systems SR810 lock-in amplifier was used to measure 

𝑋! =
𝑅!!

2𝛼𝑅!!𝐼!,!"#! +
𝑅!!
12 !𝜂

! +
1
2!+

𝑅!! 48⁄
1+ 4(𝜔!𝜏 10⁄ )! + 𝜂

! 𝑅!! 6⁄
1+ (𝜔!𝜏 10⁄ )!	

	
	

𝑌! = −
(𝑅!! 24⁄ )(𝜔!𝜏 10⁄ )
1+ 4(𝜔!𝜏 10⁄ )! − 𝜂!

(𝑅!! 6⁄ )(𝜔!𝜏 10⁄ )
1 + (𝜔!𝜏 10⁄ )! 	

	

(4-21a) 
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the 1st harmonic signal across the sample. The sine-out voltage output of the lock-in amplifier 

was used to provide the 1𝜔-driving signal. A 10Ω Vishay Dale precision resistor was used to 

measure amplitude of the 1𝜔 current. No dc offset was necessary, hence 𝜂 = 0. 

The sample was mounted in a Janis closet-cycle cryostat and the temperature was kept stable at 

300 K. The measurements were done in the vacuum of ~10−4 Torr to minimize the convection 

losses. The cryostat featuresheat shielding surfaces which help keep the radiation losses at 

minimum. Furthermore, a care was taken to reduce thermal conduction losses by using small 

diameter Au/Ni wires (Aldrich 326526-500MG). The selected Cd3As2 platelet for the SW setup 

was a 4mm×2mm×100μm with approximately a rectangular cross section.  The IV 

measurements showed a resistance of Re0 ≈ 3 Ω for the platelet. A 4-probe electrode pattern was 

prepared with the help of laser metal cutting system and the platelet was placed on top of the 

electrodes with the help of In. The temperature coefficient of resistivity (TCR) α was determined 

by obtaining the IV plots at several temperatures 300K, 305K, 310K, 315K.  

 

Figure 4-2.The diagram of the experimental setup for measuring the 1ω voltage. A voltage source was used to 
approximate a current source.  
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The lock-in amplifier gain was kept constant when sweeping frequency to avoid absolute errors 

between the various gain settings. All the line filters were turned off and the dc coupling was 

selected for the measurements. The 1𝜔 voltage was recorded at each frequency in the frequency 

range of 0.1-100 Hz. To verify the measurement method and the experiment setup, a 6mm-long 

platinum wire (99.99% purity, Re0 ≈ 2 Ω) with a known thermal conductivity (k ≈ 71.4 W/mK) 

was used as a test sample.  

4.3 Results and Discussion 

The electrical transfer functions at 1𝜔 was measured at constant current while sweeping the 

frequency. As lower frequencies required longer thermal diffusion time and hence longer settling 

time, the lowest frequency used was 1 Hz a. The output signal was the 1𝜔 voltage, V1ω,rms . Using  

Eq. (4-14) combined with with the theoretical transfer functions given by  (4-21a) and (4-21b),  

and factoring in zero dc offset, the in-phase (𝑉!!!,!"#)  and out-of-phase components (𝑉!!!,!"#) 

of  𝑉!!,!"#  would become: 

 

 

 

 

These equations were used to fit the experimental data. The thermal conductivity of the sample 

was then calculated by plugging experimental value for Rth in Eq. (4-20). The data collection was 

automated using a GUI interface based on MATLAB, and the data analysis was performed in 

 𝑉!!!,!"# = 2𝛼𝑅!!! 𝐼!,!"#! !
𝑅!!

2𝛼𝑅!!𝐼!,!"#! +
𝑅!!
24 +

𝑅!! 48⁄
1 + 4(𝜔!𝜏 10⁄ )!!	

	
	

𝑉!!!,!"# = 2𝛼𝑅!!! 𝐼!,!"#! !−
(𝑅!! 24⁄ )(𝜔!𝜏 10⁄ )
1 + 4(𝜔!𝜏 10⁄ )! !	

	

(4-22a) 
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OriginLab v7.5 software. 

As mentioned above, in order to verify the experimental setup, a piece of platinum wire was used 

as the test sample. The experimental results (points) and their fit to the theoretical equations 

(solid line) are presented in Fig. 4-3. The thermal conductivity of the platinum wire was then 

calculated to be ~66.7 W/mK. This value falls within ~6% of the value given in the literature for 

the thermal conductivity of platinum of 71.4 W/mK,29. 
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Figure 4-3. The 1𝜔 voltage across the platinum wire sample in a suspended wire (SW) configuration. The solid lines 
are the theoretical solution obtained from the best approximation to the actual transfer function, and the points are 
the experimental data at 300 K. From this data, the value of the thermal conductivity of Platinum wire calculated to 
be ~66.7 W/mK, compared with the literature reported value of 71.4 W/mK.  
 
 
Having confirmed the method and the experimental setup for the 1𝜔 measurements, the Cd3As2 

sample was prepared for thermal conductivity measurements. Before discussing the experimental 

conditions and the results for the Cd3As2 sample, we first examine the reported values for the  

thermal conductivity of Cd3As2. 

According to previous studies35, at T > 100 K, thermal conductivity of single crystal platelets 
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exhibits only a weak, linear-like increase with T that can be closely approximated with by the 

following empirical equation  

 
 

Earlier, Armitage et al.36 obtained a factor of 2–6 larger thermal conductivities for their 

polycrystalline ingots of Cd3As2 produced via a directional freezing, with average  k ≈ 3.4 ± 2.0 

W/mK at ~300 K, whereas the largest reported k was ~8.0 W/mK. On the other hand, lattice 

thermal conductivity as low as ≈0.3–0.4 W/Km (amorphous limit) was reported by Spitzer36 for 

undoped and doped Cd3As2, which was linked to a presence of lattice defects in the anion 

sublattice, in particular As-vacancy. In another recent study, Zhang et al.32 reported a thermal 

conductivity of 4.17 W/mK for Cd3As2 grown by a self-flux method.  

To measure the thermal conductivity of the Cd3As2 platelet, the sample was mounted on the 4-

probe SW module and placed in the vacuum chamber while the temperature was maintained at 

300K. The 1𝜔 voltage across the platelet was collected at each frequency between 1-100Hz. Fig. 

4-4 presents the collected data (points) and the theoretical fit to the experimental data (solid line) 

for the Cd3As2 platelet.  

𝑘 = 0.75 + 2
𝑇

1000      [𝑊/𝑚𝐾]	 (4-23) 
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Figure 4-4. The 1𝜔 voltage across the Cd3As2 sample in a suspended wire (SW) configuration. The solid lines are 
the theoretical solution obtained from the best approximation to the actual transfer function, and the points are the 
experimental data at 300 K. From this data, the value of the thermal conductivity of Cd3As2 platelet calculated to 
~2.4 W/mK. This value is well within the range reported in literature for thermal conductivity of crystalline Cd3As2. 

 

Using equations (4-20), (4-22a), and (4-22b), the thermal conductivity of the Cd3As2 sample 

calculated to be ~2.4 W/mK, which falls well into the reported range for k of Cd3As2, and it is 

comparable to the k of commercially available bulk TE generators based on Bi2Te3,37,38 and PbTe. 

39–41  

This result confirms that despite the high electron mobility and large power-factor discussed in 

chapter 3, the thermal conductivity of Cd3As2 anomalously stays near the amorphous range 

around the room temperature. Such properties favorably contribute to achieving a high figure of 

merit, ZT in this material.  
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4.4 ZT assessment for crystalline Cd3As2  

To estimate ZT using the thermal conductivity obtained by the 1𝜔 method, we assumed the 

thermal conductivity is constant with temperature over the measurements range. This would add 

a ±0.2 W/m.K error to the measurements. For a more conservative ZT evaluation, we can 

consider the largest thermal conductivity, i.e. k ≈ 8.0, reported so far in previous studies for 

Cd3As2, W/m.K. Using  𝑍𝑇 = !!!
!

, as demonstrated in Fig. 4-5, the calculations for both platelets 

A and B yields peak ZT of at least ≈3.4 and 0.1, respectively.  

 

Figure 4-5. ZT versus T plot for platelets A and B considering a conservative thermal conductivity of k ≈ 8.0 W/Km 
based on previous studies. The ZT peaks for platelets A and B are around ~3.4 and ~ 0.2 respectively.  
 
 
It should be also noted that in case of tetragonal crystals, the thermal conductivity is to be 

anisotropic, yet the difference in the measured values of thermal conductivity for different 

directions is reportedly not to exceed ≈10%.30 Also, as it is evident from Fig. 4-5 and Fig. 4-6, 

due to a stronger dependence of ZT on S (ZT~S2) and with σ and k showing only a weak 
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dependence on T, similar to S, the peak ZT expectedly appears within the same low-temperature 

range of ≈300–400 K for our samples.  

It is further useful to point out that the kink on the right shoulder of the ZT plot, which is more 

pronounced for platelet A in Fig. 4-6, is similar to that of the S plot discussed in chapter 3. This 

shoulder peak that appears at ~500 K, similar to S and σ, can be attributed to an increase in the 

electron mobility as a result of the first, α → α′ phase transition in Cd3As2.  
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Chapter 5.  

Summary and Future Work 

In this dissertation, we developed a low-T vapor-based method for the synthesis of stochiometric 

single crystal Cd3As2 platelets. The formation of cm-size platelets of binary Cd3As2 was verified 

by scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy 

(EDS). Raman spectroscopy demonstrated a high crystal quality of the material with several 

strong bands registered in the frequency range of <1500 cm−1. The high-resolution transmission 

electron microscopy (HRTEM) confirmed that samples were single crystals with the average 

lattice spacing of 0.222 nm for the {440} type reflections, and a spacing of 0.225 nm for the 

{408} type reflections. 

Upon confirming the formation of the crystals, a series of temperature dependent transport and 

Seebeck measurements were performed on the Cd3As2 platelets. The T-dependent I–V tests 

confirmed an Ohmic-like transport behavior and a monotonically decaying electrical 

conductance with T consistent with the semimetallic characteristic of the samples. The 

temperature dependent Seebeck, S measurements showed a high room-temperature thermo-

power of up to ~613 uV K−1. While the debate on whether Cd3As2 has inverted or zero band gap 

structure continues, the primary pathway of the minority carrier generation in our sample is 

phonon-assisted interband electronic transitions that likely involve E and A1 electronic bands.  

To further confirm the unexpected TE properties of the Cd3As2 platelets, the thermal 

conductivity of the Cd3As2 platelet was measured using the 1𝜔 method at 300K. The resultant k 

was calculated to be ~2.4 W/m.K in the confirmation that the thermal conductivity of Cd3As2 

crystals is to approach the amorphous limit at the room temperature. 

With combined high room-temperature thermo-powers of up to ~613 μVK−1, high electrical 
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conductivity, and amorphous limit thermal conductivity of ~2.41 W/m.K, bulk Cd3As2 is 

identified as another, highly promising phonon-glass electron-crystal type TE material for 

application in a low-T high efficiency thermoelectric generators and refrigerators operating 

under normal conditions. 

The research presented in this dissertation sets the ground for further investigation in TE 

properties of crystalline Cd3As2. For example, it would be worthwhile to investigate the TE 

properties of nano-engineered composites of Cd3As2 and ordinary semiconductors such as 

Zn3As2. In such composites, the vast phonon scattering at the interfaces between nano-particles 

or between the two constituents would further reduce the thermal conductivity while the 

presence of topological surface states and the bulk Dirac cones in Cd3As2 ensures excellent 

electrical conductivity, giving rise to improved ZT around room temperature, and subsequently, 

a high thermoelectric efficiency.  

Another possibility would be the study of TE properties upon doping Cd3As2 with ferromagnetic 

martials such as Fe or Cr. It is known that in diluted magnetic semiconductors (DMSCs), the 

emergence of ferromagnetism as a result of the indirect exchange interaction of magnetic ions 

has good prospects in applications for controlling various properties of semiconductors including 

the thermoelectric properties with the help of a magnetic field1. For example, it has been shown 

that doping of Bi2Te3 with iron increases the Seebeck coefficient of this material2.  

Finally, as discussed in chapter 3, the Cd3A2 crystals grown in this work are n-type whereas a 

thermoelectric generator module will need two types of TE materials, n-type and p-type that are 

electrically in series but thermally in parallel.  The ZT of the whole TEG module will depend on 
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the ZT of each constituent material; hence, building a high performance TE generator using 

Cd3A2 will also requires a high performance p-type TE material such as Bi2Te3 and Sb2Te3.  
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