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ABSTRACT
QUANTUM AND CLASSICAL OPTICS OF PLASMONIC SYSTEMS: 3D/2D MATERIALS

AND PHOTONIC TOPOLOGICAL INSULATORS

by

Seyyed Ali Hassani Gangaraj

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor George W. Hanson

At the interface of two different media such as metal and vacuum, light can couple to the electrons

of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-

plariton (SPP), generally characterized by intense fields that decay quickly away from the interface.

Due to their unique properties, SPPs have found a broad range of applications in various areas of

science, including light harvesting, medical science, energy transfer and imaging. In addition to the

widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the

electromagnetics and quantum optics communities. In this thesis several new areas of investigation

into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different

environments: 3D waveguides, 2D surfaces and on photonic topological insulators.

Entanglement is an experimentally verified property of nature where pairs of quantum systems

are connected in some manner such that the quantum state of each system cannot be described

independently. Generating, preserving, and controlling entanglement is necessary for many quantum

computer implementations. It is highly desirable to control entanglement between two multi-level

emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided

by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising

way to achieve having control over a SPP mediated entanglement.

We first consider two quantum dots placed above 3D finite length waveguides. We have restricted

our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main

results in this work are to show that realistic finite-length nanowire and groove waveguides, with

their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is

demonstrated that proper positioning of the emitters with respect to the waveguide edges can lead

to a significant increase in entanglement compared to the case of the emitter coupled to an infinite

plasmonic waveguide. Moreover, even for the infinite-length case, discontinuities in the waveguides

do not always play a detrimental role, to be more specific, an increase in entanglement compared to

the unperturbed waveguides can be achieved by introducing coupling slots (engineered perturbations)

into the structure.

In addition to 3D environments, two dimensional (2D) materials are of intense interest due to

their extraordinary capabilities to manipulate reflection and transmission characteristics, and beam-
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forming. Some notable examples of 2D layered crystals include graphene, black phosphorus (BP) and

boron nitride. Graphene in particular has received considerable attention as a promising 2D surface

for many applications relating to its integrability and electronic tune-ability. Black phosphorus is

also a layered material that has recently been exfoliated into its multilayers, showing good electrical

transport properties and promising optical charactristics.

Most of the previous studies of the electromagnetic response of 2D surfaces and metallic surface

plasmons have considered isotropic structures with omnidirectional plasmonic surface wave propa-

gation on the plane of these materials. Such an omnidirectional surface wave propagation does not

allow for launching energy from electromagnetic source to a specific target on the surface, which is

a desirable characteristic. However, an appropriate structured anisotropic surface can provide such

a capability, such as an array of graphene strips. In addition, by tuning of the graphene doping it

is possible to have a hyperbolic surface response. Working in this regime of surface conductivity, it

is possible to launch SPPs along a specific direction, which is tunable via doping of the graphene.

In this work, the electromagnetic response of anisotropic 2D surfaces has been investigated based on

the analysis of the Greens function for the surface plasmonic wave contribution of the Sommerfeld

integral. The Sommerfeld integral form of the Greens function can be time-consuming to evaluate,

and here, it has been shown that for the surface waves, this integral can be evaluated efficiently as a

mixture of continuous and discrete spectrums associated to the radiation of the source into the am-

bient space and energy coupled to the SPPs. Graphene strip arrays provide directive surface waves

in the low THz regime, and unperturbed black phosphorus provides a similar response for higher

frequency ranges.

All plasmonic devices are impacted by SPP diffraction at surface defects and discontinuities. In

particular, for reciprocal materials a surface defect/discontinuity can both scatter a forward mode into

a backward mode (and vice versa) and cause significant radiation/diffraction of the SPP. The presence

of a backward state comes from time reversal (TR) symmetry; when broken, a backward state may

be absent, and reflection at a discontinuity can be suppressed. As a result, surface energy becomes

unidirectional and follows the contour of the interface. This type of system can be broadly classified

as a photonic topological insulators (PTIs). The properties of PTIs are quantified by the Berry phase,

Berry connection, and an invariant known as the Chern number. Also the physical meaning of the

Berry phase, connection, and curvature, how these quantities arise in electromagnetic problems, and

the significance of Chern numbers for unidirectional, scattering-immune surface wave propagation

are discussed. The Chern numbers for the electromagnetic modes supported by a biased plasma

have been calculated. It has been demonstrated that the modes supported by biased plasmas indeed

possess non-trivial Chern numbers, which leads to the propagation of a topologically protected and

unidirectional surface modes (energy) at the interface between the biased plasma and topologically

trivial material.
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The ability to guide the energy from one quantum dot to another one is a great advantage to

achieve highly entangled states. Here, in this thesis for the first time, we investigated the unidirec-

tional surface wave assisted entanglement in PTIs. We have investigated spontaneous and pumped

entanglement of two level systems (quantum dots) in the vicinity of a photonic topological insulator

interface, which supports a unidirectional SPP in the common bandgap of the bulk materials. We

also have derived a master equation for quantum dots interactions in a general three-dimensional,

nonreciprocal, inhomogeneous and lossy environment. The resulting entanglement is shown to be

extremely robust to defects occurring in the material system.
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Chapter 1

Introduction

1.1 Background

Surface plasmon-polaritons (SPPs) are electromagnetic waves that are confined to material interfaces,

and allow sub-wavelength confinement of light [1]. Extensive research has been carried out in this

field due to their technological potential. Applications of SPPs in electronics and optics are numerous

and include light harvesting [2], medical sciences [3], plasmon focusing [4], and waveguiding and

interferometry [5]. These applications and their rapid development have been made possible by the

large array of experimental tools that have become available in recent years for nanoscale fabrication

and theoretical tools in the form of powerful electromagnetic simulation methods. At the same time,

and completely parallel to this remarkable progress, there has been a growing excitement about the

prospects for exploring quantum properties of surface plasmons and building plasmonic devices that

operate faithfully at the quantum level [6].

In this basis, many efforts have been made to control the coupling between quantum emitters,

atoms or generally qubits and the electromagnetic field. One major force driving the interest in this

research area lies in quantum information science, which often requires the generation of entangled

states between qubits and transfer of quantum states between matter and light degrees of freedom

[7]. One of the necessary elements in this context is coupling of qubits provided by the interchange of

fermions or bosons [8, 9]. Electromagnetic field establishes the factor needed to prepare or maintain an

entangled state or to couple two prepared entangled systems. This can be accomplished by coupling

the quantum system (system of atoms) to cavity modes or in the case of very large separation, by

coupling to the waveguide modes [10, 11].

Photonic crystal cavities [12] and waveguides [13], nano-wire structures [14] and dielectric slot

waveguides [15] are examples of plasmonic and non-plasmonic electromagnetic structures proposed

in the literature for tailoring the light-matter interaction. Enhancement of electromagnetic modes

in these structures is the most important aspect, given by the Purcel factor, which is the decay
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rate of the quantum dot in the presence of the medium normalized by that of vacuum. Surface

waves, which are supported at the interface of a metallic structure and a dielectric, display strong

field concentration, and so are great candidates to be exploited for quantum optics. Along with 3D

plasmonic systems, 2D plasmonic structures have also attracted a great attention for quantum optics

applications and controlling the atom-field and atom-atom coupling due to their potential to support

and control plasmonic waves using a gate voltage in graphene [16, 17] or doping in single/multi-layer

black phosphorus [18].

In order to have strong and robust communication and entangled states in a system of qubits

interacting through a medium, we have to focus the energy from the excited qubit toward other

qubit in the system. However, all 2D or 3D plasmonic devices are impacted by SPP reflection,

radiation, and diffraction at surface defects and discontinuities, which leads to loosing the atomic

coupling. In particular, for reciprocal materials, for each forward propagating mode there is a corre-

sponding backward mode with identical propagation constant and modal distribution, and a surface

defect/discontinuity can both scatter a forward mode into a backward mode (and vice versa) and

cause significant radiation/diffraction of the SPP into the bulk materials. In order to control this

effect we have to 1) eliminate one of the modes (forward or backward), and 2) ensure that energy

is not radiated into the bulk materials. The presence of a backward state comes from time-reversal

(TR) symmetry; when the symmetry is broken, a backward state may be absent, and reflection at a

discontinuity can be suppressed. Furthermore, if the surface mode appears in a common bandgap of

both bulk materials, then at a surface discontinuity radiation/diffraction into the bulk is suppressed.

As a result, surface energy is unidirectional and must follow the contour of the interface, even in

the presence of strong discontinuities. As it will be discussed in the later chapters, this interesting

behavior of scattering-immune surface wave can lead to a focused unidirectional energy transfer and

so robust entanglement. This type of system can be broadly classified as a photonic topological

insulator (PTI) [19], which is an electromagnetic insulator in its bulk with conducting states on its

surface. The first PTIs were considered in [20] as analogs to electronic topological insulators (TIs),

in which surface electron transport occurs without dissipation, even in the presence of impurities.

The rest of this chapter is devoted to a brief introduction to the mathematical aspects of dyadic

Green functions, and the electric field dyadic Green function derivation for electromagnetic systems.

Then the two methods of Heisenberg equation of motion (HEM) and quantum master equation (ME)

are described, which are used to describe different 2D/3D quantum system evolution in later chapters.

1.2 Dyadic Green Functions

1.2.1 Mathematical Basis of Dyadic Green Function

Let us consider the following general inhomogeneous equation
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LA(r) = B(r) (1.1)

where A(r) is a general unknown vectorial field, B(r) is the known source term and L is a linear

operator which acts on the unknown field. The general solution of the above equation consists of a

homogeneous solution (B(r) = 0) and particular inhomogeneous soultion. It is usually difficult to

find the solution of 1.1 while it is easier to consider the special source term δ(r − r′) which is zero

everywhere expect at the point r− r′ = 0. Therefore 1.1 becomes

LGi(r, r
′) = niδ(r− r′) (1.2)

where ni, i = x, y, z denotes an arbitrary unit vector. As can be seen the unknown vector Gi depends

on the location of delta function inhomogeneity. In a general form, 1.2 can be written as

LG(r, r′) = Iδ(r− r′) (1.3)

where I is the unit dyad and G is a dyadic function known as the dyadic Green function. By having the

known dyadic Green function of 1.1, one can find the unknown vector field A(r) by post-multiplying

both sides of 1.3 with B(r′) and integrating over the volume where B(r) 6= 0. This process gives

∫
V

LG(r, r′)B(r′)dV ′ =

∫
V

B(r′)δ(r− r′)dV ′, (1.4)

and the right hand side of above equation reduces to B(r), and with 1.1 it follows that

A(r) =

∫
V

G(r, r′)B(r′)dV ′. (1.5)

Thus the solution of the original equation can be found by integrating the product of the dyadic

Green function and the source term over the volume where the source is non zero.

The assumption that the operator L and
∫
dV ′ can be interchanged is not strictly valid and

special care must be applied if the integrand is not well behaved. Most often the dyadic Green

function G is singular at r = r′ and an infinitesimal exclusion volume surrounding r = r′ has to be

introduced [21, 22]. Depolarization of the principal volume must be treated separately resulting in

the depolarization term, L, which depends only on the geometrical shape of the exclusion volume.

Furthermore, in most numerical schemes, the principal volume has a finite size giving rise to an

additional correction term labeled as the self term M. However, as the exclusion volume shrinks the

self term reduces to zero. As long as we consider field points outside of the source volume V we do

not need to consider these issues. In the next section we briefly bring the derivation of the dyadic

Green function for electric field.
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1.2.2 Derivation of the Electric Field Dyadic Green Functions

The Maxwell Equations, in a generalized medium, where we have assumed time-harmonic fields with

an e−iωt dependence, can be written as

∇×E(r, ω) = iωB(r, ω)

∇×H(r, ω) = −iωD(r, ω) + j(r, ω)

∇ ·D(r, ω) = ρ(r, ω)

∇ ·B(r, ω) = 0 (1.6)

where E is the electric field, D is the electric displacement, H is the magnetic field, B is the magnetic

induction, j is the current density and ρ is the charge density. The E/B fields can be related to the

D/H fields through the constitutive relations, assuming simple isotropic, local, media,

D(r, ω) = ε0ε(r, ω)E(r, ω)

H(r, ω) =
1

µ0µ(r, ω)
B(r, ω) (1.7)

where ε and µ are the relative material permittivity and permeability and ε0 and µ0 are the permit-

tivity and permeability of the free space. To determine the dyadic Green function for the electric

field we start with the wave equation for the electric field. For an inhomogeneous medium,

∇×∇×E(r)− k2E(r) = iωµ0µ(r)j(r), (1.8)

where we can define for each component of j a corresponding Green function. For instance, for jx we

have

∇×∇×Gx(r, r′)− k2Gx(r, r′) = nxδ(r− r′). (1.9)

A similar equation can be formulated for a point source polarized along the other directions y

and z. In order to account for all orientations we write as the general definition of the dyadic Green

function for the electric field

∇×∇×G(r, r′)− k2G(r, r′) = Iδ(r− r′), (1.10)

where as what we had before, I is the unit tensor. The first column of the tensor G corresponds to

the field due to a point source polarized along x, the second column to the field due to a point source

along y direction and the third column is the field due a point source polarized along the z direction.

Therefore the dyadic Green function is a compact notation for three vectorial Green functions.

The source current j(r) can be viewed as a superposition of point currents, so if we know the
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Green function we can find the particular solution of the electric field in 1.8 as

E(r) = iωµ0

∫
V

G(r, r′)µ(r′)j(r′)dV ′. (1.11)

The above equation is the particular solution and we need to add any homogeneous solution E0.

Therefore the general solution has the following form

E(r) = E0 + iωµ0

∫
V

G(r, r′)µ(r′)j(r′)dV ′ (1.12)

and the corresponding magnetic field is

H(r) = H0 +

∫
V

[∇×G(r, r′)] j(r′)dV ′. (1.13)

The above equations lead to volume integral equations. They form the basis for various theoretical

and numerical formalisms such as the method of moments, the Lippmann-Schwinger equation, or the

coupled dipole method.

Some common relations valid for reciprocal dyadic Green functions are [23]

G∗ij(r, r
′, ω) = Gij(r, r

′,−ω)

Gji(r
′, r, ω) = Gij(r, r

′, ω) (1.14)

and the most important one for our use is

Im(G(r, r′, ω))

=

∫
d3s

(
Im(ε(s, ω))G(r, s, ω)G∗(s, r′, ω)− Im(µ−1(s, ω)) [G(r, s, ω)×∇s] · [∇s ×G∗(s, r′, ω)]

)
.

(1.15)

As an example, the Green dyadic for electric field in free space is

G0(r, r′, ω) =

(
I +

1

k2
∇∇

)
eikR

4πR
=

[
(kR)2 + ikR− 1

(kR)2
I +

3− 3ikR− (kR)2

(kR)2

R⊗R

R2

]
eikR

4πR
, (1.16)

where R = r− r′. The imaginary part of the Green dyadic is ImG0(r, r′, ω) = k/6π.

Although the dyadic Green function is a classical quantity, it plays a crucial role in the methods

of describing the evolution of quantum systems. In what follows, two of them are discussed; the

Heisenberg equations of motion (HEM) and master equation (ME).
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1.3 Heisenberg Equations of Motion (HEM)

We introduce the quantum theoretical formalism developed by Welsch and colleagues [24, 28, 26, 27]

which describes the quantization of the electromagnetic field for lossy, inhomogeneous media. Using

this approach, we define a Hamiltonian that describes the coupling between an atom or quantum dot

(QD) and the general field to calculate the dynamics of the system and other quantum properties

such as entanglement. We shall solve these equations self-consistently and non-perturbatively, thus

making them applicable in both the weak and strong coupling regimes. Although in this formalism

the whole process is non-classical and requires quantum operator description of the quantities, the

coupling between emitter and medium can be rigorously incorporated into the formalism through the

dyadic Green function.

1.3.1 Field Quantization in Lossy Inhomogeneous Media

We begin with the sourceless quantized form of Maxwell’s equation

∇× Ê(r, ω) = iωB̂(r, ω)

∇× Ĥ(r, ω) = −iωD̂(r, ω)

∇ · D̂(r, ω) = 0

∇ · B̂(r, ω) = 0. (1.17)

where the fields have been elevated to operator level. Similarly the constitutive relations become

D̂(r, ω) = ε0ε(r, ω)Ê(r, ω) + P̂N (r, ω)

Ĥ(r, ω) =
1

µ0µ(r, ω)
B̂(r, ω) + M̂N (r, ω) (1.18)

As can be seen in the above equations, in order to consider the material loss, two additional noise

terms P̂N (r, ω) and M̂N (r, ω) have been added, which are associated with electric and magnetic

losses respectively. Using the above sets of equations we can obtain the electric field wave equation

∇× µ−1(r, ω)∇× Ê(r, ω)− ω2
λ

c2
ε(r, ω)Ê(r, ω) = iωλµ0ĵN (r, ω) (1.19)

where

ĵN (r, ω) = −iωλP̂N (r, ω) +∇× M̂N (r, ω) (1.20)

is the noise current and ωλ is the eigen frequency of a single continuous mode. From this we can

obtain the total electric field operator as
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Ê(r, ωλ) =

∫ [
G(r, r′, ωλ) · P̂N (r′, ωλ) +

i

ωλ
G(r, r′, ωλ) · ∇ × M̂N (r′, ωλ)

]
dr′ (1.21)

where G is the classical Green function given by

∇× µ−1(r, ωλ)∇×G(r, r′, ωλ)− ω2
λ

c2
ε(r, ωλ)G(r, r′, ωλ) =

ω2
λ

c2
Iδ(r− r′). (1.22)

Working in the Heisenberg picture, operators become time dependent so we can write the total

electric field operator as

Ê(r, ωλ, t) =

∫ [
G(r, r′, ωλ) · P̂N (r′, ωλ, t) +

i

ωλ
G(r, r′, ωλ) · ∇ × M̂N (r′, ωλ, t)

]
dr′. (1.23)

Considering the noise polarization and the noise magnetization, we introduce a set of continuous

bosonic vector fields b̂e(r, ωλ, t) and b̂m(r, ωλ, t) which are responsible for the excitation of noises

[27, 28]

P̂N (r, ωλ, t) = i

√
~Im(ε(r, ωλ))

πε0
b̂e(r, ωλ, t)

M̂N (r, ωλ, t) =

√
−~Im(µ−1(r, ωλ))

πµ0ε20
b̂m(r, ωλ, t) (1.24)

such that the bosonic field operators satisfy [b̂ν,ib̂
†
ν′,j ] = δνν′δij(r− r′)δ(ωλ − ω′λ) and [b̂ν,ib̂ν′,j ] = 0

where ν, ν′ = e, m and i, j = x, y, z. At this point it should be noted that the mode frequency

ωλ is not the same as the Fourier transform variable, ω, of the time variable t. Substituting 1.24

into 1.21 one can find the quantum electric field operator of the mode ωλ in term of classical Green

function and bosonic field operators and then the total time dependent electric field from all modes

may can be written as the sum of the positive and negative frequency components

Ê(r, t) =

∫ ∞
0

Ê(r, ωλ, t)dωλ + H.C. = i

√
~
πε0
×∫ ∞

0

dωλ

∫
G(r, r′, ωλ) ·

[√
Im(ε(r′, ωλ))b̂e(r

′, ωλ, t) +
c

ωλ
∇×

√
−Im(µ−1(r′, ωλ))b̂m(r′, ωλ, t)

]
dr′

+ H.C. (1.25)

where H.C. denoted Hermitian conjugate. At first sight, it looks like for materials with vanishing

loss the electric field relating to the bosonic noise operators would become zero. However, if we are

careful in taking the limits then we arrive at a finite answer for the electric field operator [24].
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1.3.2 Non-Pumped Concurrence of Two Quantum Dots Interacting Through

lossy Inhomogeneous Medium

We consider two quantum dots interacting through a lossy inhomogeneous reservoir with an arbitrary

ε(r, ω) and µ(r, ω). In the Heisenberg picture the total Hamiltonian of the system is

Htotal =
∑
ν=e,m

∫
dr

∫ +∞

0

dωλ ~ωλb†ν(r, ωλ, t) · bν(r, ωλ, t) +
∑
m=a,b

~ωmσ†m(t)σm(t)

−
∑
m=a,b

(σ†m(t) + σm(t))dm ·E(rm, t) (1.26)

where the first term describes the bosonic field modes (photons and plasmons) and the sum ν = e,m

is over the electric/magnetic modes, the second term describes the qubit (spin 1/2) Pauli operators

where σ̂†/σ̂ are the Pauli raising/lowering operators of the QD exciton, and the last term represents

the interaction between field and quantum dots. Furthermore, ωm is the QDs transition frequency,

dm is the optical dipole moment of the mth QD and the electric field operator has been found in the

previous sub-section, 1.25 with G(r, r′, ωλ) as the classical Green function that propagates the field

from a dipole source at r′ to r.

Before going further, let us take a brief look on the most important terms of the total Hamiltonian

expression, interaction and qubit terms.

We consider |j〉 as states describing the atomic system, then the Schrodinger equation gives

Ha |j〉 = Ej |j〉 where Ej is the energy associated with each state. Multiplying both sides of this

equation with bra 〈j| from right and summing over all states gives

∑
j

Ha |j〉 〈j| =
∑
j

Ej |j〉 〈j| → H =
∑
j

Ej |j〉 〈j| . (1.27)

Considering a two-level atom as our system with |e〉 as excited state and |g〉 as the ground state

then we have Ha = Ee |e〉 〈e|+ Eg |g〉 〈g|. If we choose the reference of energy to be at the middle of

excited and ground states energies then we need to re-scale the atom Hamiltonian by the averages of

the energies Eave = I(Ee + Eg)/2 which gives

Ha = Ee |e〉 〈e|+ Eg |g〉 〈g| − I(
Ee + Eg

2
) =

1

2
(Ee − Eg) σ̂z (1.28)

where σ̂z = σ̂†σ̂− σ̂σ̂† is the inversion operator. Another representation could be choosing the ground

state as the energy reference. In this case we have to re-scale by Eg |g〉 〈g| which yields

Ha = Ee |e〉 〈e|+ Eg |g〉 〈g| − Eg |g〉 〈g| = ~ωaσ̂†σ (1.29)

where ωa = Ee/~ is the atomic transition frequency.
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The interaction Hamiltonian can be considered as Hint = −p̂ · Ê where p̂ = qrδ is the general

dipole operator. Using dipole approximation we assume rδ � 2πc/ωa. Considering
∑
j |j〉 〈j| = I

we have qrδ =
∑
i,j |i〉 〈i| qrδ

∑
j |j〉 〈j| =

∑
i,j dij |i〉 〈j| where dij = 〈i| qrδ |j〉 is the electric dipole

transition matrix and q = −e is the charge of electron. Assuming the diagonal elements of dij vanish

it follows that

p̂ ≡ qrδ = deg |e〉 〈g|+ dge |g〉 〈e| = (σ̂† + σ̂)d (1.30)

where we have supposed deg = dge = d. Therefore for the interaction term of the total Hamiltonian

we have Hint = −(σ̂† + σ̂)d · Ê.

Let us come back to the total Hamiltonian expression. By using the Heisenberg equation of

motion ∂tÂ(t) = −i~−1[Â(t),Htotal] we can find the dynamics of the operators b, b† and σ
+/−
m .

After carrying out the first derivative of the operators with respect to time we have

∂tσ̂m = −iωmσ̂ + i~−1dm · Ê(rm)

∂tσ̂
†
m = iωmσ̂ − i~−1dm · Ê(rm)

∂tb̂e(r, ωλ) = −iωλb̂e(r, ωλ) +

√
Im(ε(r, ωλ))

π~ε0

∑
m=a,b

G∗(r, rm, ωλ) · dm
[
σm + σ†m

]
∂tb̂m(r, ωλ) = −iωλb̂m(r, ωλ) +

√
−Im(µ−1(r, ωλ))

π~ε0
c

ωλ

∑
m=a,b

[G∗(r, rm, ωλ)×∇r] · dm
[
σm + σ†m

]
(1.31)

where the relations σmσ
†
mσm = σm, σ†mσmσ

†
m = σ†m and σ†mσ

†
mσm = σmσmσ

†
m = 0 are used. The

equations in 1.31 do not form a closed set unless we make the weak excitation approximation, which

ignores higher order photon correlations (i.e. multiphoton correlations). The result of truncating the

number of excitations in the system to a single excitation is that σm,z = σ†mσm − σmσ†m = −1. If we

consider our initial field to be the vacuum field, this approximation is exact. Next we take a one-sided

Fourier transform
∫∞

0
eiωt∂tA(t)dt = −iωA(ω)−A(t = 0) which leads to

σ̂m(ω) =
iσ̂(t = 0)

ω − ωm
− i~

−1dm · Ê(rm, ω)

ω − ωm

σ̂†m(ω) =
iσ̂†(t = 0)

ω + ωm
+ i

~−1dm · Ê(rm, ω)

ω + ωm

b̂e(r, ωλ, ω) = b̂
0

e(r, ωλ, ω) + i

√
Im(ε(r, ωλ))

π~ε0

∑
m=a,b

G∗(r, rm, ωλ) · dm
[
σm(ω) + σ†m(ω)

]
ω − ωλ

b̂m(r, ωλ, ω) = b̂
0

m(r, ωλ, ω) + i

√
−Im(µ−1(r, ωλ))

π~ε0
c

ωλ

∑
m=a,b

[G∗(r, rm, ωλ)×∇r] · dm
[
σm + σ†m

]
ω − ωλ

(1.32)

where b̂
0

is the free field solution without an emitter (the QD) [29]. In the previous section we had

9



found the quantized form of the time dependent electric field operator in 1.25. If we take a Fourier

transform

F .T
[
Ê(r, t)

]
= Ê(r, ω) = i

√
~
πε0
×∫ ∞

0

dωλ

∫
G(r, r′, ωλ) ·

[√
Im(ε(r′, ωλ))b̂e(r

′, ωλ, ω) +
c

ωλ
∇×

√
−Im(µ−1(r′, ωλ))b̂m(r′, ωλ, ω)

]
dr′

+ H.C. (1.33)

inserting b̂e/m from 1.32 in 1.33 then considering the fact that the Green function is analytical in

the upper portion of the complex plane and using the following relation

lim
y→0+

=

∫ b

a

f(x)

x+ iy
= −iπ

∫ b

a

f(x)δ(x)dx+ P
∫ b

a

f(x)

x
(1.34)

along with 1.15 for reciprocal Green functions it is straightforward to show (the computational details

are omitted for conciseness) that that the electric field can be written as

Ê(r, ω) = Ê
0
(r, ω) +

∑
m=a,b

1

ε0
G(r, rm;ω) · dm(σ†m(ω) + σm(ω)) (1.35)

where the first term on the right hand side is the initial vacuum field which does not contribute in

the dynamics of the system and can be ignored. If we plug-in σ†m(ω) + σm(ω) from 1.32 into 1.35 we

obtain

Ê(r, ω) =
∑
m=a,b

1

ε0
G(r, rm;ω) · Ŝm(ω) +

∑
m=a,b

αm(ω)G(r, rm;ω) · Ê(rm, ω) (1.36)

considering equal transition frequency for QDs, ωa = ωb = ωd, where αm(ω) =
2ωdd

2
m

~ε0(ω2
d−ω2)

is the bare

polarizability, Ŝm = idm(
σ+
m(t=0)
ω+ωd

+
σ−m(t=0)
ω−ωd ) is the quantum dipole source and Ê(rm, ω) is the total

electric field at the position of mth quantum dot. Using 1.36 the total electric field at the position of

the quantum dots, E(ra/b), can be found and then using the first equation in 1.32 one can find σ̂a/b

in the frequency domain. The quantum dynamics of the spatially separated qubits can be obtained

from the inverse Fourier transform of the qubit operators

σ̂a/b(ω) =
iσ̂a/b(t = 0)

(ω − ωd)
−

~−1da/b ·E(ra/b, ω)

(ω − ωd)
. (1.37)

Writing the wave function as

|ψ(t)〉 =
∑
m=a,b

Cum(t) |aem, 0〉+ Cgm(t) |agm, λ〉 . (1.38)

where the first entry denoted the state of the atoms and second stands for the state of reservoir. The

amplitude coefficient of the qubit upper excited state is Cua/b =
∫ +∞
−∞

〈
0 | σ̂a/b(ω) | ψ(t = 0)

〉
eiωtdt,
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with |0〉 the lower level eigenstate of the qubits. The upper state population of each qubit is then

obtained from | Cum |2 [6]. The entanglement between the two qubits are related to the concurrence

between them, C(t), which can be obtained from the excited state populations as C(t) = 2Cua(t)Cub (t).

A concurrence value of 0 indicates no quantum entanglement, whereas a value of 1 is a maximally-

entangled state [30].

1.4 Density Operator and Quantum Master Equation (ME)

1.4.1 The Density Operator

The density matrix describes a quantum system in a mixed state (a statistical ensemble, statistical

mixture of multiple quantum states: for a two state system, it is either in state 1 or state 2, but we

don’t know which one it is), rather than a pure state, described by a single state vector, or a quantum

superposition (it is in both states 1 and 2 at the same time- a quantum superposition of pure states

is another pure state, for example |ψ〉 = (|ψ1〉+ |ψ2〉) /
√

2).

If a quantum system may be found in state |ψ1〉 with probability p1, or it may be found in state

|ψ2〉 with probability p2, etc., the density operator (Hermitian, ρ̂ = ρ̂†) is

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (1.39)

where pi is the probability of the system being in the ith state |ψi〉 of the ensemble, where 〈ψi|ψi〉 = 1.

Why: If a quantum system may be found in state |ψ1〉 with probability p1, or it may be found in

state |ψ2〉 with probability p2, then the probability of measuring outcome p associated with state |ψp〉

is the probability of measuring p given that the system is in |ψ1〉, |〈ψp|ψ1〉|2 times the probability

that the system is in state |ψ1〉, plus the probability of measuring p given that the system is in |ψ2〉,

|〈ψp|ψ2〉|2 times the probability that the system is in state |ψ2〉. Thus,

P (p) = p1 |〈ψp|ψ1〉|2 + p2 |〈ψp|ψ2〉|2 (1.40)

= p1 〈ψp|ψ1〉 〈ψ1|ψp〉+ p2 〈ψp|ψ2〉 〈ψ2|ψp〉 (1.41)

= 〈ψp| (p1 |ψ1〉 〈ψ1|+ p2 |ψ2〉 〈ψ2|) |ψp〉 (1.42)

= 〈ψp| ρ̂ |ψp〉 . (1.43)

The probabilities satisfy

0 ≤ pi ≤ 1, T r (ρ̂) =
∑
i

pi = 1,
∑
i

p2
i ≤ 1. (1.44)

For a pure state, all pi vanish except one (say, the jth one), and ρ̂ = |ψj〉 〈ψj |. Like the wavefunction,

the density operator in the Schrödinger representation is explicitly time-dependent, unlike the usual
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Schrödinger picture where operators are not explicitly time dependent,

ρ̂ (t) =
∑
i

pi |ψi (t)〉 〈ψi (t)| . (1.45)

Mixed states arise in situations where one does not know which particular states are being manip-

ulated, such as a system in thermal equilibrium, or a system with an uncertain preparation history (so

one does not know which pure state the system is in). As an example, say there is a 50% probability

that the system is in state 1 |ψ1〉, and a 50% probability that the state vector is state 2, |ψ2〉. Then,

the system is in a mixed state with the density matrix

ρ̂ =
1

2
|ψ1〉 〈ψ1|+

1

2
|ψ2〉 〈ψ2| . (1.46)

As another example, assume that there is a 50% chance that a system is in state |ψ1〉, and a 50%

chance it is in the superposition state (|ψ1〉+ |ψ2〉) /
√

2. Then,

ρ̂ =
1

2
|ψ1〉 〈ψ1|+

1

2

|ψ1〉+ |ψ2〉√
2

〈ψ1|+ 〈ψ2|√
2

(1.47)

=
1

2
|ψ1〉 〈ψ1|+

1

4
|ψ1〉 〈ψ1|+

1

4
|ψ1〉 〈ψ2|+

1

4
|ψ2〉 〈ψ1|+

1

4
|ψ2〉 〈ψ2| (1.48)

=
3

4
|ψ1〉 〈ψ1|+

1

4
|ψ1〉 〈ψ2|+

1

4
|ψ2〉 〈ψ1|+

1

4
|ψ2〉 〈ψ2| . (1.49)

This state is partially mixed,

ρ =

 3
4

1
4

1
4

1
4

 , partially mixed, eigenvalues are
1

2
− 1

4

√
2,

1

4

√
2 +

1

2
. (1.50)

An important difference between statistical mixtures and coherent superpositions is the presence

of off-diagonal terms in the density matrix. For a statistical mixture (mixed state) the off-diagonal

terms are zero (each atom in the mixture will either be in a state such that ρ11 = 1 and ρ22 = 0, or

in a state such that ρ11 = 0 and ρ22 = 1, and so ρ12 = ρ21 = 0). In contrast, systems in coherent

superpositions are such that both ρ11 and ρ22 are nonzero, resulting in non-zero off-diagonal elements.

For example, assume that the system is in the superposition state (|ψ1〉+ |ψ2〉) /
√

2. Then,

ρ̂ =
|ψ1〉+ |ψ2〉√

2

〈ψ1|+ 〈ψ2|√
2

(1.51)

=
1

2
|ψ1〉 〈ψ1|+

1

2
|ψ1〉 〈ψ2|+

1

2
|ψ2〉 〈ψ1|+

1

2
|ψ2〉 〈ψ2| , (1.52)

such that

ρ =

 1
2

1
2

1
2

1
2

 , pure state, eigenvalues are 0, 1. (1.53)
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So, pure states can have non-zero off-diagonal elements (but need not), and mixed states do not

have off-diagonal elements.

Before moving on to the master equation derivation we briefly discuss about the interaction

picture.

1.4.2 Interaction Picture

The interaction picture (also known as the Dirac picture) is an intermediate representation between

the Schrödinger and the Heisenberg pictures. Whereas in the other two pictures either the state

vector or the operators carry time dependence, in the interaction picture both carry part of the time

dependence of observables. The interaction picture is useful in dealing with the changes to the wave

functions and observable due to the interactions.

Consider a Hamiltonian in the Schrödinger picture

HS = H0,S + Hi,S , (1.54)

where H0,S is exactly solvable and Hi,S is a time-dependent perturbation. Then, in the interaction

picture state vectors are

|ψI (t)〉 = e+iH0,St/} |ψS (t)〉 (1.55)

(note the plus sign in the exponential), where |ψS〉 is the state vector in the Schrödinger picture.

Operators in the interaction picture are

ÂI (t) = eiH0,St/}ÂSe
−iH0,St/}. (1.56)

thus

H0,I (t) = eiH0,St/}H0,Se
−iH0,St/} = H0,S (1.57)

and

Hi,I (t) = eiH0,St/}Hi,Se
−iH0,St/}. (1.58)
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In the interaction picture, states evolve as

d

dt
|ψI (t)〉 =

d

dt
eiH0,St/} |ψS (t)〉 =

i

}
H0,S |ψI (t)〉+ eiH0,St/} d

dt
|ψS (t)〉 (1.59)

=
i

}
H0,S |ψI (t)〉+ eiH0,St/} d

dt

(
e−iHSt/} |ψS (0)〉

)
(1.60)

=
i

}
H0,S |ψI (t)〉+ eiH0,St/}

(
− i
}

HS

)
|ψS (t)〉 (1.61)

=
i

}
H0,S |ψI (t)〉+

(
− i
}

(
H0,S |ψI (t)〉+ eiH0,St/}Hi,S

)
|ψS (t)〉

)
(1.62)

= − i
}

(
eiH0,St/}Hi,S

)
|ψS (t)〉 = − i

}
eiH0,St/}Hi,Se

−iH0,St/} |ψI (t)〉 (1.63)

= − i
}

Hi,I |ψI (t)〉 . (1.64)

This is like in the Schrödinger picture,

d

dt
|ψS (t)〉 = − i

}
HS |ψS (t)〉 , (1.65)

but only the interaction term is involved.

1.4.3 Master Equations For Quantum Dots Interacting in a Lossy Inho-

mogeneous Reciprocal Medium

We suppose that the total Hamiltonian of the system can be written as

H = H0 + V, (1.66)

where

H0 = HF + HA =

∫
d3r

∫ ∞
0

dω~ωf̂†ω(r)f̂ω(r) +
~ω0

2
(σ̂z1 + σ̂z2) , (1.67)

is the Hamiltonian of the reservoir and quantum dots and

V = −
∑
i=1,2

(
σ̂†i Ê(ri) · di + σ̂iÊ

†(ri) · di
)
. (1.68)
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is the interaction Hamiltonian. As was discussed earlier, operators in the interaction picture are

related to operators in the Schroedinger picture by 1.56, thus in the interaction picture

eiH0t/hσ̂†i Ê(ri, ω)e−iH0t/h = eiHAt/hσ̂†i e
−iHAt/h eiHFt/hÊ(ri, ω)e−iHFt/h

eiHAt/hσ̂†i e
−iHAt/h = eiω0tσ̂†i

eiHAt/hσ̂ie
−iHAt/h = e−iω0tσ̂i,

eαf̂
†f̂ f̂ e−αf̂

†f̂ = e−αf̂

eαf̂
†f̂ f̂†e−αf̂

†f̂ = eαf̂†

eiĤFt/hÊ(ri, ω)e−iĤFt/h = e−iωtÊ(ri, ω), eiHFt/hÊ†(ri, ω)e−iHFt/h = eiωtÊ†(ri, ω). (1.69)

and thus

eiH0t/hσ̂†i Ê(ri, ω)e−iH0t/h = ei(ω0−ω)tσ̂†i Ê(ri, ω),

eiĤ0t/hσ̂iÊ
†(ri, ω)e−iH0t/h = e−i(ω0−ω)tσ̂iÊ

†(ri, ω),

and also

Ṽ = −
∫ ∞

0

dω
∑
i=1,2

(
ei(ω0−ω)tσ̂†i Ê(ri, ω) · di + e−i(ω0−ω)tσ̂iÊ

†(ri, ω) · di
)
. (1.70)

Starting from the equation of motion for the density

∂ρ̂

∂t
= − i

~
[H, ρ̂] = − i

~
[H0 + V, ρ̂] (1.71)

where H is the total Hamiltonian of the system and V is the interaction Hamiltonian. We will work

in interaction picture so the equation for density matrix reduces to

∂ρ̃(t)

∂t
= − i

~

[
Ṽ(t), ρ̃(t)

]
. (1.72)

We can write the formal solution of the above equation as

ρ̃(t) = ρ̃(0)− i

~

∫ t

0

dt′
[
Ṽ(t′), ρ̃(t′)

]
. (1.73)

substituting (1.73) back into (1.72), we obtain

∂ρ̃(t)

∂t
= − i

~

[
Ṽ(t), ρ̃(0)

]
− 1

~2

∫ t

0

dt′
[
Ṽ(t),

[
Ṽ(t′), ρ̃(t′)

]]
, (1.74)
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and tracing out the reservoir degrees of freedom,

∂ρ̃S(t)

∂t
= − i

~
TrR

[
Ṽ(t), ρ̃(0)

]
− 1

~2

∫ t

0

dt′TrR

[
Ṽ(t),

[
Ṽ(t′), ρ̃(t′)

]]
. (1.75)

We now assume that due to the weakness of interaction between reservoir and the system density

matrix can be separated, i.e. ρ̃(t) = ρ̃S(t)⊗ ρ̃R(0) (Born approximation). We assume also that, even

though system may cause excitations in the reservoir, all such excitations decay very fast. We also

assume that the reservoir density matrix is diagonal. Then,

TrR

[
Ṽ(t), ρ̃(0)

]
∼
∑
R

〈
R
∣∣∣[Ṽ(t), ρ̃(0)

]∣∣∣R〉 ∼∑
R

〈
R
∣∣∣[bR, f(b†RbR)

]∣∣∣R〉 ∼∑
R

〈R |bR|R〉 = 0,

and thus

∂ρ̃S(t)

∂t
= − 1

~2

∫ t

0

dt′TrR

[
Ṽ(t),

[
Ṽ(t′), ρ̃s(t

′)⊗ ρ̃R(0)
]]
. (1.76)

Finally, we use the Markov approximation

∂ρ̃S(t)

∂t
= − 1

~2

∫ ∞
0

dt′ TrR

[
Ṽ(t),

[
Ṽ(t− t′), ρ̃s(t)⊗ ρ̃R(0)

]]
. (1.77)

Let us consider the commutator in the master equations in more details,

TrR

[
Ṽ(t),

[
Ṽ(t− t′), ρ̃s(t)⊗ ρ̃R(0)

]]
= TrR

[
Ṽ(t), Ṽ(t− t′)ρ̃s(t)⊗ ρ̃R(0)− ρ̃s(t)⊗ ρ̃R(0)Ṽ(t− t′)

]
= TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R − Ṽ(t− t′)ρ̃s(t)ρ̃RṼ(t) + H.c.

)
. (1.78)

The first term in 1.78 is

TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R

)
=

∞∫∫
0

dωdω′
∑

i,j=1,2

TrR

(
ei(ω0−ω)tσ̂†i Ê(ri, ω) · di + e−i(ω0−ω)tσ̂iÊ

†(ri, ω) · di
)

×
(
ei(ω0−ω′)(t−t′)σ̂†j Ê(rj , ω

′) · dj + e−i(ω0−ω′)(t−t′)σ̂jÊ
†(rj , ω

′) · dj
)
ρ̃s(t)ρ̃R. (1.79)

and once again we need to take into account that density matrix of reservoir is diagonal. In this case,

TrR

(
Ê(ri, ω)Ê(rj , ω

′)ρ̃R

)
∼
∑
R

〈R| f̂2 |R〉 = 0,

TrR

(
Ê†(ri, ω)Ê(rj , ω

′)ρ̃R

)
∼
∑
R

〈R| f̂†f̂ |R〉 = n(ω) ≈ 0,

TrR

(
Ê(ri, ω)Ê†(rj , ω

′)ρ̃R

)
∼
∑
R

〈R| f̂ f̂† |R〉 ∼
∑
R

〈R| 1 + f̂†f̂ |R〉 δ(ω − ω′). (1.80)

Here we took into account that the average number of thermal photons n(ω) is negligible. Thus
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only the last term is nonzero,

TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R

)
=

∑
i,j=1,2

dαidβj

∞∫
0

dωei(ω0−ω)t′ σ̂†i σ̂j ρ̃s(t)TrR

(
Êα(ri, ω)Ê†β(rj , ω)ρ̃R

)
,

(1.81)

and so,

TrR

(
Êα(ri, ω)Ê†β(rj , ω)ρ̃R

)
=

~
πε0

ω4

c4

∫∫
d3rd3r′

√
ε′′(r, ω)

√
ε′′(r′, ω) Gαδ(ri, r, ω)G∗βγ(rj , r

′, ω)TrR

(
f̂δ(r, ω)f̂†γ(r′, ω)ρ̃R

)
=

~
πε0

ω4

c4

∫
d3r ε′′(r, ω)Gαγ(ri, r, ω)G∗βγ(rj , r, ω) =

~
πε0

ω2

c2
ImGαβ(ri, rj , ω) (1.82)

and therefore,

TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R

)
=

∑
i,j=1,2

σ̂†i σ̂j ρ̃s(t)

∞∫
0

dωei(ω0−ω)t′ Γ̃ij(ω), (1.83)

Γ̃ij(ω) =
~ω2

πε0c2

∑
α,β=x,y,z

dαiIm(Gαβ)(ri, rj , ω)dβj (1.84)

thus

− 1

~2

∫ ∞
0

dt′TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R

)
= − 1

~2

∑
i,j=1,2

σ̂†i σ̂j ρ̃s(t)

∞∫
0

dωΓ̃ij(ω)

∫ ∞
0

dt′ei(ω0−ω)t′

= −
∑

i,j=1,2

Γij(ω0)

2
σ̂†i σ̂j ρ̃s(t) + i

∑
i,j=1,2

gij(ω0)σ̂†i σ̂j ρ̃s(t), (1.85)

gij(ω0) =
1

π~ε0c2
P
∫ ∞

0

dω
ω2

ω − ω0

∑
α,β=x,y,z

dαiIm(Gαβ)(ri, rj , ω)dβj

=
ω2

0

ε0~c2
∑

α,β=x,y,z

dαiRe(Gαβ)(ri, rj , ω0)dβj (1.86)

Finally, we neglect the Lamb shift, gii(ω0), i.e.

− 1

~2

∫ ∞
0

dt′ TrR

(
Ṽ(t)Ṽ(t− t′)ρ̃s(t)ρ̃R

)
= −

∑
i,j=1,2

Γij(ω0)

2
σ̂†i σ̂j ρ̃s(t)

+ i
(
g12(ω0)σ̂†1σ̂2 + g21(ω0)σ̂†2σ̂1

)
ρ̃s(t) (1.87)

17



Next, we present a detailed calculation of the second term in 1.78,

TrRṼ(t− t′)ρ̃s(t)ρ̃RṼ(t) =

∞∫∫
0

dωdω′
∑

i,j=1,2

TrR

(
ei(ω0−ω′)(t−t′)σ̂†j Ê(rj , ω

′) · dj + e−i(ω0−ω′)(t−t′)σ̂jÊ
†(rj , ω

′) · dj
)
ρ̃s(t)ρ̃R

×
(
ei(ω0−ω)tσ̂†i Ê(ri, ω) · di + e−i(ω0−ω)tσ̂iÊ

†(ri, ω) · di
)
. (1.88)

In contrast to the above case, the only non-zero term is

TrR

(
Ê†(rj , ω

′)ρ̃RÊ(ri, ω)
)
∼ TrR

(
Ê(ri, ω)Ê†(rj , ω

′)ρ̃R

)
, (1.89)

thus

− 1

~2

∫ ∞
0

dt′TrR

(
Ṽ(t− t′)ρ̃s(t)ρ̃RṼ(t)

)
=

− 1

~2

∫ ∞
0

dt′
∑

i,j=1,2

dαjdβi

∞∫
0

dωei(ω0−ω)t′ σ̂j ρ̃s(t)σ̂
†
iTrR

(
Êβ(ri, ω)Ê†α(rj , ω)ρ̃R

)
=

− 1

~2

∑
i,j=1,2

σ̂iρ̃s(t)σ̂
†
j

∞∫
0

dωΓ̃ij(ω)

(
πδ(ω − ω0)− iP

(
1

ω − ω0

))
=

−
∑

i,j=1,2

Γij(ω0)

2
σ̂iρ̃s(t)σ̂

†
j + i

∑
i,j=1,2

gij(ω0)σ̂iρ̃s(t)σ̂
†
j . (1.90)

Using the first and second term in 1.78, for a reciprocal medium, Γij(ω0) = Γji(ω0), and gij(ω0) =

gji(ω0) and the Lindblad operator in the Master equation takes the form

∂ρ̃S(t)

∂t
=

∑
i,j=1,2

Γij(ω0)

2

(
2σ̂iρ̃s(t)σ̂

†
j − σ̂

†
i σ̂j ρ̃s(t)− ρ̃s(t)σ̂

†
i σ̂j

)
+ i
[
g12(ω0)σ̂†1σ̂2 + g21(ω0)σ̂†2σ̂1, ρ̃s(t)

]
.

(1.91)

1.4.4 Master Equation in the Symmetric Basis

Having formed the operator-level ME, we need to project it onto a basis in order to solve it using

scalar (non-operator) mathematics. Let us define the basis

|3〉 = |e1〉 ⊗ |e2〉 = |e1, e2〉 , |0〉 = |g1〉 ⊗ |g2〉 = |g1, g2〉 , |±〉 =
1√
2

(|e1, g2〉 ± |g1, e2〉) . (1.92)

The following tables show how qubit operators act on basis vectors.

18



|3〉 |0〉 |+〉 |−〉
σ̂1 |g1, e2〉 0 |0〉 /

√
2 |0〉 /

√
2

σ̂†1 0 |e1, g2〉 |3〉 /
√

2 − |3〉 /
√

2

σ̂2 |e1, g2〉 0 |0〉 /
√

2 − |0〉 /
√

2

σ̂†2 0 |g1, e2〉 |3〉 /
√

2 |3〉 /
√

2

〈3| 〈0| 〈+| 〈−|
σ̂1 0 〈e1, g2| 〈3| /

√
2 −〈3| /

√
2

σ̂†1 〈g1, e2| 0 〈0| /
√

2 〈0| /
√

2

σ̂2 0 〈g1, e2| 〈3| /
√

2 〈3| /
√

2

σ̂†2 〈e1, g2| 0 〈0| /
√

2 −〈0| /
√

2

|3〉 |0〉 |+〉 |−〉
σ̂†1σ̂1 |3〉 0 |e1, g2〉 /

√
2 |e1, g2〉 /

√
2

σ̂†1σ̂2 0 0 |e1, g2〉 /
√

2 − |e1, g2〉 /
√

2

σ̂†2σ̂1 0 0 |g1, e2〉 /
√

2 |g1, e2〉 /
√

2

σ̂†2σ̂2 |3〉 0 |g1, e2〉 /
√

2 − |g1, e2〉 /
√

2

〈3| 〈0| 〈+| 〈−|
σ̂†1σ̂1 〈3| 0 〈e1, g2| /

√
2 〈e1, g2| /

√
2

σ̂†1σ̂2 0 0 〈g1, e2| /
√

2 〈g1, e2| /
√

2

σ̂†2σ̂1 0 0 〈e1, g2| /
√

2 −〈e1, g2| /
√

2

σ̂†2σ̂2 〈3| 0 〈g1, e2| /
√

2 −〈g1, e2| /
√

2

Table 1.1: Qubits Pauli operators and their acts on the atomic states.

If we take into account that Γ12(ω0) = Γ21(ω0), and g12(ω0) = g21(ω0), we obtain

∂ρ̃S(t)

∂t
=

Γ11(ω0)

2

(
2σ̂1ρ̃s(t)σ̂

†
1 − σ̂

†
1σ̂1ρ̃s(t)− ρ̃s(t)σ̂†1σ̂1

)
+

Γ22(ω0)

2

(
2σ̂2ρ̃s(t)σ̂

†
2 − σ̂

†
2σ̂2ρ̃s(t)− ρ̃s(t)σ̂†2σ̂2

)
+

Γ12(ω0)

2

(
2σ̂1ρ̃s(t)σ̂

†
2 − σ̂

†
1σ̂2ρ̃s(t)− ρ̃s(t)σ̂†1σ̂2 + 2σ̂2ρ̃s(t)σ̂

†
1 − σ̂

†
2σ̂1ρ̃s(t)− ρ̃s(t)σ̂†2σ̂1

)
+ ig12(ω0)

(
σ̂†1σ̂2ρ̃s(t) + σ̂†2σ̂1ρ̃s(t)− ρ̃s(t)σ̂†1σ̂2 − ρ̃s(t)σ̂†2σ̂1

)
. (1.93)

A further simplification is possible if we assume that the emitters are identical and that LDOS at

the positions of emitters is the same, i.e. Γ11 = Γ22,

∂ρ̃33(t)

∂t
= −2Γ11ρ̃33(t), (1.94)

∂ρ̃++(t)

∂t
= (Γ11 + Γ12) ρ̃33(t)− (Γ11 + Γ12) ρ̃++(t), (1.95)

∂ρ̃−−(t)

∂t
= (Γ11 − Γ12) ρ̃33(t)− (Γ11 − Γ12) ρ̃−−(t), (1.96)

∂ρ̃00(t)

∂t
= (Γ11 + Γ12) ρ̃++(t) + (Γ11 − Γ12) ρ̃−−(t), (1.97)

∂ρ̃+−(t)

∂t
= − (Γ11 − 2ig12) ρ̃+−(t), (1.98)

∂ρ̃30(t)

∂t
= −Γ11ρ̃30(t), (1.99)

∂ρ̃−+(t)

∂t
= − (Γ11 + 2ig12) ρ̃−+(t). (1.100)

1.4.5 Single Excited Emitter

Let us assume that only one emitter is in the excited state: |Ψ〉 = |e1, g2〉. The density matrix of

system is

ρ0 = |Ψ〉 〈Ψ| = |e1, g2〉 〈e1, g2| . (1.101)

we switch to the basis defined in 1.92. It yields

|e1, g2〉 =
∑

i=0,3,±
Ci |i〉 . (1.102)
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expansion coefficients are C0,3 = 0, and C± = 1/
√

2. Thus in a symmetric basis,

ΨS =
1√
2

(|+〉+ |−〉) , (1.103)

and the only non-zero components of the density matrix are ρ++(0) = ρ+−(0) = ρ−+(0) = ρ−−(0) =

1/2. Then the system of equations are

ρ33(t) = 0, ρ00(t) = 0, (1.104)

∂ρ++(t)

∂t
= − (Γ11 + Γ12) ρ++(t), ⇒ ρ++(t) =

1

2
e−(Γ11+Γ12)t, (1.105)

∂ρ−−(t)

∂t
= − (Γ11 − Γ12) ρ−−(t), ⇒ ρ−−(t) =

1

2
e−(Γ11−Γ12)t, (1.106)

∂ρ+−(t)

∂t
= − (Γ11 − 2ig12) ρ+−(t), ⇒ ρ+−(t) =

1

2
e−(Γ11−2ig12)t, (1.107)

∂ρ−+(t)

∂t
= − (Γ11 + 2ig12) ρ−+(t), ⇒ ρ−+(t) =

1

2
e−(Γ11+2ig12)t. (1.108)

In order to characterize entanglement between two emitters we use the concept of concurrence

[32, 33], which is defined as

C = max(0,
√
u1 −

√
u2 −

√
u3 −

√
u4), (1.109)

where ui are arranged in descending order of the eigenvalues of the matrix ρsρ̃s, where ρ̃s = σy ⊗

σyρ
?
sσy ⊗ σy is the spin-flip density matrix with σy being the Pauli matrix. Concurrence may vary

in the range between 0 (unentangled state) and 1 (completely entangled), such that values between

0 and 1 correspond to different degrees of entanglement. If only non-zero elements of the density

matrix are considered then

C(t) =

√
[ρ++(t)− ρ−−(t)]

2
+ 4Im [ρ+−(t)]

2

=
1

2

√[
e−(Γ11+Γ12)t − e−(Γ11−Γ12)t

]2
+ 4e−2Γ11t sin2(2g12t). (1.110)

1.4.6 Single Excited Emitter With Pure Dephasing

Another decay channel for quantum systems is some internal interactions (electron-phonon interac-

tion in QDs), which can be accounted by a pure dephasing term. Pure dephasing through phonon

interactions forms the dominant non-radiative loss mechanism. This effect can be taken into account

in the Master equation via the standard Lindbladian superoperator LÔ = Ôρ̃s(t)Ô
†−1/2[Ô†Ô, ρ̃s(t)]

as follows [30]

L(σ†ασα) = L(|eα〉 〈eα|) =
γα
2

[2 |eα〉 〈eα| ρ |eα〉 〈eα| − |eα〉 〈eα| ρ− ρ |eα〉 〈eα|] , (1.111)
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where γ1 = γ2 = γ as the pure dephasing rate of the αth QD. Considering this extra term in the

master equation, the differential equations governing the density operator elements become

∂ρ++

∂t
= −

(
Γ11 + Γ12 +

γ

2

)
ρ++ +

γ

2
ρ−− (1.112)

∂ρ−−
∂t

= −
(

Γ11 − Γ12 +
γ

2

)
ρ−− +

γ

2
ρ++ (1.113)

∂ρ+−

∂t
= −

(
Γ11 +

γ

2
− 2ig12

)
ρ+− +

γ

2
ρ−+ (1.114)

∂ρ−+

∂t
= −

(
Γ11 +

γ

2
+ 2ig12

)
ρ−+ +

γ

2
ρ+−. (1.115)

The solution of these equation takes the form

ρ++ =
e−(Γ11+γ/2)t

2

[
cosh

(√
Γ′12t

)
− Γ12 − γ/2

Γ′12

sinh
(√

Γ′12t
)]

(1.116)

ρ−− =
e−(Γ11+γ/2)t

2

[
cosh

(√
Γ′12t

)
+

Γ12 + γ/2

Γ′12

sinh
(√

Γ′12t
)]

(1.117)

ρ+− =
e−(Γ11+γ/2)t

2

[
cos
(

2
√
g′12t

)
+
ig12 + γ/4

g′12

sin
(

2
√
g′12t

)]
(1.118)

where Γ′12 =
√

Γ2
12 + γ2/4, g′12 =

√
g2

12 − γ2/16.Thus,

ρ++ − ρ−− = − Γ12

2Γ′12

e−(Γ11+γ/2)t
(
e
√

Γ′12t − e−
√

Γ′12t
)
, (1.119)

Im [ρ+−] =
g12

2g′12

e−(Γ11+γ/2)t sin
(

2
√
g′12t

)
, (1.120)

and therefore the concurrence in presence of dephasing is

C(t) =
e−(Γ11+γ/2)t

2

√
(Γ12/Γ′12)

2
(
e
√

Γ′12t − e−
√

Γ′12t
)2

+ 4 (g12/g′12)
2

sin2
(

2
√
g′12t

)
. (1.121)

It can be easily shown that in the limit of γ → 0, 1.121 reduces to 1.110.

1.4.7 Steady-State Concurrence Between Two Quantum Dots

As one can see from 1.110 or 1.121, the concurrence between two emitters interacting through a lossy

inhomogeneous environment decays with time. In order to obtain a steady entangled state we need to

compensate for the depopulation of the emitters excited states (via coupling to the environment) by

pumping with an external laser field. Here we restrict our consideration to the case when the external

pumps are modeled by classical monochromatic waves of frequency ωL, Eα = E0αe
−iωLt + c.c., and

assume that each of the emitters can be pumped individually (i.e., using focused beams). In this

case, the master equation takes the form

∂tρs(t) = −(i/~) [Vp, ρs(t)] + Lρs(t), (1.122)
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where

Vp = −~
∑
α=a,b

(
Ωαe

−i∆αtσ†α + Ω∗αe
i∆αtσα

)
, (1.123)

accounts for the interaction between the classical pump field and qubits, Ωα = d · E0α/~ is the

effective Rabi frequency of the pump, and ∆α = ωα − ωL is a detuning parameter. Here we assume

that E0α is the full field at the dipole position, i.e. it is the sum of the external pump field and field

scattered by the medium. In the basis defined in 1.92 we obtain a system of 16 coupled differential

equations for the density matrix, which we solve numerically.
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Chapter 2

3D Plasmonic Systems Mediated

Entanglement

2.1 Introduction

Generating, preserving and controlling entanglement between quantum systems is of great importance

for quantum communications, teleportation, metrology, cryptology, computing and other operations

involving quantum bits (qubits) [32]. A fundamental problem facing practical applications of entan-

glement is environment-induced dissipation of the quantum system. The traditional view [34] holds

that dissipation is necessarily detrimental as it leads to decoherence, and thus to entanglement de-

cay. However, recently it has been realized that dissipation may have a positive effect as well. In

particular, it has been demonstrated that by engineering dissipation of the environment, quantum

systems can be driven into the desired entangled steady state (SS), encoding the outcome of quantum

computations [35, 36, 37]. In this case, the depopulation of the quantum system is compensated by

constant pumping with an external electromagnetic field, and properties of the final states depend on

the environment to which the systems are coupled. Therefore, engineering of the environment seen

by qubits is of crucial importance for applications in quantum optics.

Of particular interest are structured photonic reservoirs, i.e. structures that have strongly in-

homogeneous spatial or spectral distributions of their photonic density of states, as they offer an

unprecedented level of control over emitter decay dynamics [38, 39, 40, 41, 75]. The efficient dissi-

pative generation of entanglement has been theoretically predicted and experimentally demonstrated

for qubits in optical cavities [43, 44, 45] and photonic crystal systems [46, 47, 48]. In particular, it

was reported [43] that dissipative preparation of entanglement between qubits in high-finesse optical

cavities offers significant advantages for fidelity improvement over the protocols based on unitary dy-

namics; decreasing the error by an order of magnitude requires only an order of magnitude increase

of the cavity finesse in the former case, compared to a two order of magnitude increase of the finesse
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required in the latter case. Preparation of entangled states with fidelity (with respect to the Bell

state Ψ+) exceeding 91.9% was experimentally demonstrated [44]. Though offering strong potential

for creating highly-entangled states, the small size of optical cavities is a disadvantage when it comes

to transferring quantum states over long distances, which is important for applications in quantum

communications. For long distance entanglement, coupling of the qubits to reservoirs supporting

propagating photonic modes, such as photonic crystals, is useful. In particularly, efficient transfer of

entanglement between two quantum dots (QDs) placed inside a photonic crystal over a distance 100

times the wavelength of vacuum radiation has been theoretically predicted [46].

Despite the success of using all-dielectric photonic reservoirs for preparation and transfer of en-

tanglement, the large size of such structures is a drawback for their use in nanophotonic integrated

circuits. In order to overcome this difficulty, significant attention has been recently devoted to plas-

monic waveguides as intermediaries for quantum state transfer. Nanoscale localization of plasmonics

modes, as well as their relatively long propagation lengths, makes them good candidates for pho-

tonic circuits [49]. Efficient plasmon-mediated entanglement has been predicted for emitters coupled

to a metal or metamaterial slab [50], infinitely long V-shaped waveguides cut in a flat metal plane

[51, 74], infinitely long nanowires [53, 74, 54, 55], and arrays of metallic nanospheres [56]. Transfer

of entanglement over distances far-exceeding the radiation wavelength was reported [74].
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Figure 2.1: Two identical two-level emitters (e.g., atoms or quantum dots) placed next to (a) a metal
nanowire (insert shows geometry of the nanowire with coupling slots; the slot opening angle and width
are 95◦ and 15 nm, respectively) and (b) a V-shaped channel cut in a flat metal plane (if coupling
slots are present, their length, width and depth are 70 nm, 15 nm, and 138 nm, respectively). We
consider both infinite- and finite-length waveguides.

One can ask if it is possible to optimize the geometry of a plasmonic waveguide in order to achieve

stronger plasmon mediated entanglement between qubits. Moreover, realistic waveguides are never

infinite, and can have discontinuities, accidental or by design. Therefore, it is important to understand

what role waveguide edges and inhomogeneities can play in entanglement transfer.

We consider two quantum emitters (modeled as two-level systems) placed above 3D waveguides.

Since there are a multitude of possible plasmonic waveguide geometries that one can envision, here we
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restrict our consideration to two waveguides that have been extensively studied in the literature, i.e.

a metal nanowire and a V-shaped channel cut in a flat metal plane (see Fig. 2.1). Regarding long-

distance entanglement, these waveguide geometries have been studied assuming that the nanowire

and groove are infinite in their axial directions [74, 51]. The main result of this chapter is to show

that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play

a crucial role in the engineering of highly entangled states. We demonstrate that proper positioning

of the emitters with respect to the waveguide edges can lead to a significant increase in entanglement

compared to the case of the emitter coupled to an infinite plasmonic waveguide. Moreover, even for

the infinite-length case, discontinuities in the waveguides do not always play a detrimental role; an

increase in entanglement compared to the unperturbed case can be achieved by introducing coupling

slots into the structure (which aid in qubit-waveguide coupling).

2.2 3D Plasmonic Waveguide Geometries (Nano-Wires, Groove

Waveguides)

2.2.1 Dissipative Decay Rate and Coherent Coupling Term

As discussed in 1.4, the importance of the classical dyadic Green function is that it leads to the

dissipative decay rate and coherent coupling terms

Γαβ(ωα) =
2

ε0~
Im d ·G(rα, rβ , ωα) · d,

gαβ(ωα) =
1

ε0~
Re d ·G(rα, rβ , ωα) · d, (2.1)

where it is supposed the Green function is multiplied by k2
0 = ω2/c2. Here d is the emitter transition

dipole moment, Γαα and Γαβ(α 6= β) are the decay rates of the emitter α due to its interaction

with the reservoir (which includes the plasmonic system), and plasmon mediated interactions with

the emitter β, respectively. When the emitter itself is in a lossless region of space (such as the

space above the waveguide), ImG(rα, rα, ωα) does not have any singularity and thus the decay rate

is always finite. The emitters transition frequency shift induced by dipole-dipole coupling is given by

gαβ(α 6= β). We assume that the emitter transition frequency ωα already accounts for the photonic

Lamb shift which is defined by gαα. In [74] it was shown that for an infinite waveguide the best

entanglement was obtained when Γαβ was large and gαβ was small (forming the dissipative regime).

For the finite waveguide case this classification does not hold exactly, which is discussed below.

In the following we consider two identical emitters located near one of the plasmonic waveguides

shown in Fig. 2.1 and assume that the waveguide material is silver, which is a relatively low loss metal.

We choose the dipole transition frequency of the emitters to be ωa/2π = ωb/2π = 500 THz (emission

wavelength λ = 600 nm). The relative permittivity of silver at the dipole transition frequency is
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−13.9 + i0.92 [60], and we fully account for the dispersive properties of the metal. For the nanowire

waveguide we choose the radius to be R = 35 nm, such that the surface plasmon wavelength in the

nanowire is λspp = 425 nm, and the propagation length is l = 1.7 µm, calculated analytically [61]. For

the groove waveguide, the depth of the groove is 138 nm and its opening angle is 20◦; these dimensions

were chosen in [74] to yield almost identical plasmonic wavelengths and propagation lengths for the

rod and groove structures (for the groove λspp = 423 nm and l = 1.7 µm), facilitating comparison

between the waveguides.

The total emitter decay rate can be expressed as Γaa = Γrad + ΓJoule + Γpl, in terms of the

following emitter decay channels: (a) free-space radiation, Γrad, (b) Joule losses in the metal, ΓJoule,

and (c) excitation of surface plasmons, Γpl. Since radiative decay is not helpful for long-distance

entanglement, and Ohmic decay is obviously deleterious, it is clear that we want to maximize the

plasmon decay channel, which enhances qubit-qubit interaction. This requires careful positioning of

the emitter above the nanowire surface; if the emitter is too close to the nanowire surface, Joule

losses dominate the emitter decay (quenching). On the other hand, if the emitter is too far away

than it mostly radiates into free space. This problem was studied in [74] where it was demonstrated

that at λ = 600 nm the optimum distance between the surface of an R = 35 nm infinitely-long silver

nanowire and a tuned emitter is 20 nm (which maximizes Γpl), with dipole moment perpendicular to

the wire, and for the groove structure the optimum emitter height is 12 nm above the surface of the

metal, positioned over the central line of the groove and polarized horizontally.

For the finite nanowire, the problem is more complicated and a unique definition of Γpl is difficult

(since plasmons reflect and refract from the nanowire edges). We expect that the optimum distance

should not be considerably different from the infinite-nanowire case, and we here choose the separation

between the emitter and waveguide to be the same as the optimum height for the infinite structure,

20 nm for the nanowire and 12 nm for the groove. Although not shown here, slight improvement in

entanglement can be obtained by adjusting the qubit height by a few nm.

Although a primary aim of this work is to examine the effect of a finite plasmonic waveguide

structure on entanglement, we first show that introducing discontinuities on an infinite waveguide can

enhance qubit-waveguide coupling (i.e., in the following we refer to these discontinuities as coupling

slots), thereby enhancing entanglement. Results of calculation of Γab and gab for emitters placed

above an infinite-length nanowire are presented in Fig. 2.2. Here z is the lateral separation between

emitters, and

Γ0 =
2

ε0~
Im d ·G(0)(rα, rα, ωα) · d =

ω3
0d

2

3πε0~c3
(2.2)

is a decay rate of the emitter in the vacuum. The Purcel factor (PF), the ratio between emitter decay

rates in the vicinity of nanowire and in the vacuum, is equal to Γab/Γ0 when z = 0. Thus, presence

of coupling slots increases the PF (see Fig. 2.2(b)). In Fig. 2 one emitter is located at z = 0, and

the position of the other emitter varies from z = 0 to z = 1.5λspp = 637.5 nm. Note that here, and in

26



0 200 400 600

−10

0

10

20

30

40

50

z(nm)

g
a
b/
Γ
0

(a)

 

 

0 200 400 600
−10

0

10

20

z(nm)

Γ
a
b/
Γ
0

(b)

 

 

Inf. rod

Inf. rod with slot

Inf. rod

Inf. rod with slot

200 400 600 800 1000

100

200

300

400

500

Figure 2.2: Normalized coupling strength gab and decay rate Γab as a function of distance between
emitters above an infinite-length silver nanowire with and without coupling slots (based on scattered
Green function). Γab is proportional to the Purcell factor when z=0 (i.e. rα = rβ). The position of
one emitter is fixed at z = 0 and the second emitter position is changing with z. Slot are located at
z = −40 nm and z = 1.5λspp + 40 nm = 677.5 nm.

Fig. 2.3 below, we plot the rates based on the scattered Green function; this term is dominate over

the vacuum Green function for all cases of interest (otherwise the plasmonic system would not affect

the qubits much, such as, e.g., if the height of the qubits was increased considerably), and it avoids

the singularity in gaa associated with the vacuum Lamb shift. However, in computing entanglement

we use the full (scattered plus vacuum) Green function.

Oscillatory behavior of Γab and gab as a function of qubit separation distance is evident in Fig.

2.2, with the period of oscillation being approximately equal to the plasmon wavelength. Moreover,

the positions of the Γab maxima correspond to positions of gab minima. Thus coherent and dissipative

regimes become dominant at different separations between emitters [74]. For the case of a nanowire

with coupling slots, the slots are fixed at z = −40 nm and z = 1.5λspp + 40 nm=677.5 nm (one slot

is to the right of the right emitter, and the other to the left of the left emitter; z refers to emitter-

emitter separation). Coupling slots can lead to enhancement of entanglement between the emitters

by increasing the dissipative decay rate at the emitter positions, as shown in the figure (for the effect

of coupling slots on entanglement, see Fig. 5.7 below). By adding judiciously-chosen coupling slots

to the infinitely long nanowire we are increasing emitter-waveguide coupling, similar to the improved

field-plasmon coupling in the case of a grating, and thereby increasing emitter decay rates Γaa and Γab

into the plasmon channel. It should be noted that coupling slots seem to affect only the dissipative

regime, as the slot induced modification of the coherent exchange rate seems to be insignificant (Fig.

2.2(a)). Also note that the ratios Γab/Γ0 and gab/Γ0 do not depend on the emitter dipole moment d,

since we are in the weak coupling regime.
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It is likely that further improvement in emitter-plasmon coupling (and, subsequently, entangle-

ment) can be made by optimizing the slot geometry. In fact, qubit entanglement depends on many

parameters even if the dipole transition frequency and nanowire diameter are fixed. In the case of

an infinitely-long nanowire these parameters are the distance between emitters and the nanowire

surface, separation between emitters, and position and geometry of the coupling slots. In the case of

a finite-length nanowire we also have to consider the nanowire length, and positions of the emitters

and coupling slots relative to the nanowire ends. In theory, optimal values of these parameters could

be found though multi-variable optimization. However, in this work we make no attempt to find

optimal values; we merely show that reasonably-positioned qubits and coupling slots can improve

entanglement.

Figure 2.3: (a) Absolute value of plasmon electric field intensity on a finite nanowire of length 1.5λspp.
The plasmon mode is excited by the emitter positioned at z = 0 nm at a distance 20 nm above the
nanowire surface. (b) geometry, (c)-(d) Normalized coupling strength gab and decay rate Γab as a
function of a distance between emitters above the nanowire with and without coupling slots (based
on scattered Green function). Slots are located at z = 27 nm and z = 1.5λspp − 27 nm=610.5 nm.

For the finite-length nanowire we choose the nanowire length to be 1.5λspp = 637.5 nm. We assume

one emitter is located above one end of the nanowire (z = 0 nm). If coupling slots are present, they

are placed 27 nm away from each end of the nanowire (this location leads to enhanced Γab when qubits

are at the nanowire ends). The spatial distribution of the electric field intensity of the plasmon mode

is shown in Fig. 2.3(a). In order to calculate this distribution we assume a classical electric dipole at

the first emitter’s position. We can see that the positioned emitters experience maximum intensity

of the plasmon electric field.

Figures. 2.3(b) and 2.3(c) show the dissipative and coherent rates as a function of emitter-

emitter separation for the finite-length nanowire. We can see that due to plasmon reflections from

the nanowire edges, positions of maximums of gab and Γab almost coincide with each other. Thus
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we can not clearly separate the dissipative and coherent regimes in the emitter dynamics anymore,

unlike for the infinite-waveguide case. For emitters positioned over the nanowire ends, the addition of

coupling slots leads to an increase of coupling between emitters and surface plasmons. Moreover, in

this case we observe a shift in the position of the maximums of the emitter coupling rates (which does

not occur for the infinite-length structure), as the slots change the effective length of the nanowire.

Although not showm, similar results and conclusions are obtained for the groove waveguide.

2.2.2 Transient Entanglement Mediated by Surface Waves Supported by

Nano-Wire and Groove Waveguides

In order to calculate the transient concurrence we use the analytic equation in 1.110. Steady-state

concurrence is calculated using (1.109) and density matrix elements are obtained by solving numer-

ically the system of 16 differential equations. Unless specified otherwise, the pure dephasing rate of

the emitters, γa, is equal to zero.
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Figure 2.4: (a) Time dependence of transient concurrence between two emitters laterally separated
by 1.5λspp = 637.5nm. We assume that the emitters are in vacuum (solid green line), near an infinite
wire with (dashed brown line) and without (solid brown line) coupling slots, near a finite wire of
length of 1.5λspp with (solid red) and without (dashed blue line) coupling slots. In the case of the
finite wire, qubits are placed above the nanowire ends, and slots are located 27 nm from each end.
The normalization constant Γaa is the decay rate of the emitter (Eq. (2.1)) for the given geometry.
(b) Time dependence of the population of the emitter initially in the excited, ρeg, and ground, ρge,
states, for the case of a finite nanowire with coupling slots.

It was reported in [74], that entanglement between emitters coupled to an infinite length plasmonic

nanowire exceeds that between emitters in vacuum. As one can see from Fig. 2.4(a), entanglement can

be improved even further by introducing discontinuities (coupling slots) in the nanowire, as described

in Sec. 2.2.1. In particular, using an infinite nanowire with coupling slots (see Fig. 2.1 and Sec. 2.2.1

for the details of the slot geometry) can considerably increase concurrence compared to the case with

no slots, due to improved emitter-nanowire coupling.

Figure 2.4(a) also shows results for the concurrence of two qubits near a finite-length nanowire,
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with length equal to 1.5λspp, forming a Fabry-Pérot (FP) cavity, with the qubits positioned above

the ends of the wire. It can be seen that by coupling into the FP nanowire resonances, we can

considerably improve entanglement compared to the infinite-length case. Fig. 2.4(b) shows evolution

of the emitters excited state population for the case of a finite nanowire with coupling slots. Here ρeg

is the probability of the first qubit to be in the excited state and the second qubit to be in ground

state, and ρge is similarly defined. The initial state is ρeg = 1. We can see that decay of the emitter

initially in the excited state leads to excitations of the emitter initially in the ground state, creating

a transient entangled state, which is decaying with time.
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Figure 2.5: (a) Concurrence of two qubits separated by 1.5λspp. Vacuum case (dashed green line),
infinite groove (dotted black line), infinite groove with coupling slots (dashed blue line) 40 nm laterally
away from the qubits (outside the space between them), and finite groove of length 2λspp (solid red
line). (b) Time dependence of the population of the emitter initially in the excited, ρeg, and ground,
ρge, states.
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Figure 2.6: Time dependence of the concurrence between two qubits including the effect of pure
dephasing (see 1.121). Qubits are placed either above the ends of a finite-length nanowire (Fig.
5.7(a)) or finite-length groove (Fig. 5.9(a)). The emitter coupling rates for the case of the nanowire
are Γaa = 6.5µeV, Γab = −1.2µeV, gab = 2.85µeV, while for the case of the groove waveguide
Γaa = 11.38µeV, Γab = −6.48µeV, gab = 5.8µeV. The QD pure dephasing rate, γ′, is equal to 1 µeV.

The concurrence of two qubits separated by a distance 1.5λspp = 634.5 nm is shown in Fig. 2.5(a)
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for an infinite groove, an infinite groove with coupling slots (slots are positioned as in the nanowire

case), and a 2λspp groove. Although the finite nanowire considered above had length 1.5λspp, for the

finite groove the length is 2λspp because for the groove the modal field is not strong at the groove ends

(although not shown, the modal field distribution in the groove is more cavity-like, with a node at the

groove end-wall), and so a 2λspp groove allows the qubits to be separated by 1.5λspp and also to be at

the modal antinodes. Results for the finite-length groove are shown without slots since for this case

coupling slots did not improve concurrence considerably; for the nanowire the modal field is strong at

the wire ends (Fig. 2.3), but it is not exactly a modal antinode because of strong end-diffraction. In

this case, coupling slots serve to shift the mode pattern slightly, enhancing qubit-plasmon coupling.

If the qubits are positioned exactly at a modal antinode, which is better defined away from the wire

ends, coupling slots have a weaker effect on improving concurrence. It can be seen that for the infinite

groove, the addition of coupling slots leads to improved concurrence, and the FP resonances of the

finite-length groove leads to further improvement. As reported in [74], for the chosen geometry the

groove waveguide leads to stronger entanglement compared to the nanowire (although this conclusion

is likely dependent on metal absorption and geometry). The population dynamics of the qubits are

also shown for the finite groove case in Fig. 2.5(b).

In order to study the effect of pure dephasing, we considered a QD with dipole moment 30 D as

our model system. It was reported [48] that the dephasing rate, γa of the QD is equal to 1 µeV. We

considered emitters placed either above a finite nanowire (Fig. 2.4(a)) or a finite groove (Fig. 5.9(a))

without coupling slots. The emitter coupling rates for the case of the nanowire are Γaa = 6.5µeV,

Γab = −1.2µeV, gab = 2.85µeV, while for the case of the groove waveguide Γaa = 11.38µeV, Γab =

−6.48µeV, gab = 5.8µeV. We can see that in general the pure dephasing decay rate is smaller than the

radiative decay rate. Even though it affects entanglement detrimentally, the decrease in concurrence

is rather small (see Fig. 2.6). Thus we otherwise ignore pure dephasing in our results, although the

validity of this assumption depends on the QD system under consideration and the temperature.

2.2.3 Steady State Entanglement Under External Pumping

Up to this point we have considered spontaneous (or vacuum-induced) decay which leads to transient

entanglement between two coupled qubits. Transient entanglement does not persist due to depopula-

tion of the excited state of the qubits. Thus, in order to obtain a steady entangled state, depopulation

has to be compensated by pumping qubits with an external laser pump in resonance with the fre-

quency of the qubits’ dipole transition. We assume the pump interacts only with the qubits. In this

case, the concurrence reaches a final, steady state (SS) value.

Figure 2.7 shows the externally driven concurrence of qubits in the presence of a finite nanowire

with length 1.5λspp with qubits located at the nanowire ends (the same geometry as in Fig. 2.4), a

finite groove with length 2λspp, qubits located symmetrically above its surface separated by 1.5λspp
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Figure 2.7: Time dependence of the concurrence between two qubits pumped by external electromag-
netic fields. Qubits are placed above either a nanowire (left panel) or groove (right panel). Qubit
separation is 1.5λspp. The system geometry is the same as in Figs. 2.4,2.5.

(the same geometry as in Fig. 2.5), and the infinite-length cases with the same qubit spacings as in

the finite case. Three different coherent pumps differing in the relative phase of the laser field on qubit

1 and 2 have been considered: symmetric pumping indicates identical Rabi frequencies, Ω1 = Ω2,

antisymmetric pumping corresponds to Ω1 = −Ω2 and asymmetric pumping means Ω1 6= 0, Ω2 = 0.

From Fig. 2.7, it is clear that the transient portion of the concurrence is intensity independent, and

that the infinite groove has a higher transient peak compared to the infinite nanowire for all pumping

regimes. Numerical experimentation shows that larger values of gab and Γab at the positions of the

qubits lead to larger transient concurrence peaks. For the geometries studied, these mutual rates are

larger for the infinite groove than for the infinite nanowire, which facilitates photon exchange between

the qubits for the groove guide. We can also see that the main advantage of a finite waveguide relative

to an infinite one is significant improvement in the transient concurrence peak, with more modest

improvement in the final, steady-state value.

The panels in Fig. 2.8 shows the SS value of concurrence, C∞, corresponding to different types of

pumping as a function of qubit separation normalized to the plasmon wavelength, λspp for the finite

nanowire (left panels) and finite groove (right panels). Numerical experimentation indicates that for

steady state concurrence the preferred case is when we have large Γab and small gab, in agreement

with [74] for the case of infinite waveguides. Therefore, the dissipative regime leads to larger transient

entanglement peaks for infinite-length waveguides, and larger values of C∞ in general, and it is only

for transient entanglement on finite-length waveguides that the dissipative and coherent regimes
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Figure 2.8: Steady state concurrence, C∞, as function of qubit separation normalized by the modal
wavelength, λspp. Qubits are placed either above a finite nanowire (right) or a finite groove (left).
The geometry is the same as in Figs. 2.4,2.5. Asymmetric, antisymmetric and symmetric pumping
have been considered.

becomes similar. Here, we can have steady state concurrence close to the peak of the transient

value for relatively weak pumping. For steady state concurrence, large gab and Γab are less ideal,

because of the tendency to decrease SS concurrence. Furthermore, pump strength can not be too

large otherwise the qubits will interact mostly with the pump and become decoupled from each other.

Ideally, the pump should be strong enough to keep the system interacting, but small enough for the

qubit interaction to dominate the dynamics. As made clear in Fig. 2.8, pumping one qubit strongly

(asymmetric pumping) is possible, but pumping both qubits strongly (symmetric or antisymmetric

pumping) reduces concurrence.

Population dynamics of the qubits are shown in Fig. 2.9 for the case when qubits are separated

by 1.5λspp and pumped either symmetrically, or only one qubit was pumped, for different intensities.

Four density matrix elements are ρgg, ρee, ρge, and ρeg which are respectively the probability of both

qubits to be in ground state, both qubits to be in excited state, the first qubit to be in the ground

state and the second to be in the excited state, vice versa. Moreover we have assumed that initial

state is a state when ρeg = 1.

The qubits dynamics is different for one-field and two-field pumping. For the case of two-field

pumping, in the steady state we have ρeg = ρge which is reasonable as we are pumping both systems

identically. We can see that these elements first grow rather fast with the growth of the pump

intensity, but then slow down around Ωaa = Ωbb = 0.3Γaa. We can also see that the element ρee

33



0 5 10 15
0

0.5

1

 

 

0 5 10 15
0

0.5

1

 

 

0 5 10 15
0

0.5

1

 

 

ρ
gg

ρ
ee

ρ
ge

ρ
eg

0 5 10 15
0

0.5

1

Γ
aa

t

 

 

0 5 10 15
0

0.5

1

Γ
aa

t

 

 

0 5 10 15
0

0.5

1

Γ
aa

t

 

 

Ω
a
=0.5Γ

aa
, Ω

b
=0.5Γ

aa

Ω
a
=0.8Γ

aa
, Ω

b
=0Ω

a
=0.5Γ

aa
, Ω

b
=0

Ω
a
=0.3Γ

aa
, Ω

b
=0.3Γ

aa

Ω
a
=0.1Γ

aa
, Ω

b
=0.1Γ

aa

Ω
a
=0.2Γ

aa
, Ω

b
=0

Figure 2.9: Dynamics of the density matrix elements for qubits under external pumping. Qubits are
above a finite groove with qubit separation 1.5λspp = 634.5 (see Fig. 2.5 for details of the geometry).
Two different regimes of pumping have been considered, symmetric pumping (two field pumping) and
asymmetric pumping (single field pumping).

also grows under the influence of the pump. But it first grows slower and then starts growing faster

around Ωaa = Ωbb = 0.3Γaa. Therefore, this indicates that under such strong pumping the dynamics

of both emitters is mostly defined by external pumps, and not by the qubit-qubit interactions, which

is detrimental for entanglement. Under the single field illumination the density matrix elements

evolve similarly to the previous case. However, ρeg > ρge, because the first qubit that is pumped in

this case. We can see that with the intensity increase all elements grow, however, when the intensity

becomes too strong the growth freezes and only ρeg grows, indicating that dynamics of first emitter

is entirely defined by the pump field, which is also detrimental for entanglement.

2.3 Summary

In this chapter we considered two quantum dots placed above 3D waveguides. Since there are a multi-

tude of possible plasmonic waveguide geometries that one can envision, we restricted our consideration

to two waveguides that have been extensively studied in the literature, i.e. a metal nanowire and

a V-shaped waveguide which is a channel cut in a flat metal plane (groove waveguide). Our main

results in this chapter are to show that realistic finite-length nanowire and groove waveguides, with

their associated discontinuities, play a crucial role in the engineering of highly entangled states. Here,

we demonstrated that proper positioning of the emitters with respect to the waveguide edges can lead

to a significant increase in entanglement compared to the case of the emitter coupled to an infinite
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plasmonic waveguide. Moreover, even for the infinite-length case, discontinuities in the waveguides

do not always play a detrimental role, to be more specific, an increase in entanglement compared to

the unperturbed waveguides can be achieved by introducing coupling slots (engineered perturbations)

into the structure which aid in quantum dot-waveguide coupling.
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Chapter 3

Hyperbolic and Isotropic 2D

Plasmonic Systems Mediated

Entanglement

3.1 Introduction

The development of nano-fabrication technologies has made it possible to fabricate artificial materials

exhibiting a hyperbolic regime - hyperbolic metamaterials (HMTMs) [63, 64]. Hyperbolic metamate-

rials are uniaxial structures with extreme anisotropy, whose reactive effective material tensor compo-

nents have opposite signs for orthogonal electric field polarizations [65]. Hyperbolic materials exhibit

hyperbolic, as opposed to the usual elliptic, dispersion, and combine the properties of transparent

dielectrics and reflective metals [63]. These exotic properties have led to new physical phenomena and

to the proposal for optical devices for a wide range of applications, such as far-field subwavelength

imaging, nanolithography, emission engineering [63], negative index waveguides [66], subdiffraction

photonic funnels [67], and nanoscale resonators [68].

The complexity of bulk fabrication of metamaterials has hindered the impact of this technology,

especially in the optical regime, and volumetric effects may be detrimental to the associated losses [65].

Metasurfaces [69, 70], sheets of material with extreme sub-wavelength thickness, might address many

of the present challenges and allow integration with planarized systems compatible with integrated

circuits. Many high frequency electronics applications are envisioned for metasurfaces due to their

ability to support and guide highly confined surface plasmons. The class of two dimensional (2D)

atomic crystals [71] represents the ultimate embodiment of a meta-surface in terms of thinness, and

often performance (e.g. tunability, flexibility, quality factor). Some notable examples of 2D layered

crystals include graphene, transition metal dichalcogenides, trichalcogenides, black phosphorus, boron

36



nitride, and many more.

Graphene in particular has received considerable attention as a promising two-dimensional surface

for many applications relating to large enhancement in Purcell emission, integrability, electronic

tunability and tranformation optics [72, 77]. In addition to graphene, black phosphorus (BP) is also

a layered material, with each layer forming a puckered surface due to sp3 hybridization. It is one

of the thermodynamically more stable phases of phosphorus, at ambient temperature and pressure

[78]. BP has recently been exfoliated into its multilayers [79, 82], showing good electrical transport

properties. In particular, the optical absorption spectra of BP vary sensitively with thickness, doping,

and light polarization, especially across the technologically relevant mid- to near-infrared spectrum

[83, 85]. Hence, it has also received considerable attention for optoelectronics, such as hyperspectral

imaging and detection [86, 89], photodetectors in silicon photonics [90], photo-luminescence due to

excitonic effects [91], among many others.

Both natural materials and metasurfaces can be isotropic or anisotropic, and, e.g., isotropic

graphene can be employed to form an effective anisotropic metasurface by modulating its conductivity

[65, 75]. And, both natural materials and metasurfaces may exhibit a hyperbolic regime. Basic prop-

erties of plasmons on 2D hyperbolic surfaces have been recently studied; for metasurfaces comprised

of anisotropic plasmonic particles in [92], for graphene strips in [65], and for general continuum 2D

materials including black phosphorus in [93]. In the following we consider a brief derivation of the

Green function for a 2D sheet with graphene conductivity model.

3.2 Infinite 2D Graphene Sheet

3.2.1 Green Function Analysis

The graphene is modeled as an infinitesimally thin, local two-sided surface characterized by a surface

conductivity σ(ω, µc,Γ, γ,T) where ω is the radiation frequency, µc is the graphene chemical potential,

γ and Γ are phenomenological intraband and interband scattering rates, respectively that are assumed

to be independent of energy ε and T is temperature. The conductivity of graphene has been considered

in several recent works [97, 98] and here we use the expression resulting from the Kubo formula [99]

(time convention exp(−iωt))

σ (ω) =
ie2KBT

π2 (ω + iγ)

(
µc

KBT
+ 2 ln

(
e
− µc

KBT + 1
))

+
ie2 (ω + iΓ)

π2

∫ ∞
0

fd (−ε)− fd (ε)

(ω + iΓ)
2 − 4 (ε/)

2 dε, (3.1)

in the above equation τ = 1/γ is the scattering time, e is the charge of an electron, and fd (ε) =(
e(ε−µc)/KBT + 1

)−1
is the Fermi-Dirac distribution. The first and second terms in the conductivity
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are due to intraband and interband contributions, respectively. For KBT � |µc| , ~ω [99]

σ (ω) =
ie2 |µc|

π (ω + iγ)
+
ie2

4π
ln

(
2 |µc| − (ω + iΓ)

2 |µc|+ (ω + iΓ)

)
. (3.2)

We assume laterally-infinite graphene modeled as an infinitesimally-thin, local, two-sided surface

characterized by a surface conductivity σ. The Green functions for a graphene sheet at the interface

between two dielectrics are given in [16] for graphene on a finite-thickness dielectric support. Con-

sidering the graphene sheet in the plane y = 0, with material described by ε1 for y > 0 and ε2 for

y < 0, the Green tensor for points in region n is

G (r, r′) =
(
I k2

n +∇∇·
)
{gp (r, r′) + gs (r, r′)} , (3.3)

where kn = ω
√
µ0εn, n = 1, 2 is the wavenumber in each half spaces. The principle (p) and scattered

(s) Green’s function components are

gp (r, r′) = I
e ik1R

4πR
, gs (r, r′) = ŷŷ gs

n (r, r′) +

(
ŷx̂

∂

∂x
+ ŷẑ

∂

∂z

)
gs
c (r, r′) + (x̂x̂ + ẑẑ) gs

t (r, r′) ,

(3.4)

where I is the unit dyadic, kρ is a radial wavenumber, p2
n = k2

ρ− k2
n, r =

√
(x− x′)2

+ (z − z′)2
, and

R = |r− r′| =
√

(y − y′)2
+ r2. The Sommerfeld integrals are

gs
β (r, r′) =

1

2π

∫ ∞
−∞

Cβ
H

(1)
0 (kρr) e

−p(y+y′)

4p
kρdkρ, (3.5)

where β = t, n, c depends on the graphene and dielectric support layers . For a pump polarized

perpendicular to the graphene surface we only need Gyy and β = n, with

Cn =

(
ε2
ε1
p1 − p2

)
iωε1 − σp1p2(

ε2
ε1
p1 + p2

)
iωε1 − σp1p2

. (3.6)

For more complex geometries, such as graphene on a multi-layered dielectric, only the coefficient

Cn changes. The wave parameter pn =
√

k2
ρ − k2

n, leads to branch points at kρ = ±kn, and thus the

kρ-plane is a four-sheeted Riemann surface. The standard hyperbolic branch cuts [100] that separate

the proper sheet (where Re (pn) > 0, such that the radiation condition as |y| → ∞ is satisfied)

and the improper sheet are the same as in the absence of surface conductivity σ. The zeros of the

denominators of Cβ lead to pole singularities in the spectral plane associated with surface plasmon

polaritons (SPPs).

Using complex-plane analysis, the scattered Green’s function can be written as discrete pole (SPP)

contributions plus a branch cut integral over the continuum of radiation modes. For ε1 = ε2 = ε,
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setting the denominator of (3.6) to zero leads to the (TM) SPP wavenumber

kρ = k

√
1−

(
2

ση

)2

, (3.7)

where η =
√
µ0/ε and k =

√
εk0. In this case, the vertical wavenumber parameter in the Sommerfeld

integrals becomes p =
√

k2
ρ − k2 = i2ωε/σ and if σ is real-valued then Re (p) > 0 is violated and the

TM mode is on the improper Riemann sheet. Assuming complex-valued conductivity σ = σ′ + iσ′′,

p =
i2ωε

σ
=

2ωε

|σ|2
(σ′′ + iσ′) (3.8)

and therefore if σ′′ > 0 (as shown below, when the intraband conductivity dominates) the mode is

a surface wave on the proper sheet, whereas if σ′′ < 0 (interband conductivity dominates) the mode

is on the improper sheet, assuming an exp(−iωt) reference [16]. Assuming the dipole moment is

perpendicular to the graphene surface, only TM SPPs can be excited.

3.2.2 Controllable Entanglement Using Gate Voltage

Regarding to section 3.2.1, the conductivity of the graphene and so its Green function can be con-

trolled using a the graphene chemical potential or its gate voltage. High tunability of the surface

plasmon polariton on the surface of graphene sheet makes it a promising environment for SPP assisted

entanglement between two quantum dots.

Figure 3.1: Schematic representation of two two-level-atom (TLA) above an infinite graphene sheet.
TLAs are pumped by two independent laser fields with intensities Ea and Eb. The graphene is
suspended in vacuum.

As depicted in fig. 3.1, we consider two identical quantum dots placed at height y above a freely

suspended infinite graphene sheet and horizontal distance x. It is supposed that their dipole moment

d is polarized normal to the graphene. The two QDs are externally pumped by two laser beams with

electric fields Ej = E0,je
−iωjt + c.c, j = a, b. In order to have maximum interaction between the

external electromagnetic field and the atoms we assume the field frequency is equal to the atomic

transition frquency of the QDS, ωj = ωd (zero detuning parameter ∆j = ωj − ωd).

Initially we suppose one of the QDs are excited and the other one is in its ground state. The

initially excited QD will communicate to the other one through two different channels, excited surface

39



wave on the graphene and free space radiation. If the QDs are put at a proper distance above the

graphene then they can get coupled strongly to the SPPs and so their communication occurs mainly

through the supported SPP on the graphene. Based on this, the dynamic of the QDs system and so

their entangled state can be controlled by controlling the surface conductivity of the graphene. We

use the master equation formulation presented in section 1.4.3 to calculate the transient and steady

state entanglement.

We suppose two QDs are placed at y = 20 nm above graphene with distance x = 100 nm. QDs

are pumped with fields with Rabi frequency Ωj = d · Ej/~. The frequency of the laser and atomic

transition frequency are synced at ~ωd = 165 meV. The concurrence C(t) between these two emitters

is calculated in Fig. 3.2 at three different chemical potentials µc = 10, 100 and 1000 meV. Fig. 3.2

shows the transient and steady state concurrence between the emitters at different chemical potentials

and the level of external pumping. As can be seen clearly, using µ of graphene and Ωj it is possible

to control the transient and steady state value of concurrence. From different panels of Fig. 3.2 it

can be seen that in order to keep the dynamics of the QDs system the laser intensity should not be

very strong, because in this case the emitters mainly get coupled to the external field and so we loose

the entanglement. Also the laser intensity should be very weak because it cannot compensate the

depopulation of the initial QDs excitations.

Figure 3.2: Transient and steady state concurrence of two QDs above graphene sheet.
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The dependence of the steady state concurrence C∞ on height and horizontal distances of the

QDs are investigated in Fig. 3.3. As can be seen closer distance necessarily does not mean better

C∞. For both height and distance there is an optimum value to get higher steady state concurrence.

Figure 3.3: Steatdy state concurrence as a function of height above graphene y, and QDs spacing x.

It can be generaly concluded that entanglement between two emitters can be substantially tuned

by varying the chemical potential of graphene. The degree of entanglement can be further adjusted

by changing the emitter and pumping scheme. Proper positioning of the emitters above a graphene

layer, as well as choice of the separation distance and substrate material is crucial for entanglement

optimization.

As was discussed, graphene sheet is a 2D plane which has isotopic conductivity in case of zero

magnetic biasing field. Due to the isotropy of its electrical properties, the supported SPP propagates

omnidirectionally in the plane of graphene, and so it is not possible to channelize the energy from

source to observation spot. In contrast to the isotopic case, anisotropic 2D surfaces are capable to

launch an SPP along specific directions and so stronger and controllable entanglement is achievable.

In the next section we discuss about this class of surfaces.

3.3 2D Hyperbolic Surface (Black Phosphorus and Graphene

Stripes)

3.3.1 Green Function Analysis and Directive Surface Waves

Among the possible anisotropic surfaces, we can name hyperbolic 2D materials for which the diagonal

elements of their conductivity tensor have different signs. In this section we study the dyadic Green

function derivation of SPP supported by this kind of anisotopic 2D materials.

The geometry under consideration is shown in Fig. 3.4. We consider an anisotropic layer with

conductivity tensor σ = diag {σxx, σyy}, embedded at the interface of two isotropic different materials
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with electrical properties ε1, µ1 and ε2, µ2.

Figure 3.4: Anisotropic surface with conductivity tensor σ at the interface of two isotropic materials.

For any planarly layered, piecewise-constant medium, the electric and magnetic fields in region n

due to an electric current in any region are

E(n) (r) =
(
k2
n +∇∇·

)
π(n) (r) (3.9)

H(n) (r) = iωεn∇× π(n) (r) (3.10)

where kn = ω
√
µnεn and π(n) (r) are the wavenumber and electric Hertzian potential in region n,

respectively. The suppressed time convention is eiωt. Assuming that the current source is in region

1, J(1), then

π(1) (r) = πp1 (r) + πs1 (r) =

∫
Ω

{
gp (r, r′) + gr (r, r′)

}
· J

(1) (r′)

iωε1
dΩ′

π(2) (r) = πs2 (r) =

∫
Ω

gt (r, r′) · J
(1) (r′)

iωε1
dΩ′ (3.11)

In the above equation, the underscore indicates dyadic quantities, gp is the principal (free space)

dyadic Green’s function, gr is the reflected dyadic Green’s function responsible for the fields in the

region containing the source, gt is the transmitted dyadic Green’s function responsible for the fields

in the non-source region (here we assume a source in one region or the other, but not in both regions)

and Ω is the support of the current. With y parallel to the interface normal, the principle Green’s

dyadic can be written as

gp (r, r′) = I
e−ik1R

4πR

= I
1

(2π)
2

∫ ∞
−∞

∫ ∞
−∞

e−p1|y−y
′|

2p1
e−iq·(r−r

′) dqxdqy (3.12)

where q = x̂qx+ ẑqz, |q| = q =
√
q2
x + q2

z , p2
n = |q|2−k2

n, ρ =

√
(x− x′)2

+ (z − z′)2
, R = |r− r′| =√

ρ2 + (y − y′)2
and I is the unit dyadic.

The scattered (reflected or transmitted) Green’s dyadics can be obtained by enforcing the bound-
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ary conditions

ẑ× (H1 −H2) = Jse

ẑ× (E1 −E2) = −Jsm (3.13)

where Jse (A/m) and Jsm (V/m) are electric and magnetic surface currents on the boundary. In our

case, Jsm = 0, and Jse = σ · E. Using only an electric Hertzian potential, we can satisfy Maxwell’s

equations and the relevant boundary conditions. Introducing the two-dimensional Fourier transform

a (q, y) =

∫ ∞
−∞

∫ ∞
−∞

a (r) eiq·r dxdz (3.14)

a (r) =
1

(2π)
2

∫ ∞
−∞

∫ ∞
−∞

a (q, y) e−iq·r dqxdqz (3.15)

and enforcing the boundary conditions, the scattered Green’s dyadic is found to have the form

gr,t =


gr,txx gr,txy 0

gr,tyx gr,tyy gr,tyz

0 gr,tzy gr,tzz

 (3.16)

where the Sommerfeld integrals are

grαβ (r, r′) =
1

(2π)
2

∫ ∞
−∞

∫ ∞
−∞

wrαβ (qx, qz)
e−p1(y+y′)

2p1
e−iq·(r−r

′) dqxdqz. (3.17)

The Green’s dyadic for region 2, gt (r, r′), has the same form as for region 1, although in (3.17)

the replacement wrαβe
−p1(y+y′) → wtαβe

p2ye−p1y
′

must be made.

The coefficients wr,tαβ are complicated for the inhomogeneous case, and so for simplicity in the

following we assume the sheet is in a homogeneous space ε2 = ε1 = ε, µ2 = µ1 = µ. When region 2

differs from region 1, the only change is in the functions (3.18)-(3.19) provided below. Concentrating

on the field in the upper-half space, wrαβ = Nαβ (qx, qz)/D (qx, qz), where

D (qx, qz) = 2σxx
(
k2 − q2

x

)
+ 2σzz

(
k2 − q2

z

)
− i4k

η
p

(
1 +

1

4
η2σxxσzz

)
, (3.18)

and

Nyy (qx, qz) = −p2 (σxx + σzz)− ipkησxxσzz,

Nxy (qx, qz) = iqxp (σxx − σzz) ,

Nzy (qx, qz) = −iqzp (σxx − σzz) ,

(3.19)
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where p =
√
q2
x + q2

z − k2, and η =
√
µ/ε. Then, e.g., for the vertical field in the upper half-space,

Ey =
1

iωε

(
k2 +

∂2

∂y2

)(
gpyy (r, r′) + gryy (r, r′)

)
+

1

iωε

(
∂2

∂x∂y
grxy (r, r′) +

∂2

∂z∂y
grzy (r, r′)

)
. (3.20)

and other field components are obtained from (3.9).

3.3.2 Directional Properties of SPPs on 2D Surfaces

Before considering complex-plane evaluation of the Green’s functions, we describe some basic proper-

ties of SPPs on hyperbolic 2D surfaces [65], [92]-[93]. In order to understand the behavior of surface

waves it is instructive to inspect the plasmon dispersion relation D (qx, qz) = 0 arising from (3.18),

the denominator of the Green’s function. As we show later, in the general case SPPs are obtained as

a mixture of TE and TM modes, and, moreover, it is not possible to solve for the wavevector eigen-

modes qx and qz from the single complex-valued equation (3.18). Furthermore, unlike for isotropic

surfaces, for an anisotropic medium the direction of energy transfer is defined by the group velocity in

the medium [94], ∇qω(q), and does not coincide with the direction of the plasmon wavevector q. In

our case, the dispersion relation for surface plasmons is complicated and the group velocity can not

be calculated analytically. However, we can estimate the direction of plasmon propagation geometri-

cally by examining the plasmon’s equifrequency contours, ω(q) = const. As the group velocity is a

gradient of frequency with respect to wavevector, the direction of plasmon energy flow is necessary

orthogonal to the equifrequency contours.

Assuming that the conductivity is purely imaginary and lossless, σjj = iσ′′jj , j = x, z, and that

qx, qz � k, the zeros of (3.18) can be approximated as the solution of

q2
x

σ′′zz
+

q2
z

σ′′xx
= 2pω

(
ε0

σ′′xxσ
′′
zz

− µ0

4

)
. (3.21)

Although the right side varies with q, because of the square-root p the variation is less than the

left side, and we can approximate the right side as being constant in wavenumber. Then, in the

hyperbolic case (σ′′xx · σ′′zz < 0) the EFS is a hyperbola, as shown in Fig. 3.5 for two values of surface

conductivity (blue lines: σxx = 0.003 + 0.25i mS and σzz = 0.03 − 0.76i mS; see also Fig. 3.14b,

and green lines: σxx = 1.3 + 16.9i mS and σzz = 0.4− 9.2i mS; results in Fig. 3.5 were obtained by

solution of the full dispersion relation (3.18).

The hyperbola asymptotes are defined by qz = ±qx
√
|σ′′xx/σ′′zz|. Taking into account that a dipole

excites many plasmons with different q, and that the normal to all the points on the hyperbola point

in the same direction for a given sign of qx, we expect a narrow plasmon beam in the direction of

energy flow on a hyperbolic metasurface. For example, the asymptotes of the blue hyperbola in Fig.

3.5 have an angle 30 degrees with respect to the x axis, and thus the normal to the hyperbola, i.e., the

group velocity, is 60 degrees with respect to the x axis, as indicated in the figure, which is in very good
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Figure 3.5: Equifrequency surfaces for metasurface having σxx = 0.003 + 0.25i mS and σzz = 0.03−
0.76i mS (blue hyperbola; see also Fig. 3.14b), and σxx = 1.3 + 16.9i mS and σzz = 0.4 − 9.2i mS
(green hyperbola; see also Fig. 3.14c). For comparison, the isotropic case for σxx = σzz = 0.03−0.76i
mS (black circle) is also shown. The red dashed line merely denotes 45 degrees with respect to the x
axis for guidance.

agreement with the numerical results presented in Fig. 3.14b. Similar comments apply to the green

hyperbola and Fig. 3.14c. For comparison, in Fig. 3.5 we also presented the hypothetical isotropic

case for which the equifrequency contour is a circle, and thus energy does not have a preferential

direction.

In the non-hyperbolic (purely anisotropic) case (σ′′xx, σ
′′
zz > 0), (3.21) is the equation for an ellipse

in q-space with the axis oriented along qx and qz. The length of the ellipse’s principal axes along qx

and qz is proportional to σ′′zz and σ′′xx, respectively. Thus, the EFS has a quasi-eliptic form elongated

along the direction of the smallest component of the conductivity tensor, the degree of elongation

being set by the ratio of σ′′xx and σ′′zz. Later, in Fig. 3.16 we consider black phosphorous having

σxx = 0.0008 − 0.2923i mS and σzz = 0.0002 − 0.0658i mS. Due to the strong elongation of the

EFS along the qz-axis, the group velocity points approximately along the qx axis, such that the SPP

carries energy along the x crystallographic axis (see, e.g., Fig. 3.16).

3.3.3 Complex-Plane Analysis in the qx-Plane

In the case of an isotropic material the coefficients wαβ only depend on q2 = q2
x + q2

z , leading to

grαβ (r, r′) =
1

2π

∫ ∞
0

wαβ (q)
e−p(y+y′)

2p
J0 (qρ) qdq =

1

2π

∫ ∞
−∞

wαβ (q)
e−p(y+y′)

4p
H

(2)
0 (qρ) qdq (3.22)

where J0 and H
(2)
0 are the usual zeroth-order Bessel and Hankel functions, respectively. These two

forms can be converted one to another using the relation J0(α) = 1
2

[
H

(1)
0 (α) +H

(2)
0 (α)

]
, H

(2)
0 (−α) =

−H(1)
0 (α). In this case, such as occurs for graphene without a magnetic bias, the pole of wαβ leads

to a simple analytical form for the SPP field [16]. However, this is not the case for an anisotropic

45



surface. Since the two-dimensional Sommerfeld integral can be time-consuming to evaluate, writing

grαβ (r, r′) =
1

(2π)

∫ ∞
−∞

dqze
−iqz(z−z′)fαβ (qz) (3.23)

where

fαβ (qz) =
1

(2π)

∫ ∞
−∞

wαβ(qx, qz)
e−p(y+y′)

2p
e−iqx(x−x

′)dqx (3.24)

the “inner” integral fαβ (qz) can be evaluated as an SPP residue term (discrete spectral component)

and branch cut integral representing the radiation continuum into space (note that the choice of

“inner” and “outer” integrals is arbitrary). The branch cut in the qx plane is the usual hyperbolic

branch cut associated with the branch point due to p =
√
q2
x + q2

z − k2, occurring at qx = ±
√
k2 − q2

z

[100]. Then,

fαβ (qz) = −iwsppαβ (qxp, qz)
e−p(qxp)(y+y′)

2p (qxp)
e−iqxp(x−x

′) +
1

2π

∫
bc

wαβ(qx, qz)
e−p(y+y′)

2p
e−iqx(x−x

′)dqx

(3.25)

where the first term is the residue contribution and ”bc” indicates the hyperbolic branch-cut contour.

In (3.25), wspp(qxp, qz) = N(qxp, qz)/D
′(qxp, qz), D

′(qx, qz) = ∂
∂qx

D (qx, qz), and where qxp is the root

of D(qx, qz) = 0 for a given qz,

qxp(qz) = ±

√
−B ±

√
B2 − 4AC

2A
(3.26)

where A = σ2
xx, B = 1

4α
2 − 2k2σ2

xx + 2(q2
z − k2)σxxσzz, C = k4(σxx + σzz)

2 + q2
z(q2

z − 2k2)σ2
zz −

2k2q2
zσxxσzz + 1

4α
2(q2

z − k2), and α = (4k/η) (1 + 1
4η

2σxxσzz). When the SPP field is the dominant

contribution to the response, which is the usual regime for plasmonics where the field close to the

interface, (y, y′ � λ)) is of interest, the branch cut term can be ignored and the residue term suffices

for the calculation of f(qz),

fSPP
αβ (qz) ≈ −iwsppαβ (qxp, qz)

e−p(qxp)(y+y′)

2p (qxp)
e−iqxp(x−x

′), (3.27)

which considerably speeds up evaluation of the Green’s function (rendering it one-dimensional). Since

qxp is the propagation constant along the x-axis, the ∓ outside the square root in (4.28) indicates

forward/backward propagation, whereas the inner ± sign choice governs propagation of different

modes (only one of which will propagate). Assuming (x− x′) > 0, the term e−iqxp(x−x′) necessitates

that Im(qxp) < 0 to have a decaying wave traveling away from the source along the x-axis.

As an example, we consider an anisotropic surface with σxx = 0.02+0.57imS and σzz = 0.02−0.57i

mS. As discussed later in this chapter, such a conductivity tensor can be physically realized by an

array of densely packed graphene strips at terahertz and near infrared frequencies. Fig. 3.6 compares
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fyy(qz) obtained numerically by performing the integral (3.23) and obtained by using the residue term

only, (3.27). The source is located at y′ = λ/50, very near the surface, and radiating at frequency 10

THz. Clearly, in the SPP regime the residue provides the dominat component of the response, and the

branch cut integral can be ignored. Although not shown, for source or observation points relatively

far from the surface, the branch cut integral is important, and can be the dominant contribution to

the scattered field.

Figure 3.6: Real and imaginary parts of fyy(qz) obtained numerically, (4.62), and using the residue
term (3.27) for an array of graphene strips at f = 10 THz. The source is λ/50 above the surface, and
x = 0.2λ.

In the following we are interested in surfaces that provide a strong reactive and low-loss response,

Im(σαα) � Re(σαα). In addition to this inequality, Im(σαα) must not be too small [101]. The

ability of a surface to support a strong SPP depends on the ratio of the branch cut term (space

radiation spectra) to the residue (SPP) term in the inner integral (3.25). In Fig. 3.7 we assume a

general hyperbolic form σxx = ασ0(0.01 + i) and σzz = 0.1σ∗xx where σ0 = e2/4~ is the conductance

quantum, e is the electron charge, and ∗ indicates complex conjugation. We assume that losses are

relatively small, and use α in order to vary the magnitude of the conductivity.

It is clearly shown in Fig. 3.7 that for conductivity values smaller than the conductance quantum,

the radiation spectra is dominant (in the limit that |σ| → 0, the surface vanishes and the entire

response is the radiation continuum produced by a source in free space). We have found that conduc-

tivity values on the order of the conductance quantum are somewhat borderline; an SPP can exist,

although it may not be strongly dominant over the branch cut continuum for small qz. Conductivities

an order of magnitude or more above the conductance quantum provide a very strong SPP response

in which the branch cut contribution is negligible except exceedingly close to the source.

For large qz compared to k, (3.26) becomes

qxp(qz) = qz

√
−σzz
σxx

. (3.28)

The SPP direction of propagation on the 2D anisotropic surface is easily determined as tan−1(
qxp
qz

),
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Figure 3.7: Ratio of the branch cut and residue terms in (3.25), σxx = ασ0(0.01+i), σzz = 0.1σ∗xx, σ0 =
e2/4~. Source is positioned λ/50 above the surface, f = 10 THz, and x = 0.2λ.

and using (3.28) the angle of propagation with respect to the z-axis is simply

φ = tan−1

√
−σ
′′
zz

σ′′xx
, (3.29)

where σ′′ = Im(σ). Although the conductivities are complex-valued, for the low-loss cases of in-

terest we can estimate the real angle φ by only considering their imaginary parts. Therefore, in

the anisotropic hyperbolic case the SPP is directed along a specific angle. For the isotropic case

(σxx = σzz) this does not occur (and (3.29) does not apply), since in this case q2
xp+ q2

z = q2
p, where qp

is the radial in-plane wavenumber. If we measure the angle φ relative to the positive z-axis, then at

each point in the plane of the surface we have x = ρ sinφ, z = ρ cosφ, qxp = qp sinφ and qz = qp cosφ.

For a source at the origin,

e−iq·(r−r
′) = e−i(qxpx+qzz) = e−iqpρ(cos2 φ+sin2 φ) = e−iqpρ, (3.30)

which e−iqpρ describes a SPP wave that is radially propagating along all directions in the plane of

the surface. However, in the anisotropic case for large qz,

e−iq·(r−r
′) = e−i(qxpx+qzz) = e−i(qz

√
− σzzσxx

x+qzz) = e−iqzρ(
√
− σzzσxx

sinφ+cosφ), (3.31)

and the maximum of (
√
− σzz
σxx

sinφ+cosφ) determines the angle at which the SPP is directed. It can

be simply shown that this angle is (3.29). This leads to the conclusion that hyperbolic anisotropy, in

contrast to the isotropic case, results in a directed SPP, as expected.

As a function of σ, there are different dispersion scenarios for SPP propagation. The usual elliptic

case is obtained when both imaginary parts of the conductivity have the same sign (inductive when

Im(σxx,zz) < 0, capacitive otherwise). A graphene sheet with dominant intra-band conductivity term
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with Im(σxx) = Im(σzz) < 0 is a natural example of an elliptic isotropic sheet that can support

a TM omni-directional SPP. The hyperbolic case occurs when the sign of the imaginary parts of

the conductivity components are different. As discussed later, both a graphene strip metasurface

(potentially, metal strips as well) and natural black phosphorus can provide a hyperbolic 2D surface.

In this case, as shown in (3.29) and (3.31), energy propagation is focused along specific directions

governed by the conductivity components [65].

3.3.4 Approximation of the Outer Integral Using Stationary Phase, and

Exact Evaluation Using the Continuous Spectrum

Although the SPP field can be evaluated from a numerical 1D integral, (3.23) with (3.27), it is useful

to consider other methods of evaluation that are more computationally rapid, and which lead to

physical insight into the problem.

3.3.5 Stationary Phase Evaluation of the Outer Integral

The “outer” integral (3.23) using (3.27) can be approximated by the well-known method of stationary

phase [102]. In particular, an analysis similar to that needed here was performed in [103], where the

inner integral is approximated as a residue (ignoring the branch cut contribution, as we do here), and

the outer integral is evaluated using SP. Regarding computation of the outer integral, although it

seems difficult to show analytically because of the complicated expression (3.26) for the pole qxp(qz),

numerical tests show that Re(q2
xp + q2

z − k2) > 0 for small values of qz. Therefore, no leaky waves are

encountered for typical parameter values.

Stationary phase evaluation of (3.23) with (3.27), assuming ρ� (y + y′), results in, to first order,

grαβ (r, r′) '

√
e−i

π
2

2πγ′′ (qs)
wsppαβ (qs)

e−p(qs)(y+y′)

2p (qs)
e−iγ(qs) (3.32)

where wsppαβ (qs) = wsppαβ (qxp (qs) , qs), p (qs) = p (qxp (qs) , qs), and γ (qz) = − (qxp (qz) (x− x′) + qz (z − z′)),

where qs is the root of dγ/dqz = 0, which can be obtained as the root of a fourth-order polynomial,

or via numerical root search. See [103] for a ray-optical interpretation of the SP result in anisotropic

media.

Here we provide a comparison between the SP result (3.32) and numerical (real-line) computation

of the outer integral (3.23). Figure 3.8 shows the SP result (red) and numerical integration result

(blue) for (a) σxx = 0.02 + 0.57imS, σzz = 0.02 − 0.57imS and (b) σxx = 0.003 + 0.25imS, σzz =

0.03 − 0.76imS, both using ρ = 0.4λ, ρ/(y + y′) = 80. It can be seen that excellent agreement is

found for the location of the beam angle, although away from the beam maximum there is some

disagreement.
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Figure 3.8: The electric field Ey obtained by stationary phase result (3.32) (red) and numerical
integration (3.23) (blue) for (a) σxx = 0.02 + 0.57imS, σzz = 0.02− 0.57imS and (b) σxx = 0.003 +
0.25imS, σzz = 0.03− 0.76imS, ρ = 0.4λ, ρ/(y + y′) = 80, f = 10 THz.

3.3.6 Complex-Plane Analysis in the qz − Plane

Although the SPP field can be evaluated to first order using the SP approximation for ρ/(y+y′)� 1, it

is useful to consider complex-plane analysis of the “outer” integral over qz, which turns out to involve

only continuous spectrum. This method is theoretically exact, and is valid for all field and source

points. Further, it does not require finding the qz root, but does require knowing the qz-plane branch

points and cuts, which, themselves, lead to considerable physical insight.

The Weierstrass preparation theorem shows that the complex function fSPP
αβ (qz), (3.27), has no

poles, only branch points. Regarding the two complex planes qx − qz, a sufficient condition in order

to have a branch point in the qz − plane is that [104], [105]

D (qx, qz) =
∂

∂qx
D (qx, qz) = 0 (3.33)

with δ = ∂
∂qz

D (qx, qz)
∂2

∂q2x
D (qx, qz) 6= 0. Although (3.33) represents a second-order zero of D, in the

qz-plane these points are not poles, and are also not necessarily qz-plane branch points without the

condition δ 6= 0. These branch points are associated with modes in the qx-plane merging at a certain

value of qz, forming a second-order zero of D. Thus, the pair (qx, qz) satisfying (3.33) and δ 6= 0

represent poles in the qx plane and branch points in the qz plane (the branch in the qz plane controls

the merging of poles in the qx plane). Another possible branch point in the qz plane is associated with

the square-root in p. The fact that a pole in one spectral plane results in a branch point in another

spectral plane was recognized in studies of microstrip and other integrated waveguides [95, 96]. It

is also worthwhile to note that the asymptotic methods for branch cut evaluation described in [102]

do not work here. To use those formulas the branch cut integral must be dominated by the branch

point, that is, by the section of the integral in the vicinity of the branch point. This is not the case

for the anisotropic problem, where we have found that sections of the branch cut integral far from

the branch point can contribute substantially.
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3.3.7 P-type Branch Point in the qz-Plane

For the isotropic case, p =
√
q2 − k2 and the p-type branch point occurs at q = ±k, resulting in

the usual hyperbolic branch cuts in the q-plane [100]. In this case, q2
x + q2

z = q2
p is a constant and

qz =
√
k2 − q2

x leads to branch points at qx = ±k. However, for the residue, q2
p = q2

xp(qz) + q2
z is a

constant in qz and so we never have qp = k for any qz, and so there is no p-type BP in the qz − plane

for the SPP for the isotropic case. However, for anisotropic media q2
xp (qz) + q2

z is not generally a

constant, and so there can be a “p-type” BP in the qz-plane, where p =
√
q2
xp (qz) + q2

z − k2 = 0,

although this will not occur at qz = k unless qxp (k) = 0. In any event, since this branch cut relates

to radiation into space, for the SPP we can ignore this contribution to the SPP field.

Introducing the notation that (q
(n)
x , q

(n)
z ) represents the pair of spectral values that satisfy the

conditions for a branch point/pole pair, (3.33) and δ 6= 0, since the residue term already satisfies

D(qxp, qz) = 0, we can find branch points in the qz-plane from ∂
∂qx

D(qxp(qz), qz) = 0,

σxx +
ik/η√

q2
xp + q2

z − k2

(
1 +

1

4
η2σxxσzz

) qxp (qz) = 0. (3.34)

As we will show later, these branch points have a significant role in the analysis of the SPP. Because

of their importance, we categorize them into two groups, type-0 and type-1 branch points.

3.3.8 Type-0 Branch Point in the qz-Plane

First we define type-0 branch points as those values of qz for which qxp(qz) = 0 in (3.34); i.e., the

merging of the forward and backward modes (associated with different signs in the outer square-root

in (4.28)) in the qx-plane at a certain value of qz [105], given by

q(+0) = qTM
z = k

√
1−

(
2

ησzz

)2

(3.35)

q(−0) = qTE
z = k

√
1−

(ησxx
2

)2

(3.36)

such that the pair (qx, qz) = (0, qTM/TE) form a pole-branch-point pair. For σxx = σzz these are well-

known TM and TE SPP wavenumbers, respectively (graphene is an example of such a 2D isotropic

layer which can support these modes [16]). Note that for isotropic media, a vertically-polarized

current source will produce only TM fields (although a horizontally-polarized source will produce

both TE and TM fields even when the sheet is isotropic [100]). For an anisotropic sheet the boundary

conditions cannot be satisfied assuming only one type of field.
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3.3.9 Type-1 Branch Point in the qz-Plane

Another set of singularities in the qx-qz plane is related to the point in the qz-plane where modes

qxp associated with different signs in the inner square-root in (4.28) merge for qxp 6= 0. These can be

obtained by simultaneously solving the equations D(qx, qz) = 0 and dD(qx,qz)
dqx

= 0, leading to

q(±1)
x =

√
−k2

δσ

(
σxx + (σzz ∓ 2σxx)

(1 + 1
4η

2σxxσzz)2

η2σ2
xx

)
(3.37)

q(±1)
z =

√
−(q

(±1)
x )2 + k2

(
1−

(1 + 1
4η

2σxxσzz)2

η2σ2
xx

)
(3.38)

where δσ = σzz − σxx, such that (qx, qz) = (q
(±1)
x , q

(±1)
z ) form a pole-branch-point pair.

3.3.10 Branch Cut Analysis in the qz-Plane

Using the SPP field (3.27) and performing the outer integration, the Green’s function is

grαβ =
−i
2π

∫ +∞

−∞
w′αβ(qxp, qz)

e−p(y+y′)

2p
e−iqxp(x−x′)e−iqz(z−z′)dqz. (3.39)

Assuming (z − z′) > 0, due to the term e−iqz(z−z′) the contour can be closed in the lower half plane

of the qz − plane, leading to

grαβ ≈
−i
2π

∫
bc

w′αβ(qxp, qz)
e−p(y+y′)

2p
e−iqxp(x−x′)e−iqz(z−z′)dqz (3.40)

where the branch cut integral is over all branch cuts. Also, from the term e−iqxp(x−x′) it is clear that

for x− x′ ≥ 0 then only when Im(qxp) ≶ 0 do we obtain an SPP that decays away from the source.

Therefore, we have in the qz − plane two Riemann sheets (as mentioned previously, neglecting the

p-type branch point, which would introduce another two sheets; here we simply enforce Re(p) > 0),

the top (proper) sheet where Im(qxp) ≶ 0 and the bottom sheet where Im(qxp) ≷ 0, for x − x′ ≷ 0.

Those values of qz that lead to Im(qxp) = 0 determine the branch cut trajectory which separates the

proper from improper Riemann sheets.

Typically, branch cut trajectories to separate certain Riemann sheets can be analytically deter-

mined from the functional dependence of the multi-valued function that defines the branch point.

However, for anisotropic surfaces the form of qxp is too complicated to determine a simple equation

for the branch cut for Im(qxp) = 0. As an example, Fig. 3.9-a shows the branch cuts for Im(qxp) = 0

obtained by plotting Im(qxp) for an array of graphene strips (will be addressed later in this chapter)

in the hypothetical lossless case (i.e., ignoring the real parts of the conductivities) at 10 THz. Fig.

3.9-b shows a close-up near the Im axis, and Fig. 3.9-c shows the properly-cut qz − plane for the

lossless case. It can be seen that for the considered frequency the TM branch point leads to a branch
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cut starting at qTM
z and going horizontally to infinity, and the TE branch point qTE

z and the branch

point q
(−1)
z are connected by a branch cut. The branch point q

(+1)
z is on the improper Riemann sheet

(not shown).

Insight into the correct branch cut can be obtained from a large qz approximation. From (3.28),

for a lossy 2D surface σxx = σ′xx + iσ′′xx and σzz = σ′zz + iσ′′zz then the branch cut trajectory is along

qz values such that

Im(iqz
√
σ′zzσ

′
xx + iσ′′zzσ

′
xx − iσ′′xxσ′zz + σ′′xxσ

′′
zz) = 0. (3.41)

For a lossless surface, σ′xx = σ′zz = 0, leading to

Im(iqz
√
σ′′xxσ

′′
zz) = 0, (3.42)

such that if σ′′xxσ
′′
zz > 0 the BC is along Im(qz), and if σ′′xxσ

′′
zz < 0 the BC is along Re(qz), in agreement

with the numerically-determined contours.

The branch cut integrals can be viewed as a continuous superposition of modes. The BP qTM
z is

associated with the pair (qx, qz) = (0, qTM
z ) = (0, 9.3)k for the numerical example considered), and

along the branch cut, as Re(qz) increases, Re(qx)=Re(qxp) also increases from zero, and the resulting

continuum summation of pair values synthesis the beam. Similar comments apply to the branch cut

between qTE
z and q−1

z (between qz = 1.005k and −3.22ik in the numerical example considered).

The lossy case is shown in Fig. 3.10; the branch cut trajectory deflects a bit from the lossless

case, but for low-loss surface the lossless BC contour is sufficient.

Figure 3.9: a,b: Branch cut contours Im(qxp) = 0 determined from a plot of the absolute value of
Im(qxp) for a lossless model of a graphene strip array at 10 THz (σ′xx = σ′zz = 0, σ′′xx = 0.57i mS,

σ′′zz = −0.57i mS). The branch point locations are qTE
z /k = 1.005, qTM

z /k = 9.3, q
(−1)
z /k = −3.22i.

c. Integration contour in the qz − plane showing branch points (dots) and branch cuts (thick lines).

53



Figure 3.10: Branch cut contours Im(qxp) = 0 determined from a plot of the absolute value of Im(qxp)
for a lossy model of a graphene strip array at 10 THz with σxx = 0.02+0.57i mS and σzz = 0.02−0.57i
mS.

As a common special case, for an inductive isotropic surface such as graphene in the far-infrared,

σxx = σzz =
−ie2kBT

π~2(ω − i2Γ)

(
µc
kBT

+ 2 ln
(

1 + e
− µc
kBT

))
. (3.43)

Here we consider graphene at T = 300 K, µc = 0.5 eV and f = 20 THz. In this case the TE related

branch point is at qTE
z = k(1.0039 + 0.0001i), and so is not implicated in the lower-half-plane closure,

consistent with the surface being inductive (no TE mode is supported). Since only TM branch points

occur, only a TM mode exists, and the TM related BP occurs at qTM
z /k = (11.3706− 0.2088i). The

two other type-1 branch points move to infinity as the surface becomes isotropic, and therefore the

branch cut extends down the entire imaginary axis (therefore for both the isotropic and anisotropic

cases there is a branch cut between qTM
z and q−1

z ). Fig. 3.20 shows a surface plot of Im(qxp) in the

qz − plane.

Figure 3.11: Branch cut contour Im(qxp) = 0 determined from a plot of the absolute value of Im(qxp)
for graphene with µc = 0.5 eV at T = 0 K and f = 20 THz.

For isotropic and inductive graphene only a TM mode can propagate, and so the contribution
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is from the TM-related branch point and associated cut, as expected. For the graphene strip array

anisotropic case, the hybrid nature of the modes supported by such a surface involve both TE and

TM-related branch points, and, in contrast to the isotropic case, three branch points contribute to

the field.

3.3.11 Conductivity and Its Effect on Branch Points and SPP Confine-

ment

Analytically, it can be shown that both type-1 branch points q
(±1)
z can be connected to a TE or

TM branch point, depending on the conductivity value. Two cases are of particular interest, small

conductivity values, (Im(σxx/zz)η)2 � 1, and large conductivity values, (Im(σxx/zz)η)2 � 1. For

small conductivity values, from (3.35)-(3.36) we have

qTMz = k

√
1−

(
2

ησzz

)2

−→ (ησzz)
2 =

4

1− (
qTM
z

k )2
(3.44)

qTEz = k

√
1−

(ησxx
2

)2

−→ 1

(ησxx)2
=

1

4

1

1− (
qTE
z

k )2
. (3.45)

Making these replacements in (5.10)-(3.38) and using the fact that for small conductivity like in our

previous numeric example (σxx = 0.02+0.57imS and σzz = 0.02−0.57imS) we have (Im(σxx/zz)η)2 �

1, then |qTM
z | � k and |qTE

z | ≈ k, and so |qTE
z |2 � |qTM

z |2, such that

q(±1)
z =

k

2

√
1

1− (
qTE
z

k )2

σxx ∓ 2σxx
σzz − σxx

. (3.46)

Therefore, for small values of σxx and σzz, the type-1 branch points are governed by (and associated

with) the TE branch point qTE
z .

For larger values of σxx and σzz the situation is different. In this case, for (Im(σxx/zz)η)2 � 1

we have |qTM
z |2 � |qTE

z |2 and it can be shown that an approximate expression for the type-1 branch

point is (3.46) with qTM
z replacing qTE

z ; the type-1 branch points are associated with the TM related

branch point. As the conductivity changes from a small to a large value, qTEz and qTMz move toward

each other and then cross, and eventually interchange roles. Setting (3.35) and (3.36) equal to each

other, it can be shown that these type-0 branch points meet at a frequency such that σxxσzz = 4/η2.

As an example of a large conductivity situation, conductivity tensor components σxx = 1.3+16.9i

mS and σzz = 0.4 − 9.2i mS are attainable using multi-layer graphene to form the strip array. For

this set of conductivities the branch points and branch cuts are shown in Fig. 3.12. As can be seen,

qTEz exceeds qTMz , there is a branch cut from qTEz to infinity, a branch cut between qTMz and q−1
z ,

and q−1
z is connected to qTMz .
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Figure 3.12: Branch cut contours Im(qxp) = 0 determined from a plot of the absolute value of Im(qxp)
for a lossy model of multi-layer graphene strip at 10 THz, σxx = 1.3 + 16.9i mS and σzz = 0.4− 9.2i
mS.

3.3.12 Anisotropic Hyperbolic Layer (Graphene Strip Array)

A schematic of an array of graphene strips is shown in Fig. 3.13-a. This densely packed strip surface

can act as a physical implementation of a metasurface at terahertz and near infrared frequencies

[65, 106]. The dispersion topology of the proposed structure may range from elliptical to hyperbolic

as a function of its geometrical and electrical parameters. The in-plane effective conductivity tensor

of the proposed structure can be analytically obtained using an effective medium theory as [65]

σeff
zz = σ

W

L
and σeff

xx =
Lσσc

Wσc +Gσ
, (3.47)

where L and W are the periodicity and width of the strips, respectively, G = L−W is the separation

distance between two consecutive strips, σ is graphene conductivity (3.43) and σc = j ωε0Lπ ln(cscπG2L )

is an equivalent conductivity associated with the near-field coupling between adjacent strips obtained

using an electrostatic approach [107]. These effective parameters are valid only when the homogeneity

condition L � λSPP is satisfied, where λSPP is the plasmon wavelength in the in-plane direction

perpendicular to the strips (x in this case), thus leading to a homogeneous 2D metasurface. Fig.

3.13-b and c shows σxx and σzz in a wide range of frequency for a graphene strip array with graphene

parameters τ = 0.35 ps, µc = 0.33 eV, and geometrical parameters W = 59 nm and L = 64 nm. As

can be seen from in Fig. 3.13-b, this structure can exhibit a hyperbolic response, as well as implement

a non-hyperbolic although anisotropic surface.

As was discussed, conductivity components σxx = 0.02 + 0.57i mS and σzz = 0.02 − 0.57i mS

can be realized using an array of graphene strips with µc = 0.33 eV, strip width W = 59 nm, and

period L = 64 nm. For this anisotropic hyperbolic surface, Fig. 3.14a shows the electric field Ey,

the dominant field component, computed as a real-line integral (3.39), and as a sum of branch cut

integrals (4.102); excellent agreement is found between the two methods (the branch cut integrals
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Figure 3.13: a: Array of graphene strips. b: Imaginary parts of σxx and σzz and c: real parts of σxx
and σzz normalized to σ0 = e2/4~ for a graphene strip array with τ = 0.35 ps, µc = 0.33 eV, W = 59
nm and L = 64 nm. Region 1 is hyperbolic and region 2 is simply anisotropic

are faster to compute than the brute-force numerical integrals, but no attempt was made to optimize

either integration). The branch cuts for this case are shown in Fig. 3.10. Figs. 3.14-b,c show similar

agreement for different strip configurations as discussed below.

Although the direction of the beam is electronically controllable via the chemical potential, dif-

ferent combinations of physical parameters of the graphene strip array (width W and periodicity L)

can also be used to produce a desired beam. An optimum geometry to produce a beam in a certain

direction can be found by tuning all of these parameters simultaneously.

From (3.29), in the hyperbolic regime propagation along a desired direction can be obtained if

the tensor conductivity components have the proper ratio. Designing a hyperbolic metasurface to

produce a beam in a desired direction (e.g., choosing the strip width and period) can be done by

trial-and-error tuning of all geometrical and electrical parameters of the system, but a multi-variable

optimization, such as a genetic algorithm (GA) is a good choice for this task [108] [109]. Ideally,

the physical layout of the metasurface (graphene strips in the case) should be designed so that the

effective (homogenized) conductivity tensor elements are hyperbolic, and have large imaginary part

and small real part, since such a surface can support a well-confined, long-range SPP. Here we used

the cost function to be minimized as

Ψ(L,W,µc, φ) = α(Re(σxx) + Re(σzz)) +
β

|Im(σxx)|+ |Im(σzz)|
+ γ

(
tan2(φ) +

σzz
σxx

)
(3.48)

where σxx and σzz are defined in (3.47). The cost function in (3.48) is a multi-objective cost function

and the coefficients α, β and γ assign a weight (0 to 1) to each objective regarding to its importance.

The first term in (3.48) assures a small real part of conductivity, the second term assures a large
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imaginary part, and the last term assures the correct ratio for σzz and σxx to obtain the SPP beam

in desired direction specified by φ. It was found that α = 0.2 and β = γ = 0.4 leads to good results.

The physical strip geometry leading to the beam in Fig. 3.14-a was found in this manner, for a

specified beam angle of 45 deg. Note the excellent agreement between desired and obtained beam

angle. The chemical potential was then changed to produce the beam at 52 deg., for a fixed geometry.

Thus, a significant aspect of using a graphene strip array is its electronic tunability by, e.g., varying

the bias to control the chemical potential.

In Fig. 3.14-b a desired beam angle of 60 deg. was sought, and the GA was used to determine the

optimized parameters; µc = 0.45 eV, W = 56.1 nm and L = 62.4 nm, such that σxx = 0.003 + 0.25i

mS and σzz = 0.03 − 0.76i mS, leading to the desired beam. Again, excellent agreement is found

between the desired and final beam angles.

Figure 3.14: Electric field Ey excited by a y-directed dipole current above a graphene strip array. a:
graphene with µc = 0.45 eV and µc = 0.33 eV, W = 59 nm, L = 64 nm, σxx = 0.02 + 0.57i mS and
σzz = 0.02 − 0.57i mS. b: µc = 0.45 eV, W = 56.1 nm, L = 62.4 nm, σxx = 0.003 + 0.25i mS and
σzz = 0.03− 0.76i mS. c: Strip array with a 5-layer graphene, µc = 1 eV, W = 196 nm and L = 200
nm, σxx = 1.3 + 16.9i mS and σzz = 0.4− 9.2i mS. Blue line is for the integration along the real axis
(3.39) and dashed red line is for integration along the branch cuts (4.102). f = 10 THz, ρ = 0.2λ,
and y = 0.005λ.

As a final example for the graphene strip array Fig. 3.14-c shows Ey for the case of multi-layer

graphene strips (to increase the conductivity) as discussed in the previous section. By using five layers

of graphene with µc = 1 eV, W = 196 nm and L = 200 nm, the conductivities are σxx = 1.3 + 16.9i
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mS and σzz = 0.4− 9.2i mS. The branch cuts are shown in Fig. 3.12. For this case, (3.29) indicates

that the beam should be directed along φ = 36 deg. Again, excellent agreement is found between the

two methods and the position of the beam is along the desired angle.

3.3.13 Anisotropic Non-Hyperbolic Layer (Black Phosphorus)

Black phosphorous is an anisotropic monolayer or thin-film material that can support surface plasmons

[18]. Fig. 3.15 shows the in-plane conductivity tensor components at two doping levels, 10×1013/cm2

in Fig. 3.15-a and b and 5×1012/cm2 in Fig. 3.15-c and d, obtained from a Kubo formula as described

in [83]. For a 10 nm BP film, the electronic band gap is approximately 0.5 eV. This accounts for the

observed interband absorption along the x polarization, and also characterized by weak interband

absorption along z.

Figure 3.15: a, b. Real and imaginary parts of σxx and σzz (x and z are in-plane crystal axes of BP,
with x along the small effective mass direction, or commonly called the armchair direction) obtained
at doping level 10×1013/cm2 and c,d. 5×1012/cm2 normalized to σ0 = e2/4~ with a 10 nm thickness.
Regions 1 and 3 show anisotropic inductive and capacitive responses, respectively, and region 2 shows
the hyperbolic regime. T=300 K and damping is 2 meV.

It can be seen that by increasing the doping level, larger conductivity components are attainable

but the hyperbolic region is also pushed toward higher frequencies. In Fig. 3.15-a and b black

phosphorus is an inductive anisotropic (non-hyperbolic) surface while in Fig. 3.15-c and d regions

1 and 3 show anisotropic inductive and capacitive responses, respectively, and region 2 shows the

anisotropic hyperbolic region.

Black phosphorus is a natural material that can be used as a platform to realize an anisotropic

surface. Although black phosphorus exhibits a hyperbolic regime, the resulting values of conductivity

are rather small (to produce a hyperbolic response the interband conductivity must dominate one
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of the conductivity values (σxx or σzz), and the intraband conductivity must dominate the other

component, resulting in the required sign difference). Although a hyperbolic SPP can be excited,

the residue is not generally the dominant response. Therefore, in order to consider larger values

of black phosphorus conductivity, we consider the non-hyperbolic (Drude) regime. A 10 nm thick

black phosphorus film with doping level 10 × 1013/cm2 has conductivity tensor components σxx =

0.0008 − 0.2923i mS and σzz = 0.0002 − 0.0658i mS at f = 92.6 THz. Using (3.35), (3.36) and

(3.38), a surface with these conductivity components has qTM
z = k(80.6804− 0.2114i), qTE

z ≈ k, and

q
(−1)
z = k(−0.0300− 10.3165i).

Figure 3.16: a: Branch cut contours for Im(qxp) = 0 determined from the absolute value of Im(qxp)
in the qz − plane. b. Absolute value of Ey excited by a y-directed dipole current source above black
phosphorus with doping level 10 × 1013/cm2 at f = 92.6 THz. The blue line is for the integration
along the real axis (3.39) and the dashed red line is for the integration along the branch cuts (4.102).
ρ = 0.2λ and y = 0.005λ. c: SPP field in-plane distribution in logarithmic scale calculated by FDTD.
d: SPP field vertical variation in logarithmic scale calculated by FDTD.

The imaginary components of the conductivities are negative, so that the surface is not able to

support TE modes (the TE branch point is located at the upper half of the qz − plane, and so not

captured for z − z′ > 0). The only active branch points are the TM related branch point and q
(−1)
z .

Fig. 3.16-a shows the branch points and associated branch cuts in the qz − plane. One important

difference between branch cuts in this case and in the previous hyperbolic cases is the branch cut

trajectory. From (3.42) for the hyperbolic case, because of the condition Im(σxx)Im(σzz) < 0 the

branch cut trajectory was along the real axis, but for the anisotropic non-hyperbolic case we have

Im(σxx)Im(σzz) > 0 and so the trajectory for large qz is parallel to the imaginary axis.

As shown in Fig. 3.16-b, this anisotropic non-hyperbolic surface can support a directed SPP,

although the beam is directed primarily along one of the coordinate axes. The electric field computed
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as a real-line integral (3.39) is in good agreement with the electric field obtained as a sum of branch

cut integrals (3.40). Fig. 3.16-c shows the SPP field in logarithmic scale calculated by numerically

solving Maxwell’s equations using a commercial finite-difference time-domain method (FDTD) from

Lumerical solutions [59]. Good agreement with the results obtained by complex plane analysis is

observed. Fig. 3.16-d shows the vertical variation of the beam in logarithmic scale calculated by

Lumerical, showing strong SPP confinement to the surface. Using the Green’s function the attenuation

length was found to be p = λ/12π.

In the next section we discuss the application of hyperbolic surfaces in generating and controlling

entanglement.

3.4 Tunable Directed Surface Plasmon-Polariton (SPP) Me-

diated Entanglement

In this chapter, it has been shown that using a hyperbolic 2D surface, it is possible to launch a narrow-

beam surface plasmon-polariton in a specific direction, and the angle of propagation is tunable by

changing the components of the conductivity tensor (via, e.g., biasing). The idea is to control and

switch entanglement between pairs of (moderately far-separated) quantum dots (QDs); see Fig. 3.17.

Figure 3.17: A 2D hyperbolic material located in the x− z plane with conductivity components σxx
and σzz. Quantum dot ‘a’ is located at the center, and two other quantum dots are at two different
angles. The dipole polarization is along y, normal to the surface.

The angle of SPP propagation, φ, can be controlled by changing the ratio of σxx and σzz such

that (φ) = atan−1
√
−σzz/σxx. In Fig. 3.17, QDa is located at the center, QDb at φ = 50o and QDc

at φ = 235o. Using the master equation, the steady state concurrence between pairs of QDa and QDb

or QDa and QDc has been shown in Fig. 3.18.

In Fig. 3.18, each R corresponds to a specific ratio of conductivity tensor components (that specify

the direction of the SPP) such that if we put one quantum dot in the center and the other dot along

the direction specified by that R, then we can have maximum steady state concurrence between the

pair aligned along that direction. We use a genetic algorithm (GA) optimization, first assuming that

the 2D hyperbolic surface is almost lossless, and optimization is done over the imaginary part of the

conductivity values.
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Figure 3.18: Steady-state entanglement for various pairs of QDs. The height of the dots above the
hyperbolic surface is h = λ/60, and frequency is 10 THz. The distance between each pair (QDa −QDb

and QDa −QDc) is d = λ/2. Optical dipole moment of the dot at the center is 30 D, and the two other
dots have moment 30 D. The dot at the center is illuminated by a pump with intensity Ωaa = 0.35Γaa.
Solid blue line is the steady state entanglement between pairs QDa at center and QDb at φ = 50o.
Solid red is the steady state entanglement between pair QDa at the center and QDc at φ = 235o.
Horizontal axis, R, is the ratio of conductivity tensor components that yield these conductivity values.

By changing the ratio of the conductivity tensor components we can rotate the beam, so that we

can launch an SPP toward one of the targets (dots). The SPP forms a narrow beam, so that each

QD can be separately targeted, creating entangled (linked by beam) or non-entangled (beam in other

direction) QD pairs.

Figure 3.19 shows concurrence versus normalized time for the configuration of the dots described

in Fig. 3.18.

As can be seen, when the beam links QDa − QDb, we have strong entanglement between QDa

and QDb, while QDc is not entangled. When the beam is launched toward QDc, then QDb is not

entangled while QDc is entangled to QDa.

The conductivity component values corresponding to the ratio R = 2 can be realized using an

array of graphene strips. The conductivity values for R = 2 (SPP propagation along φ = 235o) are

σxx = 0.001− 2.9i mS, σzz = 0.001 + 5.9i mS. Using an array of 3 layer graphene with W = 97 nm,

L = 100 nm, τ = 1 pS and µc = 1.01 eV it is possible to resemble a surface with σxx = 0.01− 2.60i

mS, σzz = 0.08 + 5.50i mS at f = 10 THz, which is very close to the values obtained in previous

section for R = 2 (determining the strip grid geometry is also done using a second genetic algorithm).

One of the advantages of this surface is that the conductivity values are tunable via the chemical

potential. For the geometry mentioned earlier if we change chemical potential to µc = 0.8 eV then we

obtain σxx = 0.02−2.94i mS, σzz = 0.06 + 4.36i mS which leads to SPP propagation along φ = 235o.

Figure 3.20-a and b show the SPP propagation, dot positions and driven concurrence between

pairs of QDs.

62



Figure 3.19: Time-evolution of entanglement. The QDs are h = λ/60 above the surface, and frequency
is 10 THz. The distance between the dots is d = λ/2. Optical dipole moment of the dot at the
center is 30 D, and same thing for the other two dots. The dot at the center is illuminated by
a pump with Ωaa = 0.35Γaa. The ratio R = 1.42 (φ = 50o) corresponds to σxx = 0.001 − 3.87i
mS, σzz = 0.0010 + 5.5080i mS and R = 2 (φ = 235o) corresponds to σxx = 0.001 − 2.9i mS,
σzz = 0.001 + 5.9i mS.

Figure 3.20: SPP propagation due to a dipole located at h = λ/60 above the surface made by graphene
strips array with τ = 1 pS, W = 97 nm and L = 100 nm. a: Solid blue for µc = 0.8 eV and solid red
is for µc = 1.01 eV. QDs are indicated by red dots. b: Driven concurrence by a pump with intensity
Ω = 0.4Γaa between pair QDa, QDb and QDa, QDc when beam is in a different direction.

3.5 Summary

In this chapter we have studied the electromagnetic response of 2D anisotropic and hyperbolic surfaces

and developed a method based on complex plane analysis for the efficient computation of electric field

excited on such surfaces. A solution in term of electric field Sommerfeld integrals has been obtained

for the electromagnetic field due to a vertical dipole current source located in close proximity to the

surface. Poles, branch points, and related branch cuts and their relative importance and physical

meaning for surface wave propagation have been emphasized. A first-order approximation has also

been obtained using the stationary phase method. Examples have been shown for a graphene strip
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array and black phosphorus. Also the application of directive SPPs for generating and controlling

the entanglement between quantum dots has been investigated.
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Chapter 4

Photonic Topological Insulators

4.1 Review of Theory

4.1.1 Motivation- Backscattering-Immune One-Way SPP Propagation

Surface plasmons polaritons (SPPs) are well-known and long-studied waves that can be guided at

the interface between two materials (nominally, for an SPP to exist in an isotropic environment one

material has relative permittivity ε = ε1 < 0 and the other has ε = ε2 > 0, such as an air-plasma

(metal) interface). For a wave travelling as e±ikz (z parallel to the interface), the SPP dispersion

relation is

k =
ω

c

√
ε1ε2

ε1 + ε2
, (4.1)

where εα = εα (ω) , α = 1, 2. For example, for a simple lossless plasma ε (ω) = 1 − ω2
p/ω

2 with ωp

being the plasma frequency. Plotting the dispersion equation (Fig. 4.1.a) we see that propagation

is reciprocal, ω (−k) = ω (k), so that forward-propagating (k) and backward-travelling (−k) waves

exist at the same frequency. A source near the surface will excite SPPs travelling in both directions

(±z), and upon encountering a discontinuity an SPP travelling in, say, the +z direction will undergo

both reflection and transmission, again resulting in both forward and backward travelling waves.

Waves can be excited in a single direction using a directive source (e.g., planar Yagi-Uda antenna,

or by a circularly-polarized source that couples to the SPPs spin polarization), but upon encountering

a discontinuity, partial reflection of the wave will occur since the material itself allows propagation

in both directions.

However, if the medium only supports modes that can travel in one direction, say, via non-

reciprocity as depicted in Fig. 4.1.b (e.g., via a magnetic-field biased plasma having a tensor permit-

tivity with non-zero off-diagonal elements), then upon encountering a discontinuity an SPP cannot be

reflected (back-scattered), as shown in the upper-right insert of the figure. This is a rather remark-

able occurrence, and has important applications in waveguiding (e.g., defect- immune waveguides).
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Figure 4.1: a. Dispersion of reciprocal SPP. Upper-left insert shows SPP power flow excited by a
vertical dipole source near a step change in height at the interface between a reciprocal medium
(below) and a different reciprocal medium (above), b. nonreciprocal SPP; shaded region depicts
frequency range of uni-directional propagation. Upper-right insert is the same as upper-left insert,
except that the lower medium is now non-reciprocal and we operate in the gap, ensuring one-way
propagation.

In general, there will be a range of energies where only propagation in one direction is possible (e.g.,

in Fig. 4.1.b in the indicated frequency band only forward propagating modes can exist, there are no

states with −k).

However, the idea of one-way (backscattering-immune) surface-wave propagation is more general

then indicated above. In particular, one does not necessarily need a non-reciprocal material. A broad

class of materials exist known as photonic topological insulators (PTIs) which have this characteristic,

generally supporting Hall/chiral edge states. This class of materials includes biased non-reciprocal

magneto-plasmas (more generally, materials with broken time-reversal symmetry), but it also includes

time-reversal-invariant materials with broken inversion symmetry. In the latter case, photon states

are separated in two ‘spin’ sub-spaces (usually through geometry such as via a hexagonal lattice), and

‘spin-orbit’ coupling is introduced through inversion symmetry-breaking. Here focus on the simplest

subclass formed by photonic topological media with a broken time reversal symmetry, sometimes also

designated as Chern-type insulators (the analogs of quantum Hall insulators).

On the electronic side, topological insulators (TIs) and quantum Hall edge state materials (which

utilize many of the same concepts described here) came first, and, noting the analogy between elec-

tronic and optical systems, the first work on PTIs was described in [110] and [20]. The first exper-

imental demonstration of an optical TI was shown in [111], and in various material systems [112],

[113], [114], [115], and [116], among others. Understanding the broad field of PTIs necessitates un-

derstanding the Berry phase, potential, curvature, and the concept of Chern invariants, which is the
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subject of these notes. After an introduction to these concepts, we examine two previous PTI results

from the literature, and provide details of the various computations necessary to characterize the

materials.

4.1.2 Origin of the Berry Phase

Here we derive the Berry phase, following the usual procedure for electronic systems. For a derivation

that only considers classical electromagnetics, as well as a more thorough introduction, see [117].

We consider a system described by a Hamiltonian dependent on parameters that vary in time, H =

H(R), such that R = R (t) = (R1 (t) , R2 (t) , R3 (t) , ....) We will consider a path in parameter space

C along which R changes. For example, R could describe the position of a particle (x (t) , y (t) , z (t))

and C could be a path in physical space. However, here we are primarily interested in the case when

R (t) lives in momentum (reciprocal) space.

The evolution of the system is assumed to be adiabatic, such that the parameters R(t) of the

Hamiltonian change slowly along path C in parameter space. The adiabatic theorem states that if a

system is initially in the nth eigenstate of the initial Hamiltonian H (R (0)), and the system is moved

slowly-enough as R (t) changes, it will arrive at the nth eigenstate of the final Hamiltonian H (R (T)).

Development of the adiabatic solution below will show how the Berry phase comes about.

We will assume that the time dependent states evolves through an evolution equation

i~∂t |Ψ(t)〉 = (R(t)) |Ψ(t)〉 (4.2)

which is typically taken to be the Schrödinger equation, where |Ψ(t)〉 is a scalar, but it could also

represent the Dirac equation where |Ψ(t)〉 is a spinor, and classical Maxwell’s equations (} = 1),

where |Ψ(t)〉 is the six-vector of EM fields.

Because of the slow variation of the Hamiltonian parameters we can assume that at every time

the instantaneous eigenstates of the Hamiltonian satisfy

H(R) |n(R)〉 = En |n(R)〉 . (4.3)

However, (4.3) does not uniquely determine the function |n(R)〉, since we could include an arbitrary

phase factor (gauge choice) that depends on R (t).

To motivate the following derivation, note that if the Hamiltonian is independent of time, then a

system that starts out in the nth eigenstate |n〉, remains in nth eigenstate but simply pick up a phase

factor,

|Ψn(t)〉 = |n〉 e− i
~Ent. (4.4)

So, to represent the evolution of the system with slowly varying Hamiltonian we use a superposition
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of these instantaneous eigenvectors, adjusting the phase factor to account for the time variation,

|Ψ(t)〉 =
∑
n

an(t)e−
i
~
∫ t
0
En(R(t′))dt′ |n(R(t))〉 =

∑
n

an(t)eiαn |n(R(t))〉 (4.5)

where αn(t) = − 1
~
∫ t

0
En(R(t′))dt′ is called the dynamical phase. If we substitute this general form

of solution in the evolution equation (4.2) we obtain

i~
∑
n

(∂tan + ian∂tαn)eiαn |n〉+ i~
∑
n

ane
iαn |∂tn〉 = H |Ψ〉

i~
∑
n

(∂tan)eiαn |n〉+
∑
n

Enane
iαn |n〉+ i~

∑
n

ane
iαn |∂tn〉 = H |Ψ〉 , (4.6)

and taking the inner product of both sides by 〈m|, yields

∂tam = −
∑
n

ane
i(αn−αm) 〈m|∂tn〉 . (4.7)

In the adiabatic limit, where excitation to other instantaneous eigenvectors is negligible 1 , the choice

of initial state |Ψ(t)〉 = |n(R(t = 0))〉 will imply that |an(t)| = 1, am(t) = 0 for m 6= n. We then have

∂tam = −
∑
n

ane
i(αn−αm) 〈m|∂tn〉

∂tan = −an 〈n|∂tn〉 → an = eiγn ; ∂tγn = i 〈n|∂tn〉 . (4.9)

Therefore, the adiabatic evolution of the state vector becomes

|Ψ(t)〉 = eiγneiαn |n(R(t))〉 . (4.10)

1To prove the statement that the excitation probability of states n 6= m is small, the time derivative of the
energy state equation is ∂tH |n〉 + H |∂tn〉 = ∂tEn |n〉 + En |∂tn〉, where we can set ∂tEn = 0 due to slow vari-
ation. The inner product with 〈m| yields 〈m|∂tn〉 = 〈m|∂tH|n〉 /(Em − En) (n 6= m) so we have from (4.7)
∂tam = −

∑
n ane

i(αn−αm) 〈m|∂tH|n〉 /(Em − En) (n 6= m). Choose the initial state to be one of the instanta-
neous eigenstates |Ψ(t = 0)〉 = |n(R(0))〉, so an(t = 0) = 1 and am(t = 0) = 0 for n 6= m. Then, for n 6= m we have
∂tam ≈ −ei(αn−αm) 〈m|∂tH|n〉 /(Em − En). Since the time dependencies of 〈m|∂tH|n〉 and En − Em are slow, the
most important time dependence will be in the exponential, which can be approximated by ei(αn−αm) = ei(Em−En)t/~.
Neglecting the other slow time dependencies then yields

∂tam ≈ −ei(αn−αm) 〈m|∂tH|n〉 /(Em − En)

am(t) = −
∫ t

0
ei(Em−En)t/~

〈m|∂tH|n〉
(Em − En)

· dt =
i

~
〈m|∂tH|n〉

ω2
mn

{eiωmnt/~ − 1}, (4.8)

ωmn = (Em − En)/~, (n 6= m). Due to adiabatic approximation we have adopted, 〈m|∂tH|n〉 is slow compared to
the transition frequency ωmn = (Em − En)/~. Therefore, the magnitude of the excitation probability to other states
|am(t)|2 is small for n 6= m. For further reading see [118].
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We have

γn = i

∫ t

0

〈n(R(t′))| ∂
∂t
|n(R(t′))〉 dt′

= i

∫ t

0

〈n(R(t′))| ∂
∂R
|n(R(t′))〉 · ∂R

∂t′
dt′

=

∫ Rf

Ri

dR · i 〈n(R)| ∇R |n(R)〉 =

∫ Rf

Ri

dR ·An(R) (4.11)

(setting ∇R = ∂/∂R), where Ri and Rf are the initial and final values of R(t) in parameter space,

and where

An(R) = i 〈n(R)| ∇R |n(R)〉 = −Im 〈n(R)| ∇R |n(R)〉 (4.12)

is called the Berry vector potential (also called the Berry connection since it connects the state at R

and the state at R + dR) and γn is called the Berry phase.2.

Eq. (4.11) shows that, in addition to the dynamical phase, the state will acquire an additional

phase γn during the adiabatic evolution (note that γn is real-valued; eiγn(t) is a phase, not a decay

term3). The existence of this phase has been known since the early days of quantum mechanics,

but it was thought to be non-observable since a gauge-transformation could remove it. It was Berry

who, in 1984, showed that for cyclic variation (Rf = Ri) the phase is not removable under a gauge

transformation[119] (discussed below), and was also observable4. This net phase change depends

only on the path C in parameter space that is traversed by R(t), but not on the rate at which it is

traversed (assuming the adiabatic hypothesis still holds). It is therefore called a geometrical phase,

in distinction to the dynamical phase which depends on the elapsed time. This geometric phase has

been generalized for non-adiabatic evolution [120].

Geometric Phase

Geometric phases have a long history, and arise in many branches of physics [121]. They are well-

illustrated by considering parallel transport of a vector along a curved surface. To consider an

intuitive example, as widely discussed (see, e.g., [122]) and depicted in Fig. 4.2, consider at t = 0 a

pendulum at the north pole of a sphere, swinging along a longitude line. If the pendulum is moved

along the longitude line to the equator, across the equator some distance, and at t = T arriving

back at the north pole via a different longitude line (and assuming the movement is sufficiently

slow, in keeping with the adiabatic assumption), the angle of the pendulum swing with some fixed

reference is obviously different from it’s initial angle (this difference is called the defect angle, which

is a mechanical analogue of phase). The defect angle is given by the solid angle Ω subtended by the

2One can also obtain this result by assuming the existence of this extra phase [119], |Ψ(t)〉 = eiγneiαn |n(R(t))〉, and
inserting into Schrödinger’s equation. Taking the inner product with 〈n(R(t))| and using 〈n(R(t))|H(R)|n(R(t))〉 = En
leads to the same result as above.

3〈n(R)|∇R |n(R)〉 can easily seen to be itself imaginary since 〈n(R)| n(R)〉 = 1, and so taking a derivative on both
sides yields 〈n(R)|∇R |n(R)〉 = −〈n(R)|∇R |n(R)〉∗.

4Physically observable quantities must be gauge-independent
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path of movement. For example, Ωsphere = 4π for a sphere, and so if the longitude lines are 180

degrees apart the subtended angle is Ωsphere/4 = π. For the electronic case, moving along a contour

in parameter space, the Berry phase is equal to sΩ, where s is the particle spin. Parallel transport

along an non-curved surface does not lead to a defect angle, and so we see that a non-zero Berry

phase has it’s origins in the curvature of parameter space. In optics, an optical fiber wound into a

Ω

Figure 4.2: a. Parallel transport around a sphere. b. Parallel transport about a closed contour on a
sphere and solid angle subtended.

helix has been used to demonstrate Berry phase [123], among other results (see, e.g., [124]). In these

cases the momentum is p = x̂px + ŷpy + ẑpz = }k, where k is the propagation vector of the optical

wave, |k| = k = 2π/λ. Therefore, |p|2 = p2
x + p2

y + p2
z = (}k)2, which is a sphere, and so rotation of

momentum is equivalent to movement on the surface of a sphere.

When R is a real-space parameter, consider an electron in the ground state of an atom. As the

atom is slowly moved through a static magnetic field the electron stays in the ground state (adiabatic)

but picks up a Berry phase, which is the Aharonov-Bohm phase. An example of R as a parameter

space is given in Section 4.1.4 for an electron fixed in space but exposed to a time-varying magnetic

field B (t). As detailed in the electromagnetic examples below, we will be more interested in the

case when the parameter space R is momentum space, R = k. In this case, we can simply consider

moving through k-space without necessitating the time variable, and simply consider γn (k), which

will depend on the path taken in k-space.

Gauge

Obviously, An(R) is a gauge dependent quantity. If we make a gauge transformation |n(R)〉 →

eiξ(R) |n(R)〉 with ξ(R) an arbitrary smooth function (this is equivalent to the EM gauge trans-

formation5) the Berry potential transforms to An(R) → An(R) − ∇Rξ(R). Consequently, the

5In EM, the gauge transform is

Φ′ (r, t) = Φ (r, t)−
∂χ (r, t)

∂t
, A′ (r, t) = A (r, t) +∇χ (r, t) , (4.13)

which leaves the fields

E (r, t) = −∇Φ (r, t)−
∂A (r, t)

∂t
, B (r, t) = ∇×A (r, t) (4.14)

unchanged. Then,

i}
d

dt
|ψ〉 = H |ψ〉 (4.15)
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additional phase γn will be changed by ξ(Ri) − ξ(Rf ) after the gauge transformation, where Ri

and Rf are the initial and final points of the path C. For an arbitrary path one can choose a

suitable ξ(R) such that accumulation of that extra phase term vanishes, and we left only with

the dynamical phase. However, by considering a closed path (cyclic evolution of the system) C

where Rf = Ri and noting that the eigenbasis should be single-valued, |n(Ri〉 = |n(Rf 〉, then

eiξ(Ri) |n(Ri〉 = eiξ(Rf ) |n(Rf 〉 = eiξ(Rf ) |n(Ri)〉, and so eiξ(Ri) = eiξ(Rf ). That is, single-valuedness

of the eigenbasis means that eiξ(R) (but not necessarily ξ(R)) must be single-valued, and therefore

we must have

ξ(Ri)− ξ(Rf ) = 2πm (4.17)

where m is an integer. This shows that γn can be only changed by an integer multiple of 2π under a

gauge transformation using a smooth gauge function; this phase cannot be removed. Note that this

holds for Dim(R) > 1, so that we have a path integral in (4.11). For a one-parameter space R, (4.11)

becomes a simple integral over a vanishing path; for Rf = Ri = R
∫ R
R
i 〈n(R)| ∂∂R |n(R)〉 dR = 0.

However, when applied to periodic solids (for which the Berry phase is also called the Zak phase,

electrons crossing the Brillouin zone can indeed pick up a Berry phase, which persists in 1D because

of the periodicity of the Brillouin zone; assuming period a, when k sweeps across the BZ due to, say,

an applied field, a phase can be acquired since
∫ π/a
−π/a (·) dk =

∮ π/a
−π/a (·) dk.

As described below, we will only be interested in paths C that are closed in parameter space, and

so we write

γn = γn (R) =

∮
C

dR ·An(R). (4.18)

In the space of gauge functions ξ where eiξ(R) is single-valued, (4.18) is gauge-dependent (one could

say it is gauge-invarient up to factors of 2π). If we restrain the class of gauge functions ξ to be

themselves single-valued, then (4.18) is gauge-independent6.

For a two-dimensional periodic material (such as graphene as an electronic example, or a hexagonal

array of infinite cylinders as an electromagnetic example), C is typically the boundary of the first

Brillouin zone and S is its surface in k-space. In this case, the “cyclic” variation forming the closed

path C in k-space is the perimeter of the first Brillouin zone.

with the Hamiltonian

H (r, t) =
1

2m
[p̂ + eA (r, t)]2 − eΦ (r, t) + V (r) ,

becomes

i}
d

dt

∣∣ψ′〉 = H′
∣∣ψ′〉 (4.16)

where |ψ′〉 = e−ieχ(r,t)/} |ψ〉 and

H′ =
1

2m

[
p̂ + eA′ (r, t)

]2 − eΦ′ (r, t) + V (r) .

Therefore, Schrödinger’s equation is invariant under the gauge transformation, and the EM change of gauge is equivalent
to a phase change in the wavefunction, |ψ′〉 = e−ieχ(r,t)/} |ψ〉.

6This is easily seen since
∮
C dR · ∇Rξ(R) = 0 for ξ a smooth, single-valued function.
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4.1.3 Berry Curvature, Flux, and Tensor, and Chern Number

Eq. (4.18) is an analogy to the equation for magnetic flux Φmag, in terms of the real-space magnetic

field and magnetic vector potential Amag in electromagnetics,

Φmag =

∫
S

dS ·B (r) =

∮
C

dl ·Amag (r) . (4.19)

where
∮
C
dl ·Amag (r) is also related to the Aharonov-Bohm phase in quantum mechanics. For the

magnetic flux density in electromagnetics we have

B (r) = ∇r ×Amag(r). (4.20)

By analogy to electromagnetics, when 2 ≤ dim (R) ≤ 3 (other dimensional are considered below) a

vector wave can be obtained from the Berry vector potential An(R) as

Fn(R) = ∇R ×An(R) (4.21)

= i∇R × 〈n(R)| ∇R |n(R)〉 = i 〈∇Rn(R)| × |∇Rn(R)〉 . (4.22)

This field is called the Berry curvature, and is obviously gauge-independent. It is a geometrical

property of the parameter space, and can be viewed as an effective magnetic field in parameter space;

just as the motion of a moving charge is perpendicular to the magnetic field (FB = v ×B), i.e., the

curvature of the magnetic vector potential, the Berry curvature will induce transverse particle motion

(an electronic or optical Hall effect). To continue the analogy, first note that the magnetic flux can

also be written as

Φmag =

∫
S

dS ·B (r) , (4.23)

where (4.19) and (4.23) are equal via Stokes’ theorem, i.e.,

∮
C

dl ·Amag (r) =

∫
S

dS · ∇r ×Amag(r) =

∫
S

dS ·B (r) . (4.24)

For Stokes’ theorem to hold the fields must be nonsingular on and within the contour C. Given that

magnetic monopoles, which would serve as singularities of the field, do not seem to exist, Stokes’

theorem is valid to apply in this case. One can similarly use Stokes’ theorem to connect the Berry

phase and the Berry curvature,

γn =

∮
C

dR ·An(R)
?
=

∫
S

dS · Fn(R) (4.25)

where C and S are a contour and surface in parameter space, and where the right side could be called

the Berry flux. However, it must be kept in mind that the relation (4.25) is not always valid, since
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for the parameter-space fields An (R), Fn (R) singularities can occur, such that Stokes’ theorem does

not generally hold7. Nevertheless, a gauge-independent Berry phase γn can be computed from the

Berry flux integral,

γn =

∫
S

dS · Fn(R), (4.27)

Stokes’ theorem holding modulo 2π.

The above form of Fn (and of An) can be inconvenient for numerical work since it involves

derivatives of the state function (the problem this engenders is described below). In the following

an alternative tensor formulation is shown, applicable for any dimension parameter space, and which

also leads to a more convenient form for numerical computations.

For Rµ and Rν elements of R, with µ, ν covering all of R, then the Berry curvature tensor can

be defined as

Fnµν =
∂

∂Rµ
Aν
n −

∂

∂Rν
Aµ
n = i

[〈
∂

∂Rµ
n(R)

∣∣∣∣ ∂

∂Rν
n(R)

〉
−
〈

∂

∂Rν
n(R)

∣∣∣∣ ∂

∂Rµ
n(R)

〉]
(4.28)

which serves as a generalization of the vector Berry curvature. We can also write the Berry curvature

tensor in terms of the Berry curvature vector; for dim (R) = 3

F = −F× I3×3 =


0 Fz −Fy

−Fz 0 Fx

Fy −Fx 0

 (4.29)

where I3×3 is the identity. More generally, the Berry curvature tensor Fnµν and vector Fn are related

by Fnµν = εµνξ(Fn)ξ with εµνξ the Levi-Civita anti-symmetry tensor.

Importantly, the Berry curvature tensor (4.28) can be also written as a summation over the

eigenstates,

Fnµν = i
∑

n′, n′ 6=n

〈n| ∂H/∂Rµ |n′〉 〈n′| ∂H/∂Rν |n〉 − 〈n| ∂H/∂Rν |n′〉 〈n′| ∂H/∂Rµ |n〉
(En − En′)2

. (4.30)

To obtain this result, note that

Aν,µ
n = i 〈n(R)| ∂

∂Rν,µ
|n(R)〉 , ∂

∂Rα
Aν,µ
n = i

〈
∂

∂Rα
n(R)| ∂

∂Rν,µ
n(R)

〉
+ i

〈
n(R)| ∂

∂Rα∂Rν,µ
n(R)

〉
.

Inserting into (4.28),

Fnµν =
∂

∂Rµ
Aν
n −

∂

∂Rν
Aµ
n = i

[
<

∂

∂Rµ
n(R)| ∂

∂Rν
n(R) > − < ∂

∂Rν
n(R)| ∂

∂Rµ
n(R) >

]
. (4.31)

7The obstruction to Stokes’ theorem

D =
1

π

[∮
C
dR ·An(R)−

∫
S
dS · Fn(R)

]
6= 0 (4.26)

can lead to a Z2 invariant that characterizes the system [125], [126].
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Then,

H(R) |n(R)〉 = En(R) |n(R)〉 → ∂H/∂R |n〉+ H |∂n/∂R〉 = ∂En/∂R |n〉+ En |∂n/∂R〉

and because of the adiabatic assumption we can drop the first term on the right side. By changing

the kets to bras and multiplying by |n′〉 we obtain

〈n| ∂H/∂R |n′〉+ 〈∂n/∂R|H |n′〉 = En 〈∂n/∂R|n′〉

〈n| ∂H/∂R |n′〉 = (En − En′) 〈∂n/∂R|n′〉 , n 6= n′ (4.32)

from which the result (4.30) follows.

In general, the fact that the wavefunction itself is gauge-dependent, creates an issue in computing

An via (4.18), and therefore Fn via (4.22), since for slightly different R values a numerical algorithm

will generally output eigenstates with unrelated phases, thus prohibiting one from numerically taking

the required derivative of the eigenvector unless care is taken to make sure the phases are smooth.

However, (4.30) only requires the derivative of the Hamiltonian, and so any numerical phase will

disappear in taking the inner product.

Similar manipulations lead to the Berry phase

γn = i

∫
dS·

∑
n′, n′ 6=n

〈n| ∇RH |n′〉 × 〈n′| ∇RH |n〉
(En − En′)2

. (4.33)

Although the previous forms depend only on a certain state and its derivative, the forms (4.30)

and (4.33) involving summation over n′ 6= n show that the Berry properties can be thought of as

resulting from interactions between the nth state and all other states – it is a global property of the

bandstructure.

Equations (4.30) and (4.33) show that the Berry curvature becomes singular if two energy levels

En and En′ are brought together at a certain value of R, resulting in the “Berry monopole.” In

fact, the adiabatic approximation assumes no degeneracies on the path C, but degeneracies can occur

within the space enclosed by the path.

It is easy to show the conservation law8

∑
n

Fnµν = 0, (4.34)

which demonstrates, among other things, that the sum over all bands of the Berry curvature is zero.

8When we also do a summation over n then in fact we are taking all of the non-diagonal elements of the operators
∂H/∂Rµ,v into account. Then, for any states like |n〉 ≡ |a〉 , |n′〉 ≡ |b〉 ; a 6= b there are another set of states like
|n〉 ≡ |b〉 , |n′〉 ≡ |a〉 ; a 6= b such that 〈n| ∂H/∂Rµ |n′〉 〈n′| ∂H/∂Rν |n〉 |(n=a,n′=b)= 〈a| ∂H/∂Rµ |b〉 〈b| ∂H/∂Rν |a〉 and
〈n| ∂H/∂Rν |n′〉 〈n′| ∂H/∂Rµ |n〉 |(n=b,n′=a)= 〈b| ∂H/∂Rν |a〉 〈a| ∂H/∂Rµ |b〉 = 〈a| ∂H/∂Rµ |b〉 〈b| ∂H/∂Rν |a〉 cancel
out each other at the numerator.
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As discussed later for the photonic case, under time-reversal (TR) and inversion (I) symmetries,

TR: F (−k) = −F (k) (4.35)

I: F (−k) = F (k) (4.36)

TR+I: F (k) = 0. (4.37)

Therefore, a non-zero Berry curvature will exist when either TR or I are broken.

4.1.4 Chern Number, Bulk-Edge Correspondence, and Topologically Pro-

tected Edge States

From elementary electromagnetics, Gauss’s law relates the total flux over a closed surface S to the

total charge within the surface, ∮
S

ε0E (r) · dS = QT = mq, (4.38)

where, assuming identical charged particles, m is the number of particles and q the charge of each

particle (although often approximated as a continuum, QT is quantized). To keep things simple

we’ll assume a monopole charge of strength mq located at the origin. The electric field is given by

Coulombs law,

E =

(
mq

4πε0

)
r

r3
. (4.39)

The analogous magnetic form ∮
S

B (r, t) · dS = 0 (4.40)

indicates that there are no magnetic monopoles. However, in parameter space the flux integral over

a closed manifold of the Berry curvature is quantized in units of 2π, indicating the number of Berry

monopoles (degeneracies) within the surface,

∮
S

dS · Fn(R) = 2πmn = 2πCn (4.41)

where mn = Cn is an integer for the nth band known as the Chern number. The Chern number

can be seen to be the flux associated with a Berry monopole of strength 2πCn, leading to the Berry

curvature

Fn =

(
Cn
2

)
k

k3
. (4.42)

The Berry monopole plays the role of source/sink of Berry curvature F, just the electric charge

monopole mq servers as a source/sink of electric field E ∝ r/r3. The Chern number can also be
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written in terms of the gauge form. For two dimensions, e.g., R = k = (kx, ky) ,

Cn =
1

2π

∫
S

dkxdkyF
n
xy =

1

2π

∫
S

dkxdky

(
∂

∂kx
Ay
n −

∂

∂ky
Ax
n

)
, (4.43)

or, from (4.30),

Cn =
i

2π

∫
S

dkxdky
∑

n′, n′ 6=n

〈n| ∂H/∂kx |n′〉 〈n′| ∂H/∂ky |n〉 − 〈n| ∂H/∂ky |n′〉 〈n′| ∂H/∂kx |n〉
(En − En′)2

,

(4.44)

which is a form used later for computation.

Importantly, the Chern number is topologically invariant, meaning it is unaffected by smooth

deformations in the surface that preserve topology (e.g., for a real-space surface, a teacup deforming

into a torus). Moreover, the sum
∑
n Cn over all energies or bands n is zero (this comes from the cur-

vature conservation equation (4.34)), which plays a role in what is know as bulk-edge correspondence.

This is an extremely important point in understanding the most significant aspect of Topological In-

sulators (TIs), which is backscattering-protected edge propagation. Note that in the presence of TR

but with I broken, integration over the entire BZ yields zero Chern number for each band, whereas

in the presence of I but with TR broken, the band Chern number will generally be nonzero.

In periodic media (e.g., for electrons, in a crystalline solid, and for photons, EM waves in a

photonic crystal), the Berry phase γn is a geometric (in parameter space) attribute of the nth band.

The Brillouin zone is equivalent to a torus, forming the closed surface over which the Berry curvature

of any non-degenerate band is integrated to compute the Chern number Cn for that band.

Example - Two-level systems in parameter space

A common example that demonstrates Berry phase, curvature, and Chern number concepts is cyclic

evolution of a two level system [122], such as electronic spin or valley pseudospin. Consider the

evolution of spin for an electron at the origin immersed in a magnetic field. Let the tip of the

magnetic field vector trace out a closed curve on a sphere of radius r = B0, B = B0r̂ (t) – in this case

the magnetic field itself plays the role of parameter space, R = (Bx, By, Bz). The Hamiltonian is the

projection of spin onto the magnetic field coordinates,

H = −µ ·B = −γB · S, (4.45)

where µ is the magnetic moment (µ = γS), γ is the gyromagnetic ratio (γ = qe/2mc for orbital

electrons, γ = gqe/2mc where g ∼ 2), S = (}/2)σ, and σ = (σx, σy, σz) are the Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (4.46)
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Whereas for magnetic moment due to a current loop the torque T = µ × B acts to align µ and B,

for angular momentum and spin the torque causes a precession of µ around B, with the precession

frequency ω0 = −γB.

Writing the Hamiltonian as H = h · σ, where h = hr̂ with h = −γ}B0/2,

σr = hr̂ · σ = h

 cos θ e−iφ sin θ

eiφ sin θ − cos θ

 . (4.47)

Eigenvalues and eigenvectors satisfy (hσ · r̂) |u〉 = λ |u〉 and are

λ+ = +h,
∣∣u+
〉

=

 e−iφ cos (θ/2)

sin (θ/2)

 , (4.48)

λ− = −h,
∣∣u−〉 =

 e−iφ sin (θ/2)

− cos (θ/2)

 . (4.49)

The Berry potential is A±(R) = i 〈u±| ∇R |u±〉 where R = (r, θ, φ). Since the gradient is ∇f =

∂f
∂r r̂ + 1

r
∂f
∂θ θ̂ + 1

r sin θ
∂f
∂φ φ̂,

A−θ = i
〈
u−
∣∣ ∂

h∂θ

∣∣u−〉 = 0, A+
θ = i

〈
u+
∣∣ ∂

h∂θ

∣∣u+
〉

= 0, (4.50)

A−φ = i
〈
u−
∣∣ 1

h sin θ

∂

∂φ

∣∣u−〉 =
sin2 1

2θ

h sin θ
, A+

φ = i
〈
u+
∣∣ 1

h sin θ

∂

∂φ

∣∣u+
〉

=
cos2 1

2θ

h sin θ
. (4.51)

The Berry curvature is

F± =
1

h sin θ

(
∂

∂θ

(
A−φ sin θ

))
ĥ = ±1

2

h

h3
, (4.52)

which is the field generated by a monopole (in parameter space) at the origin. Obviously, the Berry

curvature has a singularity at h = 0 (i.e., B0 = 0). This singularity is due to a degeneracy between

λ+ = h and λ− = −h at the origin of parameter space (h = 0); these degeneracy points serve

as “sources” (for λ−, producing monopole strength 1/2) and “sinks” (for λ+, producing monopole

strength −1/2) of Berry curvature (like any monopole). Similar to Gauss’s law, when we integrate

around a closed surface containing the monopole we get an integer (here we call it the Chern number).

The Chern number is

C =

∮
S

F · dS = ±
∮
S

1

2

h

h3
· ĥh2 sin θ dθdφ = ±2π = ±1

2
Ω. (4.53)

Given that

γn =

∫
S

dS · Fn(R), (4.54)
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the Berry phase can be viewed as 1/2 the solid angle subtended by the closed path,

γ = ±
∫
S

1

2

h

h3
· ĥh2 sin θ dθdφ = ±1

2

∫
S

sin θ dθdφ = ±1

2
Ω. (4.55)

In fact, in general the answer is sΩ, where Ω is the solid angle and s is the spin.

As a related example, but considering momentum space as the parameter space, consider a two-

dimensional material with a hexagonal lattice and two inequivalent Dirac points, such as graphene.

The two in-equivalent Dirac points lead to two different valleys sufficiently separated in momentum

space so that inter-valley transitions can usually be ignored. In the absence of a magnetic field,

graphene respects both TR and I symmetry (and, hence, has zero Berry curvature, but posses a

Berry phase). The tight-binding Hamiltonian near the K and K ′ valleys has the same form as the

magnetic field problem considered above,

H = τ}vFqτ · σ, (4.56)

where qτ = (qx, τqy) is momentum relative to the degeneracy point, τ = ±1 is the valley index (for

the K and K ′ points, respectively), and s = ±1 is the conduction and valance band index. In this

case the two inequivalent valleys play the role of spin, and so here σ represents pseudospin, not actual

spin. In the K valley conduction band, the projection of pseudospin onto momentum is parallel to

momentum, whereas in the valance band it is antiparallel to momentum. In the K ′ valley these are

reversed.

The eigenvalues and eigenvectors are 9

λs,τ = s}vF |qτ | , |us,τ 〉 =
1√
2

 1

sτeiφq

 eiqτ ·r, (4.58)

where (qx + iqy) = |q| eiφq , φq being the angle between q and the x-axis, φq = tan−1 (qy/qx). Then,

since the gradient is ∇f = ∂f
∂q q̂ + 1

q
∂f
∂φq

φ̂q + ∂f
∂z ẑ,

As,τ
φq

= i 〈us,τ | 1
q

∂

∂φq
|us,τ 〉 = −1

2

1

q
, (4.59)

and [128]

γn =

∮
C

dq ·A(q) =

∫ 2π

0

−1

2

1

q
qdφq = −π. (4.60)

The Berry phase of π manifests itself in various ways, including in the suppression of backscattering

9The often used eigenfunctions

|us,τ 〉 =
1
√

2

(
e−iφq/2

sτeiφq/2

)
eiqτ ·r, (4.57)

are not appropriate since they are not single-valued [127]
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and a phase shift in Shubinikov de-Haas (SdH) oscillations [129]. Note, however, that

F =
1

q

∂

∂q

(
qAφq

)
ẑ = −1

q

∂

∂q

(
1

2

)
ẑ = 0, (4.61)

so that in (non-gapped) graphene, which has both time-reversal and inversion symmetry, the Berry

curvature vanishes.

Finally, let us consider the optical fiber wound into a helix as mentioned previously. For a linearly

polarized optical field we have (σ · k) |u〉 = λ |u〉, which is the projection of spin (e.g., polarization)

onto the direction of momentum. This has the same general form as the magnetic field problem.

However, for photons (spin 1), the spin matrices are different and Berry phase is equal to the solid

angle, γ = Ω.

Bulk-Edge Correspondence

An aspect of Berry curvature that is of immense interest in both electronic and photonic applications

is the presence of one-way edge modes that are topologically protected from backscattering. The

idea of Hall conductivity in an insulator gives some intuition about the one-way nature of these

modes. Consider a finite-sized rectangle of thin material, immersed in a perpendicular magnetic field

as depicted in Fig. 4.3. Bound electrons will circulate in response to the applied field, and those near

the edge will have their orbits terminated by the edge[133]. The net effect is to have a uni-directional

movement of electrons at the edge (orange arrows). The presence of a Hall conductivity (whether due

B

Figure 4.3: Depiction of electron orbits in an insulator in the presence of a magnetic field, and
interrupted orbits at the edge.

to a magnetic field in the ordinary manner, or due to non-zero Berry curvature associated with broken

TR or I symmetry) will elicit a similar response, although the response is quantized as described above.

Thus, the bulk properties of the insulating material will result in a conducting edge state. This happes

in both the electronic case, and the photonic case to be described below.

Furthermore, consider that the Chern number and all Berry properties are related to an infinite

bulk material, which generates bandstructure. However, in any practical application the material is

finite, and has an interface with another medium. Let’s consider a planar interface between medium 1
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and medium 2. Far from the interface, in each region, particles (electrons, photons) will be governed

by the respective Hamiltonians H1,2. Let’s assume that both materials share a common bandgap,

and that Cgap,1 =
∑
n<ng

C
(1)
n , the Chern number sum over bands below the gap for material 1, and

Cgap,2 =
∑
n<ng

C
(2)
n , the corresponding sum for material 2, differ, Cgap,∆ = C2 − C1 6= 0. For some

parameter value the shared bandgap between the two mediums can close and then reopen. At the

closing point there is a degeneracy, and as the gap reopens it can be crossed by a surface mode, as

depicted in Fig. 4.4. The edge-modes are circularly-polarized (spin-polarized), and in periodic media

are localized to a few lattice constants from the material boundary.

ω

k

ω

k

+1

-1

Figure 4.4: Bulk-edge correspondence. Materials with common bandgap and different Chern numbers
share an interface where a uni-directional edge state closes the gap.

The existence of the surface/edge state is necessitated by the bulk material characteristics, and so

is independent of interface details. Therefore, the interface can possess discontinuities, defects, etc.,

which will not affect the surface wave. It can also be seen that the fact that the surface/edge states

connect different energy levels indicates that they will have a group velocity that has definite sign

(i.e., one-directional propagation). Therefore, in summary, the surface states are unidirectional and

topologically protected from backscattering.

4.2 Electromagnetic Description - Berry quantities for pho-

tons

Although the concept of Berry phase is general for any cyclic variation through some parameter

space R, a primary application is to periodic solid solid state systems (e.g., electrons in a crystal

lattice), although here we are primarily interested in the photonic analogous of those systems, photonic

topological insulators (PTIs) for both photonic crystals and for continuum media.

For simplicity in observing the correspondence between Maxwell’s equations and the evolution

equation (4.2), we first assume lossless and dispersionless materials characterized by dimensionless

real-valued parameter ε, µ, ξ, ς, representing permittivity, permeability and magneto-electric cou-

pling tensors. Although any real material must have frequency dispersion, this simple model allows
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a straightforward conversion of various Berry quantities from the electronic to the electromagnetic

case. The inclusion of both frequency and spatial dispersion will be discussed later.

In this case, Maxwell’s equations are

∇×E = −µ0µ ·
∂H

∂t
− ς

c
· ∂E

∂t
− Jm

∇×H = ε0ε ·
∂E

∂t
+
ξ

c
· ∂H

∂t
+ Je. (4.62)

By defining the matrices

M =

 ε0ε
1
c ξ

1
c ς µ0µ

 , N =

 0 i∇× I3×3

−i∇× I3×3 0

 , (4.63)

f =

 E

H

 , g =

 D

B

 = Mf, J =

 Je

Jm


where M is Hermitian and real-valued, we can write Maxwell’s equations in a compact form [134],

N · f = i

[
∂g

∂t
+ J

]
= i

[
M
∂f

∂t
+
∂M

∂t
f + J

]
. (4.64)

Note that the units of the sub-blocks of M differ (as do the dimensions of the 6-vectors f and g) , and

that ε, ξ, ς, and µ are dimensionless. In the absence of an external excitation (J = 0) and assumption

of non-dispersive (instantaneous) materials, Maxwell’s equations become

i
∂f

∂t
= Hcl · f (4.65)

where Hcl = M−1 ·N , which has the same form as the evolution equation (4.2) (e.g., the Schrödinger

equation) with ~ = 1, where the operator Hcl plays the role of a classical Hamiltonian. Because of

this similarity between Maxwell’s equations and the evolution equation (4.2) it is straightforward to

extend the Berry potential concept to electromagnetic energy (photons); rather then, say, electrons

acquiring a Berry phase while transversing a path in parameters space, photons will do the same (the

polarization of the photon plays the role of particle spin). In this case, we define fn as a six-component

eigenmode satisfying10

Hcl · fn = Enfn (4.66)

where En = ωn. Under a suitable inner product (discussed below) Hcl is Hermitian, and assuming

the normalization condition 〈fn|fm〉 = δnm, the Berry vector potential has the same form as (4.12)

An = i 〈fn|∇Rfn〉 . (4.67)

10In (4.63) and (5.2) f is real-valued, unlike in the Schrödinger equation where the wavefunction is complex-valued.
The eigenfunctions in (4.66) fn are complex-valued.
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If we assume a photonic crystal (periodic structure), fn has the Bloch form fn (r) = un (r) eikr,

where un (r) is the periodic Bloch function and k is the Bloch wavevector. In this case, ∇R = ∇k

operates over parameter space k = (kx, ky, kz) and

An = i 〈un|∇kun〉 (4.68)

where the inner product is

〈un |um 〉 =
1

2

∫
BZ

u∗n (r)M (r)um (r) dr. (4.69)

This is the dispersionless special case of the result presented in [20] (see (41) in that reference),

generalized to account for magnetoelectric coupling parameters in M .

The extension to dispersive media (i.e., real materials) would seem difficult since the simple

product g = Mf in (4.63) becomes a convolution in time. However, it is shown in [20] (omitting

magnetoelectric parameters, although this can also be included) that the only necessary modification

to allow for dispersive materials M = M (ω) is to replace M in (4.69) with ∂ (ωM (ω)) /∂ω, so that

〈un |um 〉 =
1

2

∫
BZ

u∗n (r)
∂ (ωM (ω))

∂ω
um (r) dr. (4.70)

The material continuum model will be considered below.

4.2.1 Some electromagnetic material classes that posses non-trivial Chern

numbers

Although the field of topological photonic insulators is still being developed, there are several classes

of materials and structures which posses topological protection and non-trivial Chern numbers. The

approaches to design PTIs can be roughly divided into two categories. The first one relies on breaking

of time-reversal symmetry by applying a static magnetic field to a gyromagnetic material [135] or time-

harmonic modulation of coupled resonators [136], [137]. Another approach involves time-reversal-

invariant metamaterials, where photon states are separated in two ‘spin’ sub-spaces (usually through

geometry such as via a hexagonal lattice), and ‘spin-orbit’ coupling is introduced through symmetry-

breaking exploring such non-trivial characteristics of metamaterials as chirality, bianisotropy and

hyperbolicity [138], [139]. For an electromagnetic standpoint, the most important aspect of a PTI

is the presence of surface/edge states that are topologically protected from backscattering (having

non-trivial Chern number).

In classical electromagnetics, the fields E, D, and P are even under time reversal (do not change

with time-reversal), whereas Amag, B, H, J, and S (Poynting vector) are odd under time reversal
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(negated under time reversal). For systems with time-reversal (TR) symmetry,

Fnαβ (k) = −Fnαβ (−k) . (4.71)

Furthermore, the fields B and H are even under space inversion, whereas E, D, J, P, Amag, and S

are odd under spatial inversion. For systems with parity/inversion (I) symmetry,

Fnαβ (k) = Fnαβ (−k) , (4.72)

so that if both symmetries are present,

Fnαβ (k) = 0. (4.73)

Systems having both spatial-inversion and time-reversal symmetry will exhibit trivial topology in

momentum space, so that no one-way edge mode will exist (all bands have Cn = 0).

Regarding periodic materials, Dirac (linear) degeneracies will occur for hexagonal lattices, and

other lattice types may exhibit other degeneracies (e.g., quadratic degeneracies consisting of double

Dirac degeneracies for a cubic lattice [140], [141], but, regardless of degeneracy type, for, e.g., a simple

lattice of material cylinders in a host medium, if the cylinders are made of simple isotropic materials

have scalar material properties ε and µ, the system will be both space-inversion and time-reversal

symmetric, and all bands will have trivial Chern number.

In the periodic case the degeneracies can be broken in several ways. One way that has been widely

studied is to use rods with materials that themselves break TR symmetry [141], or to embed, say, a

hexagonal array of nonreciprocal rods into another array of simple rods [142] so that both arrays share

a common bandgap. The resulting nonreciprocal structure will generally have bands of non-trivial

Chern number, leading to a non-zero gap Chern number. A detailed example is provided below.

Large Chern numbers can be achieved by increasing spatial symmetry to result in point degeneracies

of higher order (e.g., several co-located Dirac points), and then to, say, introduce TR breaking [143].

Another method to create a nontrivial Chern number is to use simple materials (simple dielectrics

and metals), but to break inversion symmetry by deforming the lattice. For example, in [144] simple

dielectric rods are used in a hexagonal pattern, resulting in a Dirac degeneracy and trivial Chern

number. Slightly deforming the lattice can result in inversion-symmetry breaking, and Cgap 6= 0.

Various other schemes have also been proposed [138], [115].

4.2.2 Berry quantities for continuum media

Although the electronic case, and, by analogy, the photonic case, were developed for periodic systems

(for which the relations provided in sections 4.1.2 and 4.1.3 hold), it turns out that continuum

material models can also lead to nontrivial Chern numbers. The simplest example is of a biased
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plasma (magneto-plasma) as considered in Fig. 1, with permittivity tensor

ε =


ε11 ε12 0

ε21 ε22 0

0 0 ε33

 (4.74)

where typically ε21 = ε∗12 and ε11 = ε22 = ε33 (in the absence of a bias field ε12 = 0, the material is

reciprocal, and ε reduces to a scalar). An example involving this type of material is provided below.

At the interface between the magneto-plasma and an ordinary (unbiased) plasma, a topologically

protected edge mode can exist [132], [130], [131]. In addition, more complicated materials combining

hyperbolic and chiral response have been shown to be topologically nontrivial [139].

A continuum material presents a difficulty in that, rather than have a periodic Brillouin zone that

is, effectively, a closed surface (equivalent to a torus), providing the surface over which the Chern

number can be computed, the momentum-space of an infinite homogeneous material continuum model

does not form a closed surface. However, in [132] it is shown that 2D momentum space can be mapped

to the Riemann sphere, forming the necessary surface (north and south poles being exceptional points,

as discussed below).

Another issue, for both periodic and continuum models, is to account for material dispersion.

Following the result in [20] for lossless dispersive local periodic media, in [132] continuum models

of dispersive lossless, and possibly wavevector-dependent (nonlocal) materials are considered. The

Berry potential is again given by (4.12), with the inner product11

〈fn|fm〉 =
1

2
f∗n
∂ (ωM (ω))

∂ω
fm. (4.75)

4.3 Continuum Photonic Example

This example is related to [130] (see also [131]), with Berry quantities and Chern number analysis

directly taken from the seminal work [132].

As an example of a nonreciprocal continuous medium, we consider a magnetized plasma in the

Voigt configuration (propagation perpendicular to the bias magnetic field B), as depicted in Fig. 4.5.

For a single-component plasma biased with a static magnetic field B = zBz, the permeability is

µ = µ0 and the relative permittivity has the form of a Hermitian antisymmetric tensor,

ε =


ε11 ε12 0

ε21 ε22 0

0 0 ε33

 (4.76)

11The most general result in [132] is more complicated, but for a wide range of material classes the simpler result
shown here holds.
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Figure 4.5: Interface between a magnetic-field biased plasma (bottom) and a simple material (top).

where

ε11 = ε22 = 1−
ω2
p

ω2 − ω2
c

, ε33 = 1−
ω2
p

ω2
,

ε12 = −ε21 = i
−ωcω2

p

ω (ω2 − ω2
c )

(4.77)

where the cyclotron frequency is ωc = (qe/me)Bz and the plasma frequency is ω2
p = Neq

2
e/ε0me. In

the above, Ne is the free electron density, and qe and me are the electron charge and mass, respectively.

We will also consider the material model examined in [132], where ε33 = 1 and

ε11 = ε22 = 1− ω0ωe
ω2 − ω2

0

, ε12 = ε21 = i
ωωe

ω2 − ω2
0

, (4.78)

where |ω0| a the resonance frequency and ωe determines the resonance strength, with ω0ωe > 0.

For propagation in the x − y plane, k = (kx, ky, 0), the plane wave supported by this medium

can be decoupled into TE (Ez 6= 0, Hz = 0) and TM (Ez = 0, Hz 6= 0) waves. Since there is no

magneto-electric coupling ξ = ς = 0, the dispersion of these modes is

k2 =
ε211 + ε212

ε11

(ωn
c

)2

, TM mode (4.79)

k2 = ε33

(ωn
c

)2

, TE mode (4.80)

such that ωn is the eigenfrequency of each mode. Despite the non-reciprocal nature of the medium

itself, in the Voigt configuration the bulk dispersion behavior is reciprocal (an interface will break

this reciprocity). The dispersion curves for these material are shown in Fig. 4.6 (the spatial cutoff is

described later).

The associated electromagnetic waves envelopes can be obtained by finding the solution f =

[E,H]
T

, of (4.66), N · f = ωM · f , which is

 0 −k× I3×3

k× I3×3 0

 ·
 E

H

 =

 ωε0ε 0

0 ωµ0I3×3

 ·
 E

H

 (4.81)
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Figure 4.6: Band diagram and Chern numbers (TM modes) for a magneto-optic material; blue: TM
mode, no spatial cut-off, green: TM mode, with spatial cut-off, red: TE mode, purple: gap. Left:
magneto-optic material (4.78) with ωe/ω0 = 5.6 and kmax = 10 (ω0/c), right: magneto-optic material
(4.77) with ωp/2π = 9.7 THz, ωc/2π = 1.73 THz (ωp/ωc = 5.6), and kmax = 10 (ωc/c), black: SPP
dispersion.

so that  −I3×3 − ε
−1

ωε0
· k× I3×3

1
ωµ0
· k× I3×3 −I3×3

 ·
 E

H

 = 0. (4.82)

With H = ẑ→ E = ε−1 · ẑ×kωε0
(TM), E = ẑ→ H = k

ωµ0
× ẑ (TE), we have the 6× 1 vectors

fTM
nk =

 ε−1 · ẑ× k
ε0ωnk

ẑ

 ,

fTE
nk =

 ẑ

k
µ0ωnk

× ẑ

 . (4.83)

Because the envelopes of the electromagnetic waves in the above equations are not normalized, the

Berry potential is computed using

Ank =
Re{if∗nk · ∂∂ω (ωM(ω))∂kfn,k}

f∗nk ·
∂
∂ω (ωM(ω))fn,k

. (4.84)

Considering the Riemann sphere mapping of the kx − ky plane as detailed in [132], it is possible

to write the Chern number associated with nth eigenmode branch as

Cn =
1

2π

∫
An,k=∞ · dl−

1

2π

∫
An,k=0+ · dl (4.85)

where the two line integrals are over infinite and infinitesimal radii (north and south poles of the
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Riemann sphere), respectively. If we define Ank = Ank · φ̂ then we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k). (4.86)

For a lossless TM-mode in propagating in the x− y plane we have k = kxx̂ + kyŷ = k cos(φ)x̂ +

k sin(φ)ŷ. Writing

ε−1 =


α11 α12 0

α21 α22 0

0 0 α33

 (4.87)

we have

fnk =

 ε−1 · ẑ× k
ε0ωnk

ẑ

 =



−α11ky+α12kx
ε0ωn

−α21ky+α22kx
ε0ωn

0

0

0

1


, ∂kfnk =



−α11ŷ+α12x̂
ε0ωn

−α21ŷ+α22x̂
ε0ωn

0

0

0

0


(4.88)

where

α11 =
ε22

ε11ε22 − ε12ε21
, α22 =

ε11

ε11ε22 − ε12ε21
, α12 =

−ε12

ε11ε22 − ε12ε21
, α21 =

−ε21

ε11ε22 − ε12ε21
, (4.89)

such that

f∗nk =
1

ε0ωn

(
(−α11ky + α12kx)∗ (−α21ky + α22kx)∗ 0 0 0 1

)
. (4.90)

From the frequency derivative of the material response matrix, ∂ω(ωM), we have βij = ∂ω(ωε0εij).

So, for the Berry potential we have

Ank =
Re{if∗nk · 1

2
∂
∂ω (ωM(ω))∂kfn,k}

f∗nk ·
1
2
∂
∂ω (ωM(ω))fn,k

=
Re{Nx +Ny}

D
(4.91)

where

Nx =
i

2(ε0ωn)2
{−2α11α12[kxβ12 + kyβ11] + (|α11|2 + |α12|2)[kxβ11 − kyβ12]}x̂ (4.92)

Ny =
i

2(ε0ωn)2
{2α11α12[kxβ11 − kyβ12] + (|α11|2 + |α12|2)[kxβ12 + kyβ11]}ŷ

D =
|k|2

2(ε0ωn)2
[(|α11|2 + |α12|2)β11 − 2α11α12β12] +

µ0

2
. (4.93)
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Therefore, for the Chern number calculation we obtain

An = An · φ̂ =
Re{Nycos(φ)−Nxsin(φ)}

D
(4.94)

An(φ = 0) =
Re{Ny(φ = 0)}

D
, Ny(φ = 0) =

ik

(ε0ωn)2
{2α11α12β11 + (|α11|2 + |α12|2)β12}

An(φ = 0)k =
Re( i|k|2

(ε0ωn)2 {2α11α12β11 + (|α11|2 + |α12|2)β12})
|k|2

(ε0ωn)2 [(|α11|2 + |α12|2)β11 − 2α11α12β12] + µ0

. (4.95)

These expressions are used below in calculating the Chern number from (4.86).

Chern number calculation as a surface integral over the kx − ky plane

From (4.92) the Berry curvature is

Fk = Re{∂Ax(kx, ky)

∂ky
− ∂Ay(kx, ky)

∂kx
}(−ẑ)

Fk = Re{ iẑ

D(ε0ωn)2
{2α11α12β11 + (|α11|2+|α12|2)β12}}. (4.96)

If we consider propagation in k−space such that kz = 0 then the Chern number computed over the

infinite surface is

C =
1

2π
=

∫ kx=+∞

kx=−∞

∫ ky=+∞

ky=−∞
dkxdky · Fk =

1

2π

∫ φ=2π

φ=0

∫ k=∞

k=0

kdkdφ · Fk

C = (δ(k))
k=∞
k=0 =

(
Re{ i

D(ε0ωn)2

1

2
{2α11α12β11 + (|α11|2+|α12|2)β12}}

)k=∞

k=0

(4.97)

which leads to (4.86) with δ(k) = An(φ = 0)k in (4.95). Therefore the Chern number computed as

an infinite surface integral is the same as computed via the line integral near the north and south

poles of the Riemann sphere, as shown in [132].

4.3.1 Low Frequency Band of the TM-Mode, Material Model (4.78)

For material model (4.78), we will denote the lower curve in Fig. 4.6 as the low frequency band of

the TM-mode. When k → ∞ from the TM-dispersion relation (4.79), then ωn should tend to the

zero of ε11, which is ωn =
√
ω2

0 + ω0ωe. Since

k2 =
ε211 + ε212

ε11

(ωn
c

)2

=
ω2

0 − ω2 + 2ω0ωe + ω2
e

ω2
0 − ω2 + ω0ωe

(ωn
c

)2

, TM mode, (4.98)

in the limit k →∞ we obtain ε11 = 0, α11 = 0 and (k/ωn)2 →∞. So, for An(φ = 0) we get

An(φ = 0)k =
Re i|k|2

(ε0ωn)2 {|α12|2β12}
|k|2

(ε0ωn)2 {|α12|2β11}+ µ0

=
Re i|k|2

(ε0ωn)2 {|
1
ε12
|2β12}

|k|2
(ε0ωn)2 {|

1
ε12
|2β11}+ µ0

(4.99)
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such that

β11 = ε0(1 + ω0ωe
ω2

0 + ω2

(ω2
0 − ω2)2

), β12 = −iε0ωe
2ωω2

0

(ω2
0 − ω2)2

. (4.100)

For ωn =
√
ω2

0 + ω0ωe we have β11 = 2ε0(1 + ω0

ωe
) and β12 = − (2ε0i/ωe)

√
ω2

0 + ω0ωe. Finally, taking

the limit k →∞ ,

lim
k→∞

An(φ = 0)k =

√
ω2

0 + ω0ωe/ωe
(1 + ω0

ωe
)

=
|ω0|

√
1 + ωe

ω0

ω0(1 + ωe
ω0

)
=

sgn(ω0)√
1 + ωe

ω0

=
sgn(ωe)√
1 + |ωeω0

|
(4.101)

When k → 0, the lower band of TM-mode tends to the light line (which means ωn → 0). Therefore

ε12 = 0 and β12 = 0, which leads to lim
k→0

An(φ = 0)k = 0. Eventually, for Chern number we obtain

Cn=1 = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) =
sgn(ωe)√
1 + |ωeω0

|
. (4.102)

The fact that this Chern number is not an integer will be addressed below, and the solution of this

issue is a fundamental contribution of [132].

4.3.2 High Frequency Band of the TM-Mode, Material Model (4.78)

For material model (4.78), denoting the upper curve in Fig. 4.6) as the high-frequency band, from

the dispersion relation (4.79),

k2 =
ω2

0 − ω2 + 2ω0ωe + ω2
e

ω2
0 − ω2 + ω0ωe

(ωn
c

)2

→ 0 if ωn = 0, ωn = |ω0 + ωe| . (4.103)

If ωn = 0, then

ε11 = 1+
ωe
ω0
, ε12 = 0, α11 =

1

1 + ωe/ω0
, α12 = 0, β11 = 1+ωe/ω0, β12 = 0,

(
k

ωn

)2

=
1

c2

(
1 +

ωe
ω0

)2

(4.104)

so for the numerator of An(φ = 0)k we have 2α11α12β11 + (|α11|2 + |α12|2)β12 = 0. Therefore there

is no contribution for the eigenfrequency ωn = 0 as k → 0. In fact it is obvious that ωn = 0 has no

contribution because this eigenfrequency as k → 0 belongs to the TM low frequency band and it has

no effect on the high frequency TM band.

If ωn = |ω0 + ωe|, it can be shown that

ε12 = iε11sgn(ωe), α11 =
ε11

ε211 + ε212

→∞, α12 =
−ε12

ε211 + ε212

→∞, β12 = iβ11sgn(ωe),(
k

ωn

)2

=
1

c2
ε211 + ε212

ε11
→ 0 (4.105)

and by carefully treating the limit lim
k→0

An(φ = 0)k and considering the fact that for ωn = |ω0 + ωe|
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we have ε11 =
(
ω2
e + ω0ωe

)
/
(
ω2
e + 2ω0ωe

)
> 0 then it can be shown that

lim
k→0

An(φ = 0)k = sgn(ωe). (4.106)

When k → ∞ then the high-frequency mode tends to the light line, so that lim
k→∞

An(φ = 0)k = 0.

Eventually for the high frequency TM-band we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = −sgn(ωe). (4.107)

4.3.3 TE-Mode

Using same procedure as above, it is straightforward to show that for the TE-Mode we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = 0. (4.108)

Material model (4.77)

Considering material model (4.77), from the dispersion equation (4.79),

k2 =
ω2(ω2 − ω2

c )− 2ω2ω2
p + ω4

p

ω2 − ω2
c − ω2

p

1

c2
. (4.109)

As k → ∞ and regarding Fig. (4.6) we have ωn → ∞ for the high frequency band, and, for the

low frequency band, ω2 − ω2
c − ω2

p = 0, such that ωn =
√
ω2
c + ω2

p.

For the TM mode if k → 0 we have

ω2(ω2 − ω2
c )− 2ω2ω2

p + ω4
p = 0 →


ω2
n =

ω2
h

2

{
1 +

√
1− 4(

ωp
ωh

)4
}
, for high frequency TM

ω2
n =

ω2
h

2

{
1−

√
1− 4(

ωp
ωh

)4
}
, for low frequency TM

where ω2
h = ω2

c + 2ω2
p.

The Chern number is (4.86) with (4.95), and

β11 = 1 + ω2
p

ω2 + ω2
c

(ω2 − ω2
c )2

, β12 = 2iωcω
2
p

ω

(ω2 − ω2
c )2

. (4.110)

For the low frequency TM band when k →∞ (ωn =
√
ω2
c + ω2

p), ε11 = 0 and α11 = 0. Therefore,

lim
k→∞

(An,φ=0k) = Re

{
iβ12

β11

}
ωn=
√
ω2
c+ω2

p

= − sgn(ωc)√
1 + (

ωp
ωc

)2
(4.111)

For the case of k → 0, we have ω2
n =

ω2
h

2

{
1−

√
1− 4

(
ωp
ωh

)4
}

which is the pole of α11 and α12,
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so α11 →∞, α12 →∞. Then,

lim
k→0

(An,φ=0k) = lim
k→0

Re( i
(ε0c)2α11

{2α11α12β11 + (|α11|2 + |α12|2)β12})
1

(ε0c)2α11
{(|α11|2 + |α12|2)β11 − 2α11α12β12}+ µ0

=

Re( i
(ε0c)2

{2α12

α11
β11 + (1 + |α12|2

α2
11

)β12})
1

(ε0c)2
{(1 + |α12|2

α2
11

)β11 − 2α12

α11
β12}


ω2
n=

ω2
h
2

{
1−
√

1−4
(
ωp
ωh

)4

} = 1, (4.112)

and the Chern number of the low frequency band is

Cn = − sgn(ωc)√
1 + (

ωp
ωc

)2
− 1. (4.113)

For the high frequency band when k →∞ we have ωn →∞, ε11 = 1, ε12 = 0, α11 = 1, α12 = 0 and

β12 = 0, so limk→∞(An,φ=0k) = 0 and for the case of k → 0 we have ω2
n =

ω2
h

2

{
1 +

√
1− 4(

ωp
ωh

)4
}

,

which is a pole of α11 and α12 so α11 →∞, α12 →∞. Then,

lim
k→0

(An,φ=0k) =

Re( i
(ε0c)2

{2α12

α11
β11 + (1 + |α12|2

α2
11

)β12})
1

(ε0c)2
{(1 + |α12|2

α2
11

)β11 − 2α12

α11
β12}


ω2
n=

ω2
h
2

{
1+
√

1−4(
ωp
ωh

)4
} = −1,

and so for the high frequency band the Chern number is

Cn = 0− (−1) = 1.

It can be seen that generally the Chern number of the high frequency band is an integer, but

that of the low frequency TM band is not (as was found for the material model (4.77)). In both

material models, when off-diagonal permittivity elements in (4.76) are set to zero, all Chern numbers

are Cn = 0.

4.3.4 Integer Chern Numbers and Wave Vector Cutoff for Magneto-Optic

Material Response

The non-integer Chern numbers for the low TM band for both material models, (4.102) and (4.113),

arise from the continuum nature of the material [132], associated with the Hamiltonian not being

sufficiently well-behaved at infinity (mapped to the north pole of the Riemann sphere). The problem

is thoroughly discussed in [132], and here we merely repeat the solution therein. The issue can be

solved by introducing a high-frequency spatial cutoff by defining a nonlocal material

Mreg(ω, k) = M∞ +
1

1 + k2/k2
max

[M(ω)−M∞] (4.114)
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where M∞ = lim
ω→∞

M(ω). This material response tends to the local response as kmax → ∞12 By

considering a wave vector cutoff for, e.g., the material model (4.78), the non-local parameters of the

material are

ε11 = ε22 = 1+
1

1 + k2/k2
max

ω0ωe
ω2

0 − ω2
, ε12 = −ε21 =

−i
1 + k2/k2

max

ωeω

ω2
0 − ω2

, ε33 = 1, µ = diag{µ, µ, µ}

(4.116)

For the low frequency TM-band we have

k2 =
ω2

0 − ω2 + 2γω0ωe + γ2ω2
e

ω2
0 − ω2 + γω0ωe

(
ω

c
)2 (4.117)

such that γ = 1
1+k2/k2max

describes the non-locality. If k →∞ then γ → 0 and ωn → |ω0|, which is a

zero of ε11 in the limit of k →∞. Therefore for the case of k →∞ we have

ε11 = 0, α11 = 0, β11 = γω0ωe
2ω2

(ω2
0 − ω2)2

, β12 = −iγωe
2ωω2

0

(ω2
0 − ω2)2

. (4.118)

It can be shown that

lim
k→∞

An(φ = 0)k =
i|α12|2β12

|α12|2β11
=
iβ12

β11
=

ω0

|ω0|
= sgn(ω0) = sgn(ωe), (4.119)

and for the case that k → 0 the low frequency band of the TM-mode tends to the light line and so

lim
k→0

An(φ = 0)k = 0. Eventually for the Chern number of the low frequency TM band we obtain

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = sgn(ωe), (4.120)

the desired integer.

For the high frequency TM-band nothing changes from the previous development because the

contribution to Chern number comes from k → 0, and in this limit the non-local response turn into

local response and the Chern number is the same as previously obtained. So, for high frequency

TM-band we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = −sgn(ωe) (4.121)

Introducing the wave number cutoff has no effect on the TE-mode because ε33 does not change,

and so the Chern number of this mode remains the same as in the previous section (Cn = 0).

Therefore, we have Chern numbers Chigh = sgn(ωe) and Clow = sgn(ωe) for the higher and lower

band, respectively, so that the sum of the Chern numbers is zero. The band dispersion and integer

Chern numbers are shown in Fig. 4.6.

12Noting the Fourier transform pair
1

1 + k2/k2max

↔
kmax

2
e−kmaxr (4.115)

and as kmax →∞ we have limkmax→∞
kmax

2
e−kmaxr = δ(r), which indicates locality.
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Biased Plasma Case

For the material model (4.78), the permittivity tensor components become

ε11 = ε22 = 1− γ
ω2
p

ω2 − ω2
c

, ε12 = −ε21 = −iγ
ωcω

2
p

ω(ω2 − ω2
c )

(4.122)

such that γ = 1/(1 + k2/k2
max).

For this case, the dispersion equation is

k2 =
ε11(k)2 + ε12(k)2

ε11(k)
(
ω

c
)2. (4.123)

We have k → ∞ if ε11(k) = 0 and ε12(k) 6= 0, or ωn → ∞, or ωn = ωc. The eigen frequency of the

higher TM band is ωn →∞ and that of lower frequency band comes from the zero of ε11(k),

ε11(k) = 1− γ
ω2
p

ω2 − ω2
c

= 0→ ωn =
√
ω2
c + γω2

p.

When k →∞ then γ → 0 so for the low frequency band the eigenfrequency is ωn = lim
γ→0

√
ω2
c + γω2

p =

|ωc|.

For k →∞, ωn = |ωc|, we have ε11(k) = 0, α11(k) = 0 and so

lim
k→∞

(An,φ=0k) = Re

{
iβ12(k)

β11(k)

}
ωn=|ωc|

(4.124)

such that β11(k) = 1 + γω2
p

ω2+ω2
c

(ω2−ω2
c)2 , β12 = 2iγωcω

2
p

ω
(ω2−ω2

c)2 so the contribution form k →∞ in low

frequency TM band is

lim
k→∞, γ→0

(An,φ=0k) = Re

{
iβ12(k)

β11(k)

}
ωn=|ωc|

= −1. (4.125)

For the case of k → 0 ( γ → 1) and we have same dispersion equation as when there is no wave vector

cut-off, and so that limit remains the same as before, limk→0(An,φ=0k) = 1. Therefore, for the low

frequency band we obtain

Cn = −1− 1 = −2.

For the high frequency TM band as k →∞ (γ → 0), limk→∞(An,φ=0k) = 0 and when k → 0 (γ →

1), limk→0(An,φ=0k) = −1 (as before), and so for the high frequency band the Chern number is

Cn = 0− (−1) = +1.

The sum of the Chern numbers is -1. However, in addition to needing a wavenumber cutoff to

obtain integer Chern numbers, the continuum model presents another complication. As detailed in

[145], to predict edge states in general for continuum media, one should compute Chern numbers for
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an ”‘interpolated material response”’. This means, for example, that to see bulk-edge correspondence

for the magnetized plasma and a Drude metal interface, we should define a function ε(τ) where τ

varies from 0 to 1, such that when τ = 0 we obtain the permittivity of the magnetized plasma, and

when τ = 1 we obtain the Drude metal. Then, one needs to compute the topological numbers for

τ = 1− and τ = 0+. With this model, we obtain one additional low frequency band for the magnetized

plasma, very near ω = 0, having Chern number 1. In this case, all band Chern numbers are integers

and sum to zero.

4.3.5 Full-Wave Simulation of One-Way Propagation

We first consider a 2D structure. A 2D dipole (i.e., a line source) is at the interface between a

simple plasma (upper region) having ε = −5 (this specific value relatively is unimportant; we simply

need a negative-permittivity material such as a metal) and a magnetoplasma (lower region) having

permittivity (4.77). Fig. 4.7 shows the electric field profile for three cases, unbiased, biased but

operating outside the band gap, and biased operating within the bandgap. It can be seen that

in the unbiased (reciprocal) case energy flows in both directions, in the biased (non-reciprocal) case

operating outside the gap we have one-way propagation but energy can leak into the lower region, and

in the biased case operating within the bandgap energy just flows in one direction, is well-contained

at the interface, and goes around discontinuities.

Figure 4.7: Electric field due to a 2D vertical dipole and ωp/2π = 9.7 THz for three cases: left:
unbiased (reciprocal) case that respects TR symmetry, ωc = 0, at 10 THz (λ = 30µ m), center:
biased with ωc/2π = 1.73 THz at 12 THz, outside of the band gap (ω/ωc = 6.93), and right: biased
with ωc/2π = 1.73 THz inside the bandgap at 10 THz, (ω/ωc = 5.78).

Fig. 4.8 shows a 3D simulation for a 420x120x90 um rectangular block of magnetoplasma with

an ε = −5 plasma on the top surface and vacuum on all other sides: a (top) shows the electric field

profile in the reciprocal case, ωc = 0, at 10 THz. Fig. 4.8b (lower) shows the non-reciprocal case at

10 THz (in the bandgap). It can be seen that in the reciprocal case energy flows in both directions,

whereas in the non-reciprocal case energy just flows to the right.

Figure 4.9 shows the non-reciprocal case when an obstacle (a half-sphere) is hollowed out of each
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Figure 4.8: Electric field at 10 THz for a 3D vertical dipole at a magnetoplasma–plasma interface
(top interface is between the magnetoplasma and the ε = −5 simple plasma, all other interfaces
are between the magnetoplasma and vacuum). Top: unbiased (ωc = 0, reciprocal) case. Bottom:
non-reciprocal case when ωc/2π = 1.73 THz inside the bandgap (ω/ωc = 5.78).

material at the interface, forming a spherical vacuum obstacle having radius 30µm (1λ) in the SPP

path. It can be seen that the wave goes past the obstacle without backscattering.

Figure 4.9: Electric field near a magnetoplasma–plasma interface, as in Fig. 4.8, in the non-reciprocal
case when a large (1λ) spherical vacuum obstacle is placed in the SPP path.

Finally, Figs. 4.10 and 4.11 show the power density for the case of an interface with a step

discontinuity in height. The step height is 30 µm (1λ). For Fig. 4.10, as in Figs. 4.8 and 4.9, the

top interface is with the ε = −5 simple plasma, all other interfaces are between the magnetoplasma
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and vacuum. A vertical dipole source is located on the left side as indicated. Fig. 4.10a shows the

side view of the power density in the reciprocal case, and Fig. 4.10b shows the non-reciprocal case.

It can be seen that in the reciprocal case energy flows in both directions as well as interacting with

and reflecting from the step, whereas in the non-reciprocal case energy just flows to the right, and

doesn’t scatter off of the step discontinuity. In Fig. 4.11 we surround all sides of the magnetoplasma

with ε = −5 plasma. In this case energy circulates around the entire structure.

Figure 4.10: Side view of power density due to a vertical point dipole source at the interface between
a magnetoplasma–plasma interface (top surface, all other sides interface with vacuum). a. Power
density in the reciprocal case. b. Non-reciprocal case.

Figure 4.11: Side view of power density due to a vertical point dipole source at the interface between
a magnetoplasma–plasma interface. a. Power density in the reciprocal case. b. Non-reciprocal case.

The dispersion relation for the surface mode is [130]

√
k2
x − k2

0εs
εs

+

√
k2
x − k2

0εeff
εeff

= − ε12ikx
ε11εeff

(4.126)

where εs is the top material permittivity and

εeff =
ε2

11 + ε2
12

ε11
(4.127)
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where εα,β are the magnetoplasma permittivity components.

4.3.6 Numerical Computation of the Chern Number

In these continuum examples the Chern number can be found analytically. However, often this will

not be the case, and numerical methods must be used. As discussed previously, the Berry potential

(4.12) and associated Chern computation (4.43) may not be convenient for numerical computations

since it involves derivatives of the eigenfunctions, which generally need to be taken numerically. The

curvature form (4.30) and associated Chern number (4.44) provide a convenient method, since only

the Hamiltonian matrix needs to be differentiated.

In the non-dispersive case the formulation in Section 4.2 suffices, the classical Hamiltonian Hcl =

M−1N is Hermitian under the indicated inner product, the eigenvalue problem Hcl · fn = ωnfn is

a standard eigenvalue problem, and the 6-vector of natural modes fn = [E H]
T

from (4.66) from a

complete set of eigenfunctions. In principle, either the formulation (4.43) or (4.44) can be used to

compute the Chern number.

In the dispersive case this does not hold, but, nevertheless, only the natural modes fn are need

to compute the Berry curvature (4.68) [132]. However, these modes are not appropriate for the form

(4.44), in particular, since the eigenmodes depend on frequency and (4.44) involves terms with differ-

ent eigenmodes. Furthermore, in the dispersive case the Hamiltonian Hcl = M−1N does not admit a

complete set of eigenvectors, which, in principle, is needed in the computation (4.44). Moreover, the

6-vector of natural modes (if one is going to use (4.43)) is not so easily computed in practice, since

Hcl (ωn) · fn = ωnfn is a non-standard eigenvalue problem, and eigenvalues would generally need to

be found via a root search or similar method.

In [20] (and other works, see, e.g., [146]) the non-standard eigenvalue problem in the dispersive

case is avoided by introducing auxiliary variables (additional degrees of freedom), and in [132] this

approach is extended to allow for both temporal and spatial dispersion of general linear media. The

resulting standard Hermitian eigenvalue problem to be solved is

(
M−1
g · L

)
Q = ωQ, (4.128)

where, in block-matrix form (all elements in Mg and L are 6x6 blocks),

Mg =



M∞ 0 0 · · ·

0 I 0 · · ·

0 0 I · · ·
...

...
...

. . .


, M∞ = lim

ω→∞
M (ω,k) , (4.129)
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and

L =



N +
∑
α sgn (ωp,α) A2

α |ωp,1|1/2 A1 |ωp,2|1/2 A2 · · ·

|ωp,1|1/2 A1 ωp,1I 0 · · ·

|ωp,2|1/2 A2 0 ωp,2I · · ·
...

...
...

. . .


, (4.130)

N =

 0 −k× I3×3

k× I3×3 0

 =



0 0 0 0 kz −ky

0 0 0 −kz 0 kx

0 0 0 ky −kx 0

0 −kz ky 0 0 0

kz 0 −kx 0 0 0

−ky kx 0 0 0 0


, (4.131)

where Mg and L are independent of frequency, Q = [f Q1 Q2 ...] where each element in Q is

6x1, and f is defined as before. The elements Aα are the 6x6 residues of the material matrix,

A2
α = −sgn (ωp,α) Res (M)α, and ωp,α is the αth pole of M . More details are available in [132], and

here we focus on the specific material example (4.78)considered above.

Given the permittivity form (4.78), the material matrix has two poles, at ω = ±ω0. Therefore, L

is an 18x18 matrix, Mg is the diagonal matrix (ε0, ε0, ε0, µ0, µ0, µ0, 1, 1, 1...1) and

A2
1 =



ε0
ωe
2 −iε0

ωe
2 0 0 0 0

iε0
ωe
2 ε0

ωe
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, A2

2 =



ε0
ωe
2 iε0

ωe
2 0 0 0 0

−iε0
ωe
2 ε0

ωe
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (4.132)
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Setting kz = 0, the final Hamiltonian matrix is

H = M−1
g L =



0 −iω′e 0 0 0 −k
′
y

ε0
−α iα 0 0 0 0 −α −iα 0 0 0 0

iω′e 0 0 0 0
k′x
ε0

−iα −α 0 0 0 0 iα −α 0 0 0 0

0 0 0
k′y
ε0
−k
′
x

ε0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
k′y
µ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −k
′
x

µ0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− k
′
y

µ0

kx
µ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−β iβ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−iβ −β 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−β −iβ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

iβ −β 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(4.133)

where α = 1
2

√
ω′e/ε0, β = 1

2

√
ε0ω′e, ω

′
e = ωe/ω0, k′x,y = kx,y/ω0.

From (4.133) the eigenvalues and associated eigenvectors can easily be found numerically (or

symbolically), and the Chern number computed from (4.44). Of the 18 branches, two are the positive-

frequency TM modes and one is the positive-frequency TE mode described previously. In addition

to static-like (longitudinal) modes, there are dispersionless dark modes with E = H = 0 which don’t

contribute to the Chern number. For each TM band, the other TM band and, to a lesser extent, the

TE band, provide the most important contributions to the Chern number calculation (4.44).

4.4 Summary

The properties that quantify PTIs, Berry phase, Berry connection, and Chern number, are typically

obtained by making analogies between classical Maxwells equations and the quantum mechanical

Schrodinger equation, writing both in Hamiltonian form which needs a deep knowledge of quantum

mechanics. However, the aforementioned quantities are not necessarily quantum in nature, and for

photonic systems they can be explained using only classical concepts. In this chapter we have provided

a derivation and description of PTI quantities using classical Maxwells equations, demonstrated how
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an electromagnetic mode can acquire Berry phase, and discussed the ramifications of this effect. Based

on this classical perspective, we elucidated and evaluated the wave propagation and unidirectional

surface waves on the surface of a biased plasma.
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Chapter 5

Quantum Master Equation for

General Non-Reciprocal

Inhomogeneous Lossy Medium

5.1 Introduction

In this chapter, we first derive a general ME valid for both reciprocal and nonreciprocal, inhomoge-

neous and lossy environments. This form is valid for 3D, 2D and 1D systems since it is expressed

in terms of the electromagnetic Green function. Then, we present concurrence expressions for the

unidirectional case. The physical system we will consider is that of two qubits at the interface of

a PTI and another (eventually topologically trivial) medium, as depicted in Fig. 5.1, although the

development is completely general.

Figure 5.1: Two qubits at the interface of a PTI and topologically trivial medium. The resulting
unidirectional SPP provides a strongly non-reciprocal environment for qubit entanglement.
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5.2 Master Equation for General 3D Nonreciprocal Environ-

ments

We consider qubits with transition frequency ω0 interacting through a general nonreciprocal environ-

ment. For a derivation in the reciprocal case, see [31].

The classical electric field satisfies

[
∇× µ−1(r, ω)∇×−ω

2

c2
ε(r, ω)

]
E(r, ω) = iωµ0js(r, ω), (5.1)

where c is the vacuum speed of light, µ(r, ω) and ε(r, ω) are the material permeability and permittivity,

and js(r, ω) is the noise current. In this work, we suppose that the medium is non-magnetic, µ(r, ω) =

I, where I is the unit dyad, but that the permittivity is a tensorial quantity. By defining the noise

current in terms of polarization as js = −iωPs, which is associated with material absorption by the

fluctuation-dissipation theorem, the electric field Green tensor is the solution of

[
∇×∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = Iδ(r, r′) (5.2)

and the electric field is E(r, ω) = (ω2/c2ε0)
∫
V
dr′G(r, r′, ω) · Ps(r

′, ω). Following the standard

macroscopic canonical quantization [24, 57, 58], the noise polarization can be expressed in term of

the bosonic field annihilation operator as [147]

P̂s(r, ω) = −i
√

~ε0

π
T(r, ω) · f̂(r, ω), (5.3)

where

T(r, ω) ·T†(r, ω) =
1

2i

[
ε(r, ω)− ε†(r, ω)

]
, (5.4)

and, for the special case of a symmetric permittivity tensor (e.g., a reciprocal medium), T(r, ω) =√
Imε(r, ω). The bosonic field operators f̂(r, ω) obey the commutation relations [̂fj(r, ω), f̂†j′(r

′, ω′)] =

δjj′δ(r−r′)δ(ω−ω′) and [̂fj(r, ω), f̂j′(r
′, ω′)] = 0. The noise polarization operator generates the electric

field operator

Ê(r, ω) = i

√
~
πε0

ω2

c2

∫
dr′G(r, r′, ω) ·T(r, ω) · f̂(r′, ω), (5.5)

where G(r, r′, ω) is the classical electric field Green tensor. As the details are provided in Appendix

I, the nonreciprocal Green tensor has the following useful property [147]

2i
ω2

c2

∫
d3r′′G(r, r′′, ω) ·T(r′′, ω) ·T†(r′′, ω)G∗(r′, r′′, ω) = G(r, r′, ω)−G†(r, r′, ω). (5.6)

Under the dipole approximation, the governing Hamiltonian of a system of qubits (two level atoms)
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interacting with the surrounding environment can be written as

H =

∫
d3r

∫ ∞
0

dω~ωf̂
†
(r, ω)f̂(r, ω) +

∑
i

~ωiσ̂†iσi −
∑
i

∫ ∞
0

dω(d̂i ·E(ri, ω) + H.c.), (5.7)

where the right side can be decomposed into the reservoir Hamiltonian Hr (first term), the qubit

Hamiltonian Hs (second term), and the interaction Hamiltonian Hsr (third term). We can modify the

total Hamiltonian to include the coherent drive (external laser pump) Hamiltonian VAF , given later

((5.22)). We transform to a frame rotating with the laser frequency ωl (H → Û†(t)HÛ(t), Û(t) =

e−iωl
∑
i σ
†
i σit) and write the total density matrix of the qubit system and reservoir according to

the Schrödinger equation ∂tρT = −i[H, ρT ]/~, then we transform to the interaction picture (ÔI =

Û†(t)HÛ(t), Û(t) = e−i(Hs+Hr)t/~) where ∂tρT,I = −i[HI , ρT,I ] with HI = Hsr,I . We integrate to find

ρT,I = ρI(0)R0 +
−i
~

∫ t

0

dt′[HI(t
′), ρT,I(t

′)] (5.8)

where R0 is the initial reservoir density matrix. In the interaction picture, by considering Γii � ω

for optical frequencies we make the rotating wave approximation (RWA) in HI and drop the rapidly

varying counter-rotating terms proportional to σ†(t′)f†(r′, ω)ei(ωl+ω)t′ and its Hermitian conjugate.

The interaction Hamiltonian in the interaction picture reduces to

HI(t) = −
∑
i

(∫ ∞
0

dωσ†i (t)di ·E(ri, ω)e−i(ω−ωl)t + H.c.

)
(5.9)

To find the system density matrix we insert (5.8) into the interaction picture Schrödinger equation

and trace over the reservoir,

∂tρI = TrR{
−i
~

[HI , ρI(0)R0,I ]}

− 1

~2

∫ t

0

dt′TrR{[HI(t), [HI(t
′), ρT,I(t

′)]]}. (5.10)

Aside from the rotating wave approximation, we apply a number of other approximations to

the density matrix to simplify this further (see Appendix II). We first take the mean initial sys-

tem reservoir coupling to be zero such that TrR{−i~ [HI , ρI(0)R0,I ]} = 0. Then we apply the Born

approximation, which states that the reservoir will be largely unaffected by its interaction by the

system. Next, we assume that the evolution of the density matrix only depends on its current state

(Born-Markov approximation). The Born-Markov approximation comes from the assumption that

the reservoir relaxation time is much faster than the relaxation time of the system, and so the memory

effect of the reservoir can be ignored. Lastly, we make a second Markov approximation, extending

the upper limit of the time integral to infinity to produce a fully Markovian equation. With these
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simplifications we have

∂tρI = − 1

~2

∫ ∞
0

dt′TrR {[HI(t), [HI(t− t′), ρI(t)R0]]} . (5.11)

We suppose that the atomic transition frequency of the qubits is ω0. Then, for the first term in

(5.11) we have

TrR {HI(t)HI(t− t′)ρI(t)R0} =
∑
i,j

dαidβj

∫ ∞
0

dωei(ω0−ω)t′σ†iσjρT,ITrR

(
Êα(ri, ω)Ê†β(rj , ω)R0

)
(5.12)

where

σi = |gi〉 〈ei| , σi† = |ei〉 〈gi| (5.13)

are the atomic lowering/raising operators describing energy level transitions for each qubit, and where

it is supposed that one of the qubits is polarized along α and the other one is polarized along β.

Considering (5.5) for the nonreciprocal Green tensor and TrR{f̂(r, ω)f̂
†
(r′, ω′)R0} = (n̄(ω) + 1)δ(r −

r′)δ(ω − ω′) with zero thermal photon occupation n̄(ω) = 0, it can be easily shown that

TrR

(
Eα(ri, ω)E†β(rj , ω)R0

)
=

~
πε0

ω4

c4

∫
d3rGαγ(ri, r, ω)

[
εγγ′(r, ω)− ε†γγ′(r, ω)

2i

]
G∗γ′β(rj , r, ω)

=
~

2iπε0

ω2

c2
(
Gα,β(ri, rj , ω)−G∗β,α(rj , ri, ω)

)
. (5.14)

Thus, we have

TrR {HI(t)HI(t− t′)ρI(t)R0} =
~

2iπε0c2

∑
i,j

σ†iσjρI(t)

∫ ∞
0

(
dαiGαβ(ri, rj , ω)dβj − dβjG

∗
βα(rj , ri, ω)dαi

)
ω2dωei(ω0−ω)t′ . (5.15)

Following the same procedure for the second term in (5.11),

TrR {HI(t− t′)ρI(t)R0HI(t)} =
~

2iπε0c2

∑
i,j

σjρI(t)σ
†
i

∫ ∞
0

(
dβiGβα(ri, rj , ω)dαj − dαjG

∗
αβ(rj , ri, ω)dβi

)
ω2dωei(ω0−ω)t′ . (5.16)

Replacing (5.15) and (5.16) in (5.11) and performing the time integral over t′ gives the evolution of

the density matrix in the interaction picture, where we have used the Kramers-Kronig relation

P
∫ ∞
−∞

ReGαβ

ω − ω0
dω = −πImGαβ

P
∫ ∞
−∞

ImGαβ

ω − ω0
dω = πReGαβ . (5.17)
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Transforming back to the Schrödinger picture, we obtain the master equation for the two-level system

dynamics

∂tρs(t) = − i
~
[
Hs + VAF , ρs(t)

]
+ Lρ(t), (5.18)

where

Lρs(t) =∑
i

Γii(ω0)

2

(
2σiρs(t)σ

†
i − σ

†
iσiρs(t)− ρs(t)σ

†
iσi

)

+

i 6=j∑
i,j

Γij(ω0)

2

([
σjρs(t), σ

†
i

]
+
[
σi, ρs(t)σ

†
j

])

+

i 6=j∑
i,j

gij(ω0)
([
σjρs(t),−iσ†i

]
+
[
iσi, ρs(t)σ

†
j

])
. (5.19)

Equation (5.19) is one of the primary results of this work, and is applicable to both reciprocal

and nonreciprocal environments and an arbitrary number of qubits. In (5.19), L is the Lindblad

superoperator for the general nonreciprocal medium, involving the dissipative decay rate, Γij(ω0),

and the coherent coupling terms, gij(ω0), in terms of the electromagnetic Green dyadic,

Γij(ω0) =
2ω2

0

ε0~c2
∑

α,β=x,y,z

dαiIm (Gαβ(ri, rj , ω0)) dβj ,

gij(ω0) =
ω2

0

ε0~c2
∑

α,β=x,y,z

dαiRe(Gαβ(ri, rj , ω))dβj . (5.20)

The Hamiltonian of the decoupled qubits is

Hs =
∑
i

~∆ωiσ
†
iσi, (5.21)

where ∆ωi = ω0 − ωl − δi, with δi = gii being the Lamb shift and ωl is the laser frequency of an

external source. The Lamb shift for optical emitters is in general on the order of a few GHz, therefore

the effect of the Lamb-shift for optical frequencies is small (ωi ∼ 1015 Hz, δi ∼ 109 Hz), and can be

ignored, or assumed to be accounted for in the definition of the transition frequency ω0. In (5.18),

the term

VAF = −~
(

Ω1e
−i∆ltσ†1 + Ω∗1e

i∆ltσ1

)
− ~

(
Ω2e

−i∆ltσ†2 + Ω∗2e
i∆ltσ2

)
(5.22)

represents the external coherent drive applied to each qubit at laser frequency ωl. Due to its large

amplitude we treat the drive field as a c-number where Ωi = di · Ei
0/~ is a Rabi frequency and

∆l = ω0 − ωl is the detuning parameter.
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For the reciprocal case where Γij = Γji and gij = gji it can be shown that (5.19) is the well-known

reciprocal (bidirectional) master equation [148, 74]. In the reciprocal case, some terms associated

with gij = gji cancel each other out and are eliminated from the dissipative term. For example,

σiρs(t)σ
†
i , i 6= j, appears in the nonreciprocal case but is absent in the reciprocal case.

For a system of two qubits, (5.19) can be written in the simple form

Lρs(t) =
∑
j=1,2

Γjj
2

(
2σjρsσ

†
j − ρsσ

†
jσj − σ

†
jσjρs

)
+

(
Γ21

2
+ ig21

)(
σ2ρsσ

†
1 − ρsσ

†
1σ2

)
+

(
Γ21

2
− ig21

)(
σ1ρsσ

†
2 − σ

†
2σ1ρs

)
+

(
Γ12

2
+ ig12

)(
σ1ρsσ

†
2 − ρsσ

†
2σ1

)
+

(
Γ12

2
− ig12

)(
σ2ρsσ

†
1 − σ

†
1σ2ρs

)
. (5.23)

A comparison with previous 1D chiral ME formulations is provided in Appendix III.

5.3 Robust Entanglement with 3D Non-Reciprocal Photonic

Topological Insulator

5.3.1 Transient Entanglement: Unidirectional SPP-Assisted Qubit Com-

munication

In this work, all numerical results are computed using the master equation (5.18) with the general

3D Lindblad superoperator (5.19), where the Green tensor for complicated environments is obtained

numerically. However, as shown in Appendix IV, if the system of qubits are communicating through

a strongly nonreciprocal environment e.g., G(r1, r2) = 0 (Γ12 = g12 = 0) and G(r2, r1) 6= 0, then the

concurrence (as a measure of entanglement [149]) is

C(t) = 2

√
Γ2

21

4
+ g2

21te
−Γ11t = 2

ω2
0d2
y

~ε0c2
|Gyy(r2, r1, ω0)|te−Γ11t, (5.24)

where it has been assumed that the qubits are both polarized along the y-axis. This is the general

unidirectional result. Concurrence reaches its maximum value at t = 1/Γ11, such that Cmax =

2
√

Γ̃2
12/4 + g̃2

21/e, where Γ̃21 and g̃21 are rates normalized by Γ11.

Although the Hamiltonian in nonreciprocal systems is non-Hermitian, it can be seen (Appendix

IV) that the density matrix is Hermitian, probability conservation holds (Tr(ρ) = 1), and that

diagonal elements of the density operator can be interpreted as population densities, as for Hermitian

Hamiltonians.
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For two identical qubits interacting through a reciprocal medium,

Crecip(t) =

{
1

4

[
e−(Γ11+Γ12)t − e−(Γ11−Γ12)t

]2
+ e−2Γ11t sin2(2g12t)

}1/2

(5.25)

One of the main differences between the concurrence in the reciprocal case (5.25), and in the

unidirectional case (5.24), is the presence of the sinusoidal term in (5.25). When g12 is strong enough,

this sinusoidal term causes oscillations in the transient concurrence related to photons being recycled

between the two qubits, with a period that corresponds to the round trip time of the coupled qubits

through the reciprocal medium (Rabi oscillations). For the unidirectional case (5.24) Rabi oscillations

can not occur.

It was shown in [74] that for qubits coupled to an infinite reciprocal waveguide system, the positions

of Γij maxima/minima correspond to positions of gij minima/maxima (for finite waveguides, see

[150]). Thus, in general, coherent and dissipative regimes become dominant at different separations

between emitters. It was further shown in [74] that for an infinite reciprocal plasmonic waveguide

the best entanglement was obtained when Γij was large and gij was small (forming the dissipative

regime), which forces a restriction on the positioning of the qubits in the reciprocal case. However, in

the unidirectional case the qubit positioning is unimportant, as detailed in [151], and the qubits can be

anywhere in the coherent or dissipative regimes, which is a practical advantage of these unidirectional

systems.

In order to demonstrate this difference between reciprocal and unidirectional systems, we consider

two cases of pure dissipative and pure coherent qubit communication for a model system where

we simply assign the Green function values. Fig. 5.2 shows that the pure dissipative regime is

dominant for the reciprocal case while the dissipative or coherent nature of the qubit communication

is unimportant for the unidirectional case.

Figure 5.2: Left panel: Concurrence between two qubits for a reciprocal system. For the dissipative
regime Im(G(r1, r2)) = Im(G(r2, r1)) = 0.9 and Re(G(r1, r2)) = 0 and for the coherent regime
Re(G(r1, r2)) = Re(G(r2, r1)) = 0.9 and Im(G(r1, r2)) = 0. Right panel: Concurrence between two
qubits for a unidirectional system. For the dissipative regime Im(G(r2, r1)) = 0.9, Re(G(r2, r1)) = 0
and for the coherent case Im(G(r2, r1)) = 0, Re(G(r2, r1)) = 0.9. In all cases the Green function
quantity is normalized by Im(G(r1, r1)).
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A unidirectional SPP can be provided by the interface between a PTI and a topologically-trivial

material. When operated in a common bandgap of the two materials (or if the trivial medium is

opaque), the SPP is unidirectional, topologically protected from back-scattering, and diffraction-

immune, providing an ideal implementation of a strongly nonreciprocal system for qubit interactions.

Although here we implement a PTI as a PQHE using a continuum plasma [132]-[152], many other

implementations of PTIs are possible, of both PQHE and PQSHE types, and qualitatively would

behave in a similar manner.

5.3.2 Continuum Photonic Topological Insulator Realization of a Nonre-

ciprocal Surface Plasmon Polariton Environment

We assume a magnetized plasma having the permittivity tensor

ε =


ε11 iε12 0

−iε12 ε11 0

0 0 ε33

 (5.26)

where

ε11 = 1 + i
ω2
p

ω

(
ν − iω

(ν − iω)2 + ω2
c

)
ε12 =

ω2
pωc

ω ((ν − iω)2 + ω2
c )
, ε33 = 1 + i

ω2
p

ω(ν − iω)
, (5.27)

and where ωc = (qe/me) Bz is the cyclotron frequency (Bz is the applied bias field), ω2
p = Neq

2
e/ε0me

is the squared plasma frequency (Ne is the free electron density and qe and me are the electron

charge and mass, respectively), and ν is the collision frequency. Initially, we set ν = 0 to focus

on the effect of unidirectionality, but later the effect of loss is considered. The magnetized plasma

is able to support a bulk TE mode with dispersion k2
TE = ε33(ω/c)2 and a bulk TM mode with

dispersion k2
TM = εeff(ω/c)2, where εeff = (ε2

11 − ε2
12)/ε11 [130]. Both bulk modes are reciprocal.

The Chern number of the bulk TE mode is trivial, and so TE modes are not considered further

in this work. The Chern numbers of the bulk TM modes are nonzero, and at the interface of the

magnetized plasma and a topologically-trivial (simple) medium the gap Chern number is Cgap = 1

[132, 153], indicating the presence of one nonreciprocal, backscattering-immune TM-SPP that crosses

the bandgap (bandstructure is shown later, in Fig. 5.4).

5.3.3 Entanglement Evaluation in Different Environments

We first consider the behavior of the concurrence for qubits in several different environments, and

establish that the best entanglement occurs for a PTI/opaque medium interface. Fig. 5.3a, shows a
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comparison of concurrence between four different cases of two qubits interacting through: 1) vacuum,

2) at the interface of a gold half-space and vacuum, 3) at the interface of a magnetized plasma and

vacuum, and 4) at the interface of a magnetized plasma and an opaque medium. Here and in the

following, the Green function is calculated numerically [154]. The system of qubits were initially

Figure 5.3: a. Transient concurrence for two interacting qubits in different environments; 1) vacuum,
2) at the interface of a gold half-space (ε = −91.6−3i) and vacuum, 3) at the interface of a magnetized
plasma (ωp/ω = 0.95, ωc/ω = 0.21) and vacuum, and 4) at the interface of the magnetized plasma
and an opaque medium (non-biased plasma with ωp/ω =

√
3, such that ε = −2). b. One way SPP at

the interface of the biased plasma and the opaque medium at ω/2π = 200 THz. c. Driven concurrence
of two qubits in the same environments as in panel a. d. Steady states concurrence versus pumping
intensities for the case of the biased plasma and opaque medium interface. The qubit separation is
2.4 µm (1.6λ0).

prepared in state |4〉 = |e1〉 ⊗ |g2〉, such that the left qubit is initially in the excited state while the

right qubit is in the ground state. It can be seen that the interface between the magnetized plasma

and the opaque medium has higher concurrence than the other cases, due to the existence of a strong

SPP and the fact that there can be no radiation into either bulk half-space. Thus, in the following,

we focus on the magnetized plasma/opaque medium geometry. The poor performance of the gold-

vacuum interface is somewhat surprising, since a strong SPP can be excited and the separation is

chosen to be in the dissipative regime, which is a best-case scenario for the reciprocal case. Making

the gold lossless does not significantly improve the concurrence (results not shown). The problem is

primarily due to the lack of lateral confinement of the SPP so the energy of SPP fellows along other

undesired directions.

Figure 5.3b shows the excited unidirectional SPP at the interface of the magnetized plasma and

the opaque medium, demonstrating the unidirectional nature of the SPP, and Fig. 5.3c shows the

case of pumped concurrence, where the qubit depopulation is compensated by applying an external
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laser source in resonance with the atomic transition frequency. The pump intensity must be chosen

carefully, as illustrated in Fig. 5.3d, which shows the steady state concurrence for a wide range of laser

intensities (a laser pump can be applied to the qubits via, e.g., a fiber penetrating into the material).

It can be seen that the laser intensity can not be too large, otherwise the qubits will interact mostly

with the laser. Ideally, the pump should be strong enough to keep the system interacting, but weak

enough for the qubit interaction to dominate the dynamics. It is clear from Fig. 5.3d that unequal

pumping leads to larger steady state concurrence.

5.3.4 Topological Aspect of Entanglement

In this section we briefly show the topological aspect of entanglement in a PTI system. Figure

5.4 shows the reciprocal bulk bands (solid blue) for the biased plasma, and the unidirectional gap-

crossing SPP (dashed red) dispersion for a biased-plasma/opaque medium interface, for different

values of bias. For ωc > 0 the gap Chern number is -1 [132, 153], and there is a positive-traveling

SPP (vg = dω/dk > 0), topologically-protected against backscattering. At ωc = 0 the gap closes, the

material becomes topologically-trival (gap Chern number is 0), and there exists a reciprocal SPP. For

ωc < 0 the gaps reopens, the gap Chern number is 1, and there is a negative-traveling SPP (vg < 0),

topologically-protected against backscattering.

Figure 5.4: Reciprocal bulk bands (solid blue) for the biased plasma (ωp/ω = 0.95), and the uni-
directional gap-crossing SPP (dashed red) dispersion for a biased-plasma/opaque medium (ε = −2)
interface, for different values of bias at ω/2π = 200 THz.

Figure 5.5 shows the concurrence when the left dot has an initial excitation (state |4〉 = |e1, g2〉).

The concurrence is rather insensitive to the bias as long as the topology does not change, however,

when the gap closes and reopens the concurrence vanishes.
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Figure 5.5: Concurrence mediated by a unidirectional SPP at the interface of biased plasma (ωp/ω =
0.95) and an opaque medium (ε = −2) when the left dot has an initial excitation (state |4〉 =
|e1, g2〉). For ωc < 0, the same three absolute values are considered as for positive bias, i.e., ωc/ω0 =
−|0.27|,−|0.21|, and −|0.11|. The qubit separation is 2.4 µm (1.6λ0).

5.3.5 Preserving Entanglement in the Presence of Large Defects

Perhaps the most important aspect of using PTIs for entanglement is the possibility of robust SPPs,

topologically-immune to backscattering (and immune to diffraction if operated in the bulk bandgap)

in the presence of any arbitrary large obstacle or defect. To examine this, we compare two cases: 1)

the interface between an opaque medium and a biased plasma, and 2) the interface between the same

opaque medium and an unbiased plasma.

In the nonreciprocal case, this unidirectional and scattering-immune SPP provides the ability to

preserve the entangled state of two qubits in plasmonic systems even in the presence of very non-

ideal interfaces. Figure 5.6 shows the transient concurrence for the cases of biased/unbiased plasmas

with flat and defected interfaces. Although for the flat interface the biased plasma provides better

concurrence then the reciprocal (unbiased) case, this could be perhaps altered by adjustment of the

two material half-space properties. However, the point is that in the presence of a defect, as shown in

the right panel, the reciprocal SPP suffers from a strong reflection at the defect, as expected, whereas

the nonreciprocal SPP (biased plasma) detours around the defect, leading to the same concurrence

as without the defect.

5.3.6 Finite-Width Waveguide

The previous results were for an infinitely-wide interface. In this section we examine the effect of

lateral confinement of the SPP [153]. Figure 5.7a shows the finite-width waveguide geometry. In order

to efficiently confine the SPP along the propagation axis, the plasma is extended past the interface to

form partially-extended sidewalls. Only partial side walls are needed to prevent radiation in space,

since the SPP is confined to the vicinity of the interface.

Lateral confinement of the unidirectional SPP improves both the transient and steady state
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Figure 5.6: Left panel: Transient concurrence of two qubits interacting through a flat interface made
of an opaque medium (ε = −2) and both an unbiased plasma (ωp/ω = 0.95, ωc/ω = 0) and a biased
plasma (ωp/ω = 0.95, ωc/ω = 0.21). Insert shows shows the electric field Ey excited by a vertical
electric dipole. Right panel: Same thing for the case of a defected interface, where the defect contour
length is of the order of a free-space wavelength. The system of qubits is initially prepared in the
state |4〉 = |e1, g2〉. The qubit separation is 1.7 µm (1.13λ0).

(pumped) concurrence. Fig. 5.7b shows the transient and steady state concurrence of two qubits

initially prepared in state |4〉. In comparison to Fig. 5.3a, it can be seen that lateral confinement

increases both the maximum transient concurrence and the steady state concurrence. Figure 5.7c

shows the dynamics of the qubits under external pumping, where ρ11, ρ22, ρ33, and ρ44 are the prob-

abilities of finding both qubits to be in ground state, both qubits in the excited state, the first qubit

in the ground state and the second qubit in the excited state, and vice versa, respectively. Figure

5.7d shows the steady state concurrence for a wide range of pump values. The behavior is similar to

the case of the infinite interface, Fig. 5.3d, except that the range of pump values that result in large

steady state concurrence is extended, and the maximum achievable steady state concurrence is larger

in the case of the finite-width waveguide.

In Fig. 5.8, qubit concurrence is shown for a finite-width waveguide having a defect which spans

the entire waveguide width. It can be seen that the concurrence is minimally affected by the defect.

Although not shown, as with Fig. 5.6, in the reciprocal (unbiased) case the defect eliminates the

concurrence.

5.3.7 Effect of Different Initial State Preparations

An interesting behavior of the concurrence arising from having a unidirectional SPP is that, e.g., if

the medium supports only a right going SPP, then the initially excited qubit should be the left qubit,

otherwise the qubits remain unentangled, as shown in Fig. 5.9a for the unpumped case Ω1 = Ω2 = 0.

Figure 5.9b shows the dynamics of the qubits for this unpumped case. It can be seen that ρ33, which

is the probability of finding the right qubit in the excited state and the left qubit in the ground

state, starts from 1 and then drops rapidly. However, ρ44, which is the probability of finding the

excitation being in the left qubit with the right qubit in the ground state, is always zero, meaning
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Figure 5.7: a. Finite-width waveguide formed by an opaque medium and biased plasma. b. Transient
and driven concurrence of two qubits interacting through the finite-width waveguide. For the biased
plasma, ωp/ω = 0.95 and ωc/ω = 0.21, and for the opaque medium, ε = −2. c. Dynamics of the
qubits under external pumping. d. Steady state concurrence for different pump values. Waveguide
width is 1.8 µm (1.2λ0) and qubit separation is 2.4 µm (1.6λ0)

.

Figure 5.8: Transient concurrence of two qubits interacting in a finite-width waveguide (see Fig. 5.7a)
consisting of an opaque medium (ε = −2) and a biased plasma (ωp/ω = 0.95, ωc/ω = 0.21). The
defect contour length is of the order of a free-space wavelength, and spans the width of the waveguide,
W = 1.8 µm (1.2λ0). Qubit spacing for the flat interface is 2.4 um (1.6λ0), and for the interface
with defect, the line-of-sight spacing is 2.4 um. The system of qubits is initially prepared in the state
|4〉 = |e1, g2〉.

that the excitation lost from the right qubit never gets captured by the left qubit. This behavior

is particular to a unidirectional environment, and allows for keeping two qubits disentangled at any

qubit separation, even if one of them carries an excitation.

However, by applying an external pump we can achieve non-zero concurrence, as also depicted

in Fig. 5.9a The pump is turned on at t = 0, and instead of immediately becoming non-zero, the

concurrence remains zero for a period of time, then starts raising as a sudden birth in concurrence and
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Figure 5.9: Left panel: Transient and driven concurrence for a system of qubits interacting through a
right going unidirectional SPP while the initial excitation is in the right qubit. Right panel: Dynamics
of the qubit system for the transient case. For the biased plasma ωp/ω = 0.95 and ωc/ω = 0.21, and
for the opaque medium ε = −2. The waveguide geometry is shown in Fig. 5.7a, and qubit separation
is 2.4 µm (1.6λ0)

reaches a non-zero steady state value. This delayed sudden-birth is quite different from the pumped

reciprocal case.

It is also possible to consider different initial states which can give other possible unidirectional

SPP assisted dynamical evolutions. Figure 5.10 shows the case of the initial state being the maximally

entangled Bell state |ΨBell〉 = (|1〉+ |2〉)/
√

2. We consider that the qubits are interacting through the

Figure 5.10: Left panel: Transient and driven concurrence for a system of qubits initially prepared in
the Bell state. Right panel: Dynamics of the qubits system under external pumping. For the biased
plasma, ωp/ω = 0.95 and ωc/ω = 0.21, and for the opaque medium ε = −2. The waveguide geometry
is shown in Fig. 5.7a with W = 1.8 µm (1.2λ0), and qubit separation is 2.4 µm (1.6λ0).

finite-width waveguide depicted in Fig. 5.7a. Figure 5.10a shows the time evolution of the concurrence

for both pumped and non-pumped cases. In contrast to the previous cases, the concurrence starts

from one due to the maximum degree of entanglement of the initial Bell state. For the non-pumped

case the concurrence diminishes in time as the system becomes disentangled, resulting in a sudden

death of entanglement. It remains zero for a period of time, then the entanglement experience a

rebirth before decaying exponentially at long times. For the externally pumped case, the concurrence

exponentially decays but the qubits do not become completely disentangled. Fig. 5.10b shows the
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dynamics of the qubits for the pumped case. The population probabilities ρ11 and ρ22 start from 0.5

due to the Bell state preparation. An interesting behavior in the qubit dynamics is the unequal steady

state values ρ33 and ρ44 values under pumping with equal intensities |Ω1| = |Ω2| (in the reciprocal

case, ρ33 = ρ44).

5.3.8 Lossy Biased Plasma

In a lossy medium the SPP loses power as it propagates along the interface, resulting in weaker qubit

entanglement. In order to study the effect of loss, we suppose the qubits are interacting through an

infinitely-wide interface as considered in Fig. 5.3, but for three different collision frequencies; ν = 0,

ν/2π = 270 MHz and ν/2π = 500 MHz. Qubits are initially prepared in the state |4〉 = |e1〉 ⊗ |g2〉.

Figure 5.11, left panel, shows the transient concurrence. Increasing the collision frequency reduces

the concurrence, and for collision frequencies greater than 500 MHz loss dominates the system and

an entangled state is not achievable for this relatively wide qubit separation of 1.6λ0.

Figure 5.11: Left panel: Transient concurrence of two qubits interacting through an infinite interface
between a biased plasma (ωp/ω = 0.95 and ωc/ω = 0.21) and an opaque medium (ε = −2) for
different values of the collision frequency. Right panel: Steady state concurrence for different pump
values in the lossy case. Qubit separation is 2.4 µm (1.6λ0)

The right panel of Fig. 5.11 shows the steady state concurrence of the pumped system, versus

pumping intensity. In comparison to the lossless case (Fig. 5.3d), the range of pump intensities that

give non-zero steady state concurrence has decreased, and the maximum achievable concurrence value

is diminished compared to the lossless case.

5.4 Summary

The ability to guide the energy fellow from one quantum dot to another one is a great advantage

to achieve highly entangled states. PTIs are able to support unidirectional, backscattering immune

surface waves. In this chapter, for the first time, the unidirectional surface wave assisted entanglement

using PTIs is investigated. We have studied the spontaneous and pumped entanglement of two level
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systems (quantum dots) in the vicinity of a PTIs interface, which supports a unidirectional, back-

scattering immune and topologically-protected surface plasmon polariton in the bandgap of the bulk

material. We have also derived a master equation for quantum dots interactions in a general three-

dimensional, nonreciprocal, inhomogeneous and lossy environment. The environment is represented

exactly, via the photonic Green function. The resulting entanglement is shown to be extremely

robust to defects occurring in the material system, such that strong entanglement is maintained even

if the interface exhibits electrically-large and geometrically sharp discontinuities. We have showed

that, alternatively, depending on the initial excitation state, using PTIs allows two quantum dots

to remain un-entangled even for very close spacing. Our formulation and results in this work are

useful for both fundamental investigations of quantum dynamics in nonreciprocal environments, and

technological applications related to entanglement in two-level systems.
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.1 Appendix I: Non-Reciprocal Green Function

The electric field dyadic Green function G(r, r′, ω) satisfies the following equation

[
∇×∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = Iδ(r− r′) (28)

Let us suppose that the dyadic Green function G(r, r′, ω) can be accounted as the elements of an

operator Ĝ in position basis as

G(r, r′, ω) = 〈r| Ĝ |r′〉 (29)

the matrix elements of the position operator r̂ are

〈r| r̂ |r′〉 = rδ(r− r′) (30)

Let us suppose that the momentum operator is k̂ where k̂ = −i∇ so we can write ∇ = ik̂. If we

define an operator as

Ĥ = ik̂× ik̂×−ω
2

c2
ε (31)

where

〈r| Î |r′〉 = Iδ(r− r′) (32)

is the unit operator, then the Green function equation in 28 corresponds to ĤĜ = Î. It follows the

equation Ĝ = Ĥ
−1

. After multiplying it from the right by Ĥ we find

ĜĤ = Î (33)

The Hermitian conjugate of above equation is

Ĥ
†
Ĝ
†

= Î (34)

if we multiply 33 by Ĝ
†

from right and 34 by Ĝ from left and subtract them we get

Ĝ
(
Ĥ− Ĥ

†)
Ĝ
†

= Ĝ
†
− Ĝ (35)

where

Ĥ− Ĥ
†

= ik̂× ik̂×−ω
2

c2
ε− ik̂† × ik̂† ×+

ω2

c2
ε† = −ω

2

c2
(ε− ε†) (36)

so 35 can be written as
ω2

c2
Ĝ(ε− ε†)Ĝ

†
= Ĝ− Ĝ

†
(37)
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let us define the tensor R such that

R =
1

2i
(ε− ε†) (38)

then in Cartesian components we get

2i
ω2

c2

∑
m,m′

ĜimRmm′Ĝ
†
m′j = Ĝij − Ĝ†ji (39)

writing above equation in position basis gives

2i
ω2

c2

∫
d3r′′

∑
m,m′

〈r| Ĝim |r′′〉 〈r′′|Rmm′ |r′′〉 〈r′′| Ĝ†m′j |r
′〉 = 〈r| Ĝij |r′〉 − 〈r| Ĝ†ji |r

′〉 (40)

considering the relation

〈r′′| Ĝ†m′j |r
′〉 = 〈r′| Ĝm′j |r′′〉

∗
= G∗m′j(r

′, r′′)

〈r| Ĝim |r′′〉 = Gim(r, r′′) (41)

we get

2i
ω2

c2

∫
d3r′′

∑
m,m′

Gim(r, r′′, ω)Rmm′(r
′′, r′′, ω)G∗m′j(r

′, r′′, ω) = Gij(r, r
′)−G∗ji(r

′, r) (42)

in matrix form we have

2i
ω2

c2

∫
d3r′′G(r, r′′, ω) ·R(r′′, r′′, ω) ·G∗(r′, r′′, ω) = G(r, r′)−G†(r′, r) (43)

Above equation is the general non reciprocal form which should be used in density matrix deriva-

tion. Now lets consider the reciprocal form with scalar permittivity. In this case the tensor R reduces

to Im (ε) I with unit dyad I and considering the relation Gij(r, r
′) = Gji(r

′, r) above equation can be

simplified to

2i
ω2

c2

∫
d3r′′Im (ε(r′′, ω)) G(r, r′′, ω)G∗(r′′, r′, ω) = G(r, r′)−G∗(r, r′) (44)

the right hand side of above equation is G(r, r′)−G∗(r, r′) = 2iIm {G(r, r′)}, it yields

ω2

c2

∫
d3r′′Im (ε(r′′, ω)) G(r, r′′, ω)G∗(r′′, r′, ω) = Im {G(r, r′)} (45)

which is the usual equation people use.
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.2 Appendix II: Master Equation Approximations

Here we briefly discuss the approximations used in the derivation of the master equation (5.18)-(5.19).

The first approximation made in the derivation is the rotating wave approximation (RWA) where in

the interaction picture we drop the rapidly varying counter-rotating terms in HI . This approximation

is valid for Γii � ω. The qubit transition frequency is ω/2π = 200 THz, and we assume a dipole

moment d = 60 D. For an interface made of lossless biased plasma, Γii/2π ∼ 450 MHz, and for the

lossy biased plasma with ν/2π = 500 MHz, Γii/2π ∼ 2 GHz. For the non biased plasma-opaque

medium interface (interface supporting reciprocal SPP) Γii/2π ∼ 75 MHz. In all cases the condition

for the validity of the RWA is strongly met.

We also applied the Born-Markov approximation, which comes from the assumption that the

reservoir relaxation time, τR, is much faster than the relaxation time of the qubit system τS = 1/Γii.

This allows for the expansion of the exact equation of motion for the density matrix up to second

order, and makes the quantum master equation local in time. For a nonreciprocal medium the

fluctuation-dissipation theorem [147] is

〈
Pα(ω, r)P†α(ω′, r′)

〉
=

~
4i

(ε(ω, r)− ε†(ω, r))N(ω,T)δ(ω − ω′)δ(r− r′)δαβ , (46)

where N(ω,T) = 2/ (exp(~ω/kBT)− 1) for negative frequencies and N(ω,T) = 1+2/ (exp(~ω/kBT)− 1)

for positive frequencies, where kB is Boltzmann’s constant. Regarding E(r, ω) = (ω2/c2ε0)
∫
V
dr′G(r, r′, ω)·

P(r′, ω), it can be shown that

〈
Eα(r, ω)E†α(r, ω)

〉
= k2

0

~
4iε2

0

N(ω,T)(Gαα(r, r, ω)−G†αα(r, r, ω)), (47)

which reduces in the reciprocal case to

〈
Eα(r, ω)E†α(r, ω)

〉
=

~k2
0

2ε2
0

N(ω,T)Im(Gαα(r, r, ω)). (48)

The bath relaxation time can be estimated by looking at the decay time of the correlation

〈
Eα(r, t)E†α(r, 0)

〉
=

1

2π

∫ +∞

−∞
dωe−iωt

〈
Eα(r, ω)E†α(r, ω)

〉
. (49)

The Green function consists of homogeneous (vacuum) and scattered terms, and τR will be dominated

by the slower scattered field contribution (for the vacuum term, τR(T ) = ~/πkBT [155], so that

τR(300K) ∼ 10 fs). For the scattered part of the Green function for an interface made of non-biased

plasma-opaque medium (interface supporting reciprocal SPP), using the Green function in [156],

τR ∼ 10−11 s for ν = 500 MHz and ν = 270 MHz, whereas τS = 1/Γii ∼ 10−8 s, so that we can ignore

the reservoir relaxation time.
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.3 Appendix III: Comparison With Previous 1D Chiral The-

ory

Here we discuss the relation between the general ME we derived in terms of the exact electromagnetic

Green function, resulting, for two qubits, in the Lindblad (5.23), and the 1D phenomenological ME

for two level systems coupled to a 1D chiral reservoir presented in [151, 158] (see also [159, 157]). The

1D chiral theory is based on the notion of right and left, defining couplings γR,L, whereas the theory

presented here is based on qubit interactions Γij ; note that Γij plays the role of a Γright if xi > xj ,

but plays the role of Γleft if xi < xj . To facilitate the comparison with the 1D chiral theory we will

assume two qubits with positions x1 and x2, with x2 > x1. In [151, 158] phenomenological quantities

γiR, γ1L for i = 1, 2 are utalized, and setting γ1R = γ2R = γR and γ1L = γ2L = γL, the 1D chiral

Lindblad superoperator is

Lρs(t) =
∑
j=1,2

γj

(
2σjρsσ

†
j − ρsσ

†
jσj − σ

†
jσjρs

)
+ γRe

ikR(x2−x1)
(
σ2ρsσ

†
1 − ρsσ

†
1σ2

)
+ γRe

−ikR(x2−x1)
(
σ1ρsσ

†
2 − σ

†
2σ1ρs

)
+ γLe

−ikL(x2−x1)
(
σ1ρsσ

†
2 − ρsσ

†
2σ1

)
+ γLe

ikL(x2−x1)
(
σ2ρsσ

†
1 − σ

†
1σ2ρs

)
, (50)

where kL,R = ω0/vgL,R, with vg being the group velocity of the guided photons.

If we assume now a plasmonic environment, the total emission of the source can be divided into

several decay channels: Γ11 = Γr+Γnr+ΓSPP, where Γr represents free-space radiation, Γnr represents

losses in the material (quenching), and ΓSPP represents excitation of SPPs. Material absorption and

radiation do not contribute to strong qubit-qubit interactions, and therefore we are interested in

systems with strong decay through the plasmon channel, ΓSPP, where the fraction of all emissions

that are coupled to plasmons is expressed by βij = Γij,SPP/Γ11, with i 6= j.

Assuming a plasmonic environment with a preferred propagation axis, here taken as x, in order

to connect our formulation with previous 1D chiral formulations [151, 158] we introduce a particular

1D plasmonic version of (5.20),

gij ' gij,SPP = βijΓ11e
−k′′ij|xi−xj |sin

[
k′ij(xi − xj)

]
Γij ' Γij,SPP (51)

=

 (β12 + β21) Γ11, i = j

2βijΓ11e
−k′′ij|xi−xj |cos

[
k′ij(xi − xj)

]
, i 6= j,

where kij = kspp,ij = k′spp,ij + ik′′spp,ij are the SPP wavenumbers. In the systems considered here the
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bulk modes are reciprocal, whereas the interface SPP is strongly nonreciprocal (unidirectional). Thus,

to compare with the 1D chiral ME it is sensible to consider the SPP (nonreciprocal) contribution.

As defined in (51), Γij,SPP is discontinuous at xi = xj in the nonreciprocal case, i.e., Γij,SPP =

2βijΓ11 as |xi → xj |, whereas at xi = xj , Γij,SPP = (β12 + β21)Γ11. As we show below, the SPP

contribution in the considered PTI system is indeed discontinuous at xi = xj . However, the exact Γij ,

which contains both the SPP and radiation continuum, is continuous at the source point even in the

nonreciprocal case. As another example of this, a 3D analytical Green function for a nonreciprocal

bulk medium is provided in [160] (see their Eq. (117)), where Γij is also seen to be continuous.

Equating (5.23) in the 1D case (i.e., using (51)) and (50) term by term, the two Lindblad super-

operators will be equal if

γj =
Γjj
2
, (52)

γRe
±ik(x2−x1) =

Γ21

2
± ig21, (53)

γLe
±ik(x1−x2) =

Γ12

2
± ig12. (54)

If we now make the assignments

β21Γ11 → γR, β12Γ11 → γL, (55)

kspp,12 → ω0

vgL
, kspp,21 →

ω0

vgR
, (56)

then (52)-(54) are satisfied and (5.23) becomes strictly equal to (50). It is worth stressing that

physically the two formulations still differ, since (56) is not exact (phase velocity and group velocity are

different quantities). Nonetheless it is interesting to try to connect the phenomenological parameters

in the model (50) to the corresponding ones in (5.23), which are obtained in terms of the Green

function, and hence can be computed for arbitrary environments.

Using the rates defined in (51), (5.24) reduces to

C1D(t) = 2β21Γ11e
−k′′spp|x2−x1|te−Γ11t, (57)

which is distance-independent in the lossless case, as noted in [151] (using (55), (57) is the same as

Eq. (6) in [151]).

Discontinuity of the SPP Here we show that for the strongly nonreciprocal (unidirectional) case,

and for a general nonreciprocal case, near the source point the SPP contribution to the Green function

is discontinuous. We also show that for nonreciprocal systems, Γ21 > Γ11 can occur.

To avoid analytical complications of the general 3D case, we first assume a simple 2D model of

a z-directed and z-invariant magnetic current source located at x = 0, y = d inside a biased plasma

half-space, adjacent to an opaque half-space occupying y < 0, as depicted in Fig. 12a. The resulting
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magnetic field in the plasma is [161, 162]

Hz = Hinc
z +

A0

2π

∫ +∞

−∞

1

2γp
R0 e

−γp(y+d)+ikxxdkx, (58)

where A0 = iωε0εeffIm, with Im the magnetic current (set to unity) and R0 accounts for the interface,

R0 =

γp
εeff

+ iε12
ε11

ikx
εeff
− γm

εm
γp
εeff
− iε12

ε11
ikx
εeff

+ γm
εm

, (59)

where γp =
√

k2
x − εeffk2

0, γm =
√

k2
x − εmk2

0 and εm is the permittivity of the metal (opaque

medium). The field in the absence of the interface is

Hinc
z =

A0

2π

∫ +∞

−∞

1

2γp
e−γp|y−d|+ikxxdkx =

A0

−4i
H

(1)
0 (k0

√
εeffρ) (60)

where H
(1)
0 is the Hankel function of the first kind and order zero and ρ =

√
x2 + (y − d)2. The

source-point singularity is contained in Im(H
(1)
0 ), and Γ ∼ Im(Gyy) ∼ Re(Ey) ∼ Re(Hz).

The interface reflection coefficient R0, leading to the scattered field, contains pole singularities at

the SPP wavenumbers (e.g., the denominator of R0 is the SPP dispersion equation). For |εm| → ∞

(perfect conductor), there is one pole at kspp,x = ±k0
√
ε11 for ωc ≷ 0. For |εm| finite the dispersion

equation must be solved numerically, and the plasma may be strongly nonreciprocal, supporting

a unidirectional SPP (operating in the bulk bandgap), nonreciprocal, supporting SPPs traveling

in opposite directions with unequal wavenumbers (operating above the bulk bandgap), or, in the

unbiased (no bandgap) case, reciprocal.

Complex-plane analysis of the magnetic field leads to its evaluation as the sum of a branch cut

integral (continuous spectrum) and a discrete residue (SPP) contribution, the latter being

Hres
z = θ (−x) iA0Res(−) e

−γ(−)
p (y+d)+ik

(−)
x,SPPx

2γ
(−)
p

+ θ (x) iA0Res(+) e
−γ(+)

p (y+d)+ik
(+)
x,SPPx

2γ
(+)
p

(61)

where Res(±) is the residue of R0 evaluated at kx = k
(±)
x,SPP, and γ

(±)
p =

√(
k

(±)
x,SPP

)2

− εeffk2
0, where

k
(±)
x,SPP is the SPP pole for kx ≷ 0 (forward propagating or backward propagating), and where θ(x)

is the Heaviside step function. In the strongly nonreciprocal (unidirectional) case, only one pole is

present, leading to only one term in (61).

Figure 12b shows the magnetic field in the bulk bandgap for ωc > 0 obtained by numerical

evaluation of the Sommerfeld integral (58), and by assuming only the residue component (61) (since

we operate in the bulk bandgap and the gap Chern number is −1, then there is one unidirectional

SPP). The opaque medium is topologically-trivial, and is an unbiased plasma having ε = −2. As

shown in the close-up Fig. 12c, the residue accurately approximates the field except very close to

the source, where the real-part of the residue (∝ ΓSPP) has an unphysical discontinuity, indicated by
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the two black dots. In this case, the radiation continuum compensates for the discontinuity of the

residue, such that the real-part of the full Sommerfeld integral (∝ Γ), is continuous, and the SPP

peak is pushed away from the source point.

As a result of the importance of the radiation continuum near the source, at some points Hz(x =

0) < Hz(x > 0), so that Γ21 exceeds Γ11. Figure 12d shows the unbiased (reciprocal) case for the full

Sommerfeld integral, where the field peak occurs at x = 0 and Γ21 < Γ11 at all points. In general,

there is a quadrature relationship between the dissipative and coherent rates.

Figure 12: a. Magnetic current source (black dot, z-directed and z-invariant) located at x = 0, y = d
inside a biased plasma region, with an opaque half space occupying y < 0. b. Magnetic field Hz(x) at
the interface of an ε = −2 half-space and a magnetized plasma having ωp/ω = 0.95 and ωc/ω = 0.21,
at ω0/2π = 200 THz. The magnetic line source is located λ0/10 above the interface in the plasma
region, and the field is evaluated at (x, y = λ0/10, z = 0). c. Field behavior in the vicinity of
the source showing the discontinuity of the residue component. d. Same as (b) for the unbiased
(reciprocal) case, ωc/ω = 0.

Figure 13 shows the magnetic field at a frequency outside the bandgap, where we have two SPPs

propagating in opposite directions with unequal wavenumbers. As with the unidirectional case, the

residue shows a discontinuity at the source point.

Considering now the 3D case of an electric dipole source at the interface, Fig. 14 shows the

dissipative decay and coherent rates (5.20) along the interface, computed using the finite element

method (COMSOL, [154]). In this case, it is impossible to separate the discrete and continuum

contributions to the field. Fig. 14a,b show the rates for qubits at the interface as a function of qubit

separation for two frequencies within the bandgap, and Fig. 14c shows the rates normalized by Γii

for a fixed seperation as a function of height above the interface. It can be seen that, as predicted by

the previous analytical 2D model, it occurs that Γ is nearly discontinuous at the source point (the
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Figure 13: a. Magnetic field Hz(x) at the interface of an ε = −0.47 half-space and a magnetized
plasma having ωp/ω = 0.95 and ωc/ω = 0.20, at ω0/2π = 230 THz. The magnetic line source is
located λ0/10 above the interface in the plasma region, and the field is evaluated at (x, y = λ0/10, z =
0). b. Field behavior in the vicinity of the source showing the discontinuity of the residue component.

discontinuity of the discrete spectrum is softened by the radiation continuum), and that Γ21 > Γ11 at

some points. The coherent rate becomes unbounded at the source due to the well-known divergence

of the real part of the Green function.

Figure 14: a. Dissipative decay (solid blue) and coherent (dashed red) rates at the interface of a
biased plasma (ωp/ω = 0.95, ωc/ω = 0.21) and an opaque medium (ε = −2) at ω/2π = 200 THz.
b. The same as a. but for 207 THz. The black circle demonstrate the point dipole source, and the
dipole moment is d = 60 D. c. The normalized rates as a function of the height of the two qubits
above the interface for a fixed separation of 2.1 µm.
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.4 Appendix IV: Concurrence in the Unidirectional Case

In this section we derive the concurrence for a unidirectional system.

Suppose that the system of qubits are communicating through a strongly nonreciprocal environ-

ment, so that the communication is strictly unidirectional, such as occurs for SPPs at PTI interfaces.

Assuming that G(r1, r2) and G(r2, r1) are the dyadic Green function propagators along two oppo-

site directions, the unidirectionality assumption leads to, e.g., G(r1, r2) = 0 (Γ12 = g12 = 0) and

G(r2, r1) 6= 0.

Under this unidirectionality assumption, the 3D Lindblad superoperator (5.19) reduces to

∂ρs(t)

∂t
= − i

~
[
Hs + VAF , ρs(t)

]
+

Γ11

2

(
2σ1ρs(t)σ

†
1 − σ

†
1σ1ρs(t)− ρs(t)σ†1σ1

)
+

Γ11

2

(
2σ2ρs(t)σ

†
2 − σ

†
2σ2ρs(t)− ρs(t)σ†2σ2

)
+ (

Γ21

2
+ ig21)

(
σ2ρs(t)σ

†
1 − ρs(t)σ

†
1σ2

)
+ (

Γ21

2
− ig21)

(
σ1ρs(t)σ

†
2 − σ

†
2σ1ρs(t)

)
(62)

where it has been assumed that Γ11 = Γ22.

Defining the basis

|1〉 = |g1〉 ⊗ |g2〉 = |g1, g2〉 , |2〉 = |e1〉 ⊗ |e2〉 = |e1, e2〉

|3〉 = |g1〉 ⊗ |e2〉 = |g1, e2〉 , |4〉 = |e1〉 ⊗ |g2〉 = |e1, g2〉 (63)

and considering the system of qubits to be initially prepared in the state |4〉 = |e1〉 ⊗ |g2〉, it can

be shown that for the non-pumped case the non-zero components of the density matrix in (62) are

(ρ=ρs)

∂tρ11 = Γ11(ρ33 + ρ44) + γρ34 + γ∗ρ43

∂tρ33 = −Γ11ρ33 − γρ34 − γ∗ρ43

∂tρ34 = −Γ11ρ34 − γ∗ρ44

∂tρ43 = −Γ11ρ43 − γρ44

∂tρ44 = −Γ11ρ44 (64)

where γ = Γ21/2 + ig21. For all times the density matrix is block diagonal. Concurrence for arbitrary

materials can be calculated as [149]

C = max(0,
√
u1 −

√
u2 −

√
u3 −

√
u4), (65)
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where ui are arranged in descending order of the eigenvalues of the matrix ρ(t)ρy(t), where ρy(t) =

σy ⊗ σyρ?(t)σy ⊗ σy is the spin-flip density matrix with σy being the Pauli matrix. We have

ρ(t)ρy(t) =


0 0 0 0

0 0 0 0

0 0 x y

0 0 z x

 →
u1 = x+

√
yz

u2 = x−√yz

u3 = 0

u4 = 0

(66)

such that x = |ρ34|2 + ρ33ρ44, y = 2ρ34ρ33 and z = 2ρ43ρ44 and

ρ44(t) = e−Γ11t

ρ43(t) = −γte−Γ11t

ρ34(t) = −γ∗te−Γ11t

ρ33(t) = |γ|2t2e−Γ11t

ρ11(t) = 1− e−Γ11t − |γ|2t2e−Γ11t,

(67)

which leads to (5.24).
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[58] H. T. Dung, L. Knöll, D. G. Welsch. Spontaneous decay in the presence of dispersing and

absorbing bodies: general theory and application to a spherical cavity. Phys. Rev. A 62, 053804

(2000).

[59] Lumerical Solutions, Inc.http://www.lumerical.com/tcad-products/fdtd/.

[60] D. W. Lynch, W. Hunter. Comments on the optical constants of metals and an introduction

to the data for several metals. in Handbook of Optical Constants of Solids. E. D. Palik, ed.

(Academic Press, 1997), pp. 275 - 367.

[61] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

[62] P. B. Johnson, R. W. Christy. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379

(1972).

[63] V. P. Drachev, V. A. Podolskiy, A. V. Kildishev. Hyperbolic metamaterials: new physics behind

a classical problem. Opt. Express 21, 15048 (2013).

[64] LM. A. K. Othman, C. Guclu, F. Capolino. Graphene-based tunable hyperbolic metamaterials

and enhanced near-field absorption. Opt. Express 21, 7614 (2013).

[65] J. Sebastian Gomez-Diaz, Mykhailo Tymchenko, Andrea Alù. Hyperbolic plasmons and topo-
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