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ABSTRACT

BAYESIAN METHODS AND MACHINE LEARNING FOR
PROCESSING TEXT AND IMAGE DATA

by

Yingying Gu

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Jun Zhang

Classification/clustering is an important class of unstructured data processing problems.

The classification (supervised, semi-supervised and unsupervised) aims to discover the

clusters and group the similar data into categories for information organization and

knowledge discovery. My work focuses on using the Bayesian methods and machine

learning techniques to classify the free-text and image data, and address how to

overcome the limitations of the traditional methods. The Bayesian approach provides a

way to allow using more variations(numerical or categorical), and estimate the

probabilities instead of explicit rules, which will benefit in the ambiguous cases. The

MAP(maximum a posterior) estimation is used to deal with the local maximum

problems which the ML(maximum likelihood) method gives inaccurate estimates. The

EM(expectation-maximization) algorithm can be applied with MAP estimation for the

incomplete/missing data problems. Our proposed framework can be used in both

supervised and unsupervised classification. For natural language processing(NLP), we

applied the machine learning techniques for sentence/text classification. For 3D CT

image segmentation, MAP EM clustering approach is proposed to auto-detect the

number of objects in the 3D CT luggage image, and the prior knowledge and

constraints in MAP estimation are used to avoid/improve the local maximum problems.

The algorithm can automatically determine the number of classes and find the optimal

parameters for each class. As a result, it can automatically detect the number of objects
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and produce better segmentation for each object in the image. For segmented object

recognition, we applied machine learning techniques to classify each object into targets

or non-targets. We have achieved the good results with 90% PD(probability of

detection) and 6% PFA(probability of false alarm). For image restoration, in X-ray

imaging, scatter can produce noise, artifacts, and decreased contrast. In practice,

hardware such as anti-scatter grids are often used to reduce scatter. However, the

remaining scatter can still be significant and additional software-based correction are

desirable. Furthermore, good software solutions can potentially reduce the amount of

needed anti-scatter hardware, thereby reducing cost. In this work, the scatter correction

is formulated as a Bayesian MAP (maximum a posteriori) problem with a non-local

prior, which leads to better textural detail preservation in scatter reduction. The

efficacy of our algorithm is demonstrated through experimental and simulation results.
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Chapter 1

Introduction

We are in an era of ”big data”. According to International Data Corporation(IDC)

analysis, digital data is growing dramatically from 4 zettabytes (ZB, 1021bytes) in 2013

and will double in size every two years, up to 44 zettabytes by 2020. The ”big data”

refers to both the structured and unstructured data. The structured data is tagged and

can be saved in the relational database. On the contrary, the unstructured data is

referred to free-text (emails, blogs, websites, medical reports, etc.), images, audio and

video, etc, and cannot fit in a traditional database. According to the 2013 IDC analysis,

only 22% of the digital data was structured/tagged. This data could have been useful to

analyze, but less than 5% was actually analyzed.

The ”big data”, especially for the high proportion (∼80%) of unstructured data, is

underestimated because there is a lack of technology for processing unstructured data.

First, the important information is hidden or not labeled in these unstructured data.

Second, the unstructured data(free-text, image, and video), often has many

variations(numerical or categorical), which makes the recognition very difficult. Third,

the data is in a huge volume and growing extremely fast. There are many benefits if we

can analyze and control the big data. By using the real-time data, a business can make

decisions faster and increase productivity and profitability more than competitors. The
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data from healthcare is also enormous and growing exponentially every year. Gaining

control and insight of the high-value data could improve the qualities of patient care.

Classification is an important class of unstructured data processing problems. The

classification aims to discover the clusters and group similar data into categories for

information organization and knowledge discovery. There are two main types of

methods. One is the supervised classification approach. The goal of this approach is to

predict/classify new data with the labeled training data available. The other is

unsupervised clustering with unknown knowledge of the data. The objective is to

discover the hidden structures of the observations and cluster the data into groups

based on the similarities. The unsupervised clustering is more difficult, since there are

unknown classes and no error calculations to use. On the contrary, the supervised

classification could be compared with the observed/labled information.

There are many classification techniques, such as the commonly used centroid-based

(K-means) clustering [1], connectivity-based (hierarchical) clustering [2, 3],

distribution-based (such as multivariate normal distribution) clustering [4, 5], and

density-based clustering [7, 8]. Although these classification techniques are widely used,

they all have drawbacks. First, the problem with the conventional clustering method is

that we need to know the proper number of clusters before the clustering algorithm, and

there is no reliable way to know it in reality. Second, most of the optimization

algorithms do not guarantee to find the global optimal solution. It only improves upon

the initial set of parameters that are chosen randomly or from any guesses, and returns

the sub-optimal solutions. This is known as local maxima problems. Third, due to the

curse of high-dimensionality [9], most of the methods will fail in high-dimensional

variables. My work focuses on using the Bayesian model-based techniques for

classification and clustering on unstructured data (free-text and images), and addressing

to improve the limitations of the traditional clustering methods.

The Bayesian model-based techniques have the following advantages: First, it allows to
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use more variations, such as continuous(numerical) or discrete (binary or categorical)

numbers, or intensity values of image, etc. We will use the well-known

exponential-family distribution models [19]. For discrete data, which is often represented

in text classification, the Bernoulli model and multinomial is used. The continuous data

is usually observed in the signal and image processing applications, and the Gaussian

distribution is popularly used. Second, in the ambiguous cases, it is better to use the

probability estimations instead of explicit decision rules for the predictions. The model’s

decisions are based on a specific likelihood threshold, which can change/optimize the

recall and precision. Third, it allows maximum use of prior knowledge and constraints

in the probability estimation, which is known as MAP(maximum a posteriori) estimate.

The MAP estimation is used to deal with the local maximum problems which the

ML(maximum likelihood) method gives inaccurate estimates. Fourth, The

EM(expectation-maximization) algorithm[13] can be applied with MAP estimation for

the incomplete/missing data problems. For general EM algorithm which is used with

ML estimation for incomplete data, it suffers the local maximum problems, especially

for the high dimension data. By using MAP, it could avoid/improve the local maximum

problems by adding the prior knowledge/constraints. In this thesis, we will use the

Bayesian classification techniques on two real-world applications.

First, supervised classification is widely used to solve many real-world problems when

we have some training examples available. We used it to automatically identify qualified

patients for breast cancer clinical trials from free-text medical reports. Currently, at

most participating hospitals, qualified patients are identified manually by research nurse

coordinators who review patient medical reports, which are usually free text

unstructured documents, to identify the patients that meet the criteria of a particular

trial. The process of identifying enough patients for a clinical trial is costly, inefficient,

and labor-intensive. As a result, some trials may be delayed. The purpose of our work is

to develop algorithms to automatically identify qualified patients for breast cancer
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clinical trials from free-text medical reports. Our new approach uses a trained Bernoulli

Model which is created from our training data (qualified or unqualified sentences) [41].

The trained Bernoulli model calculates the probability of a new word sequence (test

sentence) to make a classification decision. Our method has several advantages. There

is no required special pre-processing, such as syntactic parsing, POS tagging etc. This is

beneficial for the free-form text medical report, which may contain grammatical

mistakes during transcription. The algorithm is fast, scalable, and could be easily

applied to any natural language. The model’s decisions are based on a specific

likelihood threshold, which can change/optimize the recall and precision.

Second, unsupervised clustering is used to separate the data into different groups based

on the similarity. Unlike the supervised classification, the unsupervised Bayesian

clustering is used to discover the clusters without any training information available.

Today, CT security screening is highly used in airports or other security places to detect

if there are any threats in the luggage. It is important for preventing the dangerous

objects in transportation. However, it has very high false alarms rates because some

non-threatening objects share similar characteristics with the actual threats. Also,

unavoidable metal artifacts are often in CT luggage images. If any suspicious objects

are detected, the luggage has to be manually verified. Because of the high false alarm

rates, the processing of manual verification is inefficient and costly. As a result, it delays

the passengers and transportation of the luggage. Our work is to develop algorithms

which could improve the threats detection rate and also reduce the false alarm rates for

CT luggage screening. We proposed the MAP EM clustering method[4, 5, 14, 15, 16] to

auto-detect the number of objects in the 3D CT luggage image. Our methods have

several advantages. The prior knowledge and constraints can be used to avoid/improve

the local maximum problems. The algorithm can automatically determine the number

of clusters and find the optimal parameters for each class. As a result, it can

automatically detect the number of objects and produce better segmentation for each
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object in the image. After image segmentation process, we applied the supervised

machine learning techniques for object classification.

Third, Bayesian MAP method can be used for scatter correction in X-ray imaging.

Specifically, scatter correction amounts to estimating the original image when it is

corrupted by Poisson noise and is also possibly distorted by a linear or a non-linear

transformation, while image restoration amounts to estimating the original image when

it is corrupted by Gaussian noise and is also possibly distorted by (usually) a linear

transformation. Indeed, the aforementioned Total Variation(TV) and Markov Random

Field(MRF) based techniques were initially developed for image restoration. Recently, a

number of non-local techniques such as [58, 60] and their extensions have significantly

improved image restoration results. Specifically, they provide better results by

preserving textural details better, which is difficult by traditional or even TV and MRF

techniques which are local in nature. Furthermore, recent advances in blind

deconvolution (de-blurring) e.g., [62, 63] can potentially be exploited to produce better

scatter model estimation. In this work, we adapt some of the non-local techniques for

image de-noising and image restoration to scatter reduction and demonstrate their

efficacy. In addition to X-ray imaging, our techniques could also be extended relatively

straightforwardly to scatter correction in CT (computer tomography).

The contributions of my work are:

• Applied the Bayesian approach and machine learning techniques to medical

free-text reports:

– Proposed the probability models for text mining

– Applied machine learning techniques for automatic patient search

• Applied the Bayesian approach to 3D CT image segmentation and machine

learning techniques to classification
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– Proposed the MAP EM GMM(Gaussian mixture models) for automatically

detecting the objects in 3D CT image

– Developed a pixel-based MRF(Markov Random Field) segmentation

algorithm

– Applied machine learning classification for object classification

• Applied the Bayesian approach to X-ray image restoration

– Proposed the scatter models and Poisson image model

– Developed Bayesian MAP with non-local means prior for scatter correction

This dissertation is organized as follows: Chapter 2 is a review of related work. Chapter

3 describes our supervised classification method on medical free-text reports. Chapter 4

shows our proposed approach of unsupervised clustering technique. Chapter 5 discusses

objects detection and recognition in 3D CT luggage image. Chapter 6 shows our scatter

correction method for X-ray image by using Non-Local techniques.
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Chapter 2

Related Work

Many Bayesian classification methods have been proposed to solve problems in different

areas. In this section, we will discuss some well-known Bayesian related methods.

2.1 Exponential-Family Distribution

In reality, our observation data is either categorical or numerical. Model selection is to

select the right distribution model according to the observations/given data. In this

thesis, we used the following probability distribution models, which are from the

well-known exponential-family [19].

2.1.1 Multivariate Normal(Gaussian) Distribution

Gaussian distribution is the most popular density probability function to model the

continuous or numerical data. The d dimensions of Gaussian density function can be

defined as:

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)T (Σ)−1(x− µ)

}
(2.1)
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, where x ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n. Suppose an i.i.d. data set D = {x1, x2, ..., xn} comes

from a mixture of K-class Gaussian distribution N(µj,Σj) with mixture

weight/proportion of πj for each class. So the K-class mixture density can be written as:

p(xi|θ) =
K∑
j=1

πjp (xi|µj,Σj) (2.2)

, where θ = {µ1, µ2, ..., µK ; Σ1,Σ2, ...,ΣK ; π1, π2, ..., πK} and
∑
πj = 1, πj > 0.

2.1.2 Inverse-Wishart Distribution

The inverse-Wishart distribution is used as the conjugate prior for covariance matrix of

a multivariate Gaussian distribution, denoted as W−1(Σ|S0, ν0). The probability density

function of the inverse-Wishart is defined as:

W−1(Σ|S0, ν0) =
|S0|ν0/2

2
ν0d
2 Γd(

ν0
2

)
|Σj|−(ν0+d+1)/2 exp

{
−1

2
Tr(S0Σj

−1)

}
(2.3)

, where Σ and S0 are positive definite matrices, v0 is degrees of freedom, Γd is the

multivariate Gamma function, and Tr(·) is the trace of the matrix.

2.1.3 Bernoulli Distribution

Suppose the observation data is a binary sequence S = {(x1, y1), (x2, y2), ..., (xn, yn)},

where the xi ∈ [0, 1] represents the yi observation occurs or not. The probability density

function of the multivariate Bernoulli can be written as:

p(S) =
n∏
i=1

p(yi)
xi(1− p(yi))1−xi (2.4)

, where the p(yi) represents the probability of observation yi in the given data set.
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2.1.4 Beta Distribution

The beta distribution is a continuous distribution and parameterized by two

parameters, which can determine the shape of distribution, denoted as B(α, β). The

beta distribution is the conjugate prior probability distribution of Bernoulli, binominal

and geometric distributions. The probability density function for beta distribution is:

p(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 =

1

B(α, β)
xα−1(1− x)β−1 (2.5)

, where Γ(·) is the gamma function, B(α, β) is beta function, which is also the

normalization constant.

2.1.5 Dirichlet Distribution

The Dirichlet distribution is a continuous probability distribution parameterized by a

parameter α, denoted as Dir(α). The Dirichlet distribution is the conjugate prior of

categorical and multinomial distribution. The probability density function for Dirichlet

distribution is:

p(x1, x2, ..., xK−1;α1, α2, ..., αK) =
1

B(α)

K∑
i=1

xi
αi−1 (2.6)

, where xi is a random variables, xi > 0 and
∑
xi = 1, α = (α1, α2, ..., αK) are K

positive numbers, and beta function B(·) is the normalization constant which can

written by using gamma function as:

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(2.7)

From this equation, we can see that the Dirichlet distribution is to use a distribution

parameterized by α on the random variables x.
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2.2 Bayesian Analysis

Bayesian method was first proposed by Bayes and Laplace in 18th century, and it is

widely used until in 20th century when the powerful computers are available. The

fundamental theory is Bayes’ Theorem. It is defined as the following form:

p(θk|x) =
p(x|θk)p(θk)∫
p(x|θ)p(θ)dθ

(2.8)

, where p(θ|x) is the posterior probability, p(x|θ) the likelihood probability and p(θ) the

prior probability, and the denominator is the marginal likelihood. The denominator is

known as evidence normalization constant which could be ignored. So the posterior is

proportional to the likelihood times the prior.

2.3 Maximum Likelihood (ML) Estimation

Now, we describe the definition of the maximum likelihood estimation method [10, 11]

which is used to estimate the values of parameters based on the observations. Suppose

we have a data set of n independently and identically distributed (i.i.d.) observations

x = {x1, x2, ..., xn} from a distribution of p(xi|θ). The θ is the parameter of probability

model which can be scalar or vector. Since the sample data are independent to each

other, then, we can have

p(x|θ) =
n∏
i=1

p(xi|θ) (2.9)

. The p(x|θ) is called the likelihood function of θ with input data x = {x1, x2, ..., xn}.

Since the log is a strictly monotonically increasing, the maximum likelihood estimation

of θ is usually calculated by maximizing the log-ML estimation as the following
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formula:

θ̂ML = arg max
θ

{∑
i

log p(xi|θ)

}
(2.10)

For some applications, maximum likelihood estimation can be easily computed if it has

an explicit form. However, if there is no explicit form which involves the latent variables

or missing values among the data, ML estimation has to be solved numerically using

optimization method such as Expectation-Maximization algorithm or some other

techniques [13, 14, 15].

2.4 Maximum A Posterior (MAP) Estimation

Maximum a Posteriori (MAP) [12] is an estimation method to calculate the posterior

distribution. Now, if we have the prior distribution on θ = {θ1, θ2, ..., θK}. Then, we

applied the Bayes’ theorem on it and get the posterior distribution of θ as:

p(θk|x) =
p(x|θk)p(θk)∫
p(x|θi)p(θi)dθ

(2.11)

So the MAP estimation of θ is to maximize the posterior distribution with respect to θ.

Because the denominator do not depend on θ, it can be treated as constant.

θ̂MAP = arg max
θ

{
p(x|θk)p(θk)∫
p(x|θi)p(θi)dθ

}
= arg max

θ
{p(x|θk)p(θk)} (2.12)

The more convenient form is to take the logarithm of the function as the following:

θ̂MAP = arg max
θ

{∑
i

log p(xi|θ) + p(θ)

}
(2.13)

From the formula, we can see that if the prior distribution of p(θ) is a uniform

distribution or a constant, the MAP estimation can be reduced to the ML estimation.

So, the MAP estimation could have better performance than ML estimation, in the
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sense that the MAP estimation includes the prior knowledge/constraints which can be

provided from training data and influences the estimation of θ. So, the next problem is

about how to choose a proper prior distribution.

Also, MAP estimation can be easily computed in an explicit form when conjugate priors

[20] are used. In other applications, if priors’ distribution does not have an analytic

form, it still can be solved by numerical optimizations, expectation-maximization or

Monte Carlo technique [13, 14, 15].

2.5 General Expectation-Maximization (EM)

In reality, when our observation data is incomplete or has missing latent class/variables,

Expectation-Maximization (EM) algorithm [4, 5, 13, 14, 15, 16] is proposed to deal with

this problem. EM algorithm is an iterative ML procedure for parameters estimation in

incomplete data or hidden parameters of the data.

We assume that the x is the complete data, and x = {y, z}, where y is the observation

data, and z is the indicator that which class the y belongs to. For the incomplete data,

when the z is unknown, and only y is remained. We have defined the likelihood function

on complete data as

L(θ;x1, x2, ..., xn) = p(x|θ) (2.14)

The General EM has two steps. The E-step is to compute the expectation of log-ML for

incomplete data as

Q(θ|θ(t)) = E[log p(x|θ)|y,θ(t)] (2.15)

, where E[·] is the expectation operator, y is the observation data, θ(t) is the current

parameters. The M-step is to re-estimate the θ by maximizing

θ(t+1) = arg max
θ

{
Q(θ|θ(t))

}
(2.16)
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The EM algorithm starts with randomly chosen parameters, and then iteratively

repeated the E-step and M-step. The EM iteration stops/converges when the difference

of the likelihood probability between two successive iterations is smaller than a

threshold.

The drawback of conventional EM algorithm is that it is the local optimization method

and hard to reach the global maxima. There are some proposed methods to avoid the

local maxima [21, 22, 23, 24]. For example, EM is run in many times with different

initializations, and kept the highest maximization estimation results. But this method

is computationally expensive in the case of the convergence of EM is also slow. Another

proposed method is to use greedy EM algorithm [24, 25]. The algorithm starts with a

single class, and a new class is iteratively added until reaching the convergence criteria.

2.6 Total Variation Regularization

Let u be the noise-free image, y be the observed image, n be Gaussian noise, and k be

the filter that models blurry and noisy image, we have

y = k ∗ u+ n = Ku+ n (2.17)

The total variation regularization can be used for de-noising and de-convolution

applications as a prior. For example, it can be used in a Maximum A Posterior (MAP)

approach for denosing and deconvolution:

u∗ ∈ arg min
u
||y −Ku||2 + λJ(u) (2.18)

E(u) = λ

∫
||y − k ∗ u||2 + J(u) (2.19)

where u∗ is the denoised and deblurred image and J(u) is the total variation with
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J(u) =
∑
||∇u|| (2.20)

or

J(u) =
∑√

||∇u||2 + ε (2.21)

2.7 Gradient Descent Method

Gradient Descent is an iterative optimization method to find the minimum of a

function. We can apply it to solve the inverse problem of de-blurring and de-noising

image with total variation regularization.

u(i+1) = u(i) − τ
(
k ∗ (k ∗ u(i) − y) + λGradJ(u(i))

)
(2.22)

Where,

• τ is a step size.

• The gradient of the TV term is:

GradJ(u) = −div

(
∇u√

||∇u||2 + ε

)
(2.23)

– The gradient of u can be computed as

∇u = [ux, uy] (2.24)

ux = ui+1,j − ui,j

uy = ui,j+1 − ui,j
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– || · || is the Euclidean Norm:

||∇u|| =
√
u2
x + u2

y (2.25)

– div is divergence:

div(u) =
∂ux
∂x

+
∂uy
∂y

(2.26)

(div(u))i,j =


ux(i, j)− ux(i− 1, j), if 1<i<n;

ux(i, j), if i=1;

−ux(i− 1, j), if i=n.

+


uy(i, j)− uy(i, j − 1), if 1<j<n;

uy(i, j), if j=1;

−uy(i, j − 1), if j=n.
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Chapter 3

Supervised Classification on Free Text

Hospitals kept lots of valuable electronic medical records from the treatment of the

patients every day. Gaining the control and insights of the high-value medical data can

improve the patient care qualities. However, most of the medical reports are in

unstructured form which is hardly to be understood and analyzed except the doctors.

3.1 Motivation

For example, clinical trials are important to breast cancer research and treatment. For

the results to be scientifically valid and clinically useful, a trial has to enroll a sufficient

number of qualified patients. However, most the clinical information are stored in the

free text form: surgeon visit notes, lab reports, and pathology reports. Currently, at

most participation hospitals, qualified patients are identified manually by research nurse

coordinators who review patient medical reports, which are usually free text

unstructured documents, to identify the patients that meet the criteria of a particular

trial. Since the number of reports associated with even a single patient can be quite

large, including 5 or more surgeon visit notes, 5 or more lab reports, and several

pathology reports, the process of identifying enough patients for a clinical trial is costly,
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inefficient, and labor-intensive. As a result, some trials maybe delayed. Furthermore,

not being identified, many qualified patients (as many as 60% according to some reports

[27]) miss trials that can potentially benefit them.

The purpose of our work is to develop algorithms to automatically identify qualified

patients for breast cancer clinical trials from free-text medical reports. The resulting

software could be used in two ways. First, it could be used in an ”interactive” mode by

a research nurse coordinator to search for qualified patients (she can make the final

decision based on the search results). Second, it could be used in a ”background mode”

to periodically scan patient reports and alert physicians when their patients qualify for

various clinical trials.

3.2 Related Work

Despite its importance, it seems that the problem of automatically identifying qualified

patients has not received sufficient attention. Indeed, a literature search in this area

usually produces only a relatively small number of relevant papers. For example, Kamal

et al. [28] developed a simple database-supported web interface to assist manual patient

search for breast cancer trials. By providing searches according to a fixed set of

”common” inclusion/exclusion criteria, it only achieves patient-pruning: since many

trials come with their unique criteria, additional manual work is still needed to finally

identify the patients.

Lonsdale et al. [29] investigated a more sophisticated system that attempts to convert

inclusion/exclusion criteria into standard database queries and use them to retrieve

qualified patients. While they have demonstrated some encouraging results on, for

example, clinical trials on the effect of different sources of garlic on cholesterol levels,

their approach also has some problems. For example, because the patient database is

usually constructed independently from and cannot anticipate future clinical trial needs,
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many trial criteria cannot be converted easily into database queries. Furthermore,

important patient information often exists in free-text documents, which cannot be

examined easily by database queries.

For free-text based patient search, Rokach et al. [30] reported some success with a

program that uses regular expression match to find patients qualifying for some diabetes

trials. In this case, regular expressions are used to summarize and then search for word

patterns in patient reports that can confirm the criteria of the trials. Despite its

success, regular expression match also has a challenging problem: since the patient text

relevant to a given trial criterion may come in diverse forms and patterns, finding a

”good” regular expression for them often requires experience and ingenuity; automation

is difficult.

In recent years, in the broad field of natural language processing (NLP), there has been

considerable interest in the so-called recognizing textural entailment (RTE) problem,

e.g., see [33, 34]. In an RTE problem, one is usually presented with two sentences and

needs to decide (using a computer algorithm) whether one sentence, usually longer and

more complex, called the text, implies the other, usually shorter and simpler, called the

hypothesis. A number of techniques have been proposed for RTE, ranging from those

based on statistical pattern recognition to those based on traditional AI (logic or

machine reasoning), as well as those that combine both. While the RTE work is

inspirational and contains ideas potentially useful to our work, there are some

differences between its scope and our current problem. For example, since the objective

of RTE is domain-independent natural language understanding, current RTE techniques

generally try to avoid using application-specific training data and domain knowledge. In

our problem, such training data and knowledge are available and play an important

part in the search algorithms. Furthermore, RTE is still a relatively new field [with the

first TREC (Text Retrieval Conference) contest started around 2006] and much work is

still needed to develop truly robust and effective algorithms.
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In an interesting study, Li et al. [35] used an natural language processing (NLP) tool

called MedLEE to convert free text patient reports to a structured form and then

designed queries to search for patients for a stroke related clinical trial. While their

NLP based technique seems to work better than a competing technique, the queries

were designed manually.

Finally, since databases are widely used to store patient information, it may seem that

one could solve the automatic patient search problem by simply adding some new

search friendly fields in each patient’s database record. For example, one can introduce

a new field for ”post-menopausal status”, with 1 for ”Yes” and 0 for ”No”. In this way,

when a clinical trial contains a criterion ”the patient must be post-menopausal”, the

patient search can be done easily by finding all those with a 1 in their ”post-menopausal

status” field. This approach, although attractive on first look, has a fundamental

problem: since we cannot always anticipate future clinical trial criteria, we may not be

able to provide fields for them ahead of time. Furthermore, there is also a practical

problem: to manually add such fields to current/future patient data records can be very

costly or even prohibitive; to do so automatically, on the other hand, requires one to

solve the automatic patient search problem in the first place.

3.3 Classification Problem on Free-text medical records

Given a clinical trial, the problem of identifying qualified patients from free-text medical

reports can be reduced to a simpler, but equivalent problem: for each trial criterion,

find all patients whose reports contain sentences that meet it. In Table 3.1, we have

shown three criteria of a trial currently active at Aurora Health Care, a major hospital

group in Milwaukee, Wisconsin. Also shown in Table 3.1 are some ”positive” sentences

from patient reports that meet these criteria. From Table 3.1 we see that for a given

criterion, the positive sentences can look very different from the criterion and from each
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Table 3.1: Trial Criteria and Qualified Sentences

Criterion 1. Primary tumor must be palpable.
1) Within the right breast, an oval dense mass measuring 4 x 4-cm was noted.
2) There is, however, a 3 x 2.5 cm, firm area on the upper inner quadrant of
the left breast.
3) The patient has noted a lumpiness in her right upper breast.

Criterion 2. Tumor is ER positive.
1) Estrogen was 75% positive.
2) She understands that histology reveals a poorly differentiated invasive duc-
tal carcinoma that is estrogen and progesterone receptor positive.
3) Estrogen receptor was 100% positive.

Criterion 3. Patient must be post menopausal.
1) Post menopausal woman with new diagnosis of left-breast infiltrating lobular
carcinoma.
2) Last menstrual period was 10 years ago.
3) She has had a total abdominal hysterectomy, bilateral salpingo-
oophorectomy.

other (this is especially true for criterion 1). Hence, to improve search performance we

need to account for such variations. One way to do this is to use a small number of

manually found positive examples or sentences associated with a criterion, also known

as the training data in patient search.

3.4 Sub-tree Pattern Matching Method

Figure 3.1 illustrates our overall approach to the patient search problem and it consists

of three parts. First, for a given clinical trial, the trial criteria and their associated

training data are used to produce a set of criterion models, also called search models.

Then, these models are used to search for patients whose reports contain text that

satisfy the trial criteria. Finally, if so desired, human confirmation of search results are

allowed and the search results are used to modify criterion models (a kind of feedback).

A very simple model, often used in information retrieval, is a set of keywords, in no
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Figure 3.1: Illustration of our sub-tree pattern matching approach.

Table 3.2: Trial Criteria and Manually Generated Keywords

Criterion 1. Primary tumor must be palpable.
Related keywords: mass, lump, density, prominence, abnormality, thickening,
area, finding, palpable, firm, hard, large, dense, irregular, well-defined, note,
notice, feel.

Criterion 2. Tumor is ER positive.
Related keywords: estrogen, receptor, ER, positive

Criterion 3. Patient must be post menopausal.
Related keywords: postmenopausal, last menstrual, surgical menopause,
salpingo-oophorectomy, (50+)-year-old

particular order, that are deemed important to the criterion and/or commonly seen in

the training data associated with the criterion. Table 3.2 shows an example: a criterion

and a set of manually selected keywords. Using the keywords as the query, sentences

that contain a sufficient number of the keywords are retrieved and deemed positive. The

advantage of this model is its simplicity (can be constructed easily by users without

much knowledge in computer science or NLP). The disadvantage is that this model is

relatively inaccurate because the meaning of a sentence is not only determined by its

words but also by how they are organized (i.e., ordered). One way to organize the

keywords is through a regular expression [36]. In theory, a regular expression can be

used to specify all the possible ways that the keywords are ordered/organized into a

sentence that meets the trial criterion. The advantage of regular expression is that it is

more accurate and regular expression search can be implemented very efficiently. The

disadvantage is that developing a good regular expression generally requires more
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computer science and NLP knowledge therefore, is more difficult for a medical user.

Furthermore, the process of developing a regular expression also requires human

ingenuity and is difficult to automate.

In this work, we used a search model that organizes keywords into a set of subtrees that

capture the grammatical relations between the keywords, thereby to some extent

capturing the meanings of various keyword combinations in the positive sentences.

Under this model, the problem of searching for positive patient sentences becomes that

of searching for keyword subtrees in patient sentences. The subtree model has

comparable and often better accuracy than regular expressions but is easier to automate

hence, is easier to use for medical workers.

Suppose we have generated a set of keywords, either manually or automatically, from a

trial criterion and its associated training sentences. Our subtree model is constructed in

three steps. First, each training sentence is parsed by a syntax parser (we used the

Stanford parser [37]) into a parse tree which describes sentence’s syntax structure; see

an example in Figure 3.2 (a). Second, for each parse tree, all leaves that are keywords

are located and from them, a program back-tracks up the tree for three levels to

generate a set of subtrees; again see Figure 3.2 (b). Finally, all subtrees found in this

way are collected and represented as tree regular expressions and these will be used as

search models for the given criterion; see Figure 3.2 (b).

We end this subsection with several remarks. First, given the keywords, the subtrees

and their representations (tree regular expressions) are produced automatically. Second,

given the subtree models for a trial criterion, the process of searching for positive

sentences amounts to a tree regular expression match and a number of efficient

implementations exist that can be used (we used one from Stanford [37]). Third, for a

given criterion, keywords can be generated manually by inspecting the criterion and its

training data. This requires a little time but is not too difficult and can be done

relatively easily by a medical worker. But to make things even easier, we also developed
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techniques for automatic keyword generation.

(a)

(b)

Figure 3.2: A parsed tree and subtree (a) syntactic tree of a parsed tree (b) subtree
pattern with keywords

3.5 Keyword Generation

3.5.1 Phrase Similarity

Suppose we have a single trial criterion and a set of (training) patient sentences that

match the criterion. The problem is to generate a set of keywords from these. Our

automatic keyword generation technique starts with a small number of manually

selected seed keywords, which are usually words highly relevant to the criterion and

occurring frequently in training data. For example, for criterion 1 in Table 3.1
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(”Primary tumor must be palpable”), we found the words ”palpable” and ”mass” in the

training data as seed keywords (notice that in the training sentences, ”mass” is

mentioned many times but not ”tumor” see Table 3.1).

Since the same idea is often expressed in different words, to find additional keywords it

would be reasonable to search in the training data for words similar to the seed

keywords. For example, for each seed keyword, we could find other words in the training

data that are similar. As a measure of similarity, we experimented with those provided

by WordNet [38]. This, however, did not work well. Based on our results, we believe

that this may be caused by two factors. First, the WordNet is designed for a general

domain (e.g., newspaper articles) not for the breast cancer domain. Thus, two words

that are closely related in the latter (e.g., mass and density) may not be so closely

related in the former; vice versa. Second, even for words in the general domain,

WordNet similarity is not always reliable.

To improve this situation, we experimented with the idea of ”using more context”, i.e.,

the intuition that one can make a better decision (on how similar two words are) by

looking at more data (the neighbors of these two words). Specifically, we can combine

some seed keywords into seed phrases and look for phrases in the training sentence that

are similar in meaning but different in words from the seed phrases.

To measure the similarity between the seed phrase and a target phrase, we used a

simple matching based algorithm that, in abstract, can be described as follows. Let

x = [x1, x2, ..., xm] be a seed phrase of m words and y = [y1, y2, ..., yn] be a target phrase

of n words. A match between x and y is an m× n binary matrix h = [hi,j], where

hi,j = 1, if xi is matched to yj, 0 otherwise. Then we can measure the similarity of x

and y by

S(x, y) = max
h

m∑
i=1

s(xi, hiy) (3.1)

Where hi is the ith row of h, hiy is the word in y that xi is matched to, s(xi, yj) is the

word similarity between xi and yj (in this case, the WordNet similarity), and the
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Table 3.3: Seed Phrase and Automatically Generated Keywords

Criterion 1. Primary tumor must be palpable.
Seed Phrase: palpable mass
Matched Phrase: irregular mass, palpable density, a large mass, a palpable
mass, a palpable lump, hard irregular mass, ill-defined mass, palpable abnor-
mality, well-defined multilobulated mass.
Related keywords: mass, lump, density, abnormality, area; palpable, hard,
large, irregular, well-defined, ill-defined; note, revealed, appeared, identified,
noticed, felt, prompted, appreciated, discovered, left.

maximization over h is subject to the unique-matching constraint that each xi can be

matched to only one yj, i.e.,
n∑
j=1

hi,j = 1

for all i. To perform the maximization, we can use a variety of techniques. Since in our

application, the value of m and n are usually very small, for the sake of simplicity, we

used exhaustive search.

Once a matching phrase is found for a seed phrase, the words in the phrase that match

those in the seed phrase will be taken as keywords. For example, for criterion 1 of Table

3.3, we used the seed phrase ”palpable mass” and found a similar phrase ”palpable

density” and this allows us to add ”density” to the list of keywords. Table 3.3 also

shows a number of other keywords found this way.

3.5.2 Word Relatedness/Similarity Measured Based On Medi-

cal Contexts

Another way to calculate the words relatedness/similarity is to use the medical domain

contexts. Intuitively, the idea is that if two words have similar co-occurrences with all

other words, they are deemed to be closely related. Suppose we have a set of medical

documents which are parsed into the sentences. Suppose that x and y are two words,
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and we want to measure their relatedness/similarity. The distance between x and y can

be calculated by the divergence:

d(x, y) =
∑

p(wi|x) (log p(wi|x)− log p(wi|y)) (3.2)

, where p(wi|x) and p(wi|y) is the conditional probability of an arbitrary word wi given

x and y respectively, and the sum is over all word wi. The conditional probability

p(wi|x) can be found by

p(wi|x) =
p(wi, x)

p(x)
=
the number of sentences containing both wi and x

the number of sentences containing x
(3.3)

There are several methods to measure our distance:

1. In practice, the distance measure, specifically, the way to compute p(wi|x) can be

modified. For example, instead of considering all words for wi, we can remove

some words that are useless (e.g., stop words or irrelevant words). Similarly, we

can also modify p(wi|x) by considering only sentences in which wi and x are within

a certain distance (e.g., 5 words a part) or within certain distance in a parse tree.

2. d(x, y) is not symmetrical. For a symmetrical measure, we can use d(x,y)+d(y,x)
2

.

3. We can impose additional constrains on x and y before measuring their distance.

For example, we can require that they have the same part of speech label (e.g.,

both be noun, both be verb, etc.). Similarly, we can also require that they have

the same grammatical roles (we may get this information from parsed trees).

Finally, instead of using word condition probabilities, we can also use word correlations.

Suppose we have m sentences in the document and there are total of n different words

in the documents (each sentence may contain only a few words, much less than n).

Denote each sentence by di, i = 1, 2, ...,m. Then di = [di1, ..., din]T , where dij is either a
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Table 3.4: Experiments of Word Relatedness

Word Top 5 Ranking of Related Words
mass lesion; nodule; area; malignancy; density
hormone estrogen; endocrine; oestrogen; tamoxifen; progesterone;
menopause postmenopause; observe; age; baseline; year
biopsy ultrasound; remove; excision; dissect; mri

word frequency or a binary indicator variable (1 if word j is in di, 0 if not). Define

matrix A = [d1, d2, ..., dm] and correlation matrix:

C = AAT (3.4)

This is the correlation matrix, and each row is a correlation vector. We can normalize

each row so that it sums to 1. Then we can compute the directed divergence between

two normalized rows as the distance between two words. To measure the word stability

in the co-occurrence matrix, we use the entropy:

entropy =
∑

pi log2 pi (3.5)

We used it to remove the unstable words. To implement this method, we use two

sources of data. One is from our 644 free-text Surgeon Visit Notes of 142 patients. The

total sentences are 46921. The other one is Breast Cancer Clinical Reports from

PubMed [39] in the latest 5 years until 2012. There are 3515 abstracts and total 41982

sentences. Table 3.4 shows an experimental results of the top 5 rankings of most related

word. In this experiment, we removed the words with high entropy (> 0.3). Most of

these words are the stop words, like ”and”, ”of”, ”the”, ”in”, ”with”, ”to”, ”for”, ”a”,

etc. And some non-stop words also with high entropy(> 0.3), for example, ”patient”,

”breast”, ”cancer”, ”treatment”, ”tumor”, ”no”, ”group”, ”study”, ”receive”, ”clinic”,

”report”, ”woman”, ”compare”, ”result”, ”dose”, ”therapy”, ”chemotherapy”. For the
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measure of the words relatedness, these high entropy words are filtered out.

3.6 Bernoulli Model and Bayes Ratio Classification

In section 3.4, we described the subtree based technique for patient search [40]. In this

approach, subtree models were derived from training patient text data and later used to

identify qualified patients from patient reports. While this approach produced some

promising results, it is somewhat complex and require manually selected seed words. In

order to improve this, we propose a new sentence classification method in this section.

Our new approach uses a trained Bernoulli Model which is created from our training

data (qualified or unqualified sentences) [41]. The trained Bernoulli model calculates

the probability of a new word sequence (test sentence) to make a classification decision.

Our method has several advantages. There is no required special pre-processing, such as

syntactic parsing, POS tagging etc. This is beneficial for the free form text medical

report which may contain grammatical mistakes during transcription. The algorithm is

fast, scalable, and could be easily applied to any natural language. The model’s

decisions are based on a specific likelihood threshold, which can change/optimize the

recall and precision.

We used Bernoulli models to determine if sentences in a patient’s medical report meets

a clinical trial criterion. Bernoulli models and other language models were originally

used for information retrieval (IR) [42]. Indeed, some previous work [43, 44] indicate

that when retrieving sentences, which are usually much shorter than typical documents,

the Bernoulli models perform better than other popular language models, such as

multinomial (or bag of words) models. Despite some similarities to the IR models, our

models differ from them in that in IR, a model is estimated for each document or

sentence, while in our work, a model is estimated for a class of sentences. Figure 3.3

illustrates our overall approach to the patient search problem by using Bernoulli Model.
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Figure 3.3: Illustration of overall approach by using Bernoulli model

For training the model, firstly, we identified a group of patients that associated to one of

the criterion. Within the reports of these patients, we manually collected the sentences

that would be considered consistent with the criterion. These sentences are labeled as

”positive” examples, while the remaining sentences are labeled as ”negative”. Both sets

of sentences are used to train the Bernoulli Model. Then, we use the trained Bernoulli

Model to search for qualified patients whose reports contain text that satisfy the

criterion. Finally, the results of qualified patients can be found after Negation detection

filtering is performed.

Within the Bernoulli Model, we use the binary Bernoulli vector to represent the

vocabulary which is collected from the training datasets. Each term in the binary vector

represents a word: the 1 indicates presence of the term in the vector model, 0 otherwise.

The single-word Bernoulli vector is defined as ~x = [x1, x2, ..., xm], where xi is a binary

value to indicate if the word wi appears or not in a given sentence. Let the sentence ”s”

be represented by the single-word Bernoulli vector.

p(s) =

|~x|∏
i=1

p(wi)
xi(1− p(wi))1−xi (3.6)

Where p(wi) is the probability of word wi in the training data set. The sentence

probability is the product of each word occurring both in and not in the sentence.

Because the Bernoulli Model uses the word occurrence rather than the term frequency

of the words, the probability calculation of the word p(wi) is:

p(wi) =
number of sentences containing wi

total number of sentences
(3.7)
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Similarly, the two-words Bernoulli vector can be defined as: ~x = [< xi, xj >, . . .], where

i 6= j and < xi, xj > is a binary value (0 or 1) to indicate if the two words < wi, wj >

appear or not in a given sentence. For the two-class training case, we need two different

training datasets. One set is constructed by criterion qualified (positive) sentences, the

other is constructed by the irrelevant (negative) sentences. The Bernoulli Model is

trained from both the positive and negative datasets. We will use H1 to indicate the

positive class and H0 to indicate the negative class. The probability of word wi from a

positive dataset is defined as p(wi|H1), and from a negative dataset is defined as

p(wi|H0).

Within the two-class Bernoulli Model, there will be a problem with the estimation of

probability of the unseen words. Instead of assigning zero probability to the unseen

words in the positive or negative training datasets, we will smooth the model by giving

a very small probability value ε to unseen words. The sentence represented by the

Bernoulli vector for the positive and negative class was defined as

p(s|H1) =

|~x|∏
i=1

p(wi|H1)xi(1− p(wi|H1))1−xi (3.8)

p(s|H0) =

|~x|∏
i=1

p(wi|H0)xi(1− p(wi|H0))1−xi (3.9)

The sentences are ranked by classification ratio which is using the Bayes’ Rule:

Ratio(H1|s) =
p(H1|s)

p(H0|s)
∝ p(s|H1)

p(s|H0)
(3.10)

3.7 Naive Bayes Model

The Bernoulli Model differentiates itself from Naive Bayes by the word probability

estimation methods and the classification rules. The Naive Bayes Model is based on
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n-grams probabilistic learning method. Due to sparse training examples, the unigram

model and bigrams model (with add-one smoothing) were used. The unigram p(wi) is

the probability of wi in the training dataset, defined as

p(wi) =
c(wi)

N
(3.11)

where c(wi) is the number of wi in the training sentences, and N is the total number of

words in the training sentences. The bigrams p(wi|wi−1) is the word probability

conditioned on its previous word, defined as

p(wi|wi−1) =
c(wi−1wi)∑
wi
c(wi−1wi)

(3.12)

Add-one smoothing in bigrams is defined as

p(wi|wi−1) =
1 + c(wi−1wi)∑
wi

(1 + c(wi−1wi))
(3.13)

Using the unigram Naive Bayes Model, the sentence probability is the product of each

word occurring in the sentence s.

p(s) =

|si|∏
i=1

p(wi) (3.14)

So, the sentence probability based on bigrams Naive Bayes Model is

p(s) =

|si|∏
i=1

p(wi|wi−1) (3.15)
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3.8 Experimental Results

For the trial criteria, we used the 3 criteria in Table 3.1. This selection was based on

three considerations. First, the trial criteria came from a trial that is currently active at

Aurora (ID: ACOSOGZ1031). Second, they are diverse and representative: criteria 1

and 3 are more difficult to search for since their positive sentences have greater variation

while criterion 2 is easier. Finally, using many more criteria would be beneficial but

may not be necessary: the 3 criteria used are quite representative of the various levels of

difficulties.

For patient data, we used the medical reports of 142 breast cancer patients from

Aurora. For each patient, we used only one report, Visit Note Surgery 1 (VNS1), which

contains information relevant to the 3 selected trial criteria (criteria 1 to 3 of Table 3.1).

The 142 VNS1 reports were parsed into single sentences by an NLP software, resulting

in a total of 18,873 sentences. These sentences were then annotated with respect to each

of the trial criteria as either ”meeting” or ”not meeting” the criterion. Based on the

annotations, training data (positive sentences) were taken randomly out of all positive

sentences for each criterion. The number of training positive sentences are 46, 25, and

45, respectively, for criteria 1, 2, and 3, and the number of training negative sentences

were randomly selected 1000, 5000, 5000 for each criterion. Finally, after the training

data were taken, the rest of the data were used as testing data. Furthermore, in the

testing data for criterion 1, we removed those in the sections for ultrasound and

mammogram results since these sections generally do not contain information related to

criterion 1. This resulted in 1710, 13,778, and 13,725 testing sentences which includes

126, 70 and 103 positive sentences respectively for criteria 1, 2 and 3. The experimental

results are shown in Table 3.5 in terms of precision, recall and F-score.

The three criteria for our experiment represent different characteristics of searching

complications. Our results (see Table 3.5) indicate that the subtree technique provides
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significantly better performance than all other techniques (e.g., see the F-scores) except

for the regular expression where the performance is competitive. As described in

Section 3.4, the semi-auto subtree technique is preferable because using parse trees the

search models for this technique can be generated automatically. And we also proposed

an auto method based on Bernoulli Model in Section 3.6 to deal with different kinds of

searching difficulties while maintaining good results.

There are a few of other ways to build the Bernoulli vector. One way is to manually

select some keywords for the given criterion, and the Bernoulli vector will be

constructed only by those keywords. Our manually selected keywords for each criteria is

given in Table 3.2, the same as in our previous paper([40]), and the results are given in

the Table 3.3. One other way to build the Bernoulli vector is to use the Unified Medical

Language System (UMLS)’s Concept Unique Identifier(CUI) or Semantic Types(ST).

We converted each word of our free-text datasets to the UMLS CUI or ST formats.

3.8.1 Previous Results

The results of experiments (Table 3.51) show that the ”Manual-word Bernoulli Model”

has the best F-score for Criterion 2 and 3, but not for Criterion 1. Comparing with the

keywords based methods(Regular Expression and subtree model) by using the same

keywords in the same datasets, the ”Manual-words Bernoulli Model” has the best

results and is easier to implement. However, for the more complicated criteria, such as

Criterion 1, which has many variations of sentences, finding the best manual keywords

is challenging and tedious work.

For comparison, we also included the results of regular expression, concept search, vector

space method(VSM), and LSI. Among these, the regular expressions are manually

designed, the concept search works by ”normalizing” search keywords and words in

patient sentences into UMLS concepts [45] and then perform matching, and the vector

1RegEx is Regular Expression; VSM is Vector Space Method; and LSI is Latent Semantic Indexing.
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space method (VSM) and Latent Semantic Indexing (LSI) are two commonly used

information retrieval methods (see [42, 46]; here we use them to retrieval sentences).

Table 3.5: Previous Results on Patient Data

Precision, Recall, F-score
Techniques Criterion 1 Criterion 2 Criterion 3

Bernoulli(single) 66%, 74%, 0.70 79%, 71%, 0.75 81%, 66%, 0.73
Naive Bayes(single) 59%, 69%, 0.63 80%, 63%, 0.71 82%, 74%, 0.78
Bernoulli(pairs) 53%, 74%, 0.62 36%, 50%, 0.42 66%, 40%, 0.50
Bernoulli(CUI) 66%, 69%, 0.67 82%, 73%, 0.77 58%, 51%, 0.55
Bernoulli(ST) 51%, 60%, 0.55 57%, 79%, 0.66 19%, 34%, 0.24
Bernoulli(keywords) 55%, 71%, 0.62 96%, 98%, 0.97 96%, 93%, 0.94
Subtree (semi-auto) 90%, 49%, 0.63 89%, 83%, 0.86 73%, 86%, 0.79
RegEx (semi-auto) 37%, 72%, 0.49 84%, 91%, 0.87 67%, 88%, 0.76
Concept Matching 13%, 91%, 0.23 24%, 86%, 0.37 36%, 100%, 0.53
VSM 26%, 37%, 0.31 30%, 65%, 0.42 26%, 100%, 0.41
LSI 42%, 42%, 0.42 17%, 57%, 0.26 20%, 100%, 0.33

3.8.2 Updated Results

In addition to the Bernoulli model, we also applied some of the leading supervised

machine learning techniques to our experiments on the data set for the three criteria.

These techniques include linear classifiers, such as the logistic regression, stochastic

gradient descent(SGD) classifier, and support vector machines, and ensemble classifiers,

such as the random forest, gradient boosting, and XGBoost. Furthermore, we tested the

bagging and stacking techniques which combine individual classifiers in different ways.

First, bagging is used to average the predication of all individual classifiers with the

same or different weights. Second, unlike bagging and boosting method, the basic idea

of stacking is that the output of one classifier can be used as training data for another

classifier. The results are shown in Figure 3.4,3.5, 3.6. Each precision-recall curve

presents the performance of each individual classifier, and the area under the curve

(AUC) can quantitatively measure the classifier’s efficacy. For better comparison, the
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AUC of each classifier from the figures are also summarized in Table 3.6. From these

results, we can see that an individual classifier may not always perform the best over all

criteria but bagging can lead to a classifier that is the best. The Stacking method which

combines only three classifiers: logistic regression, SGD classifier and Bernoulli, also

achieves good result. The advantage of stacking is that it is fast and scalable; it uses

simple and weak classifiers but, after stacking, it is able to achieve similar results to the

Bagging method.

Figure 3.4: Precision-recall curve for criterion 1

3.9 Unsupervised Learning of Word Embeddings and

Future Work

When we apply machine learning techniques to our sentence classification problem, the

most important step is to convert variable length texts/sentences into fixed-length vectors.
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Figure 3.5: Precision-recall curve for criterion 2

Figure 3.6: Precision-recall curve for criterion 3
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The vector representation of a sentence needs two considerations: how to convert words

into numerical vectors and how to represent the order of word sequences. The challenge

is that a sentence usually has different word representations with different length, and the

output needs to be a fixed-length representation. Recent advances in natural language

processing have provided unsupervised learning algorithms to produce vector representa-

tions for texts such as words, sentences, paragraphs or entire documents. The basic idea is

to learn vector representation models from huge amounts of unstructured text data in an

unsupervised process. Mikovlov et al. [47, 48] proposed a Bag-of-Words model (CBOW)

and a Skip-Gram model for learning word embeddings from free-text data. Their word

embedding models outperformed other bag-of-words models and techniques for text repre-

sentation and achieved state-of-the-art results on some text classification and sentiment

analysis tasks. Their work can be potentially extended to our sentence classification

work. Our initial experiments were using the gensim’s doc2vec[49] implementation which

is based on the unsupervised learning of word embeddings (Mikovlov et al.). The model

was trained on the dump of wiki’s latest article data [50]. The size of data is about 13GB.

The training time was about 3days and 5 hours for both of the dbow (distributed bag of

words) and dm (distributed memory) model by using a typical PC with Intel Xeon X5570

2.93GHZ 16 CPUs and 43 GB RAM. The size of the trained model was about 5.2GB.

Then, the trained models were used to inference the vector representation for each new

sentence obtained from our breast cancer medical reports. Based on our ground truth

and analysis, the trained model didn’t make good predications for our medical sentences.

The reason might be that the wiki data is too different from medical data. In future

work, we plan to re-train the models using data sets from medical domain, such as breast

cancer patient medical reports and journals or abstracts from PubMed.gov.
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Table 3.6: Updated Results on Patient Data

AUC(Area Under Curve)
Techniques Criterion 1 Criterion 2 Criterion 3

RandomForest 0.75 0.87 0.71
GradientBoosting 0.78 0.95 0.77
XGBoost 0.77 0.95 0.70
SVM(kernel) 0.77 0.97 0.74
LogisticRegression 0.77 0.95 0.72
SGDClassifier 0.79 0.92 0.70
BernoulliBayes 0.71 0.66 0.59
Bagging 0.81 0.98 0.75
Stacking 0.80 0.94 0.74
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Chapter 4

Maximum A Posteriori Expectation Maxi-

mization Clustering Method

In this section, we introduce our unsupervised clustering techniques of Maximum A

Posteriori(MAP) Expectation-Maximization(EM) method.

4.1 Clustering Problem

Clustering is to solve the problem of finding the number of components and the

parameters of each component. There are many clustering methods, for instance,

K-means, hierarchical clustering, density-based clustering, etc. [1, 2, 3, 4, 5, 7, 8].

However, there are two kinds of drawbacks in these traditional clustering methods.

First, most of them need to specify the number of components or a threshold/classifier

before the clustering algorithm. Second, the local maximum happens in all of the

clustering methods, and appears more when the variables dimension increases.
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4.2 Motivations

The purpose of our work is to develop a unsupervised clustering method to

automatically determine the number of components and the parameters for each

component. Meanwhile, the prior knowledge could be used in the clustering process to

avoid/improve the local maximum. The resulting algorithm could be useful in the

following respects. First, in practice, we can use it without knowing the number of

components/mixtures in the data. Second, given some prior knowledge of the data, we

can use it to avoid/improve the local maximum during the clustering process. Third,

the method can be used in different data types (continuous or binary) with its

corresponding distribution models. Finally, the proposed method can be applied to

many different areas, such as image processing, data mining, or natural language

processing, etc.

4.3 A Short Review of EM Algorithms

In brief review of EM algorithm [13, 14, 15], we derived it with Gaussian Mixture

Model. And it also can be extended into another statistical model, for example, the

Bernoulli Model. Bernoulli Model is defined for the binary variables, which is useful for

language/text processing.

4.3.1 Complete Data and Incomplete Data

First, we need to define the complete and incomplete data. For the complete data, we

use x and x = {y, z}, where y is the observation data, and z is the indicator that which

class the y belongs to. For the incomplete data, when the z is unknown, and only y is

remained.
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For Gaussian Mixture Model, each xi came from Gaussian distribution N(µj,Σj) with

weight/proportion of πj, so

p(xi|θ) =
K∑
j=1

πjp (xi|µj,Σj) (4.1)

, where θ = {µ1, µ2, ..., µK ; Σ1,Σ2, ...,ΣK ; π1, π2, ..., πK} and
∑
πj = 1, πj > 0. The

probability density of the multivariate normal distribution in d dimension is

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)T (Σ)−1(x− µ)

}
(4.2)

, where x ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n.

4.3.2 Estimation (E) Step

In E step, we calculate the conditional expectation of the log-MLE (Maximum

Likelihood Estimation) of the complete data.

Q(θ|θ(t)) = E[log p(x|θ)|y,θ(t)]

=
∑
i

∑
j

E[zi,j|yi,θ(t)] log p(yi|zj,θ(t)) +
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

=
∑
i

∑
j

E[zi,j|yi,θ(t)] log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

(4.3)

E[zi,k|yi,θ(t)] = p(zi,k|yi,θ(t))

= p(zi,k = 1|yi,θ(t))

=
p(yi|zi,k = 1,θ(t))p(zi,k = 1|θ(t))∑K
j=1 p(yi|zi,j = 1,θ(t))p(zi,j = 1|θ(t))

(4.4)
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4.3.3 Maximization (M) Step

In M step, we re-estimate the parameter θ(t+1) = arg max
θ

{
Q(θ|θ(t))

}
by

∂Q(θ|θ(t))

∂θ
= 0

For simplicity, the derivations are in APPENDIX A.

After taking the partial derivative of the log-MLE function with respect to {µ,Σ, π},

each parameter is re-estimated as:

µ̂
(t+1)
j =

∑n
i=1E[zi,j|yi,θ(t)]yi∑n
i=1E[zi,j|yi,θ(t)]

(4.5)

Σ̂
(t+1)
j =

∑n
i=1 E[zi,j|yi,θ(t)](yi − µ̂(t+1)

j )
T

(yi − µ̂(t+1)
j )∑n

i=1 E[zi,j|yi,θ(t)]
(4.6)

π̂
(t+1)
j =

∑n
i=1E[zi,j|yi,θ(t)]

n
(4.7)

4.4 MAP EM Algorithms

In Bayesian theory, if the posterior distribution is in the same distribution family as the

prior probability distribution, they are defined as conjugate distributions. And the prior

is called the conjugate prior.

4.4.1 Normal-Inverse-Wishart Prior

The conjugate prior [17] of multivariate normal(Gaussian) distribution is the

Normal-inverse-Wishart distribution. The notation is (µ,Σ) ∼ NIW(m0, λ, S0, ν0). The
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probability density function can be written as:

p(µ,Σ|m0, β0, S0, ν0) = N

(
µ|m0,

1

β0

Σ

)
W−1(Σ|S0, ν0) (4.8)

The first term in Eq. 4.8 is the multivariate normal distribution in d dimension as:

N

(
µ|m0,

1

β0

Σ

)
=

1

(2π)d/2
∣∣∣ 1
β0

Σ
∣∣∣1/2 exp

{
−1

2
(µ−m0)T

(
1

β0

Σ

)−1

(µ−m0)

}
(4.9)

The second term in Eq. 4.8 is the probability density function of the Inverse-Wishart,

which is written as:

W−1(Σ|S0, ν0) =
|S0|ν0/2

2
ν0d
2 Γd(

ν0
2

)
|Σj|−(ν0+d+1)/2 exp

{
−1

2
Tr(S0Σj

−1)

}
(4.10)

, where Σ and S0 are positive definite matrices, v0 is degrees of freedom, Γd is the

multivariate Gamma function, and Tr(·) is the trace of the matrix.

The parameters m0, β0, S0, ν0 have following interpretations: m0 is the prior means of µ;

β0 represents how the prior m0 is closed to the true means of µ; S0 is the prior mean of

Σ; ν0 shows how the prior S0 is closed to the true means of Σ.

4.4.2 Dirichlet Prior

Dirichlet prior is used on the proportions/weights (π) of the mixture, denoted as

π ∼ Dir(α). The probability function is written as:

Dir(π|α) =
1

B(α)

K∑
i=1

πi
αi−1 (4.11)

43



The beta function is written as

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(4.12)

, where α = (α1, α2, ..., αK).

4.4.3 MAP Estimation

Now, we will introduce the MAP EM [4, 5] method, which has the same E step as the

general EM algorithm, but the M step needs to be changed. After adding the priors on

θ = {µ,Σ} and π, the conditional expectation of the log-MLE (Maximum Likelihood

Estimation) of the complete data can be re-written as:

Q′(θ|θ(t)) =
∑
i

∑
j

E[zi,j|yi,θ(t)] log p(yi|zj,θ(t)) +
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

+
∑
j

p(πj|α) +
∑
j

log p(θ(t)|m0, β0, S0, ν0) (4.13)

We will write the completed form by inserting the Eq. 4.8 and Eq. 4.11.

For a clean form, we let ri,j = E[zi,j|yi,θ(t)]. So,

Q′(θ|θ(t)) =
∑
i

∑
j

ri,j log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
i

∑
j

ri,j log πj +
∑
j

log

(
1

B(α)

)
+
∑
j

(αi − 1) log πj

+
∑
j

log

 1

(2π)d/2
∣∣∣ 1
β0

Σj

∣∣∣1/2 exp

{
−1

2
(µj −m0)T

(
1

β0

Σj

)−1

(µj −m0)

}
+
∑
j

log

(
|S0|ν0/2

2
ν0d
2 Γd(

ν0
2

)
|Σj|−(ν0+d+1)/2 exp

{
−1

2
Tr(S0Σj

−1)

})
(4.14)
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Then, we re-estimate the parameters θ(t+1) = arg max
θ

{
Q′(θ|θ(t))

}
by

∂Q′(θ|θ(t))

∂θ
= 0

For simplicity, the derivations are in APPENDIX B. So each parameter is re-estimated

as:

µ̂
(t+1)
j =

∑n
i=1 ri,jyi + β0m0∑n

i=1 ri,j + β0

(4.15)

Σ̂
(t+1)
j =

S0 +
∑n

i=1 ri,j

(
yi − µ̂(t+1)

j

)T(
yi − µ̂(t+1)

j

)
+ β0

(
µ̂

(t+1)
j −m0

)T (
µ̂

(t+1)
j −m0

)
∑n

i=1 ri,j + β0 + ν0 +D + 2

(4.16)

π̂
(t+1)
j =

∑n
i=1 ri,j + αj − 1

n+
∑K

j=1 αj −K
(4.17)

Compared with the parameters from General EM in Eq.4.5, Eq.4.6 Eq.4.7, the

parameters from MAP EM in Eq.4.15, Eq.4.16 Eq.4.17 are different by including the

priors’ parameters of α,m0, β0, S0, ν0. These priors’ parameters in MAP EM

algorithm can be used to avoid/improve the local maximum, which happens in General

EM algorithm.

4.4.4 Convergence

We have two convergence criteria to measure if the iteration of MAP EM algorithm is

need to stop. The first stopping criterion is if the maximum number of iteration (for

example max iter = 5000) is reached. The second stopping criterion is if the error

between successive iterations is smaller than a certain value ε (for example ε = 10−10).

The error can be calculated as:

Err
(
θ(t+1),θ(t)

)
=
|Q(θ(t+1))−Q(θ(t))|

|Q(θ(t))|
(4.18)
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We can use the gradient of the Error function to evaluate the convergence conditions.

∇θErr
(
θ(t+1),θ(t)

)
= const ∗ (|θ(t+1) − θ(t)|) (4.19)

Then, the convergence condition can be simplified as:

|θ(t+1) − θ(t)|
|θ(t)|

< ε (4.20)

4.5 Synthetic Result

In order to show how MAP EM algorithm works, a synthetic data is created to test and

evaluate the performance of MAP EM algorithm. The synthetic data is 2D Gaussian

Mixture Data with different proportions, as shown in Figure 4.1. The MAP EM starts

from the initials by using K-means with K=10, shown in Figure 4.2 (a), the convergence

result is shown in Figure 4.2 (b). By comparing with ground truth, we can conclude if

the MAP EM gets the correct result. For comparisons, it is also tested with some other

traditional clustering methods. Figure 4.3 shows the result by using the general EM

algorithm, which can be seen as MAP EM without any prior information. The general

EM starts with the same initials as the MAP EM method, but it converged into the

local maxima with the wrong number of components. However, even if we use the

correct number of clusters (K=3), the result (in Figure 4.4) is still wrong by using

K-means method. The result from non-parametric method: Chinese Restaurant

Process(CRP)[17, 18], shown in Figure 4.5, could be used for clustering correctly, but

the problem is that it is slow at expense of extra computational time of Gibbs Sampling

and many iterations to get the statistical clustering result.
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4.6 Summary

Limitations of General EM

• Predefined number of components or threshold/classifier

• Choice of the initial estimates

• Local maximum

Advantages of MAP EM:

• Avoid/improve local maximum by adding prior information

• Automatically determine the number of components

• Faster than Non-parametric methods

• Converged, deterministic

In the next chapter, our proposed MAP EM method with the Gaussian Mixture Model

is used to automatically detect the objects in 3D CT luggage image. Our goal is to find

the proper number of objects and segment each object in the 3D CT luggage image.
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Figure 4.1: The synthetic 2D Gaussian mixture data
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(a)

(b)

Figure 4.2: MAP EM result (a) shows the initialization from K-means (K=10) (b) is the
MAP EM result at the converged iterations.
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Figure 4.3: Regular EM result with the same initialization from K-means(K=10)

Figure 4.4: K-means result with K=3 classes
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Figure 4.5: CRP result from initialization with only one class
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Chapter 5

Objects Detection and Recognition on 3D CT

Luggage Images

Computed tomography(CT) security screening is highly used in airports or other

security places to detect if there is any suspicious object in traveller’s luggage. It is

important for preventing dangerous objects in transportation. In the CT luggage image,

the number of objects is unknown, and objects are tightly packed and possible

inter-wined. Also, the unavoidable metal artifacts in CT image cause the

non-homogeneous of certain object. Due to these difficulties, many of state-of-the-art

algorithms couldn’t work very well. The image segmentation is critical, incorrectly

segmentation leads to low detection rate, and decrease the travel security. Our work is

to develop automatic and robust algorithms to correctly segment objects in the CT

luggage, and improve the threats detection rate.

First, some state-of-the-art image segmentation methods are described. Second, we

introduce our proposed MAP EM MRF segmentation algorithm. Third, our

experimental results are shown. Forth, we applied machine learning techniques to

classify each object into targets or non-targets.
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5.1 Unsupervised Clustering and Segmentation for

Objects Detection on 3D CT Luggage Images

There are a lot of segmentation algorithms available today. The commonly used image

segmentation algorithms[6] are: edged-based, region-growing, graph cut and pixel-based

methods. Edge-based segmentation uses the edge detecting operators which are

measuring the location of the discontinuous in color, texture, etc., and then apply the

post-processing to combine the edges into a border. However, the edge-based method is

very sensitive to noise, and it may include ”unsuitable information” in images, for

example, the edge in an image is the border of the object. Region-growing segmentation

is based on the homogeneity of the image. Region-growing is better in noisy images,

robust and easier than the edge-based method to detect the borders of the objects’

region. But, the segmentation result may have under-segmentation or over-segmentation

problems. So the merging or splitting criterion is needed in post-processing. Graph cut

segmentation is based on the graph G = (V,E), and it is proved to achieve global

optimum for binary labeling(foreground/background image segmentation). However, it

may not segment well when there are multiple objects and they are not clearly different

from the background. And the proper seeds are required manually. Pixel-based

segmentation is to classify each pixel into one class, and the spatially connected pixels

are formed into a region. The problem is that the number of classes and the parameters

for each class are needed to be specified as initials.

In order to choose a proper segmentation algorithm, first, we take a look at a real CT

luggage image. The original 3D CT luggage image has 512x512x293 voxels. Each voxel

has its intensity value which reflects the natural properties of the object. In Figure 5.1,

we took a 2D slice (512x512) at the frame 91/293 from the image. From the slice image,

we can see that objects are closely packed together and the intensities in the object are

not homogeneous due to the effects of the metal artifacts. Because the real CT image is
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very complex as described above, the available segmentation algorithm can not be just

simply applied and achieve the best result. We need to choose the proper segmentation

algorithm according to the property of real CT images and also modify it with domain

knowledge.

5.2 Pixel-based Segmentation with Initial Parame-

ters from MAP EM

Before introducing our approach to the CT luggage image segmentation problem, we

formulate the problem that we want to solve.

5.2.1 Intensity Histogram of CT Luggage Image

For example, we take a CT luggage image to analyze. In this luggage, there are 5

targets and one pseudo-target manually labeled by experts. For viewing purpose, we

only plot targets in Figure 5.2. The targets are labeled as the following: 6001 saline,

6051 clay, 6012 saline, 6047 bulk rubber and 6018 rubber sheet, and the pseudo-target is

labeled as 6042 saline. The intensity histogram of the whole CT luggage image is shown

as the black curve in Figure 5.3 (a), and the others under the black curve are the

histogram of each target which is labeled manually by experts. The gap between them

is from the intensities of other non-targets objects. From the close-up view in Figure 5.3

(b), we can see the intensity histogram of each target object is close to the Gaussian

distribution. Because the intensity histogram of label 6018 (rubber sheet) is

significantly affected by the metal artifacts, part of the shape is different to the shape of

Gaussian distribution. The overall intensity histogram in the black curve is the sum of

all targets and non-targets.
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(a)

(b)

Figure 5.1: (a) One CT slice from 3D luggage CT image with 4 targets (saline, bulk
rubber, rubber sheet and clay) (b) is the corresponding targets in (a) that manually
labeled by experts. 55



(a)

(b)

Figure 5.2: (a) The view of all target in 3D CT luggage image (b) is another view of (a)
with the 2D black slice which is the same frame of Figure 5.1 in original CT image
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(a)

(b)

Figure 5.3: The intensity histogram of objects in the 3D CT luggage image (a) The
black curve is the histogram of the all intensity in range [700 2500]. The colored curves
are the intensity histogram for each target which is corresponding to the labels in (b) is
the close-up view of the targets histogram in (a).
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5.2.2 Assumptions

Our assumption is that the intensity distribution of each object in the CT luggage

image is a Gaussian distribution. The whole luggage can be represented as a Gaussian

Mixture with different proportions. Based on this assumption, from a intensity

distribution of a given CT luggage image, we use the MAP EM with Gaussian Mixture

Model(GMM) to estimate the number of objects(classes) and the parameters for each

object(class). Then, we use it as initials input to our pixel-based Markov Random

Field(MRF) segmentation algorithm [26].

From the intensity distribution of the whole image, the MAP EM with GMM can

automatically determine the number of objects and the parameters for each object. This

process can solve the problem that the number of classes and the parameters for each

class are needed to be pre-specified as initial conditions for pixel-based segmentation.

5.2.3 Implementations

The overall approach for the 3D CT image segmentation process can be described as

follows. First, we select the intensity ranges for all the targets, and others are

considered as background, and downsample. Second, we start the MAP EM algorithm

with initial conditions from the Kmeans result which uses a large number of classes as

input. After initialization, we set the prior parameters with our experimental analysis.

Then, the MAP EM is started iteratively until the convergence condition is satisfied. At

the end, after removing the extinguished classes, we obtain the number of objects and

the parameters of each object, and then start the pixel-based MRF segmentation

algorithm. After the objects are segmented, the mass and size of each object can be

measured. If the object exceeds the max values of mass and size (e.g. mass>500 and

nvoxel>300000), we consider it as a ”merged” object, which need to be split by going
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through the segmentation process again. The whole segmentation can be considered as

two parts: coarse/1st-layer segmentation process and fine/2nd-layer segmentation

process, described as the following two algorithms.

Coarse/1st-layer Segmentation Process:

Purpose: To segment object in 3D CT image

Input: 3D luggage CT image

Output: Segmented objects in image

1. Read a 3D CT image (e.g. 512x512x293).

2. Select intensity range in [700 2500], others are considered as background,

and then downsample (e.g. by 16x16x4 for 512x512x293 image).

3. Apply MAP EM with GMM clustering on intensity distribution of whole

image from 2:

(1) The input is the Kmeans clustering result with K=10.

(2) MAP EM with priors: m0, S0, v0, β0.

(3) The output is the remaining number of classes/objects with parameters(µ, σ)

for each class.

4. Apply MRF segmentation process:

(1) The input is the parameters of each class/object from 3.

(2) The output is the set of segmented objects.

5. Apply connected component labelling to relabel the segmented objects, upsample.

6. Apply Pruning process:

(1) The objects with small mass will be kept.

(2) The objects with a large size and mass are treated as ”merged” objects.

59



Fine/2nd-layer Segmentation Process:

Purpose: To split merged object from Coarse/1st segmentation process

Input: The labeled merged object

Output: Split objects

1. Read labeled merged object.

2. Apply clustering algorithm on the intensity distribution of ”merged” object:

(1) The input is the Kmeans clustering result with K=5.

(3) The output is the remaining number of classes/objects with parameters(µ, σ)

for each class.

3. Apply MRF segmentation process:

(1) The input is the parameters of each class/object from 2.

(2) The output is the split objects.

4. Apply connected component labelling to relabel the segmented objects.

5.2.4 Advantages of Our Approach

There are several advantages to use the two layers pixel-based MAP EM MRF

segmentation approach. First, Our pixel-based MAP EM MRF segmentation approach

can automatically determine the number of classes/objects, and avoid/improve the local

maximum by using prior information. Second, the method can be directly applied to

the initial raw CT images without any denoising pre-processing of the image. Third,

The pixel-based approach can segment objects of any shape. Forth, using the two layers

segmentation process, i.e. coarse/1st-layer segmentation and fine/2nd-layer

segmentation, it can help to solve the under-segmentation problem. In particular, using

the fine/2nd-layer segmentation can split the merged object.
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5.2.5 Segmentation Details

Now, we will show how the clustering process works on intensity distribution of an 3D

CT image. First, The Kmeans (K=10) clustering result on the selected range and

downsample of Figure 5.2 is shown in Figure 5.4 (a). With initial Kmeans clustering

result, the result from MAP EM clustering is shown in Figure 5.4 (b). As we can see,

there are five remained class(class 1, 2, 5 6 and 10), the other five classes (class 3, 4, 7, 8

and 9) are extinguished. After applying the MAP EM GMM to the intensities

distribution, there are only 5 classes left from the initial 10 classes produced by Kmeans.

The clustering results, i.e. the estimated parameters for each class, were used as initials

input to the MRF segmentation algorithm. The MRF segmentation result is shown in

Figure 5.5 (a). Among the segmented objects, we also have the target objects(labeled as

2, 4, 6, 7, 9, 10) and non-target objects(labeled as 1, 3, 5, 8, 11, 12, 13). All of detected

objects are plotted in the histogram in Figure 5.5 (b). All of the targets and

pseudo-targets are detected in Table 5.1 corresponding to the labels in Figure 5.5. The

precision and recall for an object is calculated as the followings by using a manually

labeled image(ground truth) and the detected labeled image.

precision =
{ground truth label} ∩ {segmented label}

{segmented label}
(5.1)

recall =
{ground truth label} ∩ {segmented label}

{ground truth label}
(5.2)

From the equation, a low recall score is due to the fact that the detected object is

oversegmented and contains only part of the ground truth object, and a low precision

score is that the detected object is undersegmented and due to the fact that the

detected object is merged with some fragments from other object. From the precision

and recall, we can evaluate how well the object is segmented. A detected target object

is considered as a target only if its precision and recall are larger than a threshold(e.g.
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(a)

(b)

Figure 5.4: The histogram of the classification results from MAP EM (a) is the
initialization from Kmeans by using K=10. (b) is the classification results of MAP EM
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(a)

(b)

Figure 5.5: The segmentation results from using the MAP EM classifications as input to
the MRF segmentation algorithm
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Table 5.1: Targets Detection Summary

Label Target Name Target ID Precision Recall
2 saline 6012 0.91 0.58
4 saline 6001 0.90 0.57
6 saline(pseudo) 6042 0.94 0.81
7 rubber sheet 6018 0.84 0.30
9 bulk rubber 6047 0.85 0.74
10 clay 6051 0.72 0.80

0.5 except rubber sheet 0.3). From Table 5.1 and Figure 5.5, we can see the rubber

sheet (label 7) has 0.30 recall. Because the metal artifacts make its intensities

non-homogeneous, the rubber sheet is oversegmented, and broken into many parts, as

shown in Figure 5.6 (a). The largest part only contains 30% area of labeled ”rubber

sheet”(ground truth) which is shown as label 6018 in Figure 5.2 (a). On the contrary,

the clay (label 10) is undersegmented, as shown in Figure 5.6 (b), because some

fragments from other object is incorrectly classified into the clay object. And the clay

(label 10) has 0.72 precision as shown in Table 5.1.

As we can see, low precision is caused by undersegmentation. The undersegmented

object could be considered as merged object. Different objects could be merged together

when they have the similar characteristics and are adjacent to each other. For example,

there is a merged object, shown as label 4 in Figure 5.7 (a). Inside this merged

object(precision:0.49, recall:0.97), there are two objects, i.e. bulk rubber and bulk clay.

To split the merged object, we make a criterion to test each object after the first

segmentation process. If a object’s mass and size are larger than a threshold, e.g.

mass>500 and nvoxel>300000, the object is considered as a merged case, and needs to

be further split. In this case, the fine/2nd-layer segmentation process is used to further

split this merged object. Figure 5.7 (b) shows the result after the fine/2nd-layer

segmentation. In order to analyze and visualize this merged object, the intensity

histogram of the objects is plotted for the clustering and segmentation process.The
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(a)

(b)

Figure 5.6: Illustration of low recall object (oversegmentation) and low precision object
(undersegmentation)
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intensity histogram of merged object Figure 5.8. The yellow curve shows the intensity

histogram of label 4 in Figure 5.7(a), The green curve and the orange curve are the

intensity histogram of label 4 and 5 in Figure 5.7(b). From the intensity histogram, we

can see that in a merged object the intensity distributions of different objects are very

close to each other, and it is very difficult to segment them using only coarse/1st-layer

segmentation process. The fine/2nd-layer segmentation process is important for further

splitting the merged object which could have the targets in it. And another similar

example is shown in Figure 5.9(a)and(b), the histogram of the merged and segmented

object is shown in Figure 5.10.

5.3 Experimental Results on 3-D CT Luggage Im-

ages

Given the ground truth and the our segmentation results, PD and PFA are the overall

probability of detection and probability of false alarm by using the following equations.

PD =
# detections

# targets
(5.3)

PFA =
# false alarms

# non− targets
(5.4)

The total number of 3D CT luggage image is 188. The ground truth of the total number

objects are 1850, including: 407 targets, 73 pseudo-targets, and 1370 non-targets.

5.3.1 Coarse/1st-layer Segmentation Results

From the Coarse/1st-layer segmentation, the total segmented objects are 1364: 362

targets, 38 pseudo-targets, and 961 non-targets. Based on the Eq. 5.3 and Eq. 5.4, the
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Figure 5.7: The figures show how the merged objects can be split during two layers
segmentation. (a) shows the merged object of label 4 after the coarse/1st-layer
segmentation process, (b) shows the merged object segmented into label 4 (bulk rubber)
and label 5(bulk clay) after the fine/2nd-layer segmentation process
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Figure 5.8: The intensity histogram of merged object Figure 5.7. The yellow curve
shows the intensity histogram of label 4 in Figure 5.7(a), The green curve and the orange
curve are the intensity histogram of label 4 and 5 in Figure 5.7(b))

overall target PD is 89%, pseudo-target is 52%, and PFA is 70%. The details are in

Table 5.2.

5.3.2 Fine/2nd-layer Segmentation Results

From the Fine/2nd-layer segmentation, the total segmented objects are 1581: 382

targets, 39 pseudo-targets, and 1160 non-targets. Based on the Eq. 5.3 and Eq. 5.4, the

overall target PD is 94%, pseudo-target is 53%, and PFA is 85%. The details are in

Table 5.3. Compared with the Coarse/1st-layer segmentation, the Fine/2nd-layer

segmentation increases the target detection rate (PD) by 5%, however the false alarm

rate(PFA) increases higher by 15%.
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(a)

(b)

Figure 5.9: Another example shows how the merged saline can be split during two layers
segmentation. (a) shows the merged object (label 5) after the coarse/1st-layer
segmentation process, (b) shows the merged object segmented into two objects (label 5
and label 6) after the fine/2nd-layer segmentation process
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Figure 5.10: The intensity histogram of merged object Figure 5.9. The yellow curve
shows the intensity histogram of label 5 in Figure 5.9(a), The orange curve and the red
curve are the intensity histogram of label 5 and 6 in Figure 5.9(b))

5.4 Supervised Classification for Target Recognition

in 3D CT Luggage Images

Using the two-layers segmentation, we successfully increases the target detection rate

(PD) by 5%, however the false alarm rate(PFA) increases higher by 15%. In this

section, we will describe our work in using machine learning techniques to reduce false

alarm rates, without reducing the targets detection rate too much. A merged object is

not only the targets merged with target or non-target, but also having the non-targets

merged together. Because the merged object is caused by these objects have the similar

characteristics and adjacent to each other. Hence, splitting the merged object can

detect more target objects, but also increase the number of non-target object. Due to
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Table 5.2: Coarse/1st-layer Segmentation Results

Type Subtype Difficulty # Targets # Detected PD%
Target All All 407 362 88.9
Target Clay All 111 104 93.7
Target Rubber All 158 142 89.9
Target Saline All 138 116 84.1
Target Bulk All 270 234 86.7
Target Sheet All 137 128 93.4
Target All Low 77 73 94.8
Target Clay Low 29 29 100
Target Rubber Low 22 22 100
Target Saline Low 26 22 84.6
Target Bulk Low 56 52 92.9
Target Sheet Low 21 21 100
Target All High 317 277 87.4
Target Clay High 82 75 91.5
Target Rubber High 125 110 88
Target Saline High 110 92 83.6
Target Bulk High 201 170 84.6
Target Sheet High 116 107 92.2

Pseudo-Target All High 73 38 52.1
Pseudo-Target Clay High 10 10 100
Pseudo-Target Rubber High 10 8 80
Pseudo-Target Saline High 19 11 57.9
Pseudo-Target Powder High 34 9 26.5
Pseudo-Target Bulk High 63 30 47.6
Pseudo-Target Sheet High 10 8 80

the effect of metal artifacts, some targets intensity is lower than their normal values. In

order to detect targets as much as possible, we select the intensity range in [700, 2500],

and the others are considered as background. Meanwhile, it is unavoidable to include

more non-targets in our segmentation results. Increasing the detection rate, i.e.

increasing the security, is very important, and the non-targets/false alarm can be also

be filtered by using supervised classification method.
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Table 5.3: Fine/2nd-layer Segmentation Results

Type Subtype Difficulty # Targets # Detected PD%
Target All All 407 382 93.9
Target Clay All 111 106 95.5
Target Rubber All 158 148 93.7
Target Saline All 138 128 92.8
Target Bulk All 270 251 93
Target Sheet All 137 131 95.6
Target All Low 77 73 94.8
Target Clay Low 29 29 100
Target Rubber Low 22 22 100
Target Saline Low 26 22 84.6
Target Bulk Low 56 52 92.9
Target Sheet Low 21 21 100
Target All High 317 297 93.7
Target Clay High 82 77 93.9
Target Rubber High 125 116 92.8
Target Saline High 110 104 94.5
Target Bulk High 201 187 93
Target Sheet High 116 110 94.8

Pseudo-Target All High 73 39 53.4
Pseudo-Target Clay High 10 10 100
Pseudo-Target Rubber High 10 7 70
Pseudo-Target Saline High 19 13 68.4
Pseudo-Target Powder High 34 9 26.5
Pseudo-Target Bulk High 63 32 50.8
Pseudo-Target Sheet High 10 7 70

5.4.1 Data Features

Feature selection [51, 52] is an important step in data mining, and it could affect the

performance of classifiers. The data set usually includes many non-informative/noisy or

redundant features which are not useful for the training process. Reducing those

features could improve classification accuracy. Feature selection could reduce the

overfitting, and also decrease training time by removing the redundancy.

The feature selection has two types. First, feature variables can be dependent or

independent to each other. Second, feature selection can be dependent or independent
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to the classifier/classification model. The combination from each type can form different

feature selection techniques. For example, feature selection can be independent of the

classifier and independent between feature variables. There are several ways to perform

feature selection, e.g. mutual information, information gain, etc. Or feature selection

can be correlated with the classification models. For some classifier, to get better

accuracy, feature vectors need to be normalized, e.g. as in SVM algorithm, or feature

variables can be transformed into non-linear form in classification model. The purpose

of feature selection is to find the more predictable variables. Before we apply the

classification algorithm to our targets detection in 3D CT luggage image, we need to

extract and evaluate the data features.

In a CT image, the pixel/voxel intensity values represent the physical and chemical

properties of the objects. And based on the segmentation results, we can extract various

features from the segmented regions in CT image. These features can be used to classify

the regions into targets or non-targets. From the segmented regions, based on the

intensity values, we can calculate the density, mass, number of voxels, average of

gradient, mean, mode, variance, and histogram of each region. The intensity histogram

of the segmented region is constructed by 100 bins in this work, and each bin can be

represented as one feature. So the total number of features vector is a 107 dimension

variables.

5.4.2 Model Selection

Cross Validation [53] is a model/classifier selection and evaluation method. It is a

process for tuning/finding the ”optimal” parameters of a selected model and evaluating

the performance of the model: how well it can be generalized to new/unseen data.

Usually, the classifier can make accurate predication on the data which appears in its

training data set, but can make wrong decisions on new/unseen data. One way to
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overcome this overfitting problem is to use a subset of the entire data as the training

data, and the rest can be used to test the performance of the trained model. K-fold

cross validation randomly divides the data set into K mutually exclusive subsets(folds)

of approximately equal size. Each time, one of the K fold is used as test set, the others

((K-1)folds) are used as the training set. The cross validation is repeated K times, and

all the data is used for both training and testing. At the end, the average error rate will

be estimated across the K folds. In reality, the choice of the number of folds is

dependent on the size of available data set. In our experiments, we tested with 3, 5, and

10 fold cross validation.

The procedure is:

1. Load the data, and split the data into training and test sets.

2. Select a model with parameters.

3. Train and evaluate the model in K-fold cross validation.

4. Tune the parameters and repeat step 3.

5. Select the best model and assess this final model in test/all data set.

The performance of the classifier from cross validation process is evaluated by using the

Receiver Operating Characteristic (ROC) curve. The ROC is a plot of true positive

rate(TPR, sensitivity, recall) against the false positive rate(FPR, type I error,

1-specificity). The best prediction is a point in the upper left corner or close to 100%

sensitivity and 100% specificity. It shows the tradeoff between the sensitivity and

specificity, i.e. an increase in sensitivity is accompanied by a decrease in specificity. We

will use the ROC curve in K-fold cross validation to evaluate the performance of

classification models and select the best model with its parameters for our target

detection in 3D CT luggage images.
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5.4.3 Experimental Results

Our experiments are performed on 188 3D CT luggage images. The ground truth, which

are manually labeled by experts, includes 407 targets, 73 pseudo-targets, and 1370

non-targets. In Chapter 5, our best segmentation in 188 3D CT luggage images resulted

in a classification performance with 94% PD and 85% PFA. The total segmented

objects are 1581: 382 targets(threats), 39 pseudo-targets, and 1160 non-targets

(non-threats). In this chapter, our objective is to detect the targets from the

non-targets by using supervised classification method[54]. The classification results are

represented as PD and PFA which are calculated based on the Eq. 5.3 and Eq. 5.4.

Our two-layers segmentation results contain 1542 detected objects, including 382 targets

and 1160 non-targets. For segmented object recognition, we applied machine learning

techniques to classify each object into targets or non-targets, and selected the best AUC

score as our best classification method. Because of the security requirement by a DHS

project, we need to maintain the PD around 90%, and reduce the PFA as much as

possible. For better comparison, along the ROC curve, we average all the PFA of each

fold at the PD around 90%. The details are in Table 5.4.

Table 5.4: Classification Results in 10-fold Cross Validation

10-fold Cross Validation
Two-class Classification Num Targets PD% Num FAs PFA%

RandomForest 367 90% 235 17%
ExtraTrees 362 89% 248 18%
AdaBoost 365 90% 184 13%
GradientBoosting 364 89% 206 15%
NearestNeighbors 363 89% 255 19%
SVM 364 89% 220 16%
LogisticRegression 365 90% 300 22%
LogisticRegression(Polynomial) 364 89% 232 17%
BayesianAdditiveRegressionTrees 362 89% 267 19%
GaussNaiveBayes(log) 363 89% 332 24%

75



After model selection, the tuned model is trained on half dataset, and tested on all

dataset. The classification results are shown in Table 5.5. As we can see, the best

classifier are boosting based methods, such as AdaBoost and GradientBoosting. We

have achieved good results with 90% PD and 6% PFA.

Table 5.5: Classification Results in Half Training and All Testing

Half Training and All Testing
Techniques Num Targets PD% Num FAs PFA%

RandomForest 367 90% 130 9%
ExtraTrees 367 90% 170 12%
AdaBoost 367 90% 80 6%
GradientBoosting 367 90% 83 6%
NearestNeighbors 367 90% 120 9%
SVM 367 90% 192 14%
LogisticRegression 367 90% 334 24%
LogisticRegression(Polynomial) 367 90% 221 16%
GaussNaiveBayes(log) 367 90% 405 30%
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Chapter 6

Scatter Correction by Non-Local Techniques

In conventional X-ray imaging (with X-ray panels), scattered radiation can produce

noise and a number of image artifacts, such as cupping, shadows, and decreased

soft-tissue contrast [56, 57]. In practice, hardware solutions such as anti-scatter grids

are often used to reduce scatter. However, the remaining scatter can still be significant

and additional software-based corrections are often desirable. Furthermore, good

software solutions can potentially reduce the amount of needed anti-scatter hardware,

thereby reducing cost. Indeed, software correction algorithms have begun to appear in

some commercial X-ray imaging products.

In today’s more advance software techniques, scatter correction is done in two steps

[56, 57]. First, a scatter model is estimated from training data. Then, the model is used

in a reconstruction algorithm to produce a corrected image. Although these techniques

have achieved some success, they still have some limitations that make it difficult to

fully meet clinical imaging quality demands. For example, scatter models estimated

from training data may not always fit particular patients well and this can lead to

insufficient scatter correction. Similarly, although these algorithms often employ

edge-preserving priors, such as the TV (total variation) or MRF (Markov random fields)

(e.g., see [56, 61]), to maintain good local contrast, such priors generally cannot preserve
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textural details, which are often important to diagnosis. Finally, these algorithms are

usually complex and iterative and current implementations tend to be too slow.

The purpose of this work is to develop better software scatter correction algorithms.

Towards that end, we take a broader view and observe that, mathematically, the

problem of scatter correction has a lot of similarities to a more traditional but still very

actively researched image processing problem, i.e., image restoration. Specifically,

scatter correction amounts to estimating the original image when it is corrupted by

Poisson noise and is also possibly distorted by a linear or a non-linear transformation,

while image restoration amounts to estimating the original image when it is corrupted

by Gaussian noise and is also possibly distorted by (usually) a linear transformation.

Indeed, the aforementioned TV and MRF based techniques were initially developed for

image restoration. Recently, a number of non-local techniques such as [58, 60] and their

extensions have significantly improved image restoration results. Specifically, they

provide better results by preserving textural details better, which is difficult by

traditional or even TV and MRF techniques which are local in nature. Furthermore,

recent advances in blind deconvolution (de-blurring) e.g., [62, 63] can potentially be

exploited to produce better scatter model estimation. In this work, we adapt some of

the non-local techniques for image de-noising and image restoration to scatter reduction

and demonstrate their efficacy. In addition to X-ray imaging, our techniques could also

be extended relatively straightforwardly to scatter correction in CT (computer

tomography).

6.1 Method

Let x = {xi} and s = {si}, respectively, be the ”true” intensity image and scatter,

where xi and si are, respectively, the true image pixel and scatter at location i. In X-ray
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imaging, x and s are not directly observable; instead, the observed image y = {yi} is a

Poisson random field with x+ s as mean. Specifically, each observed pixel yi is

yi ∼ Poisson(xi + si) (6.1)

where ∼ denotes that yi is a random sample from a Poisson distribution with mean

xi + si.

A simple and commonly used scatter model is (for all i)

si = s0 (6.2)

where s0 is a constant average scatter level. A more complex model [57] that allows one

to account for the effect of object thickness is a convolution model with

si = (x ∗ h)i + s0 (6.3)

where h is a kernel, ∗ is convolution, and s0 ≥ 0 is a constant. This model can also be

extended to a nonlinear form [57], with

si = (u ∗ h)i + s0 (6.4)

where u = {ui} is related to x through

ui = xi(log I0 − log xi) (6.5)

where I0 is a constant max intensity.
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Given a scatter model and the Poisson imaging model of (6.1), the problem of

(software) scatter correction becomes: given y, estimate x. A powerful approach to

solving this problem is the Bayesian MAP (maximum a posteriori) with

x̂ = arg max
x

{
log p(y|x) + log p(x)

}
(6.6)

where p(y|x) is the likelihood function and p(x) is the prior. In general, p(y|x) is

determined by the Poisson imaging and scatter model, p(x) is selected based on prior

knowledge or, more often, desired properties we want the corrected images to have, and

the maximization can be performed by using a relatively standard optimization

algorithm. We will discuss each of these in turn, starting with p(y|x).

Assume the pixels in the observed image y are conditionally independent given the true

image x and scatter s; then

p(y|x) =
∏
i

p(yi|x, s) (6.7)

where the product is over all pixel locations in y. In logarithm, we have

log p(y|x) =
∑
i

log p(yi|x, s) (6.8)

From the imaging model of (6.1), p(yi|x, s) is a Poisson distribution with mean

xi + si = λi, i.e.,

log p(yi|x, s) = log p(yi|λi) = log

[
λyii e

−λi

yi!

]
= − log(yi!) + yi log λi − λi. (6.9)

If we view log p(yi|λi) as a function of λi and approximate it by a second-order Taylor

series expansion around yi, we will have
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log p(yi|x, s) = log p(yi|λi) ' c(yi)−
(yi − λi)2

yi
(6.10)

where c(yi) is a function of only yi (therefore a constant because y is observed) and we

used the fact that

∂

∂λi
log p(yi|λi) = 0 (6.11)

for λi = yi. The approximation in eqn (6.10) converts the log-likelihood function

log p(y|x) into a quadratic function of λis and, consequently, a quadratic function of x

and s and this can potentially make the MAP optimization easier. Similar

approximations have been used successfully in iterative CT (computer tomography)

reconstruction [59].

Now we can consider the prior p(x). A popular choice in many image restoration and

reconstruction applications is the total variation (TV) prior. It can be written as

log p(x) = C1 − γ
∑
i

√
x2
i,h + x2

i,v (6.12)

where C1 and γ > 0 are constants and xi,h and xi,v are, respectively, the horizontal and

vertical pixel difference at location i (approximations to horizontal and vertical partial

derivatives). This prior tends to preserve strong edges but can smooth over texture

(which often have weak edges); it also favors images with constant patches (”staircases”

images). Recently, several priors were proposed to overcome this problem. One is the

non-local means (NLM) prior [58], with

log p(x) = C2 − γ
∑
i 6=j

wi,j(xi − xj)2 (6.13)
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where C2 and γ > 0 are constants and the sum is over all pixel pairs and wi,j is a weight

that comes from the difference between the patches that surround xi and xj, defined as

wi,j =
1∑

j e
−β

∑
k(xi+k−xj+k)2

e−β
∑
k(xi+k−xj+k)2 (6.14)

where β > 0 is a scale parameter and the sum is over all pixels in the patches.

Intuitively, the NLM prior tends to average pixels that have similar surroundings or

texture and does not average pixels that have different texture; hence, it is potentially

more texture-preserving. Another prior similar to the NLM is the non-local TV (NLTV)

(e.g., see [60]), defined as

log p(x) = C3 − γ
∑
i

√∑
j

wi,j(xi − xj)2 (6.15)

where C3 and γ > 0 are constants and the weight wi,j is the same as that in the NLM

prior. This prior has been reported to have slightly better results than the NLM for

image restoration [60] but the NLM, with its quadratic form, is easier to optimize and is

preferred here.

There are three practical issues related to computing the weights for the NLM prior.

The first is that to compute the weights, we need the true image x, which is unknown.

One way to solve this problem is to replace the true image by an estimate, obtained

separately with a different prior (e.g., with a TV prior or a non-weighted quadratic

prior) and compute the weights from the estimate [60]. The second practical issue is

that we need to choose the size of the patch that surrounds a pixel. Furthermore, since

computing weights for all pixel pairs in an image is computationally expensive, we only

compute the weights for two pixels if they are within a ”search window”. In this work,

we followed [60] to choose the size of the patch and the size of the search window to be

5× 5 and 31× 31, respectively. The third practical issue is the selection of parameter β,
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see eqn (6.14). In the original NLM work [58], β was set to be proportional to 1/σ2,

where σ2 is the variance of the observation noise. The idea is that higher noise will

make the calculated patch-difference less reliable hence, the weights should be more

“spread out.” In our current work, through the quadratic approximation of eqn (6.10),

the noise variance is yi, not a constant. Hence, in our NLM based algorithm, β is

location dependent and is set to be proportional to 1/yi.

Finally, for the maximization in our MAP approach, we used a relatively standard

gradient descent algorithm.

6.2 Results

We tested our NLM prior based scatter correction algorithm on simulated and real

images and some typical results are shown in Figs. 6.1 to 6.6 (to view some of the image

details better, we suggest to use 200% to 400% when viewing the pdf file). For

performance evaluation, we used the PSNR (peak signal-to-noise ratio) when ground

truth is available; the PSNR essentially measures estimation error, the larger the PSNR,

the smaller the error. When ground truth is not available, we used visual inspection and

some ad hoc measures, such as the contrast before and after correction [64, 65].

Generally, the ad hoc measures tend to agree with the results of visual inspection.

In Fig. 6.1, our NLM correction algorithm was used to correct a scattered image

simulated with the simplest scatter model, i.e., the constant scatter level model of eqn

(6.2). For purpose of comparison, we also provided the un-scattered image (ground

truth) and result obtained by using a TV prior based algorithm. In addition to images,

profiles along a typical horizontal line of the images were also provided to allow another

view of the results. As can be seen from Fig. 6.1, both the TV and NLM prior based

algorithms generated good results but the NLM’s result is better.
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In Fig. 6.3, the experiment in Fig. 6.1 was repeated using an X-ray image of a

phantom. Here the scattered image is obtained by placing a plexiglass sheet in front of

the phantom while the ”clinical ground truth” image was obtained by adding an

anti-scatter grid in front of the X-ray sensor. Since the clinical ground truth and the

corrected images have different dynamic ranges, PSNR calculation is not feasible. As

can be seen in Fig. 6.3, again both the TV and NLM algorithms corrected a lot of the

scatter but the result from the NLM has finer detail and does not have blocky artifacts.

In Fig. 6.4, our NLM correction algorithm was used to correct a scattered image

simulated with the nonlinear convolution scatter model of eqns (6.4) and (6.5), with h a

Gaussian kernel, s0 = 0, and I0 a constant corresponding to the maximum intensity

level for the X-ray imaging process. Furthermore, the two-dimensional Gaussian kernel

13× 13 has a variance of 4 and is scaled by a factor of 0.75. As can be seen in Fig. 6.4,

the scattered image not only contains Poisson noise (speckles) but also contains blur.

Both the TV and NLM algorithms generated good correction results but the latter’s

result is better.

In Fig. 6.6, the experiment in Fig. 6.4 was repeated using an X-ray image of an

abdomen phantom. Here the scatter was ”generated naturally” by the internal

structures of the phantom itself. Since the effect of the scatter and scatter correction is

difficult to see due to the large size of the images, we provide zoomed-in views of some

of the corresponding regions. Again, both the TV and NLM algorithms were able to

make the input (scattered) image sharper and improve contrast but the NLM algorithm

does not produce much blocky artifacts.
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6.3 Conclusion and Future Work

In this work, we adapted the non-local mean techniques originally proposed for image

restoration to the problem of scatter correction. Our algorithm is based on a Bayesian

MAP approach, where the likelihood function comes from scatter models and the prior

comes from a non-local means prior. Experimental results indicate that our algorithm is

promising for scatter correction: it reduces the effect of scatter, such as noise and blur,

while preserving textural details. For future work, we plan to incorporate scatter model

estimation into our algorithm and also accelerate the algorithm by multi-resolution

processing.
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(a) (b)

(c) (d)

Figure 6.1: Scatter correction on a simulated image. Scatter model: the constant scatter
level. (a)ground truth; (b)scattered image; (c)result from TV, PSNR=25.57dB; (d)result
from our NLM algorithm, PSNR=35.53dB.
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Figure 6.2: Profile from a horizontal line (location indicated by the red line in (a)) for
the images in Figure 6.1 (a) to (d)
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(a) (b)

(c) (d)

Figure 6.3: Scatter correction on a phantom image. Scatter model: the constant scatter
level. The contrast is calculated using the method in [64, 65]: the blue line and red line
windows indicate, respectively, the locations for ”background” and ”signal” for this
calculation. (a)clinical ground truth, contrast=6.68%; (b)scattered image,
contrast=3.32%; (c)result from TV, contrast=9.10%; (d)result from our NLM algorithm,
contrast=9.51%.
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(a) (b)

(c) (d)

Figure 6.4: Scatter correction on a simulated image. Scatter model: nonlinear
convolution. (a)ground truth; (b)scattered image; (c)result from TV, PSNR=27.65dB;
(d)result from our NLM algorithm, PSNR=36.78dB.
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Figure 6.5: Profile from a horizontal line (location indicated by the red line in (a)) for
the images in Figure 6.4 (a) to (d)
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(a)

(b)

(c)

Figure 6.6: Scatter correction on an abdomen phantom image. Scatter model: nonlinear
convolution. The contrast is calculated using the method in [64, 65]: the dashed line and
solid line windows indicate, respectively, the locations for ”background” and ”signal” for
this calculation. (a)input image, contrast=10.70%; (b)result from TV, contrast=12.56%;
(c)result from our NLM algorithm, contrast=12.92%.
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(a)

(b)

Figure 6.7: Scatter correction on an abdomen phantom image. (d)a zoomed-in region of
(b); (e)a zoomed-in region of (c).
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Appendix A: Derivation of EM GMM

θ(t+1) = arg max
θ

{
Q(θ|θ(t))

}
(6.16)

∇θ
{
Q(θ|θ(t))

}
= 0 (6.17)

∇θ

{∑
i

∑
j

E[zi,j|yi,θ(t)] log p(yi|zj,θ(t)) +
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

}
= 0 (6.18)

∇θ

{∑
i

∑
j

E[zi,j|yi,θ(t)] log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

}
= 0 (6.19)

Estimation of µ̂

∇µ
{
Q(θ|θ(t))

}
= 0 (6.20)
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∇µj

{∑
i

∑
j

E[zi,j|yi,θ(t)] log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})}

= 0

(6.21)

∑
i

E[zi,j|yi,θ(t)]
yi − µj

Σj

= 0 (6.22)

µ̂
(t+1)
j =

∑n
i=1E[zi,j|yi,θ(t)]yi∑n
i=1E[zi,j|yi,θ(t)]

(6.23)

Estimation of Σ̂

∇Σ

{
Q(θ|θ(t))

}
= 0 (6.24)

∇Σj

{∑
i

∑
j

E[zi,j|yi,θ(t)] log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})}

= 0

(6.25)

−1

2

∑
i

E[zi,j|yi,θ(t)]
1

|Σj|
|Σj|(Σj)

−1+
1

2

∑
i

E[zi,j|yi,θ(t)](Σj)
−1(yi − µj)T (yi − µj)(Σj)

−1 = 0

(6.26)

Σ̂
(t+1)
j =

∑n
i=1 E[zi,j|yi,θ(t)](yi − µ̂(t+1)

j )
T

(yi − µ̂(t+1)
j )∑n

i=1 E[zi,j|yi,θ(t)]
(6.27)

Estimation of π̂
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∇π
{
Q(θ|θ(t))

}
= 0 (6.28)

∇π

{∑
i

∑
j

E[zi,j|yi,θ(t)] log πj

}
= 0 (6.29)

Given the equation of
∑K

j=1 πj = 1,

Λ =
∑
i

∑
j

E[zi,j|yi,θ(t)] log πj + λ

(∑
j

πj − 1

)
(6.30)

∇π {Λ} = 0 (6.31)

∑
i

E[zi,j|yi,θ(t)] ∗ 1

πj
+ λ = 0

∑
i

E[zi,j|yi,θ(t)] ∗ 1

πj
= −λπj∑

j

∑
i

E[zi,j|yi,θ(t)] ∗ 1

πj
=
∑
j

(−λπj)

n = −λ

π̂
(t+1)
j =

∑n
i=1E[zi,j|yi,θ(t)]

n
(6.32)
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Appendix B: Derivation of MAP EM GMM

Q′(θ|θ(t)) =
∑
i

∑
j

ri,j log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
i

∑
j

ri,j log πj +
∑
j

log

(
1

B(α)

)
+
∑
j

(αi − 1) log πj

+
∑
j

log

 1

(2π)d/2
∣∣∣ 1
β0

Σj

∣∣∣1/2 exp

{
−1

2
(µj −m0)T

(
1

β0

Σj

)−1

(µj −m0)

}
+
∑
j

log

(
|S0|ν0/2

2
ν0d
2 Γd(

ν0
2

)
|Σj|−(ν0+d+1)/2 exp

{
−1

2
Tr(S0Σj

−1)

})
(6.33)

θ(t+1) = arg max
θ

{
Q′(θ|θ(t))

}
(6.34)

∇θ
{
Q′(θ|θ(t))

}
= 0 (6.35)

Estimation of µ̂′

∇µ
{
Q′(θ|θ(t))

}
= 0 (6.36)
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∇µj

{∑
i

∑
j

ri,j log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
j

log

 1

(2π)d/2
∣∣∣ 1
β0

Σj

∣∣∣1/2 exp

{
−1

2
(µj −m0)T

(
1

β0

Σj

)−1

(µj −m0)

}
 = 0 (6.37)

∑
i

ri,j
yi − µj

Σj

+
β0(µj −m0)

Σj

= 0 (6.38)

µ̂
(t+1)
j =

∑n
i=1 ri,jyi + β0m0∑n

i=1 ri,j + β0

(6.39)

Estimation of Σ̂′

∇Σ

{
Q′(θ|θ(t))

}
= 0 (6.40)

∇Σj

{∑
i

∑
j

ri,j log

(
1

(2π)d/2|Σj|1/2
exp

{
−1

2
(yi − µj)T (Σj)

−1(yi − µj)
})

+
∑
j

log

 1

(2π)d/2
∣∣∣ 1
β0

Σj

∣∣∣1/2 exp

{
−1

2
(µj −m0)T

(
1

β0

Σj

)−1

(µj −m0)

}
+
∑
j

log

(
|S0|ν0/2

2
ν0d
2 Γd(

ν0
2

)
|Σj|−(ν0+d+1)/2 exp

{
−1

2
Tr(S0Σj

−1)

})}
= 0 (6.41)
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− 1

2

∑
i

ri,j
1

|Σj|
|Σj|(Σj)

−1 +
1

2

∑
i

ri,j(Σj)
−1(yi − µj)T (yi − µj)(Σj)

−1

− 1

2

1

β0

1∣∣∣ 1
β0

Σj

∣∣∣
∣∣∣∣ 1

β0

Σj

∣∣∣∣( 1

β0

Σj

)−1

+
1

2

1

β0

(
1

β0

Σj

)−1

(µj −m0)T (µj −m0)

(
1

β0

Σj

)−1

− ν0 + d+ 1

2

1

|Σj|
|Σj|(Σj)

−1 +
1

2
(Σj)

−1S0(Σj)
−1 = 0 (6.42)

After simplifying the above equation, we can get

Σ̂
(t+1)
j =

S0 +
∑n

i=1 ri,j

(
yi − µ̂(t+1)

j

)T(
yi − µ̂(t+1)

j

)
+ β0

(
µ̂

(t+1)
j −m0

)T (
µ̂

(t+1)
j −m0

)
∑n

i=1 ri,j + β0 + ν0 +D + 2

(6.43)

Estimation of π̂′

∇π
{
Q′(θ|θ(t))

}
= 0 (6.44)

∇π

{∑
i

∑
j

ri,j log πj +
∑
j

(αi − 1) log πj

}
= 0 (6.45)

Given the equation of
∑K

j=1 πj = 1,

Λ′ =
∑
i

∑
j

ri,j log πj +
∑
j

(αi − 1) log πj + λ′

(∑
j

πj − 1

)
(6.46)

∇π {Λ′} = 0 (6.47)
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∑
i

ri,j ∗
1

πj
+ αj ∗

1

πj
− 1

πj
+ λ′ = 0∑

i

ri,j + (αj − 1) = −λ′πj∑
j

∑
i

ri,j +
∑
j

(αj − 1) =
∑
j

(−λ′πj)

n+
∑
j

αj −K = −λ′

π̂
(t+1)
j =

∑n
i=1 ri,j + αj − 1

n+
∑K

j=1 αj −K
(6.48)
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