View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by University of Wisconsin-Milwaukee

University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

August 2017

Nonlocal Electrostatics in Spherical Geometries

Andrew Bolanowski

University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
b Part of the Mathematics Commons

Recommended Citation

Bolanowski, Andrew, "Nonlocal Electrostatics in Spherical Geometries" (2017). Theses and Dissertations. 1588.
https://dc.uwm.edu/etd/1588

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations

by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.


https://core.ac.uk/display/217193278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1588?utm_source=dc.uwm.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

NONLOCAL ELECTROSTATICS IN SPHERICAL GEOMETRIES

by

Andrew Bolanowski

A Dissertation Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Mathematics

at
The University of Wisconsin-Milwaukee

August 2017



ABSTRACT

NONLOCAL ELECTROSTATICS IN SPHERICAL GEOMETRIES

by

Andrew Bolanowski

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Lijing Sun

Nonlocal continuum electrostatic models have been used numerically in protein simulations, but
analytic solutions have been absent. In this paper, two modified nonlocal continuum electro-
static models, the Lorentzian Model and a Linear Poisson-Boltzmann Model, are presented for a
monatomic ion treated as a dielectric continuum ball. These models are then solved analytically
using a system of differential equations for the charge distributed within the ion ball. This is done
in more detail for a point charge and a charge distributed within a smaller ball. As the solutions

are a series, their convergence is verified and criteria for improved convergence is given.
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1 Introduction

Electostatic models are used in the simulation of protein. In particular, they have been used to
determine the electrostatic potential for protein embedded in a solvent domain. In the literature,
when such models are discussed, they are derived into integral of differential equations. Depending
on the specific model, numerical methods have been designed and a series of numerical tests carried
out, such as in [8]. It is also know that differential equations can be decomposed into orthogonal
components and the individual parts solved as a means to solve the original equations. This idea
of orthogonal decomposition has been used to produce some numerical methods [9]. However,
while it produces solutions, they are only as a limit of convergent steps in the numerical algorithm.
Thus, the main purpose of this paper is to derive solutions analytically under a particular model,
the Lorentzian Model, to be given in detail in Section 2, as well as a Nonlocal Modified Linear

Poisson-Boltzmann Model, given in detail in Section 6.

One of the features of electrostatic model equations is a p function, which gives the source charges
of the system. These typically are made to represent point charges, which are represented with
Dirac delta functions. Numerical methods are then either designed to exploit this or work around

the singularity. [4]. Analytic techniques do not require such restrictions to p to create solutions.

The trade off is that while numerical techniques may not require our domains to be well-behaved,

the techniques of this paper require the domains to be balls.

As is frequent in the discussion of electrostatic models, we begin in Section 1.1 discussing the
derivation of the Lorentzian Model. We solve the differential equations by splitting it into a system
and decomposing into orthogonal components, the details of which begin in Section 3. These
analytic solutions are verified component-wise in Section 4. Finally convergence is verified in Section
5. Much of this work is repeated for the second model, the Nonlocal Modified Linear Poisson-
Boltzmanm Model from Section 6. The solution is derived in Section 6.1, verified component-wise
in Section6.2, and shown to convergence in Section 6.3. Finally, we comment in Section 7 about

the necessity of studying an electrostatic model wherein the protein region is only a ball.



1.1 Model Origin

Let R? = Dy U D, UT be the decomposition of the space into a water solvent region, open set Dy,
that surrounds a the region holding the protein, open set D,,. I" will denote the interface between
them. Since D), is to represent a protein, or any finite substance we might wish to study, D, will
be bounded and connected. There are options for the domain to change over time, but the models
we will study will be independent of time. The developed formulas also assume that the domains

are well-behaved, so let us assume that I' is smooth.

Figure 1: General appearance of a protein in water

Given a dielectric function €(r, r’), displacement field d, electric field e, charge density function p(r),

and electrostatic potential function ®(r), it is known that they will satisfy the following relations

2]

e(r) = -Vo(r) (1)

d(r) = ¢ /R3 e(r,r")e(r')dr’ (3)



Fle

o 0
where V = (%, Fy’

).

Before we introduce a specific dielectric function, it is necessary to define some of the constants
that will appear in many such functions: the relative permittivities. We will denote the linear
relative permittivities of the two mediums by €5 and €, respectively. €5, will represent the relative
permittivity of water under high frequencies. These permittivities are relative to the permittivity
of a vacuum, given by ¢y, measured in Farad per meter. These measure the ability of the substance

to store an electrical charge.

While presented as a constant, these relative permittivities do vary in terms of the frequency of
the waves applied to it as well as the temperature of the surface. At room temperature, possible
permittivity values for water are e; = 80, €sc = 1.8 [9]. For any temperature, the high frequencies

are less able of interacting with the material, and thus €5 > €.

If we assume that the protein substance is uniform in D,, it is reasonable for e(r,r') = €,0(r — r’)
for r € D,. While the analogous definition for the water region is reasonable, as water has been

studied, more accurate models have been developed [1, 4]. We shall focus on that dielectric function:

e(r,r') =¢,0(r—1') reD, (4)

N 1 —Ie x|/ D / 5
G(F,I')—(GS—EOO)me rec S,I‘%I‘ ()
e(r,r')=¢x rE€DGr=T1 (6)

This introduces a new parameter, A, representing the polarization correlations in water molecules.
There is disagreement as to what values for A\ are appropriate as they are often chosen by comparing
experiments and simulations. Values between 3 and 30 Angstroms have been used where |r| is also

measured in Angstroms. [9, 1].



We may apply (3) to obtain

d(r) = e, VO(r) re D, (7)
d(r) = €0(€ac VP(r) + (€5 — €00) /Rg Qx(r —r)\VO(r")dr') re D, (8)
where
LIS\
Qi(r) = me r#0 9)

Applying V - d(r) = p(r) gives differential equations to solve for ®, given as (15) and (16).

Since we are given distinct functions for regions D, and D, it is convenient to define ®, and @, to
be @ restricted to those spaces. For that matter, we shall use subscripts of p and s to denote that

the variable in question relates to D, and D, respectively.

We also shall need some conditions on the values along the boundary, I'. We know from linear

dielectric theory that we have continuity across the interface [2]. That is,

D,(r) =P4(r) rel (10)

where ®,(r) and ®4(r) are understood to be the continuous extensions of the functions onto the
boundary. It is also known that the displacement field has continuity in the normal vector direction

of I' [2]. That is,

Odp(r)  Ods(r)
on(r)  On(r)

rel (11)



which gives us

epVO(r) -n(r) = e VEO(r) - n(r) + (€5 — €x) /1R3 Qx(r —1)VO(r')dr') -n(r) rel (12)

where n(r) is the normal vector to I". As Dj is unbounded, for the purposes of having ® represent

the potential, we should also note that ®((r)) — 0 as |r| — oo.

As we would expect the charges to come from the protein region rather than from water, we will
assume that p is 0 in D,. If one wanted to include a charge on I'; we would develop a new set of
equations from taking the limit as the charge approaches the boundary. Care needs to be made
for modifying the boundary conditions in that case. As defined, these boundary conditions, (10)
and (12), give us (18) and (19), completing the formulation of the Lorentzian Model. In other
models and their derivations, the integrals are made over D, rather than over all of R3. Working
on those models will require care concerning the swapping of integration and differentiation if I" is

not sufficiently well-behaved.

Before presenting the Lorentzian Model, let us also discuss p,. Depending on what is known about
the physical system it is supposed to represent, different p are used. For instance, if the protein is
known to have atoms at locations {r;} with respective charge numbers ¢;, and elementary charge

€c, Pp can be estimated by

pp(r) = ey ¢;d(r 1) (13)

J
where ¢ is the Dirac delta distribution. Another interpretation is to view the charges as evenly

distributed over balls of radius b;.

3
pp(r) =Y ¢ T3 1B b)) (r) (14)
J j



In later sections, we will explore a point charge model (13) and the ball charge model (14), but
we do not restrict ourselves to only those cases during our calculations. Naturally, since p, may
not be continuous, we may only be able to guarantee a weak solution for what we desire, ®, the

electrostatic potential function.

2 Lorentzian Model

Explicitly written, the Lorentzian Model, a nonlocal Poisson dielectric model is given by [7]

~AR,(x) = Zp,(1) TED, (15)
—€0AD,(r) — (65 — €00)V - v(r) =0 r € Dy (16)
Oi(r) >0 as|r| > o (17)
subject to the interface equations
Oy(r) =Py(r) rel (18)

)




As we shall desire solutions, we present Theorem 2.1.

Theorem 2.1. Let €p, €, €5,a > 0, be constants with €5 > €. Also let €g = 1.

D, ={r|r <a}, I ={r|r =a}, Dy = {r|r > a}

Let p, be a distribution defined on D,, with support inside some closed set X within D,.

po |lpp(r)]dr < co. Denote 5 /& by w.

Let

Let P denote the Associated Legendre polynomial, in(r), kn(r) denote the modified spherical Bessel

functions as defined in (185), (182), (183)

Define ®, and ®, by

n,m 'rL T Gnm m m
By (r) = 0L Yo (Crmmyn 4 TG D)) prn(cos )i
30 S (G]G0 pincog )i

n
€p €pa

D (I‘) = ZZO:O Z:’IZ’L:—TL (Es;eoo) Bs,n,mkn (WT')P;ZL(COS (b)eim@

+ o0 Coe g TP (cos )™

where the spherical coordinates of r are given by (r, ¢, ).

Let up, and u, defined on D), and Dy be defined by

wp(r) = Yoo Ve~ Apan — 15 Jin(§) By (cos ¢)e™?
+ 220:0 an:_n(cp,n,m rt 4 r C::(,Irs(a) )Pn (COS ¢)eim9

€p

00 Y ey MG () = A2 — Hyy () + Fei(5)) Py (cos g™

(21)



ug(r) = ZZO:O ZZ:_R _:—:OBS%mkn(wr)Pg”(cos gf))eime

+ EZO:() an:—n Ds n,m T_n_IP,T(COS ¢)eim9

€s

satisfy

) = (@ )() = [ @l = )B()ar (24

The coefficients within ®,, ®p, us, and u, are given by (74),(75), (76), (77). These in turn are
defined by (68), (69), (70), (1), (48), (49).

Then outside of X, ®, and ®,, weakly solve (15),(16), (17) subject to (18),(19). The convergence

of the series is geometric with the ratio dependent on p.

To prove Theorem 2.1, we shall need to derive a solution. This will produce function u. We will
need to prove Lemma 4.1 to show this u behaves. Then, as the solution is a series, we shall need

to prove converge in Lemma 5.1.

It is worth mentioning that while the model is still valid when D,, is not a ball, we restrict ourselves to
this case for the purposes of having analytical solutions. While more complicated protein structures
will have more interesting domains, the monatomic ion is naturally represented by a ball. Thus,

the D, = {r|r < a}, I = {r|r = a}, Ds = {r|r > a} case is worth studying in its own right.

All of our equations discussed earlier are linear in terms of p. Thus, as e. and €y occur only with
the presence of p, we may solve the differential equations with e, = ¢y = 1 and then scale our result

by the true e. and ¢g.

One might wonder how essential it is for I' to be a sphere centered at the origin. We shall mention
the difficulties that arise if I' is not a sphere when we use the properties of the sphere. Such

observations will also be summarized in the remarks at the end.

We solve the differential equations in section 3.



Figure 2: Spherical appearance of a protein in water

3 Deriving the Solution

3.1 Split into a system

We can create an equivalent version of (16) by recognizing that differentiation of a convolution is
the convolution of the derivative in the second function, and that all functions applying to this set

of differential equations go to 0 at infinity. Define u by

lr) = (Qu = )r) = [ Qu(r 1) B (25)

Observing that @y solves —A2AQ\(r) + Qx(r) = §(r), we have that u solves

~A?Au(r) +u(r) — ®(r) =0

When divided by A2, and inserted into (16), we get



_7600)((1)8(1-) —u(r))=0 reD, (26)

(€s
—€cAD4(r) + 2

With u,(r) = u(r) for r € D), and u,(r) = u(r) for r € D, we can reformulate the equations as

—epAdy(r) = pp(r) re Dy (27)

e AD(r) + (fsgjw)(@s(r) —uy(r) =0 re D (28)
~A2Auy(r) +uy(r) — ®y(r) =0 reD, (29)
—A2Aug(r) + us(r) — dy(r) =0 re D, (30)

To formulate the interface equations, since u is continuously differentiable,

up(r) = us(r) rerl (31)

rel (32)

Since ®4(r) — 0 as |r| — oo, the same applies to us. That is, us(r) — 0 as |r| — oo.

The first original interface equation remains:

10



dus(r) . 0P, (r)
on(r) 7 On(r)

=0 rel (34)

So, our new problem to solve is (27), (28), (29), (30) subject to (31), (32), (33), (34). For the solution
to this system to be consistent with our original problem, we shall also need to verify the other

definition for u given by (25).

To solve (27),(29) and (28), (30), for different choices of A, B,C, we have the following system of

equations

~AAf(r) + Bf(x) - By(r) = h(r) (35)

—CAg(r) +g(r) - f(r) =0 (36)

C(35)-A(36) gives a single equation to solve for f — g

—ACA(f = g)(r) + (BC + A)(f — g)(r) = Ch(r) (37)

-(35)-B(36) gives a single equation to solve for Af + C'Bg

A(Af+CBg)(r) = —h(r) (38)

From here, we can derive solutions for f and g.

11



_ CB(f —g) +(Af + CBy)

/ CB+ A
_ —A(f—-g)+ (Af + CByg)
9= CB+A

These will be used to solve (35) and (36)

with A = ¢,, B=0, C = X*,h = p, for (27) and (29) and with A = es, B = “35=, C =A*,h =0
for (28) and (30). In both cases, f =®, g=u

3.2 Solving the system (homogeneous part)

As with any differential equation, we desire a particular solution and homogeneous solutions
and then we will later use the boundary conditions to determine the correct homogeneous so-
lution to pair with the particular. Occasionally, such as in this case, we are also able to de-
compose the problem into orthogonal components and solve them separately. The complete-
ness and orthogonality of spherical harmonics, P (cos¢)e™™?, defined in the appendix at (185)
, on the sphere implies that it is enough to solve the homogeneous equation with solutions of
the form f(r) = fum(r)P"(cos¢)e™® and then sum the solutions over n = 0,1,2,3... and

m=-n,—n+1,-—n+2 ...n 5

Then, since

cos ¢
in

Af = ek 47+ S

fo + foo + sh112<;5f99]’ (39)

we get

12



20 (1) P 03 )™
12 f1 ()P (cos )
A frm(r) Py (cos §)e™ = — —2 ()P (cos ) cos pei™®?

+(1 = 082 §)2 frm (r) P (cos ¢)e'™

2 foan () P (c0s )™

To simplify this, we appeal to the properties of the Associated Legendre polynomials given in (189),

and we get

A fom(r) Py (cos g)e™? = %2 [+ 1) frn (1) + 2 f1 g (1) + 72 f1 1 ()] P (cos ¢)e™™. (40)

As an ordinary differential equation, A f, »,(r) = 0 has independent solutions r™ and r~~1. Thus,

Af = 0 has solution

:i z”: Cn,mr”Pﬁ(cos@eima—Fi Zn: Dmmr’”’lP[L”(coscb)eime. (41)

n=0m=-—n n=0m=-—n

As an ordinary differential equation, A fy, (1) — k2 fnm(r) = 0 with &£ > 0 has independent solutions

in(kr) and ky,(kr) from (186) and (187) Thus, Af — k?f = 0, with x > 0 has solution

:i Zn: Ap min (k1) Pl (cos ¢) ’mg—i—z Z Bomkn (k1) P (cos ¢)e™?. (42)

n=0m=-n n=0m=—n

The next step is to apply the required constants of A, B,C to solve for f = &, g = u in 37
and 38. Before giving the results, recall how we desire solutions that are bounded as r — oo
in Dy and as r — 0 in D,. Therefore from the limits of 7,, and k,, Bpnm = Dpnm = 0, and
Asnm = Csnm = 0. It is worth mentioning that depending on the choice of p, ®, and u, may

be unbounded. Therefore, all that we can enforce is that the homogeneous solution is bounded.

13



Merely substituting will produce the homogeneous solutions

Z Z Pﬂm an(COng))eime

n=0m=-—n

D DN S C’;%T”Pfl”(cos p)e™?

Bo(r) = 200y Son = B k(5[ 5) P (cos ¢)e™

+ ZZO:O an:7n Dsﬁ,n,m Tfnflprrln(cos ¢)eim0

s

us,h(r) = ZZO:O an:—n _:—:QBsmmkn(g1 /:TZ)P,T(COS ¢)eim0

+ 30 o B pmnml P cog ) et mO

s

We will abbreviate the frequently occurring /\ by w.

3.3 Finding the particular solution

im@

Again, we note that since P}"(cos ¢)e"™" is complete and orthogonal on the sphere, we can decom-

pose f(r) on R?

Z Z Frnn (1) Py (cos ¢) ™

n=0m=—n

Define the normalization factor

4 (n + m)!
(2n+1)(n —m)!

2m -
Cnm = / P™(cos ¢)e™? P (cos ¢)eim? sin ¢pdfdgp =
0o Jo

Then by orthogonality,

14



21
/ / f(r (cos gb)emw sin ¢pdfdo = frm(1)cnm

2
— P cos b)eiml
Jrm( / / f(r (cos @p)e™? sin pdld¢p (43)

Cn,m

P (cos ¢)e'™?
\VCn,m

thonormal sequence. Similar to the 27 factor in the Fourier transforms, the modifications do not

In the literature, the spherical harmonics are often normalized as to create an or-

fundamentally change any results. For instance, the orthogonality of P™(cos ¢)e”™ respect to the

sin(¢)d¢ integral on a sphere tells us that f = ¢ if fom = gnm, Vn,m

Now we work to solve the inhomogeneous problems (37) and (38) with A =¢,, B=0,C =)} h =

pps [ = ®, 9 = u, we proceed with those substitutions using (40).
imé

Then, by equating coefficients of P}*(cos ¢)e"™" | we get

%(—n(n + 1)(@)nm(r) + 27 (@)1, (1) + 12 (@) 1 (1)) = = ppinm (1) (44)

L4 1) = 3@ = wnn(r) + 20(® — u)ly () + 13(@ — ) (1)) = L2

45
g v , ” w(49)

Then (44) will solve (38), and (45) will solve (37).

So, to solve (44) , we identify independent solutions to the homogeneous equation
1

3 (=n(n + 1)(€®)nm(r) + 2r(ep®);, (r) + r(ep @)1y () = 0

—n—1

As mentioned before, they are yi(r) = ™ and ya(r) = r Thus, using (209), a particular

solution to (44) is

15



(1) T
P _ _.n p,n,m —n—1 p,n,m
(ep )n,m r / o+ 1 +r o+ 1

1 n —n —1l—"n n
(€p®)p,m (1) = o1 (—T /7’1 Pp.nm(r)dr + 1 1 /7‘ +2pp,n7m(7’)dr> . (46)

To solve (45) , we identify the solutions to the homogeneous equation

(1) = 557 2(@ () + 20(® — ) (r) + (@ — w)h(r) = 0.

They are y1(r) = i,(r/A) and ya2(r) = kn(r/A). Thus, using (209), a particular solution to (45) is

. T kn(i)ppnm(r)r2 r / in(z)p nm(r)r2
@ _ nm — n _ A 1Yy d kn _ )\ p7 ) d
(@ = W = —ial§) [ I () S

r

(@ = W(r) = ;A <—¢n(:) [y + 1) [ z‘n(:)pp,n,mmr?dr) )

The choice of bounds of integration will change the particular solution by a homogeneous solution.

To produce specific solutions, we will choose solutions

1
2n+1

(€p®)p,m(r) = <—r”/0 tl_”ppymm(t)dt—l—r_l_"/o t"+2pp7n,m(t)dt> (48)

(@~ wum(r) = (—z‘n(;) /0 S )opm (021 k() /0 ' in(i)pnmm(t)ﬁdt) (9

€p

16



3.4 Solving the system

For ease of notation, we will denote

(@ —u)pm(r) = eplAHn,m(T) (50)
(€p®)nm(r) = Grm(r). (51)

Thus for the components of the particular solution, we have

(I)n,m(r) = Gng(r) (52)
o (7) ;A(Aanm Ho)(r) (53)

Thus, the full general solutions become

C n,m 3
Pp(r) =D 00> omen ”;T‘T”Pgb(cos $)e™? (54)

+ 000 Yo L P (cos g)et™

up(r) = 00 0 S~ Ap i (5) P (cos ¢)e™?
+ 30 o, S gn P (cos )i (55)

€p

B
+ Z;L.O:() Z?n:,n EZ)j()\Gm )( )P (cos ¢)e imo

And as the equations defined in Dg had no non-homogeneous part, we repeat their general forms

Py(r) = ZZO:O an:—n (65;600)Bs,n,mkn(wr)szn(cos ¢)eim9
F S, PP s )i

17



ug(r) = ZZO:O ZZ:_R _:—:OBS%mkn(wr)Pg”(cos gf))eime
+ o0 Coe g TP (cos )™

s

(57)

For the purposes of series convergence, to be shown later in Section 5, it will be more convenient

to write the solutions as

By (r) = 0o Yo (Crmmpnt 4 TG pincog )i

() _ r"Gumfa) < (58)
+ Zn:O Zmzfn( n;’; 21 E:JLL “ )Pm(COS ¢)ezm9
up(r) =320 S0 (A _ Lm())z (%) P (cos ¢)ei™?
P n=0 m=—n p,N,M ( Yep )i )
+2 o Zszn(cf’;;’m 4 C:;C’LT(G))Pn (cos ¢)e'™d . (59)

%) n r""Gn,m(a nm(a): (r m ;
+ 0 Coe e ey (MG (r) = Nl H () 4 Bl (5)) B (cos @)™

Observe that (56), (57), (58), (59) match (21), (23), (20), (22) of Theorem 2.1.

We wish to apply the boundary equations, (31),(32),(33), (34), but as written, they are equating
series over I'. We may integrate these series over I' respect to any P/ (cos ¢)e?™ to eliminate all
but one of the terms in the series. Then we need only equate the coefficients to P™(cos ¢)e™™?.

This tells us that equating the coefficients to P (cos ¢)e™™? is not only a sufficient condition, but

also a necessary one to achieve equality in the boundary equations.

This is where it is essential that D, is a ball centered at the origin. Otherwise, integrating the
boundary condition over I';, with varying radii, will not eliminate orthogonal components. Asserting
instead that the coefficients to P (cos ¢)e?™ must match for all of the radii on the boundary may
be too constrictive. Additionally, the boundary conditions feature the derivative in the normal
direction on I'. For spheres, 8%@) = 6‘%. To make use of the orthogonal components, we need the

derivative to not involve ¢ or 6.

For eachn =0,1,2,... and m = —n, —n+1, ...n, the coefficients to the components in the boundary
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conditions are given by

Apnmzn()\) + szm " + €p )\()‘Gnm( ) - Hn,m(a))

_ D —n—1
— € R n
= =22 B nmkn (wa) + —mta

A 2 4 Conmp =l LG (a) — HY (a))

€

= =2 B n.mk;, (wa)w + LSE’:”" (—n — 1)a_"_2

€s

— D —n—
(ES €oo)BS’n mk (wa) + sén,ma n—1
’ s

€s

— Cpnm ()
— Pep ’I’L+

€s

oo (20, e+ 222 (< — 1)a2)

+(€s — €c0) (%”Bs nymkny (wa)w + Dsﬂ(—n — 1)(1_”_2) .

_ep (CPEP TL 1 + nr:(a)> — 0
This last equation can easily be simplified into
Dy ym(—n — 1)0,7“72 — Cp,nvmnanfl — G;L,m(r) =0.

Now we may solve the system of 4 equations and 4 unknowns.

(60) + (62) gives

a —Hyp m(a)
Apamin( &)+ 2l dia(wa) = 0
(61) + (63)/€p gives
7';1(1) _Hiz,m(a) Ds,n,m(_n_l) 2
_Ap,n,m )\)\ + Gp)\ + €p :

= =2 B, mk;, (wa)w + %( n—1)a"?

€s
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(65)



(62)n — (63)a/e, gives

(Es*eoo)nB&n’mkn(wa) 4 Ds,n,m nafnfl 4 Dse,n,m (n 4 1>a7n71

€g €s P

Gn,m (a) _ G{n,m (a)a’
€p €p

(64)i7,(%) — (65)in(5)A gives

o)1 (4) + B mbin(wa)it(

—~ >
~—
_I_

€ / -
2 By n,mbkn, (wa)wiy,

These last 2 equations give us

1
Oén,mDs,n,m + ﬁn,mBs,n,m = 7(nGn,m(a) - CLG;%m(CL))

nm— _—\— ——~ — Hl .n -
/Yn,mDs,n,m + 5n,mBs, , ep( 2\ n,m(a)Z ()\))

where

1 n n—+1
Yn,m antl (: €p )
€s

_din($F1) 11

Tn,m a2 € - ;)
Onm = b0 (3) = 2k (wa)oXin ().

20

(68)



To verify that the determinant, o, ;m0n,m — Yn,mBn,m # 0, we shall first need to rewrite dy, ,,. Using
(195) and (196),

nA . a €00 nA. a €00 a
Onm = kn (wa)jzn()\) + kn, (wa)znﬂ(x) - e—kn(wa)zzn(x) + p k:n+1(wa)w)\ln()\)

S = ) (0 ) 200 () + B () + s (@)eNin

€s

)- (72)

>

Since €5 > €o > 0 and iy (r), kn(r) > 0 for r > 0, we have 6y, , > 0.

Then

5n,mO‘n m ﬁn,m%l,m =

(72 () in(§)) ter (2 + 221

€s € €p

) e (2 4 1)

+(kn(wa)ini1 (%) + %kn+1 (wa)w)\in(%
)(

(es—€00) )\zn )(n+1)
_Seisoonkn(w ) a"+2

)
Lo

which simplifies to

5n,man,m — Bn ;mYn,m =

() (o (aw) i ($)) s : (73)

€s

+(kn(aw)in41(§) + %kn—%l(aw)‘*’/\in(%))(esanﬂ + erfltil)
Thus, since €5 > €5 and iy (r), ky(r) > 0 for r > 0, we have 6, manm — BnmYnm > 0

Continuing with the solving, we get

—1 Snm(NGpm(a) — aGl, . (a
o5 (<>8 @) .
YnmOn,m = Yn,mPn,m —Bnm( o A H&,m(a)ln(%))
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6;1 ~Yn,m(NGnm(a) — aG,n,m(a))

Bs,n,m = 1 (a (75)
Om,m(sn,m - 7n,m,8n,m +an,m(Hn’m(i)Z"(X) _ ]{7/1 m(a)ln(%))
From here, we further substitute back to get
— D G
Cpm = MBsm,mkn(wa) e =l %@“) (76)
€50 €s a
1 B Hym(a)

Apnm = g5 (Bsnmkn(wa) ). (77)
Zn(A)

EpA
As certain forms appear, it becomes useful to find G’ and H'.

(48) gives

1 T '
G;L,m(r) T ol <—m’n1/0 tlinpp,n;rn(t)dt +(-1- n)rQ”/O t"+2pp7n7m(t)dt> )

Combined, we get

(49) gives

in(%)

o G [T
o) = =255 [ k(i =20 [y ntiar.

Combined, we get

Hn,m(()l\)zn(i) — H;z,m(a)’ln(%) = kn(%)zn(%) ; kn(%)Z”(%) Aa l.n(%)pp,n,m(r)rzdra

and applying (197), we have
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<

~ Hy@in(§) = 25 [ inl o (rirr (79)

3.5 Specific example with point charge

As mentioned in the introduction, if there is a point charge at ro of 1, where the radius of rqg is ¢

Then py,(r) = §(r — ro) Where ¢ satisfies

L[ @it - ropardsis = seo

While (13) included multiple, but finitely many, charges, linearity of the differential equations

implies that we may decompose such a problem into unit charges at an arbitrary point.

Using (43), we get

1

Ppnm(T) = Sr (1 — 10)r "2 Pm(cos ¢p)eimbo

Cnm

where

/0 )6, — ro)dr = £(ro).

So, we have that (44) is solved by

P (cos ¢g)embo
P =-"n
(EP )n7m7p(r) (27’L + 1)Cn,m

(—7‘"/ t8, (t — ro)dt + T_l_n/ £"6,(t — ro)dt)
0 0

Gnm(r) = (P )nmp(r) = Py (cos go)e” "% —rtyg T Tl > g
w r (2n+ 1)enm 0

The other inhomogeneous problem (45) is solved similarly,
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For the purposes of solving the system for the homogeneous solution, we have from (78) and (79)

give us

Py (cos gy)e im0

nGpn.m(a) —aG,, ,.(a) = a” Tyl (82)
’ Cn,m
Hym ()i (%) a, _ A ro, B(cosgp)e %
! — H —) = Sip(~—)—"2 . 83
2 e (@in(§) = in (D) — (53)
Thus the full general solutions become
C n,1mM 3
Pp(r) =D 0> e ZT’TTLPTT(COS $)e™?
) _ —1-n —1-n,.n 84)
. —imbg r''ry +r e T =70 (
+ Yo S P (cos )i Liieesgole 0
0 r<rg
up(r) = Y00 e —n —Apmamin(§) P (cos e
C n,Mm L
3 > =ty Pt (cos ¢) etmo
oo+ in(5) k() (85)
. PTan —imég i .
X0 K PR (cos )M BEEERETT A iy T~ Ba(P)in(R) T2
0 r<rg
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As the equations defined in Dy had no non-homogeneous part, we repeat their general forms

Dy(r) = Zfzozo an:,n (ES;EOO)Bs,n,mkn(WT)P;Ln(COS ¢)eim9
+ Y00 Yo e P (cos 9
us(r) = 32020 Yo 2 Banmbn (wr) P (cos ¢)e™?
+ ZZO:O Zz:—n DSE,n,m r‘”_lPZL”(cos ¢)eim9

With Ap nms Bsnms Cpnms Dsnm defined as in (77), (75), (76), (74).

However, when we examine ®, and u, we may observe that the series as written does not obviously
converge. In part this is because we have used (54) and (55) rather than (20) and (22) for our
solutions. Even with the change, Theorem 2.1 has convergence proven by Lemma 5.1 that gives us

convergent solution for r # ry. However, under the point charge, we can do better.

First, we consider the version that produces better convergence, namely (20), (22).

Gn,m(r) Gn,m(a)rn . Pﬁn(COS ¢0)€7im90 Tﬁlin?"g - CLiliQnrn’f‘g r>r

€p are,  €(2n+ Depm

By construction,

Z Z Grm /(1) P} (cos g)e im0 Z Z €p®)pnm ()P (cos d)e imf

n=0m=-—n n=0m=—n

solves Af = — o dro,r- The addition of Gy, (a )Z—Z terms only changes the particular solution. While
this sum does not give us w, a known particular solution, it must differ by a homogeneous
o—rlep

solution. Comparing with (207), we observe that

Z Z P™(cos p)e i P (cos ) e "m0 g >

47Tep]r —1o| ep(2n+ 1)cpm

n=0m=—n
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Thus,

S n Gnm nGn'm a m im
Dm0 2am=—n (7 @ anep( ))P (cos ¢)e'™?

€p
— 1 _ N n —1-2n,n,.n pm im0 Pi"(cos go)e= %
- 47r€p|r71'0| Zn:() Zm:—n a T TO P?’L (COS ¢)e ep(2n+1)cn,m

In a similar manner,

_ P(cos ¢0)€—im90 —kn(§)in(%°) + T

By construction,

Z Z M (cos ¢)el™? Z Z — W) (1) P (cos ¢)e™?

n=0m=-—n n=0m=—n

solves Af — 13 Lf= o dro,r- The addition of the the H,, ,,(a )Z E ; term only changes the particular

solution. While this sum does not give us known particular solution %, it must differ by a
homogeneous solution. Comparing with (208), we observe that
TR S P Bleosoe ™ (] Cra Din(RkG) vz
Irglr—rol ~ o e T A Denm || (20 4 Dka(52)in(3) r <7
Thus,

E%zhwévmmm+%$%ﬁmmmwww
_ _e —|r—rgl/A +Zn Osz_n a)zn(*o)ln(g)Pm(COqu) im0 Py (cos ¢o)e” im

" 4mep|r—ro| in(%) n €pACn,m

sy

Together, these produce forms that have more stability for » near r9, and we rewrite ®, and u, as
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follows using the (20) and (22) forms and the definition for Cp,, », and A, found in (76) and
(77).

Dp(r) = 2020 2 me—n Tn((eses_—;f)Bs nmbkn(wa) + DS’G’%G_%_I)RT(COS ¢)em?

00 n —1-2n,.n,.n PI(cos po)e" ™% imb
- ZTLZO Zm:—n r TO Ep(2n+1)cn,m Pn (COS ¢)e

(83)

1
+47rep\r—ro|

up(r) = — Z;’O_O an:—n @Bs,nmkn(wa)in(%)ﬂ’]‘(ms gf))eima

\6s7€Co0) Ds n,m . — — ]
P —imfg . :
=k Zvozo ozm:n S e il (cos §)e™
[r—rgl/A )Z (L) ( )P:ln —imé .
Zﬂ'ep|r0r0\ + Zn 0 Zm_—n in( (coe do)e PoT(COS ¢)ezm0

Y
a
X) €pACn,m

This leads us to Theorem 3.1.

Theorem 3.1. Let the conditions of Theorem 2.1 hold. Let rg € Dp. Let py(r) = é(r —rp).
If we instead define ®,, ®s, up, us by

(88), (86), (89), (87), then @5 and ®, weakly solve (15),(16), (17) subject to (18),(19). The con-

vergence of the series is geometric with the ratio dependent on p.

However, the verification in Lemma 4.1 and the convergence in Lemma 5.3 must still be shown to

prove the theorem.

(a) r=0.1 (b) r=10.25 (¢c)r=0.5
Figure 3: zay* Hemisphere values for ® on T' for the point charge at (¢,6) = (%, 2F) for various
radii

The coloring in [Figure 3] scaled so that 0 is colored red and the maximum value is colored blue.
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For these samples, the maximums are approximately 0.03368,0.04563,0.07945 respectively. €5 =
1.8,es = 80,¢, = 1,0 = 1, A = 15 As one might expect, when the charge is close to the boundary,
it produces a greater potential near that part on the boundary and a shrinking potential on the

opposite pole.

We also observe that there is a rotational symmetry among the solution. Since there is the rotational
symmetry of the p, function, such symmetry in the potential function is to be expected. This

observation will be used in Section 5 to improve the convergence rates.

3.6 Specific example with charge distributed in ball

Now suppose instead that charge density function is uniformly distributed over a ball with radius
b and the center at rg. For the moment, we will restrict ourselves to the case of the center being
ro = (0,0, 2). To have the total charge be of unit density, equivalent to that of the point charge

model,we will have, p,(r) = for |r — ro| < b and p,(r) = 0 otherwise.

47Tb3

For the moment, we shall assume that this ball of support does not include the origin.

Figure 4: zx-plane cross view of D), showing the support of p,

Then by (43), we get

27
pp,n,m = / / pp COS d))@lma sin ¢pdfde¢.

Cnm
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Since |r — rg| does not depend on 6, we have that p, . m(r) = 0 for m # 0.

For m =0, we get

2 [T .
Ppno(r) =— pp(r) Py (cos @) sin ¢pde.
Cn,0 Jo
For fixed r with z — b < r < z 4+ b, we have that |r — ro| < b when cos(¢) > %
So,forz—b<r<z-+b
2 arccos( b2 __T;T': =2 )
o) = - | Pa(cos 6) sin ¢do
[X42) Cn’(] 0
22,2
2 —2rz
=T i —P,(z)dx.
Cn0 J1
So, since P, (1) =1, and (190), we have
27 b2 —r2 4 22 b2 —r2 4 22
Ppmo(r) = m(Pn—l(T) P"H(T))'
n7
Thus, for r <z —b, Gy 0(r) = 0.
Forz—b<r<z+hb,
_ 2 42, 2 2 42, .2
G B 27 —r" fzr_b t! n(Pnfl(b ,tzt—"z_z ) - PnJrl(b ,tgttz ))dt 90)
") = Gt 1 Lo [T (P, (PR — Py (P25 dt ho
z—b n— —2tz n —2tz
For z+b <,
b,1— 2 12, .2 2 42,2
G B o0 —pn fzzj-b tl n(Pn—l(b 7t2t—",z-z )—Pn+1(b 7t2t—‘|z-z ))dt 91)
no(r) = (2n+1)2¢n0 “1-n [2+b ni2 b2 12422 b2—t24 22 ) (
’ +r fz—b t (Pn—l( —2tz ) - P”H‘l( —2tz ))dt
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Likewise, for r < z — b, Hpo(r) =0

Forz—b<r<z+b,

. r r 2_ 42 22 2 42 22
Hoor) = — 2 Ok QE P () - P (e
n,0 =
B0t Dm0 ey (5) [y in(DEPacr (P = P (M)
For z+b < r,
.o z+b 2_424,2 2_424,2
Hyo(r) = — 2 O PP () - P (S
n,0 = T 1N, .
Bt eno 4k (5) [ (DR (Pact (B5E2) = Pt (P52 at

Unfortunately, these integrals are over the intersection of a sphere with increasing radius and a

ball. Thus, we will not expect to have nicer forms for when z — b < r < z +b.

Figure 5: Curves of integration of p,

To calculate G, ;,, (@) we shall make use of the knowledge that A f = —4§, has fundamental solution

ﬁ. Then to solve Af = —p,,, we integrate and we obtain a particular solution for r ¢ B(rg,b),

Amh3 1
—f(r) = / — dr.
3 ( ) B(I‘o,b) 47T|I' — I'/|

A simple translation produces a radial integral,
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47h3 1
T, e
B

dr
(0,) 4|r — 1|

Being radial, we no longer need r to be completely arbitrary outside of B(0,b). It is sufficient to

consider only r = (0,0, z) Rewriting the integral, we get

/ : —dr' = / i dr' = 47rb3i.
B(0,p) 47|t — 1| o 4mz 3 4dnz

Therefore, a particular solution is f(r + ro) = =

4m|r]
1
fo(r) = m
From (207), we know that
fp(r) ! Yoo 70 " Pa(cosg) if > g
p\r) = -—
Am > Tofnflrnpn(cos ®) if r <rg

While this could be used for our particular solution, recall that our particular solution comes from
the integral of pp, ,m, and it is 0 for » near 0. Thus, to make this particular solution match ours,

we add a homogeneous solution Y7, —ry "=1yn P (cos ¢). This produces a particular solution

£ 00) 1 Z?:O(—ran_lr” + 727" 1) P, (cos @) if r>r

p\r) = "——

m 3,0 if r <o

Regrettably, this series no longer converges. For now, though, we are only interested in the
coefficients to P,(cos¢). It is also worth pointing out that this particular solution is only de-
fined for r ¢ B(rg,b), thus we cannot assert that these coefficients are valid for r with radius

ro—b<|r| <rg+b.

Nonetheless, we obtain that for » > ro 4 b, using ¢, 0 = (2;1711),
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-n—1,n n,.—n—1
_ro r +7n074

Ginm(r) = (2n + D)enm (94)
—n—1_n n,,—n—1
) a’ +rga
Ginm(a) = 2n+ 1D)enm (95)
and
2 1 —n—1,.n
1Grum(a) — aGl () = ZF DTS (96)

Cnm

Since for our chosen rg, we have 6y = ¢y = 0, comparing with the point charge model, (80) and
(82), observe that we have obtained identical results for G, ,n(a) and nG, m(a) — aGy, ,,(a). They
also agree for Gy, p,(r) with r < z —bor r > z + b.

We repeat a similar process to calculate Hy, p,(a). First, we make use of the fundamental solution

of Af —(1/X2)f = =6 is e "2 Then to solve Af —(1/X®) f = —p,, we integrate and we obtain a

4|r|

particular solution for r ¢ B(rg,b),
A3 —lr—r'|/A
Lbf(r) = / eildr’.
3 B(ro.b) 4r|r — /|

A simple translation produces a radial integral.

4mb? e~lr=rl/>
——f(r+rg) = / - dr’.
3 ) B(op) 4|t — |

Being radial, we no longer need r to be completely arbitrary outside of B(0,b). It is sufficient to

consider only r = (0,0, z) with z > b. Rewriting the integral, we get

—|r—r’|/A —z/A b
/ eildr/ = 47T62)\€ i1(~<)-
B(0,p) 47|t — 1| drz A
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Thus a particular solution is

3Ny (2)e /A

Jedro) = —

3y (L)errol/a

fo(r) =

Amh|r — 1|

By (208), we have

3 b ) 2ato@n+1)in($)kn(5)Pulcosd)  ifr> 2
11

fo(r) = —i1(5)
Amb A Yorro(2n 4+ 1)in(5)kn(5)Pa(cosg)  ifr <z

Again, while this could be used for our particular solution, we have ours defined using an integral
of ppn,m, thus it must be 0 for r near 0. Thus, to make this particular solution match ours, we add

a homogeneous solution "0/ —3i1(2)(2n + 1)in(5)kn(%).

This produces

3 b Yo o@2n+ 1) (—=in(5)kn (%) + 0n(5)kn(5)) Pa(cos ¢) ifr>z
fp(r) = 721(X) 0 T )
mur<z

As before, we are only interested in the coefficients to P,(cos ¢), and again, these coefficients are

not valid for r with radius ro —b < |r| <rg+b

As H,, ,, is the result from (45) and (50), using ¢, 0 = 5,77 We get that for r > ro +b

_Am
2n+

7 b r z < r
A 1(*)(—%()\)’%(,\) Fin(3)En(3)- o

Hym(r) =

Cn,mb

Thus
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Hon(@) = 52 (—ia(Dha (5) + 1a()ba (D) (98)
and
Hn,m(a)zé(%) _H/ (a)z (g) _ 321(%))‘21 (E) (99)
A AN coma? AN

Unlike the results for Gy, ,,, we notice that while Hy, ,,,(a) and M — H}, . (a)in(§) for the

ball charge model are similar to the point charge model (81) and (83), they are not the same. With
our chosen rqg creating g = ¢g9 = 0, we observe that the ball charge model has an additional factor

(L
of Ll(b*)/\.

We observe that

= m —
b—0 b b—0 b3

Big(H)A . 3N b b b
m li X coah(x) - smh(x)

Applying L’hopital a few times gives us
3i1(2)A 33 1 b, b b, 1 b A b Acosh(2)

i =y = gy (5 cosh() + 3y sinh(3) = 3 eosh(3)) = fim 7 sinh(T) = Jim ——

Thus, as b — 0, the constants H,, ,,(a), M — Hj, ,(a)in($) of the ball charge model tend
to the same value for the point charge model. We ought to expect this as the limit of function with
unit total mass distributed uniformly on a ball with decreasing radius is one possible definition for

the Dirac delta function.
As for the actual solutions ® and u, we refer back to (20), (22), (21), (23).

Where G, = Hp o = 0 for m # 0, Gy, 0(r) defined by 0 for r <z —b, (90) for z —b<r <z+1b
and (94) forr > z+b
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H,,o(r) is defined by 0 for r < z—10b, (92) for z —b <r < z+b and (97) for r > z + b.

Gno(a) is defined by (95)

nGpo(a) — aGy, o(a) is defined by (96)

H(a) is defined by (98)

M — Hj, o(a)in(%) is defined by (99)

Again, while the series for G and H may not directly converge, the forms for ®, and u, given
by (20) and (22) will produce, proven in Section 5, convergent series. Since the conditions for p
satisfy the criteria of Theorem 5.4 we will have convergence, and thus weak solutions everywhere.
Unfortunately, we did not produce convenient formula for G and H for general r beyond using an

integral, so there is little to be gained from writing the solutions for general r with the integral

rather than in the general form of (54), (55), (21), (23).

This example also required that the distributed charge not include the origin. However, that was
not essential when we were calculating Gy, (), Hym(r) for r > 2z + b, so that part will be the
same. The case of r < z — b can no longer occur. The case of z — b < r < z 4+ b will require us to
change the bounds on the integrals, since the curves of integration, as seen from the curves figure,

[Figure 4] and [Figure 5], will be entire spheres for r small.

y y y

(a) Point charge model (b) Ball model with radius 0.1 (c) Ball model with radius 0.5
Figure 6: Values for ® on I for the point charge and ball charge centered at (0,0, 0.5) with varying
radii, rotated 7/4 about the y — azis, 37/4 about the z — awis.

The coloring in [Figure 6] scaled so that 0 is colored red and the maximum value is colored blue.
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In these examples, the maximums are 0.079445,0.079466,0.079786 respectively. ey = 1.8,¢e5 =
80,¢p, = 1,a = 1, A\ = 15. While one might expect there to be some variance on the boundary by
increasing the radius of the ball for the charge, visually, that is not the case. However, it is true
that using a smaller radius for the charge distribution does produce values closer to that of the

point charge model.

4 Verification

Lemma 4.1. Let the conditions of Theorem 2.1 hold.

For emphasis, define u, on D,, and us on Dy as in (55) and (23). Define ®, and ®4 as in (54) and
(21).

Then

up(r) = i Qa(r — )@, (x")dr’ + i Qi(r —1')®4(r)dr’ re D,

us(r):/D Q,\(r—r’)@p(r’)dr’—l—/D Qr(r — )Py (r)dr’ r € D;.

4.1 Preliminary work

By construction, u and ® solve the created system of differential equations, however, we must verify
that the solution we have obtained is consistent with the definition of w, (25), used to create the

system. Hence, we must verify Lemma 4.1.

Once those equations have been verified, we indeed have solutions (assuming convergence). This
verification will also split up the formula by the orthogonal terms, P™™(cos ¢)e’™?, and then verifying

that their coefficients match. To do so, we appeal to (206), rewritten here
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fr/:a Qx(r — r’)Pﬁ"(cos(gﬁ’))eime’db’(r’)
Vkn (%) forr<a (100)

)k (

>3
>

= S5 By (cos(@))e™”
) forr>a

>
>3

in(

where 7, ¢, 0 are the spherical coordinates to r. Since ®, and ®4 have been decomposed into these

orthogonal terms, in (54) and (21), we must examine

[ £(s) [, Qx(x — /)P (cos(¢'))e™ dS(r')ds

, (T s 101
_ Pﬁ"(CosA(gﬁ))elmg f82f(8) in(5)kn(5) forr<s ds (101)
in(3)kn(5) forr>s

for the various radial functions f that occur in ®, and ®,. These functions are f(s) = s", Gy m/(s)

for ®, and ky,(ws),s "1 for @,.

So, we will evaluate

2 ., T S 2 . .S
[ 1@nds and [ Gk s
When f(s) = s™, we have by (193) and (191),
/sgsnin(;)k‘n(i)ds = —in(Fhnsa (3)572A (102)
/s2s"in(i)kn(:\)ds - in+1(§)kn(§)sn+2/\. (103)
When f(s) = s !, we have by (194) and (192),
/525_”‘1in(:\)kn(i)ds = —z’n(g)kn_l(;)s_”*u (104)
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>

[ 5 i (s = it (5 ()50 (105)

When f(s) = kn(ws), we use (193) and (194) to produce

—s_”k:n(ws)in(%)szsnknﬂ (A

/s_"k:n(ws)in(;)s2s”kn(i)ds =
— [ 5 k1 (ws)in(5)s2 5" knt1 (5) Awds

2gm s T\ om0 s
s = k1 (ws)in(5)s " kn(3)

/828”kn(ws)in(r)3_”kn()ds =
A A 1 2.n (T e S
— =5 [ 575 kny1(ws)in(5)s "kny1(5)ds

Thus

V)

(W2 —1) /szkn(ws)in(;)kn(i)ds = —w)\zkn+1(ws)in(§)kn(§)s2 + Akn(ws)in(g)kn-i-l(X)SQ'
(106)

Applying (191) and (192) additionally gives

Thus,

V)

@N = 1) [ ()i )ds = —oN a9l )57 = A (05 (5 i (5)5°
(107)
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It is worth observing that w?\? — 1 = fa—teo,

€oco

When f(s) = Gpm(s) defined in (48), we have

[ Gl )ds
_ kn(g) 2 n * 1-n 1-n i n+2
= 2n+1/s in(5)|—s /0 " ppmm (t)dt + s /0 "2 pp pm (D)dt | ds

and

_ Z”(g) 2 S n B 1-n 1-n B n+2
= 2n+1/3 kn()\)[ s /0 " ppnm(t)dt + s ; " 20 nm (t)dt | ds.

We calculate these internal integrals using (191), (192), (193), (194),

f—sZin(i)s" f(f "0 m (t)ditds

= _52in+1(§)5n/\ f(f " ppnm ()t + [ S3in+1(§))‘/)p,n,m(5)d3

J 8% (3)s™1 " 3 "2 pp () dtds

= 5%in_1(3)s A 3 " ppnm (0)dE — [ 3in—1(3) Apppm(s)ds

[ =5%kn(5)s™ [ 1" pp.n,m (t)dids

= 5%kn+1(3)8" A [ " ppnm (£)dt — [ $Pkns1(5)Appn,m(s)ds

[ 8% kn(5)s7 [ 4" 2 oy () diEds

= —5%kp—1(3)s7 A St 2 pp e (B)dE + [ P kn—1(5) Appinm(s)ds
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Using (198), we get

4.2 Verification proof

Now we are able to proceed with the verification, the proof of Lemma 4.1.

ko (X

)ds = ()‘)
2n +1

)ds n(%)
2n +1

First let’s consider the case of r > a.

_52%—&-1 % )s"A fo - n/’pnm( )dt

+5%in—1(5)sTIN [T 2 oy (B)dE | - (108)

—(2n 4+ 1)A? [ s%ip (3

pp,n m(s)ds

+82kn+1 % )s™A fg - " pp,n,m () dt
— 82k, (3)sTIN S 2, (Bt | - (109)

—(2n+ 1)A? [ $%kn (3

Qa(r — r')®,(r)dr’

_i zn: /“ Conam n | Gnm(s)

n=0m=—n 0

00 n Pm

=2 2.

n=0m=—n

-y [Tlere)

n=0m=—n

Pp,n m(s)ds

™ (cos(¢))e™ dS(x')ds

DP
) Qx(r —1") P
€p r'=s
zm@ a
(cos( / sQ(Cp’n’m o n,m(S) Vin
0 €p €p
Qx(r —r')®y(x")dr
Ds
s n mk (ws) + sén,m —nfl) Q)\(I' _r )
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€s

Jrlezcel Bk (w8 )in(3)kn(%)s2ds
(

P™(cos(¢p))e™™? +f; Lsé:’m s_”_lin(i)k‘n §)52ds
o 3
A o gk (ws)in(E)(5)s2ds

In the interest of appearances, since A, B,C, D, G, H, «a, 3,6,y and p will have the same subscripts
throughout, we omit them. The subscripts for ¢,, and k,, are essential, as some of their properties
that we need change their subscripts. These properties are listed in the appendix and will be

referenced as needed. As there are 6 separate integrals to reduce, we introduce notation.

I = /0 Ge(:)s%n(i)kn(;)ds

Iy = / kan(ws)in(i)kn(:)Sst

€s

€s

I = /OO kan(ws)in(:)kn(i)Sst

Then (103) gives us
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(107) gives us
—wA kg1 (rw)in (5)r?
; Beookn (%) — Ny (1w )i 41 (57
3= )
€s FwA k11 (aw)in(§)a?
+Aky, (aw )Zn+1(%)
(105) gives us
Dk, (%
= PR [y ]
€s
(106) gives us
B OO.TL T
I5 — L()‘) w)\2kn+1(rw)kn(z)7’2 — Akn(TW)kn+l(£)r2:| )
€s A A
and (104) gives us
Dln(§> Ty —n-1.2
Is = €s "_1(X)r " )\} '

To evaluate Iz, we apply (108).

—a®ing1($)a" X [ 1" p(t)dt
+a%in_1($)a TN [ 2 p(t)dt
—(2n+ 1)X2 [ s%in(3)p(s)ds

o ka(3)
e(2n+1)
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From the property of H in (79), we have

a H il (a
~@n+ 0¥ [ Rin(Gplo)ds = ~n + (A i),
, Sy X X
from the definition of G in (46), we have
@ i (3) / £ (0 + P i1 () / 2 p(E)dt = i () (20 + 1)),
0 0

and the property of G in (78) along with (198) gives

—a?a " Nip1 (§) [o tPPp(t)dt + a?a T N1 ($) fy P p(t)dt
— @A (in+1(2) + in-1(2)) (nG(a) — aC(a))
= aX?(2n + 1)in($)(nG(a) — aG'(a))

Combined, that gives us

I, = X _)\GQ(H<a)i;L(%)

- AL H/(a)in(;)) + amnﬂ(%)G(a) + aA2¢n(§)(nG(a) — aG'(a))] .

Applying some of the equations from the system we solved, namely (67), (76), (66) we have

_ —n—1 n
(6 — o) Goo)kn(wa)B+a D—Ca

€s €s €p

I = kn(g)[—)\aQ(yD—l—éB)—kaQ)\z’nH(%)( )+aA2in(§)(aD+ﬁB)].

We now observe that all of the terms of Iy, Is, I3, I4, Is, I have contain a B,C, or D. So, let’s

reorganize the terms such that
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L+L+Is+ 14+ 15+ 1Ig = 1B+ J.,C+ JsD

Before examining Ji, Jo, J3, first we observe that

—Akn(WT‘)Z’n+1(§)kn(§)r2
Beo F w2kt (wa)in () k(L) a?
A 1 @a)in(§hn(5)
“s F Mo (W) i1 ($)En (%) a?
I —)\kn(wT)z'n(%)an(g)rz |
simplifies via (200) to
—kp(wr)\3
Beso
I3+ 15 = c FWA kg1 (wa)in (§)kn(5)a®
+)‘kn(wa)in+1(%)kn(§)a2
We also observe that
Lt Ts = 2 Tin (5 (Eyr="120 — i1 (S (5)a" 102N + i (51 (5 )r=n=1r2
4 6_63 n71>\n>\ nflAnA n)\nfl)\
simplifies via (200) to
D a r
I To= 2 | —i (= y,—n—1_2 —n—1,3 )
4+ Ig . in 1(A)kn()\)a a‘A+r A

Now we consider J; with the substitutions for § and 5 found in (72) and (69).
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€oowA2kn i1 (wa)in(%)

e kn (Wa)ini1($)

—(€s — €00)(kn (wa)ﬂzn

()

es)\kn(wa)inﬂ(%) .

lek”(g)cﬁ
—€ookin1(wa)wAin (%)
+Xin1(§) (€5 = €oo)bin(wa)
i +§zn<i><es—ew>nk< a) |

After the obvious simplification, we get

—Eﬁkn(rw))\?’.

€s

J1

- eﬁkn(rw))\‘g.

Now we consider J3 with the substitutions for a and 7 found in (68) and (70)

_in—l(%)%
2,
_i‘—pzn(%)(n +1)
A2
@) | e |
5 a” . a\ai €s
+int1($)E
+EN 00 (%)
| e |
The obvious simplification gives us
—in_1($)%2 \
kn (%) —n—1A
J3 = T;n/\ —i-)‘fzn( Y2n+1) | +r7" 1?-
S
"Hn-i-l(%)z\
Applying (198) then gives us
)\3
Jy=r 1
3=T .
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Finally, we have

CLn-‘,—2 a a™
=k in A — ky, i, — =0.
J2 (F)ins1(3) ; (/\)a i +1(A)€p 0
So,
€oo 3 —n—1 )‘3
Il+12—|—]3—|—f4+f5+16Z—?kn(uﬂ‘))\ B+r ?D
Thus we get

Z Z (cos(¢ (—€ookn(wr)B + 77 ""1D)

n=0m=—n

which matches the form found in (23). Thus, we have verified the ug case.

Now we repeat the analogous argument with r < a.

Qx(r — 1)@, (r")dr’

Dy

_Z Z / pnm " Gnm(s)) T Q)\(I‘—I') (COS(¢ )) imO’dS(r/)dS

€
n=0m=—n p '=s

LSS BrGotonent | R G
o )\3 a QCp,nnn ng r S
n=0m=-—n +fr S TS Zn(x)kn(x)ds
a QG(S) r s
+ /s & in(5)kn(3)ds
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-y Z/ ol o) + 2oty [ Q) (e - )P cos(@))e ™ ds s

€ /—
n=0m=—n s r'=s

Jimt (=) B i (w8)in (%) hn($)s2ds

oo (
_ Z Z (cos(¢ fa P

"m0 e +f00 D.snmsfn 1 n(f\)kn(i)ﬁds

€s

Again, we shall drop the nonessential subscripts for aesthetics. Now, as there are 6 separate integrals

to reduce, we introduce notation.

K. :/Ors2 kn(g)ds
K3 = /Tas ;5 zn(g)kn(ﬁ)ds
K4=/ra52G(8) )kn(i)ds
Ky = /aoo @Bkn(ws)in(;)kn(i)fds
Ko = aoo Zs"lin(;)kn(i)Sst.
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(102), gives us

ant? r a rnt2 r r
K3 = in (= )knt1(=)A (=) ka1 (=),
b =~ Cin(Pha (A + O (s (§)
(106) gives us
Besoin(t a a
Ky = (g()‘)(w)?kn_,_l(aw)kn()\)aQ — )\kn(aw)knﬂ(x)aQ),
and (104) gives us
Di, (%
K6 = ! (A)knl(i)a_n_lag)\.
€s

From (108), we get

—kn (5)r% i1 (5)r" A [o 1" p(t)dt
ep(2n+ 1)Kz = | 4k (5)r2in_1(5)r 17"\ [y " 2p(t)dt
Fon(

D2n+ 1A [ s%in(3)p(s)ds

From (109), we get

in(5)akns1($)a™ X [ " p(t)dt
—in(5)r k1 (5)rA [y 10 (t)dt
p2n+ DK = | —in(§)a%kn1($)a™ 70 [ 172 p(t)d
i (5)r2kn—1(5)r 1A [y T2 p(t)dt
— (20 + 1)in(5)A2 [* 82k, ($)p(s)ds

It is more convenient to think about simplifying €,(2n + 1)(K2 + K4). The first thing we do is

simplify using (200) to get
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ke (5)(2n 4 DA [T 8%, () p(s)ds
Fin(5)a?knp1(§)a" A [t p(t)dt
—in(§)a?kn-1(§)a” 7N [ " 2p(t)dt
—(2n+ 1)in(5)N2 [ $%kn(3)p(s)ds
—r" A3 [t T p(t)dt

ep(2n + 1)(K2 + K4) =

+r NS [T 2 p(t)dt

From the definition of H in (47), we have

s)p(s)ds—(2n+1))\2kn(:\)/or s2in(§)p(s)ds = —(2n+1)A\2H(r). (110)

—
)
3
+
—_
>
>
h
w
[\v)
NA
3
—~
>

A property of H found in (79) gives

<H(a)i§7,(i)

a\d a @ s a
P @i () T = [ oo

which combined with (47) gives us

Thus,

2n4+1)A2%0, (& H(a)i) (% . ran) a a
_( +in)(%) (%) {_H(a) + (% — H’(G)Zn(x)> ;k‘n(x)} .

— 5k (£)in(5)N2(20 + 1) p(s)ds

(111)

The definition for G from (46) gives us
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3 / B (8t 4 A / 4258 dt = ASG(r)(2n + 1) (112)
0 0

a* N1 ($)in(5)a™ [ " p(t)dt
—a® N1 (L)in(5)a™ 1 [ 42p(t)dt - (113)

= — N1 (2)in(5)(2n + 1)G(a)

Applying (199) with a property of G found in (78) gives us

in(5)a 7" [t 2p(t)dt
+a* N1 (§)in(5)a 7" [ 12 p(t)dt
= (nG(a) — aG'(0))(@2Xin(5))(~kno1(£) + kns1(£)
— (nG(a) - aG'(@))(aA%in(5))(2n + 1k (8)

(114)

Summing (110), (111), (112),(113), (114) then gives us

—A\2H(r)

X0 )
e

48 i (a8 (o
ep(Ko + Ky) = n A H'(a)in(5)) 5 kn(3) ’
A3G(r)

—a* My 41(§)in(5)G (a)

+(nG(a) — aG'(a))(aX?in(5)kn(%))

(e}
—
—~

=
—~

S
~

<

to which we apply equations from the system we solved earlier, namely (66), (67), (76), (77).
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(Ko + K4) = 4 2%60)

an+2

CMeng1(5)in(5)C
— a2k (L)in(5) =)k, (aw)AB

€s

—a™"M 2 k1 (§)in(5)D

€s

X
+(aD + BB)(aNin(5)kn(5))

We now observe that all of the terms of K, Ky, K3, K4, K5, Kg have A, B,C,D,G(r) or H(r) in

them, so we may reorganize the terms so that

A3 A2
K1+K2+K3+K4+K5+K6:L1A+LQB+L30—|—L4D+?G(T)—?H(T)
P p
Nin(5) . a r
Ly =— 2 in ::_Agﬁ VA
rnt2 r r a"t? oy a rnt2 r a"t? oy a
Ly = i1 (= )kn(=)\ — i (= ) knt1 (=) im (=) kne1(=)A i (= ) knt1 (=)
o= Tt (PR PA = T (5 + T (A + TG (5)
Simplifying with (200) gives us

rn )\3

L3
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Lo

s

Applying the definitions for § and 3 found in (72) and (69) gives us

iy (5
= ((3)k (aw)

() (es 6:‘X’)nakj (aw)in (%)

_ Nin(X)k

3

> s
S
3 E_\yh
|~ Il
S Pz
N —
>la| I

3

) 02k (aw)in g1 (%)

3
—~
~—

>
o
SN
3
—
(=

2222wk 1(aw)in(§)

-
3

N ~—
>18
~—| >

Loy
—aZAan(ﬁ)in(g)@kn(aw)

+aX%i, (5) =k, (aw)
+ =B N1 (0w

2 M (w1 ()

After the obvious simplification, we are left with

A
Aip, kn . a
Ly = %Gan(aw>Zn+l(X)

—a2/\kn+1(%)in(§)kn(aw)

Nip (2)kep (aw)a? A2
a2

Zn(X)

| o

Dinaa() =0,

a. .
(_kn-x-l(x)ln X\

S

which simplified from (200).
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B (%)

a2 ln(%) n
in($)

—ntld k‘n+1( $)in(%)
+a(a)\2in(§)kn(§))
+in(§)kn_1(%)a—n—1a2)\

€s

—a

Applying the definition of 4 and « found in (70) and (68) gives us

~ Nin()kn (K)in(%)(rﬁl)(L _ L)
zn(i) a”

T A ($)in(5)

A% (5)a (2 + Bk, ()
§

€p €s

Ly

€s €p

+,( )kn I(A)a_n 1 2)\

€s

The obvious simplification and (199) gives us

Aa "L, (%) a a Nip(E)a™ a
inn)‘kn =) —kn_1(= TN (2 Dk, (=) =0.
o= 2 () () + A s ()
Thus
. n/\3 )\3 )\2
Ki 4+ Ko+ K3+ Ky + K5+ Kg = - Min(0)A+ 20+ 2G(r) — 2 H(r).
A €p €p €p
Thus we get

G(r) H(r)
Aep

= Z Z Pﬁ(cos(gﬁ))eime(—in(g)fl + ?C + )

n=0m=-—n P P

Which matches the form found in (55). Thus we have now also verified the u, case. Thus we have

proven Lemma 4.1.
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5 Convergence

Lemma 5.1. Let the conditions of Theorem 2.1 hold.
Let py, be supported in a ball B(0,b) with b < a.
Then ¢s and ug defined by (21) and (23) are geometrically convergent series.

If the support of py is further confined to be within B(0,c) U (B(0,a) — B(0,d)), then ¢, and u,

defined by (20) and (22) are geometrically convergent series when r satisfies ¢ < |r| < d.

Since we have the solution defined as an infinite series, it is necessary to also verify that it converges.

Naturally, this convergence will depend on p,.
We will use the notation a, ~ b, to mean lim,, Z—: =1.

It is known from [5] that for fixed r > 0

. 1 er n+1/2
In(T) ~
N TESVACTERY
2 er | _,_
Fin(r) ~ )yl

2r(2n+1)(2n+ 1

These relations with the limit definition for e produce

Int1 (T) N r

in(T) 2n (115)
Fn1 (r) -~ 2£

(1) - (116)
Zn(R) -~ E n

R (117)
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kn(R) ~ E —n—1
ey (118)
il () ~ s ()" (119

We may apply asymptotic relations to prove convergence, but they only prove results for when n is
large, and may not immediately give us some bound on how large n must be. Since the solution is
given as an infinite series, we desire having a bound on the number of terms that must be included

to remain within a given tolerance of the solution. To that end, we must consider other bounds.

(198), when combined with i, (r) being decreasing over n [5, Section 10.37], gives us

rin(r) __ Tingalr)  2nt3 g 34T
2ip41(r)  2nipya(r) 2n 2n
(198) also gives us
. 2n+3 2n
in(r) 2 int1(r) = 7Zn+1(r)-

Combined, we get

1< Tin(T)

<1 12
= 2nip4(r) T te (120)

with the the first inequality holding always and the second holding for r 4+ 3 < 2ne.

(199), when combined with k,(r) being increasing over n [5, Section 10.37], gives us

Tkpt1(r) _ rkp—1(7) n 2n+1 <14 r+ 1.
2nky (1) 2nky, (1) 2n 2n

(199) also gives us

95



> 7
kns1(r) = , kn(r) = . kn(r)
Combined, we get
rkn—l—l(r)
1< /=2 <1 121
= 2nky(r) — te (121)

with the the first inequality holding always and the second holding for r + 1 < 2ne.
Define i, (r) = i, (r)r~™. First, (198) gives us

i M+ 1-
Ft () = (1)t = e

Multiplication by =" and setting r = 0 gives us for n > 1

%n,l(O) = (2n+ 1);11(0)

Direct calculation gives us 79(0) = ig(0) = 1, thus for n > 0,

ia(0) = :
T 85k k(20 + 1)

(122)

Then (192) says, i, (r) = rin,41(r). Nonnegativity of i, then implies that i, is increasing and

nonnegative. So, we have

We also have



T 2

7o) — in(0) = /0 finin ()t < i (r).

(195) gives us i,_1(r) > "L, (1), 50 1,(r) > (1 + 2)in i1 (7).

T

So,
~ ~ r2 ~
. - < .
in(r) —in(0) < 2(n+2)2n(7")
~ 7‘2 ~
()1 = 5rg) € (0)
Then, if 2 < n + 2, we get
< =)
in(0)
Thus, if 72, R? < n + 2, we get
L mlB) (B (123)
2 Zn(r) zn(r) R™

Next, define &, (r) = k,(r)r™*1. Then, (199) gives us

- 5 9 1.
kn—l(T’)’r’in _ kn+1(r)7,f(n+2) _ n+ kn(r)rf(n+1)'
T

Multiplication by r"*2 and setting r = 0 gives us for n > 1

Eng1(0) = (2n 4 1)k, (0).

Direct calculation gives us ko(r) = e;rr — e, 50 ko(0) = 1.

Similarly, k(1) = %(1 +7r)r2 =e"(147),s0 k1 (0) = 1.

Thus, with the empty product understood to be 1, we have that for n > 0,
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kn(0) =1%3%5%...%(2n —1). (124)

Then (193) says, k. (r) = —rk,_1(r). Nonnegativity of k, then implies that k, is decreasing and

nonnegative. So, we have

1 e 8
2 kn(0)  kn(0)
From our definition of &, (0) from (124), we have
1 r2 ke (1)
20— 1) = F(0)’
Then, if 72 < 2n — 1, we get
27 kn(0)
Thus, if 2, R? < 2n — 1, we get
1 kn(R)  kp(R) R
Z < = = < 2. 125
27 ky(r) kp(r) rmtl — (125)
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The definitions of i, (0) and k,(0) from (122), (124) give us

< in(Mkn(R)(2n +1) < 2.

N

Thus,

n

< in(r)kn(R)(2n + 1)3% <2 (126)

N =

For the purposes of finding error estimates, we shall use the notation a,, ~¢ b, to mean that a,, ~ b,

and that for n > N for a given N, we have

Once useful property is that for ay,, by, ¢, > 0, if a, ~¢ b, for n > N, a, ~ ¢,, and b, < %cn and
by, > %cn for n > M, then a,, ~p ¢, for n > max(N, M). Now we work to find error estimates on

the various coefficients.

Since the terms of §,,,, are positive, we apply (115) and (116) with the error bounds from (120)

and (121) for aw + 1, § +3 < 2n,

a @kn(aw)min(%)%

(€5 — €x0) A (4
On,m ~2 (kn(aw) a Zn()\))+kn(aw)ln()\)2)\n € aw

€s

= naw)in(d [T el

€s a 2|’

which then gives us

a., €+ €so.NA

Onm ~ kn(aw)zn(x)( € )7
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To determine bounds for the error, we observe that if a < An, then

(65+€w)@+ a_ _ 2(€5 + €00)NA + NAES < g(

€s + eoo)n)\
€s a 2~ 2esa '

€s a

In the other direction, we have

(€s + €x0) NA N a 2(es+eoo)n7)\'

€s a 2an 3 €s a

Thus we have with the additional constraint a < An,

.G, €5 F €co WA
5n,m ~3 kn(aw)ln(x)( B )7

The terms of dp, mn,m — BnmYn,m as seen in (73) are positive, so we may apply (115) and (116),

along with (120) and (121) to get that for § +3,aw +1 < 2n,

(€s—€co) (k‘n(aw)%zn(%)) 2n+1

€s antleg

5n,m04n,m - /Bn,m’}’n,m ~2 +(kn(aw)in(%)ﬁ

+%kn(aW)Z%W>\in(%))(esaz+l + szt_l'_l )

_ kn(;ﬁ_)lzz(i) <(es Z €c0) n)\(2n 1)+ a a(n + 1)es N 2€50n%\ N 2n(n + 1)600)\>

a 2\ 2 ne, €5Q aep

 kp(aw)in(§) ()\(2712 +n)(6p + )  Anes L + es) aes )

antle, aep aes 2\ ¢ 2\nep,

kin(aw)in(§) AM(2n?) (6p + €co)
an+2€s ’

~

€p

So we have
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Ky (aw)in($) A(2n)(ep + €xc)
a”+263

6n,man,m - Bn,mr}/n,m ~ c
p

We wish to have conditions that give us

2 A\(2n2)(€p + €0o) < <)\(2n2 +n)(ep + €c0)  Aness n a(ep + €) aes > < §)\(2n2)(€p + €00)
- -2

aep aep aes 2)ep 2 ne, aep

As that will imply that, for the conditions given,

kn(aw)in (§) A(20°) (ep + €x0)

5n,man,m - 6n,m’7n,m ~3 . (127)

ant2e, €p

If n > 1, then

i(ep + es) n aecs alep + 2€,)

20 g 2 ne, — 2)ep

a?(ep+2es)
Ifn 2 m, then
a(ep + 2€;) < nA(ep + €x0)
2, T aep '
If n > 2, then
(272 4+ 2n)(ep + €0) A(2n?)(ep + €x0)

3
< = .
-2

aep aep

Concerning the other inequality, if n > %, then

A(n?)(€p + €x0)

9

A€o

2
<z
-3

€ aep
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22)\(%2)(629 + €o0) < 2X(n?)(ep + €c0)  Anés
3 aep - aep aes

All of these inequalities combined give the desired result, (127).

So (78) then gives us

nGn,m(a) - aGIn,m(a) a€g €p

5n,man,m - 5n,m7n,m s kn(aw)in(%) >\(2n2)(€p + €

and (79) gives us

Hn,m(a)i,n(g) s la n a
B w—— T L6 VP P G o)
5n,man,m - Bn,m'Yn,m 5 kn (aw)in(%) )\(2n2)(€p + 6oo) 0 " A Ppnm

for

a aw+1 a+ 3\ a?(ep + 2¢5) 3eactp
A2 20 T 2M%(6p + o) 265(€p + €co)

n > Ny := max(

(128)

(129)

Unfortunately, we have no guarantees on the sign of pp, ,, and thus cannot guarantee cannot

predict the signs of (128) and (129). Therefore, we are unable to guarantee asymptotic relations

on combinations of them, as seen in Ay, 1, m, Bsnms Cpnms Dsnm- Fortunately, all that we require

are bounds on these coefficients.

Furthermore, to deal with p, it is known from [6] that

M2 (n+m)!  cpm(2n+1)
Posf? < Lt — Com

AS ppnm is an integral respect to P (cos ¢)e’™? | as defined in (43), we also get

62

(130)



P (eoso) | I ppnnr)ar] < max 1D o) (131)

4
p

Since having the support of p near the boundary requires changing the differential equations on

the interface, it is reasonable to assume that p(r) is nonzero only for r| < b < a

Applying the bounds we found earlier, we have that for n > Ny,

nGpm(a) —aGl, . (a) (es + €x0)
n,m : ’ Pm <

/0 (72 5y (1) || P (05 &)

n,mQnm — Bn,m’)/n,m

ep(€s + €x0)b™(2n + 1) / ()| dr
- 8mn(ep + €oo) D, '

Concerning f3,,m, we have that, for n > Ny,

Hy ()il (2 e
ﬁ ()\) (A)_H;L,m(a)zn(X)

5n,man,m - Bn,m’)/n,m

m ( €s EOO) iy r r2 T)|ar
P eos )] < 35 2o [ () ()l

Ep‘f‘eoo

epa(es — € )(2n—|—1)z’n(§) Slde
s /D p(x)dr.

By applying (123), we have that for n > max (N, (%)2 —2)

Hpom(a)il, (% .
, (i)z ()\) _H;L7m(a)2n(%)
ﬁn,m
5n,mO[n,m - Bn,m’)/n,m

m ep(€s — €50)(2n 4+ 1)0"
By (cosg)| < G /D Ip(r)|dr.

Then by (74), for n > max(Np, (%)2 —2)

b"(2n +1)
Dsnm PT:n S]- S )5 7 . N d .
Damll B (o8 )| £ 156 + o) 2 [ ot
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Concerning 7, m, we have that for n > Np,

nGpm(a) —aGh . (a) (es +€p)(n+1)
5 n,m m < S P n+2
Tn,m 5 [Py (cos @)| < 32n2an+lk (WG)(fp'i-ﬁoo / 7" pp (1) |

n,mQnm — ﬁn,mr)/n,m

< gl it DO IV [ ) .
D

8mn?a" 1k, (wa)(ep + €x0) Jp,

Concerning oy, m, we have that for n > Ny,

Hp,m(a)i, (% . a
(/\) SUS Hrlz,m(a’)ln(X)

5n,man,m - Bn,mf)/n,m

[Py (cos ¢)]

Anpom

3(n+1)( ep + €5)
= 2n2ak, (aw)in($)(€ep + €so)

/ i) ppn ()

< 32 D+ &) 20+ Din(3) | ot
Dp

8mn2aky, (aw)in($)(ep + €so)

2

Again we apply (123) to get that for n > max(No, ()" — 2),

B @) g i (o) Des)(2n + 1"
A n,m n\ )\ m < (nep—i— (n+ )65)( n+ ) / .
|P"(cos )| <6 RTn2am h (aw) (6 + €n0) b, |p(r)|dr

an m
n,man,m n,m )n,m

Then by (75), for n > max(Ny, (%)2 —2),

9ep +€5)(n+1)(2n+ 1)0" /
Bs nm|| P < =P :
€p| U || n (COS qb)’ — 87m2a”+1kn(aw)(ep + 600) D, ]p(r)]dr
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Let’s assume that n > max(Ny, (%)2 —2). Then we have

€p _on_1 m b"(2n + 1)e,
£ D P <
e a s;n,miy (COS QS)‘ = 15(65 + 500)87Tna2n+1€s(€p € ) D, ’p(r)dr

9(es — €xo)(€p +€5)(n+1)(2n + 1)b"

ep(€s — €x0)
= dr.
87Tn2a2n+165(6p+600) /_Dp ‘p(r)‘ r

esam

Jin(90) By g P (cO8 ¢>' <

Combined, using the equation for Cp ,, ,,, found in (76), we get

Gn m
‘(Cpm’m + 77@’)

an

24(es + €xo)(6p + €5)(2n + 1) (n + 1)0" / |p(r)|dr.

P <
VP (cos QS)’ - 8mn2a?tles(ep + €xo)

DP
Similarly, the equation for A, , ,, found in (77) gives us
Hnm(a)

(A \n,m + T raN. v
‘ ’ in(5)epA

| P (cos gzﬁ)‘ < 9(ep +€s)(n+1)(2n 4+ 1)0" /D o(0)ldr.

< R
8mn2a™ iy (§)ep(ep + €co)
So, now let us consider the various series that occur in ® and w.

For ¢s and us defined by (21) and (23), we have r > a and the series

et el D@ UVl [
8rn2a" 1k, (aw)(€ep + €co0)€p D, )

Z | Bs nmkin (wr) P (cos ¢)e™?| <

m=—n

Since k;, is decreasing and nonnegative, we have "1k, (rw) < k,(aw)a™ .

We also observe that since n > 2, we have % <3(2n+1)

By defining Mp := %, we have

an+1rn+1
m=—n P

- 4 2n + 1)b"a" !
5 B P cos 00| < 3y @V [ ooy

and since b < a < r,

65



o n
Z Z Bgnmkn(wr) P (cos ¢)e™  converges like a geometric series .

n=0m=—n

Also present within ¢, and ug is the series

n
e ; b (2n +1)2
1 0
> D" P (cos )| < 15(es + o) Sty + em)r T /D |p(r)|dr.

m=—-n p

Since n > 1, we have (Qn;;l)Q <2(2n+1).

30(es+teso)

By defining Mp := Tn(erren) We get

rn—‘rl
m=—n P

- : 2 + 1)b"
Z ‘D&n’mrfnflp;;n(cos Qs)ezm@’ < MD(TL—'_)/ |p(r)|dr,

and since b < r,

oo n
Z Z Dy pmr "1 P (cos ¢)e™™?  converges like a geometric series .
n=0m=—n
Thus we known without any additional assumptions that ¢, and u, converge. For ¢, and u, defined

by (20) and (22), we have r < a and the series

n

D

m=—-n

Gnm(a)

o )r" P (cos <Z>)eim‘9

(CpiTL?m +

24 (€5 + €s0)(€p + €5)(2n + 1)2(n + 1)
8rn2a?ntleg(ep + €oo) D,

We also observe that since n > 2, we have w <3(2n+1)
2n

By defining Mo := %M’ we have
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n

D

m=—n

Gmm(a) n pm im (277’ + 1)b"r"
( oo+ L)y P cosg)em?| < e EEE [ o,

P

and since b < a and r < a,

a ; . . .
g E Cpnm + n;:;( ))T"P,T(cos gb)e””e converges like a geometric series .
n=0m=-n

uy, also has the series

n

D

m=—n

< 9ep +€5)(n+1)(2n + 1)2b”in(§) /
8rn2a™ iy ($)ep(ep + €so)

Hn,m(a)i z cos imb
n(Flen) R (cosee

ATLTI‘L
(p)z_'_ )\

()| dr

Since i, is increasing and nonnegative, we have r~"i, (%) <i,(5)a™"

We also observe that since n > 2, we have % <32n+1).

By defining M4 := %, we have

n

D

m=—n

H,m(a) T\ m i (2n + 1)rmo"
(o + s R in P (eos 9| < My BT [ ol
P

and since b < a and r < a, we have

Z Z pm T+ M)in(i)ﬂfﬁ (cos@)e™  converges like a geometric series.
(A JepA A

n=0m=-—n

So, what we still need to show is that

S % (Gomlr) - ’mGg;j”(“))P (cos )™
n=0m=—n
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and

S 3 (Ml @in®) gy ) eos )

both converge for r < a. However, depending on how p, is defined, there may be some 7 for
which the series do not converge. For instance, as the point charge model has the reciprocal of the
distance to the point involved in its solution, an unbounded result, we will be forced to add more
assumptions to create convergence. Let’s assume that p,(r) is not supported near |r| =r. So, let’s

say pp(r) is nonzero only for 0 < |r|<ec<randr<d<|r|<b<a

The definition of G, ,, in (48) gives us

[T () dE
o for tn+2ﬁ'p7n,m(t)dt

— et Jo 2 pp i m (8)dt

Then applying (131) gives us

TnG ( ) m 1 rn —1-n —1-n_n rb"
Gonlr) = B P cos )] < -7 e T [ ptwlar

P

Since r < d, ¢ < r, and b,r < a, we have geometric convergence, and thus

" Grm(a) | Hm im0 ; : :

g g (Gnm(r) — ———") P, (cos p)e converges like a geometric series .
a

n=0m=n

The definition of Hy, ,, in (49) gives us

) [ k(%) ppo,m ()t
—Hpp(r) + ————25 = g fo in (L) ppnm ()t

n( fo in ()82 pppm (t)dt

2
A

. 7‘

=
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Then applying (131) gives us

Hopn(@)in() (2n+ 1) 5D
n,m\d Zn z m 2n+1
= Hulr) + 22 preos ) < P20 | ins) | [ Dot
A (i ($in(} v
()

(b
We then apply (126) and (123). We note that a > b implies j”ggg < ()" without any extra
AN
a\2
restriction on n. Then there is Ny = max(($)? — 2, (*)QH) such that for n > Ny, we have

| - Hnm(r) +

Then, as r < d, ¢ < r, and b, < a, we have geometric convergence, and thus

N Hy m(a)in(%) /6

E E (—Hpm(r) + —————2- G )P (cos ¢)e™”  converges like a geometric series .
in(%

n=0m=n A

Thus we have shown that for r outside of the support of p, ,, m, we have convergences in the solutions

Oy, us, ®p, u, defined by (21), (23), (20), (22). Thus we have proven Lemma 5.1.

For the purposes of determining error bounds, if n > N where

) ’ P Rad] ) ) _27
A2 2\ 202 (€p + €00)’ 2€5(€p + €00)” A2 2

2
Mo max(g aw+1 a+3)\ _ a(ep+ 2¢s) 3escp a? Sz + 1)

then we note that the maximum contribution to the nth term of ®, is bounded by, with b < a <r

32n+1) 1 (b
dmes(ep + €cxc)ep T

) (90ee — ex)(en + )+ 156p(en ) [ [ptoe

r
P

For ug, the nth term is bounded by, with b <a <7r
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dmes(ep + €so)ep T

32n+l) 1 <b) (el ) + 156+ xc)) [ lotr)lir

T D,

For @, the nth term is bounded by, with b < a,c<r <d,r <a

(2n+1) [, 72(ep + €5) 1 /or\" 1 /7r\n
= (= Z(Z
dTep (es(ep + €c0) TU\@E) T3 (d) +

)

For uy, the nth term is bounded by, with b <a,c<r <d,r <a

i (et (&) @7 Q) [ ot

P

Where the terms involving ¢ and d are omitted if p does not have support for |r| < r and |r| > r

respectively.

While the inclusion of the 7 and £ terms are unfortunate, they are necessary for expressions of

the form i L However, when we were calculating ®,, and u, for the point charge model, the

r—rol|’

inclusion of the ‘r_ilr()' term allowed us to rewrite, using b = rg,

0o n Gnom(r r""Gn,m(a m im
300y o (G ) M Cnmla)y pr o ) eim

n
€p a™ep

_ 1 _ \~o© n —1-2n,.npn pm im@ P (cos ¢o)e” ™%
- 471—5?‘1»_1-0‘ Zn:O Zm:—na‘ r b Pn (COS ¢)€ Ep(2n+1)cn,m

Then, if we consider this new series part, we have, via the P bounds from (130),

n

>

m=—-n

ailfznr"b"Pgn(cos o)

Pp(cosén) |_ (2a+1) 1 (1b)"
ep(2n+1)cpm |~  4m  aep \a?)

Thus, by removing ;——— from the series, we have made it so that the bound to the nth term

1
plr—ro|

of the series for ®, reduces to

Q| =

(2n+1) < T2(eptes) 1>

dme,  \ €s(ep + €xo)
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We also rewrite

) n Hnm(a): (r m im
Zn—O Zm:fn EI%)\(_Hn m(r) + in’(%( )Z"l(X»Pn (COS¢)€ o

)
- —[r—rgl|/A n(3)in()in (%) pm im0 P (cos ¢g)e % ’
- 47TE 4mep|r—ro| +Zn OZm_—n in ( P (COS d))e . €pACn,m

n

D

m=—n

)

kn (5)in (5

)in(%)
)

P! (cos ¢p)
€pACnm

Pm(COS ¢) < (27’L + 1) kn(%)zn(%)zn(@ )
%

1
T Am A in(

> [y

a\2
We apply (126) and (123) with Ny = max(($)? — 2, (*)Q—H) to get that for n > Np, we have

2 rb\"
< -
= 4dmae, \ a®

P (cos ¢o)

€EpACnim

P! (cos ¢)

Then the bound for the nth term of the wu, series reduces to

(2n+1) <99(6p+65) ) 1 (Tb)n
+3)= (2
dme,  \ €s(ep + €xo) a \ a?

Such improved convergence rates can be obtained for more general p, but only if we can find explicit

particular solutions to the differential equations. The trade off is that these particular solutions

may not be bounded or well behaved.

Another observation we may make is that we were calculating a bound for ‘Zm*—n -+ by
Sl < (@2n41)|---]. We can do better.

In the point charge model example with a point charge at rg, all of the terms of series, once the
constants are expanded, have the factor

efz'mGO

P™(cos ¢)e™? P™ (cos ¢y) @ Do
n,m
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It is also noteworthy that the multiple is independent of m and that no ¢, 8, ¢g, 0y appear beyond
in this factor. This can be seen from the calculations for A, 5 m, Cpn.m, Bsnm, Dsnm as the only

time m was essential was in the H,, ,, and G,, ,,, functions.

So, let us examine these terms.

e—im@g imby

(2n+ Depm

e

P (cos gb)eimeP,;n (cos ¢o) W
n,—m

+ P, (cos d)e ™™ Py (cos do)

e—im&g

@2n+1)cnm

m —imb pm etmbo ( (n — m)‘ ) ?
+ P (cos p)e P (cos ¢p)

— P} (cos @)™ P (cos o) TR
n,—m

_ P (eos )Py eoscn) (ei’”(”“) o 2 Dl ((0 m>!>2>
(2n+1) Cnm 47(n —m)! (n+m)!

_ PRCOSOPI(080) (o=, p-im-a) — 2PR(C08) P o go) cos(m(t )
@t Denm 2t Denm

Thus

emimbo Z P (cos ¢) P (cos ¢g) cos(m(0 — b))

n
> Bifeos 01 P eostn) e — @ D

m=—n m=—n

So we have removed the imaginary component and transformed the complex exponential into a

cosine. We may also choose to rewrite it as
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zn: P (cos ¢)e™? P (cos ¢g)e M0 zn: P! (cos ¢) Pl (cos ¢o) cos(m(0 — 0p)) (n —m)!

2n+1)enm 47 (n+m)!"

m=—n

m=—n

This allows us to use the Legendre Addition Formula [5, Section 14.18.2]

"L P (cos ¢) P (cos ¢g) cos(m(f — g)) (n —m)!  Pp(cos ¢ cos ¢ + sin ¢ sin ¢g cos(6 — 6p))
Z 47 (n+m)! A ’

m=—-n

If we consider r and rg to have coordinates (7, ¢,6) and (rg, ¢o, p) respectively, then, after rotat-
ing 0y about the z-axis, the points will be (r,¢,0 — 6y) and (rg, ¢o,0). Since rotation preserves
angles, both pairs of points will have the same angle between them. The cosine of that angle is

cos(¢) cos(¢g) + sin(¢) sin(¢g) cos(f — 6p). Let us refer to that angle as ¢.

e—zm@g

D B (eos)e™ P eon ) = o Pa{cos(s) cos(d) +sin(e) sn(dn) cos(t — )

m=—n

This means that > Xy P (cos ¢)e™™ = X,, P, (cos ) Where X is A, B,C, or D for some

m=—n

A,B,C, or D. So, ®,,u,, Py, us may be written in the form >0 o fu(r) Pa(cos ). These solve the

differential equations for p = d(r — ro):

(132)

Let us consider a rotation O that takes rg to the z axis. Whatever rotation we choose, r will be

mapped to spherical coordinates T = (r, (5, 9~) Since A is rotation invariant and I' is a sphere, we
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observe that

(133)

will solve the system for p = &§(F — (0,0,79)). Since ¢ is both the ¢ component of ¥ and the

angle between © and (0,0,79), the ®, 5 ro; Psnro, Upn,re> Usnro cOefficients defined above must

agree with what we obtain from the method of solving the differential equations established earlier.

Thus, to solve the differential equations system with p = 6(r — rg), we may first solve the case

with p = 6(F — O(rp)) and obtain (133). Then ®,(O(r)), ®5(O(r)), up(O(r)), us(O(r)) will be the

solutions for p = §(r — ro).

This means that for the point charge model, we can shrink the number of terms summed from a

quadratic to linear in terms of n. Furthermore, the solution for arbitrary p can be taken from an

appropriate integral of the point charge solutions, a weighted average. We use

p(r) = [ 0(r —ro)p(ro)dro,
Dp

and we repeat the argument with P (cos ¢)e™? P™(cos ¢p) replaced by

e*imeo
2n+1)cn,m

efimﬁo

Wﬁ(ro)dro

[ Prr(cos 0)em By cos o)
Dp
to obtain

imég

D fD P (cos ¢)e ’mGPm(cosgbo)Wp(ro)dro
= [, 2 Pa(cos(9) cos(6o) -+ sin(8) sin(6n) cos(® — do))p(ro)dro
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Thus we have

e—zmﬁo

@nt Donm p(ro)dro

>

m=—n

/| P eosg)e OB (cos ) <o | lotro)ldro.

Dy

This is an improvement over using (131) by a factor of 2n + 1. Thus by repeating the ar-

gument we used to show convergence, but with the components expanded out to reveal the

po P (cos ¢)e™ P (cos gbo)%p(ro)dr factor, we can remove the 2n + 1 factor from our
previously found bounds.

Thus we have proven the following lemma.

Thus, the maximum contribution to the nth term of ®; is bounded by, with b < a <7

Lemma 5.2. Let the conditions of Theorem 2.1 hold.

Let p, be supported in a ball B(0,b) with b < a. Let the support of p, be further confined to be
within B(0,c) U (B(0,a) — B(0,d))

Let ¢ and us be defined by (21) and (23).
Let ¢, and uy be defined by (20) and (22).

Then for n > N

N::max(g aw+1 a+3X\ _ a*(ep+ 2¢5) 3€cc€p a72_2 %—1—1)
A2 7 20 T 202 (6p +€xo)  265(€p +€00) A2 T 2

where |r| = r, we have the following:

For &g, the nth term is bounded by, withb < a <r

5 ! <b>n (9(es — €c0)(€p + €5) + 15€p(€s + €x0)) /D |p(r)|dr.

dmes(ep + € )ep T \ T .

For ug, the nth term is bounded by, with b < a <r
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3 E <b>n (Y€ (€p + €5) + 15€p (€5 + eoo))/ |p(r)]dr.

Ames(€p + €xc)ep T \ T D,

For ®,, the nth term is bounded by, with b <a,c<r <d,r <a

o (Gl e ™02 (@) 2 (@) + 7 () f ot

p

For uy, the nth term is bounded by, withb < a, c<r <d,r <a

i (e 9 (&) +a (@) =5 C)) [ o

P

Again, with the terms involving ¢ and d removed if p(r) = 0 for all |[r| < r and |r| > r respectively.
The ¢ and d terms may also be removed if rewrite the solution using explicit forms as in the case

of the point charge model.

Indeed, our work with developing the improved convergence and focusing on the point charge model
gives us the following lemma.

Lemma 5.3. Let the conditions of Theorem 2.1 hold.
Let rg € Dy,. Let py(r) = d(r — ro).

Let ¢ and us be defined by (86) and (87).

Let ¢, and u, be defined by (88) and (89).

Then for n > N

2
o max(g aw+1 a+3X\ _ a*(ep+ 2¢5) 3escp a72_2 = +1
A2 7 20 VT 202 (6p +€xo)  265(€p +€00) A2 T 2

where |r| = r, we have the following:

For &g, the nth term is bounded by, with b < a <r

76



5 ! (b>n (9(es — €c0)(€p + €5) + 15€p(€s + €x0)) / |p(r)]dr.

Ames(€p + €xc)ep T \ T D,

For ug, the nth term is bounded by, with b < a <r

31 <b>"(96m<ep+es> + 156 (e, +e) [ ool

dmeg(ep + € )ep T \ T Dy

For ®,, the nth term is bounded by, with b < a,

) e

For wy, the nth term is bounded by, with b < a,

1 99(ep + €5)
Ae, \€s(€p + €xo)

Thus the series converge everywhere.

It is interesting to note that N does not depend on p. So if we have the constants €, €5, €p, a, A
fixed, then every p will require the same number of terms in the sum to guarantee the error bounds.

The particular p may have slower convergence.

We may also observe that if p has support over anything beyond finitely many points, Lemma 5.1
does not provide much convergence over ®, or u,. We have a better result found in Theorem 5.4.

Theorem 5.4. Let the conditions of Theorem 2.1 hold.
Let py, be supported in a ball B(0,b) with b < a.
Let max |py(r)| < oo .

Let @, Oy, up, us be defined as in (20), (21), (22), (23). Then their series converge everywhere, and

P, &, weakly solve (15), (16), (17) subject to (18), (19) everywhere.
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Suppose p is bounded. Then for function f and y > = > 0, we have

> P(cos o) / ’ F(t) P (t)dt

m=—n

y IS 2w

S Pr(eosd) /

m=-n r

™ 2T
< (2n 4+ 1) max |p| / y\ (@) /0 /0 P,,(cos ¢) sin ¢odfodeodt

where ¢ is the angle between (¢, ¢, 6p) and r.

[6] gives us a bound for P, which we apply to give us

T 27 .
< (2n+ 1) max|p| /y!f<t)\ / / 2 590 10 dgodt.

T 2T 1
/ / S 00 ovdodt < M.
0 0

We have that for some M,

sin ¢

Thus,

S Pl(cos o) / L FOppnm(t)dt] < (20 + 1>max|p|M@ max| f|(y - ).

m=—-n

So, for sequence {e,}22 ), with 0 <€, <,
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L N e (.

) b Oy ()t
1
< Z 2n+1P’T(COS )| 4rtom e T 0p i (8)dE
m=-—n

+r I 5T 2 pp o ()

(
)dt

n a 2
+a27;L+1 fo Tt Pp.nm t

Applying (131) gives us

. e T pm (t)dt

1
Y gy P eosd) | i 1 (0

2n+1
+a2+n+1 Jo 1" ppm (t)dt

<1 L A R Gl Y A / |p(r)|dr
A \(r+e,) \r+e, r r a \ a? Dpp

Applying (134) gives us

T T (£)dE

n
1 2

Z P (cos ¢) < max |p|M/ —e, ((r+€,) +7)
o, T R, (i "

T—E€n

We desire that Y o> [>" (Grm(r) — M)Pﬁ”(cos d))‘ converges. So, it will be enough for

m=—n am

the following three series

> [ 2

E My —e, < 0
™

n=1

oo n
r
E < 00
T+ €n

n=1
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X r—e,\"
Z( ) <%
n=1 r

to hold. We shall define €, = rn~3/% to achieve this. This implies that

Z Z (Grym(r) — M)Pff(cos $)e™  converges

an
n=0m=n

Likewise, concerning the H,, ,,, we have

1S Hy(r) + 2 @) oo )

m=—n

IN

m=—n

n (53
D Plcosod) | ha(E) [7 . in(L)e2 ppnm@)dt
( in(5)E2

Applying (131) gives us

) i (5) 2o, B ) pp ()t
Z Py (cos @) ‘|‘kn(§) (;ﬂien Zn(%)t Pp.n,m(t)dt
m==n kn < 7fn by a
+ (iizg)(k) fo Zn(%)t Pp.n,m(t)dt
Zn(%)kn(rt\en)
2n +1
< (4) Fhn(5)in(55) / |p(r)|dr
T ay,; r b Dp
+kn(x)ln(x)ln(x
in(%)

Applying (134) gives us
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2 r T+ €n
< (2 1 M| —e,(in(=)kn
< (2n+ 1) max|p| M| =€ (in (5

r—€pn

)+ en)? + k()i ().

(b
We then apply (126) and (123). We note that a > b implies in(3) < (%)” without any extra

in(%)
($)%+1
5— ) such that for n > Ny, we have

restriction on n. Then there is Ny = max(($)? — 2,

. in(5) ity e En(5)ppnm(t)dt
Z Pl(cosd) | +kn(%) Jo ™ in(£)E2ppnm (t)dt
m=—n kn(g

and
n r r+€n t\4+2
N EN kn ()t ppm.m () dt
S Peoso) () J; (X))t Ppnm(t)
m=—n TEa (%) e in(5) P ppnm (t)dt
< 2max o0y ey (A + ) () 4 ae (T2 )
max |p A en) (- r .
We desire that » 7 ’Z”m:_n(—Hmm(r) + %)Pff(cos Qﬁ)‘ converges. So, again it will be
n{X
enough for the following series
- 2
ZM —€, < 00
— ™




> () <

n=1

—3/4

to hold. Again, we shall define ¢, = rn to achieve this. This implies that

i i (—Hp (1) + M)Pff(cos $)e™’  converges

n=0m=n

So, we may write new bounds for the nth term of the series when p is bounded, when n > N.

For @, the nth term is bounded by, with b < a, r < a,

1 72(eptes) 1 (br\7 1 1 o1 (1=n34\"
dre, ((es(:ppﬂ;) + 1)5 ((Tg) + r(1+n—3/%) <1+n73/4) + 5 ( n1 ) ) po |p(r)|dr
—I—é max |p| M/ %n*3/4r(2 + n~3/%)

For w, the nth term is bounded by, with b < a, r < a,

1 99(eptes) 1 (br\™ 3 1 "3 (1=n34\"
e, (s +98 ()" + s (amo) + 2 (550)) S, lo(e)lae
+% max [p| M/ 2n=3/4r(2 + n=3/4)

Thus, if p is bounded, then the series are convergent everywhere and thus gives weak solution on

all of R3. While as written, this doesn’t demonstrate convergence at r = 0, we remove the integrals

concerning r — €, and their results, since they’d fall outside of the domain. 0" and i,(0) are 0 for

n = 1,2, ..., which removes most of the other integrals. This will give us that for n > 1, the nth

term for u, and ®, is 0.

Thus we have proven Theorem 5.4.

When the point charge is near the origin, as in [Figure 7| we observe that we have very quick

convergence. Again, we use €5, = 1.8,¢5 = 80,¢, = 1,a = 1, A\ = 15. For these constants, N = 2

and thus our bounds for the nth term are valid.
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¢ e

(a)n=1 (b) Complete series

Figure 7: zxy™ Hemisphere values of the incomplete series for ® on I' up to a given n for the point

charge at (r, ¢,0) = (0.1, %, %T”)

«C L U e

(a)n=1 (b)yn=4 (c)n=28 (d) Complete series

Figure 8: zaxy™ Hemisphere values of the incomplete series for ® on I" up to a given n for the point
charge at (r,¢,0) = (0.5, 7, %’r)

When the point charge has been moved from the origin, as in [Figure 8|, the convergence takes
longer, as we expected from the calculations, the convergence being that of a geometric series with

ratio %0 < 1. N =2 and thus our bounds for the nth term are valid.

n | Maximum contribution of nth part | Rate of convergence | Theoretical maximum using P
1 5.229 x10~* 9.74 6.2065

2 5.369 x107° 9.87 0.62065

3 5.442 x1076 9.92 0.062065

4 5.487 x10~7 9.94 0.0062065

Table 1: Convergence on I' for point charge at (r, ¢,6) = (0.1, 7/4, 37 /4)

We observe that actual maximum contribution of the nth part of the series is far less than the
guaranteed bounds. This is in part because we chose to find the error estimates for any set of
constants rather than the particular €, €, €x, a, A. We also made some simple estimates with using
the asymptotic relations to keep n small, and did not appeal to more sophisticated bounds for P".
While the estimated bounds were only valid for n > 2, in these instances, they also hold with n = 1,

although we should not expect such bounds to apply to smaller n in general.

83



n | Maximum contribution of nth part | Rate of convergence | Theoretical maximum using P
1 0.01312 1.94 31.033
2 0.006729 1.97 15.517
3 0.003408 1.98 7.7582
4 0.001718 1.99 3.8791

Table 2: Convergence on I' for point charge at (r, ¢,6) = (0.5, 7/4, 37 /4)

Nonetheless, the actual contribution has been decreasing near the factor of %, which would be

expected from our bounds.

6 Nonlocal Modified Linear Poisson-Boltzmann Model

We demonstrate the appeal of the techniques used to solve a nonlocal modified linear Poisson-

Boltzmann equation, (NMLPBE) model as seen in [10].

1
—epAd)(r) = app(r) re D, (135)
€s — €xo
ety (r) + N0 ) (@4 Q)+ ) =0 reD, (136)
O (r) — 0 as|r| — o0 (137)
subject to the interface equations
Oy(r) =Pp(r) rel (138)

Y'—0 rer (139)
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where n(r) is the outward normal and

1
— —[r[/A
Q) = o r 40,

This model assumes there are n, point charges at locations rj with magnitude z;. It leads to p

being defined by

Tp
1
—pp(r) = O‘Z zj0(r—r;) re D, (140)
€0 =
The special constants o and 2 are given by

o 1010¢2 2 21810—17NA65

EOkBT EOkBT

Where ¢ is the permittivity constant of the vacuum as before. e. is the elementary charge. kp is
the Boltzmann constant, 1" is the absolute temperature, and V4 is the Avogadro number. I, is the

ionic solvent strength in moles per liter. We list their values from [10]

e ~ 8.8542 x 10712 Farad/Meter
e ~1.6022x107?  Coulomb
T = 298.15 Kelvin
kg =~ 1.3806 x 10723 Joule/Kevin

Na =~6.0221 x 10> ions/mole

For applying this model to actual simulations of protein in water, the values for those constants are
important. This is especially in the case of the nonlinear version, which features 2 sinh(®) instead
of K2®. Since our techniques are only valid for the linear equations we will be focusing on the linear
model. Again, (136) may include charges among the water, but if the charges are balanced, as in

NaCl salt water, the 0 remains reasonable.
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For our purposes, we shall assume ¢y = e, = 1 with arbitrary p when solving the model, and then

scaling the solution as appropriate for the actual values of €y, e..

We shall solve the equations of this model using the same techniques and many of the details will
be comparable. The substantially different hurdle comes from when we need to solve a system of 2
equations and we must find a bound on the determinant of that system. As they are substantially
more involved, the details have been put in the appendix. The verification is comparable in the
objective and the use integral identities involving i, and k,, but the details are distinct as far as

Dy is concerned.

We concern ourselves with Theorem 6.1.

Theorem 6.1. Let €y, €x, €5, a,k > 0, be constants with €5 > €. Also let g = 1.
D, =A{r|r <a}, I ={r|r =a}, Ds = {r|r > a}

Let p, be a distribution defined on D,, with support inside some closed set X within Dp. Let

po |pp(r)]dr < oco.

Let wy,wy > 0 be defined from

1
wi = ——— (& + K2A2 + /(€5 + £2A2)2 — des A2K2)
2€50\

1
W = m(es + 12AZ — /(€5 + K2X2)2 — e N2K2).

Let P denote the Associated Legendre polynomial, in(r), kn(r) denote the modified spherical Bessel
functions as defined in (185), (182), (183)

Define ®, and ®, by

[e'e) n Chp,n,m n rnGn,m a m m
Dp(r) = Yool Mpm o (FFemr™ 4 Tl ) P cos g™ (141)

e%] n Gnm(r r"Gn,m(a m m
Fye o (Gumt) rGnm(@)y pm(eog ) i

n
€p €pa
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1= 22w 3" S By pmkn(wir) P (cos ¢)e™?
(PS(I‘) _ ( 1)27170 me—n U ( 1 ) ( ¢) ‘ (142)

H(1 = N2w3) S S Dy mkin (war) P (cos ¢)e™
where the spherical coordinates of r are given by (r, ¢, 0).

up and us defined on D, and Dy defined by

wp(r) = Yoo Yo a(—Apan — oty Vin(5) Py (cos @)™

Y0 Do (S DG () pin(og ) eimd . (143)

o0 n " Gn,m(a n,m\@) . T m m

+ 00 Yo ey (MG (1) = Nl — H () 4 Sl (5)) B (cos @)™
Z Z snmkn(W17) + Dy nmkn (wor)) P (cos ¢)e™?. (144)

n=0m=—n

satisfy

u(r) = (Qr* @)(r /er—r r')dr (145)

The coefficients within @5, ®,, us, and u, are given by (174), (175), (176), (177). These in turn are
defined by (68), (172), (70), (173), (156), (157).

Then outside of X, ®5 and ®, weakly solve (135), (136), (137) subject to (138), (139). The conver-

gence of the series is geometric with the ratio dependent on p.

However, the verification in Lemma 6.2 and the convergence in Lemma 6.5 must still be shown to

prove the theorem.

Define u by
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u(r) = (Qx * B)(r /Qu—r /)dr

As u will solve

—A2Au(r) + u(r) — ®(r) = 0,

we have the familiar equations.

“A2Auy(r) +uy(r) — Py(r) =0 re D,

“A2Aug(r) + us(r) — P4(r) =0 r € D,

This allows us to transform the equations with convolutions into

Oug(r) 0P, (r)

on(r) ~ on(r) =0 rel

+ (€5 — €c0)

and

— €00 AP (r) — (€5 — €00)Aus + KQq)s(I‘) =0 reD,.

And as u is continuous, we repeat the same boundary conditions as before

Ous(r)  Oup(r)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)



So, we shall need to solve (135),(148), (149), (151) subject to the boundary conditions given by

(152), (153), (138), (150).

To solve u, and ¢,, for both the general homogeneous solutions and the particular one, we observe

that (27) and (29) agree with (135) and (148), and hence will have the same form for solutions.

C n,m 3
Pp(r) =D 0 0> men %T”Pﬂlﬂ (cos ¢)e™? (154)

+ 50000 S S22 P (cos )™

up(r) = Zi’f—o an——n p,n, mzn(g)Pﬁn (cos d’)eime
+ > 0 Y men Cpen e P (cos ¢) ™Y (155)
Y S 2 AGam — Hon) (1) P (c05 6)e

These have the identical definitions for G and H from (48), (49), (78), (79)

1
2n+1

G (1) = €@ m(r) = <—r" / "oy ()t A+ 7T / tn+2pp7n7m(t)dt> (156)
0 0

) — @ = won(r) = 25 (<) [ B D2+ kD) [ Dl
(157)

1Gon() = aGhgn() = a0 [, () (158)

Hn,m(i)i (%) _ H;L,m(a)zn(§) = :\2/0@ in(g)pp’n,m(r)ﬁdr (159)

Again, for the purposes of convergence, it may be more convenient to think of the solutions as
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[e'e) n ,n,m n r Gnm m m
Bp(r) = Soot g Yo (Czmg o 8 pin o ) imd

4 (160)
+Y o anz—n(Gn’:;(T) =1 C::ﬂ(a) )P (cos ¢)e™?
wp(r) = Yoo X (A — 15y )in(§) Py (cos §)e™?
+ Zn 0 me_n(cpen mpn r C:nar:Lz(a))Pn (COS ¢)€zm9 . (161)

+ om0 Come ey AGn (r) = ATl — H, o (r) 4+ Z2l5i (5)) P (cos )

To solve us and ¢s, we apply (147) to (151)

eoo)\QA2u8(r) — €ocAug(r) — (€5 — €00)Aus + mzus(r) — K2N?Aus =0

So, the fourth order equation we need to solve is

€so N2 A%y (1) + (—es — K2A2) Aug(r) + K2uy(r) = 0.

This can be rewritten as

€so N2 (A — W) (A — w)u,(r) =0,

where

1
)\2(

Ll

€s + 52A2 + \/ 6 + :“432/\2) oo)\2:"€2>

1
wi = Py (€5 + K2X2 — /(€5 + K2A2)2 — des A2K2).

We observe that since €5 > €4,
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(€5 + K2A%)2 — 4e o N2K? = (K22 — 2600 + €5)2 + deno (€5 — €50) > 0.

Thus, w?, w3 are real. €, > 0 implies that w?, w3 are positive, as suggested by their notation. We

use this because, we have already determined the homogeneous solutions to equations of the form
(A — k?)u = 0 while working through the previous model. These solutions are i, (x7) and ky, (k)

However, as we desire us(r) — 0 as |r| — oo, only the &, (k) solutions are valid.

Thus, when we solve

€2 (A — W) (A — w3)us(r) = €ao A (A — w3)(A — w?)us(r) = 0.

We have the homogeneous solution

us(r) =Y Y (Bonmbn(@i7) + Dy mkn(war)) Py (cos ¢)e™. (162)

n=0m=—n

Substituting back gives us

1= N2w2) 32 S Bapmkn(wir) P (cos ¢)e'™0
(PS(I‘) _ ( 1)27170 me—n U ( 1 ) ( ¢) . (163)

H(1 = A23) 000 SO Dy ki (wor) PY(cos )™

Observe that (163), (162), (160), (161) match (142), (144), (141), (143) of Theorem 2.1.

6.1 Solving the New Model

As with the Lorentzian model, we integrate the interface conditions over I' to equate the coefficients

to P (cos ¢)e™?,
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Conm n 1
pr,nymin(i) 4 SRRy —)\()\Gmm(a) — Hym(a)) = Bs nmkn(wia) + Dg pmkn(w2a) (164)

€p €p

— Ay pmih (% nm 1
panamn () + Cin na" ' + —— (G, (@) — H}, . (a)) = Bsnmkl (wia)ws + D pmkl (wea)ws
A €p EpA ' ’
(165)
C n,m GTL m
By nm(1 = N0 kn(wia) + Dy pm(1 — N2w3)kp(woa) = —2M g™ 4 ’6 (a) (166)
€p P
o (a1 = AR (010001 + D1~ N (2)2) (167
+(€s — €00) (Bsnmky (w1a)wi + Dy mky, (w2a)) = Cppmna™t = G, (a) =0
Then we solve the system of equations. (164) + (166) gives
_Hn m
—Apm,mz'n(;) + ,)\@) = By nmkn(w1a)N2w? + Dy pmkn(w2a) N2ws. (168)
€p
€p(165) + (167) gives
_Apvnvm;n(X)ep + _Hn),\m(a)
+Bs nmkh (w1a)wi (—€co\2w? + €5 —€,) - (169)

+D57n7mkﬁl(w2a)w2(—em)\2w% +e—¢€) =0

(166)n + (167)a /e, gives
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Bsnm(1 — )‘2w%)kn(w1a)n - Bs,n,mwk%(wla)wla

€p

_ 2,2
+Ds7n7m(1 - )\QW%)kn(WQa)n — DS n ka%(WQ(I)WQG .
nGn,em(a) G'Inem( )CL
P P

(168)i7, (%) — (169)Xin(§)/€p gives

“Hum(@ s (ay | Ham(@; cay

€pA n\x €p

A

— oo N2w? €&—€p)\: [a
= Banmbn(@10)\203i0,($) + By mhi, (wra)un Z=Ea=t) 5, (45
+Di ki (@20) A3, (8) + Dy (waa )y SN bemer) 5, (a)
As before we use these last two equations produce
1
2 mDsnm + B B nm = :(nGn,m(a) - aG;%m(a)) (170)
P
1 Hpm(a)il, (% ,
2 Dasun + 0hin B = - (D) i (9, am)
P
where for i =1, 2,
. _ 2,2
B (1= Nk (wia)n — BTN (172)
b Ep
i 2 2. 0 / (—eoNwi +es—¢p) .
Opm = —kn(wia) \*w; Z"(X) — ky (wia)w; - )\Zn(X)' (173)
P

We use (196) to produce a more convenient form for them.

< — ep\2w? — A2w?
= (6 = pXwi = €& + €xchwi) kn(wia)n +
€p €p

s oo)\2 2
(6 =€) (wia)wia
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(fep)\QwiQJr/\Qw-QEOO —este€p)

epal n/\kn(wia)in(%)
Onm = —Nwikn (wia)ins1($)
—A20w2eoote5— .
+%p+ee’ﬂ/\kn+1(wia)wizn(%)
While we ought to prove that Bﬁyméﬂl, ﬁnm nm < 0, as it is more complicated than in the

previous model, we shall give the proof in Appendix C. The relationship between w; and ws and

the identities between k,,, k,,—1, kn—2 play large roles.

Once we have proven that are linear system is thus solvable, we have solutions

~1 6 (nGpm(a) —aG! . (a
DS,’N/,TI’L = IB 5 Ezi B ’I_I( ((L)’i/ ((az 7 ( )) (174)
n,m%n,m n,m nm _ %,m(w _ H7/—L7m(a)zn(%))
~1 =62 . (nGpm(a) — aGl . (a
S bGan(®) = oGl -
A = Fhm¥im \ g2, (Bm R (a)in(4)
Substituting back gives us
€p 2 2 2 2 G m(a)
Cpnm = pe Bs nm(1 — Nwi)kp(wia) + Dy pom(1 — N w3)kp(wea) — ——— (176)
€p
1 H, .
Apnm = —~ —)\Qw%kn(wla)BS noan — )\2w%kn(w2a)DS nan — ’7@ ) (177)
e in(%) T ” epA

6.2 Verification

As in the previous Lorentzian Model, we must verify that the v we obtained in (155) and (144)
matches the form it was given in (146) using (154) and (142) That is, we need to show

Lemma 6.2. Let the conditions of Theorem 6.1 hold.

For emphasis, define u, on D, and us on Dy as in (155) and (144). Define ®, and ®, as in (154)
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and (142).

Then

0= [ ae-rew + [ Q- reea’ rep,
Dy Ds

us(r) = Qx(r — )@, (r)dr + Qr(r — )P (r)dr’ r € Ds.
D, D,

We remind ourselves of the preliminary work done for the integrals as the process here is largely
the same. In fact, since the formulas for the protein region have not changed, they will produce
identical results. Additionally, we omit the subscripts to A, B,C, D, G, H, 3,6 and p. However, the

B and § superscripts are necessary and the symmetry helps simplify the process.

First let’s consider the case of r > a.

Qa(r — )@, (x")dr’

DP
_ Cpnim " Gnm(s) _ imo’ '
'nZ:Om—Zn/ €p ) r'=s Q)\(r r) (COS(¢ )) dS(I‘ )dS
(cos( ¢>>)eim9 @ Conm v Gum(s). s r
Ly s S

By defining I1 + I = [} 2(0”" g™ 4 G”’m(s))in(i)kn(g)ds, we have

€p €p

T, a. . ,40C
L = kn(X)ZnJrl(X))‘a +2:
p

I = kn(g) [—Aa2(62D +6'B) + cﬂm'nﬂ(%)c( a) + ariy (2 D(ED +6'B)|.

The change to I appears in the definitions of 3%, ¢°, and G(a) when calculated in terms of B, C,

95



and D. Using (170), (171), and (176), we get

N202 = X202 0o +e5 —ep)nA2 ,
(p e Nttt ()i () ()
2

AW ke (wi a)int1(5)kn(5)a
2 Nty )N 1 a)wiin (D) (L) a2 n
IQ - ZQZ (ep—e /\2w€2p—e +e /\20.;;1)\(2@1 ) Z n()\) n()\) B kn(g)a2)\in+1(§)6;a ’
i=1 422 L ZP = i Zn(%)k‘n(%)kn(wza) 4
€s—€coN2w? . a r
+%kn+1(w,-a)wmQ)\an(X)k:n(X)

+(1 = Nw?)a® My (wia) ki (5 Vin41(

S
S—

where Q' = B, Q? =

Qxr(r — r')®y(r")dr

Dy

= / (1=X2w3) By pmkn(w18)+(1=A2w3) Dy 1y mkn (w2s))

T,/

ST (1 = N2w3) By ki (w1 8)in (3) K (5 ) s%ds
_ By (cos(¢))e™ [+ [T (1 = Nw3) Dy mbin (was)in (5)kn(5)sds
N f 1 — Nw? Bsnm n(wls)zn( )kn( )82ds

(%)kn(

+f 1 - )\2 snm n(w25)7fn %)kn

>1=
>lw

)s2ds

>l

We define

1= [0 XD b wis)in(§ b ()57

, o T s
B= [0 Qb wis)in (e ()5,

We apply (106), (107) to give us that
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+ Ak (wir )k,
L+ IE=Q Tk (i) in (5 )"(%
—Akp(wia) Ja
(

—wiX2kn wlr) (%) n(§)7“2

+ N (Wir )41 (5 )in (572

Applying (200) reduces this to

—wiNkn g1 (wia)kn (% )in($)a?
L+ I =qQ — e (wia) ki (5 )ing1(4)a?
@

+ 23k, (wir)

We are in the fortunate case that directly summing gives us desirable results without having to

appeal to any additional properties of ,, or k.

L+ DL+ I3+ 15+ I3 + I2 = BNk (wir) + DNk (war).

Thus we get

Z Z snmbn(wWir) + Ds7n7mk:n(wgr))P:Ln(cos(gZ)))eime

n=0m=-n
which matches the form found in (144). Thus we have verified the us case.

Now we examine the case where r < a. Again, the observation that the formula have not changed

for D, allows us to repeat the results from the previous model.

Qa(r — r')®,(r")dr’

Dy
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= P™(cos etmo
> il A(f)) (K1 + K + K3 + Ky),

n=0m=—n

where

DA

T r .
f)kn_s_l()\))\—l— Czn()\

Cin(5

Ky =—
€p €p

While we have a slightly different formula for H(a) and G(a) in terms of A, B, C, D, the result is

comparable.

i _ A2H(r)
€p

—A2i,(L)A

_ Min(%)
zz(;’A 3wiky, (wia)B
)\an(

a
LD

)
$)\3

A
@) Nw3k,, (wea)D
_)\CL Zn(%iljn(%)((SQD + 613)
(o + Ka) = " A3G(r)
+5r
P

e M1 (§)in (5)C
—a2)\k‘n+1(x)ln(x)(1 — N2w)k, (wia)B
—a?Nepi1($)in(5)(1 — N2w3)kn (w2a) D

+(B°D + B B)(aXin(5)kn($))

Then, for Dy, we have
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o0 n 00 _ )\2 2 Bs n mkn . /
= Z Z / (1 Wl) M, (wls) Q)\(r o ) (COS((}S )) im0 dS(I'/)dS
n=0m=-n"2 —|—(1 — )\2w§)Ds7n’mkn(w28) r'=s

B i i P (cos(¢p))e'™? L1 = Nw?) Bs nmbin (w18)in (5 ) en (%) s%ds
- 3
"0 m—n A (1 = N2w3) Dy ki (w38)in (5 )k (£)5%ds

n zm@

oy BeosONe™ ey | peay

n=0m=—n

Applying (106) gives us

K} = Q' (i b (wia)kn (3 )in (30 + A (wia) e (§)in(§)a”)

As the terms of K1, Ko, K3, K4, K3, K2 have A, B,C, D,G(r) or H(r) in them, we may reorganize
the terms so that
)\2

3
o) - X He)

Ki+Ky+ K3+ Ky + K3 + K2 = L1A+ LB + L3C + L3D + -
€p p

As Ly and L3 are defined identically to that of the previous model, we repeat the conclusions.

., T
Ll = —Asln(x).

1 )\3

€p

L3 =

Concerning L}, we apply our definitions for 3" and 6° from (170) and (171) to get
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)\zn
(()))\3 2k ( )

_,\aQizT(L(gélin(%)( Ep)\2w2+>\62;; €o0— ee+€p)n)\k (wia)in(2)
28 22 (ws0)in ()
_ Aazizfgn(%) Aty (wia)wiin(2)
Ly = —a® N1 (§)in(5)(1 = N2w))k ( a)
HaNin (§)kn(3)) T

€p

+(ar?in(5)kn($)) Mknﬂ(wia)wia
—wiX kg1 (wia)kn ($)in(5)a?
Mk (wia) k41 (§)in(%)a?

The natural simplification gives us

_ ‘zngi))\?)wzkn(wia)
74n()\) ¢
. 2, a
LZQ — _I_%i\lg)”()\))\Qw?kn(Wia)inJrl(%)

+a* M 41(4)in(5)N2wiky (wia)

s (T 3 2 a a 2
) i)+ ki (Ginia() -~ 21 =0,

where equality with zero comes from applying (200).

Altogether, this gives us.

1 9 3. T rmA3 A3 A2
K1+K2+K3+K4+K5+K5:—)\Zn(f)A—l- C+ G()—fH()
A €p €p €p
Thus we get
m( im0 r r Grm(r)  Hpn(r)
A n,m n,m ’ - .
S Y Preos(@)em(—i () Apmm = Cpnm + = Ne, )

n=0m=-—n
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which matches our definition from (155). Thus we have now verified the u, case.

Thus, assuming we have convergence, we have shown Lemma 6.2.

6.3 Convergence

Lemma 6.3. Let the conditions of Theorem 6.1 hold.
Let p, be supported in a ball B(0,b) with b < a.
Then ¢s and us defined by (142) and (144) are geometrically convergent series.

If the support of py is further confined to be within B(0,c) U (B(0,a) — B(0,d)), then ¢, and u,

defined by (141) and (143) are geometrically convergent series when r satisfies ¢ < |r| < d.
To prove convergence, we shall need to know the behavior of Bgméﬁb,m - B}L,méim

It is shown in Appendix D that

2 a A
|63L,m5711,m - B’rlz,m(sz,m| > gnzkn(wla)k‘n(WQG)Zn(X)E(w% - w%)(EOO + 6P)
p

for n > Ny where

Ny = max(g(wla i 1)7 3a%(ep + ¢5) )
2¢ 2622 (€00 + €p)
where
(= min(L G798 1R wd)(6 ) (GFe)wi—wd) (gra)i-wd) 1,

6 (3w? —w?)’ 12 (ep + €5) 12X 26wiws 7 bes(wi+w3) 3

Notice that this implies that Ny > %.

Using the definition for Bfl,m from (172) and then applying (121), we have that for w;a + 1 < 2n,
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; €p — epAZw? — oo\ Ww?
Bl < 2= a1 1A g — b ia)wia
p p
A2w? — e N2w?
‘Bn m| < ‘eipmkn(wia)n + 3wkn(wm)n.
Ep Gp

Using the definition for 67, ,, from (173) and then applying (121) and (120), we have that for

wia + 1 < 2n,

DX M (i) (8)
10, | < + 2 g (wia)in g1 (£)

€pa

Rl me bl Nk (wi)in (2) — ANt (wia)in(2)]

€pa

INwieso — €5 + €pl a

n/\> ba(wia)in(3):

i epNwin) e Nwla
[0 m < +3
€pa 2nepA €pa

If a < nA, then we have

. M2w2n)\ ANw?es — €5
151m|§(2€” wind gl wiew — ¢ “p'm) o (wi@)in(2).
€pa €pa A

To reduce notation, we will denote constants X* and Y

%

- i kn(w;ia)a

— nkp(wia)kn(wea)in($)

Bnm nm_ﬁnm n,m

7
5n,m

2 1 1 2
n,m(sn,m - Bn,m n,m

< % kn (w’ba)
= nkp(wia)k,(wea)’

where
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xi = = %]+ 3les — o)
2l — @) e + )

vi (26p/\2wi2 + 3])\2%2600 — €5+ €p|)
2(wf — w3) (oo + €p) N2

As in the previous model, we shall assume that the support of p is away from the boundary. That
is, we will assume that p(r) is nonzero only for |r| < b < a. Additionally, we appeal to the known

bound for p, (131). It is also good to remind ourselves that the bounds given are only for n > N;

where

wia+1 é
2 ’a

N; = max(Ny, )

Next, our definition of G, ,, from (158) tell us that for n > Ny,

i nGn,m(G)_aG;@m(a) m Yk, (wia)a=t"" [@ 2 -
B i A P cos )] < L [Ty, ) P (cos )

n,m“n,m n,m%n,m

Yk, (wia) 1 (Z)n(2n+ 1) /D,, |p(r)|dr.

= drnky (wia)k, (wa) a

Likewise, our definition of H,, ,, found in (159) tell us that for n > Ny,

Hnm@in(S) _ g1 (a)in(2)

e W ae)
Xiak,(w;a) A T m
< e 2 [ (2 P cos o)
n n AGY
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Xk (wia) A b S
= Amnkn(wia)kn (wea)in($) a(2n—|— 1)Zn(>\) /Dp |p(r)|dr.

Applying (123) gives us that there is constant No = max(Ny, ($)? — 2) such that for n > Na,

Hp,m (a)in (%)

| — H (a)in(2) Xikp(wia) A (b)"
i A n,m AN m n\Wq
15} m P o) <2 — | - 2n+1 .
| " ?L,mé%,m B}L,m(sgz,m H " (COS )| 4”nkn(w1a)kn(w2a) a <CL> ( " )/D |p(r)|dr

P

Therefore, by (174), for n > Na,

1 Yi422X! /b\"

Dy || P™ < -] @2n+1 dr.

Danamll P (c0s )| < = S () (2n + >/D Ip(x)|dr
P

Likewise, by (175), for n > Ny,

. 1 YZ+4+22X2 (b\"
Byl [P (c05 6)] < () e+ 1) [ Ipto)lar

= 4me, nakp(wia) \a D,

Using our definitions for Cp p, » and A, found in (176) and (177) respectively, and absorbing

constants into X and X4 we have that for n > Ny

Cpman+ 228 cos )] < L (3€) (L) 2nen) [ bl

~ 4ma™ \ na a .

g+ 1P o5 0) < v (32) (2) @) [ b

epAin () 4min (§ na a D,

where

Xo =1 - 2wd(Y? +220X?) + 1 — A2W3|(Y! + 22X 1)
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X4 = N0 (Y? +22X2) + V20 (Y +20x1).

Now let’s consider the various series that occur in ® and u. Where r > a, we have By, , and

Ds,n,m‘

Z | Bs n,mkn (w1r) P (cos gb)eimg\ <

m=—n

2 Dy (wrr "
(Y2 + 20X 2)k, (w;7) <2) (2n+1)2/D |p(r)|dr.

drepnaky (wia)

Applying (125) with r > a, we have nfwar) o (2)"+1. Additionally, 2%—“ < 3 for n > 1, so we have

kn(wia) —

3 : Y2 4 22X2) /b\" sayntl
B nmkn(wir) Py imo o g(Y"+2AX7) (BT (a 2 1/ dr,
mgn‘ n, (w1r) P (cos )e"™| < dmae, (a) (r> (2n+1) b, |p(r)|dr

and since b < a < r,

oo n
Z Z By mmkn(wim) P (cos p)e™  converges like a geometric series .

n=0m=-—n

Likewise for the D, , ,, series, we have

- : Y14 20X Dk, (wor) (b\"
Dy nmbin P imé <( n - 2 12/ d
m;n| nmbn (war) P (cos ¢)e™| < Tmeynalon (wsa) (a> (2n+1) b, |p(r)|dr,

which for the same reasoning becomes

- ; Y4 20X1Y) /6" say\n+l
D nmkn Pm mo| < (— v a 9 1 /
m;n| n,mkn(war) P (cos ¢)e™”| < 3 Trac, <a> (T) (2n +1) ), |p(r)|dr

and since b < a < 7,
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[o@) n
Z Z Dy . mkn (war) P (cos qb)eime converges like a geometric series .

n=0m=—n

Concerning the u, and ¢, series, we have, r < a, and Cj,;,,, and Ay, .

> G+ 2 sy < 2 (22 (2) @m0 [ o

m=—n p

% < 3, so we have

Again,

> Conn+ 22 e <3 (1) (22 ) () env) [ owyar

m=—-n

and since b < a and r < a,

a ; . . .
Z E Cpnm + TL;L())T"P,T(COS ¢)e””9 converges like a geometric series .
n=0m=-n

Then for A, , m, we have

Since a > r, we may apply (123) to get :”’(g) < (g)n Additionally, % < 3. Then we get
nAX

> i+ i ireosol < (32 ) (£)" (2) ns) [ otoar

m=—-n DP

and since b < a and r < a,
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(e 9] n

H. .
E E (Apnm + ejL\Zm((ZJ)))zn( %)P,’l"(cos $)e™  converges like a geometric series .
n=0m=—n PIRAN

For the remaining series for H,, ,, (1) and Gy, (), we have already proven their convergence in the

($)°+1

previous model. For the error bounds for them, we had required that (%)2 — 2,25

< n. So we

restate that under the assumption that r is away from the support of p,

N " Gpom(a) o
Z Z (Grm(r) — T)Pff (cosp)e™”  converges like a geometric series .
n=0m=n

N Hpm(a)in(X) :
Z Z (= Hypn (1) + =222 A Pcos ¢)e™ converges like a geometric series

n=0m=n
Thus we have proven Lemma 6.3.

As we may desire error bounds, we will write the maximum contribution to the nth term in the
series. Since the Gy, ., Hy mm are identical for the modified model and the original, the argument in
the convergence for the original model for removing the (2n 4 1) factor applies here as well. This
also allows us to repeat comparable lemmas for a point charge model and one with bounded p.

Lemma 6.4. Let the conditions of Theorem 6.1 hold.

Let p, be supported in a ball B(0,b) with b < a. Let the support of p, be further confined to be
within B(0,c) U (B(0,a) — B(0,d))

Let ¢s and us be defined by (142) and (144).
Let ¢, and uy be defined by (141) and (143).

Then for n > N with

. 1A a? $)°+1
N:max(N07w1a+ A L
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Np = max( )

3(wia+1) 3a?(ep + €5)
2¢ T\ 26,02 (€00 + €p)

- min(l w? — w? i/\Z(w% — w%)(ep +exo) (6 + €s)(w? — wd) (€p + €s)(w? — w3) 1)
6 (3w? —w3)’ 12 (ep + €5) T 12X % wiwd T bes(wi+wd) 737

where |r| = r, we have the following:

For &4, the nth is bounded by, withb < a <7

3 b\"
y— (Y1 +20X1)[1 = Nwi| + (Y +20X?)[1 — Nwi) () / |p(r)|dr
7T7’€p a Dy

For ug, the nth term is bounded by, with b < a <r

r

b n
(Y1 +20X1 +V? +2)0X7?) () / |p(r)|dr
Dy

4rre,

For ®,, the nth term is bounded by, with b < a, c<r <d, andr <a

(5 ) G ) o

P

For wy, the nth term is bounded by, with b < a, c<r <d, andr <a

i () (2) 3G =2 6)) e

Among these bounds, Y1, Y% X1, X2 X, X4 are some constants.

Lemma 6.5. Let the conditions of Theorem 6.1 hold.
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Let rg € Dy. Let py(r) = §(r — ro).

Let ¢ and us be defined by (178) and (179).

(1= M%) Y2 S0 Bk (w17) P (cos §)eim?
+(1 — )\2‘*’%) fozo Z:Ln:fn Ds,n,mkn(“’?r)Prin(COS ¢)€im9

O,(r) =

Z Z snmkn(W17) + Dy nmkn(war)) P (cos ¢)e™?.

n=0m=—n

Let ¢, and uy be defined by (180) and (181).

Dp(r) = Y00 g S () By ki (wa) + P2 q =201 PI (cos )™

1 00 —1-2n,n n Py (cos ¢o)e” ™% imé
+47re |r ro| zn:O Zm:—n Ty & (2n+1)cn.m Pn (COS ¢)6

( ) =— Zn 0 me_n & Bsm,mkn(wa)in(g)Py(COS ¢)€im6

Zn )\
SR DD D E‘Z ;ﬁo)Bsnmk (wa) + LG’m a= 2" 1Y P™(cos ¢)e em

im

1 0o —1-2n,np.n P (cos d0)e™ ™% pm imé
+47’r6 ‘I‘ I'0| ZTL Ozm_fn r 7”0 (2n+1)cnm P (COS(ZS)

e—Ir—rol/X i Zn Ozm,_n (a)l.n( O)Zn( ) P (cos ¢g)e— "% PqT(COS ¢)6im9

4Tl'Ep|I‘ 1'0‘ in 5p>\cn,m

>|_fy
~—]

Then forn > N

- wia+1 X a? ($)*+1

No = max(

)

3(wia+1) 3a?(ep + €5)
2¢ T\ 26pA2% (€00 + €p)

1 wi—wi 1A (wf —wi)(ep + o) (6 +€s)(wi —w)) (ep+65)(wf —w)

= mm(6(3w1 —w2) 12 (ep + €5) ’
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where |r| = r, we have the following:

For ®,, the nth term is bounded by, with b <a <7r

b n
yP— (V' + 22X 1)1 = Nw3| + (Y2 + 20X?)[1 — Awi) <> / |p(r)|dr
7T7’€p a Dy

For ug, the nth term is bounded by, with b < a <r

3 (V' + 22X + Y2 +2)0X?) <b> / |p(r)|dr
D

dmre, T ,

For ®,, the nth term is bounded by, with b < a,

e ((F2) () ) [, v

For wy, the nth term is bounded by, with b < a,

47; <(XC+2(A+1> <ZZ>"> /Dp Ip(r)|dr.

Thus the series converge everywhere.

Theorem 6.6. Let the conditions of Theorem 6.1 hold.
Let p, be supported in a ball B(0,b) with b < a.

Let max | pp(r)| < oo .

Let @, Oy, up, us be defined as in (141),(142), (143), (144). Then their series converge everywhere,
and ®,, @, weakly solve (135), (136), (137) subject to (138),(139) everywhere.

110



7 Final Remarks

As promised, we should discuss the necessity of D), being a ball. Let’s consider R3 written in

coordinates (r, ¢, 0).

Separating u, ®, and p into orthogonal components with the Associated Legendre polynomials
p(¢,0) = P (cos ¢)e’™? did not require us to use I' directly. However, to determine the coefficients
in terms of 7 to these orthogonal components, we needed appropriate identities on the polynomials
so that A(f(r)p(¢,6)) can be written in terms of f and its derivatives. That gave us ordinary

differential equations and led to the homogeneous solutions.

When it came to finding a particular solution, again we did not require I" to be a sphere. For the
purposes of convergence, it was convenient to be have an identity between a particular solution and

the series representation of it.

When it came to satisfying the interface conditions, that’s where we required the normal derivative
to I' to be the derivative respect to r rather than ¢ or 6 in order to respect the orthogonal com-
ponents. If (r, ¢, ) represent the spherical coordinates, that will force I' to be a sphere. Likewise,
to guarantee that we have unique solutions, we must be able to integrate the functions over I'
with respect to the orthogonal components to find their coefficients. Since the Associate Legendre

polynomials are orthogonal respect to integration over a sphere, that also forces I' to be a sphere.

If T" is not a sphere, one may attempt numerical methods to find the appropriate coefficients of
the homogeneous solution. Alternatively, there may be coordinate systems and a different set of

orthogonal functions that will work.

If we are able to find solutions, then we must still verify the claim about u. That u(r) = [gs Qx(r—
r')®(r’)dr holds. We used an identity, (206), which involves separating ® into its orthogonal
components based on the Associated Legendre polynomials. So, to use this identity, we needed to
have used the Associated Legendre polynomial decomposition, which we just mentioned required
having I'" be a sphere. Additionally, the identity separated the space into D, and Dy and then

further decomposed those domains into spheres. In order for this to make sense, D, must be a
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ball. Thus, whether we insist on using the Associated Legendre polynomials as the orthogonal
decomposition or use some other set of orthogonal functions, then we’d need a different identity to

use for the verification.

Finally, when it came to convergence, we used the radius of D, as a fixed bound. If D, is not a
ball, then |r| for r € I varies. We can repeat the argument for convergence that we used before,
but at the cost of not having convergence for r if there are rp and rg such that rp, € D, rs € D,
and |r| = |rp| = |rg|. Depending on p, we may be able to recover the convergence through better

control on the bounds of integration.

Another issue concerning convergence when I' is not a sphere is that we were able to use a rotation
argument to shrink the number of terms summed for each term of the series. Such rotations may
have domain issues if D), is not a ball. This applies to both the calculation of the error bounds and

the efficiency improvement for the point charge p.

If instead of using spherical coordinates and the Associate Legendre polynomials, we used some
other coordinate system, then we will need asymptotic relations on the f functions to prove con-

vergence. It is also unlikely that there will be rotational symmetry to take advantage of.

The idea of solving a partial differential equation via decomposition into orthogonal components
is not particularly special, but to be able to do explicitly as in the Lorentzian Model and a Linear
Poisson-Boltzmann Model on a monatomic ion is rare. Having such solutions does allow one to
verify numerical methods on such nice domains and can provide insight into developing other

numerical methods, such as referenced in [9].

It will be interesting in the future to work on non-spherical domains and examine the properties
discussed in this section further to determine whether these techniques of finding solutions in terms

of a series is feasible.
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Appendix A Known Properties

Let (7,0, ¢) be the spherical coordinates of r.

P, denote the Legendre polynomial of degree n. P! denote the Associated Legendre polynomial.

It is known [5] that {P™(cos ¢)e™}"Z0%™ ™" are orthogonal and complete over the sphere.

n=0m=—n

in(1), kn(r) denote the modified spherical Bessel functions.

One possible set of definitions for these functions:

o) o (LY 0

zdr T

X

1 a .
Py(z) = 2”n!%[($2 - 1)"]
" —1)ym m-—+n n
P = Sy 0 2y

Among other properties, these satisfy

i (r) + 2ril (1) — (12 + n(n +1))in(r) = 0

P2k (r) + 20kl (r) — (r* + n(n + 1))k, (r) = 0

(1 —2*)P!(2) — 22P.(z) + n(n+ 1)P,(x) = 0
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(182)

(183)

(184)

(185)

(186)

(187)

(188)



(1— 2P (x) — 2P (z) + (n(n+1) —

n

)P (z) = 0 (189)

1 /

Po(@) = 3= (Ph(@) = Py (@) (190)

Some useful properties for the modified spherical Bessel functions, found in [5] among others include

the following

%r”“zn(r) — () (191)

diif"in(m = g1 (7) (192)

L () = (1) (193)
%r_”kn(r) = e (1) (194)

() = =L ) in 1) = Yinr) + inia(r) (195)
b1) = =) = Kt () = 2e(r) = K 1) (196
in( K () — ()b (r) = — (197)
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ke (1)in41(7) + kng1(r)in(r) = %

The modified spherical Bessel functions also have noteworthy limits as r — 0 or r — oo.

in(r) > 00 asr— o

in(r) >0 asr—0 forn>1

io(r) =1 asr—0

kn(r) > o0 asr—0

kn(r) =0 asr— oo

Appendix B Integral Formulas

It is known [5] that
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(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)



Qx(r — ') P (cos ¢ )e™dS(r')

r'=a

a2 zn(g)kn@) ifr<a

= P (cos )e™ (206)
A in(Dka() ifr>a

>

By letting P, be the Legendre polynomial of degree n, if (r,¢,0) are the spherical coordinates to

r and ro = (0,0, z) then

1 S 02 T Py (cosg)  ifr >z (207)
v — ro S 02 I Py(cosg)  ifr <z
and [5] gives
e—lr=rol/A 1 ] Y0 (20 + 1)in(5)kn (%) Pr(cos ¢) ifr>z (208)
e =rol A} S0 90 4 )i (5)ka(2)Pa(cosg)  if <
One method to find solutions to second order ODEs is given by
If y1, y2 are independent fundamental solutions to
y'(t) +a(t)y'(t) +r(t)y(t) =0,
then
y'(t) +a(t)y (t) +r(t)y(t) = f(t)
has a particular solution
y2f yLf
Y= —y1/dt—|—y2/dt. (209
Y19 — Y2yi Y1ys — Y2y )
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The constant terms resulting from indefinite integration merely affect the particular solution we

get.

Appendix C Proof of 32 4., —0d2 B, <0

Lemma C.1. Let the conditions of Theorem 6.1 hold.

(€5 — €0oN2w?)

nm =(1- Aw 2)k‘n((,ul-a)n — k) (wia)w;a
€p
i 2 24,0 / (—€ccN’Wf + 65— €) . @
0y m = —kn(wia) N wii, (<) — ki, (wia)w; v Nip (<)
' A €p A
Then forn=20,1,2.., m=—n,—n+1,...n,
nméiom_(SQm nm<0'

In the modified model, we need to prove that 32 m n m —5,2“” }Lm < 0 As the terms are independent

of m, we only need to verify the statement over n.

First, let’s reorganize the terms

= Ak, (wja)n + Bw?ky(wia)n + Dk, 41 (wia)wia + Bwlak, 1 (wia)

nm

)
)

— k‘( a)in
Gnk( a)in
Onm = | +Hw2kn (wia)ins1 (%)
+JwPkng1(wia)in($§)

>l e

>

+Kwiknt1 (wia)in(%)
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with

a=9=8 p_Catedn & g Zeel
€p €p €p €p
poCote)ys o (@=6)y oy e _€°°A3, K=
€p €p €p

We shall next examine the 20 pairs terms organized by the A, B, ..., K coefficients obtained by

5251 o 5261~

From symmetry, we observe that the BF, AG,BH,EJ, DK terms are 0 as the 326! and §243!

contributions are equivalent. As pairs, the AF and BG terms contribute 0, the FF and BJ terms

contribute 0, and the EG and AJ terms contribute 0.

The DJ and EK pair, the DG and AK pair, the DF and BK pair, as well as AH, DH, and EH

all contribute a nonzero component. The sum of all of these terms gives us 520" — 5162, It will

useful to organize them in the following fashion:

in(i)/\np)(kn(wla)knﬂ(wga)wg ~ Ko (w2a) kn1 (wra)wr)

in(%))\n _f) (ke (W10) k1 (woa)ws — K (w2a)psr (w1a)wr)
P

. Qyy3 (—¢€p) _

zn()\))\n - wiwz (kn(w1a)knt1(wea)wr — kp(w2a)kny1(wia)ws)
p

LAY (€x) _

zn()\))\n ; wiwa (kp(w1a)kpt1(waa)wr — kn(wea)kyt1(wia)ws)
P
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(211)

(212)

(213)



a4, €\

Zn()\) ; (w2 — wwiwaaky i1 (wW1a)kni1(woa)
p
it (= )aX 2 w202 (k k —k k
nt1(3)aA" = wiws (kn(wia)kn 1 (wea)wz — kn(w2a)knr1(wia)wr)

P

. a —Cs
Zn+1(A)a)\2(6)W1W2(kfn(w1a)kn+1((.4.)2a)w1 — kp(w2a)kni1(wia)ws)

€p
. a. (€
zn+1(A)ﬁA2(w§ — w%)nkn(wla)kn(ww)
p
. a,(—€s
ZTH_I(X) - )/\Q(wg — w%)nkn(wla)kn(wza)
p

(214)

(215)

(216)

(217)

(218)

Then 87 .05 — B m0n m = (210) 4 (211) + (212) + (213) 4 (214) + (215) + (216) + (217) + (218).

Before we proceed on with proof by induction, we shall apply (183) to get

ko(z) = 67
ki(x) = e_m(jf; 2

e "(z* + 3z + 3)
23

]fg(l’) =

Additionally, there are a few inequalities that we shall need to prove by induction as well.

e—(wl—i-wg)a

ko(wla)kl (wga)wg — ko(a&a)]ﬁ (wla)wl = W
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e ltenla o, 2 20, 2 2
k1 (wia)ke(waa)ws — ki (wea)ke(wia)wy = m(a (wiwy — waw?) + a*(wy —wi)) <0
1w2

Then via (199), we have by induction that for n > 0,

kn(wia)kni1(woa)ws — kp(woa)kpt1(wia)w;
2

= (20 — D1 (w1a)kn 1 (wpa) (2241 (219)

wiwaa

+kn_2(w1a)kn_1(WQa)WQ — kn_g(wga)k;n_l(wla)wl <0

We also shall need

—(witw2)a
e
ko(wia)k1 (waa)wiws — ko(wea)ky (wia)wiw) = m(a(w%c@ —wiwd) + (W2 —wd)) >0
1w
0 (wiwi — wiwj)
—(witwz)a +a?(3wiwg — wiws)
e 1w2 1w

k1 (wla)kg(wza)w%wg—krl(wza)kzg(wla)wgwl = —3 3+ >0

Wiz +a (3w} + 3wiws — 3wiwd — 3w3)

+(3w? — 3w3)

Then via (199), we have by induction that for n > 0,

En(w10)knt1(w2a)wiws — kn(wea)knt1(wia)wiw;

_ (2n+1)kn(u;1a)kn(w2a) (w% . w%) i (220)

+kn_o(wia)kn_1(wea)wiws — ky_2(waa)k,_1(wia)wiw; >0

In addition, there are a few reductions that follow from (199) that will be useful for us.
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kn(wia)kni1(waa)wy — kn(woa)kpt1(wia)wi = kp(w1a)kp—1(wea)ws — kp(woa)kn—1(wia)wr (221)

kp(wia)kn4+1 (wga)w%wg — kn(waa)kp41(wr a)w%wl

_ (2n+1)kn(°;1a)kn(w2a) (w% . w%) (222)

+kp(w1a)kn_1(woa)wiws — ky(w2a)ky_1(wia)wiw;

knt1(w1a)kp41(waa)wiwaa

= (2n + 1)2En(rakn(we)
' . (223)
+(2n + 1) (kp—1(w1a)ky(w2a)wi + kp—1(w2a)ky(wia)ws)

+kp—1(wia)kn—1(w2a)wiwea
Now we are ready to work on proving 826' — 8162 < 0

First, we consider the n = 0 case. (210),(211), (212),(213), (217), (218) are trivially 0. (214) is

negative since ky,(r),i,(r) > 0 for r > 0, all of the € are positive, and w; > ws.

Concerning (215) we calculate explicitly to verify that it is negative.

LA 4€o 9 o, 1% eT2%wy + 1) €Wt T W10y + 1)
11(=)a\ " —wijw wy — w
1()\) €p 13 awq a’w3 2 Wy a’w? )
—(w14w2)a
. 4€ e
zl(x))\‘lﬁwlwgiz((ww +1)— (wa+1)) <0
€p a

Likewise, for (216) we calculate explicitly to verify that it is negative.

Ca, o(—€s) eTwWIl e W20 (g + 1) 5 eTW20e W% + 1)
11(~)aA wiw — w
1()\) & 1wa( o %02 1 s o202 7)
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_ —(w1tw2)a
(=€) e (woa + Dw? — (wia + 1)w?)

RPN
=i1(=)A
1()\) €  wiwoa?

Since (waa + 1)w? — (w1a + 1)wi = (w1 — we)(wiwea + wy + w2) > 0, we thus have that (216) < 0

for n = 0.
Thus we have proven that 26! — 5162 < 0 for n = 0.
Now we work on the n = 1 case.

(210) gives us

Ca. (ey) e~ (wrtw2)a
I\l
Zl()\) e wiwiad

(a3(w1w% — w%wg) + a2(w§ — w%)) <0

For (210), we will introduce a (w? + w3) factor as it will be useful later. Nonetheless, it gives us

] (9))\ (=€) e lorten)e (a?’(w wi + wiws — wiwd — wiw )+ a2(w4 — w4)) (224)
A5 & w%w%af’(w%—i-w%) 142 1%2 1%2 192 2 1))
(212) gives us
(i — )
_ —(w1tw2)a +a?(3wiwy — 3w1w3)
(el 2 o 2 <0
€p WiWsa +a(3w} + 3wiws — 3wiw3 — 3w3)
+(3w? — 3w3)
(213) gives us
o} — )
Ca g (e0) e (Wrtwn)a +a?(3wiws — 3wiw3)
Zl(x))‘ 2 25
€  wiwia

+a (3w} + 3wiws — 3wiwd — 3w3)

+(3w? — 3w3)
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(214) gives us

A3 ef(lerwg)a

21(

3)600

A

So (213) + (214) give us

a eoo)\S e—(w1+w2)a

5
wiwza

2,,2

il()\) €p

Applying w? + w3 =

a A(K2)\2)

€

2,245
wiwza

€s+rZN2
o2

+a3(Bwiw + 2wiw? — 2wiw3 — 3wiws)

A0,,4,2 4 2
a* (wywi — wiwy)
+a3(3wiw + 3wiw? — 3wiwi — 3wiws)
+a?(3ws + wiwr — Iwiws — 3wi)

+a(9w3 + Jwiw; — Jwow? — 9w?)

+(9w3 — 9w?)

(ot — wfd)

+a?(3wi + 6wiws — 6wiws — 3w?) <0.

+a(6ws + 6wiw; — bwaw? — 6w3)

+(6w3 — 6w?)

will transform the result into

e*(wl +w2)a

Zl()\) €p

and

2 2
wWiwy

ad(w? + w3

A¢, 4,02 4 2
a* (wywi — wiwy)
+a?(3wiw; + 2wiw? — 2wiw? — 3wiws)
+a?(3ws + bwiw) — 6wiws — 3w?)

+a(bw3 + 6wiwy — 6waw? — 6w?)

+(6w3 — 6w?)
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A(, 4,2 4 2

a* (wywi — wiwy)
vt +a?(3wiw + 2wiw? — 2wiw? — 3wiws)
Aeg) emwrtw2)a

N
N g wiwda®(w? 4 wi

i1 ( +a?(3ws + 6wiw; — 6wiws — 3wi)

+a(6ws + 6wiw; — bwow? — 6w3)

+(6w3 — 6w?)

the latter to which we add (224) and get

47, 4, 2 4, 2

a*(wywi — wiws)
+a3(2wiw + 3wiw? — 3wiwi — 2wiws)
a Ne; e (witwa)a
*) 2,2 5(, 2 2
A€y wiwsad(wi + w3)

i1 ( +a?(2w5 + 6wiws — 6wiws — 2w)

+a(bws + 6wiw; — bwow? — 6w?)

+(6w3 — 6w?)
Thus we have determined that for n = 1, (210) + 211) + (212) + (213) + (214) < 0.

Next, we have (215) which gives us

ig(g)aA46£w2w2M (a3(w1w2) — wow? + a2(w2 — w2)) <0
A €p 12 wiw3ad 2 ! 2 !
(216) gives us
P — )
iQ(E))@ (—e€s) 6_(;1J;wz)a +a® (3wiws — 3wiw3)
A €p Wiwra +a(3w} + 3wiws — 3wiws — 3w3)

+(3w? — 3w3)

(217) gives us
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a2(w§w1 — w{’wz)
0\ (6) pe—rrens

Z2(X)? okal +a(wi + wiwy —wow? —wP) | <O0.
+(wi —wi)
(218) gives us
a?(wiw) — wiws)
Ca (—e) 2€f(w1+w2)a
12(~ A 3 2, _ 2_ .3
2()\) & ol +a(ws + wiwy — wawi — wy)

+(wji — w?)

So, (216) + (218) is

o’ (wiwd — wiws)

— 2 3 3
5 (—€) e~ (witwa)a +a*(2wiwe — 2wiws) o,

)A

ia(

> e

2, 2,4
@ wwra +a(2w? + 2wiws — 2wiw3 — 2w3)

+(2w? — 2w3)

Thus we have shown that (215) + (216) + (217) + (218) < 0. Thus, we have our desired result:

2 Ok = 5711,m5721,m <0 forn=1.

n,m%,m
So now we work on the induction case.

We will assume that 26" — 8162 < 0 at n — 1 and n — 2, and show that it holds at n > 2.
(217) < 0 is immediate.

From (219), we have (210) < 0 and (215) < 0.

From (220), we have (212) < 0.

Thus we need to show (211) + (213) + (214) < 0 and (216) + (218) < 0.

Now we may apply our reductions.
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(211) becomes via (221)

))\Tl (_68) (kn(wla)kn—l(WQQ)o‘)? - k"(w2a)k”_1(w1a)wl)’

and with the addition of (w? 4+ w?), it becomes

kn(wia)kn—1 (wga)wg’

() A (=€) | Fha(wia)ky i (wra)waw?
R (Wi +w3) &

—kp(woa)k,—1(wr1a)ws

—kn(woa)kp—1(wia)wiw3

(213) becomes via (222)

(2n+1)kn(cz1a)kn(w2a) (w% _ w%)
g))\3727(600)

in( +kp(w1a)kn_1(woa)wiws

>
™
bS]

—kp (waa) kp—1 (w1 a)wiwy
(214) becomes via (223)

(2n + 1)2 kn(wla)kn(wza)
in( 32X 07 - )
MY, W +(2n 4 1) (kp—1(w1a)kp(wea)wr + kn—1(w2a)kp(wia)ws) | >

+kp—1(wra)kp—1(w2a)wiwea

which we rewrite as
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(213) + (214) then becomes

(wf — w?)(2n + 1)(n + 1) inleradknlena)

+(w3 — w})kn—1(w1a)kp—1(w2a)wiwea

(wg B w%)(2n + 1)2 kn(wla)akn(WQG/)

+(2n + Dk, (w1a)kn (wea)wiw?

+(2n + Vkp—1(w2a)kp(wia)ws

—(2n + 1)kp_1(w1a)ky (woa)w?

—(2n + Dkp_1(w2a)ky, (wia)wow?

+(w3 — w)kp—1(w1a)kp—1(w2a)wiwea

Jkn(w2a)
2

+(n + Dkp_1(w1a)ky (w2a)wwa

+(2n + 1)kp—1(w2a)kp(wia)ws

—(2n + 1)kp_1(w1a)ky (woa)w?

—(n+ Dky1(w2a)ky (wia)waw?

To show it is negative, we used (220) on the middle terms.

Thus we may apply w? + w3 =

and

€sF+rK2A2
€oo\2

(w3 — w?)(2n + 1)(n + 1)ke(10)kn(e20)
+(n + Dkp_1(w1a)kn(w2a)wi w3

+(2n + Vky—1(w2a)kp(wia)w

—(2n + Dkp_1(wra)ky (w2a)w$

—(n+ Vkp—1(w2a)kp(w1a)waw?

+(W% - w%)kn,l (w1a)kp—1(wea)wiwaa
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(w3 — wf) (2n + 1)(n + 1) Felerefuleze)

a

+(n + Dkp_1(w1a)ky (woa)wiw?

ay_ e +(2n + Dkn—1 (w2a)kn (w1a)w3
2\ 2 2
ATep(wi +w)) —(2n + 1)kp_1(w1a)ky (woa)w}

—(n + 1)ky—1(w2a) ky (w1 @)waw?

+(w3 — w})kn—1(w1a)kp—1(w2a)wiwea

We add (211) to the latter term and arrive at

(w3 = wd)(2n + 1)(n + 1) Fulrefinlene)

a

+(2n 4+ Vky_1(wra)kn (wea)wiw?
_a Aes (1 + Dkn-1(w2a)kn(w1a)ws
EpW1 T Wy —(n+ Dkp1(w1a)ky(wea)w?

—(2n + 1)k, 1 (w2a)ky (w1 @)wow?

+(w3 — w)kp—1(w10)ky—1(w2a)wiwaa

To show it is negative, we used (219) on the second and fifth terms. Altogether, this gives us

(211) + (213) + (214) < 0.

(216) gives us

(2n+1)kn (w1a)kn (w2a) (w% . w%)

+kp—o(wia)kn_1(wea)wiwy

—kn—2(w2a)kn_1(w1a)wiwy

Induction with (220) bounds (216) from above by

5 (—€s)

- (2n + l)kn(wla)kn(wga)(w% — w%)

. a
Z"H(X))\
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(218) is

a,(—€s)

inH(X) M (w3 — Wk, (wia)k, (wea).

€p

When added to the (216) bound, we get

Thus (216) + (218) <0 .

are negative. Thus we have our

So we have proven that the various parts of 6,21 ot m— BL. 6 m n m

full conclusion that /32 < 0 for all n > 0, that is, Lemma C.1.

2
n,m nm ﬁn,m n,m

mnm

Appendix D Proof of |3;,.0, ., — 0. ,.6:,.| lower bound

Lemma D.1. Let the conditions of Theorem 6.1 hold.

€5 — €ooN?W?)

o = (1 — M)k (wia)n — ( k), (wia)w;a
€p
i 2 24,0 ’ (_500)‘2%‘2 +es—€p), . ,a
5n7m = —kp(wia) N wii ()\) ky, (wia)w; ; /\zn(x)
P
Then
2 Coa M\
Iﬁim nm 6nm nm| = *n2kn(wla)kn(w2a)zn(*)7(“% - w%)(eoo =+ Ep)

3 A aep

holds for n > Ny where

No = max(g(wla +1) 3a?(ep + €5) )
0~ 2 T\ 265\ 2(600 + €p)
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where

. min(l w? — w3 i)\z(w% —w3)(ep +€x0) (€p +€s) (WP —w3) (€p + €5)(wF — w3) 1)
6 (3w? —w3)’ 12 (€p + €5) T 12M%ewiws T Beg(wP+wd) 73

Since B2 .08 = Bom0a . = (210) 4 (211) + (212) + (213) + (214) + (215) + (216) + (217) + (218),
we shall determine asymptotic relations on each of the parts of the sum. However, caution must
be made for the sum since a,, ~ b,, and ¢, ~ d,, do not imply a,, + ¢, ~ b, + d,,, especially since as
we demonstrate in the proof of 32,61 ~— L 62 <0, the terms of the sum do not all have the

mYn,m n,m“n,m

same sign.

Instead we shall apply the fact that lim, %Z = A, lim,,_,c ZC’—Z = B and A+ B # 0, imply that

an + by ~ cp(A+ B).

We split up ((210) + (211))/(n?kp(w1a)kn(w2a)in (%)) into 2 terms, and then via (116)

a (ep —€) (kn(wia)knii(wea)ws) - (ep — €5)

Z”(X)A” ep  n2kp(wia)kn(waa)in($) 2 aep
Cay . (e —€5) (—kp(wea)kpi1(wia)wr) (€p — €5)
Z"(X)An pep n2kp (wW1a)kn(w2a)in (%) ~ 2 paep '

We split up ((212) + (213))/(n*kn(w1a)kn(w2a)in (%)) into 2 terms, and then via (116)

in(g)/\:%n(_ep + em)w1w2 fn(wla)kn+1(w2a.)wla 2)\3( €p + €oo) %
A €p n?kp(wia)kny (waa)in () aep,

in(ﬁ))\i’)n(_ep + 600)wlw2 _kn(w2a)kn+l(w1@“’2 -~ _2)\3( €p + €x) %
A €p n2kp (w1a)kn(w2a)in(§) aep

As far as (214)/(n?kp (w1a)kn (w2a)in($)) is concerned, we apply (116) and obtain
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a. o 9

Zn(* (w2 _wl)

) wiwaakn4+1(wia)kp+1(waa) Eoo\?
A€ n2kp (w10)ky (w2a)in(§) aep

(w5 — w).

Combining these 5 convergences, noting that their entire sum is not 0, we have

(210) + (211) + (212) + (21 (214) N,QLYi(ag — w?)(éco + €p) < 0.

3) +
n2kp (w10)kn(w2a)in($) aep

To determine the error bounds for convergence, we appeal to (121). This tells us that for a given

€ > 0, if we have n large enough, then

214 3
| <2logt,gjl(zjlzgzgg;g;jg;g ) =22 (0 — ) (eoe + )]

< e (2(Retedy 4 2 (e, 1 o) (wF + ) + 4220 (] - )

aecp

We wish to guarantee that (210) 4 (211) 4 (212) + (213) + (214) stays sufficiently far from 0. Thus,

we shall need

2\ s 2)3 deo N3 2 \3
¢ 2(M)+—(ep+eoo)(wf+w§)+ o (wf - wd) ) < 5 (W~ w) (e +6p) (225)
aep a/ﬁp a’ﬁp

We have

oo ) + aep(6p+6°°)(w1 +w3) + oo (wi — w3

. (2(2)\(6p +es), 23 U N L 2)>

2e
= i (2(ep + €5) + Mep(wh + wd) + Mewo (3w? — w%))
P

26)\

< aep =2 (2(ep + €5) + N6 + €00) (3w + w3))
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since wy > wy. To get the desired inequality (225), we shall need €(3w? — w3) < £(w} — w3) and

2¢(ep +€5) < %)\Q(w% — w%)(ep + €x0)-

To determine the bounds for n, we again return to (121). Since among the convergences we did

use it twice in one term, we shall need to choose € such that (1 +¢)? < 1+e.

Assuming that € < 3, we have (1 + %)2 < 1+¢, so we shall use € = 5. This gives us the desired

bound, (225).

Then, so long as wia+1 < %, we have

(210) 4+ (211) + (212) + (213) + (214) N, 5 AN,
n2kp (w1a)kn(w2a)in($) aep ~ 3ae

Next, we examine the other components of ,Bgmé}%m - B}L?mdim.

We split up (215)/(kn(wia)kn(w2a)in($)) into 2 terms, and then via (116) and (115),

in+1(ﬁ)aA4€ﬁw%w% kn(w1a)kn+1(w2a)w2 - aA3@w2w%(2nAin+l(%)

A €p kn(wia)ky(wa2a)in (%) €p 1 ain (%)

)

00 —kn kn,
in+1(ﬁ)aA4Lw2 2 (w2a)knt1(wia)wr)

).

€ 2n/\in+1(g)
: ~ —a\3 =22 202 7)\
€p =2 kn(wla)kzn(wga)zn(ﬁ) €p 1ws( azn(%)

>

We split up (216)/(kn(wia)kn(w2a)in($)) into 2 terms, and then via (116) and (115),

, a (—es) kn(wia)kni1 (wea)wy (—€s) o, 2nNin1(5)
ina1(=)ar? wiw - ~ a\ w -
+1()\) € 1 an(wla)kn(WQQ)Zn(%) € 1( azn(%) )
) g 2(—68) —k:n(wga)kn_,_l(wla)wg _ (—fs) 2 2n)‘in+1(%)
I N e g nhaez)in(®) TN e A i@ )

As far as ((217) + (218))/(n%ky (w1 a)kn(w2a)in($)) is concerned, we apply (115) and obtain
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0 (6 =) o a oy Fla0knn) (e ) 2N (§),

) - wy; — wi)n -
nH()\ €p 2 1) kn(wia)ky(w2a)in(5) 2¢, 2 ain (%)
Combining these 5 convergences, noting that their entire sum is not 0, we have
215 216 217 218 2n\i g
(215) + (216) + (217) + (218) () g o 2N (§))
kn(wia)ky(wea)in () 2¢p ain (%)

To determine the error bounds for convergence, we appeal to (121). This tells us that for a given

€ > 0, if we have n large enough, then

‘(215)4—(216)—&-(217)-&—(218) B a}\(ep—l-es)( 2 %)(%Ainﬂ(%))

K (1) ko (W2a)in(2) 2, W2 T W ain(2)
[os) s € +€S 2 )\n (2)
<e <2a)\366—pw%w% + a)\i—p(w% +w?) 4 Lot b Ja(w? — w%)) (7nazn(+%1f )

Unlike the previous set of terms, we do not require (215) + (216) + (217) + (218) to be away from

0. We just need it to not be too large. It will be enough that

€ <2a)\3€°°w%w§ + a)\e—s(w% +wd) + 7(61; + ES)aA(w% — w%)) < a)\i(ep ) (w? — w?)
€p €p 2¢p 2¢p

To this end, we shall require that following bounds all hold:

(ep + 68)(“% - W%)

4N2eow?w?

<1
€< =
-3

(ep + 65)(‘*’% - W%)

1
3 2¢5(w? + wd)

€<

W=
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To next determine bounds for n, we appeal to (121). Since among these convergences, we used this
result twice in several terms, we shall need to choose € such that (1 + €)? < 1+ €. As before, it is

sufficient to choose € = §

So, as before, we need wia +1 < % In such a case, we have, using (120), we have

21 21 21 21 s 2nNin41(§ s
(215) + (216) + (17) + (218)| _y () o ay 2Ni()) _p (4 e) o s
kn(wla)k‘n(wga)zn(x) 2¢p a "(X) 2¢p
To connect the two sets of convergences, we shall need
2 (ep+es) 2 \3
EG)\ p2€p (Wi —w3) < ga?p(% — w3) (0o + €)
This is implied by
3(]/22(617 + 63) S ’]’L2_
26p A2 (e + €p)
In such a case, we have
(210) + (211) + (212) 4 (213) + (214) n (215) + (216) + (217) + (218) S g)\—g(wQ—wQ)(e te).
n2kp (w1a)kn(w2a)in($) n2ky (w10)kn (w2a)in($) ~3ae, ' HVT?
Thus, we have
2 1 1 52 2 o ca AN 2
|ﬁn m5n m /Bn mén m| > 5n kn(wla)kn(MZG’)Zn(i)i(wl - w2)(600 + Gp)
AT ' ’ 3 A aep

for n > Ny where
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Ny = max(3(w1a + 1)’ 3a?(ep + €5) )
2¢ 26p A2 (€xo + €p)
where
€ — min(l wi —wj 1 N (wi - W%)(ep +€x0) (ep+ €s) (Wi — w3) (ep + €s) (Wi — w3) 1)

6 (3w? —w3)’ 12 (€p + €5) 12 260w?w? 7 Bes(w? +wd) 73

Thus Lemma D.1 is proven.
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