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ABSTRACT

MAKING SUBSTITUTIONS EXPLICIT IN SASYLF

by

Michael D. Ariotti

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor John Tang Boyland

SASyLF is an interactive proof assistant whose goal is to teach: about type systems,

language meta-theory, and writing proofs in general. This software tool stores user-specified

languages and logics in the dependently-typed LF, and its internal proof structure closely

resembles M+
2 . This thesis describes a new usability feature of SASyLF, “where” clauses,

which make explicit previously hidden substitutions that arise through constructs in the proof

code, primarily case analyses. An overview of SASyLF and logical frameworks is given, with

motivating examples. The requirements for “where” clauses are discussed, including a formal

definition of correctness. The feature’s implementation in SASyLF is outlined, and future

extensions are discussed.
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1 Introduction

SASyLF [1] (Second-order Abstract Syntax Logical Framework) is an open-source, inter-
active proof assistant whose goal is to teach students how to write sound proofs. Like many
other proof assistants, SASyLF’s intended domain is programming language meta-theory,
though it can be used to write proofs about many languages and logics. What sets SASyLF
apart from other proof assistants is that the time required to learn to use it is typically
much less, for two reasons. First, SASyLF’s syntax (the form of its code) is designed to
be readable by novices: “[language description and proofs] should be written as closely as
possible to the way it is done on paper” [1, p. 31]. Second, when the user makes a mistake,
SASyLF generates errors that are as descriptive and local to the cause as possible, and often
offers suggestions for correction. SASyLF’s ability to generate helpful errors is a key part of
its design, and is facilitated by the fine granularity of its verification implementation.

The benefits for students using such a tool rather than writing proofs by hand is explained
by its designers: “[when writing proofs, students make many mistakes] at a much lower level,
e.g. skipping a step in a proof or applying an inference rule when the facts used do not match
the rule’s premises. Students may not even recognize they have made a mistake, and so do
not seek out help” [1, p. 31].

On the other hand, SASyLF does little automatically, without user input. It does not
write proofs on its own, and this is by design. The designers write, “we could add ...
automated proof search, but ... novices could use it as a shortcut and thereby avoid learning
the basic details of proofs” [1, p. 32]. Thus, SASyLF strikes a balance between providing
guidance to students without doing their work for them, much as a human teacher would.

SASyLF was originally designed and developed as a command-line tool by Jonathan
Aldrich and others. It is currently maintained1 by John Tang Boyland, who uses the assistant
with students to teach courses on type systems.

Since its initial development, many extensions have been implemented, in accordance
with its educational design philosophy. Perhaps the most impactful extension is a plugin for
Eclipse, which allows users to write proofs in an integrated development environment (IDE).
This environment colors keywords and other constructs of the proof code; displays an outline
of current syntax, judgments, and theorems; and highlights any errors and warnings on the
code itself. Similarly interactive IDEs are offered with other proof assistants, including Coq
and Isabelle.

This thesis describes another extension to SASyLF, called “where” clauses [2]. Beyond
the original paper, this thesis gives a full description of its example language, as well as
a brief overview of logical frameworks. In the chapters that follow, correctness is defined
formally both for “where” clauses and for rule cases in which they typically appear. Finally,
in Chapter 5, future work regarding the new feature is discussed.

1Both the interactive and command-line versions of SASyLF, along with their documentation and source,
are available at http://github.com/boyland/sasylf.
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2 An Overview of SASyLF with
Where Clauses

This chapter gives a brief overview of the services SASyLF provides and how the assistant can
be used. In particular, a language is introduced in SASyLF code, which will be referenced
throughout this thesis. Additionally, an example theorem is given, and it is shown how
“where” clauses can help write a proof for it.

2.1 Logical Frameworks and Language Descriptions

A logical framework is a means of storing or encoding logical information in such a way that
a computer can reason about it [9, p. 17]. The information to study is a specification for a
language or logic, typically a programming language.

SASyLF stores logical information in the dependently-typed lambda calculus called sim-
ply LF [3]; SASyLF’s older brother Twelf [7] uses LF for this purpose as well.

A language being represented in a logical framework is called an object language—the
object of study. In this representation, meta-theoretic properties (e.g., type soundness) can
be proven about an object language in a computer-assisted or even fully-automated fashion.
The beauty of this technique is that if (1) the logical framework is sound, and (2) the object
language is adequately represented in it, then properties proven about the object language
within the logical framework must hold for the language elsewhere.

As described by Pfenning [5], the formal description of a programming language often
consists of three parts:

(1) Abstract syntax : typically defined in Backus-Naur form (BNF), this imposes inductive
structure on programs written in the language. This is not to be confused with the
concrete syntax of the language, which refers to the character-based tokens which are
parsed from source code.

(2) Type system: in short, a classification system for terms in the language. A type system
generally restricts the operations which can be legally performed on a given term, for
the sake of detecting programmer errors.

(3) Operational semantics : also known as evaluation rules, these define the behavior of
correctly-written programs in the language.

Parts (2) and (3) above are often defined via a deductive system of inference rules. An
inference rule looks like ([5, p. 5])

J1 . . . Jn

J

where the J ’s represent judgments, units of logical information which can be true or false.
An inference rule represents a logical implication: if all of the judgments J1 through Jn (the

2



premises) are true, then we can infer judgment J (the conclusion) is also true. Inference
rules with no premises (i.e., where n = 0) are sometimes called axioms.

Inference rules are usually schematic [5]. This means the judgments within the rule are
not fixed—or ground—but are allowed to vary through the use of meta-variables. In this
way, a schematic inference rule acts as a template; it is not meant only to hold for a specific
set of object terms, but for all sets of object terms which fit the pattern of the rule. This
allows them to describe relations concisely.

In SASyLF, both abstract syntax and inference rules appear in the code much as they
would on paper. The abstract syntax of an object language is written with BNF rules.
Judgments are each introduced with a form, followed by a set of inference rules. An example
language is described both on paper and in SASyLF in the next section.

2.1.1 An Example Language

Figure 2.1 presents the language λ→B, which is the simply-typed λ-calculus with the addition
of booleans; this language mostly comes from Pierce [8], though the original SASyLF paper
[1] used the simply-typed λ-calculus for its code examples as well. For this thesis, λ→B will
provide examples for many of the topics of discussion.

The language description in Figure 2.1 contains the three components listed in the pre-
vious section: an abstract syntax, a type system, and evaluation rules (in the style of Pierce
[8]). Terms t and types T are defined, as well as values v (which are also terms). The
symbol Γ represents a context containing variables x marked with their types. The typing
and evaluation relations are denoted with forms, followed by inference rules which define
the relations. The notation [v2/x]t1 located in the conclusion of rule E-AppAbs refers to
substitution—that is, replacing all appearances of x in the term t1 with v2. This rule also
defines β-reduction for λ→B.

Figures 2.2, 2.3, and 2.4 give the same descriptions in SASyLF. The SASyLF versions
closely resemble their “paper” equivalents. There are a few differences:

(1) The terminals of the language (lam, Bool, etc.) are listed explicitly for the aid of the
generated parser, and the student user. (The terminals lam and dot, as well as the
operator -> could be written with Unicode characters in SASyLF, to be even closer to
the Pierce text. In this thesis they are written with ASCII for the sake of formatting.)

(2) The definition of λ-abstractions includes [x] in the body. For the object language, the
notation t[x] means that variable x may appear free in term t, and is the very same
variable bound in the abstraction. Of course, x can be free in t in the paper version
as well; it is just not explicit there.

(3) Rather than define values with syntax, “value” has become a judgment (a new relation
on terms); examples of this judgment appear in rules E-App2 and E-AppAbs. This
value judgment is defined in Figure 2.5.

(4) The typing relation in SASyLF assumes Gamma. Essentially, this means that the result
of the relation may depend on variables in the context (and their types). This is present
in the paper version of the relation, but in the SASyLF version, the dependency must
be explicit.

3



Abstract Syntax

t : := x | λx:T.t | t t

| true | false | if t then t else t

v : := λx:T.t | true | false
T : := T→ T | Bool
Γ : := ∅ | Γ, x:T

Typing Rules Γ ` t : T

T-Var

Γ, x:T ` x : T

T-Abs
Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1 → T2

T-App
Γ ` t1 : T2 → T Γ ` t2 : T2

Γ ` t1 t2 : T

T-True

Γ ` true : Bool

T-False

Γ ` false : Bool

T-If
Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Evaluation Rules t → t′

E-App1
t1 → t′1

t1 t2 → t′1 t2

E-App2
t2 → t′2

v1 t2 → v1 t′2

E-AppAbs

λx:T.t1 v2 → [v2/x]t1

E-IfTrue

if true then t2 else t3 → t2

E-IfFalse

if false then t2 else t3 → t3

E-If
t1 → t′1

if t1 then t2 else t3
→ if t′1 then t2 else t3

Figure 2.1: An example language, λ→B (on “paper”)

(5) Using a similar notation to (2), the substitution defined by [v2/x]t1 in the paper
description is defined in SASyLF as t1[t2] (where t2 is a value per the premise of
rule E-AppAbs).

The next section discusses how theorems are written in SASyLF.

2.2 Theorems and Proofs

Once an object language has been described in SASyLF, theorems (and lemmas) can be
written and proven about the meta-theory of the language. SASyLF will then verify the
statement of each theorem, as well as its proof.

In SASyLF, each theorem T has an ordered list of logical inputs

x1:τ1, x2:τ2, . . . , xn:τn

These inputs are universal—denoted in SASyLF by the forall keyword—meaning that
the theorem holds true for every possible set of inputs with correct type(s). These inputs

4



terminals lam dot value

true false if then else Bool

syntax

t ::= x | lam x:T dot t[x] | t t

| true | false | if t then t else t

T ::= T -> T | Bool

Gamma ::= * | Gamma, x:T

Figure 2.2: An abstract syntax for λ→B in SASyLF

judgment typing: Gamma |- t : T

assumes Gamma

------------------- T-Var

Gamma, x:T |- x : T

Gamma, x:T1 |- t2[x] : T2

----------------------------------- T-Abs

Gamma |- lam x:T1 dot t2[x] : T1 -> T2

Gamma |- t1 : T2 -> T

Gamma |- t2 : T2

--------------------- T-App

Gamma |- t1 t2 : T

-------------------- T-True

Gamma |- true : Bool

--------------------- T-False

Gamma |- false : Bool

Gamma |- t1 : Bool

Gamma |- t2 : T

Gamma |- t3 : T

---------------------------------- T-If

Gamma |- if t1 then t2 else t3 : T

Figure 2.3: Typing rules for λ→B in SASyLF

represent initial assumptions, and form a local context Γ in T , similarly to how formal
parameters are treated as (the first) local variables in a programmatic function.

Assumptions in SASyLF are represented in LF, and since LF is dependently typed, often
the type of an input xi depends on the types of one or more inputs previous to xi in the
list. Thus, some inputs are syntactic constructs (which have no dependencies), while others
can be schematic judgments on those constructs. Syntax inputs which appear in explicit
schematic input judgments do not need to be explicitly listed themselves as input to the
theorem, unless induction is performed on them during the proof.

Theorem T also has an ordered list of logical outputs

y1:τ(1), y2:τ(2), . . . , yn:τ(m), y:τ

where parentheses around the type subscripts denote that the types may be different from
the types of the inputs. In SASyLF, the last output y:τ is the only one that appears in the

5



judgment eval: t -> t

t1 -> t1’

--------------- E-App1

t1 t2 -> t1’ t2

t1 value

t2 -> t2’

--------------- E-App2

t1 t2 -> t1 t2’

t2 value

------------------------------- E-AppAbs

(lam x:T dot t1[x]) t2 -> t1[t2]

----------------------------- E-IfTrue

if true then t2 else t3 -> t2

------------------------------ E-IfFalse

if false then t2 else t3 -> t3

t1 -> t1’

------------------------ E-If

if t1 then t2 else t3 ->

if t1’ then t2 else t3

Figure 2.4: Evaluation rules for λ→B in SASyLF

judgment value: t value

---------- V-True

true value

----------- V-False

false value

---------------------- V-Abs

lam x:T dot t[x] value

Figure 2.5: The value judgment for λ→B in SASyLF

code1, following the keyword exists. The type of this last output is dependent on each of
the previous types τ(j) in the list (which means that all but the last output must be syntax),
and may be dependent on syntactic construct types τi in the list of inputs as well.

These outputs of T are existential, meaning that for every possible set of inputs, at
least one set of outputs can be produced. In fact, this is how T is proved: via a total
recursive function whose output has type τ , usually defined by cases on the inputs. All the
SASyLF constructs presented so far are represented internally in LF: the language syntax,
the inference rules, even the inputs and outputs of theorems. The function which proves
a theorem is represented separately, in a form which closely resembles Schürmann’s meta-
language M+

2 [9].
To prove a theorem, its proof-as-a-function must produce a derivation d with the same

1The newest versions of SASyLF allow derivation constructs with and and or, which can be used to
simulate multiple outputs in a theorem; these constructs are mostly outside of the scope of this thesis.
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LF type τ as y for every possible set of inputs. Again like a programmatic function, only
the type of the output is enforced. The form of the LF expression which has that type, and
the method of its creation, are in the hands of the proof function.

The next section describes techniques a SASyLF user can employ to produce an output
d:τ from inputs xi:τi.

2.2.1 Proof Techniques

To prove a theorem, the SASyLF user has the following techniques available to produce
derivations, and ultimately a derivation of the type τ matching the type of the theorem’s
output. Most of these correspond well to proof techniques described by Schürmann [9].

(1) The construction of a derivation via application of (a) inference rules in the language
description, (b) lemmas or theorems proven prior to this one, or (c) this theorem,
through induction. The arguments to such an application must be assumptions in
the local context Γ. In the case of (c), the arguments must be “smaller” than the
current inputs, in a technical sense familiar to those proving the termination of recursive
functions.

(2) The construction of a derivation via case analysis of a syntax construct or derivation
in scope. This technique is often applied to an input of the theorem, but a derivation
constructed in the proof can be a case analysis subject as well. Also, a case analysis
need not be the final construction of a proof; the proof can continue after the analysis
is finished.

(3) For a theorem which allows hypothetical contexts—i.e., its local context Γ can be
assumed to contain other assumptions than those explicitly listed as input—its proof
is allowed to extend Γ with further hypothetical assumptions, as opposed to the explicit
constructions described in (1) and (2), and (4).

(4) Related to (3), the construction of derivations through manipulation of the hypothetical
context, taking advantage of the fact that object variables are represented internally
by LF variables, via HOAS [6]: by weakening, by exchange, and by substitution.

The semantics of proof by case analysis (2) is the subject of this thesis. In particular
it will be shown, as it is by Schürmann [9], that a case analysis represents a simultaneous
substitution applied to all assumptions in the context Γ. The new feature of the SASyLF
language and the contribution of this thesis, namely ”where” clauses, is designed to make
these substitutions explicit.

In the simplest terms, a theorem is proven along a given branch of its proof whenever some
d:τ ∈ Γ (although, sometimes d has to be explicitly pointed out). However, substitutions
resulting from case analyses can alter what τ means. By extension, then, “where” clauses
can also make what remains to be proven more transparent2.

The example theorem in the following sections illustrates this.

2The author used SASyLF as a student, and wrote “where” clauses as comments in every proof for these
stated benefits, even before SASyLF could parse or verify them.
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2.2.2 An Example Theorem

The proofs for the type soundness of λ→B (progress and preservation) can be easily written in
SASyLF, following those written from Pierce [8]. In fact, many of the language meta-theory
proofs in Pierce’s book use only the techniques described in §2.2.1. (This makes SASyLF
particularly well-suited to be used by students learning topics from Pierce.)

Pierce’s theorem of type preservation [8, p. 107] for the simply-typed λ-calculus is stated
succinctly in English: If Γ ` t : T and t → t′, then Γ ` t′ : T. The natural-language
(“paper”) proof of this theorem for the segments of the language λ→B proceeds by structural
induction on the typing derivation Γ ` t : T, via case analysis on the final rule applied
to produce this judgment. (This is a straightforward application of technique (2) from the
previous section.) This form of induction means that during the proof, this preservation
theorem is assumed to hold true for subderivations of Γ ` t : T, which varies from case to
case. Following is a rendering of this proof in Pierce’s style, for these language segments.

Case T-Var: t = x Γ = Γ′, x:T

This case cannot occur, but the reason is subtle. Because t appears in a judgment
without Γ, namely the evaluation judgment t → t′, this means that t’s type does
not depend on any assumptions contained in Γ. In other words, the term t is closed
with respect to Γ, though Γ is allowed to be non-empty. If the last rule in t’s typing
derivation is T-Var, then t’s type T does depend on Γ, rewritten as Γ′, x:T above,
which is a contradiction.

Case T-Abs: t = λx:T1.t2 T = T1 → T2 Γ, x:T1 ` t2 : T2

This case cannot occur, because abstraction terms (by themselves) do not evaluate.

Case T-App: t = t1 t2 Γ ` t1 : T2 → T Γ ` t2 : T2

Given that t has the form of an application t1 t2, there are three rules by which t can
evaluate to t′: E-App1, E-App2, E-AppAbs. Each rule must be addressed with its
own case.

Subcase E-App1: t′ = t′1 t2 t1 → t′1

By applying the inductive hypothesis to the judgments Γ ` t1 : T2 → T and
t1 → t′1 the judgment Γ ` t′1 : T2 → T is obtained. Applying rule T-App to the
judgments Γ ` t′1 : T2 → T and Γ ` t2 : T2 results in the judgment Γ ` t′1 t2 : T,
which is what needed to be shown for this case.

Subcase E-App2: t′ = v1 t′2 t1 is a value v1 t2 → t′2

Similar to the E-App1 case: apply the induction hypothesis, then rule T-App to
the result to obtain Γ ` v1 t′2 : T.

Subcase E-AppAbs: t′ = [v2/x]t11 t1 = λx:T2.t11 t2 is a value v2

Proving this case requires the “substitution” lemma—that is, that types are pre-
served through substitution. More formally, the lemma states [8, p. 106] that if
Γ, x:T4 ` t3 : T3 and Γ ` t4 : T4, then Γ ` [t4/x]t3 : T3. (The subscripts in the
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definition have been chosen so as not to interfere with the theorem being proved.)
The proof of this lemma is omitted here for brevity.

To use this lemma, first combine the judgment Γ ` t1 : T2 → T (from the
beginning of the case) and the knowledge that t1 = λx:T2.t11 to form the judgment
Γ ` λx :T2.t11 : T2 → T. Then, invert this judgment through rule T-Abs (the
only typing rule which types abstractions) to obtain Γ, x :T2 ` t11 : T. Finally,
since v2 is the same as t2 and Γ ` t2 : T2 (again from the beginning of the case),
Γ ` [v2/x]t11 : T by the substitution lemma.

Case T-True: t = true T = Bool

This case cannot occur, because the term true does not evaluate.

Case T-False: t = false T = Bool

This case cannot occur, for the same reason as T-True.

Case T-If: t = if t1 then t2 else t3 Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

There are three rules by which t = if t1 then t2 else t3 can evaluate: E-IfTrue,
E-IfFalse, and E-If. Each rule must be addressed in its own case.

Subcase E-IfTrue: t1 = true t2 = t′

The term t1 must be true in this case, which means t′ is the same as t2. Fur-
thermore, the type of t2 is known to be T, from a subderivation of t’s typing
derivation for this case.

Subcase E-IfFalse: t1 = false t3 = t′

Similar to the previous case, except that t1 is false and t′ is t3. The type of t3

is known to be T for the same reason.

Subcase E-If: t′ = if t′1 then t2 else t3 t1 → t′1

Applying the inductive hypothesis to Γ ` t1 : Bool and t1 → t′1 yields Γ ` t′1 :
Bool. Reapplying rule T-If to this result, along with the typing subderivations
for both t2 and t3 yields Γ ` if t′1 then t2 else t3 : T. �

In this example proof, only the techniques (1) and (2) are used, including all three versions
of the former. Within each case, term equalities are listed, followed by a (possibly empty) list
of judgments. The latter represent the premises of the inference rule being addressed by the
case, rewritten in terms of known information in the proof. The listed equalities represent
restrictions imposed by assuming the inference rule was the last one used in the derivation of
Γ ` t : T (or t→ t′ for the subcases). The significance of these equality relations, and the
importance of making them explicit, is the core of this thesis. To help explain, Figures 2.6
and 2.7 show the same proof in SASyLF.

There are two explicit inputs to the SASyLF formulation of the theorem, the derivations
d: Gamma |- t : T and e: t -> t′. There are also three implicit inputs—t, T, and t′—which
d and e depend upon. The arbitrary hypothetical context Gamma is not an input to the
theorem, but a repository of hypothetical assumptions which may be extended during the
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theorem preservation:

assumes Gamma

forall d: Gamma |- t : T

forall e: t -> t’

exists Gamma |- t’ : T.

use induction on d

proof by case analysis on d:

case rule

: Gamma, x:T1 |- t1[x] : T2

--------------------------------- T-Abs

: Gamma |- lam x:T1 dot t1[x] :

T1 -> T2

is

proof by contradiction on e

end case

case rule

d1: Gamma |- t1 : T2 -> T

d2: Gamma |- t2 : T2

------------------------- T-App

: Gamma |- t1 t2 : T

is

proof by case analysis on e:

case rule

e1: t1 -> t1’

------------------ E-App1

: t1 t2 -> t1’ t2

is

d1’: Gamma |- t1’ : T2 -> T

by induction hypothesis on d1, e1

: Gamma |- t1’ t2 : T

by rule T-App on d1’, d2

end case

case rule

: t1 value

e2: t2 -> t2’

------------------ E-App2

: t1 t2 -> t1 t2’

is

d2’: Gamma |- t2’ : T2

by induction hypothesis on d2, e2

: Gamma |- t1 t2’ : T

by rule T-App on d1, d2’

end case

case rule

v2: t2 value

-------------------------- E-AppAbs

: (lam x:T2’ dot t11[x]) t2 ->

t11[t2]

is

d11: Gamma, x:T2’ |- t11[x] : T

by inversion of rule T-Abs on d1

: Gamma |- t11[t2] : T

by substitution on d11, d2

end case

end case analysis

end case

...

Figure 2.6: The preservation proof for λ→B in SASyLF (Part 1)

proof. An oddity in this theorem is that e does not mention or assume Gamma, so in fact
t and t′ do not depend on it. Some proofs of preservation for the simply-typed λ-calculus
are written for closed terms—d: * |- t : T in this SASyLF representation—but writing the
theorem with an arbitrary Gamma makes it easier to apply.

Theorem preservation in Figure 2.6 has a single output type, Gamma |- t′ : T. As
with all theorems in SASyLF, the nature of this output is existential (as explained in §2.2).
However, in this theorem the output’s dependencies—t’ and T—are not existential, because
they are inputs.

The proof in Figure 2.6 begins by declaring it will use induction on derivation d. Seman-
tically this signifies structural induction3, which means that the user is allowed to apply the

3SASyLF has different options to allow induction on multiple derivations at once, but this flexibility is
not needed here and is outside of the scope of this thesis.
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...

case rule

----------------------- T-True

: Gamma |- true : Bool

is

proof by contradiction on e

end case

case rule

----------------------- T-False

: Gamma |- false : Bool

is

proof by contradiction on e

end case

case rule

d1: Gamma |- t1 : Bool

d2: Gamma |- t2 : T

d3: Gamma |- t3 : T

---------------------------------- T-If

: Gamma |- if t1 then t2 else t3 : T

is

proof by case analysis on e:

case rule

-------------------------- E-IfTrue

: if true then t’ else t3 -> t’

is

proof by d2

end case

case rule

------------------------- E-IfFalse

: if false then t2 else t’ -> t’

is

proof by d3

end case

case rule

e1: t1 -> t1’

------------------------------ E-If

: if t1 then t2 else t3 ->

if t1’ then t2 else t3

is

d1’: Gamma |- t1’ : Bool

by induction hypothesis on d1, e1

: Gamma |-

if t1’ then t2 else t3 : T

by rule T-If on d1’, d2, d3

end case

end case analysis

end case

end case analysis

end theorem

Figure 2.7: The preservation proof for λ→B in SASyLF (Part 2)

theorem being proved, during its proof, to a subderivation of d with similar LF type.
The proof proceeds via case analysis4 on the typing derivation d, just as the paper proof

does. The cases which must be addressed by the SASyLF proof are the same as the paper
one: one for each typing rule. (For readability, the cases are listed in the same order in both
proofs.) The rule T-Var is notably absent from the SASyLF proof, however. This is due to
the form of the rule in Figure 2.3. The judgment Gamma, x:T |- x : T (not the same Gamma

as in the theorem) implies that the term being typed depends on the hypothetical context,
because it is a member of that context. However, it has been shown above that this cannot
be. And so this rule does not need to be addressed with a case.

As in the paper proof, many of these cases in the SASyLF proof lead to an immediate
contradiction (e.g., the T-True case), because of derivation e, also present in the context.
This derivation says t must evaluate, so cases where t is a normal form—such as an abstrac-
tion or true—do not apply to the proof. SASyLF does not “look ahead” in any part of the
proof, however, and these normal form cases must still be written out. This is in accordance

4The two lines use induction on d and proof by case analysis on d: could be combined with the
syntactic sugar proof by induction on d:.
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with the reasoning for a lack of automation, described in Chapter 1.
In the case for T-If in Figure 2.7, t is the if-expression if t1 then t2 else t3 (not a

normal form), where t1, t2, and t3 are new terms in the context, with types given by the
premises of the rule case. (These premises are added to the context as well.) Unlike t, the
rule case does not impose any further restrictions on T; the meaning behind these restrictions
are discussed in §3.2.

The proof immediately proceeds with a case analysis on e, the evaluation derivation.
Again, a case must appear for every evaluation inference rule that applies. But the t in
e: t -> t’ has changed since the theorem began. It can no longer be any term, it must
have the form if t1 then t2 else t3. As a result, not all the evaluation rules could have
produced e here; the rules which apply are E-IfTrue, E-IfFalse, and E-If.

The proof for the first of these three rules, E-IfTrue, is completed in a single step.
Notably, none of the techniques from §2.2.1 are used. This is because the required derivation
is already in the context; it just needed to be pointed out.

It may not be clear why derivation d2 proves this case. The theorem requires that t’

has type T, but d2 gives the type of t2. But term t2 became t’ in the inner rule case,
E-IfTrue. This was required for e to match—i.e., to unify with—the conclusion of the
original rule E-IfTrue in Figure 2.4.

This lack of clarity—of just what exactly needs to be proven, and how to get there—stems
from the various substitutions going on “under the hood” of the proof. “Where” clauses,
detailed in much of the remainder of this thesis, bring these substitutions to light.

2.2.3 A Where Clause Example

Figures 2.8 and 2.9 show the same SASyLF proof with “where” clauses added. The single
clause for the rule case T-If is not surprising: if rule T-If provides the type for t, then t

must be an if-expression. The evaluation rule E-IfTrue, however, describes a particular
evaluation which imposes further restrictions on t, and notably relating t2 and t’. The
added “where” clauses make these restrictions clear. From them it can be seen that all
previous derivations that mention t’ are also talking about t2, and vice versa.

Another notable substitution takes place when the rule T-Abs is inverted during the
(sub)case for E-AppAbs. Here, the input type of t1, which must be an abstraction, is
forced to match the left-hand side of its arrow type T2 -> T given by the judgment d1. This
is required to apply the SASyLF construct by substitution in the next step of the proof.

Thus, “where” clauses are a usability feature which require implicit information to be
made explicit, for the sake of learning how to write proofs. As such, they align with SASyLF’s
original design philosophy. Interestingly, these clauses appear, after a fashion, in the paper
proof as well, and even in Pierce’s original [8]. In this way then, having these clauses appear
in the SASyLF code bring it even closer to the paper version.
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theorem preservation:

assumes Gamma

forall d: Gamma |- t : T

forall e: t -> t’

exists Gamma |- t’ : T.

use induction on d

proof by case analysis on d:

case rule

: Gamma, x:T1 |- t1[x] : T2

--------------------------------- T-Abs

: Gamma |- lam x:T1 dot t1[x] :

T1 -> T2

where t := lam x:T1 dot t1[x]

and T := T1 -> T2

is

proof by contradiction on e

end case

case rule

d1: Gamma |- t1 : T2 -> T

d2: Gamma |- t2 : T2

------------------------- T-App

: Gamma |- t1 t2 : T

where t := t1 t2

is

proof by case analysis on e:

case rule

e1: t1 -> t1’

------------------ E-App1

: t1 t2 -> t1’ t2

where t’ := t1’ t2

is

d1’: Gamma |- t1’ : T2 -> T

by induction hypothesis on d1, e1

: Gamma |- t1’ t2 : T

by rule T-App on d1’, d2

end case

case rule

: t1 value

e2: t2 -> t2’

------------------ E-App2

: t1 t2 -> t1 t2’

where t’ := t1 t2’

is

d2’: Gamma |- t2’ : T2

by induction hypothesis on d2, e2

: Gamma |- t1 t2’ : T

by rule T-App on d1, d2’

end case

case rule

v2: t2 value

-------------------------- E-AppAbs

: (lam x:T2’ dot t11[x]) t2 ->

t11[t2]

where t1 := lam x:T2’ dot t11[x]

and t’ := t11[t2]

is

d11: Gamma, x:T2’ |- t11[x] : T

by inversion of rule T-Abs on d1

where T2 := T2’

: Gamma |- t11[t2] : T

by substitution on d11, d2

end case

end case analysis

end case

...

Figure 2.8: Where clauses added to the SASyLF proof (Part 1)
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...

case rule

----------------------- T-True

: Gamma |- true : Bool

where t := true

and T := Bool

is

proof by contradiction on e

end case

case rule

----------------------- T-False

: Gamma |- false : Bool

where t := false

and T := Bool

is

proof by contradiction on e

end case

case rule

d1: Gamma |- t1 : Bool

d2: Gamma |- t2 : T

d3: Gamma |- t3 : T

---------------------------------- T-If

: Gamma |- if t1 then t2 else t3 : T

where t := if t1 then t2 else t3

is

proof by case analysis on e:

case rule

-------------------------- E-IfTrue

: if true then t’ else t3 -> t’

where t1 := true

and t2 := t’

is

proof by d2

end case

case rule

------------------------- E-IfFalse

: if false then t2 else t’ -> t’

where t1 := false

and t3 := t’

is

proof by d3

end case

case rule

e1: t1 -> t1’

------------------------------ E-If

: if t1 then t2 else t3 ->

if t1’ then t2 else t3

where t’ := if t1’ then t2 else t3

is

d1’: Gamma |- t1’ : Bool

by induction hypothesis on d1, e1

: Gamma |-

if t1’ then t2 else t3 : T

by rule T-If on d1’, d2, d3

end case

end case analysis

end case

end case analysis

end theorem

Figure 2.9: Where clauses added to the SASyLF proof (Part 2)
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3 Definitions of Correctness

The examples in the previous chapter have been written to be as clear as possible. In the
wild, the user can write proofs in many correct ways. The burden is on SASyLF to judge
between what is dubious (and try to nudge the user in a better direction), and what is just
wrong (and tell them to try again).

What does it mean for a “where” clause to be correct? It turns out this is closely related
to what it means for a case analysis to be correct, and the latter is really three questions:

(1) Which cases apply?

(2) Have all cases been covered?

(3) Are the cases which need to be addressed written correctly in the proof?

Answering these questions requires a more formal presentation of SASyLF’s internals
than has been given so far, and will lead to how to determine “where” clause correctness.

3.1 LF Representation

In LF terms, the object language description consists of term constructors c and type con-
structors a, both LF constants. The syntax declaration (from Figure 2.2)

t ::= x | lam x:T dot t[x] | t t

| true | false | if t then t else t

corresponds to the LF declarations1

at :: type ctrue : at
clam : aT → (at → at)→ at cfalse : at

capp : at → at → at cif : at → at → at → at

There is no constructor for variables x; SASyLF simply associates the name prefix x with
the syntax type at. (Of course, this is entirely separate from the object typing system, which
is internally represented as LF dependent types.) In more general terms, a SASyLF syntax
declaration creates a type constructor a of LF base kind type, along with a term constructor
ci for every non-variable production i.

A judgment declaration J , on the other hand, creates a type constructor aJ which is
typically not kind type, because the form of a judgment usually contains meta-variables.
For example, the judgment eval: t -> t creates the constructor

aeval :: at → at → type

1The arrow→ is used here, and in the example type constructor aeval, because there are no dependencies
between the types of the inputs. In general, Π-notation is needed to describe LF types and kinds which are
functions.
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A SASyLF inference rule R is stored as

ai {η}i :: type aj {η}j :: type . . .

aJ {η}J :: type
R

where aJ in the conclusion matches the type constructor in the judgment declaration. If R
has any premises (many inference rules do not), they are also instances of judgments, and
not syntax constructs on their own. Each set {η} represents a full list of arguments to its
type constructor, hence each derivation has kind type. The constructors for the premise and
conclusion derivations need not be different (which would correspond to mutually dependent
relations). In fact, they are often all the same, as is the case for all three typing rules with
premises in Figure 2.3; in each rule, both the premise(s) and the conclusion have constructor
atyping. The evaluation rules for λ→B in Figure 2.4 which contain premises are similar.

3.2 Case Analyses

As mentioned in §2.2, a SASyLF theorem, together with its proof, is internally represented
as a function. A theorem has inputs x1:τ1, x2:τ2, . . . , xn:τn contained in a local context Γ,
and an output type τ .

A case analysis can be performed on any single syntax construct or derivation d ∈ Γ.
A case analysis also has an output derivation type τ ′ which need not be the same2 as τ ; if
different, the proof will continue after the case analysis is finished.

When performed on a derivation3 d : aJ {η}d, the cases which need to be covered are all
inference rules in the language description whose conclusions unify with aJ {η}d. These rules
represent all of the possible final steps in the derivation (or proof) of aJ {η}d. In general, the
context of the case analysis may already imply some substitutions σ as explained presently;
these are applied to the derivation’s type before unification. Hereafter this application,
σ(aJ {η}d), is referred to as the case analysis subject (CAS).

It is possible that the derivations in an inference rule R, as they are written by the user,
share free variable names with the CAS. Such name clashes carry no semantic meaning, but
could interfere with unification, and so should be avoided. To check whether R needs to be
addressed in a case analysis on d then, a copy Rf should be should be made of R which
contains only fresh4 free variables. If Rf ’s conclusion is aJ {η}f , then R must be addressed
if there exists a (unifier) substitution σd such that

σd(aJ {η}f ) = σd(σ(aJ {η}d)) (3.1)

In general, unifying with Rf ’s conclusion will impose restrictions on the free variables of
the CAS; these are implied by supposing that the CAS’s proof finishes via R. It is possible

2All of the case analyses in the example preservation proof begin with proof by case analysis. The
keyword proof is syntactic sugar for spelling out a derivation with the output type for the theorem, such as
: Gamma |- t’ : T for the proof in Figures 2.6 and 2.7.

3Of course, a case analysis can be performed on a syntax construct as well, such as t or T from λ→B.
Syntax case analyses are outside the scope of this paper, because “where” clauses for them would be trivial
and redundant.

4An easy way to obtain such variables is to create names for them which the user cannot write.
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that the CAS is also more specific in some ways than the conclusion of Rf . Thus, such a
unifier σd is not always one-directional.

A rule case analysis is complete if all such rules are addressed5, and the proof function
produces a derivation with type τ ′ within each case. These observations answer questions
(1) and (2) from the beginning of this section.

Suppose a unifier σd exists for fresh version Rf of inference rule R, satisfying equation
(3.1). Given a user-written rule case R′ addressing rule R, to be sure that R′ is sound, σd
must not map any free variables of the conclusion of R′, hereafter referred to as the rule case
conclusion (RCC). The substitution σd can be altered to comply, if it does not already, in a
process described in §4.1. But if σd cannot be made to comply with this requirement, this
means that the RCC includes free variables which σd is about to substitute away, and this
is an error.

Given a rule case R′ and unifier σd which do not exhibit this error, a correct rule case for
R in a case analysis on d can be computed with σd(Rf )—that is, Rf with σd applied to all of
its premises and conclusion. For a user-written rule case R′ addressing rule R to be correct,
then, it must be written in exactly the same way as σd(Rf ), except that free variables can
be renamed from one to the other in a one-to-one fashion.

In more formal terms, for R′ to be correct, there must exist a “bijection” unifier

σc = {u1 7→ w1, u2 7→ w2, · · · , um 7→ wm}

such that
R′ = σc(σd(Rf )) (3.2)

where every ui is a free variable in σd(Rf ) and wi is the corresponding free variable in R′.
The free variables wi in the codomain of σc must not share names with other members of

the local context Γ, for this would imply relationships between R′ and those members which
may not be sound.

The meaning behind the bijection unifier σc is that a correctly-written rule case R′ rep-
resents exactly the level of restriction on the free variables of the CAS which is required by
supposing inference rule R is the last rule applied in the CAS’s proof.

If a unifier σc exists, but it is not a bijection, it is either because R′ is “too general”
(it does not impose enough restrictions on the free variables of the CAS), or because R′ is
“too strict” (it imposes too many). The former occurs if R′ contains free variables which are
not needed—that is, they stand for elements of σd(Rf ) which are already known to be more
specific than the variable chosen. This includes when multiple free variables in R′ are used
to stand for a single free variable in σd(Rf ). On the other hand, R′ is “too strict” when a
free variable should have been used in R′, to allow flexibility in what the variable stands for
in σd(Rf ), but it was not. This includes when the same variable is used twice in R′, when
two different variables should have been used. If R′ is too strict, an error is generated; if too
general, a warning. Both possibilities can occur in one incorrectly written rule case; if this
occurs, SASyLF reports the error.

5It is possible that no rule conclusions unify with aJ {η}d. When this happens, the complete case analysis
has no cases. This is what occurred, for example, in the rule case T-True in Figure 2.7. In SASyLF, proof
by contradiction on e is syntactic sugar for an empty case analysis on e.
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If no unifier σc exists at all between Rf and R′, then rule case R′ does not address
inference rule R, and SASyLF asks the user to try again.

Suppose rule case R′ is written correctly to address inference rule R, and so a bijection
unifier σc exists. By equation (3.2), considering only the conclusions of R′ and σd(Rf ), the
RCC can be described as

RCC = σc(σd(aJ {η}f )) (3.3)

where aJ {η}f is the conclusion of Rf . Equations (3.1) and (3.3) then combine to form

RCC = σc(σd(σ(aJ {η}d))) = (σc ◦ σd)(σ(aJ {η}d)) (3.4)

Recall that σ(aJ {η}d) is none other than the CAS; so

σu
∆
= {v 7→ ηv} ⊆ (σc ◦ σd)

where each v is a free variable of the CAS, is a one-way unifier from the CAS to the RCC. This
unifier σu represents the restrictions imposed on free variables v of the CAS as a consequence
of addressing inference rule R particularly with rule case R′. The composition σc ◦ σd may
contain mappings from free variables of Rf , but these are irrelevant to the unification of
the RCC and the CAS, and by extension the remainder of the proof; because of this, these
mappings are not included in σu.

The restrictions described by σu do not only affect the CAS; they affect every member
of the local context Γ containing free variables in σu’s domain. In essence, σu = {v 7→ ηv}
instantiates all appearances of every free variable v across members of Γ with the more
specific expression ηv; as a consequence, the v’s should “disappear” inside the scope of rule
case R′.

Furthermore, this substitution effect is cumulative with successive, nested case analyses.
If a case analysis is performed inside the first, another unifier σ′

u is exists for each case, and
σ′
u is applied to all elements of σu Γ. In other words, inside the inner case, the substitution
σ′
u ◦ σu is applied to all elements of Γ. In general, cases in nested case analyses represent a

succession of composed unifiers

σ
∆
= σk

u ◦ · · · ◦ σ2
u ◦ σ1

u (3.5)

applied to each member of Γ, where k case analyses are nested, and σ1
u represents the

substitution for the case at outermost scope.
Therefore, σ as it appeared in equations (3.1) and (3.4) represents the successive com-

position of substitutions implied by all cases, or other statements (such as inversions) that
cause variable substitution, whose syntactic context encompasses rule case R′. The presence
of such outer-scope substitutions is why, for example, the inner case analysis on e in Fig-
ure 2.7 requires cases only for rules E-IfTrue, E-IfFalse, and E-If, and not for all of the
evaluation rules of λ→B.

It is noted above that the RCC must not mention any free variables mapped by σd.
Furthermore, the existence of a bijection unifier σc as defined above implies that the RCC
does not mention any free variables mapped by σc, either. Additionally, the RCC must not
reuse any free variables mapped by σ; if it does, this is always an error, for σ cannot be
altered.
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In summary, following are the requirements for a correct rule case analysis, written as
answers to the questions posed at the beginning of the section. In accordance with the
observation above, a substitution σ is assumed to be in effect due to (enclosing) case analyses
currently in scope; σ = ∅ at the outset of a proof. Also assume a local context Γ. Finally,
assume the subject of the case analysis is derivation d : aJ {η}d ∈ Γ, and the output of the
case analysis is of type τ ′.

(1) An inference rule R (as opposed to syntax productions, for a syntax case analysis) ap-
plies to the case analysis if the conclusion of a “fresh” version Rf unifies with σ(aJ {η}d)
via unifier σd.

(2) All cases are covered when each rule from (1) has a correctly written rule case, followed
by the production of the target derivation being proved by the case analysis.

(3) A rule case R′, addressing inference rule R, is written correctly if:

(a) There exists a “bijection” unifier σc which maps free variables of σd(Rf ) to free
variables in R′. The codomain of σc must be disjoint from Γ.

(b) The conclusion of R′ (the RCC) does not mention any free variables which have
been substituted away by enclosing cases, including R′ itself. That is,

RCC = σ(RCC) = σd(RCC) = σc(RCC)

To show the meaning of requirement (3b), consider the RCC for the inner rule case T-If
in Figure 2.7

: if true then t’ else t3 -> t’

If this RCC had been written either as

: if true then t2 else t3 -> t’

or as

: t -> t’

neither would satisfy this last requirement. The term t was substituted away in an outer
case (via σ), while t2 is about to be substituted away in this case (via σu ⊆ σc ◦ σd).

Interestingly, requirement (3) allows the user to rename free variables of the CAS when
writing the RCC, as long as the new names are not already members of Γ.

3.3 Where Clauses

The notion of “where” clauses benefits from this more formal description. Specifically, these
clauses should be written to make explicit the restrictions imposed by substitutions σ. There
are several considerations which complicate the requirements for “where” clauses. They are
addressed in the following sections.
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3.3.1 Nested Case Analyses

For a single case analysis, there is only one σu in the composition σ. For nested case
analyses, however, there are multiple substitutions in play; which should correct “where”
clauses represent? Looking back at the definition of σ (3.5), there are two viable options.

The clauses could represent the full substitution σ. However, they are more succinct if
they describe only σk

u, the last substitution imposed by a case. In other words, the latter
version of “where” clauses describes only the most recent restrictions, as opposed to repeating
old information. Thus, this more succinct version is the one implemented in the new version
of SASyLF. For example, the nested case E-IfTrue in Figure 2.9 could have (only) the
clause

where t := if true then t’ else t3

which reflects the entire composition σ of substitutions for this rule case; but it is more
useful to require that clauses represent only the newest mappings:

where t1 := true and t2 := t’

3.3.2 SASyLF Syntax

Chief among remaining considerations is how correct “where” clauses for rule cases should fit
into SASyLF’s abstract syntax, including the form of the clauses themselves. In Figures 2.8
and 2.9, they immediately follow an RCC and precede is; this syntax is generalized6 in
Figure 3.1. This is the ideal location for the clauses in a rule case, because they describe
substitutions which occur as a result of the RCC; in particular, the right-hand sides of
the clauses should all appear in the RCC. Furthermore, the “where” clauses are listed just
before the section of the proof affected by the substitutions they describe, similarly to way
“let”-bindings appear in other languages.

3.3.3 Familiarity

Another consideration for “where” clauses for rule cases is that they should only ever list
variables and expressions which have already been seen in the proof text. They should never
introduce anything new; the clauses should decrease confusion, not increase complexity.
”Where” clauses are intended to describe σu = {v 7→ ηv}, where the v’s are free variables
in the CAS. Therefore, the left- and right-hand sides (<LHS>, <RHS>) of a correct clause
should correspond to the “unparsed” (concrete syntax) versions of LF expressions v and ηv,
respectively.

3.3.4 First- vs. Second-Order Left-Hand Sides

For first-order “where” clauses, the left-hand side should simply be the concrete name rep-
resented by v. SASyLF includes support for second-order7 (and no higher) free variables,

6The syntax shown in Figures 3.1, 3.3, and 3.4 is adapted and (greatly) simplified from SASyLF’s parsing
specification.

7Recall that SASyLF stands for Second-order Abstract Syntax Logical Framework.
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(<ID> ":" <EXPR> | <PROOF>) <BY>

<CASE> <ANALYSIS> <ON> <ID> ":"

(<CASE> <RULE>

(<ID> ":" <EXPR>)* // premises

<BAR>

<ID> ":" <EXPR> // conclusion

(<WHERE> <LHS> ":=" <RHS>

(<AND> <LHS> ":=" <RHS>)*)?

<IS>

(<DERIVATION>)+ // continuation of proof

<END> <CASE>)*

<END> <CASE> <ANALYSIS>

Figure 3.1: The abstract syntax of a SASyLF rule case analysis, including the addition of
“where” clauses

and “where” clauses describing substitutions on them are slightly more verbose. Figure 3.2,
showing the beginning of a familiar lemma8, also shows a simple second-order “where” clause:

where t2[x] := true

Whenever a second-order free variable v appears in SASyLF’s syntax, it is immediately
followed by explicit arguments, each enclosed in []. At the object language level, if such an
argument is a bound variable x, it acts as a visual marker that the bound variable x may be
free in the object term represented by v (as described in §2.1.1). Internally, this [] notation
is represented with an LF application with v at the head. The left-hand side of v’s “where”
clause should list v’s arguments as they appear in the CAS, modulo α-equivalence of the
whole clause and the original mapping v 7→ ηv. In the above example, it would be inaccurate
to allow

where t2 := true

letting the [x] be forgotten.
For a less simple example, suppose the LF mapping

t2 7→ λy:at.(clam T1’ λz:at.(t21 y z))

is present in σu for a given rule case9. Then

where t2[x] := lam x’:T1’ dot t21[x][x’]

is a correct “where” clause representing this mapping. By α-equivalence,

8Recall that the so-called “substitution lemma” [8] is not actually required to prove complete type preser-
vation for λ→B in SASyLF (see Figure 2.6); the by substitution construct may be used instead.

9This could occur in the substitution lemma, in the case for rule T-Abs (not shown).
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lemma substitution-preserves-typing:

assumes Gamma

forall d1: Gamma |- t1 : T1

forall d2: Gamma, x:T1 |- t2[x] : T2

exists Gamma |- t2[t1] : T2.

proof by induction on d2:

case rule

----------------------------- T-True

: Gamma, x:T1 |- true : Bool

where t2[x] := true

and T2 := Bool

is

proof by rule T-True

end case

...

Figure 3.2: The beginning of a lemma with second-order free variables

where t2[x’] := lam x:T1’ dot t21[x’][x]

is also correct, but

where t2[x] := lam x’:T1’ dot t21[x’][x]

is not, because this right-hand expression is not the same as the LF expression above. Neither
is

where t2[x] := lam x:T1’ dot t21[x][x]

correct, because the LF bound variables in the mapping are distinct.

3.3.5 Optional Presence

A final consideration regarding “where” clause correctness is that their presence in the code
should be optional. Proofs for complex object languages can be lengthy, with many nested
case analyses; not every “where” clause in these proofs may be helpful, especially for the
advanced user writing them. For novice users, however, being forced to write correct “where”
clauses is a boon. For these users, writing the clauses demonstrates their understanding of the
substitutions they describe, and having this information visible in the code makes continuing
the proof more straightforward.

3.3.6 Summary of Requirements

In summary, given a set of substitutions σ in effect at the beginning of a case analysis,
a (correct) rule case R′ in that analysis, and a set of new restrictions σu imposed by R′,
“where” clauses for R′ are correct if:
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(<ID> ":" <EXPR> | <PROOF>) <BY>

<INVERSION> <OF> [<RULE>] <RULENAME> <ON> <ID>

(<WHERE> <LHS> ":=" <RHS>

(<AND> <LHS> ":=" <RHS>)*)?

Figure 3.3: The abstract syntax of a SASyLF by inversion derivation, including the
addition of “where” clauses

<USE> <INVERSION> <OF> [<RULE>] <RULENAME> <ON> <ID>

(<WHERE> <LHS> ":=" <RHS>

(<AND> <LHS> ":=" <RHS>)*)?

Figure 3.4: The abstract syntax of a SASyLF use inversion construct, including the
addition of “where” clauses

(1) Each clause represents a distinct mapping in σu, instead of a mapping from the com-
bined substitution σu ◦ σ.

(2) The left-hand and right-hand sides of a clause representing a mapping (v 7→ ηv) ∈ σu
should be the concrete syntax representations of LF expressions v and ηv, respectively.
For second-order free variables v, a list of arguments each enclosed in [] must follow
v’s name on the left-hand side. Clauses representing mappings α-equivalent to v 7→ ηv
are allowed.

In addition, incorrectly written “where” clauses should always yield errors, but mappings in
σu which lack clauses should only yield errors if an option making the clauses mandatory is
enabled.

3.3.7 Where Clauses for Inversions

Inversions are another SASyLF construct which can impose substitutions on members of the
local context; thus, they require “where” clauses. Figure 3.3 describes the syntax for justifi-
cation by inversion, with the clauses added. This construct represents a rule case analysis
with a single applicable case, which is performed in-line; that is, there is no nesting. This
means that the alterations to the local context via composition with σ occur immediately,
and are in effect until the end of the given enclosing case of a proof. This behavior is even
more reminiscent of a “let” construct than rule cases.

Figure 3.4 describes the syntax for the use inversion construct. This construct is similar
to by inversion, except that no particular derivation is being justified. The semantic effect
of use inversion is limited to changes in σ.
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A key difference between inversions and typical rule cases is that inversions do not list
an RCC. (A derivation justified with by inversion corresponds to one of the premises of
the original rule. Multiple such derivations may be linked with and.) This makes “where”
clauses even more important for them.

A complication which arises for inversions due to a lack of an RCC is that the user may
write correct clauses which contain new information; in other words, familiarity (from §3.3.3)
does not apply to inversions.

The requirements (detailed in §3.3.6) for how “where” clauses appear in the code, and
that they represent mappings in σu ◦ σ, do not change for inversions. What does change is
that the user is allowed to affect σu with “where” clauses in these constructs, as opposed to
rule cases, where the clauses are strictly passive witnesses to substitutions already computed
and assumed.
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4 Implementation in SASyLF

Much of the infrastructure needed to verify “where” clauses was already present in the
SASyLF system prior to the feature’s addition. This includes LF-expression unification1

and case analysis verification.

4.1 Rule Case Verification

Case analysis verification in SASyLF includes tracking and applying CAS-RCC unifiers σu to
members of contexts Γ as necessary. To accomplish this, SASyLF parses an abstract syntax
(sub)tree (AST) from a theorem and proof in the source, which is traversed in depth-first
fashion, visiting children in the order they appear in the source. The root of proof subtree
P is associated with an empty substitution σ. Every case analysis in the proof represents
a subtree of P . When a case node is entered, a new substitution σ ← σu ◦ σ is created for
that node. After verification on the case node is complete, its parent’s σ is restored. When
x:τ ∈ Γ are accessed at any node of the proof, the σ associated with that node is applied
to τ first. All of this machinery was in place before “where” clauses were conceived; these
substitutions play a critical role in SASyLF’s proof verification process.

A side effect of adding the new feature to SASyLF was looking more closely at this
implementation; the results of this research are summarized in §3.2. Errors were found in
the verification of rule cases, in particular relating to the use of free variables. Prior to this
work, cases which were “too general” or which included free variables about to be substituted
away sometimes went undetected.

Following is a description of the of new process for rule case verification, which refers to
the work in §3.2. For this process, assume that once an error is reported, the procedure is
finished; further errors are not sought. When verifying a rule case R′ addressing inference
rule R, the first step is to check that R′ = σ(R′), where σ is the composition of substitutions
in effect at the outset of the case analysis. If this equality fails, the error is reported.

Next, σd is computed by unifying the CAS (to which σ has already been applied) and the
conclusion of a fresh instance Rf of the rule R. If this unification fails, it is reported that R′

is unnecessary. Otherwise, σd is “rotated” to preserve (not map) free variables of the RCC
(the conclusion of R′).

This rotation of a substitution is generalized in an algorithm called SelectUnavoid-
able. This algorithm takes as input a substitution σ and a set of free variables V . Each free
variable v ∈ V is checked if it can be “avoided” by σ—i.e., removed from the domain of σ,
if present there. For each v. this is possible (1) if v is not in the domain of σ to begin with,
or (2) if σ(v) = ηv is η-equivalent to a free variable z /∈ V . In the latter case, the mapping
v 7→ ηv is “rotated” to become z 7→ v, altering σ as a side effect. This rotation is nontrivial
in general, and can affect the other mappings in σ via composition with the new one. After

1SASyLF implements Nipkow’s unification algorithm [4], with additional conservative heuristics for uni-
fying non-pattern applications.
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all v ∈ V have been checked in this way, the algorithm returns a set of free variables S ⊆ V ,
those which could not be avoided.

The specific rotation of σd above is achieved by gathering the free variables of the RCC
into a set V and executing SelectUnavoidable(σd, V ). If the resultant set S is not empty,
R′ is unsound. Otherwise, the substitution σd resulting from this operation is applied to pro-
duce the correct rule case candidate σd(Rf ). Unification is attempted with this candidate
and R′. If it fails entirely, R′ does not correctly address R. If a unifier σc is found, SelectU-
navoidable is executed on it twice to establish a bijection (the order of the two executions
matters): first avoiding the free variables of Rf , then avoiding the free variables of R′. If the
resultant set S from the first execution is non-empty, then R′ is “too strict.” If S from the
second execution is non-empty, then R′ is “too general.” If both executions return empty
sets, the codomain of σc is intersected with the local context Γ; if the result not ∅, an error
is generated. Otherwise, R′ is correctly written, and σu is the set of all mappings in σc ◦ σd
which act on free variables of the CAS.

4.2 Where Clause Verification

To verify “where” clauses, the new version of SASyLF parses each of the user-written clauses
into two LF expressions (the left and right sides). It then matches them, via LF expression
equality, to mappings in σu. (If the rule case is not correct and σu does not exist, “where”
clauses for that case are not verified.)

For second-order “where” clauses, arguments in [] are parsed from the left-hand side
into a list of variable bindings; these are made available when parsing the right-hand side,
as if bound on that side. The user’s right-hand LF expression is then wrapped with lambda
abstractions corresponding to the left-hand arguments; the last argument forms the first
wrapping, and so on. The right-hand side is then verified via LF expression equality just
as with a first-order clause, and α-equivalence is allowed. If the user gives non-variable
arguments, not enough arguments, or too many, appropriate errors are given. A special
error is generated if there are arguments on the left-hand side of a first-order clause.
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5 Future Work

The primary avenue for future work with “where” clauses should be usability testing with
actual users, preferably students learning to use SASyLF and to write sound proofs. The
feature seems worthy of inclusion (and has led to many interesting subproblems and bug
fixes), but it is not currently known whether student users will find “where” clauses helpful
or obtrusive.

5.1 Current Limitations

One major limitation to the current “where” clause implementation is that SASyLF does
not verify “where” clauses when changes occur in the hypothetical context from a CAS to
the RCC of a rule case. This is due the way these contexts are internally represented, via
additional abstractions wrapped around an LF expression in the context. There are potential
plans to revamp this representation, which would also change the way these clauses are
handled.

Another limitation involves the way the new version of SASyLF verifies “where” clauses
for inversions. Currently, the user is not allowed to supply their own terms for the right-
hand of clauses for inversions. That is, the user cannot write mappings which affect the local
substitution; SASyLF can only verify “where” clauses for inversions for which both the left-
and right-hand sides have already appeared in the code.

This has two limiting implications on the new feature for inversions. First, the mappings
which are allowed is dictated solely by the particular σu which is produced through unifi-
cation; alternative unification solutions are not allowed. Second, if the right-hand side of
a “where” clause internally includes generated variables (originating from “fresh” copies of
inference rules), the user currently cannot write the correct clause.

5.2 Possible Extension

The new version of SASyLF parses the user’s “where” clauses to LF, and verifies them at
that level. An extension of this feature is to produce the concrete clauses internally and
insert them into the user’s code; this can be accomplished with an Eclipse “Quick Fix”
option. The cases for a case analysis can already be generated and inserted in this way,
which is similar to a feature described in the original SASyLF paper [1].
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