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Abstract  25 

 26 

The impact of climate change on water availability in two river basins located in central Canada 27 

is investigated. Several statistical downscaling methods are used to generate temperature and 28 

precipitation scenarios from the third-generation Canadian Coupled General Circulation Model, 29 

forced with different emission scenarios. The hydrological model SLURP is used to simulate 30 

runoff. All downscaling methods agree that temperature will increase with time and that 31 

precipitation will also increase, although there is considerably more uncertainty in the magnitude 32 

of precipitation change. The study concludes that the change in total annual precipitation does not 33 

necessarily translate into similar changes in runoff. The seasonal distribution of precipitation 34 

changes is important for runoff, as is the increase in evapotranspiration. The choice of 35 

downscaling method appears to have a greater impact on runoff projections than the choice of 36 

emission scenario. Therefore, it is important to consider several downscaling methods when 37 

evaluating the impact of climate change on runoff.  38 

 39 

Keywords: climate change; statistical downscaling; runoff; uncertainty; Canada 40 

41 
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1 Introduction  42 

 43 

The impact of climate change on water resources is an important issue in Canada, including in the 44 

province of Manitoba which has a considerable amount of surface water and an important 45 

hydropower industry. However, relatively few studies have addressed climate change impacts on 46 

the hydrology of Manitoba. Choi et al (2009) found that mean runoff in two basins in central 47 

Manitoba is projected to increase as a result of climate change. Shrestha et al (2011) studied 48 

climate-induced hydrological changes in the Lake Winnipeg basin, with focus on two river basins 49 

in southeastern Saskatchewan and southern Manitoba, and also found that total runoff is likely to 50 

increase and the spring freshet likely to occur earlier in the future. Other studies (e.g. Burn et al 51 

2008; St. George 2007; Sushama et al 2006; Yulianti and Burn 1998) have examined the 52 

hydrology or hydrological impacts of climate change for the Canadian Prairie region in general. 53 

Except for the global-scale study by Hamududu and Killingtveit (2012) and continental-scale 54 

study by Sushama et al (2006), there is limited research relevant to mid-sized basins contributing 55 

to Lake Winnipeg.  56 

 57 

The present study focuses on the impact of climate change on the runoff regime of two mid-sized 58 

catchments within the Winnipeg River basin. The Winnipeg River, located primarily in 59 

southeastern Manitoba and northwestern Ontario, is a major source of inflow to Lake Winnipeg. 60 

The general methodology employed here involves running a hydrological model with future 61 

climate scenarios simulated by a global climate model (GCM). Due to their global nature, GCMs 62 

have coarse spatial resolutions, typically in the order of several hundred kilometers, and most 63 

GCMs have significant biases, especially in precipitation output. It is therefore necessary to 64 

perform some post-processing of simulated precipitation and temperature in order to use these 65 

variables as input to hydrologic models (Mareuil et al 2007). Methods for downscaling GCM 66 

output are commonly classified as dynamic or statistical. Dynamic downscaling methods involve 67 

the use of high-resolution regional climate models set up for the domain of interest, with the 68 

GCM providing the necessary boundary conditions. Statistical downscaling methods use 69 

relatively simple statistical models to relate large-scale atmospheric variables, presumably well 70 

simulated by the GCM, to temperature and precipitation at the location of interest. Statistical 71 

downscaling is computationally cheaper and easier to implement than dynamic downscaling, and 72 
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can often be designed to produce unbiased simulations for specific locations which is not always 73 

possible with dynamic downscaling models. A general review of downscaling methods, including 74 

their relative advantages and disadvantages, is provided by Fowler et al (2007). Statistical 75 

downscaling methods are commonly divided into three classes (Wilby and Wigley 1997): transfer 76 

function models, weather generators, and weather-typing models. Some downscaling methods are 77 

hybrids of these classes. In the present study, three statistical downscaling methods representing 78 

different classes were employed.  More specifically, we used the Statistical DownScaling Model 79 

(SDSM, Wilby et al 2002), which falls into the category of transfer function models, the Long 80 

Ashton Research Station Weather Generator (LARS-WG, Semenov and Barrow 1997) which is a 81 

weather generator, and nearest neighbor resampling (NNR, Gangopadhyay et al 2005), a non-82 

parametric method that can be viewed as a special case of weather typing.  83 

 84 

The construction of hydrological change scenarios involves a number of steps, and each of these 85 

steps introduces uncertainty (Wilby and Harris 2006). To be of credible value, projected changes 86 

must be accompanied by at least some crude estimate of associated uncertainties or range of 87 

possibilities. The selection of GCM and emission scenario is an important source of uncertainty 88 

(Wilby and Harris 2006; Prudhomme et al 2003), but recent studies suggest that downscaling 89 

methods also introduce significant uncertainties (e.g. Chen et al 2013, Hanel et al 2013, Samadi 90 

et al 2013, Ghosh and Katkar 2012, Zhang et al 2011, and Quintana Sequi et al 2010).  91 

 92 

The studies mentioned above provide a useful context for the research presented here. The main 93 

objective of the present study is to quantify climate change impacts and uncertainties on runoff in 94 

two watersheds within the Winnipeg River basin. We are particularly interested in determining 95 

the relative contribution of downscaling method and greenhouse gases emission scenarios to the 96 

total uncertainty. This does not cover the entire range of uncertainties, as the present study does 97 

not consider the uncertainties associated with the choice of GCM and choice of hydrologic 98 

model. Nevertheless, it is a useful exercise to isolate and study specific sources of uncertainty.  99 

 100 
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2 Methods  101 

2.1 Study basins 102 

The study focuses on two river basins, Sturgeon and Troutlake, located in northwestern Ontario 103 

(Figure 1). The watersheds are part of the Winnipeg River basin, which in turn is part of the 104 

greater Nelson River basin. The region is sparsely populated and the landscape is typical for the 105 

Canadian Shield, characterized by coniferous forest and numerous lakes. The drainage areas 106 

upstream of the hydrometric stations are 4450 km2 for the Sturgeon River and 2370 km2 for the 107 

Troutlake River.  108 

 109 

There are two weather stations in the vicinity of the sub-basins (Red Lake and Sioux Lookout) 110 

(Figure 1). The average annual precipitation is 640 mm, and the annual mean temperature is 111 

0.9°C at Red Lake Airport over the period 1971-2000. Sioux Lookout Airport has a similar 112 

climate, albeit slightly wetter and warmer. The average discharge at Troutlake, measured over the 113 

period 1970-2008, is 17.0 m3s-1, with spring peak flow usually occurring in late May. The 114 

Sturgeon River has a similar seasonal pattern with an average discharge of 39.3 m3s-1 during the 115 

period 1961-2008. There are several control structures in the Winnipeg River basin, but the two 116 

basins selected for this study have natural flow regimes.  117 

 118 

2.2 Hydrological modeling 119 

The SLURP model (Semi-distributed Land Use-based Runoff Processes) Version 11.2, 120 

developed by Kite (1998), was selected for streamflow simulation. SLURP is a conceptual 121 

hydrologic model with a relatively small number of parameters. The model treats a watershed as 122 

a union of aggregated simulation areas (ASA). ASAs are delineated based on elevation using a 123 

geographic information system (GIS), and the flow contributions from upstream ASAs are routed 124 

to downstream ASAs by a user-selected routing scheme. The vertical water balance is calculated 125 

for each land cover type in each ASA. The input data for SLURP are daily time series of mean 126 

temperature, total precipitation, relative humidity, and bright sunshine hours (or shortwave 127 

radiation). More details on the SLURP model can be found in Kite (1998).  128 

 129 
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The land cover data for the study basins were obtained from the Advance Very High Resolution 130 

Radiometer via GeoGratis (http://geogratis.cgdi.gc.ca/geogratis/en/index.html) with a scale of 131 

1:2M. The digital elevation model with a resolution of 3 arc seconds was obtained from the 132 

National Aeronautics and Space Administration Shuttle Radar Topography Mission via the U.S. 133 

Geological Survey (http://seamless.usgs.gov). Based on the GIS analysis, the Sturgeon River 134 

basin was divided into seven ASAs and the Troutlake basin into four (Figure 1).  135 

 136 

Daily time series of temperature, precipitation, and relative humidity were obtained from 137 

Environment Canada for the two weather stations shown in Figure 1. Both weather stations are 138 

reasonably close to their respective watersheds and provide the most representative information 139 

available. Solar radiation data, extracted from the North American Regional Reanalysis (NARR; 140 

Mesinger et al 2006), were used in place of bright sunshine hours that are not available at the 141 

weather stations in the region.  142 

 143 

The SLURP model was set up for each river basin and calibrated using measured streamflow data 144 

for the years 1995-1997 (Sturgeon) and 1994-1996 (Troutlake). The automatic optimization tool 145 

embedded in SLURP was used first and later some parameters were adjusted manually to 146 

improve the model performance in terms of relative errors and goodness-of-fit. Three 147 

performance statistics were considered in the calibration: deviation of volume (Dv), Nash-148 

Sutcliffe efficiency (E), and mean absolute error (MAE). These measures were chosen based on 149 

the recommendation by Legates and McCabe (1999). Daily scale E values were 0.71 (Sturgeon) 150 

and 0.66 (Troutlake), Dv was under +/- 10%, and MAE values were 9.7 m3s-1 (Sturgeon) and 3.1 151 

m3s-1 (Troutlake). The calibration periods were selected based on the availability of weather data. 152 

The E values are reasonable and typical for this type of watersheds where weather stations are 153 

limited in numbers and the watersheds are characterized by many lakes. MAE values are around 154 

25% of the mean observed streamflow.  155 

 156 

2.3 Downscaling methods 157 

Three statistical downscaling methods were implemented in this study, using the daily output 158 

from the third-generation Canadian Coupled General Circulation Model (CGCM3.1). The 159 
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CGCM3.1 output was obtained for three different greenhouse gas emission scenarios from the 160 

Special Report on Emissions Scenarios (SRES; Nakicenovic and Swart 2000), B1, A1B, and A2. 161 

The scenarios represent ‘low’, ‘medium’ and ‘high’ emissions, respectively (Meehl et al 2007). It 162 

should be emphasized that there are also considerable uncertainties associated with the choice of 163 

GCM model. These uncertainties are well documented, for example in the IPCC (2007) report. 164 

The primary focus of the present research is to assess the uncertainty arising from the application 165 

of different statistical downscaling methods and different emission scenarios, and therefore only 166 

one GCM was used. The CGCM was chosen because it is a Canadian model that has been 167 

extensively validated over Canada and has been used in other Canadian studies (e.g. Sultana and 168 

Coulibaly 2011; Dibike and Coulibaly 2005).  169 

 170 

SDSM is a statistical downscaling technique based on multiple regression models between large-171 

scale atmospheric variables (predictors) and local-scale variables (predictands). Three 172 

predictands, daily maximum temperature, minimum temperature and precipitation, were modeled 173 

by SDSM for the baseline and future periods for this study. The general procedure to set up 174 

SDSM is described in Wilby and Dawson (2004). SDSM was calibrated for Sioux Lookout using 175 

the National Centers for Environmental Prediction-National Center for Atmospheric Research 176 

global reanalysis data (Kistler et al 2001). Twenty-five predictor variables were initially 177 

considered (details in Koenig 2008). The model was calibrated for the period 1961-1990 and 178 

validated for the 1991-2000-period. CGCM3.1 was used to obtain predictors for the baseline and 179 

future periods. Due to the lack of observed climate data, SDSM could not be implemented for the 180 

Red Lake station. Instead, the mean monthly differences in observed temperature and 181 

precipitation were calculated between the Sioux Lookout and Red Lake stations, and the 182 

differences were superposed on the SDSM parameters for Sioux Lookout to generate SDSM data 183 

for Red Lake. 184 

 185 

LARS-WG is a stochastic weather generator that can produce synthetic series of daily 186 

precipitation, maximum temperature (Tmax), minimum temperature (Tmin), and solar radiation. 187 

In LARS-WG, the occurrence of daily precipitation is modeled as alternating sequences of dry 188 

and wet spells. The daily weather variables – Tmax, Tmin, solar radiation and precipitation 189 

amount – are then simulated conditional on whether precipitation occurs or not. To generate 190 
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future scenarios, LARS-WG uses changes in daily weather variables determined from the GCM 191 

baseline and future periods to revise parameters to represent the future climate. LARS-WG 192 

requires observed Tmax, Tmin, and precipitation data as input. LARS-WG was implemented for 193 

the location of the Sioux Lookout weather station to generate precipitation, Tmax, Tmin, and 194 

solar radiation. As in the case of the SDSM model, the results were transferred to Red Lake. Data 195 

from 1961-1990 were used for the calibration while the period of 1991-2000 was used for 196 

validation (Koenig 2008).  197 

 198 

NNR is a non-parametric method that produces local weather data by resampling from the record 199 

of observed weather variables, based on the similarity of the daily large-scale atmospheric 200 

patterns of a GCM and the corresponding observed patterns. The basic idea is that by comparing 201 

large-scale atmospheric variables from a GCM for a given simulation day with the same variables 202 

in the historical record, days with similar large-scale variables (nearest neighbors) can be 203 

identified in the historical record. The comparison between the simulation day and the historical 204 

record is done using a vector of variables referred to as the feature vector. The number of 205 

variables included in the vector may vary, and Buishand and Brandsma (2001) obtained the best 206 

results with 2 and 5 after trying 2, 5, 20, and 50. Using a pre-defined metric, the distance between 207 

the feature vector for a given simulation day and feature vectors in the historical record can be 208 

determined, and the group of the k most similar days can be identified. One of these is selected at 209 

random to provide the local weather data for the simulation day. A higher selection probability is 210 

given to the closer days by using a decreasing kernel density function. The NNR method requires 211 

large-scale atmospheric variables for the feature vector and corresponding historical weather data. 212 

The large-scale variables considered here are surface temperature, 500 hPa temperature, 850 hPa 213 

temperature, 500 hPa geopotential height, and 850 hPa geopotential height covering a significant 214 

area over west-central Canada.  215 

 216 

3 Results  217 

3.1 Comparison of statistical downscaling methods for the baseline period 218 

The three downscaling methods produced temperature and precipitation series for the baseline 219 

period (1971-2000) both for Sioux Lookout and Red Lake. The results were evaluated by 220 
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comparing downscaled temperature and precipitation statistics with those observed at the Sioux 221 

Lookout station. The results for the Red Lake station show a similar pattern between downscaling 222 

methods. As seen in Table 1, all downscaling methods result in mean annual temperatures that are 223 

higher than the observed (Station), but only SDSM annual temperature is significantly different 224 

from the station at the 5% significance level. This difference is largely due to the fact that SDSM 225 

annual temperatures were higher than Station annual temperatures in most of the 1990s, the 226 

validation period for SDSM.  LARS-WG is closest to the station data in terms of mean annual 227 

temperature. The interannual variability of temperature is somewhat underestimated in the 228 

statistical downscaling results, which is common in observation-model comparisons. The 95th and 229 

5th percentile of daily temperature values are fairly similar among the data sets. The difference 230 

between the three downscaling methods is more pronounced in the case of precipitation statistics, 231 

although none of the downscaled annual total precipitations are significantly different from 232 

Station. All downscaling methods underestimate the observed interannual variability, and the 233 

underestimation is particularly severe in SDSM. Maximum daily precipitation is different by as 234 

much as 14.7 mm (between SDSM and LARS-WG), but the 95th percentile of daily precipitation 235 

is very similar among the data sets.  236 

 237 

The distribution of monthly total precipitation values is portrayed in Figure 2 for all months as 238 

well as for the period of May to October, which generally are the wettest months of the year. 239 

Except for outliers, the three downscaling methods have quite similar distributions, although the 240 

NNR method has a slight bias towards lower values. SDSM produced higher July precipitation 241 

than other downscaling methods, resulting in some particularly large outliers in the boxplot. The 242 

box plots for the May-October period show that the precipitation distributions are similar, which 243 

suggest that the low annual precipitation from NNR shown in Table 1 is largely due to low 244 

precipitation during dry months. LARS-WG was better than others for interannual variability at 245 

the annual scale, but not at the monthly scale. Dibike and Coulibaly (2005) report that both 246 

SDSM and LARS-WG simulated precipitation reasonably well for a basin in Quebec, but do not 247 

comment on variability.  248 

 249 

The SLURP model was run with input data generated by each downscaling method for the period 250 

1970-2000, and the result for the year 1970 was dropped from the analysis to eliminate the impact 251 
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of initial conditions. The distribution of simulated annual mean discharge is shown in Figure 3. 252 

The median annual runoff simulated with input data from NNR is consistently lower than runoff 253 

simulated with SDSM or LARS-WG data. The largest variability among the downscaling 254 

methods, in terms of the range of the whiskers, is observed with LARS-WG, while the median 255 

streamflow with NNR are significantly lower than the other two methods. The result generally 256 

reflects the precipitation statistics in Table 1. All the simulations with the downscaled GCM data 257 

resulted in smaller interannual variability than the observed streamflow.  258 

 259 

Overall, all the methods produce similar results for temperature, whereas LARS-WG produce 260 

better results for precipitation than SDSM and NNR. There are some studies that report similar 261 

results to the present one. Dibike and Coulibaly (2005) report that LARS-WG is better than 262 

SDSM for wet- and dry-spell length, which has important implications for runoff generation. 263 

Khan et al (2006) analyzed uncertainty from three statistical downscaling methods, SDSM, 264 

LARS-WG and an artificial neural network (ANN) model, and conclude that LARS-WG and 265 

SDSM are better than the ANN model in reproducing important statistics such as daily 266 

precipitation, and maximum and minimum temperatures in a Quebec basin. They also found that 267 

LARS-WG worked better for daily precipitation than SDSM. The characteristics of weather 268 

generators that employ empirical distributions of precipitation variables are believed to contribute 269 

to the better performance of LARS-WG relative to SDSM.  270 

 271 

The underestimation of annual precipitation amount and variability by NNR is not entirely 272 

unexpected. One of the drawbacks of NNR is that it merely resamples values from the observed 273 

data (Sharif and Burn 2006). What is somewhat surprising however is the result from the 274 

hydrological modeling with NNR-downscaled scenarios. NNR underestimates mean annual 275 

precipitation by about 4% of the station data and about 8% relative to SDSM- or LARS-WG-276 

downscaled scenarios, but the runoff totals produced using the NRR method is 21% and 9% 277 

lower than the runoff produced by SDSM in Sturgeon and Troutlake, respectively. Cunderlik and 278 

Simonovic (2005, 2007) used NNR-downscaled scenarios to run a hydrological model but did not 279 

elaborate on the bias of NNR and its effect on hydrological simulations, making it impossible to 280 

compare with the present study.  281 

 282 
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3.2 Projected changes in annual and monthly temperature, precipitation, and 283 

runoff  284 

The three downscaling methods were applied to the future period of 2046-2065 (2050s) using 285 

output from the CGCM3.1 model, and the downscaled climate data were used for SLURP 286 

simulations. Table 2 shows the changes in annual temperature, precipitation, and runoff for all 287 

basins, emission scenarios, and downscaling methods. The changes in temperature and 288 

precipitation from the raw CGCM3.1 data are also shown, and are the same for the two basins. 289 

The differences between projected temperature changes are small at the annual level, but the 290 

differences in precipitation changes are quite large, especially between downscaling methods. 291 

Changes in annual mean temperatures are all statistically significant (p < 0.01). LARS-WG 292 

results in large precipitation increases which are all statistically significant (p < 0.01), whereas 293 

SDSM and NNR result in inconsistent directions of change with much smaller magnitudes. 294 

Generally, LARS-WG results in larger precipitation increases and smaller temperature increases 295 

than CGCM3.1, both of which favor runoff increases. On the other hand, SDSM- and NNR-296 

downscaled scenarios have precipitation changes with smaller magnitudes than CGCM3.1. 297 

Therefore, SDSM and NNR generally show changes in the same direction – decrease – whereas 298 

LARS-WG results in increases.  299 

 300 

Figure 4 shows the changes in mean monthly temperature and precipitation from the baseline 301 

climate by the 2050s at Sioux Lookout, for each downscaling method and emission scenario. 302 

There is a noticeable discrepancy among downscaling methods and emission scenarios both in 303 

temperature and precipitation changes. The temperature changes for summer months from SDSM 304 

is roughly twice or more than those from LARS-WG and NNR in each emission scenario, 305 

whereas LARS-WG- and NNR-downscaled scenarios show higher temperatures than SDSM for 306 

January, February, and March. Warming is projected year round, which could lead to earlier 307 

snowmelt, higher evaporation, and reduced snowpack storage. For March, April, and May, wetter 308 

climate is generally projected with LARS-WG and NNR and drier with SDSM. The results for 309 

Red Lake are fairly similar and thus not shown here. 310 

 311 

Figure 5 shows changes of mean monthly runoff between the baseline and 2050s periods, 312 

simulated with downscaled input data for each emission scenario. Under the A1B scenario, 313 
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LARS-WG results in runoff increases throughout the year, with the highest increase in April due 314 

to increased precipitation and earlier snowmelt, and moderate increases in other months, largely 315 

due to increased evaporation offsetting the effects of precipitation increases. On the other hand, 316 

SDSM results mostly in decreases, and NNR shows more mixed results. Mean monthly runoff 317 

changes to some extent resemble the pattern of mean monthly precipitation changes due to the 318 

relatively small size of the catchments (Figure 4), but with amplified decreases in runoff with 319 

SDSM and NNR. For months with small precipitation increases in SDSM- and NNR-downscaled 320 

scenarios, runoff is projected to decrease, and for months with large increases (e.g. SDSM for 321 

August), runoff increases moderately. Even though the precipitation changes in NNR- and 322 

SDSM-downscaled scenarios are similar at the annual scale, the NNR-downscaled scenarios 323 

show large increases in springtime precipitation whereas the SDSM-downscaled scenarios show 324 

smaller increases or decreases (Figure 4). As a result, NNR results in smaller annual runoff 325 

decreases than SDSM because spring runoff increases partially offset decreases in other seasons. 326 

With the A2 and B1 scenarios, the overall pattern of changes is similar but of smaller magnitude.  327 

 328 

Projected annual runoff changes between the baseline period and the 2050s for the Sturgeon basin 329 

are presented as cumulative distribution functions (CDF) in Figure 6(a), grouped into emissions 330 

scenarios. The results are similar for Troutlake, thus not shown. For a given emission scenario, 331 

there are considerable differences between downscaling methods, suggesting that a substantial 332 

uncertainty is associated with the choice of downscaling method. In all cases, increases are 333 

predominant with LARS-WG, indicated by the curves located mostly on the right-hand side of 334 

zero on the abscissae. This is not surprising given that precipitation is projected to increase by 335 

about 20% with LARS-WG in all scenarios (Table 2). With the A1B scenario, SDSM mostly 336 

shows decreases, and NNR is a mix between increases and decreases, reflecting the small average 337 

changes shown in Table 2. With the A2 scenario, LARS-WG shows very large increases in some 338 

years, easily exceeding 100%. Even though annual mean changes are similar between A1B and 339 

A2 with LARS-WG, interannual variability is much larger with A2. Decreases are of similar 340 

magnitudes between downscaling methods, but increases vary widely. The changes are more 341 

modest with the B1 scenario. Figure 6(b) shows, for given downscaling methods, the differences 342 

in runoff projections resulting from different emission scenarios. There appears to be much less 343 

variability in runoff projections, suggesting that there is more uncertainty associated with the 344 
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choice of downscaling method than with the choice of emission scenario. Of course, this 345 

conclusion is specific to the methods used here.  346 

 347 

Mean monthly runoff from all future simulations (three downscaling methods and three emission 348 

scenarios) are presented in Figure 7 along with the baseline simulations with the observed climate 349 

data. The future mean monthly runoff shows a great degree of uncertainty between the 350 

simulations, and for every calendar month, the range of changes covers both negative and 351 

positive values. April is the only month where increases are predominant in both basins and this 352 

is due to the earlier snowmelt. In September, October and November, decreases are predominant 353 

due to warmer temperatures and small precipitation changes resulting in increased evaporation. 354 

Summertime runoff shows a great deal of variability and has fairly equal probabilities for 355 

increases and decreases.  356 

 357 

The present study found larger uncertainty from the statistical downscaling methods than from 358 

emission scenarios in terms of climate change impacts on mean runoff. This finding is in line 359 

with Wilby and Harris (2006, p. 7) who suggest the following order of significance as a source of 360 

uncertainty for low flow modeling in a UK basin: GCM > downscaling method > hydrological 361 

model structure > hydrological model parameters > emission scenario. They adopted a 362 

probabilistic approach for each source of uncertainty and considered a limited number of cases 363 

for each source, which is a different approach than used here. However, the way they measured 364 

the magnitude of uncertainty from each source is similar to this study in the sense that relative 365 

changes of hydrological variables are compared among the cases of each uncertainty source. 366 

Their finding is also in line with those of Boé et al (2009) who found larger uncertainty 367 

associated with climate models than with downscaling methods and Menzel et al (2006) who 368 

found much larger uncertainty with GCM-downscaling combinations than hydrological 369 

modeling. Therefore, the importance of considering GCM-related uncertainty is emphasized.  370 

 371 

4 Conclusions 372 

This study used three different statistical downscaling methods for the CGCM3.1 output under 373 

three different greenhouse gas emission scenarios to create climate scenarios for central Canadian 374 

basins, and simulated hydrological processes with the scenarios using the SLURP hydrological 375 
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model. Major findings from the study includes: (1) the climate is projected to be generally 376 

warmer (from 2.1 to 3.6 ° C increases in annual mean temperature) and wetter or slightly drier 377 

(from –6.8 to +22.1% in annual total precipitation) in the studied basins in the 2050s; (2) runoff is 378 

projected to change with a wide range across downscaling methods and emission scenarios, but 379 

LARS-WG produced most consistent results across emission scenarios¾increases in mean 380 

annual runoff by 13-27%; and (3) statistical downscaling methods have greater uncertainty than 381 

emission scenarios in projecting future water availability. To the extent that the GCM used in the 382 

study provides a reasonable projection of climate change, our results suggest that there a good 383 

likelihood that the region will see more runoff in the future although changes in seasonal runoff 384 

remain rather uncertain.  385 

 386 
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Tables 496 

 497 

Table 1. Temperature and precipitation variables from observation (Station) and each statistical 498 

downscaling method for Sioux Lookout A, 1971-2000 499 

 Station SDSM WG NNR 

Mean annual temperature (°C) 1.6 2.2 1.8 2.0 

SDa of annual mean temperature 1.1 1.1 0.6 0.8 

Maximum daily temperature (°C) 30.3 26.9 30.3 27.9 

95th percentile of daily temperature (°C) 20.9 20.6 20.8 20.8 

5th percentile of daily temperature (°C) -24.0 -21.0 -22.5 -22.7 

Minimum daily temperature (°C) -38.4 -34.1 -41.6 -37.8 

Mean of annual total precipitation (mm) 717 746 744 689 

SD of annual precipitation  127 75 101 88 

Maximum daily precipitation (mm) 71.0 89.6 64.9 80.0 

95th percentile of daily precipitation (mm) 10.8 9.8 10.7 10.1 
a SD stands for standard deviation  500 

 501 

  502 
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Table 2. Projected changes in mean annual temperature (T), total precipitation (P) and total 503 

runoff (Q) by the 2050s. Bold fonts indicate statistical significance (a = 0.05) from the baseline 504 

period according to the t-test.  505 

 T change (°C) P change (%) Q change (%) 

Sturgeon CGCM3.1 SDSM WG NNR CGCM3.1 SDSM WG NNR SDSM WG NNR 

A1B 2.8 3.2 2.6 3.0 15.9 4.5 22.0 6.3 –28.3 25.1 –3.3 

A2 3.1 3.6 3.0 2.7 10.0 11.4 20.2 4.2 2.3 22.0 –9.4 

B1 2.3 2.3 2.1 2.2 6.8 1.1 16.9 2.8 –14.5 12.8 –10.1 

            

Troutlake CGCM3.1 SDSM WG NNR CGCM3.1 SDSM WG NNR SDSM WG NNR 

A1B 2.8 3.2 2.6 2.9 15.9 –5.3 22.1 –0.7 –18.2 25.3 –7.8 

A2 3.1 3.6 3.0 2.6 10.0 2.3 20.4 3.8 –8.8 26.6 0.6 

B1 2.3 2.3 2.1 2.3 6.8 –6.8 17.1 0.2 –19.2 17.0 –3.6 

 506 

 507 
  508 
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Figures 509 

 510 
Figure 1. Aggregated simulations areas (ASA) of the Sturgeon and Troutlake River basins for 511 

hydrological modeling. Point symbols are the location where climatic and hydrometric data are 512 

available. The inset map shows the two basins and the Nelson River basin where the two basins 513 

are nested. 514 
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 515 
Figure 2. Distribution of monthly total precipitation values for all months and May-October from 516 

Station and each statistical downscaling method at Sioux Lookout A, 1971-2000. 1: Station, 2: 517 

SDSM, 3: LARS-WG, and 4: NNR. The boxes have lines at the lower quartile, median, and 518 

upper quartile values. Whiskers extend from each end of the box to the most extreme values 519 

within 1.5 times the interquartile range. Plus (+) signs denote outliers. Non-overlapping notch 520 

intervals indicate that the medians are significantly different (α = 0.05). Same for other box plots. 521 

 522 
Figure 3. Boxplots of annual mean flow simulated with observed climate data (Obs) and 523 

downscaled CGCM data for the baseline period. The plots indicate the interannual variability of 524 

annual mean flow.  525 
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 526 
Figure 4. Mean monthly temperature (left panel) and precipitation (right panel) changes for Sioux 527 

Lookout A from the baseline period by the 2050s. 528 
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 529 
Figure 5. Mean monthly runoff changes for Sturgeon (left panel) and Troutlake (right panel) from 530 

the baseline period by the 2050s, simulated with statistically downscaled climate scenarios. 531 
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 532 
Figure 6. Cumulative distribution functions (CDFs) of annual runoff changes (dQ) for the 533 

Sturgeon basin between the 2050s and the baseline periods reflecting uncertainty in the 534 

downscaling methods (a) and emissions scenarios (b).  535 

 536 
Figure 7. Mean monthly runoff from the simulations with the baseline climate data (thick grey 537 

line) and with future climate data (thin blue lines) from all downscaling methods and emission 538 

scenarios.  539 
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