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ABSTRACT 

INVESTIGATION OF ELECTRIC WATER HEATERS AS DEMAND RESPONSE 

RESOURCES AND THEIR IMPACT ON POWER SYSTEM OPERATIONAL 

RELIABILITY 
by 

Qian Wu 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Dr. Lingfeng Wang 

 

The electricity consumption has increased dramatically in past decades due to the improvement of 

people’s life standard and the increase of their incomes. Some uncertainties have occurred because of 

an increasing electricity consumption at the household level. As a result, the high power consumption 

of massive households will affect power system reliability. Recently, the traditional power grid is being 

transformed to the smart grid, which is an effective way to deal with these issues. The electricity utility 

could manage the demand side resources using different kinds of Demand Response (DR) methods. 

Residential resource is an important part besides industrial resource and commercial resource. With the 

deployment of Home Energy Management System (HEMS) and smart household devices, users’ 

behavior could be adjusted to respond to the utility signal. Electric Water Heaters (EWHs) account for 

a huge percentage of energy consumption among all the home appliances. Aggregated EWHs are idea 

candidates as demand response resources whose power consumption pattern can be modified because 

they not only consume lots of energy but also have heat storage capability. Therefore, EWHs can react 

to the optimal operation signal without affecting customers’ daily needs. In this way, electricity utility 
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could treat EWHs as a kind of interruptible load to provide operating reserves to improve power system 

reliability. 

In this thesis, a Binary Particle Swarm Optimization (BPSO) algorithm is utilized to perform the 

optimization of EWHs. The goal of each EWH optimization using BPSO is to minimize the customers’ 

electricity cost. Therefore, Time-Of-Use (TOU) electricity rate is utilized as the DR incentive. 

Meanwhile, the customers’ daily need for hot water should be guaranteed, so a comfort level index is 

enforced in the optimization process. The thermal model of EWH and water usage profile are used to 

calculate the real-time hot water temperature. Aggregating thousands of EWHs will have positive 

influences on power system reliability when massive EWHs are utilized as interruptible loads. EWHs 

could compensate for the Unit Commitment Risk (UCR) considering the operating reserve capacity 

they can provide. The UCR reduction is used to calculate and analyze the influence of aggregated EWHs. 

A Reliability Test System is modified to test the capacity of aggregated EWHs in this study. Based on 

the simulation results, the proposed optimization strategy for EWHs is proved to be practical. The 

customers’ electricity bill has declined effectively and the user’s comfort level, considering different 

water temperature set point ranges, is ensured. This thesis provides a practicable scheme for residential 

customers to arrange their EWHs more reasonably. The simulation results show the aggregated EWHs’ 

load curve and indicate that the proposed method shifts aggregated EWHs load effectively during some 

peak hours. According to the calculation results of UCR reduction, the aggregated EWHs is turned out 

to be a great candidate for power system to improve the reliability during peak-hours.   
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Chapter 1 Introduction 

1.1 Background of Smart Grid 

Over the past few years, the consumption of electricity energy has increased dramatically. 

Through the statistics published by the U.S. Department of Energy that the energy expenditure 

has increased approximately by 20%–40% in residential and commercial buildings among the 

total expenditure each year [1]. As reported by Energy Information Administration (EIA, U.S) 

[2], the electricity generation worldwide will increase by 69% from 2012 to 2040, which is 

21.6 trillion kWh in 2012. Due to economic increase and living standard improvement, the 

residential electricity consumption will increase by 2.1 percent on average in this period [2]. 

 With the increasing electricity demand, compensating for the power of peak-load hour 

needs lots of capital investment which is very expensive and can only satisfy a limit number of 

hours. Therefore, using some effective techniques to reduce the peak load is imperative, such 

as demand side management (DSM). The most critical issue overall is related to the power grid 

reliability as well as coordination of demand and supply capacities. In a way, the utility should 

not only install more and more generation but also adjust the demand side load to improve the 

electricity utilization because the energy resources are limited.  

Nowadays, the power system infrastructure is facing an important change from the 

conventional scheme to the intelligent smart grid. Smart grid is a concept that refers to the 
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future electric power grid which upgrades the way to manage electricity consumption as well 

as distribution by involving some high-level bi-directional communications and widespread 

computing techniques for advanced control, safety, reliability and efficiency [3]. It has some 

novel characters just like the inclusion of consumers’ participation. For instance, DSM is 

enabled by smart grid which aims to improve the efficiency and reliability of power system. 

DSM generally refers to the electrical utilities’ energy management programs aiming at adjust 

energy consume behavior through smart meters from customers’ side [4]. Totally, energy 

protection, efficiency, load management and fuel replacement programs are all belonging to 

DSM programs [5]. An infrastructure of Smart Grid composition is shown in Figure 1.1. 

Figure 1.1 Infrastructure of Smart Grid Composition 
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1.2 Introduction of DR 

The goal of load management programs is to cut down the peak-hour load or sometimes 

shift the peak-hour load to nonpeak-hour. Simply curtailing loads to specific off-peak hours 

would cause a new peak-load-time sometimes, but it could be useful if peak load can be 

separated to many different off-peak hours in case of a new peak-load-time. Therefore, some 

novel technologies are deployed in power grid. Recently, the smart grid technologies have been 

developed and deployment of smart meters, advanced meter infrastructure (AMI), Home 

Energy Management System (HEMS) and others has increased, it becomes possible to make a 

reasonable schedule of end-use customers to benefit electrical utility as well as customers. For 

example, some smart appliances, using pattern of HVAC devices (Heating, Ventilation and Air 

Conditioning) could be cut down during some time or could be shifted by executing intelligent 

strategies.  

Over the past decade, Demand Response (DR) has been developed significantly in power 

grid. As reported from the U.S. Department of Energy, DR refers to electricity consumption 

changes made by end-users to respond the electricity price changes or other stimulus in order 

to reduce electricity use as well as increase energy efficiency and power system reliability[6]. 

Retail customers participated in electricity markets by monitoring and reacting to electricity 

prices. Basically, DR programs can be classified into two types: the first one is related to 

incentive, the second one is related to time [7]. Furthermore, DR programs can be divided into 

several subgroups which are shown in Table 1.1. 
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Table 1.1 Classification of Demand Response Program 

Program types Subgroup Characteristics 

incentive-

based 

programs 

Direct Load Control 

(DLC) 

Customers’ load will be cut down or cycled by 

utility directly through short notice to make sure 

system reliability, sometimes incentive price is 

used as exchange benefit. 

Interruptible/curtailable 

service (I/C) 

Customers receive dynamic EP if they agree to 

change their behavior. They’ll pay penalty rate if 

they refused to reduce load during system 

contingency time. 

Demand Bidding (DB) Big customers can offer the accepted EP and the 

load quantities they would like to be curtailed.  

Emergency Demand 

Response Program 

(EDRP) 

Customers receive dynamic EP if they agree to 

change their behavior. This event is voluntary. 

Capacity Market 

Program (CAP) 

Customers reduce their load during system 

contingency, and are subject to be punished if 

they do not respond. 

Ancillary Service 

Market (A/S) 

Customers will be paid for bidding shaving load 

as operating reserves if they’re approved in ISO 

markets. 

time-based 

programs 

Time-of-Use (TOU) Utility sets different EP during different periods 

based on system load. For example, if the system 

load is high, the EP will be high. 

Real Time Pricing 

(RTP) 

Dynamic EP reflected changes in power directly. 

Critical Peak Pricing 

(CPP) 

An increase on existed EP during extreme peak 

hour. 
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1.3 Introduction of EWHs load 

Residential Electric Water Heaters (EWHs) can be ideal candidates for DR program because 

the water tanks can be regarded as thermal energy storage equipment and EWHs consume a 

big quantity of energy which could not be ignored among daily consumption. As shown in 

Figure 1.2, EWHs account for about 18% of the electricity among residential consumption in 

the U.S. What’s more, EWH load has clear similarity with the power grid load in peak-load 

hours [9].  

Group of EWHs load benefit to utilities as they can provide ancillary services and could be 

acted as interruptible loads to provide service for power grid. IL (interruptible loads) are those 

loads which are able to be interrupted considering required condition and constraints, in order 

to keep power system reliability as well as to reduce financial prices. Sometimes, IL could be 

compensated by electricity tariffs [10]. Relief of load can be achieved by turning on or off of 

individual EWH when there’s a need. Economic benefits for both residential users and utilities 

can be realized by aggregating a certain number of household appliances and shifting their peak 

load to separate periods of time. Moreover, maintaining the users’ comfortable preference is 

also an important factor in adjustment. 
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Figure 1.2 Residential energy distribution in the U.S. (Aug. 2013) 

The most necessary factor in power system is to provide customers a reliable and economic 

electricity supply [11]. The time phase is divided into two stages in power system, which is the 

planning phase and the operating phase. In operating phase, reserve generation must be 

considered accounting for generation outage and some uncertainty situation. Generally, there 

are two kinds of reserve: spinning reserve and operating reserve. Spinning reserve, literally, is 

the reserve which is spinning and ready for putting into operation. Operating reserve is the total 

capacity additionally added up to spinning reserve, such as hydro-plant, gas turbine and 

interruptible loads [12].  

Increasing investing in planning phase or operating phase can reduce the probability of 

customers’ disconnection with power system. Standby generation capacity, for example, rapid 

start units, can contribute to the power system reliability. In this level, EWHs can be regarded 

as a kind of resources from the demand side that can compensate the generation shortage. Loads 

6%
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35%
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of EWHs are considered to be interruptible to relieve capacity shortage as long as the heat 

limits of customers can be fulfilled in some time periods.  

1.4 Objective and thesis layout 

The EWH optimal objective in this thesis is not only to minimize residential users’ 

electricity costs but also to stabilize the system load as well as keep residential users 

comfortable. The optimization method in this thesis is Binary Particle Swarm Optimization 

(BPSO) algorithm considering EWH only has two operation status (on and off). For individual 

EWH, we only consider the economic benefits and comfortable preference because only single 

EWH has limit capability to the system stabilization. 

 For aggregated EWHs, we involve the reliability indices calculation to analysis the 

influence of them on power grid reliability considering the total consumption of group EWHs 

is high. In some degree, aggregated EWHs can be regarded as interruptible load in power 

system for reducing the load demand. In other words, it can provide operating reserve for power 

system to relief the load stress. This is one of the first paper considering the influence of EWHs 

load on power grid system reliability in the literature, which is the basic novelty of this thesis.  

The thesis is arranged as follows. The first part will describe the thermal and physical model 

of single EWH and water usage profiles needed for further optimization. After that, the 

optimization strategy for household EWH based on BPSO algorithm is proposed in second part. 

Next, the third part proposes the method used to calculate power system reliability indices 
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which is specifically unit commitment risk (UCR) of EWHs loads. Finally, the conclusion of 

this thesis is presented in fourth part. 
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Chapter 2 Model of Electric Water Heater 

2.1 Introduction of HEMS  

Home Energy Management System (HEMS) aims to monitor and schedule the residential 

devices in an optimizing way. By HEMS, some information could be collected, for example, 

the ambient environment condition (temperature), Electricity Price (EP) from utility and so that 

HEMS can make decision about energy consumption pattern of residential users based on this 

information.  

There are some existing studies about HEMS, in [13], the control algorithm was proposed 

to manage residential household loads and to participate in DR program considering some 

priority indexes and comfort levels that customers set in advance and to make sure the 

electricity need below limit levels during certain time period. A DR model for household 

appliances based on EP was proposed by Chen Z et al. in [14], which aimed to balance the 

electricity efficiency and financial benefits. The appliances loads are classified into three types 

of operation task: curtailable and deferrable load, non- curtailable and deferrable load and non- 

curtailable and non-deferrable load. De Angelis et al. discussed an HEMS control strategy in 

which incorporate both electrical consumption constraints and thermal character limits as well 

as customers’ comfort preference [15]. A HEMS structure is shown in Figure 2.1, which is used 

to optimize home appliances schedule considering hourly EP and peak-hour load constraint 

[16]. 
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Figure 2.1 Home Energy Management Structure 

This Chapter discusses the system structure, thermal model of EWH and customers’ 

behavior of water usage. 

2.2 The structure of the EWH control system 

The optimization goal is to minimize the residential electricity bill of EWHs by rescheduling 

the operation time of EWH subjecting to the specific temperature limits set by users. The first 

thing of the optimization process overall is to get useful information. The infrastructure enabled 

customers’ participation is required. 
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 It’s assumed that each EWH installed a smart meter, which is connected to both power line 

and the local area network (LAN) using bi-directional communication. Furthermore, the EWH 

can receive the latest EP information from the utility and the ambient environment information 

through smart meter via LAN. Meanwhile, the utility could get the load data of EWHs. The 

operation scheduler is deployed in each smart meter to make decision. BPSO algorithm is used 

to optimize the users’ electricity cost as well as the electricity consumption of every single 

EWH. The overall EWH operation management system came up in this paper is shown in 

Figure 2.2.  

 

Figure 2.2 Overall EWH Operation Management System Structure 

Assuming that the EWH has two heating scenario, which is under-heating scenario and 

over-heating scenario. In the EWHs under-heating scenario, EWHs load is considered as 

interruptible load to help relieve a capacity shortage as long as heat requirements set by 
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customers can be fulfilled in some time periods. In the EWHs over-heating scenario, it’s 

supposed that extra electrical energy can be stored in EWHs regarded as heat, water can be pre-

heated to absorb excess power generation.  

 

2.3 The classification of home appliances 

Over past few years, the extensive deployment of automatic control device and smart 

meters in residential systems has made it possible for operating residential devices in an smart 

and efficient pattern considering both customers’ economic effectiveness and constraints of 

power grid operation. There’re lots of household appliances in residential level. Basically, we 

could classify the home devices into two categories, which are controllable devices and non-

controllable devices. Furthermore, controllable devices can be classified into two types, which 

are controllable thermal-controlled type and controllable non-thermal-controlled type [17].  

Some examples of different kinds of appliances are shown in Table 2.1 [18]. Non-

controllable appliances are those appliances whose status could not be changed easily because 

of its electricity consumption characteristics. As a result, they could not be schedule. Usually, 

they can be modeled using load profile which is forecast by historical users’ data. The 

characteristics of controllable non-thermal-controlled appliances are usually discrete and can 

be scheduled directly during appliances operation control period. For example, once washers 

and dryers open, they could not be stopped, but the start time can be schedule flexibly by 

controller. Controllable thermal-controlled appliances have specific thermal needs and they can 

be scheduled flexibly as long as their needs could be fulfilled, some appliances also have 
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thermal reservation ability. Therefore, they are ideal candidates for residential DR program. To 

better schedule the controllable thermal-controlled appliances, some thermal settings, 

dynamics, randomness and customers comfort level should be considered.   

Table 2.1 Classification of Different Kinds of Home Appliances 

Non-

controllable 

appliances 

controllable appliance 

controllable thermal-controlled 

appliances 

non-thermal-controlled appliances 

Lighting,  

Television, 

Refrigerator 

Air-conditioner, Space Cooling 

& Heating, Water Heater 

Clothes washer & dryer, Dishes 

washer 

 

Actually, not all of household appliances is DR automated, and some of appliances is 

manually operated or semi-automatic operated [19]. To make a reasonable schedule for home 

appliances operation, a precise DR-enabled model for control objective is necessary. Several 

studies have focused on the EWH model and simulation. Shad M, et al. present a method for 

modeling the status of individual EWH from thermal dynamics models in[20]; Lu N , et al. 

discuss an uncertainty model for thermal loads by a discrete state queueing (SQ) model in [21]. 

The operation circle time of thermal loads is influenced by the appliances types and some 

dynamic parameters. This ideology of state queue proposed by [13] is also adopted in this thesis 

in Chapter 3. 

2.4 Thermal Model and Physical Model of EWH 

The traditional EWH model has two heating units and two thermostats up and down, shown 

in Figure 2.3 [22]. During each heating event, only one heating element will work.  
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Figure 2.3 Inside Structure of EWH 

The cold water will be injected to the water tank at the bottom when there’s a water draw. 

This is because the density of cold water is higher than hot water. Then the low temperature of 

water inside will trigger the lower thermostat, then the lower heating element will start to work. 

If the water draw is big enough, the cold water will rise to the high level and trigger the higher 

thermostat. Meanwhile, the lower heating element will turn off. Unless water in both higher 

unit and lower unit is already heated, the thermostat will turn off [22]. 

To stimulate the model, some needed parameters of an EWH as input is shown in Figure 

2.4, which includes the rated power of EWH, ambient tank temperature, inlet cold water 

temperature, hot water temperature, set point and tank size, et al. 
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Figure 2.4 Diagram chart of EWH 

For every time step, the water heating unit electricity demand at time 𝑖 is calculated as 

follows [23], 

                     	p&',) = w&',) ∗ P&' ∗ η&'                  (2.1) 

w&',) represents on and off status of the EWH; 

P&' represents the rated power of EWH(KW);	 

η&' represents the efficiency factor, is usually assumed to be 1. 

c&' represents sent from smart controller and it affects the status of EWH. The on/off 

status of water heater is decided by the following procedure: if the water temperature is over 

the upper set point limit, then it stays in off status (0); if the temperature is below the lower set 

point limit, then it stays in on status (1) until the temperature reaches the limited value; if the 

temperature in the tank is between these two limits, then it stays the same status as the last time 

interval. 
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          ω&',) =
			0														T345,) > 		T47789
1														T345,) < T<3=89

ω&',)>?								T<3=89 < 			T345,) < T47789

                  (2.2) 

T345,) represents the maximum value of temperature set point at time i; 

T<3=89 represents the minimum value of temperature set point; 

T47789 represents the maximum value of temperature set point; 

To simplify the optimization process, we just calculate the mixed hot water temperature 

out from the EWH tank, the calculation is shown in Equation (2.3), 

T345,)A? =
BCDE,F（GEHIJ>9K58F∗∆5）

GEHIJ
+ BFI∗9K58F∗∆5

GEHIJ
+ ?	NK<

O.QR	<S
∗ p&',) ∗

QR?T	U54
V=W

− YEHIJ∗ BCDE,F>BH
ZEHIJ

∗

∆5

[\∗]FI
^

∗ ?
GEHIJ

                                                           (2.3) 

T)_ represents the temperature of the injected cold water (F); 

rate)  represents the hot water flow rate outside the tank during time interval 

i(gallon/minute); 

∆t represents the time interval(minutes); 

V5K_e represents the EWH tank volume (gallon); 

A5K_e represents the EWH tank surface area (ft2); 

R5K_e represents the EWH tank heat resistance (F*ft2*h/Btu); 

TK represents the ambient room temperature(F); 

The unit is equal to F, which is Btu/lb. in the third term. 1 Btu is the total value of required 

energy that 1 lb water needs to be heated by 1F. Based on the proposed model below, we could 

get the temperature curve of a single EWH which temperature set point range belongs to 

[135,150] is as shown in Figure 2.5. 
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Figure 2.5 EWH Water Temperature Curve Without Consumption 

As to some settings, some assumptions were proposed to simplify the calculation process 

based on the EWH model. 

l The hot water temperature mixed in tank was supposed to be equivalent. 

l The ambient temperature of tank is assumed to be the same temperature as the ambient 

air. 

l The cold water temperature injected into water tank is assumed as the ground temperature. 

l The set point of demand hot water temperature is assumed to be generated by a uniform 

function based on some data from [24]. 

l Some typical parameter values for individual EWH is taken into account from [25] and 

the most common tank size is 50 gal. 

The parameters assumption is shown in Table 2.2. 
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Table 2.2 Parameters Assumption of EWH Model 

Item Symbol Value Unit 

Water tank volume 𝑉ijkl 50 gallon 

Cold water temperature injected 𝑇nk 60 F 

Ambient room temperature 𝑇j 50 F 

Average upper set point 𝑇oppqr 170 F 

Average lower set point 𝑇stuqr 105 F 

Rated power 𝑃wx 4 KW/h 

Surface area of the tank 𝐴ijkl 50 ft2 

Heat resistance of the tank 𝑅ijkl 15 F*ft2*h/Btu 

time interval ∆𝑡 15 minutes 

 

2.5 Hot water usage profile 

The input data of EWH model discussed below include: water temperature, water heater 

setting parameters and hot water usage profile. The electricity household consumption can vary 

greatly based on the behavior of each customer. Therefore, figuring out the hot water usage 

information accounting for users’ behavior is very important. As to hot water usage profile, 

from [26], some hot water draw events can be classified into several types. For convenience, 

each hot water draw events could be divided using water flow rate whose unit is gallon per 

minute. In [27], it shows that the daily average water usage varies from 5 to 20 gallons per 

person considering the mixed hot water temperature is 140 °F.  

Sometimes, users can be classified into different kinds considering different consumption 

patterns. For example, a multi-family home has much less-consistent hot water consumption 
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patterns than a single-family home. A week family has good potential to shift load during the 

weekend while a weekend family has good potential during the week days. 

Table 2.3 Classification of Different Water Draw Event 

Water usage event type Value of water draw 

Activity 1 (L) 0-0.53 gal/draw 

Activity 2 (M) 0.53-5.23 gal/draw 

Activity 3 (H) >5.23 gal/draw 

    Roughly, the water draw events are divided into three categories as shown in Table 2.3, 

which is low-level water draw, medium-level water draw and high-level water draw based on 

a survey in Germany [28]. Low-level water draws basically include some small water usage 

events such as hand washing and dish washing. Medium-level water draws are shower and 

clothes washing and high-level water draws involve large water usage, for example, taking a 

bath.  

On account of some load surveys, some data are gathered from End-Use Load and 

Consumer Assessment Program (ELCAP) and Bonneville Power Administration (BPA) [29]. 

Average hourly residential EWHs load profiles are used to generate individual EWH water 

consumption behavior. The typical hot water usage events in the U.S. [30] and Sweden [31] 

are given below in Table 2.4 and Table 2.5. Even though the amounts for hot water needed in 

these two tables are different, both of them show that the demand for each event is more than 

2 KW. Both tables are calculated assuming that the cold water temperature injected into tank 

is 60 F. 
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Table 2.4 Hot water need for residential water usage events in the U.S. [31] 

Event Usage(gallon) Energy(KWh) 

Shower 30 5.9 

Bath 20 3.9 

Laundry 20 3.9 

Dishwasher 15 2.9 

 

Table2.5. Hot water need for residential water usage events in Sweden [31] 

Event Usage(gallon) Energy(KWh) 

Shower (5min) 10.6 2.1 

Bath 26.4 5.2 

Dishwasher 10.2 2.0 
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Chapter 3 Investigation of Electric Water Heaters as 

Demand Response Resources 

3.1 Introduction of PSO & BPSO algorithm 

Particle Swam Optimization (PSO) Algorithm was initially proposed by J. Kennedy and 

R.C.Eberhart in 1995[32]. PSO algorithm basically imitate animal population social behavior, 

for example, bird flocking. This algorithm is utilized to search for the optimal solution of a 

problem by coding both particles and behaviors. Each particle on behalf of a possible solution 

for the aimed problems which is represented by a vector and a multiple-dimension searching 

area.  

All particles will eventually adapt to the optimal solution, considering a fitness function 

and some extra constraint conditions designed in advance[5]. The movement of each particle 

is affected by other particles as well as their own historical situations. 

The updating rules of the location and velocity are as follows [33]. 

v)
(5A?) = w ∗ v)

5 + c? ∗ rand() ∗ x�S8�5
5 − x)

(5) + cT ∗ rand() ∗ x�S8�5
5 − x)

(5)    (3.1) 

                        x)
(5A?) = x)

(5) + v)
(5A?)                          (3.2) 

x)
(5) represents particle i ‘s location at time t; 
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x)
(5A?) represents particle i ‘s location at time t + 1; 

v)
5  represents particle i ‘s velocity at time t; 

v)
(5A?) represents particle i ‘s velocity at time t + 1; 

w represents the inertia weight number;  

c? and cT are learning factors. 

The updating rules of personal good location and global good location is shown below: 

                   𝑥��q�i
i =

𝑥n
(i), 𝑖𝑓	𝑓 𝑥n

i < 𝑓(𝑥��q�i
i>? )

𝑥��q�i
i>? , 																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (3.3) 

                   𝑥��q�i
i =

𝑥n
(i), 𝑖𝑓	𝑓 𝑥n

i < 𝑓(𝑥��q�i
i>? )

𝑥��q�i
i>? , 																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (3.4) 

PSO algorithm is a good method for global optimization problem and has plenty of 

advantages. Compared to other heuristic algorithms, PSO is much easier to reach convergence 

and has less variables, and the influence of variables on the optimization process is also less 

[34]. 

The PSO algorithm can be summarized using the follow chart shown in Figure 3.1. 
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Figure 3.1 The PSO Algorithm Follow Chart 

BPSO is binary particle swarm optimization, it’s used for optimization problems whose 

variables are discrete. For example, the operation status of a generator is whether dispatched 

or not. BPSO algorithm has been proved a good way for solving optimization problems and 

network allocation problems [35]. In [36], a mixed PSO method was used to generator 

dispatching problem and BPSO method was used in the unit commitment area. In BPSO 

method, the updated rules of personal best value and global best value is the same as original 
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PSO shown above in equation (3.3) and (3.4). The only difference between traditional PSO and 

Binary PSO is the updating rule of the location considering the probabilities. In BPSO, there 

are only two kinds of status, which is 1 and 0. Particle location is updated only in discrete space 

by comparing the velocity factor with a random number belonging to [0,1]. The velocity must 

be constrained into a certain range, once the velocity is too big or too small, it needs to be reset. 

The sigmoid function used here is a normalization function: 

               v)
�(5) = sig v)

5 = ?

?A8��F
(E)                               (3.5) 

             x)
(5A?) = 1 if	(rand() < v)

�(5)

0 	otherwise													
                            (3.6) 

                   V�)_ < v)
(5) < V�K�                                 (3.7) 

   where, 

   rand() represents a uniform-distributed random number which is in belonging to [0,1]; 

    V�)_ and V�K� is the lower and upper boundary of velocity. 

The detailed process of using the BPSO algorithm is shown below, which is similar to PSO: 

(1) Generate lots of particles randomly in the whole searching area at first. For each particle, 

calculate the location and velocity of next time using the initial locations and velocities.  

(2) Calculate the fitness function of each particle. 

(3) Compare the fitness function of each particle passing through the personal searching 

area with the current value of personal optimal solution.  
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(4) Compare the current value of personal optimal solution passing through the whole 

searching area with the value of global best solution so far, finally get the global best solution. 

Set the personal best value and global best value so far. 

(5) Update the velocity of each particle using the current velocity and both the current 

personal best location and global best location, equation (3.3) and (3.4). 

(6) Update the each particle’ location using updating rules, equation (3.5) to (3.7). 

(7) Repeat steps (2) to (6) until reaching the convergence or any criterion.  

3.2 Optimization Strategy for individual EWH using BPSO Algorithm 

Using Time-of-use (TOU) electricity price could make the EWHs loads more sensitive to 

the utility decision. The reason why electricity price (EP) is chosen as an incentive to shift the 

EWHs load is that the EP curve is related to the power system load curve. If the system load is 

high, then the EP will be high in the upcoming hours and vice versa. For residential users, 

electricity costs can be reduced through shifting their loads. Therefore, customers will react to 

EP changes to avoid high-price hours and as a result, they can shift their loads to non-peak 

hours as well as save money on their electricity bill. 

For each EWH, a queue state vector is used to describe the operation status as follows: 

                       XK = [xK?, xKT, xKQ, … . xK_]                         (3.6) 

n represents the total time intervals that being considered into optimization process. Two 

discrete value 0&1 is used to represent the operation status of each operation task. The EWH 
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will have 1 value if the operation status is on while 0 value denotes the operation status is off 

once the water temperature reached the expected value. 

The optimization is aimed to minimize the residential EWH electricity bill by rescheduling 

the operation time of EWH subjected to the expected temperature constraints. The problem can 

furthermore be formulated shown below. 

1) Minimum electricity cost function  

The input incentive used in this optimization is TOU price. Considering EP at each time 

interval is different, we use a vector to represent EP. The basic fitness function of EWH 

optimization then can be represented below:  

                  min	{Cost = P&' ∗ EP i ∗ XK i  _
)¡? }                  (3.7) 

where, 

n represents total time intervals;  

i represents the index of time intervals; 

EP represents the electricity price vector; 

XK i  represents the operation status vector of EWH. 

Based on the electricity price, we can find some low-price-period for EWH to work. At 

each time, the fitness function will be calculated and compared using the updating equations 

and information above. The value of fitness function is the most important factor that needed 
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to be considered during the whole optimization procedure. The TOU price used in this paper is 

summarized from [37], which is shown in Figure 3.2. 

 

Figure 3.2 Time of Use Electricity Price 

2) Minimum and maximum temperature limits 

The constraint condition here is to make sure certain temperature expectation is achieved 

during certain periods. The certain periods refer to time intervals in which a water usage event 

occurs based on customers’ water usage behavior. Also, during the optimization process, the 

water temperature is not allowed to be too high. The error allowed for the upper and lower 

limited temperature is 10F. Therefore, the upper limit in optimization process is set to be 10 F 

higher than the higher set point. And the lower limit is set to be 10 F lower than the lower set 

point. The constraint condition of EWH optimization can be represented below: 

              ∀t = i	, if rate) ~= 0   then T345,) 	≥ T<3=89 − 10	            (3.8) 

                XK i + 1 =
0 	if		T345,) > T47789 + 10

XK i 	if		T345,) ≤ T47789 + 10
               (3.9) 
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3.3 Simulation results and Analysis 

The optimization process of single EWH using BPSO is given in flow chart: 

 

Figure 3.3 The Optimization Process of Single EWH using BPSO 

Using the strategy proposed, the aim can be achieved efficiently. Some parameters referred 

to in Chapter 2 are used in simulation here, for example, the measurement is taken every 15 

minutes over a 24-hour-period. To make sure the affect that BPSO working on EWH, a 

sensitivity study using different set point is proposed. Notice that set point here is for mixed 

hot water in tank. People can still adjust the water temperature they need, for example, when 

they take showers or wash dishes. 
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In the first scenario, the set point range is set to be [125,165], which presents a higher 

temperature preference customer. In the second scenario, the set point range is [105,150], 

which represents a lower temperature preference customer. The simulation results of the EWH 

working status in these 2 scenarios are shown in Figure 3.4 below.  

 
(a)Temperature [105,150] 

 

(b)Temperature [125,165] 

Figure 3.4 The Status Results of Different Set Point Range 

Comparing the status queue with the EP curve, we could see the number of open status 

has been reduced during peak-hour after the proposed optimization process working on both 

scenarios. Although the frequency of working status changing is a little bit high, the money 
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saved by re-operating is enough for replacing an old EWH. The total electricity cost of these 

two scenarios is compared in Table 3.1. Both electricity cost and total electricity consumption 

has been reduced by the optimization approach.  

Table 3.1 The Comparison of Electricity Consumption and Cost 

Number of scenario Electricity 

Consumption(KWh) 

Electricity Cost 

(RMB:yuan) 

Scenario 1 Before 21.75 16.0026 

After 19.5 12.6084 

Scenario 2 Before 17.25 11.9142 

After 16.5 11.4354 

    The water temperature curve was shown in Figure 3.5 considering different set point 

ranges. It turned out that the BPSO method is an effective way to keep the water temperature 

in a certain range in both scenarios.  
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(b)Temperature [125,165] 

Figure 3.5 The Temperature Results of Different Set Point Range 

It was shown that the comfort limit of the mixed hot water temperature could be 

maintained. For further test, in this study, we define an index to represent the customers’ 

comfort level considering the set point as follows [33]: 

                        Comfort = 1 − (e/T�85)T                     (3.10) 

Comfort is the customer comfort limit index, which belongs to [0,1], the goal is to make 

the value much more close to 1; 

e represents the error between the customer’s set point and the real value; 

T�85 represents the average value of upper set point and lower set point. 

The simulation result of comfort limit is shown in Figure 3.6. 
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(a)Temperature [105,150] 

 

(b)Temperature [125,165] 

Figure 3.6 The Comfort Level of Different Set Point Range 

Figure 3.6 shows that the value of comfort level index could be maintained above 0.95 

during most time periods, and sometimes it could reach to 1. In other words, BPSO 

optimization strategy for EWH proposed in this study is proved to be effective. 

To make the process of every iteration clear, the global best location value is shown in 

Figure 3.7.  
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Figure 3.7 Example for the Iteration Situation of BPSO Optimization 

 

3.4 Conclusion and Future Work 

An optimization strategy for single EWH was proposed in this Chapter 3. The operating 

status queue and hot water temperature has been carried out. The electricity cost has been 

proved to be reduced by the strategy and the comfort level has been maintained. 

In the BPSO algorithm, there are only two location values, 0 and 1, which matched the 

EWH operation status on and off. The location of traditional BPSO is initialized randomly. For 

the BPSO we proposed in this chapter, the initial location was the original operation status of 

EWH before optimization. This setting can help the BPSO to be more reasonable during a 

search process. It has been proved that the BPSO algorithm reduces total electricity cost and 

shifts the EWH load during peak hours in this study. When high load demand appears, the 

utility will increase the upcoming EP of the next few hours. Therefore, the EWH load could be 
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suspended by the scheduler and the total electricity cost as well as the peak-hour load will be 

reduced by the strategy in this chapter.  

As to future studies, the optimization strategy for EWH will be further improved. The 

Real-Time Price (RTP) should be involved because RTP better reflects the real-time load. In 

this thesis, the incentive is TOU price rather than Real-time price (RTP) considering the 

complex mixed water temperature calculation.  
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Chapter 4 Impact of Aggregated Electric Water 

Heaters on Power System Operational Reliability 

4.1 Introduction of Electric Power System Reliability 

The electric power system is not stable all the time because of many kinds of physical or 

geographical problems. The electricity could not be efficiently reserved on a huge scale so that 

sometimes uncertain situations may have bad influences on the power system. The fundamental 

task of the utility is to provide customers a reliable and economic electricity supply for power 

system, and the most important problem is to figure out how to evaluate and analyze the electric 

power system reliability. 

Basically, there are two concepts, adequacy and security, in power system reliability. 

Adequacy relates to the existing equipment which need to be enough to meet the customers’ 

demand. Security relates to the power system response capability to deal with some 

uncertainties. To guarantee the system supply (adequacy area), sufficient amount of generating 

capacity is needed. For security area, adequate operating capacity is required. Then the 

problems could be furthermore classified into two categories: the first one is static requirements 

and the second one is operating capacity requirements. The static requirement is related to the 

installed capacity that needs to be planned ahead of schedule considering system requirements 

in long-term evaluations. The operating capacity refers to the real capacity in short-term 

evaluations needed to ensure an existing load level. 
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The primary method to analyze the generation configuration adequacy is basically the 

same. The three parts are shown in Figure 4.1. A risk model can be obtained by combining the 

generation model and load model. 

 

Figure 4.1 Conceptual task of Reliability 

The probability consumers disconnect with electricity could be reduced by many methods, 

for example, increasing investment in the planning phase or operating phase. It’s important to 

be adequate in investing because sometimes over-investment could lead to extra costs and 

under-investment could cause an opposite situation. To solve the problem between reliability 

and economy, some criteria and techniques have been applied over the past few years. There 

are two kinds of criteria and techniques, which is the deterministically based method and the 

probabilistic based method [38]. Usually, the probabilistic based method is much more 

reasonable than the deterministically based method.  

In static capacity evaluation phase, the needed parameter for generating unit is the 

probability to find the on forced outage unit. This probability is the unit forced outage rate 

(FOR). The formulation used to calculate FOR is shown below: 
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9A�

= �
B
= ¯

­
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°3=_	5)�8A 47	5)�8
      (4.2) 

Where, 

λ represents the expected failure rate, while µ represents the expected repair rate; 

m represents mean time to failure, m=MTTF=?
­
, while r represents mean time to repair, 

r=MTTR=?
®
; 

m+ r represents mean time between failures= MTBF=?
¯
 

f represents cycling frequency, while T represents cycling period. 

 A capacity outage probability table (COPT) is used as the generation model in the long-

term approach, which is also needed in the short-term approach in operating reserve evaluation.  

4.2 Introduction of Operating Reserve and Calculation Method 

The generation reserve capacity has a big influence on power system reliability. As shown 

in [12], the power system time period is usually divided into 2 phases, the first one is the 

planning phase and the second one is the operating phase. In case of some uncertainties of load 

prediction and power plant outages during operation period in power system, reserve 

generation must be planed appropriately. In the operation phase, both over-scheduling and 

under-scheduling are unreliable. A risk index based on the probabilistic approach is much more 
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realistic for evaluation. Two risk indices can be evaluated generally, which are the unit 

commitment risk(UCR) and the response risk. UCR relates to the committed-unit-evaluation 

in the required period. Response risk relates to decisions for the unit dispatch which are in 

committed status so far. In the past, deterministic methods are used to evaluate operating 

reserve requirements. Nowadays, probabilistic methods are more useful in case of 

overscheduling. To calculate unit commitment, the PJM method and modified PJM method is 

proposed, which are required in this paper. Note that all the calculation methods based on PJM 

method and modified PJM method are summarized from book [12]. 

4.2.1PJM Method 

The PJM method was came up in the year 1963 and is used to evaluate the Pennsylvania-

New Jersey-Maryland interconnected system spinning requirements [39]. PJM method is a 

primary method to calculate UCR to evaluate the operating reserve requirements. PJM method 

is used to calculate the probability of the committed units satisfying or failing to satisfy the 

required demand when the failed unit could not be substituted. This period is defined as lead 

time. At the start of lead time, the operator must be in committing status considering other units 

cannot be replaced if there is an overload. Then, the risk index could refer to the risk that 

supplies or does not supply the demand in lead time. A two-state model, which are the operating 

state and failure to operate state, are shown in Figure 4.2. The repair probability when 

neglecting the lead time are used to describe each unit.  



 39 

 

Figure 4.2 Two-state Model 

In the Engineering System, usually repairs and failures are assumed exponentially 

distributed. A two-state model outage probability at time T, considering successful operating 

when beginning, is shown below 

               𝑃 𝑑𝑜𝑤𝑛 = µ
µA¶

− µ
µA¶

𝑒>(µA¶)·                          (4.3) 

If neglecting the repair process in time T, then it becomes 

                 𝑃 𝑑𝑜𝑤𝑛 = 1 − 𝑒>µ·                                (4.4) 

considering that if T<<1, then it changed to be 

                   𝑃 𝑑𝑜𝑤𝑛 = 𝜆𝑇                                   (4.5) 

Outage replacement rate (ORR) represents the failure probability of a unit in lead time, 

which is shown in equation (4.5). ORR is similar to FOR which is used in the planning phase. 

The generation model required for PJM method is also a COPT which used ORR instead of 

FOR. In the PJM method, the UCR can be gained from the outage replacement rate (ORR) 

table. 

The UCR can be obtained from generation model afterwards assuming the load is constant 

during the calculated period. Usually, defining an acceptable risk at first to make sure a 
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committed system can satisfy expected need is important. In practice, operators add units and 

commit them using PJM risk assessment method until the UCR meets acceptable risk.  

4.2.2Modified PJM Method 

The modified PJM method is basically analogous to the PJM method, the only difference 

is that modified PJM method includes additional rapid start unit or other generating unit with 

different parameters. In the modified PJM method, the risk at the beginning is whether 0 or 

unity is dependent on the difference between load and available generation [40]. The pictorial 

description of risk function (or density function) and area risk concept is shown in Figure 4.3. 

 

Figure 4.3 Pictorially Description Area Risk Concept 

Considering a two-state model (Equation(4.4)), then the risk function becomes      

                    𝑓 𝑅 = ¹p
¹i
= 𝜆𝑒>µi                            (4.6) 

The failure probability in time [0, T] becomes 

                    𝑃 0, 𝑇 = 𝜆𝑒>µi𝑑𝑡·
\                             (4.7) 
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The Figure 4.4 describes the system risk evaluation using an area risk curve. The unit 

failure probability is the area under curve. The Figure 4.4 (a) and (b) shows the system behavior 

considering reserve units using the PJM method and modified PJM method separately.  

 

Figure 4.4 Approximate Area Risk Curve of	𝑓 𝑅  

In Figure 4.4 (b), the rapid start units start to work after time 𝑇?, and the hot reserve units 

start to work after time 𝑇T. Therefore, the total risk is less than only accounting for additional 

generation shown in Figure 4.4 (a). The risk reduction is the shaded area in Figure 4.4 (b). 

To calculate the risk, the individual risks are required during time interval (0,	𝑇?), (𝑇?,	𝑇T) 

and (𝑇T , 	𝑇Q ), etc. Then the risk during (0, 	𝑇Q )is the summation. The formulation used to 

calculate is shown below: 
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1) Risk in (0,	𝑇?) 

                         𝑅j = 𝑅·?>                               (4.8) 

2) Risk in (𝑇?, 𝑇T) 

                    𝑅� = 𝑅·T> − 𝑅·?A                           (4.9) 

3) Risk in (𝑇T,𝑇Q) 

                    𝑅º = 𝑅·Q> − 𝑅·TA                           (4.10) 

4) Total risk in (0,	𝑇Q) 

                    𝑅 = 𝑅j + 𝑅� + 𝑅º                           (4.11) 

4.3 Model of Rapid Start Unit 

4.3.1 Unit Model 

A four-state model is used here (Figure 4.5):  

 

Figure 4.5 Four-state Model for EWHs load 
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The failure rate is  

                     𝜆n» = 𝑁n»/𝑇n                               (4.12) 

Where, 

𝜆n» represents state transition rate from 𝑖 to 𝑗 

𝑁n» represents state transitions’ number from 𝑖 to 𝑗 

Tn represents time spent in state 𝑖 

4.3.2 Evaluating state probabilities 

Markov techniques and the matrix multiplication techniques are used to calculate the 

probability of these states.  

                     𝑃 𝑡 = 𝑃 0 [𝑃]k                            (4.13) 

Where, 

𝑃 𝑡  represents the state probabilities vector; 

𝑃 0  represents the initial probabilities vector;  

[𝑃] represents the matrix of transitional probability; 

𝑛 represents the number of time intervals. 

The stochastic transitional probability matrix is 
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P =

1 − (λ?T + 𝜆?R)𝑑𝑡 𝜆?T𝑑𝑡
𝜆T?𝑑𝑡 1 − (𝜆T? + 𝜆TQ)𝑑𝑡

	 −																									 𝜆?R𝑑𝑡
𝜆TQ𝑑𝑡																									 −

−																								 𝜆QT𝑑𝑡
𝜆R?𝑑𝑡																									 𝜆RT𝑑𝑡

1 − 𝜆QT + 𝜆QR 𝑑𝑡 𝜆QR𝑑𝑡
− 1 − 𝜆R? + 𝜆RT 𝑑𝑡

 

(4.14) 

It’s noted that the value of 𝑑𝑡 should not be too small or too large, usually, 10 minutes 

is the acceptable value for most system. 

The rapid start unit keeps in ready-for-service state with a united possibility instead of 

committing to the system in the lead time. The initial probabilities vector when the unit has 

probability to commit to system is as follows: 

                     𝑃 0 = [𝑃?\		0		0		𝑃R\]                       (4.15) 

Where, 𝑃R\ represents the failed probability (𝑃¾�)  

    𝑃¾� =
	ko¿�qr	t¾	¾rqÀoqkºnq�	iÁji	okni�	¾jnsq¹	it	ºt¿¿ni

ko¿�qr	t¾	okni�	�ijri	it	ºt¿¿ni
= ÂÃÄ

(ÂÃÅÆÇÃÄ)
= µÃÄ

(µÃÅAµÃÄ)
   

(4.16) 

                      𝑃?\ = 1 − 𝑃¾�                                (4.17) 

4.3.3  Evaluating State Probabilities 

Combining the individual probabilities together is important to give the probability the 

unit failed to start. The index then becomes 

                     𝑃¹tuk =
�Ä i A�È i

�Å i A�Ä i A�È i
                          (4.18) 
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The numerator is the failed-state-unit probability and the denominator is the probability 

when there is a demand. So 𝑃op is shown below 

                 𝑃op = 1 − 𝑃¹tuk= �Å i
�Å i A�Ä i A�È i

                      (4.19) 

 

4.4 Calculation and Analysis 

EWHs load can be chosen as the reserve because they can be interrupted as long as the 

temperature limit can be fulfilled sometime later. It’s similar to the interruptible capacity of 

EVs. The EVs load could be interrupted on condition that the charging assignment could be 

achieved afterwards [41].  

 To analyze the reliability indices, the interruptible capacity should be considered first. 

For aggregated EWHs, the BPSO algorithm is still deployed to do the optimization. The group 

number of the EWHs set in this study is 5000. Then we can get the load curve of 5000 

aggregated EWHs shown below. The difference between the red curve and the green curve 

here is the reserve capacity that aggregated EWHs could provide. 
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Figure 4.6 Aggregated EWHs Load Curve 

The curves in Figure 4.6 show that the aggregated load has been shifted effectively during 

peak-hours which are from 8:00 to 14:00 and from 18:00 to 21:00 due to the optimization 

strategy. What’s more, the electricity costs of each customer have also been reduced. The users’ 

cost comparison statistics is collected in Figure 4.7, the blue one is the cost for each user before 

optimization, the red one is after optimization.  

 

Figure 4.7 The Comparison of Each Users’ Cost Statistics 
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The average cost comparison of these 5000 users is recorded in Table4.1. It proved that 

the optimization goal has been achieved. 

Table 4.1 The Comparison of Average Electricity Cost 

scenario Average cost 

before 12.2492 

after 10.8962 

 

Some units chosen from the given reliability test system in [42] composite the reliability 

test system in this thesis. These units can be combined together to system A using techniques 

referred in book [12], the RBTS is shown in Figure 4.8. The total installed generating capacity 

of the system is assumed to be 150 MW, the peak load is 110MW. A two-state model is used 

here to describe the generation unit , which is shown in Figure 4.2. PJM method is used to 

calculate the Outage Replacement Rate (ORR) [12] and lead time is assumed to be 1 hour, 

which is given in Table 4.2 as follows. It is important to define a reasonable risk that can be 

accepted in a real system to make sure the maximum demand of a committed system. 
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Figure 4.8 Single Line Diagram of RBTS 

Before EWHs participate in operation reserve, the capacity they can provide should be 

known. 
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Table 4.2 Parameters of Original Generation System 

Unit Size 

(MW) 

No. of units Failure rate per 

year 

ORR for lead time of 1 hour 

10 (thermal) 1 4.0 0.000457 

20 (thermal) 1 5.0 0.000571 

 20 (hydro) 2 2.4 0.000274 

40 (thermal) 1 6.0 0.000685 

40 (hydro) 1 3.0 0.000342 

The capacity outage probability table (COPT) of the test system is shown in Table 4.3. 

Table 4.3 Capacity Outage Probability Table of Original Generation System 

Capacity Out(KW) Capacity In(KW) Cumulative Probability 

0 150 1.000000000000000000000 

10 140 0.002600249323580050000 

20 130 0.002144229236341060000 

30 120 0.001027663733717340000 

40 110 0.001027153229982440000 

50 100 0.000001851380470614190 

—— —— —— 

    The capacity of 5000 EWHs can be obtained from the simulation: approximately 0.5MW 

to 2 MW at each interval. To meet the load need, 10 communities with 5000 users are assumed 

to be combined together to provide operating reserves. The parameters to model the aggregated 

EWHs can be obtained from [12]. We chose the four-state model. 

Then, an example of UCR calculation is shown as follows. The EWHs 10 MW capacity 

is assumed to start committing at t =0, with a 10-minute start-up time and some parameters of 
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state transitions are shown in Table 4.4 [12]. The lead time is set as 1 hour and expected demand 

is set as 110 MW. 

Table 4.4 Parameters of State Transition per Hour 

state transitions (i,j) (i,1) (i,2) (i,3) (i,4) 

(1,j) -- λ?T=0.0050 -- λ?R=0.0300 

(2,j) λT?= 0.0033 -- λTQ=0.0008 -- 

(3,j) -- λQT=0.0000 -- λQR=0.0250 

(4,j) λR?=0.0150 λRT= 0.0250 -- -- 

There are two time intervals that need to be considered: the time interval before EWHs 

start committing (0, 10 minutes) and the time interval after EWHs start committing (10 minutes, 

1 hour). 

The ORR of each unit assuming 10-minute lead time is given in Table 4.6. The parameters 

are shown in Table 4.5. The risk during (0, 10 minutes) can be obtained from Table 4.5 that 

𝑅j =0.000171204369505394. 

Table 4.5 Parameters of Generation Model at 10 min 

Unit Size 

(MW) 

No. of units Failure rate per 

year 

ORR for lead time of 10 

minutes 

10 (thermal) 1 4.0 0.0000762 

20 (thermal) 1 5.0 0.0000962 

20 (hydro) 2 2.4 0.0000457 

40 (thermal) 1 6.0 0.0001142 

40 (hydro) 1 3.0 0.000057 
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Table 4.6 Capacity Outage Probability Table of Original Generation System at 10 min 

Capacity out(MW) Capacity in(MW) Cumulative Probability 

0 150 1.00000000000000000000000000 

10 140 0.00043492315880699900000000 

20 130 0.00035875049559476300000000 

30 120 0.00017121866052020200000000 

40 110 0.00017120436950539400000000 

50 100 0.00000005166524573506190000 

—— —— —— 

 

    Aggregated EWHs load is equivalent to providing extra generating capacity by regarding 

the load as interruptible. The new generation model of combining the aggregated EWHs load 

with the generation units is shown in Table 4.6, then we can get the new generation model at 

10 minutes as shown in Table 4.7.  

Table 4.7 Outage Replacement Rate of New Generation System at 10 min 

Capacity out(MW) Capacity in(MW) Cumulative Probability 

0 160 1.00000000000000000000000000 

10 150 0.195472060082214000000000000 

20 140 0.000373613457986033000000000 

30 130 0.000207810247243592000000000 

40 120 0.000171207157996757000000000 

50 110 0.000033447323206260300000000 

60 100 0.000000041167358840316100000 

—— —— —— 
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    From the equation (4.12), the EWHs load has the value of P̄ � =
\.\\\O

\.\\QQA\.\\\O
=

0.195122, so that 1 − P̄� = 0.804878 

P =
0.994167 0.000833
0.000550 0.999317

− 0.005000
0.000133 −

− 0.000000
0.002500 0.004167

0.995833 0.004167
− 0.993333

 

    Using the values of P̄ �, the initial probabilities vector (4.15) of the aggregated EWHs is 

P 0 = 0.804878 0 0 0.195122 . 

    The time period is divided into several time slots, each time slot is 10-minute. The 

stochastic transitional probability matrix using the transition rates can be obtained as follows: 

P 10min = [0.800670 0.001484 0.000000 0.197846] 

P 20min = [0.796496 0.002974 0.000000 0.200530] 

P 30min = [0.792353 0.004471 0.000000 0.203176] 

P 40min = [0.788241 0.005975 0.000001 0.205783] 

P 50min = [0.784161 0.007485 0.000002 0.208352] 

    The probability at 1 hour is P down = 0.20995 and P up = 0.79075 using the data 

of P 50min . 

  A new generation model can be obtained from Table 4.8 combining the EWHs load 

and the generation model with 1-hour lead time. The UCR is the cumulative probability in 

Table 4.8 where the value of ‘capacity in’ is 110 MW.  
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Table 4.8 Outage Replacement Rate of New Generation System at 1 h 

Capacity out(MW) Capacity in(MW) cumulative probability 

0 160 1.00000000000000000000000000 

10 150 0.2120043269780940000000000 

20 140 0.0022399706536568600000000 

30 130 0.0012620866609931700000000 

40 120 0.0010272604102415500000000 

50 110 0.0002171135037755950000000 

60 100 0.0000014810230623751200000 

—— —— —— 

    From Table 4.7 and Table 4.8, the risk in (10 minutes, I hour) is 

𝑅� =0.000217113503775595-0.0000334473232062603=0.000183666180569335. 

    The total risk with a 1-hour period can be obtained eventually, which is  𝑅 = 𝑅j +

𝑅� =0.000171204369505394+0.000183666180569335=0.000354870550074729. 

    This value compares with the risk before optimization ( 0.00102715322998244) if no 

EWHs load is brought into service. Therefore, the UCR reduction can be 0.0006722826799. 

Using the same method of calculating the UCR reduction shown above, the operating 

reserve capacity that aggregated EWHs could provide during other peak hours can be further 

calculated. The UCR reduction curve of EWHs in 24 hours is shown in Figure 4.9. 
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Figure 4.9 The UCR Reduction Curve 

4.5 Conclusion and Future Work 

    This Chapter extends the generating system reliability analysis by treating EWHs load as 

interruptible and considering that they served as operating reserve to improve power system 

reliability. The aggregated EWHs load curve was proposed in this chapter based on the 

optimization strategy proposed in Chapter 3. The reliability index (unit commitment risk) was 

calculated, furthermore, the UCR reduction was analyzed. 

    The IEEE Reliability Test System proposed by Billinton, R. was used and modified to be 

the test system in this chapter. The 10MW operating reserve capacity of EWHs was proposed 

as an example of Unit Commitment Risk calculation and the results turned out that aggregated 

EWHs have good performance on reducing the Unit Commitment Risk. Then the total UCR 

reduction during other periods was calculated. The model used here is the rapid start unit model, 

which has similar characteristics with EWHs. From the numerical result, the EWHs load has 
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been proved to be effective for reliability improvement. EWHs are able to provide operating 

reserve capacity to help the power system. 

    For future studies, the uncertainties of EWHs load should be taken into consideration 

when calculating the interruptible capacity the EWHs load could provide. 
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Chapter 5 Conclusion and Future Work 

    An optimization strategy was proposed in this thesis to reschedule EWHs to efficiently 

reduce customers’ electricity bills and power system peak-hour loads. The optimization 

adopted a lightly modified BPSO algorithm considering the original EWHs operation status. 

As part of grid services, some basic information of EWHs should be known before optimization 

and scheduling. The thermal model and the customers’ water usage profile were used to 

calculate the temperature and furthermore to calculate the optimization function within 

different temperature set point ranges. Some assumptions were made here to do the simulation 

of EWHs operations. Finally, using TOU price as DR incentive, the results show that BPSO 

has good performance on shifting peak load in different scenarios as well as reducing electricity 

cost for customers. 

    The comfort level index represents the comparison between water temperature after re-

operation and the average temperature of set point range. The optimization process proved to 

be successful according to the value of comfort level index. 

    According to the interruptible capacity of aggregated EWHs which utilized the 

optimization strategy proposed in this thesis, the power system reliability will be improved. 

It’s very important to use the proper model of aim appliances before taking them into account. 

The model of EWHs used to calculate the indices is the rapid start unit model because they 

have similar characteristics. Before calculating the UCR, the aggregated EWHs load has been 

simulated, so the capacity that EWHs load can provide can be obtained. Using the model and 
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parameters known, the unit commitment risk has been carried out at last. Compare to the UCR 

before optimization, the risk has declined effectively. In other words, aggregated EWHs have 

good ability to provide operating reserve for enhancing power system reliability. 

Residential users will be willing to participate in DR program if the strategy proposed in 

this thesis is utilized because of the visible economic benefits. Based on this optimization 

strategy, other home appliances that have the same characteristics with EWHs could also 

contribute themselves to power system reliability and help to shift the peak-hour loads. 

For further study, real-time pricing (RTP) could be introduced into the optimization as 

DR incentive because RTP can reflect the load changes simultaneously. For the existing study 

in this thesis, the temperature changes are complex, so only TOU price is taken into account. 

As to the EWHs operational reliability, some uncertainties should be considered in the future 

research. 

  



 58 

References 

[1]. Corno, F., & Razzak, F. (2012). Intelligent energy optimization for user intelligible goals in smart 

home environments. IEEE transactions on Smart Grid, 3(4), 2128-2135.  

[2]. International Energy Outlook 2016, U.S. Energy Inf. Admin., Washington, DC, USA, May. 2016 

[3]. U.S. Department of Energy, [online] Available: www.oe.energy.gov 

[4]. Masters, G. (2013). Renewable and efficient electric power systems. Wiley & Sons(8), 55 - 62. 

[5]. APAPedrasa, M. A. A., Spooner, T. D., & Macgill, I. F. (2009). Scheduling of demand side 

resources using binary particle swarm optimization. IEEE Transactions on Power Systems, 24(3), 

1173-1181. 

[6]. Qdr, Q. (2006). Benefits of demand response in electricity markets and recommendations for 

achieving them. US department of energy.  

[7]. FERC, “Regulatory Commission Survey on Demand Response and Time-based Rate 

Programs/tariffs”. www.FERC.gov, August 2006.  

[8]. Cirio, D., Demartini, G., Massucco, S., & Morim, A. (2003). Load control for improving system 

security and economics. Power Tech Conference Proceedings, 2003 IEEE Bologna, Vol.4, pp.8. 

[9]. Al-Jabery, K., Xu, Z., Yu, W., Wunsch, D., Xiong, J., & Shi, Y. (2016). Demand-side 

management of domestic electric water heaters using approximate dynamic programming. IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, to be published. 

[10]. Vournas, C. D. (2001). Interruptible load as a competitor to local generation for preserving voltage 

security. Power Engineering Society Winter Meeting, Vol.1, pp.236-240.   

[11]. Billinton, R., & Allan, R. N. (1984). Power-system reliability in perspective. Electronics & Power, 

30(3), 231-236. 

[12]. Billinton, R. (1984). Reliability Evaluation of Power Systems. Plenum Press. 

[13]. Pipattanasomporn, M., Kuzlu, M., & Rahman, S. (2012). An algorithm for intelligent home energy 

management and demand response analysis. IEEE Transactions on Smart Grid, 3(4), 2166-2173.  



 59 

[14]. Chen, Z., Wu, L., & Fu, Y. (2012). Real-time price-based demand response management for 

residential appliances via stochastic optimization and robust optimization. IEEE Transactions on 

Smart Grid, 3(4), 1822-1831. 

[15]. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., & Wei, Q. (2013). Optimal home 

energy management under dynamic electrical and thermal constraints. IEEE Transactions on 

Industrial Informatics, 9(3), 1518-1527. 

[16]. Paterakis, N. G., Erdinc, O., Bakirtzis, A. G., & Catalão, J. P. (2015). Optimal household 

appliances scheduling under day-ahead pricing and load-shaping demand response strategies. 

IEEE Transactions on Industrial Informatics, 11(6), 1509-1519. 

[17]. Du, P., & Lu, N. (2011). Appliance commitment for household load scheduling. IEEE transactions 

on Smart Grid, 2(2), 411-419. 

[18]. Liu, M., Quilumba, F. L., & Lee, W. J. (2015). A collaborative design of aggregated residential 

appliances and renewable energy for demand response participation. IEEE Transactions on 

Industry Applications, 51(5), 3561-3569. 

[19]. Wang, Z., & Zheng, G. (2012). Residential appliances identification and monitoring by a 

nonintrusive method. IEEE transactions on Smart Grid, 3(1), 80-92. 

[20]. Shad, M., Momeni, A., Errouissi, R., Diduch, C. P., Kaye, M. E., & Chang, L. (2015). 

Identification and estimation for electric water heaters in direct load control programs. IEEE 

Transactions on Smart Grid. 

[21]. Lu, N., Chassin, D. P., & Widergren, S. E. (2005). Modeling uncertainties in aggregated 

thermostatically controlled loads using a state queueing model. IEEE Transactions on Power 

Systems, 20(2), 725-733. 

[22]. Kondoh, J., Lu, N., & Hammerstrom, D. J. (2011, July). An evaluation of the water heater load 

potential for providing regulation service. In Power and Energy Society General Meeting, 2011 

IEEE (pp. 1-8).  

[23]. Shao, S., Pipattanasomporn, M., & Rahman, S. (2013). Development of physical-based demand 

response-enabled residential load models. IEEE Transactions on power systems, 28(2), 607-614. 

[24]. Department of Energy—Energy Savers Tips. [Online]. Available: https://energy.gov/public-



 60 

services/homes/water-heating  

[25]. Du, P., & Lu, N. (2011). Appliance commitment for household load scheduling. IEEE transactions 

on Smart Grid, 2(2), 411-419. 

[26]. Hendron, R., & Burch, J. (2007, January). Development of standardized domestic hot water event 

schedules for residential buildings. In ASME 2007 Energy Sustainability Conference (pp. 531-

539). American Society of Mechanical Engineers. 

[27]. de Santiago, J., Rodriguez-Vialon, O., & Sicre, B. (2017). The Generation of Domestic Hot Water 

Load Profiles in Swiss Residential Buildings through Statistical Predictions. Energy and Buildings. 

[28]. Mühlbacher, H. (2007). Verbrauchsverhalten von Wärmeerzeugern bei dynamisch variierten 

Lasten und Übertragungskomponenten (Doctoral dissertation, Universität München).  

[29]. Kondoh, J., Lu, N., & Hammerstrom, D. J. (2011, July). An evaluation of the water heater load 

potential for providing regulation service. In Power and Energy Society General Meeting, 2011 

IEEE (pp. 1-8).  

[30]. Arimes, T. (1994). HVAC and Chemical Resistance Handbook for the Engineer and Architect: a 

Compilation. Publisher BCT, Inc. ( pp. 17–26).  

[31]. Widén, J., Lundh, M., Vassileva, I., Dahlquist, E., Ellegård, K., & Wäckelgård, E. (2009). 

Constructing load profiles for household electricity and hot water from time-use data—Modelling 

approach and validation. Energy and Buildings, 41(7), 753-768..  

[32]. Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760-

766). Springer US.  

[33]. Wang, L., Wang, Z., & Yang, R. (2012). Intelligent multiagent control system for energy and 

comfort management in smart and sustainable buildings. IEEE Transactions on Smart Grid, 3(2), 

605-617. 

[34]. Lee, K. Y., & Park, J. B. (2006, October). Application of particle swarm optimization to 

economic dispatch problem: advantages and disadvantages. In Power Systems Conference and 

Exposition, 2006. PSCE'06. 2006 IEEE PES (pp. 188-192).  



 61 

[35]. Jin, X., Zhao, J., Sun, Y., Li, K., & Zhang, B. (2004, November). Distribution network 

reconfiguration for load balancing using binary particle swarm optimization. In Power System 

Technology, 2004. PowerCon 2004. 2004 International Conference on (Vol. 1, pp. 507-510). 

IEEE.   

[36]. Ting, T. O., Rao, M. V. C., & Loo, C. K. (2006). A novel approach for unit commitment 

problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power 

Systems, 21(1), 411-418.   

[37]. Cao, Y., Tang, S., Li, C., Zhang, P., Tan, Y., Zhang, Z., & Li, J. (2012). An optimized EV charging 

model considering TOU price and SOC curve. IEEE Transactions on Smart Grid, 3(1), 388-393. 

[38]. Allan, R. N., Billinton, R., Breipohl, A. M., & Grigg, C. H. (1999). Bibliography on the application 

of probability methods in power system reliability evaluation. IEEE Transactions on Power 

Systems, 14(1), 51-57.  

[39]. Anstine, L. T., Burke, R. E., Casey, J. E., Holgate, R., John, R. S., & Stewart, H. G. (1963). 

Application of probability methods to the determination of spinning reserve requirements for the 

Pennsylvania-New Jersey-Maryland interconnection. IEEE Transactions on Power Apparatus and 

Systems, 82(68), 726-735.  

[40]. Billinton, R., & Jain, A. V. (1972). The effect of rapid start and hot reserve units in spinning 

reserve studies. IEEE Transactions on Power Apparatus and Systems, (2), 511-516.  

[41]. Xu, N. Z., & Chung, C. Y. (2014). Well-being analysis of generating systems considering electric 

vehicle charging. IEEE Transactions on Power Systems, 29(5), 2311-2320. 

[42]. Billinton, R., Kumar, S., Chowdhury, N., Chu, K., Debnath, K., Goel, L., & Oteng-Adjei, J. (1989). 

A reliability test system for educational purposes-basic data. IEEE Transactions on Power 

Systems, 4(3), 1238-1244.  

 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2017

	Investigation of Electric Water Heaters as Demand Response Resources and Their Impact on Power System Operational Reliability
	Qian Wu
	Recommended Citation


	Microsoft Word - Qian Wu MS Thesis FINAL 2.docx

