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ABSTRACT 

FUNDAMENTAL STUDIES OF METAL ION EXTRACTION INTO IONIC LIQUIDS  

BY MACROCYCLIC POLYETHERS 

by 

James L. Wankowski 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Mark Dietz, Ph.D. 

 

 The liquid-liquid extraction (LLX) of metal ions from aqueous media into ionic liquids 

(ILs) by macrocyclic polyethers has proven to be an efficient and selective, but complex 

approach to their separation.  Partitioning in these systems has previously been described using a 

so-called ‘three-path’ model comprising three distinct extraction pathways: neutral complex / ion 

pair extraction, exchange of the IL cation for a metal-extractant complex, and exchange of the 

metal ion for a hydronium ion bound to the extractant.  The balance of these three paths has been 

reported to be affected by several characteristics of the LLX system, including the structure of 

the IL, the stereochemistry of the extractant, and the Lewis acidity of the metal ion, among 

others.  Qualitative trends for many of these factors have been reported, but despite the 

tremendous number of anion-cation combinations yielding an ionic liquid (i.e., > 108), only a 

single family (i.e., 1, 3-dialkylimidazolium) has been systematically studied.  Evaluating the 

benefit (i.e., improved efficiency or selectivity), if any of employing other families of ILs as 

extraction solvents requires extensive partitioning studies.  Consequently, the performance of 

most IL families remains largely unknown.  Furthermore, a quantitative description of metal ion 

extraction from acidic media into ionic liquids is necessary before they can be considered useful 
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extraction solvents. In general terms then, the objective of this work is to investigate several 

families of ionic liquids to determine whether qualitative trends reported previously represent a 

‘generic’ description of metal ion extraction in IL-based systems and if these trends can be 

confirmed quantitatively. 

 To this end, extraction studies employing quaternary ammonium- and N-alkylpyridinium-

based ILs and alkali and alkaline earth cations have been conducted to determine if the ‘three-

path’ model provides a satisfactory description of metal ion partitioning in these LLX systems.  

The results of these studies are consistent with those reported previously for systems employing 

1, 3-dialkylimidazolium-based ILs, but they have also unexpectedly revealed a significant effect 

of the self-aggregation of the IL cation on extraction behavior.  In an attempt to reduce the 

number of experimental measurements required to describe metal ion extraction into an ionic 

liquid, several parameters that define the hydrophobicity of an IL (e.g., hydrophilicity index, 

water solubility, and Dow) have been investigated and found to accurately predict extraction 

behavior.  Lastly, a process by which to quantitatively describe the balance of pathways in an IL-

based extraction system that can be used as a basis for future evaluation of ILs as extraction 

solvents has been developed. 
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Chapter 1: 

Introduction 

 

1.1 Overview and Scope 

Nuclear power in the United States has accounted for ~20% of the nation’s total production 

of electricity for more than 20 years [1.1].  In 2015, 99 operational reactors in the US, the most in 

any country and 22% of the world-wide total, produced nearly 800 terawatt hours of electricity 

[1.1].  It is estimated that by the end of 2015, the amount of spent nuclear fuel (SNF) generated by 

reactors in the US had reached nearly 76,000 metric tons [1.2], with an increase of approximately 

2,000 metric tons expected each year.  The majority (two thirds) of this waste is currently stored 

in spent fuel pools, but the United States Department of Energy (DOE) has targeted 2048 as the 

year in which a geological repository for dry storage of SNF will be operational [1.3].   

Figure 1.1 [1.4] depicts the nuclear fuel cycle, which begins with fabrication of fuel rods 

(generated from the mining of natural uranium or from reprocessed SNF) and proceeds to their use 

in a nuclear reactor.  The ‘front end’ of the nuclear cycle involves the mining, milling, conversion, 

enrichment and fuel fabrication.  Mining of the uranium ore is done by traditional excavation 

techniques or by in situ leach (ISL) by dissolving uranium oxide with oxygenated groundwater in 

an orebody and bringing the solution back to the surface.  The uranium is then extracted from the 

ore or leachate, converted to uranium dioxide or uranium hexafluoride prior to enrichment of U-

235, and then converted back to uranium dioxide following enrichment.  Fuel rods are prepared 

by filling metal alloy tubes with sintered uranium dioxide pellets.  Up to several hundred fuel rods 

are loaded into reactor cores to produce electricity.  The ‘back end’ of the cycle involves  
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Figure 1.1. The nuclear fuel cycle 
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disposal of fuel after it has been depleted.  SNF can be transferred directly into storage or sent for 

reprocessing.   

Despite ongoing research efforts to close the nuclear fuel cycle and reduce the cost of the 

current ‘once-through’ fuel cycle, the US has not practiced reprocessing of SNF since 1977 [1.5], 

but it is routinely performed in Europe, Russia and Japan.  The focus of research on SNF 

reprocessing, or recycling, has been greatly influenced by political agendas and the fear of nuclear 

proliferation.  Deep geological repositories (e.g., Yucca Mountain) have been proposed as long-

term storage facilities for SNF in the US including waste that is presently stored in nuclear 

reservations (e.g., Savannah River Site, Hanford Site, etc.), but these storage facilities have 

received much opposition.   

Spent nuclear fuel comprises about 93% uranium, 5% fission products (predominantly 

strontium-90 and cesium-137), 1% plutonium and < 1% other transuranic elements (e.g., 

neptunium, americium, and curium) [1.2].  Successful reprocessing of SNF is achieved by 

separating each of these components for reentry into the front end of the fuel cycle (i.e., uranium 

and plutonium) or other purposes such as research or industrial applications (i.e., transuranic 

elements, fission products).  As mentioned before, current practice in the US utilizes a once-

through fuel cycle in which all SNF is removed from the reactor and stored.  Closing the fuel cycle 

by reprocessing SNF will allow for used uranium and plutonium to be made into new fuel rods 

and greatly reduce the burden of SNF disposal by reducing the overall amount in inventory.  The 

most immediate concern when it comes to SNF handling and storage is dealing with the 

radioactivity and thermal output resulting from the relatively short-lived fission products, namely 

strontium-90 and cesium-137.  With half-lives around 30 years, the removal of these isotopes is a 

priority in order to simplify the SNF storage process. 
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Various techniques have been studied for the removal of fission products from SNF (e.g., 

ion exchange [1.6] and precipitation [1.7]), but the most commonly used method is solvent 

extraction (or liquid-liquid extraction) [1.8].  Several solvent extraction processes have been 

developed and are currently in use outside the US, including PUREX (Plutonium URanium 

EXtraction) [1.10], SREX (StRontium EXtraction) [1.11], TRUEX (TRansUranic EXtraction) 

[1.12] and other variations (e.g., DIAMEX [1.13], SANEX [1.14] and UNEX [1.15]) [1.8].  The 

effectiveness of the separation depends on the ability of these processes to remove the 

radioisotope(s) of interest from the complex mixture of elements present in SNF.  Two or more of 

these processes would typically be run in succession in order to expedite the treatment process.   

Work in this laboratory has focused on a variation of the SREX process in which ionic 

liquids are used in place of the conventional organic solvents typically employed.  Considerations 

for the use of the SREX process center around the complex matrix from which the strontium is 

extracted.  The first step of SNF reprocessing involves the dissolution of the fuel rod pellets in acid 

(typically nitric acid) [1.16].  Therefore, strontium extraction must function for an acidic aqueous 

phase.  This extraction would probably occur downstream of other extraction processes (e.g., 

PUREX or TRUEX) that would remove some of the contaminant species in the waste stream. 

Despite this, the presence of alkali and alkaline earth metals and a multitude of other fission 

products must be considered.  Thus, selective extraction of strontium from a complex and highly 

acidic aqueous solution is necessary.   

The objective of studies described in the following chapters is to investigate the extraction 

of strontium from acidic media into several ionic liquids (ILs) by a neutral extractant (i.e., a crown 

ether).  The focus of these studies begins with the utilization of various IL families to confirm the 

generality of trends seen previously for extraction into 1, 3-dialkylimidazolium-based ILs.  
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Specifically, the effects of IL structure and aqueous phase anion on the mechanism(s) of metal ion 

extraction are systematically explored for two additional IL families (i.e., quaternary ammonium- 

and N-alkylpyridinium-based ILs).  In an attempt to simplify the selection of ILs for use as 

extraction solvents and to facilitate the rational design of ILs for specific applications, our 

emphasis then shifts to the search for a single parameter for use in predicting the balance of 

extraction pathways in various IL-based systems.  Finally, we describe the development of a much-

needed method to quantify the individual contributions of the various extraction pathways to the 

overall extraction mechanism observed in a 1-alkyl-3-methylimidazolium (Cnmim+) IL-based 

solvent extraction system. 

1.2 Ionic liquids 

 Early reports of ionic liquids [1.17], then known as molten salts, date back to the 1800s, 

but Walden reported the synthesis of ethylammonium nitrate, the first truly ‘room temperature’ 

ionic liquid (melting point = 13-14 °C) in 1914 [1.18].  Despite their unique ionic character, their 

susceptibility to reduction, moisture sensitivity and the limited number of ion combinations 

yielding a liquid at room temperature resulted in little attention to them until 1992, when Wilkes 

and Zwarotko successfully developed and popularized air- and water-stable room-temperature ILs 

[1.19].  Their report resulted in an immense increase in attention for these novel liquids across a 

breadth of applications [1.20-1.22].  

The most widely accepted description of an ionic liquid is a salt whose melting point falls 

below 100 °C.  Typically they consist of a bulky, asymmetric organic cation in combination with 

any of a wide range of anions (Figure 1.2), both organic and inorganic.  Low lattice energies caused 

by the IL cation structure frustrates crystal formation, which drives down the melting point.  The 

IL anion dictates the hydrophobicity of the liquid, and careful selection can yield a hydrophobic  
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Figure 1.2. Various IL cations, anions and alkyl chain lengths 

 

 

 

 

 

 

 



7 
 

IL that will create a biphasic mixture when in contact with water.  Many physical and chemical 

properties of ILs are superior to those of conventional organic solvents [1.18, 1.22, 1.23] and are 

exploited for various uses.  Some of these characteristics include a wide liquid range, high thermal 

stability, low melting points, a near absence of vapor pressure, and tunability.  Of particular interest 

is the ease with which the structure of the cation and anion can be modified, earning ILs the 

distinction of being ‘designer solvents’.  Because of the enormous number of possible IL 

combinations (> 108) [1.21], a trial by error approach to identifying the most useful IL for a desired 

application is clearly illogical, making the identification of structure-property relationships for 

these compounds essential.  

1.3 Characteristics of ionic liquids as solvents 

 Unlike traditional organic solvents (i.e., molecular) or water, ionic liquids are made up 

entirely of ions, but they can nonetheless be hydrophobic media [1.20, 1.24].  Many conventional 

ideas about organic solvents do not apply to ILs because of this characteristic, but it affords them 

unique properties not observed for molecular organic solvents (e.g., the ability to solvate species 

with a net charge).  Numerous simulation studies have attempted to understand ILs as solvents by 

describing the general nature of the IL as well as various solvent-solute interactions [1.25-1.40].  

Previous reports indicate that the positively charged head groups of the IL cation and the IL anion 

form a region with highly ionic character, while the aliphatic IL cation tails comprise a second, 

low-polarity region [1.25, 1.26].  The presence of this inhomogeneity, even for ILs containing high 

molar fractions of water [1.27, 1.28], has been confirmed experimentally [1.27-1.32] and results 

in the ability of ILs to solubilize a variety of species (i.e., polar, nonpolar, aromatic, and charged).  

Polar molecules are solvated by the association of IL cations to the net-negative portion of the 

molecular dipole of the solute, while the IL anions associate to the net-positive portion [1.33, 1.34].  
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Nonpolar molecules partition into the aliphatic regions of the ionic liquid due to its overall 

hydrophobic nature [1.35].    The solubility of aromatic solutes in molecular solvents has been 

shown to be a result of π-π stacking [1.36-1.38].  ILs have also been shown to effectively solubilize 

aromatic solutes by the same interactions [1.39, 1.40].  Finally, the ability of ionic liquids to 

solubilize charged species such as metal complexes due to their ionic character [1.35] makes them 

complex, but remarkable extraction solvent alternatives. 

1.4 Extraction of metal ions into traditional organic solvents and ionic liquids 

 Conventional liquid-liquid extraction (LLX) of metal ions involves the partitioning of one 

or more metal-containing species from an aqueous phase into an organic phase.  This system can 

be modified to favor extraction by changing the organic phase, adjusting the aqueous phase pH or 

ionic strength, or by adding a metal ion-specific extractant to the organic phase.  All of these aim 

to increase the distribution ratio, DM (Eqn. 1.1), which, when equal volumes of each phase are 

used, is defined as the concentration of the metal ion in the organic phase divided by the 

concentration of metal ion in the aqueous phase at equilibrium. 

𝑫𝑴 =
[𝑴𝒏+]𝒐𝒓𝒈

[𝑴𝒏+]𝒂𝒒
  (1.1) 

Extraction is considered to be satisfactory when DM is greater than 10 (which corresponds to 

greater than 90.9% extraction).  Careful selection of conditions can result in DM values up to and 

greater than 10,000 (corresponding to greater than 99.99% extraction).  Conversely, ‘poor’ 

extraction is evident when DM values fall below 1, which indicates that the metal ion does not 

favor the organic phase over the aqueous phase under the experimental conditions.  (Accordingly, 

< 50% of the metal ion is found in the organic phase at equilibrium.)  In the presence of other 

species, the metal ion of interest can be selectively extracted using LLX systems by exploiting 
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differences in the distribution ratios of the species involved.  Equation 1.2 defines α, the separation 

factor, which is used to describe the selectivity of extraction between two species.  Large 

separation factors indicate that species 1 is extracted selectively, whereas small separation factors 

(< 1) indicate that the extraction of species 2 is favored. 

𝜶𝟏/𝟐 =
𝑴𝟏

𝑴𝟐
  (1.2) 

Liquid-liquid extraction employing traditional organic solvents represents the major 

technique used in the various stages of SNF reprocessing (e.g., PUREX, UREX, TRUEX, etc.).  

The prevalence of LLX is a result of the ability of the technique to be customized to increase the 

efficiency and selectivity of extraction.  Unfortunately, LLX typically employs volatile and / or 

toxic organic solvents.  Huddleston et al. [1.41] and Dai et al. [1.42] first proposed the use of ILs 

as alternatives to traditional extraction solvents in the late 1990’s.  Dai noted that significant 

improvements in strontium extraction efficiency from acidic solution could be achieved if ILs were 

employed in place of organic solvents.  This study represents the first of many in which organic 

solvent-based systems were outperformed by IL-based systems.   

The higher extraction efficiency sometimes observed for ILs is the result of the presence 

of several extraction mechanisms that are not possible in systems employing conventional organic 

solvents.  A recent review on metal ion extraction into ILs by Janssen et al. [1.35] describes four 

general modes by which metal ions can partition into ILs in the presence of a neutral extractant 

while still maintaining electroneutrality.  Neutral extraction (or neutral complex extraction, NCE) 

is defined by Equation 1-3 and involves the formation of a neutral metal-ligand-counterion 

complex.  A similar mechanism is neutral co-extraction (or ion pair extraction, IPE) in which a 

positive metal-ligand forms an ion pair with the counterion that partitions into the IL phase 
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(Equation 1-4).  (In the case of metal ion extraction from acidic media into an IL by a neutral 

extractant, the counterion is the aqueous phase anion.)  These two modes represent the only means 

by which metal ions are extracted in systems employing conventional organic solvents and the 

desired mechanisms when ILs are used as replacements.  These modes can be differentiated by 

assessment of the metal coordination sphere by EXAFS analysis [1.35], but because of their 

similarity the two will be referred to as a single mechanism, neutral complex / ion pair extraction 

(NC/IPE). 

M+
(aq) + L(aq) + X-

(aq)  [M • X • L](IL)  (1.3, NCE) 

M+
(aq) + L(aq) + X-

(aq)  [M • L]+
(IL) + X-

(IL)  (1.4, IPE) 

M+
(aq) + L(aq) + C+

(IL)  [M • L]+
(IL) + C+

(aq)  (1.5, IX-1) 

M+
(aq) + L(aq) + X+

(IL)  [M • L]+
(IL) + X+

(aq)  (1.6, IX-2) 

Two additional mechanisms are described for IL-based systems that are forbidden for 

systems employing conventional organic solvents.  Both involve the exchange of a positively 

charged metal-ligand complex for a positively charged species present in the IL phase, either the 

IL cation itself (Equation 1-5) or a more hydrophilic counter-cation (Equation 1-6) sometimes 

added to the system to avoid loss of the IL cation.  The process in which the IL cation is exchanged 

into the aqueous phase is referred to as ‘native’ ion exchange (hereafter abbreviated as IX-1).  This 

process results in depletion of the IL phase and contamination of the aqueous phase.  A more 

hydrophilic (compared to the IL cation) counterion either present in or added to the system will 

act as a ‘sacrificial’ ion exchanger to compete with the exchange of the IL cation for the metal-

ligand complex (hereafter abbreviated as IX-2) [1.43].  (In the case of metal ion extraction from 

acidic media into an IL by a neutral extractant, the sacrificial ion exchanger is the hydronium ion.)  
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The improved extraction efficiency first observed by Dai et al. [1.42] in IL-based systems 

originates from the ability of cationic metal species to be extracted via ion exchange [1.44], which 

is not possible in organic solvent-based systems employing a neutral extractant. 

1.5 IL-based extractions involving ionizable ligands 

 The general description of metal ion extraction into ILs in the previous section is confined 

to the use of a neutral extractant, but numerous studies have explored the use of ionizable 

extractants in IL-based systems [1.45-1.50].  Examples of the use of ionizable ligands include the 

extraction of lanthanides into 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 

(C4mim+Tf2N
-) by 2-thenoyltrifluoroacetone (HTTA) [1.46], rare earth metals into 1-octyl-3-

methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C8mim+Tf2N
-) with N,N-dioctyldiflycol 

amic acid (DODGAA) [1.48], copper into 3-butylpyridinium+Tf2N
- (in this case, the protic IL 

cation acts as the ionizable ligand) [1.49], and divalent uranium dioxide into 1-decyl-3-

methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C10mim+Tf2N
-) by dialkylphosphoric or 

dialkylphosphinic acids [1.50]. Equations 1.3-1.6 do not completely define the mechanism of 

metal ion extraction when an ionizable ligand is employed.  Janssen et al. offers two additional 

descriptions of such systems employing a weakly acidic ligand: 

Path A: 

HL(IL)  HL(aq)    (1.7) 

M+
(aq) + HL(aq)  [M • L](aq) + H+

(aq)  (1.8) 

[M • L](aq)  [M • L](IL)   (1.9) 
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Path B: 

HL(IL)  H+
(IL) + L-

(IL)   (1.10) 

M+
(aq) + H+

(IL) + L-
(IL)  [M • L](IL) + H+

(aq) (1.11) 

Path A closely resembles neutral extraction in that a neutral metal-ligand complex partitions into 

the IL phase, but this requires the formation of the neutral metal-ligand complex which is preceded 

by the dissociation of the ligand in the aqueous phase.  Comparatively, Path B involves the 

dissociation of the ligand in the IL phase followed by the exchange of the metal ion for an 

appropriate number of protons to maintain electroneutrality and formation of the neutral metal-

ligand complex in the IL phase.  It is clear from Equations 1.7-1.11 that several factors influencing 

the extraction of metal ions by an ionizable extractant include the acidic strength of the ligand, the 

pH of the aqueous phase, and the hydrophobicity of the metal-ligand complex.  The use of 

ionizable ligands results in multiple additional pathways of ion transfer (i.e., exchange of an 

anionic complex, exchange of a cationic complex, and partitioning of a neutral complex) each with 

its own factors affecting metal extraction that further complicate these systems.   

1.6 Factors affecting metal ion extraction into ionic liquids 

The mechanisms by which metal ion extraction proceeds in IL-based systems is determined 

by the components making up the extraction system.  Numerous studies have investigated the 

fundamental factors that regulate metal ion extraction into ionic liquids by neutral extractants 

[1.51-1.59].  Perhaps the most studied factor is the structure of the IL [1.54-1.58].  Generally, when 

the IL cation hydrophobicity is increased, its exchange into the aqueous phase, and therefore, 

extraction by IX-1, becomes more difficult [1.54, 1.56, 1.57] due to energetic requirements for the 

exchange process.  Conversely, an increase in the IL anion hydrophobicity favors ion exchange 
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processes due to mass action considerations [1.55, 1.58].  Metal ion extraction by NC/IPE requires 

the presence of a counterion, such as the aqueous phase anion when an acidic aqueous phase is 

employed.  Therefore, a higher concentration of aqueous phase anion tends to favor NC/IPE, but 

may also facilitate extraction by IX-2 due to the presence of a large amount of ‘sacrificial’ ion 

(Equation 1.6).  A very hydrophilic counterion or ‘sacrificial’ ion will be less likely to partition 

into the IL phase as part of a neutral complex and therefore favor extraction by ion exchange.  

Another means of suppressing ion exchange in these systems is by the addition of a salt containing 

one of the ions comprising the IL used to the aqueous phase, thereby exploiting the common ion 

effect [1.53, 1.54]. 

It should be obvious at this point that IL-based extraction systems represent complex, but 

remarkable systems.  Despite the recent popularity of ILs, the majority of studies investigating 

fundamental factors of metal ion extraction employ Cnmim+-based ILs, which are still not fully 

understood.  Thorough studies in our laboratory focused on identifying general trends that can be 

used for the rational design of ILs as extraction solvents have revealed the effects of IL cation 

structure [1.56, 1.57], IL anion structure [1.58], and aqueous phase anion [1.59] on metal ion 

extraction by crown ethers.  The applicability of these trends to other IL families is currently not 

known, and is one of several motivations behind the work described in the following chapters. 

1.7 Overview of chapters 

 Chapter 2 extends previous studies conducted in our laboratory focused on investigating 

the effect of IL cation and anion structure and aqueous phase anion on the extraction of alkali and 

alkaline earth metal ions into ionic liquids.  Quaternary ammonium-based ILs were employed in 

order to determine if the trends observed previously for 1, 3-dialkylimidazolium-based ILs are 

general and therefore useful in the rational design of ionic liquids for separation applications. 
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 Chapter 3 describes the extraction behavior of alkali and alkaline earth metal ions into N-

alkylpyridinium-based ILs.  The results of this study confirm the generality of extraction trends 

observed for both 1, 3-dialkylimidazolium and quaternary ammonium-based ILs.  In addition, a 

previously inadequately appreciated characteristic of hydrophobic ILs, namely the resemblance of 

the structure of certain IL cations to that of various conventional surfactants, proved powerful in 

explaining the observed extraction behavior. 

 Chapter 4 explores the possibility that the octanol-water distribution coefficient of an IL 

represents the most important single parameter governing the extraction behavior of metal ions in 

IL-based systems.  Comparison of octanol-water distribution coefficients with metal ion extraction 

data and theoretical models presented in literature suggests that the predominant extraction 

mechanism could be predicted based solely on the structure of the IL. 

 Chapter 5 summarizes work that represents the first description of a means to quantify the 

contributions from each individual mode of metal ion partitioning from acidic media into ionic 

liquids by a neutral extractant.  The quantitative results of this study agree with qualitative trends 

observed previously for the IL studied 1-pentyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide (C5mim+Tf2N
-) [1.56-1.59], and the method developed can be 

used to confirm many other qualitative trends, such as the effect of IL cation structure, IL anion 

structure, aqueous phase anion and the Lewis acidity of the metal ion on extraction behavior. 
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Chapter 2: 

Extraction of alkali and alkaline earth metals by dicyclohexano-18-crown-6 (DCH18C6) 

into quaternary ammonium-based ionic liquids (ILs) 

 

2.1 Introduction 

Although numerous ILs have been evaluated for their use in LLX extraction, studies of the 

factors underlying the observed extraction behavior have been largely confined to 1, 3-

dialkylimidazolium ILs (hereafter abbreviated as Cnmim+X- where X- = hexafluorophosphate (PF6
-

), bis[(trifluoromethyl)sulfonyl]imide (Tf2N
-) or bis[(perfluoroethyl)sulfonyl]imide (BETI-)) [2.1-

2.10].  These studies have demonstrated that the process of metal ion extraction into ILs in the 

presence of a neutral extractant is significantly more complex than is the corresponding process in 

a conventional organic solvent, with the overall partitioning incorporating contributions from 

neutral complex / ion-pair extraction (NC/IPE) and one or more forms of ion exchange (IX-1 

and/or IX-2).  These studies have also clarified the effect of a variety of IL and solution 

characteristics on the balance among these possible extraction pathways, including the IL cation 

[2.7, 2.3] and anion [2.4] hydrophobicity and the aqueous phase anion hydration energy [2.2].  

They have not, however, addressed the extent to which the observations reported represent a 

generic (i.e., general) description of IL-based metal ion extraction systems.  One of the more 

commonly noted characteristics of ILs is their tunability, affording millions of IL cation and anion 

combinations [2.13].  Unfortunately, until a general description of IL-based LLX systems is 

developed, extensive and tedious extraction studies (such as those presented here) are required to 

understand metal ion partitioning in each new IL-based system.   
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For an IL-based extraction system to be regarded as a viable alternative to a traditional 

organic solvent-based system, it must extract metal ions either more efficiently (as reflected in the 

magnitude of the metal ion distribution ratios) or more selectively (as reflected in the observed 

separation factors).  To date, only Cnmim+ ILs have been systematically examined as solvents for 

LLX.  Thus, it remains unclear if the choice of IL family (e.g., 1, 3-dialkylimidazolium vs. 

quaternary ammonium vs N-alkylpyridinium-based ILs) significantly alters either the extraction 

efficiency or the extraction selectivity.  To address this issue, extensive studies of the extraction 

of several alkali and alkaline earth cations into a series of quaternary ammonium- (described in 

this chapter) and N-alkylpyridinium-based ILs (described in the next chapter) containing 

dicyclohexano-18-crown-6 (DCH18C6) were conducted.  While various quaternary ammonium 

salts (e.g., Aliquat 336) [2.14-2.19], have long been known as extractants, their use as extraction 

solvents represents a more recent development [2.20, 2.21]. This study then, in addition to 

facilitating the development of a general description of the fundamental aspects of the partitioning 

of metal ions into ILs, will provide much needed practical information on the behavior of 

quaternary ammonium salts as extraction solvents. 

2.2 Experimental 

2.2.1 Materials 

 Bromide salts of tetraalkylammonium (Nn,n,n,n
+Br- where n = 8, 10, or 12; Sigma-Aldrich, 

Milwaukee, WI) and trimethylalkylammonium (Nn,111
+Br-, where n = 8, 10, or 12; TCI America, 

Portland, OR) salts were purchased and used without further purification.  For metathesis of the 

bromide salts to the desired anion form, the lithium salts of bis[(trifluoromethyl)sulfonyl]imide, 

Li+Tf2N
-, (TCI America, Portland, OR) and bis[(perfluoroethyl)sulfonyl]imide, Li+BETI-, (3M, St. 

Paul, MN) were employed.  Commercially available radiotracers 133BaCl2 (Isotope Products 
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Laboratories, Burbank, CA), 22NaCl (Isotope Products Laboratories), and 85SrCl2 (Perkin Elmer, 

Waltham, MA) were used for extraction studies.  The neutral extractant employed was a mixture 

of the cis-syn-cis (A) and cis-anti-cis (B) isomers of dicyclohexano-18-crown-6 (DCH18C6, 

Parish Chemical Company, Orem, UT).  Acid solutions were prepared from trace-metal grade 

concentrated nitric or hydrochloric acid (OptimaTM, Fisher, Fair Lawn, NJ) and were standardized 

by titration with standard sodium hydroxide (Ricca, Arlington, TX) using phenolphthalein 

indicator (Ricca, Arlington, TX).  All aqueous solutions were prepared with deionized water with 

a specific resistance of at least 18 MΩ/cm. 

2.2.2 Instruments 

A Mettler Toledo AL204 balance was employed for all weighing.  Karl Fischer titrations 

to measure the ionic liquid water content were performed on a Metrohm 870 KF Titrino Plus 

volumetric titrator.  Due to the absence of a chromophore in the quaternary ammonium structure, 

the water solubility could not be determined spectrophotometrically.  Instead, the solubility was 

determined using an Agilent 1200 series HPLC system with no column installed acting as a sample 

introduction system to a Varian 380-LC Evaporative Light Scattering Detector (ELSD).  

Radiometric assays were done via gamma spectroscopy on a Perkin Elmer Model 2480 Automatic 

Gamma Counter using standard procedures.  In studies of the extraction of metal ions from water, 

nitrate concentrations were measured with a Dionex ICS-1000 ion chromatograph equipped with 

a conductivity detector, a Dionex IonPac AG12A column (4 × 50 mm), and a Dionex ASRS 300 

(4mm) conductivity suppressor.  A mobile phase comprising 3.2 mM Na2CO3 and 1.0 mM 

NaHCO3 (flow rate of 0.80 mL/min) was employed.  An example ion chromatogram is provided 

in the Appendix. 
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2.2.3 Methods 

Ionic liquid synthesis.  The quaternary ammonium-based ionic liquids used in these studies were 

prepared from their bromide salts using established methods [2.22, 2.23].  Aqueous solutions of 

each quaternary ammonium bromide salt was combined with an aqueous solution (3% molar 

excess) of the lithium salt of bis[(trifluoromethyl)sulfonyl]imide, Li+Tf2N
- or 

bis[(perfluoroethyl)sulfonyl]imide, Li+BETI-.  This mixture was then left to stir overnight, during 

which time the product IL appeared as a separate phase.  The aqueous phase was then removed 

and the water-insoluble ionic liquid remaining was washed with at least five aliquots of water.  

Each wash was tested with silver nitrate to determine if halide was present.  Washing was 

continued until the formation of a silver halide precipitate was no longer observed. 

Density measurements.  The mass of an empty pipet tip was recorded and a known volume of IL 

was drawn up into the tip using an automatic pipette.  The mass of the IL was determined in 

triplicate by subtracting the mass of the empty tip from the total mass of the IL sample in the tip.  

This value was then divided by the volume to determine the density of each IL. 

Water solubility and content.  A 1 mL aliquot of each trimethylalkylammonium-based IL was 

preconditioned three times by contacting the IL with 2 mL of water.  This mixture was vortexed 

and then centrifuged, and the aqueous phase was removed and discarded.  Once the IL phase had 

been preconditioned, 1 mL of water was added to it and the mixture was vortexed.  After standing 

undisturbed overnight, the mixture was centrifuged to disengage the phases.  The aqueous phase 

was then removed to determine the concentration of the IL present by evaporative light scattering.  

The concentration of water present in the IL phase was then determined by Karl Fischer titration. 
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Determination of metal ion distribution ratios.  The extent of metal ion extraction, as reflected in 

values of the metal ion distribution ratios (DM, defined as [Morg] / [Maq] at equilibrium), was 

determined for barium, sodium and strontium radiometrically using commercial radiotracers.  All 

extraction experiments employing an acidic aqueous phase were conducted with 0.1 M DCH18C6 

in the ionic liquid phase.  Extraction from water was conducted according to previous reports [2.7, 

2.3] with 0.2 M DCH18C6 in the ionic liquid phase.  This higher crown ether concentration for 

systems employing water as the aqueous phase is necessitated by the absence of added nitric 

acid/nitrate, which results in reduced DM values. 

Extraction from water.  The percentage of metal ion extracted from water (%EM) was measured 

by preconditioning an aliquot of IL containing 0.2 M DCH18C6 two times with twice its volume 

of water.  After preconditioning, an equivolume aliquot of 0.0310 M Mn+(NO3
-)n solution 

(nominal, where Mn+ = Na+, Ba2+, or Sr2+) was added to the IL phase.  Sodium-22, barium-133 or 

strontium-85 radiotracer was then introduced and the mixture vortexed. After standing for 15 

minutes to allow equilibrium to be reached, the mixture was centrifuged to disengage the phases.  

The separated aqueous and IL phases were then sampled and counted. 

The percentage of nitrate extracted from water (%ENO3-) was determined by conducting 

the same liquid-liquid extraction as described in the determination of %EM without addition of the 

radiotracer.  The concentration of nitrate in the 0.0310 M Mn+(NO3
-)n stock solution (where Mn+ = 

Na+, Ba2+, or Sr2+) and the aqueous phase following extraction were measured by ion 

chromatography.  Dividing the difference in the nitrate concentration of the metal nitrate stock 

solution and the aqueous phase after extraction by the concentration of the metal nitrate stock 

solution gives the percentage of nitrate extracted from the aqueous phase. 
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Extraction from acid.  Distribution ratios (DM) were measured by preconditioning an aliquot of IL 

containing 0.1 M DCH18C6 twice with various nitric and hydrochloric acid solutions.  After 

preconditioning was complete, an equivolume aliquot of the acid solution was added to the IL 

phase.  Sodium-22, barium-133 or strontium-85 radiotracer was then introduced and the mixture 

vortexed and allowed to equilibrate for 15 minutes.  Following centrifugation to disengage the 

phases, the aqueous and IL phases were separated and sampled for counting. 

2.3 Results and Discussion 

2.3.1 Physical properties 

The measured physical properties of the ILs studied are listed in Table 2.1.  Consistent with 

previous observations for other ILs [2.24, 2.25], the density of the quaternary ammonium ILs 

decreases as their alkyl chain length increases.  An increase in the alkyl chain length for a 

homologous series of ILs (e.g., N8,111
+Tf2N

-, N10,111
+Tf2N

-, and N12,111
+Tf2N

-) also results in a 

decrease in water content and water solubility for the Tf2N
- ILs, again in agreement with prior 

observations for other IL families [2.25].  Unexpectedly, the water content of the Nn,111
+BETI- IL 

series actually rises as the alkyl chain length is increased, despite the fact that the hydrophobicity 

of the IL cation is increasing.  While the reason for this is unclear at present, it is worth noting that 

a similar observation has been reported previously for the BETI- form of a series of Cnmim+ ILs 

[2.4]. 

Primary alcohols are regarded as the industry standard for LLX systems and thus a 

benchmark against which to compare ILs.  The physical properties of a series of primary alcohols 

are therefore included in Table 2.1 for comparison.  A slight increase in density is observed as the 

alkyl chain length is increased, while the water content and water solubility decreases.  The density  
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Table 2.1 

Physical properties of ILs studieda 

 
a Uncertainties are reported at the 95% confidence level. 
b Due to availability of IL, value was not measured. 
c Values obtained from the 84th edition of the CRC Handbook of Chemistry and Physics 
d Values obtained from reference [2.26]. 

 

 

 

 

 

 

Density - "dry" 

(g/mL)

Water content - "wet" 

(ppm)

Water solubility 

([IL], µM)

N8,111Tf2N 1.253 ± 0.010 9350 ± 64 3450 ± 369

N10,111Tf2N 1.234 ± 0.003 8144 ±  177 693 ± 58

N12,111Tf2N 1.225 ± 0.004 6701 ±  350 276 ± 51

N8,111BETI 1.320 ± 0.007 4655 ± 255 3690 ± 362

N10,111BETI 1.294 ± 0.016 5543 ± 290 670 ± 141

N12,111BETI 1.253 ± 0.018 6099 ± 208 317 ± 20

N7,7,7,7Tf2N NM
b 4585 ± 393 NM

b

N8,8,8,8Tf2N NM
b 3474 ± 83 NM

b

N10,10,10,10Tf2N NM
b 2949 ± 155 NM

b

1-hexanol 0.8136
c

65200
d

68200
d

1-heptanol 0.8219
c

15835
d

66300
d

1-octanol 0.8262
c

3760
d

43500
d
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of the ILs studied here is greater than the primary alcohols, which has its benefits on a small scale, 

as the more viscous organic phase will be the bottom phase during LLX studies.  This is 

particularly beneficial during the preconditioning of the IL phase, as the less viscous aqueous phase 

can be easily removed without significant loss of the IL.  Density considerations are less of a 

concern from an industrial standpoint given the ability to design LLX processes to accommodate 

the denser organic phase.  It is obvious that the ILs have lower mutual solubility with water 

compared to the primary alcohols.  This is advantageous for LLX systems as it reduces the need 

to replace the solvent inventory and could lead to reduced phase carryover in an IL-based system.    

2.3.2 Three-path model of metal ion extraction 

As is well known, the extraction of alkali and alkaline earth cations by a neutral extractant 

such as a crown ether into a traditional (i.e., molecular) organic solvent involves the partitioning 

of a neutral complex / ion pair (Equation 2.1) [2.3]. 

Mn+
aq + nNO3

-
aq + CEaq ⇌ M(NO3)n (CE)org    (2.1, NC/IPE) 

Previous studies have shown that when ILs are substituted for traditional organic solvents in these 

systems, other modes of partitioning arise, namely ion-exchange processes [2.6].  This has led to 

the development of a so-called “three-path model” to explain the acid dependencies observed for 

IL-based solvent extraction systems (Figure 2.1) [2.9].  This model incorporates two forms of ion 

exchange in addition to neutral complex / ion pair extraction, one in which the IL cation is 

exchanged for the charged metal-extractant (i.e., crown ether) complex (IX-1, Equation 2.2) and a 

second form involving exchange of the metal ion for a proton present in a protonated extractant 

molecule produced during acid preconditioning of the IL phase (IX-2, Equation 2.3).   

CE(Mn+)aq  +  nIL+
org  ⇌  CE(Mn+)org  +  nIL+

aq    (2.2, IX-1) 
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nCE(H3O+)org  +  Mn+
aq  ⇌  CE(Mn+)org  +  nH3O+

aq + (n-1)CEorg  (2.3, IX-2) 

Both forms of ion exchange are detrimental to the recovery of the IL phase for subsequent reuse, 

as both involve loss of the cationic component of the IL to the aqueous phase.  All three modes of 

metal ion partitioning are in competition with each other, and the experimental conditions are 

expected to dictate which mode(s) are favored for a given system.  Prior work in our laboratory 

has shown that among the more important factors governing the relative contributions of the paths 

are the IL cation [2.7] and anion [2.27] hydrophobicity and the hydration energy of the aqueous 

phase anion [2.2].  The specific role of each in quaternary ammonium IL-based extraction systems 

is described in detail in the following sections. 
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Figure 2.1. Three pathway model of metal ion extraction for a system comprising a neutral 

extractant (DCH18C6) dissolved in a Cnmim+-based IL in contact with nitric acid. 
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2.3.3 Extraction from water   

Prior work [2.3, 2.7, 2.9] has shown that efforts to understand the metal ion partitioning 

process in IL-based extraction systems are facilitated by studies involving extraction from water.  

As a first step toward understanding the extraction of metal ions into ILs, the extraction of nitrate 

(%ENO3
-) and the metal ions of interest (%EM) from water (i.e., in the absence of nitric acid in the 

aqueous phase) was determined.  Studying the extraction from water eliminates one of the three 

possible modes of partitioning, specifically, IX-2 (which requires a protonated crown ether 

molecule), thereby simplifying interpretation of the extraction data.  Measurement of the extraction 

percentages for the various quaternary ammonium-based ILs according to a published method 

[2.7] yielded the results shown in Table 2.2. 

If neutral complex / ion pair extraction is the predominant mode of partitioning, the ratio 

of %EM and %ENO3
- (hereafter referred to as the extraction ratio, R) will approach unity.  Values 

of %ENO3
- much lower than %EM, resulting in large values of R, indicate that some metal ion 

extraction is occurring without nitrate co-extraction (i.e., NC/IPE), and thus are indicative of the 

presence of ion-exchange processes [2.7].  Consistent with a trend seen previously for Cnmim+-

based IL systems [2.3, 2.7] the results show that as the hydrophobicity of the IL cation increases, 

there is a shift towards neutral complex / ion pair extraction, as indicated by the decrease in the 

value of R.  In other words, extraction of metal ions into ILs with a longer alkyl chain length from 

water tends to proceed by NC/IPE more so than an IL with a shorter alkyl chain, suggesting that 

high IL cation hydrophobicity is preferred for IL-based LLX systems. 
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Table 2.2 

Effect of IL structure on metal ion and nitrate extraction from water by DCH18C6 (0.2 M) 

into various Nn,111
+ ILs a, b 

 
a Uncertainties are reported at the 95% confidence level.  %E values reported without 

uncertainties represent the average of duplicate measurements. 
b Initial metal salt concentrations were 0.031 M. 

 

 

 

 

 

Metal IL %EM %ENO 3
- R

Sr N8,111Tf2N 46.4 16.5 ± 0.3 2.81 cation exchange

N10,111Tf2N 15.7 12.1 ± 0.6 1.30 neutral complex

N12,111Tf2N 8.2 8.2 ± 0.9 1.00 neutral complex

N8,111BETI 45.5 4.7 ± 0.2 9.68 cation exchange

N10,111BETI 6.6 3.1 ± 0.3 2.13 mixed

N12,111BETI 2.6 1.3 ± 0.1 2.00 mixed

Ba N8,111Tf2N 57.2 17.5 ± 0.2 3.27 cation exchange

N10,111Tf2N 19.8 13.2 ± 0.4 1.50 neutral complex

N12,111Tf2N 7.3 7.0 ± 0.9 1.04 neutral complex

N8,111BETI 27.2 6.4 ± 0.3 4.25 cation exchange

N10,111BETI 5.6 4.9 ± 0.2 1.14 neutral complex

N12,111BETI 2.5 2.4 ± 0.1 1.04 neutral complex

Na N8,111Tf2N 59.9 2.4 ± 0.6 25.0 cation exchange

N10,111Tf2N 24.4 5.0 ± 0.1 4.88 cation exchange

N12,111Tf2N 9.3 8.1 ± 0.4 1.15 neutral complex

N8,111BETI 51.2 0.8 ± 0.4 64.0 cation exchange

N10,111BETI 9.4 1.2 ± 0.5 7.83 cation exchange

N12,111BETI 3.0 2.2 ± 0.5 1.36 neutral complex

Predominant partitioning mode
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2.3.4 Effect of IL cation hydrophobicity on extraction from acidic nitrate media 

Metal ion extraction from nitric acid solutions into a series of quaternary ammonium-based 

ILs incorporating four equivalent alkyl chains (i.e., Nn,n,n,n
+Tf2N

- ILs) was next examined.  The 

dependency of the extraction of Sr2+ by DCH18C6 (0.1 M) on nitric acid concentration into these 

ILs (Figure 2.2) follows the same general trend (i.e., typically, increasing DSr with an increase in 

[HNO3]) as seen for 1-octanol.  This is promising because the shape of the acid dependency 

suggests that the desired mode of metal ion partitioning, namely NC/IPE, is the predominant path. 

Unfortunately, the DSr values are much lower at any given acidity than those observed for 1-

octanol.  That is to say, the tetraalkylammonium IL-based systems exhibit the correct mode of 

extraction, but are apparently not as efficient as extraction solvents as are more traditional organic 

diluents.   

In contrast to prior reports describing extraction of strontium into Cnmim+Tf2N
- ILs (where 

n = 5, 6, 8, and 10) by the same extractant [2.3], there is little effect on the shape and direction of 

the dependency when the IL cation hydrophobicity is increased. Undoubtedly, this is due to the 

large carbon count in the quaternary ammonium ILs (28, 32, and 40 for Nn,n,n,n
+Tf2N

- ILs vs. 10, 

13, and 15 for the Cnmim+Tf2N
- ILs), which results in a very hydrophobic IL cation that is not 

prone to ion-exchange processes.  Although these ILs demonstrate again that high IL 

hydrophobicity results in a shift away from ion exchange [2.3], they provide unacceptably low 

strontium distribution ratios.  In addition, their high viscosity and tendency towards phase 

inversion make them difficult to handle.  As a result, no further work was done using these 

symmetrical tetraalkylammonium-based ILs.   
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Figure 2.2. Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M DCH18C6 into 

1-octanol (open, black squares), N7,7,7,7
+Tf2N- (solid, blue circles), N8,8,8,8

+Tf2N- (solid, red 

squares) and N10,10,10,10
+Tf2N- (solid, purple triangles). 
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Figure 2.3 shows the nitric acid dependency of the extraction of representative alkali (Na+) 

and alkaline earth (Sr2+ and Ba2+) metal ions into several members of another group of quaternary 

ammonium-based ILs, designated as Nn,111
+Tf2N

- ILs, in which three of the four alkyl substituents 

are methyl groups.  For Sr2+ (middle panel), extraction into the shortest chain IL (N8,111
+Tf2N

-) 

seems to favor ion exchange for [HNO3] < 2 M, as indicated by the decrease in DSr as the acid 

concentration increases.  For HNO3 concentrations above 2 M, an upturn is observed, whereby DSr 

rises with acid concentration, consistent with increased partitioning of a neutral complex / ion pair.  

When the alkyl chain length of the IL cation is increased, a downward shift in distributions ratios 

at low acid concentration is observed, consistent with increasing cation hydrophobicity and thus, 

greater difficulty of ion exchange processes involving the cation.  For extraction into both 

N10,111
+Tf2N

- and N12,111
+Tf2N

-, increasing DSr with acidity is observed up to ca. 1 M HNO3 

(suggesting that NC/IPE predominates), after which a downturn, possibly due to competition for 

the extractant by the acid present, is observed.   

A similar shift from ion exchange towards neutral complex / ion pair extraction is seen for 

Ba2+ (right panel) when the hydrophobicity of the IL cation is increased.  For Ba2+, however, an 

upturn in extraction into N8,111
+Tf2N

- at high acid concentration, such as was seen with Sr2+, is not 

observed.  This is likely due to the lower charge density of Ba2+ which disfavors NC/IPE because 

the formation of a stable metal-nitrato-crown complex is more difficult (ionic radii of Sr2+ and 

Ba2+ are 127 and 143 pm, respectively [2.28]).  This agrees with results reported previously for 

Cnmim+Tf2N
- ILs [2.3].  Due to its even lower charge density, sodium (left panel) partitions almost 

entirely via ion exchange (ionic radius of Na+ is 98 pm [2.28]).  Not unexpectedly though, in the 

low acid region (< 0.5 M HNO3), a downward shift in the extraction at any given acidity is 

observed as the alkyl chain length of the IL cation is increased.   
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Figure 2.3.  Effect of HNO3 concentration on the extraction of Na+ (left), Sr2+ (middle) and 

Ba2+ (right) by 0.1 M DCH18C6 into N8,111
+Tf2N- (solid, blue circles), N10,111

+Tf2N- (solid, red 

squares), N12,111
+Tf2N- (solid, green diamonds). 
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Overall, several similarities between the nitric acid dependencies of metal ion extraction 

into Nn,111
+Tf2N

- ILs and those seen previously for Cnmim+Tf2N
- ILs [2.3] are apparent.  That is, 

for divalent metal ions, there is a shift in the mode of partitioning from ion exchange towards 

neutral complex / ion pair extraction as the hydrophobicity of the IL cation increases.  A similar 

shift is observed for Na+ at low acidities ([HNO3] < 0.5 M), above which the acid dependencies 

are nearly identical and ion exchange predominates.   

2.3.5 Effect of IL anion hydrophobicity on extraction from acidic nitrate media 

Previous work examining IL anion effects on metal ion extraction into ILs has compared 

Cnmim+ ILs incorporating PF6
-, Tf2N

- and BETI- anions [2.4, 2.27, 2.29, 2.30] Unfortunately, the 

hexafluorophosphate (PF6
-) forms of trimethylalkylammonium salts were found to be solids with 

melting points well above ambient temperature, thus precluding extraction studies with them.  For 

this reason, our studies were restricted to ILs incorporating Tf2N
- or BETI- anions, which generally 

have melting points lower than those observed for the corresponding PF6
- ILs [2.30].  Mass action 

considerations, as described by Luo et al. [2.27], indicate that increasing IL anion hydrophobicity 

will favor extraction by ion exchange.  That is, as the hydrophobicity of the IL anion increases, 

less IL cation will be initially present in the aqueous phase, favoring ion exchange processes.  

Therefore, ion exchange should be more prevalent for the BETI- form of a given IL than for the 

analogous Tf2N
- form.  

Figure 2.4 shows the nitric acid dependency of Na+, Sr2+ and Ba2+ extraction into Nn,111
+ 

(where n = 8, 10, and 12) ILs incorporating the BETI- anion.  As was the case for the Tf2N
- analogs 

of these ILs, if the hydrophobicity of the IL cation increases, a shift from ion exchange towards 

neutral complex / ion pair extraction occurs for the divalent metal ions.  A similar shift is also 

observed for Na+ below [HNO3] of 0.5 M.   
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Figure 2.4.  Effect of HNO3 concentration on the extraction of Na+ (left), Sr2+ (middle) and 

Ba2+ (right) by 0.1 M DCH18C6 into N8,111
+BETI- (open, blue circles), N10,111

+BETI- (open, 

red squares), N12,111
+BETI- (open, green diamonds). 
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2.3.6 Effect of IL cation hydrophobicity on extraction from acidic chloride media 

Although nitric acid is the most common aqueous phase for these types of extraction 

systems, other aqueous phases, specifically hydrochloric acid, have been employed as an 

alternative to broaden the applicability of IL-based metal ion extraction [2.2, 2.31, 2.32].  Prior 

studies of the effect of aqueous phase anion (e.g., NO3
- vs. Cl-) on the extraction of alkali and 

alkaline earth metal ions into various Cnmim+-based ILs by DCH18C6 [2.2] have shown that the 

influence of the aqueous phase anion can be significant, and that ion exchange processes tend to 

predominate for aqueous anions exhibiting a high hydration enthalpy.  For neutral complex / ion 

pair extraction to occur, the aqueous phase anion must transfer from the aqueous phase to the 

organic phase.  If the energy required for this process is too high (i.e., as is apparently the case for 

Cl- at low [HCl]), ion exchange will be favored.   

Consistent with this observation is the fact that for the quaternary ammonium-based ILs of 

interest here, extraction of divalent metal ions from HCl (Figure 2.5) is dominated by ion exchange 

at low acid concentrations.  As the cation chain length is increased, a drop in the magnitude of the 

distribution ratio, instead of a shift in partitioning mode, at any given acidity is observed, a result 

of the greater difficulty in transferring a more hydrophobic IL cation into the aqueous phase.  This 

greater difficulty is also evident from the acidities at which the upturn of the metal ion distribution 

ratios occurs.  That is, for ILs incorporating more hydrophobic IL cations, the upturn (i.e., the 

transition from ion exchange to neutral complex / ion pair extraction as the predominant mode of 

extraction) occurs at lower acidities (e.g., 2 M for N8,111
+Tf2N

- vs. 1 M for N10,111
+Tf2N

- vs. 0.5 M 

for N12,111
+Tf2N

- for Sr2+).  For Na+, as seen in nitric acid-based systems, ion exchange 

predominates under all conditions.  In addition, again as in nitric acid-based systems, a slight 

downward shift in the acid dependency is observed for HCl concentrations below 3 M. 
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Figure 2.5.  Effect of HCl concentration on the extraction of Na+ (left), Sr2+ (middle) and Ba2+ 

(right) by 0.1 M DCH18C6 into N8,111
+Tf2N- (solid, blue circles), N10,111

+Tf2N- (solid, red 

squares), N12,111
+Tf2N- (solid, green diamonds). 
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2.3.7 Effect of IL anion hydrophobicity on extraction from acidic chloride media 

As was the case for the Tf2N
- forms of these ILs, extraction of metal ions from acidic 

chloride media into Nn,111
+BETI- ILs is dominated by ion exchange (Figure 2.6) an observation 

consistent with the greater hydration enthalpy of the chloride anion versus nitrate, making 

partitioning of the aqueous phase anion as part of a metal-crown complex more difficult.  At any 

given acidity, a drop in the magnitude of distribution ratios is again observed for the divalent metal 

ions with IL cation hydrophobicity.  For the representative monovalent cation, Na+, extraction also 

exhibits a slight downward shift with IL cation alkyl chain length at low [HCl] (< 2 M), due to the 

IL cation becoming more hydrophobic and thus, more difficult to exchange into the aqueous phase.  

Above acid concentrations of 2 M, the trends in extraction are nearly identical.  As noted above, 

ion exchange should predominate for ILs with a highly hydrophobic IL anion.  Consistent with 

this, the upturn in the acid dependencies observed for the divalent metal ions occurs at acid 

concentrations higher than those seen for their Tf2N
- analogs (i.e., 4 M for N8,111

+BETI- and 2 M 

for N10,111
+BETI- for Sr2+).   

Comparison of the acid dependencies for the extraction of strontium into N10,111
+Tf2N

- and 

N10,111
+BETI- (Figure 2.7), further illustrates that the BETI- IL exhibits a greater tendency toward 

ion exchange, as evidenced by a more negative slope in the acid region from 0.01 M to 2 M HCl.  

It can also be seen that under most conditions, the metal ion distribution ratios are lower for the 

BETI- ILs compared to their Tf2N
- analogs.  In other words, extraction into Tf2N

- forms of the ILs 

exhibit less extraction by ion exchange processes and is more efficient than the BETI- forms. 
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Figure 2.6.  Effect of HCl concentration on the extraction of Na+ (left), Sr2+ (middle) and Ba2+ 

(right) by 0.1 M DCH18C6 into N8,111
+BETI- (solid, blue circles), N10,111

+BETI- (solid, red 

squares), N12,111
+BETI- (open, green diamonds). 
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Figure 2.7.  Comparison of the effect of HNO3 concentration on the extraction of Sr2+ by 0.1 

M DCH18C6 into N10,111
+Tf2N- (solid, red squares), N10,111

+BETI- (open, red squares). 
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2.3.8 Extraction selectivity of Nn,111
+Tf2N

- and Nn,111
+BETI- ILs 

A complete evaluation of any IL as an extraction solvent requires consideration not only 

of the magnitude of the DM values obtained (i.e., the extraction efficiency), but also the metal ion 

selectivity (i.e., separation factors).  In several of the applications for which ILs are being 

investigated as alternative solvents (e.g., treatment of nuclear waste streams, analysis of soil 

leachates and biological samples), Sr2+ is the metal ion of interest.  Therefore, high selectivity vs. 

other metal ions (e.g., Ba2+, Ca2+, Na+, K+ and Cs+) present in the sample matrix in the typical 

working range of 1-3 M acid is desired [2.33, 2.34].  Separation factors (αM1/M2) for the extraction 

of strontium from nitric acid into several traditional organic solvents, the ILs studied in this work, 

and the ‘best’ Cnmim+ IL (determined as comprising a combination of the most hydrophobic IL 

cation studied – C10mim+ and the anion with less propensity towards ion exchange processes – 

Tf2N
-) are shown in Table 2.3. 

It can be seen that large variations in the separation factors of strontium over sodium and 

barium are observed for different types of organic solvents (αSr/Na: cyclohexane < primary alcohols 

< toluene << chloroform; αSr/Ba: cyclohexane < primary alcohols < chloroform < toluene).  In 

addition, when comparing a homologous series of organic solvents with an increasing chain length 

(i.e., primary alcohols), values of αSr/Na decrease by nearly a factor of 4 as the chain length increases 

from five to ten. In other words, a decrease in the hydrophobicity of the solvent favors selective 

extraction of strontium.  In contrast, αSr/Ba values increase slightly as the hydrophobicity of the 

alcohol is increased.  Although some of the separation factors obtained using traditional organic 

solvents are quite impressive (> 1000 for chloroform), the volatility and toxicity of these solvents 

make ionic liquids of interest as substitutes. 
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Table 2.3 

Effect of HNO3 concentration on αSr/Ba (= DSr / DBa) and αSr/Na (= DSr / DNa) values for 

various traditional organic solvents, Nn,111Tf2N ILs, Nn,111BETI ILs, and C10mimTf2N from 

extraction data for 0.1 M DCH18C6 in the specified organic or IL phase. 

 
  a Data from reference [2.3]. 

 

 

[HNO3]

αSr/Na αSr/Ba αSr/Na αSr/Ba αSr/Na αSr/Ba

4.61 38.6 7.92 NM NM

4.00 32.6 4.99 NM NM

0.37 23.8 0.61 NM NM

3.16 90.3 3.58 256 3.84

68.4 1.38

0.83

N12,111Tf2N

N8,111BETI

N10,111BETI

N12,111BETI

33.8

49.3

37.1

11.0

15.6

16.7

N8,111Tf2N

N10,111Tf2N

57.4 0.94 137 1.77

3.43 116 3.55 233 3.71

C10mimTf2N
a 25.8 1.15 42.6 1.17

14.2 2.03

1-decanol
a 3.88 1.75 5.07 2.09 9.18 2.32

1-octanol
a 7.35 1.52 8.22 1.82

37.0 1.70

1-hexanol
a 11.8 1.36 17.3 1.70 32.6 1.82

1-pentanol
a 12.3 1.39 21.2 1.61

22.6 10.2

chloroform 2370 2.56 2450 2.76 1200 3.11

toluene 77.6 14.7 47.5 13.1

1 M 2 M 3 M

cyclohexane 0.67 1.74 0.73 0.37 1.04 0.21
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Table 2.4 

Effect of HCl concentration on αSr/Ba (= DSr / DBa) and αSr/Na (= DSr / DNa) values for 

Nn,111Tf2N ILs, Nn,111BETI ILs, C10mimTf2N, and 1-octanol from extraction data for 0.1 M 

DCH18C6 in the organic or IL phase. 

 
  a Data from reference [2.3]. 

 

 

 

 

 

 

 

[HCl]

αSr/Na αSr/Ba αSr/Na αSr/Ba αSr/Na αSr/Ba

0.71

1-octanol
a 0.58 0.58 0.78 0.65 0.78 0.57

C10mimTf2N
a 0.08 0.15 0.08 0.12 0.29 0.11

0.04 0.78 0.02 0.75 0.06

2.04 0.07

N10,111BETI 0.05 0.12 0.06 0.12 0.40 0.30

0.98 0.13

N12,111Tf2N 0.04 0.14 0.06 0.19 0.15 0.18

N10,111Tf2N 0.13 0.14 0.27 0.14

N8,111BETI 1.14 0.09 1.52 0.13

3 M

N8,111Tf2N 0.90 0.06 1.25 0.07 3.67 0.07

1 M 2 M

N12,111BETI
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Because ILs incorporating the more hydrophobic IL anion (i.e., BETI-) exhibit a greater 

propensity to ion exchange (an undesirable process), the separation factors of the Tf2N
- forms of 

the quaternary ammonium-based ILs were evaluated to determine the strontium selectivity of this 

IL family vs. other extraction solvents.  Like most of the traditional organic solvents and 

C10mim+Tf2N
-, the separation factors for the Nn,111

+Tf2N
- IL systems increase as the acid 

concentration increases.  Interestingly all three Nn,111
+Tf2N

- ILs exhibit αSr/Na values greater than 

those observed for either C10mim+Tf2N
- or most of the organic solvents.  These favorable 

separation factors are a result of both higher DSr and lower DBa and DNa values at these acid 

concentrations, and indicate that DCH18C6 in Nn,111
+Tf2N

- IL-based systems is generally more 

selective than in the corresponding Cnmim+ IL-based systems.  These systems also compare 

favorably with conventional organic solvents.  For example, the αSr/Ba values for N10,111
+Tf2N

- and 

N12,111
+Tf2N

- are bested only by toluene.  Also, as the carbon chain length of the Nn,111
+Tf2N

- ILs 

increases from eight to ten, a roughly two-fold increase in αSr/Na values is observed, much more 

favorable than the trend observed for the primary alcohols, for which a four-fold decrease from 1-

pentanol to 1-decanol is seen.  Additionally, αSr/Ba values increase by almost a factor of four for 1 

M and 2 M nitric acid conditions and more than a factor of two for 3 M nitric acid conditions.  

Taken together, these data demonstrate the superior selectivity for Sr2+ extraction of the Nn,111
+ 

family of ILs over Cnmim+ ILs, as well as over many conventional organic solvents.   

Table 2.4 shows the separation factors for extraction of metal ions from hydrochloric acid 

into the ILs studied in this work, C10mim+Tf2N
- and the ‘benchmark’ organic solvent, 1-octanol.  

It can be seen that for nearly all systems and acidities (N8,111
+BETI- being a notable exception), 

extraction of sodium and barium is favored over the extraction of strontium.  Together with the 

fact that the predominant mode of extraction from hydrochloric acid media is ion exchange (due 
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to the high hydration enthalpy of chloride making its transfer to the IL phase more difficult), this 

poor strontium selectivity indicates that efficient and selective extraction of strontium from acidic 

chloride media by DCH18C6 in the quaternary ammonium ILs is simply not feasible. 

2.4 Conclusions 

The results of this work show that the trends reported previously in the extraction of Sr2+, 

Ba2+, and Na+ by DCH18C6 from nitric and hydrochloric acids into 1, 3-dialkylimidazolium-based 

ILs are also observed when quaternary ammonium-based ILs are employed as the extraction 

solvent, including a shift towards ion exchange with increasing IL cation hydrophobicity when 

extracting divalent metal ions from nitric acid and the predominance of ion exchange in the 

extraction of Na+ under all conditions.  Similarly, when the hydrophobicity of the IL anion is 

increased, a greater propensity towards ion exchange is observed.  Also as seen previously, 

extraction into HCl continues to be dominated by ion exchange and exhibits unfavorable Sr2+ 

selectivity.  It appears then that the so-called “three-path model” of metal ion extraction that arose 

from studies of 1, 3-dialkylimidazolium-based ILs also applies to quaternary ammonium-based 

ILs.  While additional work to confirm this is needed, these results suggest that the three-path 

model may represent a general description of metal ion extraction by neutral extractants into a 

range of ionic liquids.  On a less fundamental level, the results demonstrate that extraction by 

DCH18C6 from nitric acid into trimethylalkylammonium-based ILs shows marked improvements 

in efficiency and selectivity for Sr2+ compared to a number of alternative extraction solvents, 

including Cnmim+-based ILs.  Thus, proper selection of IL cation and anion could prove crucial in 

determining the feasibility of a given extraction process.  To further confirm that these 

observations are generic and therefore apply to ILs as a whole, a systematic study of another family 
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of ILs, namely N-alkylpyridinium salts, was conducted.  The results obtained are presented in the 

next chapter. 
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Chapter 3: 

Mechanistic implications of micellization in the extraction of metal ions into N-

alkylpyridinium-based ILs by DCH18C6 

 

3.1 Introduction 

As noted above, the majority of studies aimed at understanding the extraction of metal ions 

into ILs have employed 1, 3-dialkylimidazolium-based ILs [3.1-3.10].  The results presented in 

Chapter 2 demonstrated that trends observed for the extraction of several alkali and alkaline earth 

metal cations into quaternary ammonium-based ILs by DCH18C6 are in agreement with those 

seen previously for 1, 3-dialkylimidazolium IL-based systems.  This suggests that the observations 

made for these two IL families could represent general characteristics of IL-based extraction 

systems and thus, might provide a basis for the rational design of these systems.  To further 

investigate the generality of these trends and to confirm that the choice of IL family (e.g., 1, 3-

dialkylimidazolium vs. trimethylalkylammonium vs. N-alkylpyridinium) can have a substantial 

influence on metal ion extraction efficiency (i.e., the magnitude of the distribution ratio) and 

selectivity (i.e., separation factors), a systematic study of the extraction of several alkali and 

alkaline earth metal ions from acidic media into N-alkylpyridinium-based ILs (abbreviated as 

Cnpyr+) by DCH18C6 was undertaken.  N-alkylpyridinium-based ILs have been used previously 

in applications ranging from the catalytic reduction of sulfoxides [3.11] to the separation of 

aromatic molecules from aliphatic hydrocarbons [3.12] and additives for protein refolding [3.13], 

among others [3.14, 3.15].  The work presented here explores the use of these ILs as extraction 

solvents, and focuses on the major factors that dictate which modes of metal ion partitioning 

predominate. 
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3.2 Experimental 

3.2.1 Materials 

The N-alkylpyridinium, N-alkyl-4-ethylpyridinium and 1, 3-dialkylimidazolium ionic 

liquids used in this study were synthesized by a two-step process.  The bromide forms of the Cnpyr+ 

(where n = 4, 6, 7, 8, 10, 12 and 14), Cnetpyr+ (where n = 6, 8, 10, and 12) and Cnmim+ (where n 

= 10, 12 and 14) ILs were first prepared by microwave synthesis according to established methods 

[3.16], followed by metathesis to the desired anion [3.17].  Commercially available pyridine (Alfa 

Aesar, Ward Hill, MA), 1-ethylpyridine (Acros Organics, New Jersey), 1-methylimidazole (Acros 

Organics) and several 1-bromoalkanes (i.e., 1-bromobutane (Acros Organics), 1-bromohexane 

(Acros Organics), 1-bromoheptane (Sigma Aldrich, Milwaukee, Wisconsin), 1-bromooctane 

(Acros Organics), 1-bromodecane (Sifma Aldrich), 1-bromododecane (Acros Organics), and 1-

bromotetradecane (Alfa Aesar)) were purchased and used without further purification.  Lithium 

salts of bis[(trifluoromethyl)sulfonyl]imide, Li+Tf2N
-, (TCI America, Portland, OR) and 

bis[(perfluoroethyl)sulfonyl]imide, Li+BETI-, (3M, St. Paul, MN) were employed to convert the 

bromide salts of the ILs by metathesis to Tf2N
- and BETI- forms.  The Nn,111

+Tf2N
- (where n = 10 

and 12) ILs used were those prepared in conjunction with the work described in Chapter 2.  In 

addition, N14,111
+Tf2N

- was prepared from N14,111
+Br- (myristyltrimethylammonium bromide 

(Sigma Aldrich)) by metathesis.  N-alkyl-4-dimethylaminopyridinium ionic liquids 

(Cndmapyr+Tf2N
-, where n = 8 and 12) were generously provided for this work by Dr. James F. 

Wishart of Brookhaven National Laboratory and used without further purification. 

The dicyclohexano-18-crown-6 (DCH18C6, Parish Chemical Company, Orem, UT) used 

was a mixture of the cis-syn-cis (A) and cis-anti-cis (B) isomers.  Acid solutions were prepared 

from trace-metal grade concentrated nitric or hydrochloric acid (OptimaTM, Fisher, Fair Lawn, NJ) 
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and were standardized by titration with standard sodium hydroxide (Ricca, Arlington, TX) using 

phenolphthalein indicator (Ricca, Arlington, TX).  Commercially available radiotracers 133BaCl2 

(Isotope Products Laboratories, Burbank, CA), 22NaCl (Isotope Products Laboratories), and 

85SrCl2 (Perkin Elmer, Waltham, MA) were used for extraction studies.  All aqueous solutions 

were prepared with deionized water with a specific resistance of at least 18 MΩ/cm. 

3.2.2 Instruments 

A Mettler Toledo AL204 balance was employed for all weighing.  Karl Fischer titrations 

to measure the ionic liquid water content were performed on a Metrohm 870 KF Titrino Plus 

volumetric titrator.  The solubility of each Cnpyr+ IL in water was measured on a double-beam 

Shimadzu UV-2450 UV-VIS Spectrophotometer using quartz cuvettes.  Radiometric assays were 

done via gamma spectroscopy on a Perkin Elmer Model 2480 Automatic Gamma Counter using 

standard procedures.  Phase changes of C14pyr+Tf2N
- and N14,111

+Tf2N
- were measured with a TA 

Instruments Differential Scanning Calorimeter (DSC) Q20 using T-zero pans and hermetic lids 

(TA, New Castle, DE).  In studies of the extraction of metal ions from water, nitrate concentrations 

were measured with a Dionex ICS-1000 ion chromatograph equipped with a conductivity detector, 

a Dionex IonPac AG18 guard column (4 × 50 mm) and AS18 analytical column (4 × 250 mm), 

and a Dionex ASRS 300 (4mm) conductivity suppressor.  A 37mM NaOH mobile phase (flow rate 

of 1.00 mL/min) was employed.  An example ion chromatogram is provided in the Appendix.  A 

Fisher Scientific Surface Tensiomat 21 equipped with a du Noüy platinum-iridium ring (CSC 

Scientific, Fairfax, VA) was employed for the surface tension studies. 
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3.2.3 Methods 

Ionic liquid synthesis.  The N-alkylpyridinium (Cnpyr+, where n = 4, 6, 7, 8, 10, 12, and 14) ionic 

liquids used in this study were synthesized by a two-step process.  In the first step, the bromide 

form of each IL was prepared by microwave irradiation of a mixture of an appropriate alkyl 

bromide (5% excess) and pyridine according to established methods [3.16].  The bromide form of 

the IL was then converted to the desired Tf2N
- or BETI- form via an established anion metathesis 

reaction [3.18].  Aqueous solutions of each N-alkylpyridinium bromide salt were combined with 

an aqueous solution (3% molar excess) of the lithium salt of bis[(trifluoromethyl)sulfonyl]imide, 

Li+Tf2N
- or bis[(perfluoroethyl)sulfonyl]imide, Li+BETI-.  After overnight stirring, the aqueous 

phase was removed and the water-insoluble ionic liquid remaining was washed with at least five 

aliquots of water of equal or greater volume.  Each wash was tested with silver nitrate to determine 

if bromide ion was present.  Washing was continued until the formation of a silver bromide 

precipitate was no longer observed.  The identity of the final product was confirmed by 1H-NMR 

and/or elemental analysis, as appropriate.  In a similar manner, the Tf2N
- forms of 1-alkyl-3-

methylimidazolium (Cnmim+, where n = 12 and 14) ILs were prepared.  N14,111
+Br- was converted 

to the desired Tf2N
- form by metathesis in the same way. 

Density measurements.  The mass of an empty pipet tip was recorded and a known volume of IL 

was drawn up into the tip using an automatic pipette.  The mass of the IL was determined in 

triplicate by subtracting the mass of the empty tip from the total mass of the IL sample in the tip.  

This value was then divided by the volume to determine the density of each IL. 
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Water solubility and content.  A 1 mL aliquot of each N-alkylpyridinium-based IL was 

preconditioned three times by contacting the IL with 2 mL of water.  This mixture was vortexed 

and then centrifuged, and the aqueous phase was removed and discarded.  Once the IL phase had 

been preconditioned, 1 mL of water was added to it and the mixture was vortexed.  After standing 

undisturbed overnight, the mixture was centrifuged to disengage the phases.  The aqueous phase 

was then removed to determine the concentration of the IL dissolved by UV/VIS spectroscopy.  

The concentration of water present in the IL phase was then determined by Karl Fischer titration. 

Thermal studies.  To determine the thermal properties (especially the melting points) of ionic 

liquids found to be solid at room temperature, a small portion of IL that had been dried under 

vacuum was placed into a tared Tzero aluminum pan and hermetically sealed using a die press 

provided with the DSC system. The sample masses ranged from 2.5 to 4.5 mg. To start the 

measurements, all samples were cooled to -75°C, held there for 5 minutes, and then ramped at a 

rate of 10°C/min to 100°C.  The phase transitions were identified through TA Universal Analysis 

software. 

Determination of metal ion distribution ratios.  Metal ion distribution ratios (DM, defined as [Morg] 

/ [Maq] at equilibrium), was determined for barium, sodium and strontium radiometrically using 

commercial radiotracers.  All extraction experiments employing an acidic aqueous phase were 

conducted with 0.1 M DCH18C6 in the ionic liquid phase.  Extraction from water was conducted 

according to previous reports [3.3, 3.7] with 0.2 M DCH18C6 in the ionic liquid phase.  This higher 

crown ether concentration for systems employing water as the aqueous phase is necessitated by 

the absence of added nitric acid/nitrate, which results in reduced DM values. 

Extraction from water.  The percentage of metal ion extracted from water (%EM) was measured 

by preconditioning an aliquot of IL containing 0.2 M DCH18C6 two times with twice its volume 
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of water.  After preconditioning, an equivolume aliquot of 0.0310 M Mn+(NO3
-)n solution 

(nominal, where Mn+ = Na+, Ba2+, or Sr2+) was added to the IL phase.  Sodium-22, barium-133 or 

strontium-85 radiotracer was then introduced and the mixture vortexed.  After standing for 15 

minutes to allow equilibrium to be reached, the mixture was centrifuged to disengage the phases.  

The separated aqueous and IL phases were then sampled and counted. 

The percentage of nitrate extracted from water (%ENO3-) was determined by conducting 

the same liquid-liquid extraction as described in the determination of %EM without addition of the 

radiotracer.  The concentration of nitrate in the 0.0310 M Mn+(NO3
-)n stock solution (where Mn+ = 

Na+, Ba2+, or Sr2+) and the aqueous phase following extraction were measured by ion 

chromatography.  Dividing the difference in the nitrate concentration of the metal nitrate stock 

solution and the aqueous phase after extraction by the concentration of the metal nitrate stock 

solution gives the percentage of nitrate extracted from the aqueous phase. 

Extraction from acid.  Distribution ratios (DM) were measured by preconditioning an aliquot of IL 

containing 0.1 M DCH18C6 twice with various nitric and hydrochloric acid solutions.  After 

preconditioning was complete, an equivolume aliquot of the acid solution was added to the IL 

phase.  Sodium-22, barium-133 or strontium-85 radiotracer was then introduced and the mixture 

vortexed and allowed to equilibrate for 15 minutes.  Following centrifugation to disengage the 

phases, the aqueous and IL phases were separated and sampled for counting.   

It should be noted that C14pyr+Tf2N
- and N14,111

+Tf2N
- exhibit phase changes at 30 °C and 

42 °C/49 °C, respectively, so they are solid at room temperature.  Liquid-liquid extraction 

experiments using them were therefore conducted at 50 ± 2 °C to ensure that the IL phase was 

liquid.  According to Horwitz et al. [3.19], metal ion distribution ratios (DM) observed for solvent 

extraction systems employing DCH18C6 and traditional organic solvents are little changed when 
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the temperature is increased from 25 °C to 50 °C.  To confirm that these observations apply to IL-

based systems, extraction studies of selected room temperature ionic liquids were conducted at 50 

°C and compared to those completed at room temperature.  Figure 3.1 summarizes the results of 

such a study for the extraction of strontium into several Cnpyr+Tf2N
- ILs (where n = 4, 7 and 10).  

As can be seen, there is little change in the acid dependency when the temperature is increased.  

Slight differences in the distribution ratios are observed, but the general trends and therefore, the 

mechanism of strontium extraction is unchanged.  This, it should be noted, also rules out the 

possibility that the elevated temperature is the cause of the observations discussed in the following 

sections. 

Surface tension.  An approximately 2-mL aliquot of each “water-insoluble” ionic liquid was 

preconditioned with three aliquots of water (4 mL), and then allowed to stand in contact with ~25 

mL of water for one week with a brief (several minute) daily vortex mixing.  The aqueous phase 

was then removed and centrifuged to disengage the phases.  The initial concentration of the IL in 

the aqueous phase was measured using a double-beam Shimadzu UV-2450 UV-VIS 

Spectrophotometer with quartz cuvettes.  Following measurement of the initial surface tension, 

aliquots of water were successively added to dilute the solution and the surface tension 

measurements were repeated.  In this way, a plot of surface tension vs. IL concentration in the 

aqueous phase was constructed from the most concentrated to the least concentrated solution. 

Extraction studies typically involve preconditioning with two aliquots of water, but an 

additional aliquot was used in the surface tension studies to ensure not only that preconditioning 

of the IL phase was complete, but also that any water-soluble contaminants that might be present 

in trace amounts due to the IL synthesis, namely precursors or halide forms of the IL, were 

removed. 
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Figure 3.1.  Effect of temperature on the extraction of Sr2+ by 0.1 M DCH18C6 into 

C4pyr+Tf2N- (room temperature – solid, black circles and 50 °C – open, black circles), 

C7pyr+Tf2N- (room temperature – solid, purple triangles and 50 °C – open, purple triangles) 

and C10pyr+Tf2N- (room temperature – solid, red squares and 50 °C – open, red squares). 
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3.3 Results and Discussion 

3.3.1 Physical properties 

The measured physical properties of the Cnpyr+ ILs are presented in Table 3.1.  As can be 

seen, as the alkyl chain length of the N-alkylpyridinium ILs is increased, the density decreases, 

consistent with observations by others for Cnpyr+Tf2N
- [3.18] and other IL families [3.20, 3.21].  

Prior observations for a homologous series of ILs (e.g., C5mim+Tf2N
-, C6mim+Tf2N

-, C8mim+Tf2N
-

, etc.) indicate that a decrease in water content and water solubility should accompany an increase 

in the alkyl chain length [3.21].  Indeed, results for the N-alkylpyridinium ILs follow this expected 

trend, except for C14pyr+Tf2N
- and C14pyr+BETI-, which have higher than expected values.  

Considering again the physical properties observed for traditional organic solvents used in LLX 

systems, namely the primary alcohols (Table 2.1), density increases as the alkyl chain length 

increases and water content and solubility both decrease.  As stated in Chapter 2, when compared 

to primary alcohols, the density difference of ILs makes them easier to use in benchtop studies, 

and as was seen for the Nn,111
+ ILs, Cnpyr+ ILs have lower water contents and solubility, resulting 

in a reduced phase carryover. 

3.3.2 Extraction from water 

 As noted in Chapter 2, studying the extraction of metal ions from water simplifies the 

extraction system by eliminating contributions from IX-2.  Our studies of Cnpyr+-based ILs thus 

began with an examination of the extraction of the nitrate salts of Sr2+, Ba2+ and Na+ from water 

into a series of these ILs containing DCH18C6.  Table 3.2 summarizes the results obtained for a 

representative group of Cnpyr+ (where n = 4, 7, 10, and 14) ILs that incorporate either Tf2N
- or  
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Table 3.1 

Physical properties of ILs studieda 

 
a Uncertainties are reported at the 95% confidence level. 
b Due to difficulty in sampling, value was not measured. 

 

 

 

 

 

 

 

 

 

Density - "dry" 

(g/mL)

Water content - "wet" 

(ppm)

Water solubility 

(ppm)

C4pyrTf2N 1.466 ± 0.005 14150 ± 245 7710 ± 55

C6pyrTf2N 1.391 ± 0.005 11240 ± 356 2990 ± 140

C7pyrTf2N 1.362 ± 0.007 10270 ± 655 1390 ± 20

C8pyrTf2N 1.344 ± 0.004 9460 ± 165 835 ± 8

C10pyrTf2N 1.297 ± 0.004 8660 ± 149 282 ± 6

C12pyrTf2N 1.265 ± 0.008 7980 ± 568 111 ± 1

C14pyrTf2N NM
b 8590 ± 189 171 ± 2

C4pyrBETI 1.543 ± 0.004 8260 ± 870 1866 ± 7

C7pyrBETI 1.442 ± 0.005 6400 ± 316 210 ± 3

C10pyrBETI 1.364 ± 0.011 5425 ± 133 121 ± 2

C14pyrBETI 1.288 ± 0.010 4801 ± 253 1098 ± 4
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Table 3.2 

Effect of IL structure on metal ion and nitrate extraction from water by DCH18C6 (0.2 M) 

into various Cnpyr+ ILs a, b 

a Uncertainties are reported at the 95% confidence level.  %E values reported without uncertainties 

represent the average of duplicate measurements. 
b Initial metal salt concentrations were 0.031 M. 

ND indicates no measurable change in nitrate concentration. 

 

Metal IL %EM %ENO 3
- R

Sr C4pyrTf2N 97.7 5.6 ± 0.6 17.4 cation exchange

C7pyrTf2N 56.1 13.6 ± 0.5 4.13 cation exchange

C10pyrTf2N 20.7 10.3 ± 0.4 2.01 cation exchange

C14pyrTf2N 17.4 6.5 ± 0.3 2.68 cation exchange

C4pyrBETI 98.4 2.8 ± 0.4 35.1 cation exchange

C7pyrBETI 36.6 5.1 ± 0.3 7.18 cation exchange

C10pyrBETI 17.8 3.7 ± 1.2 4.81 cation exchange

C14pyrBETI 56.0 4.1 ± 1.1 13.7 cation exchange

Ba C4pyrTf2N 98.4 5.7 ± 0.2 17.3 cation exchange

C7pyrTf2N 72.9 20.4 ± 0.2 3.57 cation exchange

C10pyrTf2N 22.3 17.5 ± 0.2 1.27 mixed

C14pyrTf2N 21.2 11.1 ± 0.1 1.91 cation exchange

C4pyrBETI 93.1 2.7 ± 0.3 34.5 cation exchange

C7pyrBETI 48.2 8.4 ± 1.7 5.74 cation exchange

C10pyrBETI 17.0 5.6 ± 0.7 3.04 cation exchange

C14pyrBETI 55.1 5.6 ± 0.4 9.84 cation exchange

Na C4pyrTf2N 94.5 1.3 ± 0.2 72.7 cation exchange

C7pyrTf2N 55.2 3.5 ± 0.7 15.8 cation exchange

C10pyrTf2N 12.9 6.2 ± 0.4 2.08 cation exchange

C14pyrTf2N 16.5 5.6 ± 0.5 2.95 cation exchange

C4pyrBETI 95.3 ND

C7pyrBETI 42.9 2.5 ± 0.8 17.2 cation exchange

C10pyrBETI 17.3 3.6 ± 0.6 4.81 cation exchange

C14pyrBETI 71.5 1.8 ± 0.5 39.7 cation exchange

Predominant partitioning mode
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BETI- as the anion.  If neutral complex / ion pair extraction is the only mode of partitioning present 

in a system, the ratio of %EM to %ENO3
- (R) will equal unity.  If the percentage of metal ion 

extracted is greater than the corresponding value for nitrate ion, neutral complex / ion pair 

extraction cannot be the only mode of partitioning present, and therefore cation-exchange (IX-1) 

must also be occurring.  Thus, the magnitude of R (i.e., how much larger than 1 it is) is a direct 

reflection of the extent to which ion-exchange (as IX-1) contributes to the overall partitioning. 

As can be seen from Table 3.2, cation-exchange is the predominant mode of partitioning 

under nearly all conditions, regardless of the metal ion being extracted, IL anion or cation.  If the 

alkyl chain length is increased from four to seven to ten, however, a decrease in R is observed, 

indicative of a decrease in the contribution of cation exchange to the overall extraction.  Such a 

decrease with increasing IL cation alkyl chain length is consistent with previous studies of 

analogous systems employing Cnmim+ or Nn,111
+-based ILs [3.3, 3.7].  For ionic liquids 

incorporating the C14pyr+ cation, however, the further increase in IL cation alkyl chain length leads 

to an unexpected increase in the ratio, consistent with a greater contribution to the overall 

extraction by cation exchange than would be expected on the basis of chain length alone.  In every 

case, larger R values (i.e., greater contributions from ion exchange) are observed for ILs 

incorporating the more hydrophobic BETI- anion when compared to their homologous Tf2N
--

bearing IL.  This is consistent with observations seen previously [3.4, 3.7] for metal ion extraction 

from an acidic aqueous phase when BETI--based ILs are employed. 

3.3.3 Extraction of Sr2+ from nitric acid media into Cnpyr+Tf2N
- ILs 

Figure 3.2 shows the dependence of the strontium distribution ratio (DSr) on the 

concentration of nitric acid, [HNO3], for a homologous series of Cnpyr+ ILs (where n = 4, 6, 7, 8, 

10, 12, and 14).  As is known from previous work [3.1, 3.3, 3.7], a downward slope in the 
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dependency (i.e., a decrease in DM as [HNO3] increases) is indicative of the predominance of ion-

exchange processes under the experimental conditions.  In contrast, when distribution ratios rise 

with an increase in acid concentration, neutral complex / ion pair extraction predominates, as is 

observed for metal ion extraction by neutral extractants into traditional organic solvents [3.3].  The 

left panel of Figure 3.2 shows the acid dependencies for Cnpyr+Tf2N
- ILs, where n = 4, 6, 7, 8, and 

10.  For the shorter chain (n = 4-7) ILs, a decrease in DSr is observed as the [HNO3] increases until 

high acid concentration (2-4 M) is reached, above which an upturn occurs.  This change in the 

shape / direction of the acid dependency is consistent with observations made for other families of 

ILs, and suggests a shift from ion-exchange to neutral complex / ion pair extraction as the 

predominant mode of strontium extraction.   

The behavior of the short-chain Cnpyr+ ILs is also characterized by a significant decrease 

in the distribution ratios at low acidities (i.e., ≤ 0.1 M HNO3) as the alkyl chain length of the cation 

increases, an observation consistent with ion-exchange involving the cationic component of the IL 

as the predominant mode of partitioning in this region.  That is, the distribution ratio falls because 

it becomes progressively more difficult to transfer an IL cation into the aqueous phase as its length 

(i.e., hydrophobicity) increases.  Such results too are consistent with those reported previously for 

both quaternary ammonium (Chapter 2) and Cnmim+ ILs [3.3], which have been reproduced in 

Figure 3.3 for purposes of comparison. 
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Figure 3.2. Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M DCH18C6 into 

several Cnpyr+Tf2N- ILs.  Left panel: C4pyr+Tf2N- (black exes), C6pyr+Tf2N- (open, green plus 

signs), C7pyr+Tf2N- (solid, purple diamonds), C8pyr+Tf2N- (solid, blue circles) and 

C10pyr+Tf2N- (solid, red squares); Right panel: C10pyr+Tf2N- (solid, red squares), 

C12pyr+Tf2N- (solid, green diamonds), and C14pyr+Tf2N- (black crosses).  
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Figure 3.3.  Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M DCH18C6 into 

several ILs.  Left panel: N8,111
+Tf2N- (solid, blue circles), N10,111

+Tf2N- (solid, red squares), 

N12,111
+Tf2N- (solid, green diamonds), and N14,111

+Tf2N- (black crosses); Right panel: 

C10mim+Tf2N- (solid, red squares), C12mim+Tf2N- (solid, green diamonds), and C14mim+Tf2N- 

(black crosses).   
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What is not consistent with prior reports is the behavior of the long-chain Cnpyr+ ILs, in 

particular, C12pyr+Tf2N
- and C14pyr+Tf2N

-.  Because of their greater alkyl chain length and the 

accompanying higher hydrophobicity, these cations should afford ILs exhibiting a greater 

contribution from neutral complex / ion pair extraction than is observed for the analogous C10pyr+ 

IL.  It is obvious from Figure 3.2 (right panel), however, that this is not the case.  Instead a shift 

back towards ion-exchange, which manifests itself here as a widening of the range of acidities over 

which a downward slope is observed for the acid dependency of DSr and / or an increase in DSr at 

a given nitric acid concentration in the low acidity region ([HNO3] < ~0.1 M), occurs. 

Taken together with the higher than expected water content and water solubility of these 

ILs (Table 3.1), along with the observed predominance of ion exchange in the extraction of 

strontium from water, it is clear that the longest chain Cnpyr+Tf2N
- ILs (most noticeably 

C14pyr+Tf2N
-), which are ostensibly the most hydrophobic, are behaving as if they are more 

hydrophilic in nature.   

3.3.4 Micelle formation by Cnpyr+ ILs 

In an earlier study examining the formation of an optically birefringent gel by C10mim+Br- 

upon addition of water, Firestone et al. [3.22] noted the resemblance of various IL cations to 

ordinary cationic surfactants (i.e., amphiphilicity derived from a charged polar head group and a 

long hydrophobic tail; see Figure 3.4).  A subsequent report by the same authors [3.23] reiterated 

this point, and went on to note that certain properties of ILs could be readily understood by drawing 

analogies to more conventional reagents, in particular, surfactants and liquid ion-exchangers.  

Since this time, it has become widely recognized that many ILs are surfactants, and this awareness 

has produced a voluminous literature on the subject of the fundamental chemistry and applied 

aspects of surface-active ILs [3.24, 3.25].  Not unexpectedly, with few exceptions (see, for  
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Figure 3.4.  Structures of several representative ionic liquids and surfactants. 
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example, refs. [3.16, 3.27, 3.28]), studies of these ILs have focused on those exhibiting significant 

water solubility (e.g., halide salts).   The possibility that the surface activity of a hydrophobic IL 

might exert an influence on partitioning processes involving a biphasic IL-aqueous system has 

therefore not been systematically explored.  To determine if self-association of the long-chain 

Cnpyr+ ILs is the origin of the unexpected results obtained, it is necessary to establish if these ILs 

do, in fact, form micelles. 

A number of techniques have been used to detect the formation of micelles, including the 

measurement of surface tension [3.29-3.31], conductivity [3.29, 3.32], fluorescence [3.29, 3.31, 

3.33], and 1H NMR spectra [3.29, 3.30, 3.33] at various concentrations of IL in an aqueous phase.  

These techniques typically involve measurements over a relatively wide range of IL 

concentrations.  Given the low water solubility of long-chain Cnpyr+ ILs bearing hydrophobic 

Tf2N
- and BETI- anions compared to their halide analogs, the working range over which micelle 

formation can be probed in these systems is somewhat limited.  Nonetheless, if the water solubility 

of the IL is such as to exceed the critical micellar concentration (CMC) (i.e., the concentration of 

IL required in the aqueous phase for micelle formation to occur) of the IL cation, a CMC 

determination is obviously feasible.  It is now well-established that for many non-micelle forming 

ILs, the surface tension of the aqueous phase will fall as the concentration of the IL in the aqueous 

phase rises.  If micelles are present in the aqueous phase, however, the surface tension of the 

solution will eventually become independent of IL concentration, and a plateau will be observed 

above the critical micellar concentration. 

For the previously studied Cnmim+ ILs (where n = 10-14) (Figure 3.5, panel A), increasing 

aqueous concentrations of the IL are accompanied by a decrease in the surface tension, consistent 

with the resemblance of the IL cations to conventional cationic surfactants [3.23], related studies   



   
 

 
Figure 3.5.  Aqueous phase surface tension at various concentrations of IL.  Panel A: C10mim+Tf2N- (solid, red squares), 

C12mim+Tf2N- (solid, green diamonds), and C14mim+Tf2N- (solid, black circles); Panel B: N10,111
+Tf2N- (solid, red squares), 

N12,111
+Tf2N- (solid, green diamonds) and N14,111

+Tf2N- (solid, black circles); Panel C: C10pyr+Tf2N- (solid, red squares), 

C12pyr+Tf2N- (solid, green diamonds), and C14pyr+Tf2N- (solid, black circles); Panel D: C12pyr+Tf2N- (solid, green diamonds), 

and C14pyr+Tf2N- (solid, black circles). 
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employing water-soluble analogs (e.g., halide salts) of these same IL cations [3.34-3.37], and 

published data for Cnmim+Tf2N
- ILs [3.33].  Note, that for none of the three ILs is a concentration 

reached at which a plateau in the surface tension plot is observed.  Similar results are observed 

(panel B) for the Nn,111
+Tf2N

- ILs (n = 10-14), as might be anticipated from the surface activity of 

related hydrophilic (e.g., Cl-) salts [3.33, 3.38].  For the Cnpyr+ ILs (n = 10-14, panel C), increasing 

aqueous concentrations of the IL are again accompanied by declining surface tension.  In this case, 

however, the surface tension plot exhibits a plateau region for both the C12- and C14-ILs (panel D) 

at sufficiently high concentrations, indicative of the formation of micelles [3.39].  

The observation of micelle formation in these systems is somewhat unexpected.  As has 

been noted previously in an examination of the surface tension of C10mim+X- ILs, where X = Cl-, 

PF6
-, or Tf2N

-, the latter two ions are likely too large to fit in the surface region of a micelle (i.e., 

the Stern layer).  Moreover, the low aqueous solubility of ILs incorporating a relatively 

hydrophobic anion suggests that the systems will undergo phase separation before any bulk 

aggregation can occur [3.33].  On the other hand, however, the relatively strong binding of a 

hydrophobic anion to the IL cation and the anion hydrophobicity itself could lead to a decrease in 

the electrostatic repulsion between head groups on the IL cation, lowering the critical micelle 

concentration and thus, promoting micelle formation.  Apparently then it is the balance between 

two opposing tendencies, that is, for anion bulk to disfavor micelle formation while anion 

hydrophobicity favors it, that determines whether phase separation or micelle formation is 

observed in a given instance.  In practical terms, this means that if the CMC is reached before the 

concentration at which phase separation occurs is exceeded, then micelle formation will be 

observed.  Here the surface tension data yield CMC values of 0.133 mM and 0.072 mM, 

respectively, for C12pyr+Tf2N
- and its C14-analog.  These values are significantly less than those 
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reported previously for the corresponding bromide and chloride ILs (9.3 mM and 2.2 mM for the 

respective Cnpyr+ bromides (n = 12 and 14) [3.29]; 16.43 mM and 4.01 mM for the corresponding 

Cnpyr+ chlorides) [3.37], consistent with reports suggesting that for a given IL cation, the CMC 

declines with the size of the counter anion [3.33].   

Due to the unexpected nature of these observations (i.e., the formation of micelles by ILs 

with very hydrophobic IL anions) it is important to ensure that impurities, namely the halide 

precursors which are known to form micelles, are not the cause of these observations.  As 

mentioned in Section 3.2.3, an additional preconditioning step was conducted in order to remove 

any trace amounts of water-soluble precursors.  In addition, elemental analysis of C12pyr+Tf2N
- 

and C14pyr+Tf2N
- was conducted and the results show that the actual percent masses of carbon, 

hydrogen and nitrogen match the theoretical values (Table 3.3).  Furthermore, if the observed 

micelles were a result of contaminant halide form of the IL, the CMC values measured should 

agree with those observed previously for the halide forms.   

Table 3.3 

Results of carbon, hydrogen, and nitrogen elemental analysis of C12pyr+Tf2N- and 

C14pyr+Tf2N- 

 
Uncertainty of measured values is ± 0.5%. 

 

 

 

 

Theoretical Actual Theoretical Actual Theoretical Actual

C 12 pyrTf 2 N 43.2 43.4 5.72 5.80 5.30 5.32

C 14 pyrTf 2 N 45.3 45.5 6.16 6.17 5.03 5.03

% C % H % N
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3.3.5 Mechanistic implications of micelle formation 

 As already noted, the accepted three-path model of metal ion partitioning into ILs in the 

presence of a neutral extractant implies that increasing IL cation hydrophobicity will be 

accompanied by a decreasing contribution from ion-exchange processes.  Although this model 

explains well the extraction behavior reported for both 1, 3-dialkylimidazolium and quaternary 

ammonium ILs, it clearly does not account for several aspects of the behavior of long-chain Cnpyr+ 

ILs, in particular their unexpectedly high water content and water solubility and the significant 

contribution of ion-exchange to the extraction of Sr2+ by DCH18C6.  Recognition of the fact that 

micelle formation occurs for the long-chain Cnpyr+ ILs, however, suggests a simple modification 

of the model that fully accounts for the new observations (Figure 3.6).   

That is, in those cases in which the IL cation is known to exhibit micellization, it is not 

sufficient to represent the ion-exchange processes, IX-1 or IX-2, as merely an exchange of the IL 

cation for the cationic metal-extractant complex or the hydronium ion.  Rather, it must be denoted 

that these exchange processes are accompanied by self-association of the IL cation.  This 

aggregation has the effect of both driving the ion-exchange processes and raising the concentration 

of IL cation in the aqueous phase above that expected on the basis of alkyl chain length 

considerations alone.  Thus, micellization does not introduce a new path for metal ion partitioning, 

but it does promote an existing one, unfortunately, an undesirable one from the perspective of the 

development of “green” IL-based separation processes.  Stated another way, micelle formation in 

these systems restricts our ability to increase the contribution of neutral complex / ion pair 

partitioning simply by increasing the hydrophobicity of the IL cation, an observation that contrasts 

with behavior previously reported for Cnmim+ [3.3] and quaternary ammonium-based ILs (Chapter 

2). 
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Figure 3.6. Three-path model of metal ion extraction for a system comprising a neutral 

extractant (e.g., DCH18C6) dissolved in a micelle-forming IL (e.g., C14pyr+Tf2N-) in contact 

with a nitric acid solution. 
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3.3.6 Effect of IL cation hydrophobicity on extraction from acidic nitrate media 

Anticipating the continued effects of micelle formation, the remaining metal ion extraction 

studies were conducted with a representative group of Cnpyr+X- ILs (where n = 4, 7, 10 and 14 and 

X- = Tf2N
- and BETI-) that includes one IL that forms micelles and three that do not.  The nitric 

acid dependencies of Na+ and Ba2+ extraction into Cnpyr+Tf2N
- ILs are presented in Figure 3.7.  It 

is evident from the effect of nitric acid concentration on the extraction of Ba2+ that the ability of 

C14pyr+Tf2N
- to form micelles reduces the amount of neutral complex / ion pair extraction present 

and causes the IL to behave as if it is unexpectedly hydrophilic, which is indicated by greater than 

expected prevalence of ion exchange.  In contrast, the short-chain, non-micelle-forming ILs behave 

as expected, that is, according to the trends observed previously for Cnmim+ and Nn,111
+ IL families 

[3.3] (i.e., a downward shift in the Ba2+ acid dependency as the alkyl chain length on the IL cation 

is increased).  Extraction of Na+ into these three ILs is dominated by ion-exchange and, again, 

follows trends similar to those observed previously for other IL families [3.3], namely a slight 

downward shift of distribution ratios below 1 M HNO3, above which all of the dependencies are 

nearly the same.   

3.3.7 Effect of IL anion hydrophobicity on extraction from acidic nitrate media 

As noted in Chapter 2, an increase in the IL anion hydrophobicity has been shown to lead 

to an increased tendency towards ion-exchange [3.3, 3.4], due to mass action considerations [3.40].  

That is, as the hydrophobicity of the anion increases, less IL dissolves initially in the aqueous 

phase, thus allowing more IL cation to exchange into the aqueous phase.  Comparing the extraction 

of Na+, Sr2+, and Ba2+ from nitric acid into Cnpyr+Tf2N
- (Figures 3.2 and 3.7) and Cnpyr+BETI- 

(Figure 3.8) ILs, it is clear that metal ion extraction into the BETI- forms is more prone to ion- 
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Figure 3.7.  Effect of HNO3 concentration on the extraction of Na+ (left) and Ba2+ (right) by 

0.1 M DCH18C6 into C4pyr+Tf2N- (black exes), C7pyr+Tf2N- (solid, purple triangles), 

C10pyr+Tf2N- (solid, red squares) and C14pyr+Tf2N- (black crosses). 
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exchange, as is evident from the more steeply negative slopes of the acid dependencies.  As was 

seen for the extraction of Sr2+ and Ba2+ into Cnpyr+Tf2N
- ILs, there is a shift from ion-exchange 

towards neutral complex / ion pair extraction when these divalent metal ions are extracted into 

Cnpyr+BETI- ILs by DCH18C6 as the hydrophobicity of the IL cation is increased.  The extraction 

of Na+ continues to be dominated by ion exchange processes when Cnpyr+BETI- ILs are employed.  

It is obvious when analyzing the acid dependencies of all three metal ions that the contributions 

from ion exchange are greater than one would expect when considering IL cation hydrophobicity 

alone for C14pyr+BETI-.   

A surface tension study (Figure 3.9) of C10- and C14pyr+BETI- shows a plateau at 

sufficiently high concentrations of C14pyr+BETI-, indicating that it too forms micelles (CMC = 

1.07 mM).  Elemental analysis confirms that impurities are not responsible for the observed 

behavior (Table 3.4).  It is unclear at present why an ostensibly more hydrophobic IL anion yields 

in an increase in the value of the CMC, but ILs bearing the BETI- anion have exhibited unexpected 

behavior before [3.4].  It is important to consider, though, that the nature (i.e., shape and size) of 

the micelles forming in these systems is not known.  Thus, further studies utilizing small-angle X-

ray scattering (SAXS) or small-angle neutron scattering (SANS), for example, will be required to 

fully explain our observations. 

Table 3.4 

Results of carbon, hydrogen, and nitrogen elemental analysis of C14pyr+BETI- 

 
Uncertainty of measured values is ± 0.5%. 

 

 

Theoretical Actual Theoretical Actual Theoretical Actual

C 14 pyrBETI 42.1 41.9 5.22 5.04 4.27 4.33

% C % H % N
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Figure 3.8.  Effect of HNO3 concentration on the extraction of Na+ (left), Sr2+ (middle) and 

Ba2+ (right) by 0.1 M DCH18C6 into C4pyr+BETI- (black exes), C7pyr+BETI- (open, purple 

triangles), C10pyr+BETI- (open, red squares) and C14pyr+BETI- (black crosses). 
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Figure 3.9 Aqueous phase surface tension at various concentrations of C10pyr+BETI- (open, 

red squares) and C14pyr+BETI- (open, black circles). 
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3.3.8 Effect of IL cation hydrophobicity on extraction from acidic chloride media 

 The extraction of alkali and alkaline earth metals from acidic chloride media into Cnmim+ 

and Nn,111
+ ILs is dominated by ion-exchange processes due to the comparatively high hydration 

enthalpy of the chloride anion compared to nitrate (-381 kJ/mol and -314 kJ/mol, respectively) 

[3.41], thus making the transfer of a neutral complex / ion pair more difficult [3.2].  The acid 

dependencies of Na+, Sr2+ and Ba2+ into Cnpyr+Tf2N
- are presented in Figure 3.10.  It is evident 

that ion-exchange processes predominate in these systems as well.  Extraction of Na+ from HCl 

strongly resembles extraction from HNO3, that is, a slight downward shift in distribution ratios up 

to 1 M [HCl].  In contrast, the effect of IL cation hydrophobicity on the extraction of the divalent 

metal ions does not present itself as a shift from ion-exchange to neutral complex / ion pair 

extraction, but as a decrease in the magnitude of the distribution ratios, observations which agree 

with other IL-based systems [3.2].  Micelle formation clearly continues to affect extraction, even 

when the aqueous phase is hydrochloric acid, as indicated by higher than expected distribution 

ratios when C14pyr+Tf2N
- is employed. 

3.3.9 Effect of IL anion hydrophobicity on extraction from acidic chloride media 

The effect of IL anion hydrophobicity observed for nitric acid media (i.e., that a more 

hydrophobic IL anion will facilitate ion-exchange processes) is evident when examining divalent 

metal ion extraction into Cnpyr+BETI- ILs (Figure 3.11).  Here, a slight increase in the acid 

concentration where the upturn in the distribution ratios occurs.  For example, the acid dependency 

of Sr2+ extraction into C10pyr+Tf2N
- exhibits an upturn at 2 M HCl whereas the upturn occurs at 3 

M HCl for C10pyr+BETI-.  As expected, the effect of micelle formation is again apparent in the 

extraction of metal ions from HCl into C14pyr+BETI-, resulting in distribution ratios that are higher 

than expected based on the IL cation hydrophobicity alone. 
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Figure 3.10.  Effect of HCl concentration on the extraction of Na+ (left), Sr2+ (middle) and 

Ba2+ (right) by 0.1 M DCH18C6 into C4pyr+Tf2N- (black exes), C7pyr+Tf2N- (solid, purple 

triangles), C10pyr+Tf2N- (solid, red squares) and C14pyr+Tf2N- (black crosses). 
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Figure 3.11.  Effect of HCl concentration on the extraction of Na+ (left), Sr2+ (middle) and 

Ba2+ (right) by 0.1 M DCH18C6 into C4pyr+BETI- (black exes), C7pyr+BETI- (open, purple 

triangles), C10pyr+BETI- (open, red squares) and C14pyr+BETI- (black crosses). 
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3.3.10 Extraction selectivity 

For ILs to be of practical value in either liquid-liquid extraction or extraction 

chromatographic systems for metal ion separations (e.g., separation and preconcentration of trace 

radionuclides form soil leachates or biological samples), the partitioning of the metal ion of interest 

in the 1-3 M acid range must be highly selective vs. other metal ions present, particularly matrix 

ions such as Ca2+ and Na+ [3.19, 3.42].  To assess the selectivity of N-alkylpyridinium IL-based 

systems, separation factors (αM1/M2) were calculated from the extraction data presented above and 

the results presented in Table 3.5 (HNO3) and Table 3.6 (HCl).  As has been shown, neutral 

complex / ion pair extraction (i.e., the preferred, “green” mode of metal ion partitioning) is favored 

for non-micelle-forming ILs comprising a hydrophobic cation and a somewhat hydrophilic anion.  

This suggests that C10pyr+Tf2N
-, which is the longest chain Cnpyr+ IL that does not form micelles, 

is the most appropriate choice of the N-alkylpyridinium ILs to compare to previously studied 

solvents (1-octanol, C10mim+Tf2N
-, and N12,111

+Tf2N
-) to determine if this IL family affords any 

improvement in extraction selectivity.  

When nitric acid-containing aqueous phases are employed (Table 3.5), C10pyr+Tf2N
- is 

more selective (as reflected in larger values of αSr/Ba and αSr/Na) than C10mim+Tf2N
- and provides 

higher αSr/Na values than 1-octanol, but it is outperformed by N12,111
+Tf2N

- under nearly all 

conditions.  Moreover, examination of the respective acid dependencies makes it clear that 

C10pyr+Tf2N
- is more prone to ion-exchange than either C10mim+Tf2N

- or N12,111
+Tf2N

- (based on 

the shape of their dependencies) [3.3].  Unfortunately, as pointed out above, micelle formation 

restricts our ability to further increase the hydrophobicity of the IL cation to reduce the prevalence 

of ion-exchange processes.  Extraction from hydrochloric acid (Table 3.6) tends to favor Na+ 

partitioning over Sr2+, except for some ILs known to extract predominately by ion exchange  
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Table 3.5 

Effect of HNO3 concentration on αSr/Ba (= DSr / DBa) and αSr/Na (= DSr / DNa) values for 

Cnpyr+Tf2N- ILs, Cnpyr+BETI- ILs, C10mim+Tf2N-, N12,111
+Tf2N- and 1-octanol from 

extraction data for 0.1 M DCH18C6 in the specified organic or IL phase 

 
   a Data from reference [3.3]. 
   b Data from Table 2.3. 

 

 

 

 

 

[HNO3]

αSr/Na αSr/Ba αSr/Na αSr/Ba αSr/Na αSr/Ba

1 M 2 M 3 M

C7pyrBETI

59.3

32.2

38.1

12.4

38.5

11.4

59.9

38.0

72.0

18.0

24.1

0.16

0.34

1.26

0.91

0.26

0.57 0.62 16.7

C10pyrBETI

C14pyrBETI

C10mimTf2N
a

1-octanol
a

C4pyrTf2N

C7pyrTf2N

C10pyrTf2N

C14pyrTf2N

C4pyrBETI

2.75

0.25

1.15

12.8

25.9

6.30

42.6

8.22

16.5

4.90

25.8

7.35 1.52 14.2

84.0

52.0

111

27.0

30.0

3.21

0.59

1.17

1.82

0.17

0.35

1.76

0.82

0.31

1.06

1.38

0.33

0.63

1.88

0.89

0.60

31.3

5.18

68.4

2.03

N12,111Tf2N
b 37.1 3.16 90.3 3.58 256.0 3.84

0.95

3.27



 85  
 

Table 3.6 

Effect of HCl concentration on αSr/Ba (= DSr / DBa) and αSr/Na (= DSr / DNa) values for 

Cnpyr+Tf2N- ILs, Cnpyr+BETI- ILs, C10mim+Tf2N-, N12,111
+Tf2N- and 1-octanol from 

extraction data for 0.1 M DCH18C6 in the organic or IL phase 

 
   a Data from reference [3.3]. 
   b Data from Table 2.4. 

 

 

 

 

[HCl]

αSr/Na αSr/Ba αSr/Na αSr/Ba αSr/Na αSr/Ba

1 M 2 M 3 M

C4pyrTf2N 40.2 0.05 47.1 0.06 62.4 0.06

0.29 0.11

0.78 0.57

22.4 0.11

C14pyrTf2N 0.07 0.24 0.07 0.22

9.21 0.08

C10pyrTf2N 0.11 0.09 0.10 0.09 0.41 0.13

C7pyrTf2N 2.54 0.08 2.05 0.06

C14pyrBETI 5.52 0.07 5.32

C10pyrBETI 0.07 0.21 0.09

C7pyrBETI 1.76 0.08 2.63

C4pyrBETI 27.3 0.02 22.8

3.91 0.07

C10mimTf2N
a 0.08 0.15 0.08 0.12

N12,111Tf2N
b 0.04 0.14 0.06 0.19 0.15 0.18

0.08

6.61 0.11

0.32 0.18 0.25

0.10

0.20 0.21

0.06

1-octanol
a 0.58 0.58 0.78 0.65
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processes.  Also, Ba2+ is preferentially extracted (vs. Sr2+) under all conditions, and therefore, 

solvent extraction systems employing HCl may not be of particular value if Sr2+ selectivity is 

desired.  It appears then that the use of the Nn,111
+ IL family is preferred over the Cnpyr+ family 

due to the lack of micelle formation and more favorable strontium selectivity over barium and 

sodium when acidic nitrate media are employed. 

3.3.11 Effect of IL cation structure on the formation of micelles 

It should be obvious at this point that the ability of long chain Cnpyr+ ILs to form micelles 

in the aqueous phase is detrimental in IL-based solvent extraction systems employing DCH18C6 

(and by analogy, other neutral extractants) because of the accompanying increase in the 

contribution of ion-exchange processes to the overall partitioning.  Although this family of ILs 

represents the only one for which this phenomenon has been observed to date, it is nonetheless 

worthwhile to determine if it will be possible to eliminate micellization were it to arise in studies 

of other IL families.  As indicated above, the stability of a micelle depends on several factors, 

including head group repulsion [3.43].  That is, an amphiphile whose head group repulsions are 

too great will not be able to undergo micellization.  This suggests that the structure of the 

hydrophilic head group could be modified to block micelle formation of the IL cation.  

Additionally, previous work on the surface activity of mono- and dicationic imidazolium-based 

ILs demonstrates the effect of each alkyl chain length on the CMC [3.44].  It was found that ILs 

bearing a methyl- group opposite the alkyl chain had lower CMCs compared to ILs with similar 

total carbon number, but bearing a butyl- group opposite the alkyl chain (e.g., 1-decyl-3-methyl 

imidazolium bromide – total C = 14 and CMC = 20 mM; 1-butyl-3-octyl imidazolium bromide – 

total C = 15 and CMC = 41 mM).  That is, for ILs with similar or the same total carbon number, 

an increase in the number of carbons on the side of the ring opposite that of the main alkyl chain 
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results in an increase in the CMC, implying that micelle formation is more difficult.  With this in 

mind, extraction studies were conducted with IL cations incorporating an ethyl- or dimethylamino- 

substituent at the 4-position on the pyridinium ring (Figure 3.12). 

 
Figure 3.12.  Structures of N-alkylpyridinium (Cnpyr+), N-alkyl-4-ethylpyridinium 

(Cnetpyr+) and N-alkyl-4-(dimethyl)aminopyridinium (Cndmapyr+) IL cations. 

 

Figure 3.13 shows the nitric acid dependencies for Sr2+ extraction into Cnetpyr+Tf2N
- ILs 

by DCH18C6 (left panel), as well as surface tension measurements at various concentrations of 

the same IL in water (right panel).  As is evident from a comparison of the extraction data to that 

observed for the Cnpyr+Tf2N
- ILs (Figure 3.2), the presence of an ethyl- group appears to enhance 

ion exchange processes in these systems compared to ILs bearing the unsubstituted ring. In fact, 

all four Cnetpyr+Tf2N
- IL-based systems exhibit acid dependencies with regions that have steep 

negative slopes, suggesting substantial contributions from ion exchange.  Despite the presence of 

a downward shift in the distributions ratios as the alkyl chain length is increased, which has been 

reported previously for Cnmim+ [3.1-3.3], Nn,111
+ (Chapter 2), and Cnpyr+ ILs that do not form 

micelles, the surface tension measurements show that the longest chain IL (C12etpyr+Tf2N
-) does 

in fact form micelles (CMC = 0.478mM).  C14pyr+Tf2N
- represents the unsubstituted Cnpyr+ IL 

with the same total carbon as C12etpyr+Tf2N
-.  As expected, the ‘shift’ of an ethyl- group from the 

main alkyl chain to the opposite side of the IL cation ring results in an increase in the CMC (0.307  
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Figure 3.13.  Left panel: Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M 

DCH18C6 into C6etpyr+Tf2N- (open, green crosses), C8etpyr+Tf2N- (solid, blue circles), 

C10etpyr+Tf2N- (solid, red squares) and C12etpyr+Tf2N- (solid, green diamonds).  Right panel: 

Aqueous phase surface tension at various concentrations of C8etpyr+Tf2N- (solid, blue 

circles), C10etpyr+Tf2N- (solid, red squares) and C12etpyr+Tf2N- (solid, green diamonds). 
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mM and 0.478 mM for C14pyr+Tf2N
- and C12etpyr+Tf2N

-, respectively).  In addition, 

C10etpyr+Tf2N
- does not form micelles whereas C12pyr+Tf2N

- does (CMC = 0.133 mM).   

It is clear that the presence of the ethyl- group on the N-alkylpyridinium ring favors 

extraction by ion exchange processes.  This effect is obvious when the nitric acid dependencies for 

the extraction of Sr2+ of ILs with the same total carbon count are compared (Figure 3.14).  Based 

only on the shape of their acid dependencies, C12etpyr+Tf2N
- and C14pyr+Tf2N

- appear to 

incorporate comparable contributions from ion exchange.  Why a more dramatic effect is not 

observed in the extraction behavior for C12etpyr+Tf2N
- can be explained by the higher water 

solubilities observed for ethyl-bearing ILs compared to those with the same carbon count without 

the ethyl- group (Table 3.7).  It appears then, that although the addition of an ethyl- group to the 

N-alkylpyridinium ring makes micelle formation more difficult by raising the CMC of ILs with 

the same total carbon count, the increased water solubility of the ethyl-containing ILs promotes 

ion exchange processes.   



   
 

 
Figure 3.14.  Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M DCH18C6.  Panel A: C8pyr+Tf2N- (solid, blue 

circles) and C6etpyr+Tf2N- (open, blue circles).  Panel B: C10pyr+Tf2N- (solid, red squares) and C8etpyr+Tf2N- (open, red squares).  

Panel C: C12pyr+Tf2N- (solid, green diamonds) and C10etpyr+Tf2N- (open, green diamonds).  Panel D: C14pyr+Tf2N- (solid, black 

triangles) and C12etpyr+Tf2N- (open, black triangles).
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Table 3.7 

Comparison of IL water solubilities 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon Count Ionic liquid Water solubility (ppm)

C10pyrTf2N 282

C8etpyrTf2N 2026

C8dmapTf2N 243

C12pyrTf2N 111

C10etpyrTf2N 3387

C14pyrTf2N 171

C12etpyrTf2N 1334

C12dmapTf2N 46

15

17

19
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The dimethylamino- group represents not only a larger substituent compared to ethyl-, but 

also a more polar one due to the presence of the electron withdrawing nitrogen atom, which should 

increase the CMC.  In addition, work conducted at Brookhaven National Laboratory has shown 

that ILs incorporating this substituent group are relatively stable in the presence of radiation 

compared to similar ILs [3.45], which is an advantageous attribute for ILs given the intended 

applications of these solvents.  Strontium extraction data (left panel) and surface tension 

measurements (right panel) for C8dmapyr+Tf2N
- and C12dmapyr+Tf2N

- are presented in Figure 

3.15.  Unlike the ethyl-bearing ILs, the incorporation of the dimethylamino- group actually reduces 

the contributions from ion exchange compared to the non-substituted analogs.  Additionally, the 

water solubility of these ILs was found to be less than both the ethyl- containing ILs and those 

comprising unsubstituted IL cations (Table 3.7).  Figure 3.16 shows a comparison of the nitric acid 

dependencies for the extraction of Sr2+ into Cnpyr+Tf2N
- and Cndmapyr+Tf2N

- ILs with the same 

total carbon count.  Not only do Cndmapyr+Tf2N
- IL-based systems exhibit favorable strontium 

extraction data, but based on measurements of surface tension at various concentrations of IL in 

water, they do not form micelles under these conditions.  Surfactants bearing a dimethylamino- 

group that form micelles have been described previously [3.46], but the CMC of the ILs in these 

particular systems has increased enough to eliminate micellization. 
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Figure 3.15.  Left panel: Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M 

DCH18C6 into C8dmapyr+Tf2N- (solid, blue circles) and C12dmapyr+Tf2N- (solid, green 

diamonds).  Right panel: Aqueous phase surface tension at various concentrations of 

C8dmapyr+Tf2N- (solid, blue circles) and C12dmapyr+Tf2N- (solid, green diamonds). 
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Figure 3.16.  Effect of HNO3 concentration on the extraction of Sr2+ by 0.1 M DCH18C6. 

Left panel: C10pyr+Tf2N- (solid, red squares) and C8dmapyr+Tf2N- (open, red squares).  Right 

panel: C14pyr+Tf2N- (black plus signs) and C12dmapyr+Tf2N- (black exes). 
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3.4 Conclusions 

This work has confirmed that the effects of IL cation and anion hydrophobicity and the 

hydration enthalpy of the aqueous phase anion on metal ion extraction reported for other IL 

families are general.  It has also revealed that aggregation of the IL cation in the aqueous phase 

represents yet another complexity of IL-based extraction systems that must be taken into account 

when considering their use as alternatives to traditional organic solvents in these applications.  

Micelle formation by the IL cation facilitates undesirable ion-exchange processes and prevents the 

exploitation of a highly hydrophobic IL cation to enhance neutral complex / ion pair extraction.    

Despite this, the so-called ‘three-path model’ does appear to represent a general description of the 

partitioning of a metal ion into an ionic liquid in the presence of a neutral extractant.  That is, 

micelle formation does not represent a new extraction mechanism; rather it is a driving force for 

cation exchange involving the IL cation.  Lastly, the incorporation of a dimethylamino- group into 

the N-alkylpyridinium ring effectively blocks micelle formation and facilitates strontium 

extraction via neutral complex / ion pair formation by reducing the contributions from ion 

exchange processes.  We expect that a variety of other substituents will eventually be found to 

serve this same purpose. 

 

 

 

 

 



 
 

 96  
 

3.5 References 

[3.1] Dietz, M.L.; Garvey, S.L.; Hawkins, C.A. Mechanisms of Metal Ion Transfer into RTILs: 

Implications for Their Use as Extraction Solvents. Proceedings of the 19th International 

Solvent Extraction Conference, Santiago, Chile, Chapter X, 2011, 208-213. 

[3.2] Garvey, S.L.; Hawkins, C.A.; Dietz, M.L., Effect of Aqueous Phase Anion on the Mode of 

Facilitated Ion Transfer into Room-Temperature Ionic Liquids. Talanta, 2012, 95, 25-30. 

[3.3] Hawkins, C.A.; Garvey, S.L.; Dietz, M.L., Structural Variations in Room-Temperature 

Ionic Liquids: Influences on Metal Ion Partitioning Modes and Extraction Selectivity. 

Separation and Purification Technology, 2012, 89, 31-38. 

[3.4] Garvey, S.L.; Dietz, M.L., Ionic Liquid Anion Effects in the Extraction of Metal Ions by 

Macrocyclic Polyethers. Separation and Purification Technology, 2014, 123, 145-152. 

[3.5] Dietz, M.L.; Dzielawa, J.A., Ion-Exchange as a Mode of Cation Transfer into Room-

Temperature Ionic Liquids Containing Crown Ethers: Implications for the “Greenness” of 

Ionic Liquids as Diluents in Liquid-Liquid Extraction. Chemical Communications, 2001, 

2124-2125. 

[3.6] Jensen, M.P.; Dzielawa, J.A.; Rickert, P.; Dietz, M.L., EXAFS Investigations of the 

Mechanism of Facilitated Ion Transfer into a Room-Temperature Ionic Liquid. Journal of 

the American Chemical Society, 2002, 124, 10664-10665. 

[3.7] Dietz, M.L.; Dzielawa, J.A.; Laszak, I.; Young, B.A.; Jensen, M.P., Influence of Solvent 

Structural Variations on the Mechanism of Facilitated Ion Transfer into Room-

Temperature Ionic Liquids. Green Chemistry, 2003, 5, 682-685. 

[3.8] Stepinski, D.C.; Jensen, M.P.; Dzielawa, J.A.; Dietz, M.L., Synergistic Effects in the 

Facilitated Transfer of Metal Ions into Room-Temperature Ionic Liquids. Green 

Chemistry, 2005, 7, 151-158. 

[3.9] Dietz, M.L.; Stepinski, D. C., A Ternary Mechanism for the Facilitated Transfer of Metal 

Ions into Room-Temperature Ionic Liquids (RTILs): Implications for the “Greenness” of 

RTILs as Extraction Solvents. Green Chemistry, 2005, 7, 747-750. 

[3.10] Dietz, M.L.; Stepinski, D.C., Anion Concentration-Dependent Partitioning Mechanism in 

the Extraction of Uranium into Room-Temperature Ionic Liquids. Talanta, 2008, 75, 598-

603. 

[3.11] Bagherzadeh, M.; Ghazali-Esfahani, S., Efficient Recyclable Catalytic System for 

Deoxygenation of Sulfoxides: Catalysis of Ionic Liquid-Molybdenum Complexes in Ionic 

Liquid Solution. New Journal of Chemistry, 2012, 36, 971-976. 

[3.12] Kim, M.J.; Shin, S.H.; Kim, Y.J.; Cheong, M.; Lee, J.S.; Kim, H.S., Role of Alkyl Group 

in the Aromatic Extraction Using Pyridinium-Based Ionic Liquids. Journal of Physical 

Chemistry B, 2013, 117, 14827-14834. 



 
 

 97  
 

[3.13] Yamamoto, E.; Yamaguchi, S.; Nagamune, T., Protein Refolding by N-Alkylpyridinium 

and N-Alkyl-N-Methylpyrrolidinium Ionic Liquids. Applied Biochemistry and 

Biotechnology, 2011, 164, 957-967. 

[3.14] Papaiconomou, N.; Lee, J-M.; Salminen, J.; Von Stosch, M.; Prausnitz, J.M., Selective 

Extraction of Copper, Mercury, Silver and Palladium Ions from Water Using Hydrophobic 

Ionic Liquids. Industrial and Engineering Chemistry Research, 2008, 47, 5080-5086. 

[3.15] Wu, W.; Wu, G.; Zhang, M., Highly Selective Synthesis of 2,6-Dimethylnaphthanlene by 

Green Catalysts—N-alkyl-pyridinium Halides-Ammonium Chloride Ionic Liquids. 

Applied Catalysis A: General, 2007, 326, 189-193. 

[3.16] Deetlefs, M.; Seddon, K.R., Improved Preparations of Ionic Liquids Using Microwave 

Irradiation. Green Chemistry, 2003, 5, 181-186. 

[3.17] Bonhote, P.; Dias, P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M., Hydrophobic, 

Highly Conductive Ambient-Temperature Molten Salts. Inorganic Chemistry, 1996, 35, 

1168-1178.  

[3.18] Yunus, N.M.; Mutalib, M.I.A.; Man, Z.; Bustam, M.A.; Murugesan, T., Thermophysical 

Properties of 1-Alkylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal 

of Chemical Thermodynamics, 2010, 42, 491-495. 

 [3.19] Horwitz, E.P.; Dietz, M.L.; Fisher, D.E., Separation and Preconcentration of Strontium 

from Biological, Environmental, and Nuclear Waste Samples by Extraction 

Chromatography Using a Crown Ether. Analytical Chemistry, 1991, 63, 522-525. 

[3.20] Kilaru, P.; Baker, G.A.; Scovazzo, P., Density and Surface Tension Measurements of 

Imidazolium-, Quaternary, Phosphonium-, Ammonium-Based Room-Temperature Ionic 

Liquids: Data and Correlations. Journal of Chemistry and Engineering Data, 2007, 52, 

2306-2314. 

[3.21] Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, 

R.D., Characterization and Comparison of Hydrophilic and Hydrophobic Room 

Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chemistry, 2001, 

3, 156-162. 

[3.22] Firestone, M.A.; Dzielawa, J.A.; Zapol, P.; Curtiss, L.A.; Seifert, S.; Dietz, M.L., Lyotropic 

Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid. Langmuir, 2002, 

18, 7258-7260. 

[3.23] Dietz, M.L.; Dzielawa, J.A.; Jensen, M.P.; Firestone, M.A., “Conventional aspects of 

unconventional solvents: Room-temperature ionic liquids as ion exchangers and ionic 

surfactants”, in Ionic Liquids as Green Solvents: Progress and Prospects, (R.D. Rogers 

and K.L. Seddon, Eds.) American Chemical Society, Washington, DC, 2003, 526-543. 

[3.24] Sharma, R.; Mahajan, R.K., Influence of Various Additives on the Physicochemical 

Properties of Imidazole-Based Ionic Liquids:  A Comprehensive Review. RSC Advances, 

2014, 4, 748-774. 



 
 

 98  
 

[3.25] Tariq, M.; Freire, M.G.; Saramago, B.; Coutinho, J.A.P.; Canongia Lopes, J.N.; Rebelo, 

L.P.N., Surface Tension of Ionic Liquids and Ionic Liquid Solutions. Chemical Society 

Review, 2012, 41, 829-868. 

[3.26] Freire, M.G.; Carvalho, P.J.; Fernandes, A.M.; Marrucho, I.M.; Queimada, A.J.; Coutinho, 

J.A.P., Surface Tension of Imidazolium-Based Ionic Liquids: Anion, Cation, Temperature 

and Water Effect. Journal of Colloid and Interface Science, 2007, 314, 621-630. 

[3.27] Ghatee, M.H.; Zolghadr, A.R., Surface Tension Measurements of Imidazolium-Based 

Ionic Liquids at Liquid-Vapor Equilibrium. Fluid Phase Equilibrium, 2008, 263, 168-175. 

[3.28] Ahosseini, A.; Sensenich, B.; Weatherly, L.R.; Scurto, A.M., Phase Equilibrium, 

Volumetric, and Interfacial Properties of the Ionic Liquid, 1-hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide and 1-octene. Journal of Chemical and Engineering 

Data, 2010, 55, 1611-1617. 

[3.29] Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A.; Garcia, M.T., Self-

Aggregation and Antimicrobial Activity of Imidazolium and Pyridinium Based Ionic 

Liquids in Aqueous Solution. Journal of Colloid and Interface Science, 2011, 355, 164-

171. 

[3.30] Sastry, N.V.; Vaghela, N.M.; Macwan, P.M.; Soni, S.S.; Aswal V.K.; Gibaud, A., 

Aggregation Behavior of Pyridinium Based Ionic Liquids in Water – Surface Tension, 1H 

NMR Chemical Shifts, SANS and SAXS. Journal of Colloid and Interface Science, 2012, 

371, 52-61. 

[3.31] Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F., Aggregation Behavior and 

Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic 

Liquids in Aqueous Solution. Langmuir, 2013, 29, 2536-2545. 

[3.32] Jin-Yan, L.; Yong-juan, L.; Hai-Chao, L., Conductometry Properties of Mixed Reverse 

Micelles with Amphiphilic Ionic Liquids. Advanced Materials Research, 2012, 455-456, 

800-805. 

[3.33] Blesic, M.; Marques, M.H.; Plechkova, N.V.; Seddon, K.R.; Rebelo L.P.N.; Lopes, A., 

Self-Aggregation of Ionic Liquids: Micelle Formation in Aqueous Solution. Green 

Chemistry, 2007, 9, 481-490. 

[3.34] Jungnickel, C.; Luczak, J.; Ranke, J.; Fernandez, J.F.; Muller, A.; Thöming, J., Micelle 

Formation of Imidazolium Ionic Liquids in Aqueous Solution. Colloids and Surfaces A: 

Physicochemical Engineering Aspects, 2008, 316, 278-284. 

[3.35] Luczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C., Self-Organization of Imidazolium Ionic 

Liquids in Aqueous Solution. Colloids and Surfaces A: Physicochemical Engineering 

Aspects, 2008, 329, 125-133. 



 
 

 99  
 

[3.36] El Seoud, O.A.; Pires, P.A.R.; Abdel-Moghny, T.; Bastos, E.L., Synthesis and Micellar 

Properties of Surface-Active Ionic Liquids: 1-alkyl-3-methylimidazolium Chlorides. 

Journal of Colloid and Interface Science, 2007, 313, 296-304. 

[3.37] Galgano, P.D., El Seoud, O.A., Surface Active Ionic Liquids: Study of the Micellar 

Properties of 1-(1-alkyl)-3-methylimidazolium Chlorides and Comparison with 

Structurally Related Surfactants. Journal of Colloid and Interface Science, 2011, 361, 186-

194. 

[3.38]  Mata, J.; Varade, D.; Bahadur, P., Aggregation Behavior of Quaternary Salt-Based 

Cationic Surfactants. Thermochimica. Acta, 2005, 428, 147-155. 

[3.39] Rosen, M.J., Surfactants and Interfacial Phenomena. 2nd ed., Wiley Interscience, Hoboken, 

NJ, 1989. 

 [3.40] Luo, H.; Dai, S.; Bonnesen, P.V.; Haverlock, T.J.; Moyer, B.A.; Buchanan III, A.C., A 

Striking Effect of Ionic-Liquid Anions in the Extraction of Sr2+ and Cs+ by Dicyclohexano-

18-Crown-6. Solvent Extraction and Ion Exchange, 2006, 24, 19-31. 

[3.41] Smith, D.W., Ionic Hydration Enthalpies. Journal of Chemical Education, 1977, 54, 540-

542. 

[3.42] Horwitz, E.P.; Chiarizia, R.; Dietz, M.L., A Novel Strontium-Selective Extraction 

Chromatographic Resin. Solvent Extraction and Ion Exchange, 1992, 10, 313–336. 

[3.43] Tanford, C., Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size 

Distribution. Proceedings of the National Academy of Sciences of the United States, 1974, 

71, 1811-1815. 

[3.44] Baltazar, Q.Q.; Chandawalla, J.; Sawyer, K.; Anderson, J.L., Interfacial and Micellar 

Properties of Imidazolium-Based Monocationic and Dicationic Ionic Liquids. Colloids and 

Surfaces A: Physicochemical Engineering Aspects, 2007, 302, 150-156. 

[3.45] Mincher, B.J.; Wishart, J.F., The Radiation Chemistry of Ionic Liquids: A Review.  Solvent 

Extraction and Ion Exchange, 2014, 32, 563-583. 

[3.46] Tiwari, A.K.; Sowmiya, S.M.; Saha, S.K., Study on Premicellar and Micellar Aggregates 

of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution Using a 

Probe Showing TICT Fluorescence Properties. Journal of Photochemistry and 

Photobiology A: Chemistry, 2011, 223, 6-13.  

 

 

 

 

 



 
 

 100  
 

Chapter 4: 

Octanol-water distribution coefficients and their potential use in predicting extraction 

behavior 

 

4.1 Introduction 

The work described in Chapters 2 and 3 clearly illustrates the substantial effort required to 

systematically investigate the extraction of metal ions into ILs, as well as the many complexities 

of such systems.   These studies focused on the extraction of only two types of metal ions (i.e., 

alkali and alkaline earth cations) into two families of ILs (i.e., quaternary ammonium and N-

alkylpyridinium) with a single neutral extractant (i.e., DCH18C6), which taken together represent 

only a minute fraction of all possible extraction systems.  Although such studies have led to the 

elucidation of certain general trends in extraction behavior when ILs are employed as diluents for 

metal ion extraction, it would clearly be advantageous to develop means by which to predict the 

extraction behavior for as-yet unstudied systems without the need for extensive extraction studies.  

Ideally, a single parameter (e.g., a chemical or physical property of the IL) could be used to predict 

extraction behavior in IL-based systems.  Furthermore, if the parameter selected could be 

calculated theoretically, extraction behavior could be predicted entirely theoretically, prior to 

synthesis of the IL.  Octanol-water distribution coefficients (Dow) [4.1-4.7], water contents [4.8-

4.11], densities [4.12] and melting points [4.13] are among the various properties of ILs that have 

been predicted using a theoretical approach, and all are thus potential candidates for the prediction 

of extraction behavior.   

Previous work [4.14-4.21] and the preceding chapters describe several features of an IL-

based extraction system that dictate the efficiency, selectivity, and mechanism of metal ion 



 
 

 101  
 

partitioning.  These factors include the IL cation [4.15, 4.19] and anion hydrophobicity [4.16], 

aqueous phase anion hydration enthalpies [4.14], and the charge density of the metal ion [4.15, 

4.17-4.21], among others.  Of these, the hydrophobicity of the IL has a particularly strong influence 

on the mechanism by which metal ions are extracted by the neutral extractant [4.15, 4.16, 4.19, 

4.21].  That is, the extraction of divalent metal ions into ILs with cations bearing short alkyl chains, 

whose hydrophobicity is low, tends to proceed by ion exchange processes.  Employing an IL with 

a long alkyl chain on the IL cation (which is thus more hydrophobic) favors neutral complex / ion 

pair extraction.  Conversely, the more hydrophobic the IL anion, the greater the tendency for ion 

exchange processes to predominate in the system.  Therefore, a single parameter that captures the 

overall hydrophobicity of the IL (e.g., water content, water solubility, or Dow) might prove useful 

in predicting the behavior of IL-based extraction systems. 

Theoretical models have been proposed previously to predict extraction in desulfurization 

processes [4.22, 4.23], rare earth element (REE) separations [4.24], and the purification and 

isolation of pharmaceuticals [4.25].  These reports exploit various physical, chemical and 

thermodynamic properties (e.g., melting point, viscosity, equilibrium constants, and analyte 

solubility) for the identification of suitable extraction solvents.  Therefore, it is reasonable to 

expect that the use of parameters that embody the hydrophobicity of an IL, such as water content, 

water solubility, and Dow, may provide the basis of theoretical predictions of extraction behavior 

for these systems.   

The amount of aqueous phase that the organic phase can dissolve (i.e., water content) or 

vice versa (i.e., water solubility) play a major role in LLX systems, as the partitioning of analytes 

between the two phases occurs at their interface.  Insufficient interaction between the phases may 

result in a less efficient extraction, while too much phase carryover can cause loss of the solvent 
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or poor phase separation.  Rapid and simple techniques exist to measure the water content and 

solubility of ionic liquids (e.g., Karl Fischer titration and UV/VIS).  In fact, determinations of 

water content and water solubility are regularly performed in our laboratory as part of IL 

characterization, and these parameters have already been measured for many of the ILs 

synthesized, including those presented in Chapters 2 and 3.  Additionally, several reports of the 

prediction of IL water contents and solubilities exist [4.8-4.11]. 

Octanol-water partition coefficients, Kow defined in Equation 4.1, (or for ionizable species 

like ILs, octanol-water distribution coefficients, Dow, Equation 4.2) are possibly the most well-

established means by which to describe the hydrophobicity of a substance.  Their widespread use, 

especially in the pharmaceutical field, is a result of the similarity between the dielectric properties 

of 1-octanol and a lipid phase.  This resemblance has led to the use of Dow values to model the 

transfer of solutes (e.g., pharmaceuticals) across a biological membrane [4.26-4.29].  Additional 

applications include modelling of the environmental fate of organic chemicals [4.30], the mobility 

of radionuclides in groundwater [4.31], and the effectiveness of pesticides [4.32].  As is the case 

for water content and water solubility, a number of techniques exist for the measurement of 

octanol-water distribution coefficients, including the shake flask method [4.33], the slow stir 

method [4.34], and HPLC-based analysis [4.35], among others [4.36], but more reports of the 

prediction of Dow values than solvent water solubility or water content values have appeared [4.1-

4.7]. 

𝑲𝒐𝒘 =
[𝑿]𝒐𝒓𝒈

[𝑿]𝒂𝒒
     (4.1) 

𝑫𝒐𝒘 =
[𝑿𝒊𝒐𝒏𝒊𝒛𝒆𝒅]𝒐𝒓𝒈 + [𝑿𝒖𝒏−𝒊𝒐𝒏𝒊𝒛𝒆𝒅]𝒐𝒓𝒈 

[𝑿𝒊𝒐𝒏𝒊𝒛𝒆𝒅]𝒂𝒒 + [𝑿𝒖𝒏−𝒊𝒐𝒏𝒊𝒛𝒆𝒅]𝒂𝒒
  (4.2) 
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Although Dow values for a few Cnmim+Tf2N
- ILs have been reported (see Table 4.2 below) 

and we have previously obtained certain of these values ourselves, analogous data for Cnpyr+Tf2N
- 

and Nn,111
+Tf2N

- ILs are lacking.  In this chapter, we describe our efforts to determine if a 

relationship exists between the hydrophobicity of an IL, as reflected in its octanol-water 

distribution coefficient, and its behavior as an extraction solvent.  Furthermore, currently available 

models reported to predict Dow values will be surveyed to determine the potential of Dow values 

(and therefore, extraction behavior) to be predicted entirely theoretically.  For this study, previous 

work conducted in our laboratory, which involved the development of an HPLC method for the 

quantification of ILs [4.37], has been modified to incorporate a mass spectrometer in place of a 

UV/VIS detector. 

4.2 Experimental 

4.2.1 Materials 

 Cnmim+ (where n = 2, 5, 6, 8, 10, 12, 14), Cnpyr+ (where n = 4, 6, 7, 8, 10, 12, 14) and 

Nn,111
+ (where n = 8, 10, 12, 14) ionic liquids bearing the bis[(trifluoromethyl)sulfonyl]imide, 

Tf2N
-, anion were used in this study.  All ionic liquids employed were already available and had 

been prepared previously according to the synthetic routes described in Sections 2.2.3 and 3.2.3 

using commercially available precursors.  Prior to use, the ionic liquids were dried under vacuum 

(T = 80 °C and P = 15 inHg) for a minimum of 3 days.  Equal parts deionized water with a specific 

resistance of at least 18 MΩ/cm and 1-octanol (Alfa Aesar, Ward Hill, MA) were left in contact 

for one week with gentle stirring to equilibrate the phases, which were then separated and used for 

sample preparation.  The mobile phase used for LC-MS analysis was prepared using LC-MS grade 

acetonitrile (Fisher, Fair Lawn, NJ) and formic acid (Thermo Scientific, Rockford, IL). 
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4.2.2 Instruments 

A Shimadzu LC-MS 2020 was employed to measure the IL+ concentration in the aqueous 

and organic phases by direct injection (no chromatographic column used).  An internal standard 

(C2mim+Tf2N
-) was utilized to account for matrix effects.  The IL cation concentration of the IL 

of interest (various m/z ratios) and the internal standard (C2mim+, m/z = 111.3) were measured as 

two events in single ion monitoring (SIM) positive mode.  An identical amount of internal standard 

was added to all samples and standards prior to analysis.  The Shimadzu LS-MS 2020 was 

equipped with a dual ion source (DUIS) comprising electrospray (ESI) and atmospheric pressure 

chemical (APCI) ionization modes.    Additional instrument parameters, are presented in Table 

4.1.  A Mettler Toledo AL204 balance was employed for all weighing.   

4.2.3 Methods 

Slow stir device preparation.  Glass vials (~40 mL capacity) with Teflon coated caps were used to 

prepare sampling devices as described previously by Brennecke et al. [4.38] and pictured in Figure 

4.1.  Water-saturated 1-octanol was used to prepare ~0.1 mM solution of each ionic liquid.  Equal 

volumes (17 mL) of 1-octanol-saturated water and 0.1 mM IL solutions were added to each device.  

A small magnetic stir bar and Teflon tubing (for sampling of the water-rich phase) was inserted 

into the vial.  To the exposed end of the Teflon tubing was attached a luer attachment for ease of 

sampling.  

The water-rich phase was transferred to the vial first followed by gentle addition of the 

octanol-rich phase.  Each vial was capped and the top wrapped with Parafilm to reduce 

evaporation.  Once all vials were prepared, they were left to equilibrate with gentle stirring (< 200 

rpm) for up to 382 days.  Samples of the octanol-rich and water-rich phases were drawn and 
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Table 4.1 

LC-MS instrument parameters for IL cation quantification 

Column  None 

Mobile phase  1% formic acid in acetonitrile 

Flow rate  0.500 mL/min 

Nebulizing gas flow  1.5 L/min 

Interface  Dual ion source (DUIS) 

Interface voltage  4.5 kV 

Interface current  7.8 μA 

Corona needle voltage  4.5 kV 

Corona needle current  0.2 μA 

DL temperature  250 °C 

Heat block 
temperature 

 400 °C 

Qarray RF voltage  10.1 V 

Detector voltage  1.25 kV 

PG Vacuum  96 Pa 

IG Vacuum  0.00054 Pa 

Drying gas flow  15.0 L/min 
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Figure 4.1.  Slow stir device used for determination of Dow values [4.38]. 
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analyzed for IL+ concentration after 284 days (C12pyr+Tf2N
- and N14,111

+Tf2N
-), 293 days 

(Cnmim+Tf2N
-, where n = 5, 6, 8, 10, 12, and 14), and 368 days (Cnpyr+Tf2N

-, where n = 4, 6, 7, 

8, 10, 12, 14 and Nn,111
+Tf2N

-, where n = 8, 10 and 12) and again on 298 days (C12pyr+Tf2N
- and 

N14,111
+Tf2N

-), 307 days (Cnmim+Tf2N
-, where n = 5, 6, 8, 10, 12, and 14), and 382 days 

(Cnpyr+Tf2N
-, where n = 4, 6, 7, 8, 10, 12, 14 and Nn,111

+Tf2N
-, where n = 8, 10 and 12) to confirm 

that equilibrium had been reached.  It should be noted that the initial concentration of IL in the 

octanol-rich phase [4.38-4.40] and the quantification method employed (i.e., slow stir vs. shake 

flask) [4.38] have been shown previously to affect measured Dow values.  For the purposes of this 

work, internal consistency is required if any correlation is to be observed between IL physical 

properties and extraction behavior, so a fixed set of experimental conditions, selected on the basis 

of previous work in our laboratory and described above, was used throughout. 

4.3 Results and Discussion 

4.3.1 Relationship of the IL hydrophilicity index to extraction behavior 

The extraction of metal ions from water represents a simpler system than one employing 

an acidic aqueous phase.  Accordingly, such studies are typically the first step in investigations of 

IL-based systems (see Chapters 2 and 3).  The absence of acid from the aqueous phase eliminates 

extraction of metal ions by IX-2, leaving only NC/IPE and IX-1 as the possible modes of metal 

ion partitioning.  In these simpler systems, the relative contributions of the two paths can be 

expressed in terms of R, the ratio of the fraction of metal ion extracted (strontium ion in this work) 

to the fraction of nitrate extracted.  As R approaches 1 (i.e., as the amount of metal ion extracted 

approaches the amount of nitrate extracted), the contribution of IX-1 diminishes and that of 

NC/IPE increases.   
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The first parameter considered for the prediction of extraction behavior in IL-based 

systems is the hydrophilicity index (HI).  First proposed by Kohno et al. [4.41], HI is a measure 

of water content, specifically, the number of water molecules per ion pair in the IL phase, and 

serves as an indicator of IL / water mixture phase behavior.  The relationship between R and HI 

for several Cnmim+, Cnpyr+, and Nn,111
+ ILs is presented in Figure 4.2.  As can be seen R decreases 

sharply as the IL hydrophobicity increases (HI decreases), then levels off as R approaches 1.  This 

is consistent with the previously reported observation that IX processes (here, IX-1) become more 

difficult as the IL hydrophobicity rises and is in agreement with previous reports of the effect of 

IL hydrophobicity on extraction behavior [4.15, 4.16, 4.19].  This trend and previous reports of 

theoretically determined values of water content [4.8-4.11] suggest that HI (i.e., water content) 

could serve as a useful parameter for the prediction of extraction behavior for IL-based systems.  

4.3.2 Relationship of the IL water solubility to extraction behavior 

 The solubility of an IL in water is an important factor to consider when selecting an IL for 

use as an extraction solvent.  Despite their immiscibility with water, ILs that form biphasic systems 

with water will dissolve slightly into the aqueous phase.  This portion of the IL phase is lost to the 

aqueous phase even in the absence of a metal ion or extractant.  Intuitively, then, it would appear 

that an IL with a low water solubility would be desired, but, as described in Chapters 2 and 3, it 

has been reported previously that the use of an IL comprising a very hydrophobic anion will favor 

IX processes due to mass action considerations [4.42].  It can be seen in Figure 4.3 that a downward 

trend is observed where R falls as IL water solubility decreases.  Similar to HI, this trend and 

previous reports of the theoretical determination of water solubility suggest [4.8, 4.11] water 

solubility is a potential parameter for the prediction of extraction behavior in IL-based systems.  
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Figure 4.2. Relationship between R and the hydrophilicity index for Cnmim+ (solid circles), 

Cnpyr+ (solid triangles), and Nn,111
+ (solid diamonds) ILs. 
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Figure 4.3. Relationship between R and the water solubility of Cnmim+ (solid circles), Cnpyr+ 

(solid triangles), and Nn,111
+ (solid diamonds) ILs. 
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4.3.3 Measured octanol-water distribution coefficients 

 Table 4.2 summarizes the log Dow values measured for various ILs, as well as the few 

values found in the published literature [4.38, 4.43-4.46].  Where the conditions employed for Dow 

determination were the same, the values measured in this work generally agree with those 

previously reported; any significant differences are probably attributable to differences in the 

experimental conditions used (i.e., slow stir vs. shake flask method) or the initial IL concentration 

employed, both of which have been shown previously to affect measured Dow values [4.38-4.40].  

For all three IL families, an increase in alkyl chain length (i.e., hydrophobicity) results in an 

increase in Dow, an observation consistent with earlier reports for similar ILs [4.38, 4.46, 4.47].  

Plots of log Dow vs. the alkyl chain length are shown in Figure 4.4.  The slopes of the best fit lines 

are 0.39 (R2 = 0.9971), 0.42 (R2 = 0.9984), and 0.56 (R2 = 0.9971) for Cnmim+Tf2N
-, Cnpyr+Tf2N

- 

and Nn,111
+Tf2N

- ILs, respectively.  (Note that for the quaternary ammonium ILs, which lack an 

aromatic head group, the slope falls within the range of 0.53 to 0.66 expected on the basis of 

thermodynamic principles and the Gibbs free energy associated with the transfer of a methylene 

group from water to the a water-hydrocarbon interface [4.48].)  Due to the extreme concentration 

differences present for ILs with large Dow values (i.e., 10,000 parts to 1 for logDow = 4.0), caution 

must be exercised when considering the validity of Dow values measured for the longest chain ILs 

(i.e., C14mim+Tf2N
-, C14pyr+Tf2N

- and N14,111
+Tf2N

-).  The small concentrations in the aqueous 

phase required as little as a two-fold dilution of the original sample prior to analysis, compared to 

a ~20,000-fold dilution of the organic phase, making accurate quantification difficult for these ILs. 
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Table 4.2  

Experimentally measured values of log Dow from the present studya and found in literature. 

 
a Uncertainties are reported at the 95% confidence level. 
b Data from [4.43].  Measured using shake flask technique. 
c Data from [4.38].  Measured using slow stir technique. 
d Data from [4.44].  Measured using slow stir technique. 
e Data from [4.45].  Measured using shake flask technique. 
f Data from [4.46].  Measured using shake flask technique. 

 

 

 

 

logDow Literature values of logDow

C 5 mimTf 2 N -0.274 ± 0.011 -0.11
b

C 6 mimTf 2 N 0.236 ± 0.018 0.16
b
, 0.15-0.22

c

C 8 mimTf 2 N 1.03 ± 0.01 0.79
b
, 0.80-1.05

c
, 1.05

b
, 0.56

d

C 10 mimTf 2 N 1.69 ± 0.03

C 12 mimTf 2 N 2.53 ± 0.01

C 14 mimTf 2 N 4.03 ± 0.04

C 4 pyrTf 2 N -0.743 ± 0.025 -0.26
e

C 6 pyrTf 2 N 0.166 ± 0.024 -0.494- -0.143
f

C 7 pyrTf 2 N 0.569 ± 0.022 0.301-0.613
f

C 8 pyrTf 2 N 0.931 ± 0.018

C 10 pyrTf 2 N 1.88 ± 0.02

C 12 pyrTf 2 N 2.60 ± 0.04

C 14 pyrTf 2 N 4.49 ± 0.02

N 8,111 Tf 2 N 0.418 ± 0.024

N 10,111 Tf 2 N 1.35 ± 0.03

N 12,111 Tf 2 N 2.57 ± 0.02

N 14,111 Tf 2 N 3.72 ± 0.02
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Figure 4.4. Relationship between log Dow and the alkyl chain length, n, of Cnmim+ (solid 

circles), Cnpyr+ (solid triangles), and Nn,111
+ (solid diamonds) ILs.  Curves are lines of best 

fit. 
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4.3.4 Relationship of Dow values to extraction behavior 

   As shown in Figure 4.5, which includes data for both strontium and barium, an increase 

in Dow (i.e., an increase in the hydrophobicity of the IL), is accompanied by decreasing values of 

R, similar to the relationship between R and HI or water solubility.  This relationship indicates that 

extraction of both strontium and barium ions by a crown ether (and by analogy, other divalent 

metal ions with other neutral extractants) into ILs with Dow values greater than ~20 will proceed 

primarily by NC/IPE, apparently because the IL has been rendered too hydrophobic to participate 

in ion-exchange.  (Note that the extraction of monovalent ions such as sodium is apparently 

dominated by ion-exchange under essentially all conditions.)  It may be, in fact, that a Dow of ~20 

represents a general cutoff useful in the selection of ILs for application as extraction solvents.  

(Extraction from an acidic aqueous phase, a situation of greater “real-world” significance, 

represents a far more complex system, however.)  It appears then that all three parameters, HI, 

water solubility and Dow, could prove useful as predictors of extraction behavior in IL-based 

systems.  Of the three, however, Dow is by far the most commonly measured (or estimated) 

parameter in developing structure-property relationships.  Accordingly, only it was pursued 

further. 

4.3.5 Theoretical prediction of Dow 

Although a relationship between R and the octanol-water distribution coefficient of various ILs is 

of obvious utility, its value would be greatly enhanced if the distribution coefficients could be 

calculated, rather than experimentally determined.  There exist numerous examples of theoretical 

predictions of Dow values for ILs [4.1-4.7] and other chemicals [4.49-4.52] in the literature.  

Among the models used in these studies are the conductor-like screening model (COSMO) [4.1, 

4.3], linear free energy relationships (LFER) [4.7], Pitzer-Debye-Hückel (PDH) [4.1], density 
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Figure 4.5. Relationship between R and measured Dow values for strontium (solid symbols) 

and barium (open symbols) into Cnmim+ (circles), Cnpyr+ (triangles), and Nn,111
+ (diamonds) 

ILs. 
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functional theory (DFT) [4.7] and quantitative structure property relationships (QSPR) [4.4], along 

with combinations of these approaches.  In developing these models, experimental data are 

normally measured or extracted from literature and used to develop fit parameters and coefficients.  

These values are then incorporated into equations used to predict the physical properties of ILs.  

The predictive efficacy is then evaluated by a comparison of measured and predicted values.  

Several examples of these relationships are presented in Figure 4.6.  It is obvious that differences 

between measured and predicted values vary greatly depending on the model used, and range from 

small to as large as two log units (factor of 100, Figure 4.6, left panel).   

Thoming et al. have developed experimentally- and computationally-derived LFER 

parameters to predict various IL physical properties [4.7].  They report good agreement between 

measured and predicted values of Dow (Figure 4.6, right panel), water solubility, and critical 

micellar concentration using their models.  A comparison of Dow values of several ILs measured 

in this work with those from computationally derived predictions by Thoming et al. is presented 

in Figure 4.7.  The remarkable agreement between these two data sets suggests that entirely 

computational predictions of these physical properties may be possible.  Taken together with the 

ability for extraction behavior to be predicted using Dow, the continued development of more 

accurate predictive models could provide a means by which to determine extraction behavior 

computationally, based solely on the structure of the IL. 

 

 



 
 

   
  

 

Figure 4.6. Correlation between predicted and measured values using several theoretical models. Left panel: PDH combined 

with COSMO-SAC (segmented activity coefficients) [4.1]; middle panel: QSPR [4.4]; right panel: LFER [4.7]. 
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Figure 4.7. Correlation between predicted and measured (this work) values of log Dow for 

Cnmim+ (solid circles), Cnpyr+ (solid triangles), and Nn,111
+ (solid diamonds) ILs. 
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4.4 Conclusions  

 The results of this study support the use of Dow as a parameter for the prediction of 

extraction behavior in IL-based solvent extraction systems.  Previous reports and work described 

in the preceding chapters have proven that IL hydrophobicity has a major effect on the mechanism 

by which metal ions are extracted from acid into ILs by neutral extractants.  A clear correlation 

between IL hydrophobicity (water content, water solubility, and Dow) and metal ion extraction 

from water was observed.  The relationship between Dow and R provides a possible ‘cutoff’ for the 

rational design of ILs.  That is, extraction into ILs whose Dow is greater than 20 is expected to 

proceed predominately by NC/IPE.  This value can be used as a guideline for selection of ILs for 

future extraction studies.  Furthermore, theoretical models developed to predict properties of ILs, 

specifically Dow, reported in the literature show good agreement with the values measured in this 

study.  This approach may thus provide the basis for an entirely computational prediction of 

extraction behavior in IL-based systems. 
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Chapter 5: 

Quantification of individual modes of Sr2+ partitioning into 1-methyl-3-pentylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide (C5mim+Tf2N-) 

5.1 Introduction 

 The extraction of metal ions by a neutral extractant (e.g., a crown ether) into conventional 

(i.e., molecular) organic solvents is known to proceed by a single pathway, one which involves the 

partitioning of a neutral complex / ion pair (NC/IPE, Equation 5.1) comprising a metal ion bound 

to the crown ether and an appropriate number of aqueous phase anions to ensure electroneutrality 

[5.1, 5.2].   

Mn+
aq + CEaq + nNO3

-
aq ⇌ CE(Mn+)•nNO3

-
org  (5.1, NC/IPE) 

This extraction pathway results in low metal ion distribution ratios when the acid concentration, 

and therefore the concentration of the aqueous phase anion that is required for the formation of the 

product complex, is low.  As the acid concentration is increased, the amount of available anion 

increases and the formation of the neutral complex / ion pair becomes more favorable, leading to 

an increase in the metal ion distribution ratio (i.e., the efficiency of extraction).  This trend of 

increasing distribution ratio with acid (i.e., anion) concentration allows extraction to be carried out 

at high acidity and stripping of the metal ion from the organic phase to be achieved readily with 

either dilute acid or water. 

Studies of analogous IL-based systems have revealed that up to two additional pathways, 

both ion-exchange processes, arise when ionic liquids are employed in place of a conventional 

organic solvent [5.3-5.6].  The first form, designated IX-1 and defined by Equation 5.2, was first 
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noted in studies of the extraction of Sr2+ by DCH18C6 into Cnmim+Tf2N
- (with n = 2-10) [5.3-

5.5].   

CE(Mn+)aq  +  nIL+
IL  ⇌  CE(Mn+)IL  +  nIL+

aq  (5.2, IX-1) 

In these systems, the large metal ion distribution ratios observed for the short-chain (e.g., C2-C5) 

Cnmim+ ILs at low acidity cannot be explained simply by the formation of a neutral complex, as 

the aqueous phase anion concentration is too low to account for the amount of metal ion extracted.  

Extended X-ray absorption fine structure (EXAFS) measurements of the metal-crown complex in 

C5mim+Tf2N
- following extraction from nitric acid revealed little or no nitrate in the metal-crown 

coordination sphere [5.4], consistent with extraction of a cationic 1:1 Sr-DCH18C6 complex.  

Also, when the alkyl chain length of the Cnmim+ cation is increased (i.e., the hydrophobicity of 

the IL cation is increased, making its exchange into the aqueous phase more difficult), the 

distribution ratio at the same acid concentration decreases [5.5]. This too is consistent with 

Equation 5.2.  The presence of this pathway is further supported by an increase in the solubility of 

the IL cation in the aqueous phase as the initial concentration of Sr2+ is increased [5.3]. 

In the extraction of divalent metal ions, an increase of the alkyl chain length from pentyl- 

to decyl- resulted in a shift from IX-1 to NC/IPE as the predominant mode of metal ion extraction, 

as evidenced by both the shape / direction of the acid dependencies and measurements of strontium 

and nitrate extraction from aqueous strontium nitrate solution [5.5].  These two mechanisms alone, 

however, cannot explain the extraction of sodium ions from nitric acid by DCH18C6 into 

C10mim+Tf2N
- which, despite its relatively high hydrophobicity, yields decreasing metal ion 

distribution ratios as the acid concentration is increased [5.6].  Analysis of distribution data at high 

acid concentration (i.e., ≥ 1 M) indicated that the release of a hydrogen ion from the IL phase 

occurs, leading to the identification of a second form of ion exchange (IX-2, Equation 5.3).  
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Because the IL has no ionizable hydrogens and crown ethers are known to extract mineral acids, 

including nitric acid, protonated crown ether formed during the preconditioning steps has been 

proposed to be the source of the hydrogen ion that is released from the IL phase.  

nCE(H3O+)IL  +  Mn+
aq  ⇌  CE(Mn+)IL  +  nH3O+

aq  (5.3, IX-2) 

Further evidence of the plausibility of this pathway was reported by Marin et al. [5.7].  NMR 

studies of the hydrogen bonding interactions between water, acids and Cnmim+Tf2N
- ILs confirms 

the presence of protonated crown ethers, namely, DCH18C6, in these systems.  Both forms of ion 

exchange are deleterious to the IL phase in that an IL cation is lost to the aqueous phase when it is 

exchanged for either a metal-crown ether complex (IX-1) or a hydronium ion (or acid proton), 

which is subsequently exchanged for the metal ion (IX-2) when it is introduced.  Although all three 

modes of extraction are always present, only one, neutral complex / ion pair formation, is desirable, 

as it allows for extraction of the ion of interest at high acidity and its recovery at low acidity without 

any loss of the IL phase.   

 Our studies of LLX systems employing several different IL families (i.e., 1-alkyl-3-

methylimidazolium [5.8-5.10], quaternary ammonium [5.11], and N-alkylpyridinium) have shown 

that a number of factors (i.e., IL cation hydrophobicity, anion hydrophobicity, and aqueous phase 

anion) govern the balance among the three pathways.  As both ion exchange processes ultimately 

involve the exchange of the IL cation into the aqueous phase, an increase in the IL cation 

hydrophobicity renders this exchange much more difficult [5.9]. A more hydrophilic IL anion 

reduces the extent of ion exchange due to mass action considerations [5.2] (i.e., an IL with a very 

hydrophobic IL anion will dissolve less in the aqueous phase, which allows for greater exchange 

of the IL cation) [5.10].  An aqueous phase anion with lower hydration energy will transfer into 

the IL phase more easily, favoring neutral complex / ion pair extraction [5.8]. 
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 Despite the obvious importance of determining how changes to the extraction system affect 

the balance of these pathways, the actual contributions of each mode have not yet been quantified.  

To date, the shape and direction of the acid dependency have been used as the primary indication 

of the principal extraction mechanism (i.e., decreasing distribution ratios  ion exchange 

processes; increasing distribution ratios  neutral complex / ion pair extraction).  To fully evaluate 

ILs as alternative extraction solvents in LLX systems, it is imperative to quantify the exact 

contributions of each mode of metal ion partitioning to ensure that the desired pathway is actually 

the most prevalent.  To this end, the extraction of Sr2+ from nitric acid by DCH18C6 into 

C5mim+Tf2N
- was studied in an attempt to quantify each extraction pathway. 

5.2 Experimental 

5.2.1 Materials 

The lithium salt of bis[(trifluoromethyl)sulfonyl]imide (Li+Tf2N
-; TCI America) and 1-

methyl-3-pentylimidazolium bromide (C5mim+Br-; Iolitec, Tuscaloosa, Al) were purchased and 

used without purification.   The commercially available radiotracer 85Sr (Perkin Elmer, Waltham, 

MA) was used for extraction studies.  The neutral extractant employed was a mixture of the cis-

syn-cis (A) and cis-anti-cis (B) isomers of dicyclohexano-18-crown-6 (DCH18C6, Parish 

Chemical Company, Orem, UT).  Acid solutions were prepared from trace-metal grade 

concentrated nitric acid (OptimaTM, Fisher, Fair Lawn, NJ) and were standardized by titration with 

standard sodium hydroxide (Ricca, Arlington, TX) using phenolphthalein indicator (Ricca, 

Arlington, TX).  The mobile phase used for LC-MS analysis was prepared with LC-MS grade 

ammonium formate (OptimaTM, Fisher), formic acid (Thermo Scientific, Rockford, IL), 

acetonitrile (Fisher), and water (Fisher).  Sodium carbonate (Sigma Aldrich, St. Louis, MO), 

sodium bicarbonate (Sigma Aldrich, St. Louis, MO) and HPLC grade methanol (Fisher) and 
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acetonitrile (Honeywell, Muskegon, MI) were used to prepare the mobile phase for ion 

chromatography.  All aqueous solutions were prepared with deionized water with a specific 

resistance of at least 18 MΩ/cm. 

5.2.2 Instruments 

A Dionex ICS-1000 ion chromatograph equipped with a conductivity detector, a Dionex 

IonPac AS12A analytical column (4 × 200 mm) AG12 guard column (4 × 50 mm), and a Dionex 

AERS 500 (4mm) conductivity suppressor (V = 25 mA) was employed to measure the nitrate 

concentration in the ionic liquid phase under various extraction conditions.  The mobile phase 

comprised 3.2 mM Na2CO3 and 1.0 mM NaHCO3 in 20% acetonitrile/20% methanol/60% water 

(flow rate of 0.800 mL/min).  Because organic solvent is a required component of the mobile phase 

due to the insolubility of the IL phase in water, external water mode (EWM, flow rate ~ 4 mL/min) 

was used to regenerate the suppressor.  An example ion chromatogram is provided in the 

Appendix. 

Radiometric assays were done via gamma spectroscopy on a Perkin Elmer Model 2480 

Automatic Gamma Counter using standard procedures. 

A Shimadzu LC-MS 2020 was employed to measure the IL+ and IL- concentration in the 

aqueous phase under various extraction conditions.  The concentration of C5mim+ (m/z = 153.3) 

and the internal standard (C8mim+, m/z = 195.3) were measured as two events in single ion 

monitoring (SIM) positive mode.  The concentration of Tf2N
- (m/z = 280.0) and the internal 

standard (PF6
-, m/z = 145.0) were measured as two events in SIM negative mode.  Due to the 

presence of an overwhelming amount of ions (e.g., nitrate, IL cation, IL anion, etc.) in the aqueous 

phase, an internal standard (C8mim+ or PF6
-) was utilized to account for matrix effects.  An 
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identical amount of internal standard was added to all standards and samples prior to analysis.  The 

Shimadzu LS-MS 2020 was equipped with a dual ion source (DUIS) comprising electrospray (ESI) 

and atmospheric pressure chemical (APCI) ionization modes.  Additional instrument parameters, 

including the column and mobile phase, are presented in Table 5.1.  Example chromatograms and 

mass spectra are provided in the Appendix. 

5.2.3 Methods 

Ionic liquid synthesis.  The IL used in this study, C5mim+Tf2N
-, was prepared by metathesis from 

C5mim+Br- (Iolitec, Tuscaloosa, Al), as described in Sections 2.2.3 and 3.2.3. 

Extraction studies – General description.  When studying the extraction of metal ions from water 

into the quaternary ammonium and N-alkylpyridinium ILs (described in Chapters 2 and 3), the 

percentage of nitrate extracted was determined by measuring the depletion of nitrate in the aqueous 

phase accompanying extraction (i.e., by measuring the concentration of nitrate in the aqueous 

phase before and after extraction).  If nitric acid is employed as the aqueous phase, there will be a 

tremendous amount of nitrate present when the aqueous acid concentration is high.  Detecting a 

small change against such a large background is extremely difficult.  Therefore, the nitrate 

concentration in the ionic liquid phase was measured instead using ion chromatography, thereby 

permitting the direct determination of the amount of nitrate extracted from the aqueous phase.  For 

the same samples, mass spectrometry was employed to measure the concentration of C5mim+ in 

the aqueous phase under various extraction environments in order to monitor the amount of IL 

cation lost to the aqueous phase due to ion exchange.  A more thorough description of the 

procedures used is provided in the following section where the underlying rationale is described 

in more detail. 



 
 

 131  
  

Table 5.1 

LC-MS instrument parameters for IL cation and anion quantification 

Column 
 Agilent ZORBAX HILIC Plus 
  3.0 x 7.5 mm, 3.0 micron 

   

Mobile phase  10% 100 mM ammonium 
formate buffer in acetonitrile 

Mobile phase flow rate  0.800 mL/min 

   

Nebulizing gas flow  1.5 L/min 

Interface  Dual ion source (DUIS) 

Interface voltage  4.5 kV 

Interface current  7.8 μA 

Corona needle voltage  4.5 kV 

Corona needle current  0.2 μA 

DL temperature  250 °C 

Heat block 
temperature 

 400 °C 

Qarray RF voltage  10.1 V 

Detector voltage  1.25 kV 

PG Vacuum  96 Pa 

IG Vacuum  0.00054 Pa 

Drying gas flow  15.0 L/min 
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5.2.4 Extraction studies – Details and Rationale 

To accurately assess the contributions of three competing extraction processes occurring 

in the IL-based extraction systems of interest, it is imperative that the quantification of each 

individual mode of metal ion partitioning be achieved without ‘interference’ from the other modes 

present.  In other words, when identifying the contributions for one pathway (e.g., IX-1), the means 

of quantification cannot errantly incorporate any contributions from the other two pathways (i.e., 

IX-2 or NC/IPE).  Fortunately, close examination of the reactions that define each pathway 

(Equations 5.1-5.3) reveals unique characteristics of each mode of extraction that allow for their 

individual quantification.   

The extraction of metal ions by a neutral complex / ion pair (NC/IPE), as defined by 

Equation 5.1, involves the partitioning of a neutral metal-nitrato-crown complex / ion pair (when 

nitric acid or other nitrate salt is present in the aqueous phase).  Although all three pathways will 

obviously yield a higher metal ion concentration in the IL phase, only NC/IPE will result in an 

increase in the concentration of nitrate as well.  The aqueous phase anion does not participate in 

either form of ion exchange and, therefore, will not affect the nitrate concentration in the IL phase.  

This provides us then with the means of identifying the contributions of NC/IPE without the 

possibility of including IX-1 (Equation 5.2) or IX-2 (Equation 5.3) processes. 

When considering the two ion exchange processes, it is of concern that the defining aspect 

of both is the loss of the IL cation to the aqueous phase (Equations 5.2 and 5.3), making their 

differentiation appear difficult.  Fortunately, this loss occurs at two separate steps in the extraction 

procedure.  The first form of ion exchange (IX-1) occurs upon the addition of the metal ion in the 

aqueous phase.  At this point, the crown ether-bound metal ion is exchanged for the IL cation, 

yielding an increased concentration of IL cation in the aqueous phase.  In IX-2, however, the IL 
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cation is exchanged for a protonated extractant molecule (here, a crown ether-hydronium ion 

complex) during the preconditioning steps before any metal ion is introduced.  This acid proton or 

hydronium ion is subsequently exchanged for the metal ion.  Therefore, in terms of the loss of the 

IL cation, exchange in IX-2 occurs prior to and separately from IX-1, allowing for the 

quantification of each pathway by monitoring the concentration of IL cation in the aqueous phase 

during the preconditioning step, where no metal ion is present, and once the metal ion is 

introduced.   

Unfortunately, these modes of metal ion extraction are not the only source of nitrate present 

in the IL phase and of IL cation present in the aqueous phase, as the IL and aqueous phases exhibit 

not negligible mutual solubility.  A suitable means to correct for the inherent solubility of each 

phase in the other must therefore be identified.  The system under investigation comprises 0.031 

M Sr(NO3)2 in various nitric acid concentrations in contact with 0.25 M DCH18C6 in 

C5mim+Tf2N
- (System IV, Figure 5.1).  Under these conditions, we must account for the solubility 

of the metal nitrate salt and nitric acid in the IL phase as well as the IL solubility in the aqueous 

phase.  The most obvious system to correct for the IL / aqueous phase mutual solubility would be 

identical to the system of interest without the metal salt (System III, Figure 5.1), but the complexity 

of the extraction system under investigation warrants a thorough explanation behind this rationale. 
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System  I  II  III  IV 

         

Aqueous phase 
 

HNO3 
 

0.031 M Sr(NO3)2 

in HNO3 

 
HNO3 

 
0.031 M Sr(NO3)2 

in HNO3     

              

         

Organic phase 

 

C5mim+Tf2N- 

 

C5mim+Tf2N- 

 0.25 M 

DCH18C6 in 

C5mim+Tf2N- 

 0.25 M 

DCH18C6 in 

C5mim+Tf2N- 
    

         

Preconditioning  HNO3  HNO3  HNO3  HNO3 

 

Figure 5.1.  Various extraction systems considered to correct for the mutual solubility of the 

IL and aqueous phases.  System I represents the simpliest system and System IV is currently 

under investigation. 
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If we consider the inherent solubility of nitrate in the IL phase, there are two sources of 

nitrate partitioning into the IL, the metal nitrate salt and the nitric acid.  System II (Figure 5.1) 

represents conditions under which the partitioning of these two species into the IL phase is the 

only means by which nitrate could transfer into the IL phase.  To determine if the partitioning of 

Sr(NO3)2 contributes in any way to the inherent nitrate content into the IL phase in the absence of 

a neutral extractant, a sample of C5mim+Tf2N
- was preconditioned with two aliquots of nitric acid 

(where the volume of acid is twice the volume of IL).  The metal nitrate acid solution was then 

added to the conditioned IL phase (1:1 phase ratio) and a strontium radiotracer was introduced to 

the mixture, which was then vortexed and allowed to stand for 15 minutes.  This mixture was 

centrifuged and the phases were separated, sampled and counted using gamma spectroscopy.  The 

results of this study demonstrated that the partitioning of the metal nitrate salt into the IL phase is 

negligible (< 0.05% strontium in the IL phase) and therefore does not contribute significantly to 

the nitrate content of the IL phase.  

Because the IL shows no ability to extract strontium without the crown ether, its presence 

is not necessary in the system used to account for the inherent nitrate solubility.  In addition, it has 

been shown previously that DCH18C6 will extract certain mineral acids, including nitric acid 

[5.7], suggesting that the system described in System II will underestimate the amount of nitrate 

in the IL phase because it does not account for acid extracted by DCH18C6.  This was confirmed 

when two samples of C5mim+Tf2N
- (one without crown ether – System II and one with crown ether 

– System III) were preconditioned as mentioned above and contacted with either the metal nitrate 

/ acid solution (System II) or nitric acid (System III) (1:1 phase ratio).  These mixtures were 

vortexed and allowed to stand for 15 minutes.  Upon centrifugation and separation of the phases, 

the nitrate concentration of the IL phase was determined by IC, as described in Section 3.2.3.  The 



 
 

 136  
  

amount of nitrate in the IL phase of System III, yielded higher nitrate values than those measured 

for System II, confirming that System II does not account for acid extracted by DCH18C6. 

 Similarly, when attempting to quantify the contributions of IX-1 to the overall extraction 

of strontium from nitric acid, a correction must be made for IL that inherently dissolves / partitions 

into the aqueous phase not associated with metal extraction.  Although the extraction of nitric acid 

by DCH18C6 will not affect the IL concentration in the aqueous phase, System II will also 

underestimate the amount of IL in the aqueous phase because it does not account for the increased 

solubility of the IL due to the presence of the extractant [5.12, 5.13].  It is apparent that only System 

III can sufficiently account for the inherent mutual solubility of IL in the aqueous phase and nitrate 

in the IL phase when quantifying the contributions from NC/IPE and IX-1.   

The last mode of extraction, IX-2, involves the loss of the IL cation during the 

preconditioning steps of System IV, before the metal has been introduced.  The presence of the 

crown ether is what results in the exchange of the IL cation for an acid proton or hydronium ion.  

Unfortunately, as mentioned before, the presence of the crown ether will result in loss of the IL 

due to two processes, an increase in the IL solubility and the protonation of the crown ether.  This 

complicates our ability to correct for the inherent IL content of the aqueous phase, as we cannot 

identify a system that accounts for all processes involving the loss of the IL except the crown ether 

protonation.  Furthermore, if the amount of protonated crown ether could be quantified, it does not 

ensure that all of it will participate in extraction. 

 Considering that we can measure the fraction of the initial aqueous phase strontium 

extracted (%EM) via gamma spectroscopy as well as the contributions of neutral complex / ion pair 

extraction (%ENC/IPE) and IL cation exchange for a metal-crown complex (%EIX-1), any strontium 

that is not extracted by NC/IPE or IX-1 should be extracted by IX-2 (%EIX-2), assuming no other 
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extraction processes exist.  The presence of only two partitioning modes in the extraction of 

strontium from water by DCH18C6 was confirmed by previous work by Hawkins et al. [5.14] who 

quantified the extraction of strontium nitrate from water into C5mim+Tf2N
-.  According to Table 

5.2, the percentage of nitrate extracted, as measured by depletion of nitrate in the aqueous phase, 

suggests that 40% of the total strontium extracted proceeds by NC/IPE.  Assuming only two modes 

of extraction, the remaining 60% of strontium is expected to extract by IX-1.  To confirm this, the 

IL concentration in the aqueous phase after extraction, which is proportional to the extraction due 

to IX-1, was measured.  It was found that within experimental error, the two methods (i.e., 

estimation by nitrate depletion and measurement of [IL+]aq) are in agreement with respect to the 

contributions of each of the two pathways (Table 5.2).  Therefore, only two pathways are present 

when a metal ion is extracted from water into an IL by DCH18C6. 

 Knowing that the extraction of strontium from water proceeds by only two pathways, we 

must next consider if the substitution of an acidic aqueous phase for water in this system will 

introduce additional modes of extraction.  It is already known that the presence of the acidic 

aqueous phase can result in an increased dissolution of IL in the aqueous phase and of acid into 

the IL phase [5.12, 5.15].  Although this may affect the balance of the extraction pathways, it does 

not necessarily introduce a new path for extraction.  In contrast, the ability of the crown ether to 

extract acid [5.7, 5.16-5.22] could provide another route by which metal ions are extracted.  That 

is, protonation of the crown ether (as opposed to extraction of nitric acid as an intact, neutral 

species, as is observed in 1-octanol [5.16]) results in a new mode of extraction, specifically IX-2.  

The presence of this path was shown to exist on the basis of observations made in the extraction 

of sodium from C10mim+Tf2N
- by DCH18C6, as described above [5.6]. 
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Table 5.2 

Quantification of Sr2+ extraction by NC/IPE and IX-1 from water into C5mim+Tf2N- [5.14]. 

%ESr   99.20% 
   

%ENC/IPE (determined by IC)  40 ± 4% 

%EIX-1 (by difference)  60 ± 5% 
   

%EIX-1 (determined by HPLC)   67 ± 5% 
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Consequently, if only three processes are responsible for the extraction of strontium, then the total 

amount of metal extracted is the sum of that extracted by the three individual modes, according to 

Equation 5.4.  Thus, the contributions from IX-2 (%EIX-2) can be determined by difference 

(Equation 5.5). 

%EM = %ENCE + %EIX-1 + %EIX-2  (5.4) 

%EIX-2 = %EM - %ENCE - %EIX-1  (5.5) 

 It should be noted here that anion exchange has been proposed as a major contributor for 

metal ion extraction at high acid concentrations in these systems [5.23].  This route obviously 

requires that a not insignificant amount of hydrophobic IL anion, namely Tf2N
-, exchange into the 

aqueous phase for a metal-nitrato-crown complex comprising one more nitrate than required to 

form a neutral complex (here, for example, [DCH18C6•Sr(NO3)3]
-).  If this is the case, the 

concentration of Tf2N
- in the aqueous phase following extraction should be measurably higher than 

that before extraction.  To determine if anion exchange is a contributing extraction mechanism in 

these systems, the aqueous phase Tf2N
- concentration was measured for Systems III and IV at 

aqueous phase acid concentrations of 4 M and 6 M.  The results, which are presented in Table 5.3, 

show that the amount of strontium that could be extracted by anion exchange is trivial at best. 

Accordingly, anion exchange is not an important mode of extraction in this system. 
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Table 5.3 

Possible contributions from anion exchange processes at 4 and 6 M HNO3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tf 2 N -  concentration (mM)

IV 4 M IV 6 M

32.2 ± 1.8 45.0 ± 0.37

III 4 M III 6 M

1.14% < LOD

31.9 ± 0.37 45.7 ± 0.36

Maximum Sr 2+  extracted by anion exchange
4 M 6 M
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5.3 Results and Discussion 

The results of the meticulous analysis of Sr2+ extraction by DCH18C6 from nitric acid into 

C5mim+Tf2N
- described above are summarized in Table 5.4, and a plot of this data (as %E versus 

concentration of nitric acid) is presented in Figure 5.2.  When the individual contributions are 

compared, it becomes readily apparent which extraction pathway predominates at each acid 

concentration.  That is, at the lowest acidities, IX-2 makes only a modest contribution to the overall 

extraction, while IX-1 dominates.  NC/IPE is also modest at low acidities, but becomes more 

pronounced as the acidity (and thus, the available nitrate concentration) rises.  The behavior of the 

system at low acid concentration can be explained by the reactions that represent each mode 

(Equations 5.1-5.3).  Neutral complex / ion pair extraction requires the presence of aqueous phase 

anions in order to proceed.  At low acid concentration, and therefore, low aqueous phase anion 

concentration, the contributions from NC/IPE are expected to be low and according to Table 5.4 

and Figure 5.2, they are.  Similarly, IX-2 requires protonation of the crown ether, which is difficult 

at low acid concentration; that its contributions are also low.  IX-1 does not involve the aqueous 

phase anion nor does it require extractant protonation.  Consequently, it accounts for the majority 

of strontium extraction at low acid concentrations.  As the acidity increases, the contributions of 

IX-1 diminish and IX-2 and NC/IPE begin to increase in prevalence, with IX-2 becoming the 

predominant mode in the 0.5-2 M nitric acid ranges.  Eventually, as the concentration of acid is 

increased further, contributions from IX-2 begin to fall and those from NC/IPE predominate at 4 

and 6 M nitric acid.   
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Table 5.4 

Contributions from each mode of Sr2+ partitioning by DCH18C6 into C5mim+Tf2N- at 

various nitric acid concentrations. 
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Figure 5.2.  The effect of HNO3 concentration on the extraction percentage of Sr2+ (solid, 

black circles), NC/IPE (solid, blue triangles), IX-1 (solid, red diamonds), and IX-2 (solid, 

green squares). 
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It is obvious that an increase in the acid concentration results in conditions that favor both 

NC/IPE and IX-2 (Equations 5.2 and 5.3) as both depend on the presence of the acid.  That is, 

NC/IPE requires the aqueous phase anion to form a neutral complex / ion pair, while IX-2 requires 

the protonation of the crown ether, which becomes more likely at higher acid concentrations.  

Therefore, as the acidity is increased, these two modes of partitioning are in competition with one 

another, and it appears from the present work that NC/IPE is favored as the nitric acid 

concentration exceeds 3 M. 

The prevalence of NC/IPE as the predominant mode at high acidity is not an intuitive 

observation due to the short alkyl chain length of the IL cation, but when considering the shape of 

the acid dependency (%ESr) this observation becomes more reasonable.  As mentioned before, it 

has been assumed thus far that as acidity increases, decreasing distribution ratios point to ion 

exchange processes predominating whereas increasing distribution ratios suggests that neutral 

complex / ion pair extraction is the dominant mode.  The upturn present at high acidity then, 

indicates that there is a shift in extraction mechanism from ion exchange to neutral complex / ion 

pair extraction, which is supported by and is consistent with the present results.   

Of practical importance is the relationship between the contributions from NC/IPE and 

both IX-1 and IX-2.  Reducing the amount of ion exchange processes occurring in these systems 

has been the recent focus of this laboratory due to the loss of the IL cation to the aqueous phase 

that occurs during metal ion extraction [5.8-5.11].  It can be seen from Figure 5.3, that ion exchange 

processes (IX-1 and IX-2 combined) represent the dominant mode of strontium extraction up to 

~3 M HNO3, after which NC/IPE is the predominant mode, which is in agreement with what is 

expected based on the shape and direction of the acid dependency alone.  It is worth noting, 

however, that no conditions have been identified under which ion-exchange is entirely  
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Figure 5.3.  The effect of HNO3 concentration on %ESr (solid, black circles) and on the 

contributions from NC/IPE (solid, blue triangles) and IX (IX-1 + IX-2; solid, orange 

diamonds). 
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absent.  This has important (and negative) implications for the development of practical SX 

processes based on ILs, for which ion-exchange-induced losses of the solvent could render an 

otherwise satisfactory process impractical. 

 This analysis represents the first quantitative description of partitioning in an IL-based 

solvent extraction system employing an acidic aqueous phase.  Although previous work has been 

able to describe the modes of metal ion extraction from water quantitatively [5.5, 5.8-5.11], it has 

only provided a qualitative description of metal ion extraction from an acid containing aqueous 

phase.  Applying this analysis to similar systems (i.e., those involving the extraction of alkali and 

alkaline earth metals by neutral extractants) will provide a means to verify (or disprove) many of 

the qualitative trends that have been proposed previously (e.g., effect of changing IL anion, IL 

cation, and aqueous phase anion).  In addition and perhaps more importantly, this work provides 

us with a tool to understand more complex systems, including those involving radiolytic 

degradation of an extractant or extraction of lanthanides and actinides. 

5.4 Conclusions 

This study represents the first time since initial work describing ILs as alternative 

extraction solvents that the individual modes of extraction have been quantified for an IL-based 

system employing an acidic aqueous phase.  The results presented here show that the exact 

contribution of each of the three modes of metal ion partitioning varies considerably with the 

experimental conditions.  At low aqueous nitric acid concentrations, IX-1 predominates due to the 

lack of nitrate or protonated extractant required for NC/IPE and IX-2, respectively.  Extraction 

occurs mostly by IX-2 between acid concentrations of 0.5 and 2 M, above which NC/IPE is 

favored.  As noted previously, the predominant mode of partitioning has typically been deduced 

qualitatively on the basis of the shape and direction of acid dependencies.  Although the results of 
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this work have demonstrated that this is a surprisingly accurate approach, the ability to 

quantitatively describe metal ion extraction in these systems is expected to provide new and 

important insights into metal ion extraction processes in ionic liquid-based SX systems, insights 

that will greatly facilitate the rational design of these systems. 
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Chapter 6: 

Conclusions and Recommendations 

 

6.1 Conclusions 

The work reported here comprises an investigation of the fundamental aspects of metal ion 

extraction from acidic media into ionic liquids by DCH18C6, motivated by the need for guiding 

principles for the rational design of ILs for use as alternative extraction solvents.  Trends observed 

for metal ion extraction into quaternary ammonium- and N-alkylpyridinium-based ILs have been 

found to be consistent with previous reports for 1, 3-dialkylimidazolium-based IL systems.  

Specifically, increases in the IL cation hydrophobicity are accompanied by greater contributions 

from NC/IPE, while a similar increase in IL anion hydrophobicity results in greater contributions 

from IX processes.  Also, aqueous phase anions with larger hydration enthalpies are less likely to 

partition into the organic phase as part of a neutral complex / ion pair and therefore, more likely to 

facilitate IX processes.  These trends and the ‘three-path model’ [6.1] have thus been proven to 

represent a general description of metal ion extraction into ILs by a neutral extractant.  

Additionally, it has been found that systems employing trimethylalkylammonium-based ILs show 

marked improvements in Sr2+ extraction efficiency and selectivity compared to other IL families. 

Extraction studies employing N-alkylpyridinium-based ILs with long alkyl chains (i.e., 

C12pyr+ or C14pyr+) have revealed a previously unappreciated aspect of extraction in IL-based 

systems, namely the resemblance of certain IL cations to cationic surfactants and their ability to 

aggregate.  Micellization of the IL cation in the aqueous phase has been found to promote 

undesirable ion exchange processes by providing a means by which transfer of the IL cation into 

the aqueous phase was facilitated.  The result is a reduced ability to exploit highly hydrophobic IL 
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cations to promote NC/IPE and reduced Sr2+ selectivity.  This was observed for all systems studied 

that employed micelle-forming ILs and represents yet another aspect of IL-based extraction 

systems that must be taken into account when selecting an IL as an alternative to traditional organic 

solvents in these applications.  Micelle formation does not introduce a new mechanism by which 

metal ions are extracted into ILs; it merely increases contributions from IX processes.  Therefore, 

the ‘three-path model’ appears to provide a general description of metal ion extraction in these 

systems as well.  The ability for an IL cation to form micelles can be eliminated by the 

incorporation of a dimethylamino- group into the N-alkylpyridinium ring opposite the alkyl chain.  

Furthermore the presence of this substituent has been shown to enhance contributions from 

NC/IPE when compared to analogous unsubstituted and non-micelle forming versions of N-

alkylpyridinium ILs. 

IL cation and anion hydrophobicity have proven to have a major effect on the mode by 

which metal ions partition into the IL.  Increased hydrophobicity is desired for the IL cation as it 

favors NC/IPE, whereas a more hydrophobic IL anion enhances contributions from IX processes.  

The octanol-water distribution coefficient, Dow, represents a parameter capable of capturing the 

overall hydrophobicity of an IL.  This work has shown that a relationship exists between Dow 

values for various ILs and extraction behavior.  Specifically, it appears that extraction of metal 

ions from nitric acid by a neutral extractant into (non-micelle forming) ILs with a Dow greater than 

20 will proceed by NC/IPE.  This represents a potential ‘cutoff’ that could be employed for the 

rational design of ILs for use as alternatives to conventional organic solvents in these types of 

extraction systems.  Furthermore, models previously proposed to predict Dow values for various 

ILs [6.2-6.4] have proven to be quite accurate, especially when compared to values measured here 
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suggesting that Dow values (and therefore extraction behavior) could be determined entirely 

theoretically.   

It is obvious then, that the selection of IL cation and anion is crucial in determining the 

feasibility of a given extraction process.  This work confirms that these observations (i.e., 

extraction trends) are generic and applicable to all IL systems.  The establishment of a general 

description of metal ion extraction into ILs by a neutral extractant (i.e., the ‘three-path model’) 

allows for a shift from extensive investigations of IL-based extraction systems to more specific 

studies aimed at explaining these qualitative trends in a quantitative manner.  To this end, an 

analysis method was developed to quantify the individual contributions of each mode of 

partitioning.  This method was successfully applied to the extraction of strontium from nitric acid 

into C5mim+Tf2N
- by DCH18C6.  The exact contribution of each extraction mechanism has been 

determined, and the results show that all modes of partitioning are present in varying proportions 

under all conditions.  Ion exchange processes predominate up to ~3 M nitric acid concentration, 

above which NC/IPE becomes the primary mode of partitioning.  This is in agreement with 

expectations based on previously reported qualitative studies. 

6.2 Recommendations 

 Several critical aspects of IL-based extraction systems have been investigated in this work.  

Despite providing a certain level of clarity to these complex systems, the results presented here 

point to the need for additional studies to further understand extraction into ionic liquids.  The true 

potential of ILs as alternative extraction solvents will not be reached until they are applicable for 

all types of metal ions.  The systems studied here comprising alkali and alkaline earth metal ions, 

nitric and hydrochloric acid, and one neutral extractant (i.e., DCH18C6) represent relatively simple 

systems to investigate when compared to those proposed for lanthanide and actinide extraction.  
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For example, alkali and alkaline earth metal ions tend to have only one oxidation state, whereas 

lanthanides and actinides can occupy several oxidation states and form positive, negative and 

neutral complexes.  Extractants for the separation of lanthanides and actinides can be neutral (e.g., 

TBP or TODGA), acidic (e.g., HDEHP) or basic (e.g., Aliquat 336).  Acidic and basic extractants 

are often considered to be liquid ion exchangers, as ion exchange is the process by which they 

extract metals.  This could pose a problem because ionic liquids have been found to be ion 

exchangers themselves.  Therefore, the general description of metal extraction into ionic liquids 

developed from studies of alkali and alkaline earth metal ion extraction could represent a simple 

description with which to begin understanding IL-based lanthanide and actinide extraction. 

 Micelle formation by the IL cation in the aqueous phase has added another complication 

to what have already proven to be complex systems and has facilitated undesirable ion exchange 

processes.  It was found that the incorporation of a dimethylamino- group into the N-

alkylpyridinium ring structure effectively blocks micellization and enhances metal ion extraction 

by NC/IPE.  Further work must explore additional functional or substituent groups to block micelle 

formation, lest it arise for other ILs utilized in solvent extraction systems.   

Both forms of ion exchange have been treated as undesired mechanisms in the extraction 

of metal ions into ILs.  The loss of the IL cation to the aqueous phase is considered detrimental as 

it results in the deterioration of the extraction solvent and contamination of the aqueous phase.  

Despite the fact that many studies have focused on reducing the contributions of ion exchange in 

IL-based extraction systems, the exceptional selectivity observed in these systems stems from the 

ability for ion exchange processes to occur.  The acid dependencies for the extraction of sodium 

and strontium by DCH18C6 into C10mim+Tf2N
- are shown in Figure 6.1.  Decreasing sodium 

distribution ratios as the acidity is increased indicates ion exchange processes are the primary 



 
 

 154  
  

mechanism by which sodium is extracted, whereas rising strontium distribution ratios indicates 

NC/IPE predominates when strontium is extracted from up to ~1 M HNO3.  These diverging trends 

yield marked improvements in strontium selectivity over sodium compared to traditional organic 

solvents (e.g., 1-octanol) which do not allow for extraction via ion exchange.  Clearly then, 

additional work should be devoted to exploiting the differing properties of the possible extraction 

mechanisms to improve extraction selectivity. 

Many reports have noted the marked effect that IL hydrophobicity has on extraction 

behavior [6.5-6.7].  Contributions from NC/IPE are favored when IL cation hydrophobicity is 

increased, while an increase in IL anion hydrophobicity enhances IX processes.  Dow represents a 

parameter that embodies the overall hydrophobicity of the IL.  Correlations between Dow and 

extraction efficiency have provided a potential guide for future IL design.  It appears that metal 

ion extraction into ILs with a Dow value greater than 20 will proceed by NC/IPE.  This guideline 

must be confirmed through similar studies of ILs with different IL anions, as Tf2N
- represented the 

only IL anion studied here.  Furthermore, predictive models were shown to be in good agreement 

with measured Dow values and the continued development of more accurate models could provide 

an entirely computational prediction of extraction behavior into ILs. 

Up to this point, a broad and qualitative description of metal ion extraction into ILs has 

been reported [6.5-6.8].  Trends have been identified largely on the basis of the shape and direction 

of the acid dependencies for these systems.  The method of analysis developed to determine the 

exact contributions from each individual mode of strontium partitioning described here can be 

used to quantitatively confirm all of the qualitative trends reported in literature regarding extraction 

of metal ions into ILs.  Of particular importance are the effects of IL cation hydrophobicity, IL 
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Figure 6.1.  Effect of HNO3 concentration on the extraction of Na+ (solid, red squares) and 

Sr2+ (open, red squares) by 0.1 M DCH18C6 into C10mim+Tf2N-. 
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anion hydrophobicity, and hydration enthalpy of the aqueous phase anion on extraction behavior.  

Along with the three-path model, this approach to quantitative analysis provides a framework by 

which to study more complicated IL-based extraction systems. 
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Appendix: 

Example Liquid Chromatograms and Mass Spectra 
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Mass spectrum of C5mim+ and C2mim+ (IS) 
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Mass spectrum of C6mim+ and C2mim+ (IS) 
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Mass spectrum of C8mim+ and C2mim+ (IS) 
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Mass spectrum of C10mim+ and C2mim+ (IS) 
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Mass spectrum of C12mim+ and C2mim+ (IS) 
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Mass spectrum of C14mim+ and C2mim+ (IS) 
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Mass spectrum of C4pyr+ and C2mim+ (IS) 
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Mass spectrum of C6pyr+ and C2mim+ (IS) 
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Mass spectrum of C7pyr+ and C2mim+ (IS) 
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Mass spectrum of C8pyr+ and C2mim+ (IS) 
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Mass spectrum of C10pyr+ and C2mim+ (IS) 
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Mass spectrum of C12pyr+ and C2mim+ (IS) 
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Mass spectrum of C14pyr+ and C2mim+ (IS) 
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Mass spectrum of N8,111
+ and C2mim+ (IS) 
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Mass spectrum of N10,111
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Mass spectrum of N12,111
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Nitrate determination – Section 5.2.2 
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Mass spectrum of C5mim+ and C8mim+ (IS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   
  

1
8
0

 

Chromatogram of C5mim+ and C8mim+ (IS) 
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